anv/pipeline_cache: Add support for caching NIR
[mesa.git] / src / intel / vulkan / anv_pipeline_cache.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/blob.h"
25 #include "util/hash_table.h"
26 #include "util/debug.h"
27 #include "util/disk_cache.h"
28 #include "util/mesa-sha1.h"
29 #include "nir/nir_serialize.h"
30 #include "anv_private.h"
31
32 struct anv_shader_bin *
33 anv_shader_bin_create(struct anv_device *device,
34 const void *key_data, uint32_t key_size,
35 const void *kernel_data, uint32_t kernel_size,
36 const void *constant_data, uint32_t constant_data_size,
37 const struct brw_stage_prog_data *prog_data_in,
38 uint32_t prog_data_size, const void *prog_data_param_in,
39 const struct anv_pipeline_bind_map *bind_map)
40 {
41 struct anv_shader_bin *shader;
42 struct anv_shader_bin_key *key;
43 struct brw_stage_prog_data *prog_data;
44 uint32_t *prog_data_param;
45 struct anv_pipeline_binding *surface_to_descriptor, *sampler_to_descriptor;
46
47 ANV_MULTIALLOC(ma);
48 anv_multialloc_add(&ma, &shader, 1);
49 anv_multialloc_add_size(&ma, &key, sizeof(*key) + key_size);
50 anv_multialloc_add_size(&ma, &prog_data, prog_data_size);
51 anv_multialloc_add(&ma, &prog_data_param, prog_data_in->nr_params);
52 anv_multialloc_add(&ma, &surface_to_descriptor,
53 bind_map->surface_count);
54 anv_multialloc_add(&ma, &sampler_to_descriptor,
55 bind_map->sampler_count);
56
57 if (!anv_multialloc_alloc(&ma, &device->alloc,
58 VK_SYSTEM_ALLOCATION_SCOPE_DEVICE))
59 return NULL;
60
61 shader->ref_cnt = 1;
62
63 key->size = key_size;
64 memcpy(key->data, key_data, key_size);
65 shader->key = key;
66
67 shader->kernel =
68 anv_state_pool_alloc(&device->instruction_state_pool, kernel_size, 64);
69 memcpy(shader->kernel.map, kernel_data, kernel_size);
70 shader->kernel_size = kernel_size;
71
72 if (constant_data_size) {
73 shader->constant_data =
74 anv_state_pool_alloc(&device->dynamic_state_pool,
75 constant_data_size, 32);
76 memcpy(shader->constant_data.map, constant_data, constant_data_size);
77 } else {
78 shader->constant_data = ANV_STATE_NULL;
79 }
80 shader->constant_data_size = constant_data_size;
81
82 memcpy(prog_data, prog_data_in, prog_data_size);
83 memcpy(prog_data_param, prog_data_param_in,
84 prog_data->nr_params * sizeof(*prog_data_param));
85 prog_data->param = prog_data_param;
86 shader->prog_data = prog_data;
87 shader->prog_data_size = prog_data_size;
88
89 shader->bind_map = *bind_map;
90 typed_memcpy(surface_to_descriptor, bind_map->surface_to_descriptor,
91 bind_map->surface_count);
92 shader->bind_map.surface_to_descriptor = surface_to_descriptor;
93 typed_memcpy(sampler_to_descriptor, bind_map->sampler_to_descriptor,
94 bind_map->sampler_count);
95 shader->bind_map.sampler_to_descriptor = sampler_to_descriptor;
96
97 return shader;
98 }
99
100 void
101 anv_shader_bin_destroy(struct anv_device *device,
102 struct anv_shader_bin *shader)
103 {
104 assert(shader->ref_cnt == 0);
105 anv_state_pool_free(&device->instruction_state_pool, shader->kernel);
106 anv_state_pool_free(&device->dynamic_state_pool, shader->constant_data);
107 vk_free(&device->alloc, shader);
108 }
109
110 static bool
111 anv_shader_bin_write_to_blob(const struct anv_shader_bin *shader,
112 struct blob *blob)
113 {
114 bool ok;
115
116 ok = blob_write_uint32(blob, shader->key->size);
117 ok = blob_write_bytes(blob, shader->key->data, shader->key->size);
118
119 ok = blob_write_uint32(blob, shader->kernel_size);
120 ok = blob_write_bytes(blob, shader->kernel.map, shader->kernel_size);
121
122 ok = blob_write_uint32(blob, shader->constant_data_size);
123 ok = blob_write_bytes(blob, shader->constant_data.map,
124 shader->constant_data_size);
125
126 ok = blob_write_uint32(blob, shader->prog_data_size);
127 ok = blob_write_bytes(blob, shader->prog_data, shader->prog_data_size);
128 ok = blob_write_bytes(blob, shader->prog_data->param,
129 shader->prog_data->nr_params *
130 sizeof(*shader->prog_data->param));
131
132 ok = blob_write_uint32(blob, shader->bind_map.surface_count);
133 ok = blob_write_uint32(blob, shader->bind_map.sampler_count);
134 ok = blob_write_uint32(blob, shader->bind_map.image_count);
135 ok = blob_write_bytes(blob, shader->bind_map.surface_to_descriptor,
136 shader->bind_map.surface_count *
137 sizeof(*shader->bind_map.surface_to_descriptor));
138 ok = blob_write_bytes(blob, shader->bind_map.sampler_to_descriptor,
139 shader->bind_map.sampler_count *
140 sizeof(*shader->bind_map.sampler_to_descriptor));
141
142 return ok;
143 }
144
145 static struct anv_shader_bin *
146 anv_shader_bin_create_from_blob(struct anv_device *device,
147 struct blob_reader *blob)
148 {
149 uint32_t key_size = blob_read_uint32(blob);
150 const void *key_data = blob_read_bytes(blob, key_size);
151
152 uint32_t kernel_size = blob_read_uint32(blob);
153 const void *kernel_data = blob_read_bytes(blob, kernel_size);
154
155 uint32_t constant_data_size = blob_read_uint32(blob);
156 const void *constant_data = blob_read_bytes(blob, constant_data_size);
157
158 uint32_t prog_data_size = blob_read_uint32(blob);
159 const struct brw_stage_prog_data *prog_data =
160 blob_read_bytes(blob, prog_data_size);
161 if (blob->overrun)
162 return NULL;
163 const void *prog_data_param =
164 blob_read_bytes(blob, prog_data->nr_params * sizeof(*prog_data->param));
165
166 struct anv_pipeline_bind_map bind_map;
167 bind_map.surface_count = blob_read_uint32(blob);
168 bind_map.sampler_count = blob_read_uint32(blob);
169 bind_map.image_count = blob_read_uint32(blob);
170 bind_map.surface_to_descriptor = (void *)
171 blob_read_bytes(blob, bind_map.surface_count *
172 sizeof(*bind_map.surface_to_descriptor));
173 bind_map.sampler_to_descriptor = (void *)
174 blob_read_bytes(blob, bind_map.sampler_count *
175 sizeof(*bind_map.sampler_to_descriptor));
176
177 if (blob->overrun)
178 return NULL;
179
180 return anv_shader_bin_create(device,
181 key_data, key_size,
182 kernel_data, kernel_size,
183 constant_data, constant_data_size,
184 prog_data, prog_data_size, prog_data_param,
185 &bind_map);
186 }
187
188 /* Remaining work:
189 *
190 * - Compact binding table layout so it's tight and not dependent on
191 * descriptor set layout.
192 *
193 * - Review prog_data struct for size and cacheability: struct
194 * brw_stage_prog_data has binding_table which uses a lot of uint32_t for 8
195 * bit quantities etc; use bit fields for all bools, eg dual_src_blend.
196 */
197
198 static uint32_t
199 shader_bin_key_hash_func(const void *void_key)
200 {
201 const struct anv_shader_bin_key *key = void_key;
202 return _mesa_hash_data(key->data, key->size);
203 }
204
205 static bool
206 shader_bin_key_compare_func(const void *void_a, const void *void_b)
207 {
208 const struct anv_shader_bin_key *a = void_a, *b = void_b;
209 if (a->size != b->size)
210 return false;
211
212 return memcmp(a->data, b->data, a->size) == 0;
213 }
214
215 static uint32_t
216 sha1_hash_func(const void *sha1)
217 {
218 return _mesa_hash_data(sha1, 20);
219 }
220
221 static bool
222 sha1_compare_func(const void *sha1_a, const void *sha1_b)
223 {
224 return memcmp(sha1_a, sha1_b, 20) == 0;
225 }
226
227 void
228 anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
229 struct anv_device *device,
230 bool cache_enabled)
231 {
232 cache->device = device;
233 pthread_mutex_init(&cache->mutex, NULL);
234
235 if (cache_enabled) {
236 cache->cache = _mesa_hash_table_create(NULL, shader_bin_key_hash_func,
237 shader_bin_key_compare_func);
238 cache->nir_cache = _mesa_hash_table_create(NULL, sha1_hash_func,
239 sha1_compare_func);
240 } else {
241 cache->cache = NULL;
242 }
243 }
244
245 void
246 anv_pipeline_cache_finish(struct anv_pipeline_cache *cache)
247 {
248 pthread_mutex_destroy(&cache->mutex);
249
250 if (cache->cache) {
251 /* This is a bit unfortunate. In order to keep things from randomly
252 * going away, the shader cache has to hold a reference to all shader
253 * binaries it contains. We unref them when we destroy the cache.
254 */
255 hash_table_foreach(cache->cache, entry)
256 anv_shader_bin_unref(cache->device, entry->data);
257
258 _mesa_hash_table_destroy(cache->cache, NULL);
259 }
260 }
261
262 static struct anv_shader_bin *
263 anv_pipeline_cache_search_locked(struct anv_pipeline_cache *cache,
264 const void *key_data, uint32_t key_size)
265 {
266 uint32_t vla[1 + DIV_ROUND_UP(key_size, sizeof(uint32_t))];
267 struct anv_shader_bin_key *key = (void *)vla;
268 key->size = key_size;
269 memcpy(key->data, key_data, key_size);
270
271 struct hash_entry *entry = _mesa_hash_table_search(cache->cache, key);
272 if (entry)
273 return entry->data;
274 else
275 return NULL;
276 }
277
278 struct anv_shader_bin *
279 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
280 const void *key_data, uint32_t key_size)
281 {
282 if (!cache->cache)
283 return NULL;
284
285 pthread_mutex_lock(&cache->mutex);
286
287 struct anv_shader_bin *shader =
288 anv_pipeline_cache_search_locked(cache, key_data, key_size);
289
290 pthread_mutex_unlock(&cache->mutex);
291
292 /* We increment refcount before handing it to the caller */
293 if (shader)
294 anv_shader_bin_ref(shader);
295
296 return shader;
297 }
298
299 static void
300 anv_pipeline_cache_add_shader_bin(struct anv_pipeline_cache *cache,
301 struct anv_shader_bin *bin)
302 {
303 if (!cache->cache)
304 return;
305
306 pthread_mutex_lock(&cache->mutex);
307
308 struct hash_entry *entry = _mesa_hash_table_search(cache->cache, bin->key);
309 if (entry == NULL) {
310 /* Take a reference for the cache */
311 anv_shader_bin_ref(bin);
312 _mesa_hash_table_insert(cache->cache, bin->key, bin);
313 }
314
315 pthread_mutex_unlock(&cache->mutex);
316 }
317
318 static struct anv_shader_bin *
319 anv_pipeline_cache_add_shader_locked(struct anv_pipeline_cache *cache,
320 const void *key_data, uint32_t key_size,
321 const void *kernel_data,
322 uint32_t kernel_size,
323 const void *constant_data,
324 uint32_t constant_data_size,
325 const struct brw_stage_prog_data *prog_data,
326 uint32_t prog_data_size,
327 const void *prog_data_param,
328 const struct anv_pipeline_bind_map *bind_map)
329 {
330 struct anv_shader_bin *shader =
331 anv_pipeline_cache_search_locked(cache, key_data, key_size);
332 if (shader)
333 return shader;
334
335 struct anv_shader_bin *bin =
336 anv_shader_bin_create(cache->device, key_data, key_size,
337 kernel_data, kernel_size,
338 constant_data, constant_data_size,
339 prog_data, prog_data_size, prog_data_param,
340 bind_map);
341 if (!bin)
342 return NULL;
343
344 _mesa_hash_table_insert(cache->cache, bin->key, bin);
345
346 return bin;
347 }
348
349 struct anv_shader_bin *
350 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
351 const void *key_data, uint32_t key_size,
352 const void *kernel_data, uint32_t kernel_size,
353 const void *constant_data,
354 uint32_t constant_data_size,
355 const struct brw_stage_prog_data *prog_data,
356 uint32_t prog_data_size,
357 const struct anv_pipeline_bind_map *bind_map)
358 {
359 if (cache->cache) {
360 pthread_mutex_lock(&cache->mutex);
361
362 struct anv_shader_bin *bin =
363 anv_pipeline_cache_add_shader_locked(cache, key_data, key_size,
364 kernel_data, kernel_size,
365 constant_data, constant_data_size,
366 prog_data, prog_data_size,
367 prog_data->param, bind_map);
368
369 pthread_mutex_unlock(&cache->mutex);
370
371 /* We increment refcount before handing it to the caller */
372 if (bin)
373 anv_shader_bin_ref(bin);
374
375 return bin;
376 } else {
377 /* In this case, we're not caching it so the caller owns it entirely */
378 return anv_shader_bin_create(cache->device, key_data, key_size,
379 kernel_data, kernel_size,
380 constant_data, constant_data_size,
381 prog_data, prog_data_size,
382 prog_data->param, bind_map);
383 }
384 }
385
386 struct cache_header {
387 uint32_t header_size;
388 uint32_t header_version;
389 uint32_t vendor_id;
390 uint32_t device_id;
391 uint8_t uuid[VK_UUID_SIZE];
392 };
393
394 static void
395 anv_pipeline_cache_load(struct anv_pipeline_cache *cache,
396 const void *data, size_t size)
397 {
398 struct anv_device *device = cache->device;
399 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
400
401 if (cache->cache == NULL)
402 return;
403
404 struct blob_reader blob;
405 blob_reader_init(&blob, data, size);
406
407 struct cache_header header;
408 blob_copy_bytes(&blob, &header, sizeof(header));
409 uint32_t count = blob_read_uint32(&blob);
410 if (blob.overrun)
411 return;
412
413 if (header.header_size < sizeof(header))
414 return;
415 if (header.header_version != VK_PIPELINE_CACHE_HEADER_VERSION_ONE)
416 return;
417 if (header.vendor_id != 0x8086)
418 return;
419 if (header.device_id != device->chipset_id)
420 return;
421 if (memcmp(header.uuid, pdevice->pipeline_cache_uuid, VK_UUID_SIZE) != 0)
422 return;
423
424 for (uint32_t i = 0; i < count; i++) {
425 struct anv_shader_bin *bin =
426 anv_shader_bin_create_from_blob(device, &blob);
427 if (!bin)
428 break;
429 _mesa_hash_table_insert(cache->cache, bin->key, bin);
430 }
431 }
432
433 VkResult anv_CreatePipelineCache(
434 VkDevice _device,
435 const VkPipelineCacheCreateInfo* pCreateInfo,
436 const VkAllocationCallbacks* pAllocator,
437 VkPipelineCache* pPipelineCache)
438 {
439 ANV_FROM_HANDLE(anv_device, device, _device);
440 struct anv_pipeline_cache *cache;
441
442 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO);
443 assert(pCreateInfo->flags == 0);
444
445 cache = vk_alloc2(&device->alloc, pAllocator,
446 sizeof(*cache), 8,
447 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
448 if (cache == NULL)
449 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
450
451 anv_pipeline_cache_init(cache, device,
452 device->instance->pipeline_cache_enabled);
453
454 if (pCreateInfo->initialDataSize > 0)
455 anv_pipeline_cache_load(cache,
456 pCreateInfo->pInitialData,
457 pCreateInfo->initialDataSize);
458
459 *pPipelineCache = anv_pipeline_cache_to_handle(cache);
460
461 return VK_SUCCESS;
462 }
463
464 void anv_DestroyPipelineCache(
465 VkDevice _device,
466 VkPipelineCache _cache,
467 const VkAllocationCallbacks* pAllocator)
468 {
469 ANV_FROM_HANDLE(anv_device, device, _device);
470 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
471
472 if (!cache)
473 return;
474
475 anv_pipeline_cache_finish(cache);
476
477 vk_free2(&device->alloc, pAllocator, cache);
478 }
479
480 VkResult anv_GetPipelineCacheData(
481 VkDevice _device,
482 VkPipelineCache _cache,
483 size_t* pDataSize,
484 void* pData)
485 {
486 ANV_FROM_HANDLE(anv_device, device, _device);
487 ANV_FROM_HANDLE(anv_pipeline_cache, cache, _cache);
488 struct anv_physical_device *pdevice = &device->instance->physicalDevice;
489
490 struct blob blob;
491 if (pData) {
492 blob_init_fixed(&blob, pData, *pDataSize);
493 } else {
494 blob_init_fixed(&blob, NULL, SIZE_MAX);
495 }
496
497 struct cache_header header = {
498 .header_size = sizeof(struct cache_header),
499 .header_version = VK_PIPELINE_CACHE_HEADER_VERSION_ONE,
500 .vendor_id = 0x8086,
501 .device_id = device->chipset_id,
502 };
503 memcpy(header.uuid, pdevice->pipeline_cache_uuid, VK_UUID_SIZE);
504 blob_write_bytes(&blob, &header, sizeof(header));
505
506 uint32_t count = 0;
507 intptr_t count_offset = blob_reserve_uint32(&blob);
508 if (count_offset < 0) {
509 *pDataSize = 0;
510 blob_finish(&blob);
511 return VK_INCOMPLETE;
512 }
513
514 VkResult result = VK_SUCCESS;
515 if (cache->cache) {
516 hash_table_foreach(cache->cache, entry) {
517 struct anv_shader_bin *shader = entry->data;
518
519 size_t save_size = blob.size;
520 if (!anv_shader_bin_write_to_blob(shader, &blob)) {
521 /* If it fails reset to the previous size and bail */
522 blob.size = save_size;
523 result = VK_INCOMPLETE;
524 break;
525 }
526
527 count++;
528 }
529 }
530
531 blob_overwrite_uint32(&blob, count_offset, count);
532
533 *pDataSize = blob.size;
534
535 blob_finish(&blob);
536
537 return result;
538 }
539
540 VkResult anv_MergePipelineCaches(
541 VkDevice _device,
542 VkPipelineCache destCache,
543 uint32_t srcCacheCount,
544 const VkPipelineCache* pSrcCaches)
545 {
546 ANV_FROM_HANDLE(anv_pipeline_cache, dst, destCache);
547
548 if (!dst->cache)
549 return VK_SUCCESS;
550
551 for (uint32_t i = 0; i < srcCacheCount; i++) {
552 ANV_FROM_HANDLE(anv_pipeline_cache, src, pSrcCaches[i]);
553 if (!src->cache)
554 continue;
555
556 hash_table_foreach(src->cache, entry) {
557 struct anv_shader_bin *bin = entry->data;
558 assert(bin);
559
560 if (_mesa_hash_table_search(dst->cache, bin->key))
561 continue;
562
563 anv_shader_bin_ref(bin);
564 _mesa_hash_table_insert(dst->cache, bin->key, bin);
565 }
566 }
567
568 return VK_SUCCESS;
569 }
570
571 struct anv_shader_bin *
572 anv_device_search_for_kernel(struct anv_device *device,
573 struct anv_pipeline_cache *cache,
574 const void *key_data, uint32_t key_size)
575 {
576 struct anv_shader_bin *bin;
577
578 if (cache) {
579 bin = anv_pipeline_cache_search(cache, key_data, key_size);
580 if (bin)
581 return bin;
582 }
583
584 #ifdef ENABLE_SHADER_CACHE
585 struct disk_cache *disk_cache = device->instance->physicalDevice.disk_cache;
586 if (disk_cache && device->instance->pipeline_cache_enabled) {
587 cache_key cache_key;
588 disk_cache_compute_key(disk_cache, key_data, key_size, cache_key);
589
590 size_t buffer_size;
591 uint8_t *buffer = disk_cache_get(disk_cache, cache_key, &buffer_size);
592 if (buffer) {
593 struct blob_reader blob;
594 blob_reader_init(&blob, buffer, buffer_size);
595 bin = anv_shader_bin_create_from_blob(device, &blob);
596 free(buffer);
597
598 if (bin) {
599 if (cache)
600 anv_pipeline_cache_add_shader_bin(cache, bin);
601 return bin;
602 }
603 }
604 }
605 #endif
606
607 return NULL;
608 }
609
610 struct anv_shader_bin *
611 anv_device_upload_kernel(struct anv_device *device,
612 struct anv_pipeline_cache *cache,
613 const void *key_data, uint32_t key_size,
614 const void *kernel_data, uint32_t kernel_size,
615 const void *constant_data,
616 uint32_t constant_data_size,
617 const struct brw_stage_prog_data *prog_data,
618 uint32_t prog_data_size,
619 const struct anv_pipeline_bind_map *bind_map)
620 {
621 struct anv_shader_bin *bin;
622 if (cache) {
623 bin = anv_pipeline_cache_upload_kernel(cache, key_data, key_size,
624 kernel_data, kernel_size,
625 constant_data, constant_data_size,
626 prog_data, prog_data_size,
627 bind_map);
628 } else {
629 bin = anv_shader_bin_create(device, key_data, key_size,
630 kernel_data, kernel_size,
631 constant_data, constant_data_size,
632 prog_data, prog_data_size,
633 prog_data->param, bind_map);
634 }
635
636 if (bin == NULL)
637 return NULL;
638
639 #ifdef ENABLE_SHADER_CACHE
640 struct disk_cache *disk_cache = device->instance->physicalDevice.disk_cache;
641 if (disk_cache) {
642 struct blob binary;
643 blob_init(&binary);
644 anv_shader_bin_write_to_blob(bin, &binary);
645
646 if (!binary.out_of_memory) {
647 cache_key cache_key;
648 disk_cache_compute_key(disk_cache, key_data, key_size, cache_key);
649
650 disk_cache_put(disk_cache, cache_key, binary.data, binary.size, NULL);
651 }
652
653 blob_finish(&binary);
654 }
655 #endif
656
657 return bin;
658 }
659
660 struct serialized_nir {
661 unsigned char sha1_key[20];
662 size_t size;
663 char data[0];
664 };
665
666 struct nir_shader *
667 anv_device_search_for_nir(struct anv_device *device,
668 struct anv_pipeline_cache *cache,
669 const nir_shader_compiler_options *nir_options,
670 unsigned char sha1_key[20],
671 void *mem_ctx)
672 {
673 if (cache) {
674 const struct serialized_nir *snir = NULL;
675
676 pthread_mutex_lock(&cache->mutex);
677 struct hash_entry *entry =
678 _mesa_hash_table_search(cache->nir_cache, sha1_key);
679 if (entry)
680 snir = entry->data;
681 pthread_mutex_unlock(&cache->mutex);
682
683 if (snir) {
684 struct blob_reader blob;
685 blob_reader_init(&blob, snir->data, snir->size);
686
687 nir_shader *nir = nir_deserialize(mem_ctx, nir_options, &blob);
688 if (blob.overrun) {
689 ralloc_free(nir);
690 } else {
691 return nir;
692 }
693 }
694 }
695
696 return NULL;
697 }
698
699 void
700 anv_device_upload_nir(struct anv_device *device,
701 struct anv_pipeline_cache *cache,
702 const struct nir_shader *nir,
703 unsigned char sha1_key[20])
704 {
705 if (cache) {
706 pthread_mutex_lock(&cache->mutex);
707 struct hash_entry *entry =
708 _mesa_hash_table_search(cache->nir_cache, sha1_key);
709 pthread_mutex_unlock(&cache->mutex);
710 if (entry)
711 return;
712
713 struct blob blob;
714 blob_init(&blob);
715
716 nir_serialize(&blob, nir);
717 if (blob.out_of_memory) {
718 blob_finish(&blob);
719 return;
720 }
721
722 pthread_mutex_lock(&cache->mutex);
723 /* Because ralloc isn't thread-safe, we have to do all this inside the
724 * lock. We could unlock for the big memcpy but it's probably not worth
725 * the hassle.
726 */
727 entry = _mesa_hash_table_search(cache->nir_cache, sha1_key);
728 if (entry) {
729 pthread_mutex_unlock(&cache->mutex);
730 return;
731 }
732
733 struct serialized_nir *snir =
734 ralloc_size(cache->nir_cache, sizeof(*snir) + blob.size);
735 memcpy(snir->sha1_key, sha1_key, 20);
736 snir->size = blob.size;
737 memcpy(snir->data, blob.data, blob.size);
738
739 _mesa_hash_table_insert(cache->nir_cache, snir->sha1_key, snir);
740
741 pthread_mutex_unlock(&cache->mutex);
742 }
743 }