anv/pipeline_cache: fix incorrect guards for NIR cache
[mesa.git] / src / intel / vulkan / anv_pipeline_cache.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/blob.h"
25 #include "util/hash_table.h"
26 #include "util/debug.h"
27 #include "util/disk_cache.h"
28 #include "util/mesa-sha1.h"
29 #include "nir/nir_serialize.h"
30 #include "anv_private.h"
31
32 struct anv_shader_bin *
33 anv_shader_bin_create(struct anv_device *device,
34 const void *key_data, uint32_t key_size,
35 const void *kernel_data, uint32_t kernel_size,
36 const void *constant_data, uint32_t constant_data_size,
37 const struct brw_stage_prog_data *prog_data_in,
38 uint32_t prog_data_size, const void *prog_data_param_in,
39 const struct anv_pipeline_bind_map *bind_map)
40 {
41 struct anv_shader_bin *shader;
42 struct anv_shader_bin_key *key;
43 struct brw_stage_prog_data *prog_data;
44 uint32_t *prog_data_param;
45 struct anv_pipeline_binding *surface_to_descriptor, *sampler_to_descriptor;
46
47 ANV_MULTIALLOC(ma);
48 anv_multialloc_add(&ma, &shader, 1);
49 anv_multialloc_add_size(&ma, &key, sizeof(*key) + key_size);
50 anv_multialloc_add_size(&ma, &prog_data, prog_data_size);
51 anv_multialloc_add(&ma, &prog_data_param, prog_data_in->nr_params);
52 anv_multialloc_add(&ma, &surface_to_descriptor,
53 bind_map->surface_count);
54 anv_multialloc_add(&ma, &sampler_to_descriptor,
55 bind_map->sampler_count);
56
57 if (!anv_multialloc_alloc(&ma, &device->alloc,
58 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
59 return NULL;
60
61 shader->ref_cnt = 1;
62
63 key->size = key_size;
64 memcpy(key->data, key_data, key_size);
65 shader->key = key;
66
67 shader->kernel =
68 anv_state_pool_alloc(&device->instruction_state_pool, kernel_size, 64);
69 memcpy(shader->kernel.map, kernel_data, kernel_size);
70 shader->kernel_size = kernel_size;
71
72 if (constant_data_size) {
73 shader->constant_data =
74 anv_state_pool_alloc(&device->dynamic_state_pool,
75 constant_data_size, 32);
76 memcpy(shader->constant_data.map, constant_data, constant_data_size);
77 } else {
78 shader->constant_data = ANV_STATE_NULL;
79 }
80 shader->constant_data_size = constant_data_size;
81
82 memcpy(prog_data, prog_data_in, prog_data_size);
83 memcpy(prog_data_param, prog_data_param_in,
84 prog_data->nr_params * sizeof(*prog_data_param));
85 prog_data->param = prog_data_param;
86 shader->prog_data = prog_data;
87 shader->prog_data_size = prog_data_size;
88
89 shader->bind_map = *bind_map;
90 typed_memcpy(surface_to_descriptor, bind_map->surface_to_descriptor,
91 bind_map->surface_count);
92 shader->bind_map.surface_to_descriptor = surface_to_descriptor;
93 typed_memcpy(sampler_to_descriptor, bind_map->sampler_to_descriptor,
94 bind_map->sampler_count);
95 shader->bind_map.sampler_to_descriptor = sampler_to_descriptor;
96
97 return shader;
98 }
99
100 void
101 anv_shader_bin_destroy(struct anv_device *device,
102 struct anv_shader_bin *shader)
103 {
104 assert(shader->ref_cnt == 0);
105 anv_state_pool_free(&device->instruction_state_pool, shader->kernel);
106 anv_state_pool_free(&device->dynamic_state_pool, shader->constant_data);
107 vk_free(&device->alloc, shader);
108 }
109
110 static bool
111 anv_shader_bin_write_to_blob(const struct anv_shader_bin *shader,
112 struct blob *blob)
113 {
114 bool ok;
115
116 ok = blob_write_uint32(blob, shader->key->size);
117 ok = blob_write_bytes(blob, shader->key->data, shader->key->size);
118
119 ok = blob_write_uint32(blob, shader->kernel_size);
120 ok = blob_write_bytes(blob, shader->kernel.map, shader->kernel_size);
121
122 ok = blob_write_uint32(blob, shader->constant_data_size);
123 ok = blob_write_bytes(blob, shader->constant_data.map,
124 shader->constant_data_size);
125
126 ok = blob_write_uint32(blob, shader->prog_data_size);
127 ok = blob_write_bytes(blob, shader->prog_data, shader->prog_data_size);
128 ok = blob_write_bytes(blob, shader->prog_data->param,
129 shader->prog_data->nr_params *
130 sizeof(*shader->prog_data->param));
131
132 ok = blob_write_uint32(blob, shader->bind_map.surface_count);
133 ok = blob_write_uint32(blob, shader->bind_map.sampler_count);
134 ok = blob_write_uint32(blob, shader->bind_map.image_count);
135 ok = blob_write_bytes(blob, shader->bind_map.surface_to_descriptor,
136 shader->bind_map.surface_count *
137 sizeof(*shader->bind_map.surface_to_descriptor));
138 ok = blob_write_bytes(blob, shader->bind_map.sampler_to_descriptor,
139 shader->bind_map.sampler_count *
140 sizeof(*shader->bind_map.sampler_to_descriptor));
141
142 return ok;
143 }
144
145 static struct anv_shader_bin *
146 anv_shader_bin_create_from_blob(struct anv_device *device,
147 struct blob_reader *blob)
148 {
149 uint32_t key_size = blob_read_uint32(blob);
150 const void *key_data = blob_read_bytes(blob, key_size);
151
152 uint32_t kernel_size = blob_read_uint32(blob);
153 const void *kernel_data = blob_read_bytes(blob, kernel_size);
154
155 uint32_t constant_data_size = blob_read_uint32(blob);
156 const void *constant_data = blob_read_bytes(blob, constant_data_size);
157
158 uint32_t prog_data_size = blob_read_uint32(blob);
159 const struct brw_stage_prog_data *prog_data =
160 blob_read_bytes(blob, prog_data_size);
161 if (blob->overrun)
162 return NULL;
163 const void *prog_data_param =
164 blob_read_bytes(blob, prog_data->nr_params * sizeof(*prog_data->param));
165
166 struct anv_pipeline_bind_map bind_map;
167 bind_map.surface_count = blob_read_uint32(blob);
168 bind_map.sampler_count = blob_read_uint32(blob);
169 bind_map.image_count = blob_read_uint32(blob);
170 bind_map.surface_to_descriptor = (void *)
171 blob_read_bytes(blob, bind_map.surface_count *
172 sizeof(*bind_map.surface_to_descriptor));
173 bind_map.sampler_to_descriptor = (void *)
174 blob_read_bytes(blob, bind_map.sampler_count *
175 sizeof(*bind_map.sampler_to_descriptor));
176
177 if (blob->overrun)
178 return NULL;
179
180 return anv_shader_bin_create(device,
181 key_data, key_size,
182 kernel_data, kernel_size,
183 constant_data, constant_data_size,
184 prog_data, prog_data_size, prog_data_param,
185 &bind_map);
186 }
187
188 /* Remaining work:
189 *
190 * - Compact binding table layout so it's tight and not dependent on
191 * descriptor set layout.
192 *
193 * - Review prog_data struct for size and cacheability: struct
194 * brw_stage_prog_data has binding_table which uses a lot of uint32_t for 8
195 * bit quantities etc; use bit fields for all bools, eg dual_src_blend.
196 */
197
198 static uint32_t
199 shader_bin_key_hash_func(const void *void_key)
200 {
201 const struct anv_shader_bin_key *key = void_key;
202 return _mesa_hash_data(key->data, key->size);
203 }
204
205 static bool
206 shader_bin_key_compare_func(const void *void_a, const void *void_b)
207 {
208 const struct anv_shader_bin_key *a = void_a, *b = void_b;
209 if (a->size != b->size)
210 return false;
211
212 return memcmp(a->data, b->data, a->size) == 0;
213 }
214
215 static uint32_t
216 sha1_hash_func(const void *sha1)
217 {
218 return _mesa_hash_data(sha1, 20);
219 }
220
221 static bool
222 sha1_compare_func(const void *sha1_a, const void *sha1_b)
223 {
224 return memcmp(sha1_a, sha1_b, 20) == 0;
225 }
226
227 void
228 anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
229 struct anv_device *device,
230 bool cache_enabled)
231 {
232 cache->device = device;
233 pthread_mutex_init(&cache->mutex, NULL);
234
235 if (cache_enabled) {
236 cache->cache = _mesa_hash_table_create(NULL, shader_bin_key_hash_func,
237 shader_bin_key_compare_func);
238 cache->nir_cache = _mesa_hash_table_create(NULL, sha1_hash_func,
239 sha1_compare_func);
240 } else {
241 cache->cache = NULL;
242 cache->nir_cache = NULL;
243 }
244 }
245
246 void
247 anv_pipeline_cache_finish(struct anv_pipeline_cache *cache)
248 {
249 pthread_mutex_destroy(&cache->mutex);
250
251 if (cache->cache) {
252 /* This is a bit unfortunate. In order to keep things from randomly
253 * going away, the shader cache has to hold a reference to all shader
254 * binaries it contains. We unref them when we destroy the cache.
255 */
256 hash_table_foreach(cache->cache, entry)
257 anv_shader_bin_unref(cache->device, entry->data);
258
259 _mesa_hash_table_destroy(cache->cache, NULL);
260 }
261 }
262
263 static struct anv_shader_bin *
264 anv_pipeline_cache_search_locked(struct anv_pipeline_cache *cache,
265 const void *key_data, uint32_t key_size)
266 {
267 uint32_t vla[1 + DIV_ROUND_UP(key_size, sizeof(uint32_t))];
268 struct anv_shader_bin_key *key = (void *)vla;
269 key->size = key_size;
270 memcpy(key->data, key_data, key_size);
271
272 struct hash_entry *entry = _mesa_hash_table_search(cache->cache, key);
273 if (entry)
274 return entry->data;
275 else
276 return NULL;
277 }
278
279 struct anv_shader_bin *
280 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
281 const void *key_data, uint32_t key_size)
282 {
283 if (!cache->cache)
284 return NULL;
285
286 pthread_mutex_lock(&cache->mutex);
287
288 struct anv_shader_bin *shader =
289 anv_pipeline_cache_search_locked(cache, key_data, key_size);
290
291 pthread_mutex_unlock(&cache->mutex);
292
293 /* We increment refcount before handing it to the caller */
294 if (shader)
295 anv_shader_bin_ref(shader);
296
297 return shader;
298 }
299
300 static void
301 anv_pipeline_cache_add_shader_bin(struct anv_pipeline_cache *cache,
302 struct anv_shader_bin *bin)
303 {
304 if (!cache->cache)
305 return;
306
307 pthread_mutex_lock(&cache->mutex);
308
309 struct hash_entry *entry = _mesa_hash_table_search(cache->cache, bin->key);
310 if (entry == NULL) {
311 /* Take a reference for the cache */
312 anv_shader_bin_ref(bin);
313 _mesa_hash_table_insert(cache->cache, bin->key, bin);
314 }
315
316 pthread_mutex_unlock(&cache->mutex);
317 }
318
319 static struct anv_shader_bin *
320 anv_pipeline_cache_add_shader_locked(struct anv_pipeline_cache *cache,
321 const void *key_data, uint32_t key_size,
322 const void *kernel_data,
323 uint32_t kernel_size,
324 const void *constant_data,
325 uint32_t constant_data_size,
326 const struct brw_stage_prog_data *prog_data,
327 uint32_t prog_data_size,
328 const void *prog_data_param,
329 const struct anv_pipeline_bind_map *bind_map)
330 {
331 struct anv_shader_bin *shader =
332 anv_pipeline_cache_search_locked(cache, key_data, key_size);
333 if (shader)
334 return shader;
335
336 struct anv_shader_bin *bin =
337 anv_shader_bin_create(cache->device, key_data, key_size,
338 kernel_data, kernel_size,
339 constant_data, constant_data_size,
340 prog_data, prog_data_size, prog_data_param,
341 bind_map);
342 if (!bin)
343 return NULL;
344
345 _mesa_hash_table_insert(cache->cache, bin->key, bin);
346
347 return bin;
348 }
349
350 struct anv_shader_bin *
351 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
352 const void *key_data, uint32_t key_size,
353 const void *kernel_data, uint32_t kernel_size,
354 const void *constant_data,
355 uint32_t constant_data_size,
356 const struct brw_stage_prog_data *prog_data,
357 uint32_t prog_data_size,
358 const struct anv_pipeline_bind_map *bind_map)
359 {
360 if (cache->cache) {
361 pthread_mutex_lock(&cache->mutex);
362
363 struct anv_shader_bin *bin =
364 anv_pipeline_cache_add_shader_locked(cache, key_data, key_size,
365 kernel_data, kernel_size,
366 constant_data, constant_data_size,
367 prog_data, prog_data_size,
368 prog_data->param, bind_map);
369
370 pthread_mutex_unlock(&cache->mutex);
371
372 /* We increment refcount before handing it to the caller */
373 if (bin)
374 anv_shader_bin_ref(bin);
375
376 return bin;
377 } else {
378 /* In this case, we're not caching it so the caller owns it entirely */
379 return anv_shader_bin_create(cache->device, key_data, key_size,
380 kernel_data, kernel_size,
381 constant_data, constant_data_size,
382 prog_data, prog_data_size,
383 prog_data->param, bind_map);
384 }
385 }
386
387 struct cache_header {
388 uint32_t header_size;
389 uint32_t header_version;
390 uint32_t vendor_id;
391 uint32_t device_id;
392 uint8_t uuid[VK_UUID_SIZE];
393 };
394
395 static void
396 anv_pipeline_cache_load(struct anv_pipeline_cache *cache,
397 const void *data, size_t size)
398 {
399 struct anv_device *device = cache->device;
400 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
401
402 if (cache->cache == NULL)
403 return;
404
405 struct blob_reader blob;
406 blob_reader_init(&blob, data, size);
407
408 struct cache_header header;
409 blob_copy_bytes(&blob, &header, sizeof(header));
410 uint32_t count = blob_read_uint32(&blob);
411 if (blob.overrun)
412 return;
413
414 if (header.header_size < sizeof(header))
415 return;
416 if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
417 return;
418 if (header.vendor_id != 0x8086)
419 return;
420 if (header.device_id != device->chipset_id)
421 return;
422 if (memcmp(header.uuid, pdevice->pipeline_cache_uuid, VK_UUID_SIZE) != 0)
423 return;
424
425 for (uint32_t i = 0; i < count; i++) {
426 struct anv_shader_bin *bin =
427 anv_shader_bin_create_from_blob(device, &blob);
428 if (!bin)
429 break;
430 _mesa_hash_table_insert(cache->cache, bin->key, bin);
431 }
432 }
433
434 VkResult anv_CreatePipelineCache(
435 VkDevice _device,
436 const VkPipelineCacheCreateInfo* pCreateInfo,
437 const VkAllocationCallbacks* pAllocator,
438 VkPipelineCache* pPipelineCache)
439 {
440 ANV_FROM_HANDLE(anv_device, device, _device);
441 struct anv_pipeline_cache *cache;
442
443 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
444 assert(pCreateInfo->flags == 0);
445
446 cache = vk_alloc2(&device->alloc, pAllocator,
447 sizeof(*cache), 8,
448 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
449 if (cache == NULL)
450 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
451
452 anv_pipeline_cache_init(cache, device,
453 device->instance->pipeline_cache_enabled);
454
455 if (pCreateInfo->initialDataSize > 0)
456 anv_pipeline_cache_load(cache,
457 pCreateInfo->pInitialData,
458 pCreateInfo->initialDataSize);
459
460 *pPipelineCache = anv_pipeline_cache_to_handle(cache);
461
462 return VK_SUCCESS;
463 }
464
465 void anv_DestroyPipelineCache(
466 VkDevice _device,
467 VkPipelineCache _cache,
468 const VkAllocationCallbacks* pAllocator)
469 {
470 ANV_FROM_HANDLE(anv_device, device, _device);
471 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
472
473 if (!cache)
474 return;
475
476 anv_pipeline_cache_finish(cache);
477
478 vk_free2(&device->alloc, pAllocator, cache);
479 }
480
481 VkResult anv_GetPipelineCacheData(
482 VkDevice _device,
483 VkPipelineCache _cache,
484 size_t* pDataSize,
485 void* pData)
486 {
487 ANV_FROM_HANDLE(anv_device, device, _device);
488 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
489 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
490
491 struct blob blob;
492 if (pData) {
493 blob_init_fixed(&blob, pData, *pDataSize);
494 } else {
495 blob_init_fixed(&blob, NULL, SIZE_MAX);
496 }
497
498 struct cache_header header = {
499 .header_size = sizeof(struct cache_header),
500 .header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE,
501 .vendor_id = 0x8086,
502 .device_id = device->chipset_id,
503 };
504 memcpy(header.uuid, pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
505 blob_write_bytes(&blob, &header, sizeof(header));
506
507 uint32_t count = 0;
508 intptr_t count_offset = blob_reserve_uint32(&blob);
509 if (count_offset < 0) {
510 *pDataSize = 0;
511 blob_finish(&blob);
512 return VK_INCOMPLETE;
513 }
514
515 VkResult result = VK_SUCCESS;
516 if (cache->cache) {
517 hash_table_foreach(cache->cache, entry) {
518 struct anv_shader_bin *shader = entry->data;
519
520 size_t save_size = blob.size;
521 if (!anv_shader_bin_write_to_blob(shader, &blob)) {
522 /* If it fails reset to the previous size and bail */
523 blob.size = save_size;
524 result = VK_INCOMPLETE;
525 break;
526 }
527
528 count++;
529 }
530 }
531
532 blob_overwrite_uint32(&blob, count_offset, count);
533
534 *pDataSize = blob.size;
535
536 blob_finish(&blob);
537
538 return result;
539 }
540
541 VkResult anv_MergePipelineCaches(
542 VkDevice _device,
543 VkPipelineCache destCache,
544 uint32_t srcCacheCount,
545 const VkPipelineCache* pSrcCaches)
546 {
547 ANV_FROM_HANDLE(anv_pipeline_cache, dst, destCache);
548
549 if (!dst->cache)
550 return VK_SUCCESS;
551
552 for (uint32_t i = 0; i < srcCacheCount; i++) {
553 ANV_FROM_HANDLE(anv_pipeline_cache, src, pSrcCaches[i]);
554 if (!src->cache)
555 continue;
556
557 hash_table_foreach(src->cache, entry) {
558 struct anv_shader_bin *bin = entry->data;
559 assert(bin);
560
561 if (_mesa_hash_table_search(dst->cache, bin->key))
562 continue;
563
564 anv_shader_bin_ref(bin);
565 _mesa_hash_table_insert(dst->cache, bin->key, bin);
566 }
567 }
568
569 return VK_SUCCESS;
570 }
571
572 struct anv_shader_bin *
573 anv_device_search_for_kernel(struct anv_device *device,
574 struct anv_pipeline_cache *cache,
575 const void *key_data, uint32_t key_size)
576 {
577 struct anv_shader_bin *bin;
578
579 if (cache) {
580 bin = anv_pipeline_cache_search(cache, key_data, key_size);
581 if (bin)
582 return bin;
583 }
584
585 #ifdef ENABLE_SHADER_CACHE
586 struct disk_cache *disk_cache = device->instance->physicalDevice.disk_cache;
587 if (disk_cache && device->instance->pipeline_cache_enabled) {
588 cache_key cache_key;
589 disk_cache_compute_key(disk_cache, key_data, key_size, cache_key);
590
591 size_t buffer_size;
592 uint8_t *buffer = disk_cache_get(disk_cache, cache_key, &buffer_size);
593 if (buffer) {
594 struct blob_reader blob;
595 blob_reader_init(&blob, buffer, buffer_size);
596 bin = anv_shader_bin_create_from_blob(device, &blob);
597 free(buffer);
598
599 if (bin) {
600 if (cache)
601 anv_pipeline_cache_add_shader_bin(cache, bin);
602 return bin;
603 }
604 }
605 }
606 #endif
607
608 return NULL;
609 }
610
611 struct anv_shader_bin *
612 anv_device_upload_kernel(struct anv_device *device,
613 struct anv_pipeline_cache *cache,
614 const void *key_data, uint32_t key_size,
615 const void *kernel_data, uint32_t kernel_size,
616 const void *constant_data,
617 uint32_t constant_data_size,
618 const struct brw_stage_prog_data *prog_data,
619 uint32_t prog_data_size,
620 const struct anv_pipeline_bind_map *bind_map)
621 {
622 struct anv_shader_bin *bin;
623 if (cache) {
624 bin = anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
625 kernel_data, kernel_size,
626 constant_data, constant_data_size,
627 prog_data, prog_data_size,
628 bind_map);
629 } else {
630 bin = anv_shader_bin_create(device, key_data, key_size,
631 kernel_data, kernel_size,
632 constant_data, constant_data_size,
633 prog_data, prog_data_size,
634 prog_data->param, bind_map);
635 }
636
637 if (bin == NULL)
638 return NULL;
639
640 #ifdef ENABLE_SHADER_CACHE
641 struct disk_cache *disk_cache = device->instance->physicalDevice.disk_cache;
642 if (disk_cache) {
643 struct blob binary;
644 blob_init(&binary);
645 anv_shader_bin_write_to_blob(bin, &binary);
646
647 if (!binary.out_of_memory) {
648 cache_key cache_key;
649 disk_cache_compute_key(disk_cache, key_data, key_size, cache_key);
650
651 disk_cache_put(disk_cache, cache_key, binary.data, binary.size, NULL);
652 }
653
654 blob_finish(&binary);
655 }
656 #endif
657
658 return bin;
659 }
660
661 struct serialized_nir {
662 unsigned char sha1_key[20];
663 size_t size;
664 char data[0];
665 };
666
667 struct nir_shader *
668 anv_device_search_for_nir(struct anv_device *device,
669 struct anv_pipeline_cache *cache,
670 const nir_shader_compiler_options *nir_options,
671 unsigned char sha1_key[20],
672 void *mem_ctx)
673 {
674 if (cache && cache->nir_cache) {
675 const struct serialized_nir *snir = NULL;
676
677 pthread_mutex_lock(&cache->mutex);
678 struct hash_entry *entry =
679 _mesa_hash_table_search(cache->nir_cache, sha1_key);
680 if (entry)
681 snir = entry->data;
682 pthread_mutex_unlock(&cache->mutex);
683
684 if (snir) {
685 struct blob_reader blob;
686 blob_reader_init(&blob, snir->data, snir->size);
687
688 nir_shader *nir = nir_deserialize(mem_ctx, nir_options, &blob);
689 if (blob.overrun) {
690 ralloc_free(nir);
691 } else {
692 return nir;
693 }
694 }
695 }
696
697 return NULL;
698 }
699
700 void
701 anv_device_upload_nir(struct anv_device *device,
702 struct anv_pipeline_cache *cache,
703 const struct nir_shader *nir,
704 unsigned char sha1_key[20])
705 {
706 if (cache && cache->nir_cache) {
707 pthread_mutex_lock(&cache->mutex);
708 struct hash_entry *entry =
709 _mesa_hash_table_search(cache->nir_cache, sha1_key);
710 pthread_mutex_unlock(&cache->mutex);
711 if (entry)
712 return;
713
714 struct blob blob;
715 blob_init(&blob);
716
717 nir_serialize(&blob, nir);
718 if (blob.out_of_memory) {
719 blob_finish(&blob);
720 return;
721 }
722
723 pthread_mutex_lock(&cache->mutex);
724 /* Because ralloc isn't thread-safe, we have to do all this inside the
725 * lock. We could unlock for the big memcpy but it's probably not worth
726 * the hassle.
727 */
728 entry = _mesa_hash_table_search(cache->nir_cache, sha1_key);
729 if (entry) {
730 pthread_mutex_unlock(&cache->mutex);
731 return;
732 }
733
734 struct serialized_nir *snir =
735 ralloc_size(cache->nir_cache, sizeof(*snir) + blob.size);
736 memcpy(snir->sha1_key, sha1_key, 20);
737 snir->size = blob.size;
738 memcpy(snir->data, blob.data, blob.size);
739
740 _mesa_hash_table_insert(cache->nir_cache, snir->sha1_key, snir);
741
742 pthread_mutex_unlock(&cache->mutex);
743 }
744 }