anv: Drop separate chipset_id fields
[mesa.git] / src / intel / vulkan / anv_pipeline_cache.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "util/blob.h"
25 #include "util/hash_table.h"
26 #include "util/debug.h"
27 #include "util/disk_cache.h"
28 #include "util/mesa-sha1.h"
29 #include "nir/nir_serialize.h"
30 #include "anv_private.h"
31 #include "nir/nir_xfb_info.h"
32
33 struct anv_shader_bin *
34 anv_shader_bin_create(struct anv_device *device,
35 const void *key_data, uint32_t key_size,
36 const void *kernel_data, uint32_t kernel_size,
37 const void *constant_data, uint32_t constant_data_size,
38 const struct brw_stage_prog_data *prog_data_in,
39 uint32_t prog_data_size, const void *prog_data_param_in,
40 const struct brw_compile_stats *stats, uint32_t num_stats,
41 const nir_xfb_info *xfb_info_in,
42 const struct anv_pipeline_bind_map *bind_map)
43 {
44 struct anv_shader_bin *shader;
45 struct anv_shader_bin_key *key;
46 struct brw_stage_prog_data *prog_data;
47 uint32_t *prog_data_param;
48 nir_xfb_info *xfb_info;
49 struct anv_pipeline_binding *surface_to_descriptor, *sampler_to_descriptor;
50
51 ANV_MULTIALLOC(ma);
52 anv_multialloc_add(&ma, &shader, 1);
53 anv_multialloc_add_size(&ma, &key, sizeof(*key) + key_size);
54 anv_multialloc_add_size(&ma, &prog_data, prog_data_size);
55 anv_multialloc_add(&ma, &prog_data_param, prog_data_in->nr_params);
56 if (xfb_info_in) {
57 uint32_t xfb_info_size = nir_xfb_info_size(xfb_info_in->output_count);
58 anv_multialloc_add_size(&ma, &xfb_info, xfb_info_size);
59 }
60 anv_multialloc_add(&ma, &surface_to_descriptor,
61 bind_map->surface_count);
62 anv_multialloc_add(&ma, &sampler_to_descriptor,
63 bind_map->sampler_count);
64
65 if (!anv_multialloc_alloc(&ma, &device->alloc,
66 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
67 return NULL;
68
69 shader->ref_cnt = 1;
70
71 key->size = key_size;
72 memcpy(key->data, key_data, key_size);
73 shader->key = key;
74
75 shader->kernel =
76 anv_state_pool_alloc(&device->instruction_state_pool, kernel_size, 64);
77 memcpy(shader->kernel.map, kernel_data, kernel_size);
78 shader->kernel_size = kernel_size;
79
80 if (constant_data_size) {
81 shader->constant_data =
82 anv_state_pool_alloc(&device->dynamic_state_pool,
83 constant_data_size, 32);
84 memcpy(shader->constant_data.map, constant_data, constant_data_size);
85 } else {
86 shader->constant_data = ANV_STATE_NULL;
87 }
88 shader->constant_data_size = constant_data_size;
89
90 memcpy(prog_data, prog_data_in, prog_data_size);
91 memcpy(prog_data_param, prog_data_param_in,
92 prog_data->nr_params * sizeof(*prog_data_param));
93 prog_data->param = prog_data_param;
94 shader->prog_data = prog_data;
95 shader->prog_data_size = prog_data_size;
96
97 assert(num_stats <= ARRAY_SIZE(shader->stats));
98 typed_memcpy(shader->stats, stats, num_stats);
99 shader->num_stats = num_stats;
100
101 if (xfb_info_in) {
102 *xfb_info = *xfb_info_in;
103 typed_memcpy(xfb_info->outputs, xfb_info_in->outputs,
104 xfb_info_in->output_count);
105 shader->xfb_info = xfb_info;
106 } else {
107 shader->xfb_info = NULL;
108 }
109
110 shader->bind_map = *bind_map;
111 typed_memcpy(surface_to_descriptor, bind_map->surface_to_descriptor,
112 bind_map->surface_count);
113 shader->bind_map.surface_to_descriptor = surface_to_descriptor;
114 typed_memcpy(sampler_to_descriptor, bind_map->sampler_to_descriptor,
115 bind_map->sampler_count);
116 shader->bind_map.sampler_to_descriptor = sampler_to_descriptor;
117
118 return shader;
119 }
120
121 void
122 anv_shader_bin_destroy(struct anv_device *device,
123 struct anv_shader_bin *shader)
124 {
125 assert(shader->ref_cnt == 0);
126 anv_state_pool_free(&device->instruction_state_pool, shader->kernel);
127 anv_state_pool_free(&device->dynamic_state_pool, shader->constant_data);
128 vk_free(&device->alloc, shader);
129 }
130
131 static bool
132 anv_shader_bin_write_to_blob(const struct anv_shader_bin *shader,
133 struct blob *blob)
134 {
135 blob_write_uint32(blob, shader->key->size);
136 blob_write_bytes(blob, shader->key->data, shader->key->size);
137
138 blob_write_uint32(blob, shader->kernel_size);
139 blob_write_bytes(blob, shader->kernel.map, shader->kernel_size);
140
141 blob_write_uint32(blob, shader->constant_data_size);
142 blob_write_bytes(blob, shader->constant_data.map,
143 shader->constant_data_size);
144
145 blob_write_uint32(blob, shader->prog_data_size);
146 blob_write_bytes(blob, shader->prog_data, shader->prog_data_size);
147 blob_write_bytes(blob, shader->prog_data->param,
148 shader->prog_data->nr_params *
149 sizeof(*shader->prog_data->param));
150
151 blob_write_uint32(blob, shader->num_stats);
152 blob_write_bytes(blob, shader->stats,
153 shader->num_stats * sizeof(shader->stats[0]));
154
155 if (shader->xfb_info) {
156 uint32_t xfb_info_size =
157 nir_xfb_info_size(shader->xfb_info->output_count);
158 blob_write_uint32(blob, xfb_info_size);
159 blob_write_bytes(blob, shader->xfb_info, xfb_info_size);
160 } else {
161 blob_write_uint32(blob, 0);
162 }
163
164 blob_write_bytes(blob, shader->bind_map.surface_sha1,
165 sizeof(shader->bind_map.surface_sha1));
166 blob_write_bytes(blob, shader->bind_map.sampler_sha1,
167 sizeof(shader->bind_map.sampler_sha1));
168 blob_write_bytes(blob, shader->bind_map.push_sha1,
169 sizeof(shader->bind_map.push_sha1));
170 blob_write_uint32(blob, shader->bind_map.surface_count);
171 blob_write_uint32(blob, shader->bind_map.sampler_count);
172 blob_write_bytes(blob, shader->bind_map.surface_to_descriptor,
173 shader->bind_map.surface_count *
174 sizeof(*shader->bind_map.surface_to_descriptor));
175 blob_write_bytes(blob, shader->bind_map.sampler_to_descriptor,
176 shader->bind_map.sampler_count *
177 sizeof(*shader->bind_map.sampler_to_descriptor));
178 blob_write_bytes(blob, shader->bind_map.push_ranges,
179 sizeof(shader->bind_map.push_ranges));
180
181 return !blob->out_of_memory;
182 }
183
184 static struct anv_shader_bin *
185 anv_shader_bin_create_from_blob(struct anv_device *device,
186 struct blob_reader *blob)
187 {
188 uint32_t key_size = blob_read_uint32(blob);
189 const void *key_data = blob_read_bytes(blob, key_size);
190
191 uint32_t kernel_size = blob_read_uint32(blob);
192 const void *kernel_data = blob_read_bytes(blob, kernel_size);
193
194 uint32_t constant_data_size = blob_read_uint32(blob);
195 const void *constant_data = blob_read_bytes(blob, constant_data_size);
196
197 uint32_t prog_data_size = blob_read_uint32(blob);
198 const struct brw_stage_prog_data *prog_data =
199 blob_read_bytes(blob, prog_data_size);
200 if (blob->overrun)
201 return NULL;
202 const void *prog_data_param =
203 blob_read_bytes(blob, prog_data->nr_params * sizeof(*prog_data->param));
204
205 uint32_t num_stats = blob_read_uint32(blob);
206 const struct brw_compile_stats *stats =
207 blob_read_bytes(blob, num_stats * sizeof(stats[0]));
208
209 const nir_xfb_info *xfb_info = NULL;
210 uint32_t xfb_size = blob_read_uint32(blob);
211 if (xfb_size)
212 xfb_info = blob_read_bytes(blob, xfb_size);
213
214 struct anv_pipeline_bind_map bind_map;
215 blob_copy_bytes(blob, bind_map.surface_sha1, sizeof(bind_map.surface_sha1));
216 blob_copy_bytes(blob, bind_map.sampler_sha1, sizeof(bind_map.sampler_sha1));
217 blob_copy_bytes(blob, bind_map.push_sha1, sizeof(bind_map.push_sha1));
218 bind_map.surface_count = blob_read_uint32(blob);
219 bind_map.sampler_count = blob_read_uint32(blob);
220 bind_map.surface_to_descriptor = (void *)
221 blob_read_bytes(blob, bind_map.surface_count *
222 sizeof(*bind_map.surface_to_descriptor));
223 bind_map.sampler_to_descriptor = (void *)
224 blob_read_bytes(blob, bind_map.sampler_count *
225 sizeof(*bind_map.sampler_to_descriptor));
226 blob_copy_bytes(blob, bind_map.push_ranges, sizeof(bind_map.push_ranges));
227
228 if (blob->overrun)
229 return NULL;
230
231 return anv_shader_bin_create(device,
232 key_data, key_size,
233 kernel_data, kernel_size,
234 constant_data, constant_data_size,
235 prog_data, prog_data_size, prog_data_param,
236 stats, num_stats, xfb_info, &bind_map);
237 }
238
239 /* Remaining work:
240 *
241 * - Compact binding table layout so it's tight and not dependent on
242 * descriptor set layout.
243 *
244 * - Review prog_data struct for size and cacheability: struct
245 * brw_stage_prog_data has binding_table which uses a lot of uint32_t for 8
246 * bit quantities etc; use bit fields for all bools, eg dual_src_blend.
247 */
248
249 static uint32_t
250 shader_bin_key_hash_func(const void *void_key)
251 {
252 const struct anv_shader_bin_key *key = void_key;
253 return _mesa_hash_data(key->data, key->size);
254 }
255
256 static bool
257 shader_bin_key_compare_func(const void *void_a, const void *void_b)
258 {
259 const struct anv_shader_bin_key *a = void_a, *b = void_b;
260 if (a->size != b->size)
261 return false;
262
263 return memcmp(a->data, b->data, a->size) == 0;
264 }
265
266 static uint32_t
267 sha1_hash_func(const void *sha1)
268 {
269 return _mesa_hash_data(sha1, 20);
270 }
271
272 static bool
273 sha1_compare_func(const void *sha1_a, const void *sha1_b)
274 {
275 return memcmp(sha1_a, sha1_b, 20) == 0;
276 }
277
278 void
279 anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
280 struct anv_device *device,
281 bool cache_enabled)
282 {
283 cache->device = device;
284 pthread_mutex_init(&cache->mutex, NULL);
285
286 if (cache_enabled) {
287 cache->cache = _mesa_hash_table_create(NULL, shader_bin_key_hash_func,
288 shader_bin_key_compare_func);
289 cache->nir_cache = _mesa_hash_table_create(NULL, sha1_hash_func,
290 sha1_compare_func);
291 } else {
292 cache->cache = NULL;
293 cache->nir_cache = NULL;
294 }
295 }
296
297 void
298 anv_pipeline_cache_finish(struct anv_pipeline_cache *cache)
299 {
300 pthread_mutex_destroy(&cache->mutex);
301
302 if (cache->cache) {
303 /* This is a bit unfortunate. In order to keep things from randomly
304 * going away, the shader cache has to hold a reference to all shader
305 * binaries it contains. We unref them when we destroy the cache.
306 */
307 hash_table_foreach(cache->cache, entry)
308 anv_shader_bin_unref(cache->device, entry->data);
309
310 _mesa_hash_table_destroy(cache->cache, NULL);
311 }
312
313 if (cache->nir_cache) {
314 hash_table_foreach(cache->nir_cache, entry)
315 ralloc_free(entry->data);
316
317 _mesa_hash_table_destroy(cache->nir_cache, NULL);
318 }
319 }
320
321 static struct anv_shader_bin *
322 anv_pipeline_cache_search_locked(struct anv_pipeline_cache *cache,
323 const void *key_data, uint32_t key_size)
324 {
325 uint32_t vla[1 + DIV_ROUND_UP(key_size, sizeof(uint32_t))];
326 struct anv_shader_bin_key *key = (void *)vla;
327 key->size = key_size;
328 memcpy(key->data, key_data, key_size);
329
330 struct hash_entry *entry = _mesa_hash_table_search(cache->cache, key);
331 if (entry)
332 return entry->data;
333 else
334 return NULL;
335 }
336
337 struct anv_shader_bin *
338 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
339 const void *key_data, uint32_t key_size)
340 {
341 if (!cache->cache)
342 return NULL;
343
344 pthread_mutex_lock(&cache->mutex);
345
346 struct anv_shader_bin *shader =
347 anv_pipeline_cache_search_locked(cache, key_data, key_size);
348
349 pthread_mutex_unlock(&cache->mutex);
350
351 /* We increment refcount before handing it to the caller */
352 if (shader)
353 anv_shader_bin_ref(shader);
354
355 return shader;
356 }
357
358 static void
359 anv_pipeline_cache_add_shader_bin(struct anv_pipeline_cache *cache,
360 struct anv_shader_bin *bin)
361 {
362 if (!cache->cache)
363 return;
364
365 pthread_mutex_lock(&cache->mutex);
366
367 struct hash_entry *entry = _mesa_hash_table_search(cache->cache, bin->key);
368 if (entry == NULL) {
369 /* Take a reference for the cache */
370 anv_shader_bin_ref(bin);
371 _mesa_hash_table_insert(cache->cache, bin->key, bin);
372 }
373
374 pthread_mutex_unlock(&cache->mutex);
375 }
376
377 static struct anv_shader_bin *
378 anv_pipeline_cache_add_shader_locked(struct anv_pipeline_cache *cache,
379 const void *key_data, uint32_t key_size,
380 const void *kernel_data,
381 uint32_t kernel_size,
382 const void *constant_data,
383 uint32_t constant_data_size,
384 const struct brw_stage_prog_data *prog_data,
385 uint32_t prog_data_size,
386 const void *prog_data_param,
387 const struct brw_compile_stats *stats,
388 uint32_t num_stats,
389 const nir_xfb_info *xfb_info,
390 const struct anv_pipeline_bind_map *bind_map)
391 {
392 struct anv_shader_bin *shader =
393 anv_pipeline_cache_search_locked(cache, key_data, key_size);
394 if (shader)
395 return shader;
396
397 struct anv_shader_bin *bin =
398 anv_shader_bin_create(cache->device, key_data, key_size,
399 kernel_data, kernel_size,
400 constant_data, constant_data_size,
401 prog_data, prog_data_size, prog_data_param,
402 stats, num_stats, xfb_info, bind_map);
403 if (!bin)
404 return NULL;
405
406 _mesa_hash_table_insert(cache->cache, bin->key, bin);
407
408 return bin;
409 }
410
411 struct anv_shader_bin *
412 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
413 const void *key_data, uint32_t key_size,
414 const void *kernel_data, uint32_t kernel_size,
415 const void *constant_data,
416 uint32_t constant_data_size,
417 const struct brw_stage_prog_data *prog_data,
418 uint32_t prog_data_size,
419 const struct brw_compile_stats *stats,
420 uint32_t num_stats,
421 const nir_xfb_info *xfb_info,
422 const struct anv_pipeline_bind_map *bind_map)
423 {
424 if (cache->cache) {
425 pthread_mutex_lock(&cache->mutex);
426
427 struct anv_shader_bin *bin =
428 anv_pipeline_cache_add_shader_locked(cache, key_data, key_size,
429 kernel_data, kernel_size,
430 constant_data, constant_data_size,
431 prog_data, prog_data_size,
432 prog_data->param,
433 stats, num_stats,
434 xfb_info, bind_map);
435
436 pthread_mutex_unlock(&cache->mutex);
437
438 /* We increment refcount before handing it to the caller */
439 if (bin)
440 anv_shader_bin_ref(bin);
441
442 return bin;
443 } else {
444 /* In this case, we're not caching it so the caller owns it entirely */
445 return anv_shader_bin_create(cache->device, key_data, key_size,
446 kernel_data, kernel_size,
447 constant_data, constant_data_size,
448 prog_data, prog_data_size,
449 prog_data->param,
450 stats, num_stats,
451 xfb_info, bind_map);
452 }
453 }
454
455 struct cache_header {
456 uint32_t header_size;
457 uint32_t header_version;
458 uint32_t vendor_id;
459 uint32_t device_id;
460 uint8_t uuid[VK_UUID_SIZE];
461 };
462
463 static void
464 anv_pipeline_cache_load(struct anv_pipeline_cache *cache,
465 const void *data, size_t size)
466 {
467 struct anv_device *device = cache->device;
468 struct anv_physical_device *pdevice = device->physical;
469
470 if (cache->cache == NULL)
471 return;
472
473 struct blob_reader blob;
474 blob_reader_init(&blob, data, size);
475
476 struct cache_header header;
477 blob_copy_bytes(&blob, &header, sizeof(header));
478 uint32_t count = blob_read_uint32(&blob);
479 if (blob.overrun)
480 return;
481
482 if (header.header_size < sizeof(header))
483 return;
484 if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
485 return;
486 if (header.vendor_id != 0x8086)
487 return;
488 if (header.device_id != device->info.chipset_id)
489 return;
490 if (memcmp(header.uuid, pdevice->pipeline_cache_uuid, VK_UUID_SIZE) != 0)
491 return;
492
493 for (uint32_t i = 0; i < count; i++) {
494 struct anv_shader_bin *bin =
495 anv_shader_bin_create_from_blob(device, &blob);
496 if (!bin)
497 break;
498 _mesa_hash_table_insert(cache->cache, bin->key, bin);
499 }
500 }
501
502 VkResult anv_CreatePipelineCache(
503 VkDevice _device,
504 const VkPipelineCacheCreateInfo* pCreateInfo,
505 const VkAllocationCallbacks* pAllocator,
506 VkPipelineCache* pPipelineCache)
507 {
508 ANV_FROM_HANDLE(anv_device, device, _device);
509 struct anv_pipeline_cache *cache;
510
511 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
512 assert(pCreateInfo->flags == 0);
513
514 cache = vk_alloc2(&device->alloc, pAllocator,
515 sizeof(*cache), 8,
516 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
517 if (cache == NULL)
518 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
519
520 anv_pipeline_cache_init(cache, device,
521 device->physical->instance->pipeline_cache_enabled);
522
523 if (pCreateInfo->initialDataSize > 0)
524 anv_pipeline_cache_load(cache,
525 pCreateInfo->pInitialData,
526 pCreateInfo->initialDataSize);
527
528 *pPipelineCache = anv_pipeline_cache_to_handle(cache);
529
530 return VK_SUCCESS;
531 }
532
533 void anv_DestroyPipelineCache(
534 VkDevice _device,
535 VkPipelineCache _cache,
536 const VkAllocationCallbacks* pAllocator)
537 {
538 ANV_FROM_HANDLE(anv_device, device, _device);
539 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
540
541 if (!cache)
542 return;
543
544 anv_pipeline_cache_finish(cache);
545
546 vk_free2(&device->alloc, pAllocator, cache);
547 }
548
549 VkResult anv_GetPipelineCacheData(
550 VkDevice _device,
551 VkPipelineCache _cache,
552 size_t* pDataSize,
553 void* pData)
554 {
555 ANV_FROM_HANDLE(anv_device, device, _device);
556 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
557
558 struct blob blob;
559 if (pData) {
560 blob_init_fixed(&blob, pData, *pDataSize);
561 } else {
562 blob_init_fixed(&blob, NULL, SIZE_MAX);
563 }
564
565 struct cache_header header = {
566 .header_size = sizeof(struct cache_header),
567 .header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE,
568 .vendor_id = 0x8086,
569 .device_id = device->info.chipset_id,
570 };
571 memcpy(header.uuid, device->physical->pipeline_cache_uuid, VK_UUID_SIZE);
572 blob_write_bytes(&blob, &header, sizeof(header));
573
574 uint32_t count = 0;
575 intptr_t count_offset = blob_reserve_uint32(&blob);
576 if (count_offset < 0) {
577 *pDataSize = 0;
578 blob_finish(&blob);
579 return VK_INCOMPLETE;
580 }
581
582 VkResult result = VK_SUCCESS;
583 if (cache->cache) {
584 hash_table_foreach(cache->cache, entry) {
585 struct anv_shader_bin *shader = entry->data;
586
587 size_t save_size = blob.size;
588 if (!anv_shader_bin_write_to_blob(shader, &blob)) {
589 /* If it fails reset to the previous size and bail */
590 blob.size = save_size;
591 result = VK_INCOMPLETE;
592 break;
593 }
594
595 count++;
596 }
597 }
598
599 blob_overwrite_uint32(&blob, count_offset, count);
600
601 *pDataSize = blob.size;
602
603 blob_finish(&blob);
604
605 return result;
606 }
607
608 VkResult anv_MergePipelineCaches(
609 VkDevice _device,
610 VkPipelineCache destCache,
611 uint32_t srcCacheCount,
612 const VkPipelineCache* pSrcCaches)
613 {
614 ANV_FROM_HANDLE(anv_pipeline_cache, dst, destCache);
615
616 if (!dst->cache)
617 return VK_SUCCESS;
618
619 for (uint32_t i = 0; i < srcCacheCount; i++) {
620 ANV_FROM_HANDLE(anv_pipeline_cache, src, pSrcCaches[i]);
621 if (!src->cache)
622 continue;
623
624 hash_table_foreach(src->cache, entry) {
625 struct anv_shader_bin *bin = entry->data;
626 assert(bin);
627
628 if (_mesa_hash_table_search(dst->cache, bin->key))
629 continue;
630
631 anv_shader_bin_ref(bin);
632 _mesa_hash_table_insert(dst->cache, bin->key, bin);
633 }
634 }
635
636 return VK_SUCCESS;
637 }
638
639 struct anv_shader_bin *
640 anv_device_search_for_kernel(struct anv_device *device,
641 struct anv_pipeline_cache *cache,
642 const void *key_data, uint32_t key_size,
643 bool *user_cache_hit)
644 {
645 struct anv_shader_bin *bin;
646
647 *user_cache_hit = false;
648
649 if (cache) {
650 bin = anv_pipeline_cache_search(cache, key_data, key_size);
651 if (bin) {
652 *user_cache_hit = cache != &device->default_pipeline_cache;
653 return bin;
654 }
655 }
656
657 #ifdef ENABLE_SHADER_CACHE
658 struct disk_cache *disk_cache = device->physical->disk_cache;
659 if (disk_cache && device->physical->instance->pipeline_cache_enabled) {
660 cache_key cache_key;
661 disk_cache_compute_key(disk_cache, key_data, key_size, cache_key);
662
663 size_t buffer_size;
664 uint8_t *buffer = disk_cache_get(disk_cache, cache_key, &buffer_size);
665 if (buffer) {
666 struct blob_reader blob;
667 blob_reader_init(&blob, buffer, buffer_size);
668 bin = anv_shader_bin_create_from_blob(device, &blob);
669 free(buffer);
670
671 if (bin) {
672 if (cache)
673 anv_pipeline_cache_add_shader_bin(cache, bin);
674 return bin;
675 }
676 }
677 }
678 #endif
679
680 return NULL;
681 }
682
683 struct anv_shader_bin *
684 anv_device_upload_kernel(struct anv_device *device,
685 struct anv_pipeline_cache *cache,
686 const void *key_data, uint32_t key_size,
687 const void *kernel_data, uint32_t kernel_size,
688 const void *constant_data,
689 uint32_t constant_data_size,
690 const struct brw_stage_prog_data *prog_data,
691 uint32_t prog_data_size,
692 const struct brw_compile_stats *stats,
693 uint32_t num_stats,
694 const nir_xfb_info *xfb_info,
695 const struct anv_pipeline_bind_map *bind_map)
696 {
697 struct anv_shader_bin *bin;
698 if (cache) {
699 bin = anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
700 kernel_data, kernel_size,
701 constant_data, constant_data_size,
702 prog_data, prog_data_size,
703 stats, num_stats,
704 xfb_info, bind_map);
705 } else {
706 bin = anv_shader_bin_create(device, key_data, key_size,
707 kernel_data, kernel_size,
708 constant_data, constant_data_size,
709 prog_data, prog_data_size,
710 prog_data->param,
711 stats, num_stats,
712 xfb_info, bind_map);
713 }
714
715 if (bin == NULL)
716 return NULL;
717
718 #ifdef ENABLE_SHADER_CACHE
719 struct disk_cache *disk_cache = device->physical->disk_cache;
720 if (disk_cache) {
721 struct blob binary;
722 blob_init(&binary);
723 if (anv_shader_bin_write_to_blob(bin, &binary)) {
724 cache_key cache_key;
725 disk_cache_compute_key(disk_cache, key_data, key_size, cache_key);
726
727 disk_cache_put(disk_cache, cache_key, binary.data, binary.size, NULL);
728 }
729
730 blob_finish(&binary);
731 }
732 #endif
733
734 return bin;
735 }
736
737 struct serialized_nir {
738 unsigned char sha1_key[20];
739 size_t size;
740 char data[0];
741 };
742
743 struct nir_shader *
744 anv_device_search_for_nir(struct anv_device *device,
745 struct anv_pipeline_cache *cache,
746 const nir_shader_compiler_options *nir_options,
747 unsigned char sha1_key[20],
748 void *mem_ctx)
749 {
750 if (cache && cache->nir_cache) {
751 const struct serialized_nir *snir = NULL;
752
753 pthread_mutex_lock(&cache->mutex);
754 struct hash_entry *entry =
755 _mesa_hash_table_search(cache->nir_cache, sha1_key);
756 if (entry)
757 snir = entry->data;
758 pthread_mutex_unlock(&cache->mutex);
759
760 if (snir) {
761 struct blob_reader blob;
762 blob_reader_init(&blob, snir->data, snir->size);
763
764 nir_shader *nir = nir_deserialize(mem_ctx, nir_options, &blob);
765 if (blob.overrun) {
766 ralloc_free(nir);
767 } else {
768 return nir;
769 }
770 }
771 }
772
773 return NULL;
774 }
775
776 void
777 anv_device_upload_nir(struct anv_device *device,
778 struct anv_pipeline_cache *cache,
779 const struct nir_shader *nir,
780 unsigned char sha1_key[20])
781 {
782 if (cache && cache->nir_cache) {
783 pthread_mutex_lock(&cache->mutex);
784 struct hash_entry *entry =
785 _mesa_hash_table_search(cache->nir_cache, sha1_key);
786 pthread_mutex_unlock(&cache->mutex);
787 if (entry)
788 return;
789
790 struct blob blob;
791 blob_init(&blob);
792
793 nir_serialize(&blob, nir, false);
794 if (blob.out_of_memory) {
795 blob_finish(&blob);
796 return;
797 }
798
799 pthread_mutex_lock(&cache->mutex);
800 /* Because ralloc isn't thread-safe, we have to do all this inside the
801 * lock. We could unlock for the big memcpy but it's probably not worth
802 * the hassle.
803 */
804 entry = _mesa_hash_table_search(cache->nir_cache, sha1_key);
805 if (entry) {
806 blob_finish(&blob);
807 pthread_mutex_unlock(&cache->mutex);
808 return;
809 }
810
811 struct serialized_nir *snir =
812 ralloc_size(cache->nir_cache, sizeof(*snir) + blob.size);
813 memcpy(snir->sha1_key, sha1_key, 20);
814 snir->size = blob.size;
815 memcpy(snir->data, blob.data, blob.size);
816
817 blob_finish(&blob);
818
819 _mesa_hash_table_insert(cache->nir_cache, snir->sha1_key, snir);
820
821 pthread_mutex_unlock(&cache->mutex);
822 }
823 }