vulkan/wsi/x11: add support to detect if we can support rendering (v3)
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
40 #else
41 #define VG(x)
42 #endif
43
44 #include "common/gen_device_info.h"
45 #include "blorp/blorp.h"
46 #include "brw_compiler.h"
47 #include "util/macros.h"
48 #include "util/list.h"
49 #include "util/u_vector.h"
50 #include "util/vk_alloc.h"
51
52 /* Pre-declarations needed for WSI entrypoints */
53 struct wl_surface;
54 struct wl_display;
55 typedef struct xcb_connection_t xcb_connection_t;
56 typedef uint32_t xcb_visualid_t;
57 typedef uint32_t xcb_window_t;
58
59 struct gen_l3_config;
60
61 #include <vulkan/vulkan.h>
62 #include <vulkan/vulkan_intel.h>
63 #include <vulkan/vk_icd.h>
64
65 #include "anv_entrypoints.h"
66 #include "brw_context.h"
67 #include "isl/isl.h"
68
69 #include "wsi_common.h"
70
71 #ifdef __cplusplus
72 extern "C" {
73 #endif
74
75 /* Allowing different clear colors requires us to perform a depth resolve at
76 * the end of certain render passes. This is because while slow clears store
77 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
78 * See the PRMs for examples describing when additional resolves would be
79 * necessary. To enable fast clears without requiring extra resolves, we set
80 * the clear value to a globally-defined one. We could allow different values
81 * if the user doesn't expect coherent data during or after a render passes
82 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
83 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
84 * 1.0f seems to be the only value used. The only application that doesn't set
85 * this value does so through the usage of an seemingly uninitialized clear
86 * value.
87 */
88 #define ANV_HZ_FC_VAL 1.0f
89
90 #define MAX_VBS 31
91 #define MAX_SETS 8
92 #define MAX_RTS 8
93 #define MAX_VIEWPORTS 16
94 #define MAX_SCISSORS 16
95 #define MAX_PUSH_CONSTANTS_SIZE 128
96 #define MAX_DYNAMIC_BUFFERS 16
97 #define MAX_IMAGES 8
98
99 #define ANV_SVGS_VB_INDEX MAX_VBS
100 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
101
102 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
103
104 static inline uint32_t
105 align_down_npot_u32(uint32_t v, uint32_t a)
106 {
107 return v - (v % a);
108 }
109
110 static inline uint32_t
111 align_u32(uint32_t v, uint32_t a)
112 {
113 assert(a != 0 && a == (a & -a));
114 return (v + a - 1) & ~(a - 1);
115 }
116
117 static inline uint64_t
118 align_u64(uint64_t v, uint64_t a)
119 {
120 assert(a != 0 && a == (a & -a));
121 return (v + a - 1) & ~(a - 1);
122 }
123
124 static inline int32_t
125 align_i32(int32_t v, int32_t a)
126 {
127 assert(a != 0 && a == (a & -a));
128 return (v + a - 1) & ~(a - 1);
129 }
130
131 /** Alignment must be a power of 2. */
132 static inline bool
133 anv_is_aligned(uintmax_t n, uintmax_t a)
134 {
135 assert(a == (a & -a));
136 return (n & (a - 1)) == 0;
137 }
138
139 static inline uint32_t
140 anv_minify(uint32_t n, uint32_t levels)
141 {
142 if (unlikely(n == 0))
143 return 0;
144 else
145 return MAX2(n >> levels, 1);
146 }
147
148 static inline float
149 anv_clamp_f(float f, float min, float max)
150 {
151 assert(min < max);
152
153 if (f > max)
154 return max;
155 else if (f < min)
156 return min;
157 else
158 return f;
159 }
160
161 static inline bool
162 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
163 {
164 if (*inout_mask & clear_mask) {
165 *inout_mask &= ~clear_mask;
166 return true;
167 } else {
168 return false;
169 }
170 }
171
172 static inline union isl_color_value
173 vk_to_isl_color(VkClearColorValue color)
174 {
175 return (union isl_color_value) {
176 .u32 = {
177 color.uint32[0],
178 color.uint32[1],
179 color.uint32[2],
180 color.uint32[3],
181 },
182 };
183 }
184
185 #define for_each_bit(b, dword) \
186 for (uint32_t __dword = (dword); \
187 (b) = __builtin_ffs(__dword) - 1, __dword; \
188 __dword &= ~(1 << (b)))
189
190 #define typed_memcpy(dest, src, count) ({ \
191 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
192 memcpy((dest), (src), (count) * sizeof(*(src))); \
193 })
194
195 /* Whenever we generate an error, pass it through this function. Useful for
196 * debugging, where we can break on it. Only call at error site, not when
197 * propagating errors. Might be useful to plug in a stack trace here.
198 */
199
200 VkResult __vk_errorf(VkResult error, const char *file, int line, const char *format, ...);
201
202 #ifdef DEBUG
203 #define vk_error(error) __vk_errorf(error, __FILE__, __LINE__, NULL);
204 #define vk_errorf(error, format, ...) __vk_errorf(error, __FILE__, __LINE__, format, ## __VA_ARGS__);
205 #define anv_debug(format, ...) fprintf(stderr, "debug: " format, ##__VA_ARGS__)
206 #else
207 #define vk_error(error) error
208 #define vk_errorf(error, format, ...) error
209 #define anv_debug(format, ...)
210 #endif
211
212 /**
213 * Warn on ignored extension structs.
214 *
215 * The Vulkan spec requires us to ignore unsupported or unknown structs in
216 * a pNext chain. In debug mode, emitting warnings for ignored structs may
217 * help us discover structs that we should not have ignored.
218 *
219 *
220 * From the Vulkan 1.0.38 spec:
221 *
222 * Any component of the implementation (the loader, any enabled layers,
223 * and drivers) must skip over, without processing (other than reading the
224 * sType and pNext members) any chained structures with sType values not
225 * defined by extensions supported by that component.
226 */
227 #define anv_debug_ignored_stype(sType) \
228 anv_debug("debug: %s: ignored VkStructureType %u\n", __func__, (sType))
229
230 void __anv_finishme(const char *file, int line, const char *format, ...)
231 anv_printflike(3, 4);
232 void anv_loge(const char *format, ...) anv_printflike(1, 2);
233 void anv_loge_v(const char *format, va_list va);
234
235 /**
236 * Print a FINISHME message, including its source location.
237 */
238 #define anv_finishme(format, ...) \
239 do { \
240 static bool reported = false; \
241 if (!reported) { \
242 __anv_finishme(__FILE__, __LINE__, format, ##__VA_ARGS__); \
243 reported = true; \
244 } \
245 } while (0)
246
247 /* A non-fatal assert. Useful for debugging. */
248 #ifdef DEBUG
249 #define anv_assert(x) ({ \
250 if (unlikely(!(x))) \
251 fprintf(stderr, "%s:%d ASSERT: %s\n", __FILE__, __LINE__, #x); \
252 })
253 #else
254 #define anv_assert(x)
255 #endif
256
257 /**
258 * If a block of code is annotated with anv_validate, then the block runs only
259 * in debug builds.
260 */
261 #ifdef DEBUG
262 #define anv_validate if (1)
263 #else
264 #define anv_validate if (0)
265 #endif
266
267 #define stub_return(v) \
268 do { \
269 anv_finishme("stub %s", __func__); \
270 return (v); \
271 } while (0)
272
273 #define stub() \
274 do { \
275 anv_finishme("stub %s", __func__); \
276 return; \
277 } while (0)
278
279 /**
280 * A dynamically growable, circular buffer. Elements are added at head and
281 * removed from tail. head and tail are free-running uint32_t indices and we
282 * only compute the modulo with size when accessing the array. This way,
283 * number of bytes in the queue is always head - tail, even in case of
284 * wraparound.
285 */
286
287 struct anv_bo {
288 uint32_t gem_handle;
289
290 /* Index into the current validation list. This is used by the
291 * validation list building alrogithm to track which buffers are already
292 * in the validation list so that we can ensure uniqueness.
293 */
294 uint32_t index;
295
296 /* Last known offset. This value is provided by the kernel when we
297 * execbuf and is used as the presumed offset for the next bunch of
298 * relocations.
299 */
300 uint64_t offset;
301
302 uint64_t size;
303 void *map;
304
305 /* We need to set the WRITE flag on winsys bos so GEM will know we're
306 * writing to them and synchronize uses on other rings (eg if the display
307 * server uses the blitter ring).
308 */
309 bool is_winsys_bo;
310 };
311
312 static inline void
313 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
314 {
315 bo->gem_handle = gem_handle;
316 bo->index = 0;
317 bo->offset = -1;
318 bo->size = size;
319 bo->map = NULL;
320 bo->is_winsys_bo = false;
321 }
322
323 /* Represents a lock-free linked list of "free" things. This is used by
324 * both the block pool and the state pools. Unfortunately, in order to
325 * solve the ABA problem, we can't use a single uint32_t head.
326 */
327 union anv_free_list {
328 struct {
329 int32_t offset;
330
331 /* A simple count that is incremented every time the head changes. */
332 uint32_t count;
333 };
334 uint64_t u64;
335 };
336
337 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
338
339 struct anv_block_state {
340 union {
341 struct {
342 uint32_t next;
343 uint32_t end;
344 };
345 uint64_t u64;
346 };
347 };
348
349 struct anv_block_pool {
350 struct anv_device *device;
351
352 struct anv_bo bo;
353
354 /* The offset from the start of the bo to the "center" of the block
355 * pool. Pointers to allocated blocks are given by
356 * bo.map + center_bo_offset + offsets.
357 */
358 uint32_t center_bo_offset;
359
360 /* Current memory map of the block pool. This pointer may or may not
361 * point to the actual beginning of the block pool memory. If
362 * anv_block_pool_alloc_back has ever been called, then this pointer
363 * will point to the "center" position of the buffer and all offsets
364 * (negative or positive) given out by the block pool alloc functions
365 * will be valid relative to this pointer.
366 *
367 * In particular, map == bo.map + center_offset
368 */
369 void *map;
370 int fd;
371
372 /**
373 * Array of mmaps and gem handles owned by the block pool, reclaimed when
374 * the block pool is destroyed.
375 */
376 struct u_vector mmap_cleanups;
377
378 uint32_t block_size;
379
380 union anv_free_list free_list;
381 struct anv_block_state state;
382
383 union anv_free_list back_free_list;
384 struct anv_block_state back_state;
385 };
386
387 /* Block pools are backed by a fixed-size 2GB memfd */
388 #define BLOCK_POOL_MEMFD_SIZE (1ull << 32)
389
390 /* The center of the block pool is also the middle of the memfd. This may
391 * change in the future if we decide differently for some reason.
392 */
393 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
394
395 static inline uint32_t
396 anv_block_pool_size(struct anv_block_pool *pool)
397 {
398 return pool->state.end + pool->back_state.end;
399 }
400
401 struct anv_state {
402 int32_t offset;
403 uint32_t alloc_size;
404 void *map;
405 };
406
407 struct anv_fixed_size_state_pool {
408 size_t state_size;
409 union anv_free_list free_list;
410 struct anv_block_state block;
411 };
412
413 #define ANV_MIN_STATE_SIZE_LOG2 6
414 #define ANV_MAX_STATE_SIZE_LOG2 20
415
416 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
417
418 struct anv_state_pool {
419 struct anv_block_pool *block_pool;
420 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
421 };
422
423 struct anv_state_stream_block;
424
425 struct anv_state_stream {
426 struct anv_block_pool *block_pool;
427
428 /* The current working block */
429 struct anv_state_stream_block *block;
430
431 /* Offset at which the current block starts */
432 uint32_t start;
433 /* Offset at which to allocate the next state */
434 uint32_t next;
435 /* Offset at which the current block ends */
436 uint32_t end;
437 };
438
439 #define CACHELINE_SIZE 64
440 #define CACHELINE_MASK 63
441
442 static inline void
443 anv_clflush_range(void *start, size_t size)
444 {
445 void *p = (void *) (((uintptr_t) start) & ~CACHELINE_MASK);
446 void *end = start + size;
447
448 __builtin_ia32_mfence();
449 while (p < end) {
450 __builtin_ia32_clflush(p);
451 p += CACHELINE_SIZE;
452 }
453 }
454
455 static void inline
456 anv_state_clflush(struct anv_state state)
457 {
458 anv_clflush_range(state.map, state.alloc_size);
459 }
460
461 VkResult anv_block_pool_init(struct anv_block_pool *pool,
462 struct anv_device *device, uint32_t block_size);
463 void anv_block_pool_finish(struct anv_block_pool *pool);
464 int32_t anv_block_pool_alloc(struct anv_block_pool *pool);
465 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool);
466 void anv_block_pool_free(struct anv_block_pool *pool, int32_t offset);
467 void anv_state_pool_init(struct anv_state_pool *pool,
468 struct anv_block_pool *block_pool);
469 void anv_state_pool_finish(struct anv_state_pool *pool);
470 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
471 size_t state_size, size_t alignment);
472 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
473 void anv_state_stream_init(struct anv_state_stream *stream,
474 struct anv_block_pool *block_pool);
475 void anv_state_stream_finish(struct anv_state_stream *stream);
476 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
477 uint32_t size, uint32_t alignment);
478
479 /**
480 * Implements a pool of re-usable BOs. The interface is identical to that
481 * of block_pool except that each block is its own BO.
482 */
483 struct anv_bo_pool {
484 struct anv_device *device;
485
486 void *free_list[16];
487 };
488
489 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
490 void anv_bo_pool_finish(struct anv_bo_pool *pool);
491 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
492 uint32_t size);
493 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
494
495 struct anv_scratch_bo {
496 bool exists;
497 struct anv_bo bo;
498 };
499
500 struct anv_scratch_pool {
501 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
502 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
503 };
504
505 void anv_scratch_pool_init(struct anv_device *device,
506 struct anv_scratch_pool *pool);
507 void anv_scratch_pool_finish(struct anv_device *device,
508 struct anv_scratch_pool *pool);
509 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
510 struct anv_scratch_pool *pool,
511 gl_shader_stage stage,
512 unsigned per_thread_scratch);
513
514 extern struct anv_dispatch_table dtable;
515
516 struct anv_physical_device {
517 VK_LOADER_DATA _loader_data;
518
519 struct anv_instance * instance;
520 uint32_t chipset_id;
521 char path[20];
522 const char * name;
523 struct gen_device_info info;
524 uint64_t aperture_size;
525 struct brw_compiler * compiler;
526 struct isl_device isl_dev;
527 int cmd_parser_version;
528
529 uint32_t eu_total;
530 uint32_t subslice_total;
531
532 uint8_t uuid[VK_UUID_SIZE];
533
534 struct wsi_device wsi_device;
535 int local_fd;
536 };
537
538 struct anv_instance {
539 VK_LOADER_DATA _loader_data;
540
541 VkAllocationCallbacks alloc;
542
543 uint32_t apiVersion;
544 int physicalDeviceCount;
545 struct anv_physical_device physicalDevice;
546 };
547
548 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
549 void anv_finish_wsi(struct anv_physical_device *physical_device);
550
551 struct anv_queue {
552 VK_LOADER_DATA _loader_data;
553
554 struct anv_device * device;
555
556 struct anv_state_pool * pool;
557 };
558
559 struct anv_pipeline_cache {
560 struct anv_device * device;
561 pthread_mutex_t mutex;
562
563 struct hash_table * cache;
564 };
565
566 struct anv_pipeline_bind_map;
567
568 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
569 struct anv_device *device,
570 bool cache_enabled);
571 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
572
573 struct anv_shader_bin *
574 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
575 const void *key, uint32_t key_size);
576 struct anv_shader_bin *
577 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
578 const void *key_data, uint32_t key_size,
579 const void *kernel_data, uint32_t kernel_size,
580 const struct brw_stage_prog_data *prog_data,
581 uint32_t prog_data_size,
582 const struct anv_pipeline_bind_map *bind_map);
583
584 struct anv_device {
585 VK_LOADER_DATA _loader_data;
586
587 VkAllocationCallbacks alloc;
588
589 struct anv_instance * instance;
590 uint32_t chipset_id;
591 struct gen_device_info info;
592 struct isl_device isl_dev;
593 int context_id;
594 int fd;
595 bool can_chain_batches;
596 bool robust_buffer_access;
597
598 struct anv_bo_pool batch_bo_pool;
599
600 struct anv_block_pool dynamic_state_block_pool;
601 struct anv_state_pool dynamic_state_pool;
602
603 struct anv_block_pool instruction_block_pool;
604 struct anv_state_pool instruction_state_pool;
605
606 struct anv_block_pool surface_state_block_pool;
607 struct anv_state_pool surface_state_pool;
608
609 struct anv_bo workaround_bo;
610
611 struct anv_pipeline_cache blorp_shader_cache;
612 struct blorp_context blorp;
613
614 struct anv_state border_colors;
615
616 struct anv_queue queue;
617
618 struct anv_scratch_pool scratch_pool;
619
620 uint32_t default_mocs;
621
622 pthread_mutex_t mutex;
623 pthread_cond_t queue_submit;
624 };
625
626 void anv_device_init_blorp(struct anv_device *device);
627 void anv_device_finish_blorp(struct anv_device *device);
628
629 VkResult anv_device_execbuf(struct anv_device *device,
630 struct drm_i915_gem_execbuffer2 *execbuf,
631 struct anv_bo **execbuf_bos);
632
633 void* anv_gem_mmap(struct anv_device *device,
634 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
635 void anv_gem_munmap(void *p, uint64_t size);
636 uint32_t anv_gem_create(struct anv_device *device, size_t size);
637 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
638 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
639 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
640 int anv_gem_execbuffer(struct anv_device *device,
641 struct drm_i915_gem_execbuffer2 *execbuf);
642 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
643 uint32_t stride, uint32_t tiling);
644 int anv_gem_create_context(struct anv_device *device);
645 int anv_gem_destroy_context(struct anv_device *device, int context);
646 int anv_gem_get_param(int fd, uint32_t param);
647 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
648 int anv_gem_get_aperture(int fd, uint64_t *size);
649 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
650 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
651 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
652 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
653 uint32_t read_domains, uint32_t write_domain);
654
655 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
656
657 struct anv_reloc_list {
658 size_t num_relocs;
659 size_t array_length;
660 struct drm_i915_gem_relocation_entry * relocs;
661 struct anv_bo ** reloc_bos;
662 };
663
664 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
665 const VkAllocationCallbacks *alloc);
666 void anv_reloc_list_finish(struct anv_reloc_list *list,
667 const VkAllocationCallbacks *alloc);
668
669 uint64_t anv_reloc_list_add(struct anv_reloc_list *list,
670 const VkAllocationCallbacks *alloc,
671 uint32_t offset, struct anv_bo *target_bo,
672 uint32_t delta);
673
674 struct anv_batch_bo {
675 /* Link in the anv_cmd_buffer.owned_batch_bos list */
676 struct list_head link;
677
678 struct anv_bo bo;
679
680 /* Bytes actually consumed in this batch BO */
681 size_t length;
682
683 struct anv_reloc_list relocs;
684 };
685
686 struct anv_batch {
687 const VkAllocationCallbacks * alloc;
688
689 void * start;
690 void * end;
691 void * next;
692
693 struct anv_reloc_list * relocs;
694
695 /* This callback is called (with the associated user data) in the event
696 * that the batch runs out of space.
697 */
698 VkResult (*extend_cb)(struct anv_batch *, void *);
699 void * user_data;
700 };
701
702 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
703 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
704 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
705 void *location, struct anv_bo *bo, uint32_t offset);
706 VkResult anv_device_submit_simple_batch(struct anv_device *device,
707 struct anv_batch *batch);
708
709 struct anv_address {
710 struct anv_bo *bo;
711 uint32_t offset;
712 };
713
714 static inline uint64_t
715 _anv_combine_address(struct anv_batch *batch, void *location,
716 const struct anv_address address, uint32_t delta)
717 {
718 if (address.bo == NULL) {
719 return address.offset + delta;
720 } else {
721 assert(batch->start <= location && location < batch->end);
722
723 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
724 }
725 }
726
727 #define __gen_address_type struct anv_address
728 #define __gen_user_data struct anv_batch
729 #define __gen_combine_address _anv_combine_address
730
731 /* Wrapper macros needed to work around preprocessor argument issues. In
732 * particular, arguments don't get pre-evaluated if they are concatenated.
733 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
734 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
735 * We can work around this easily enough with these helpers.
736 */
737 #define __anv_cmd_length(cmd) cmd ## _length
738 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
739 #define __anv_cmd_header(cmd) cmd ## _header
740 #define __anv_cmd_pack(cmd) cmd ## _pack
741 #define __anv_reg_num(reg) reg ## _num
742
743 #define anv_pack_struct(dst, struc, ...) do { \
744 struct struc __template = { \
745 __VA_ARGS__ \
746 }; \
747 __anv_cmd_pack(struc)(NULL, dst, &__template); \
748 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
749 } while (0)
750
751 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
752 void *__dst = anv_batch_emit_dwords(batch, n); \
753 struct cmd __template = { \
754 __anv_cmd_header(cmd), \
755 .DWordLength = n - __anv_cmd_length_bias(cmd), \
756 __VA_ARGS__ \
757 }; \
758 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
759 __dst; \
760 })
761
762 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
763 do { \
764 uint32_t *dw; \
765 \
766 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
767 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
768 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
769 dw[i] = (dwords0)[i] | (dwords1)[i]; \
770 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
771 } while (0)
772
773 #define anv_batch_emit(batch, cmd, name) \
774 for (struct cmd name = { __anv_cmd_header(cmd) }, \
775 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
776 __builtin_expect(_dst != NULL, 1); \
777 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
778 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
779 _dst = NULL; \
780 }))
781
782 #define anv_state_pool_emit(pool, cmd, align, ...) ({ \
783 const uint32_t __size = __anv_cmd_length(cmd) * 4; \
784 struct anv_state __state = \
785 anv_state_pool_alloc((pool), __size, align); \
786 struct cmd __template = { \
787 __VA_ARGS__ \
788 }; \
789 __anv_cmd_pack(cmd)(NULL, __state.map, &__template); \
790 VG(VALGRIND_CHECK_MEM_IS_DEFINED(__state.map, __anv_cmd_length(cmd) * 4)); \
791 if (!(pool)->block_pool->device->info.has_llc) \
792 anv_state_clflush(__state); \
793 __state; \
794 })
795
796 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
797 .GraphicsDataTypeGFDT = 0, \
798 .LLCCacheabilityControlLLCCC = 0, \
799 .L3CacheabilityControlL3CC = 1, \
800 }
801
802 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
803 .LLCeLLCCacheabilityControlLLCCC = 0, \
804 .L3CacheabilityControlL3CC = 1, \
805 }
806
807 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
808 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
809 .TargetCache = L3DefertoPATforLLCeLLCselection, \
810 .AgeforQUADLRU = 0 \
811 }
812
813 /* Skylake: MOCS is now an index into an array of 62 different caching
814 * configurations programmed by the kernel.
815 */
816
817 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
818 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
819 .IndextoMOCSTables = 2 \
820 }
821
822 #define GEN9_MOCS_PTE { \
823 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
824 .IndextoMOCSTables = 1 \
825 }
826
827 struct anv_device_memory {
828 struct anv_bo bo;
829 uint32_t type_index;
830 VkDeviceSize map_size;
831 void * map;
832 };
833
834 /**
835 * Header for Vertex URB Entry (VUE)
836 */
837 struct anv_vue_header {
838 uint32_t Reserved;
839 uint32_t RTAIndex; /* RenderTargetArrayIndex */
840 uint32_t ViewportIndex;
841 float PointWidth;
842 };
843
844 struct anv_descriptor_set_binding_layout {
845 #ifndef NDEBUG
846 /* The type of the descriptors in this binding */
847 VkDescriptorType type;
848 #endif
849
850 /* Number of array elements in this binding */
851 uint16_t array_size;
852
853 /* Index into the flattend descriptor set */
854 uint16_t descriptor_index;
855
856 /* Index into the dynamic state array for a dynamic buffer */
857 int16_t dynamic_offset_index;
858
859 /* Index into the descriptor set buffer views */
860 int16_t buffer_index;
861
862 struct {
863 /* Index into the binding table for the associated surface */
864 int16_t surface_index;
865
866 /* Index into the sampler table for the associated sampler */
867 int16_t sampler_index;
868
869 /* Index into the image table for the associated image */
870 int16_t image_index;
871 } stage[MESA_SHADER_STAGES];
872
873 /* Immutable samplers (or NULL if no immutable samplers) */
874 struct anv_sampler **immutable_samplers;
875 };
876
877 struct anv_descriptor_set_layout {
878 /* Number of bindings in this descriptor set */
879 uint16_t binding_count;
880
881 /* Total size of the descriptor set with room for all array entries */
882 uint16_t size;
883
884 /* Shader stages affected by this descriptor set */
885 uint16_t shader_stages;
886
887 /* Number of buffers in this descriptor set */
888 uint16_t buffer_count;
889
890 /* Number of dynamic offsets used by this descriptor set */
891 uint16_t dynamic_offset_count;
892
893 /* Bindings in this descriptor set */
894 struct anv_descriptor_set_binding_layout binding[0];
895 };
896
897 struct anv_descriptor {
898 VkDescriptorType type;
899
900 union {
901 struct {
902 struct anv_image_view *image_view;
903 struct anv_sampler *sampler;
904 };
905
906 struct anv_buffer_view *buffer_view;
907 };
908 };
909
910 struct anv_descriptor_set {
911 const struct anv_descriptor_set_layout *layout;
912 uint32_t size;
913 uint32_t buffer_count;
914 struct anv_buffer_view *buffer_views;
915 struct anv_descriptor descriptors[0];
916 };
917
918 struct anv_descriptor_pool {
919 uint32_t size;
920 uint32_t next;
921 uint32_t free_list;
922
923 struct anv_state_stream surface_state_stream;
924 void *surface_state_free_list;
925
926 char data[0];
927 };
928
929 VkResult
930 anv_descriptor_set_create(struct anv_device *device,
931 struct anv_descriptor_pool *pool,
932 const struct anv_descriptor_set_layout *layout,
933 struct anv_descriptor_set **out_set);
934
935 void
936 anv_descriptor_set_destroy(struct anv_device *device,
937 struct anv_descriptor_pool *pool,
938 struct anv_descriptor_set *set);
939
940 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
941
942 struct anv_pipeline_binding {
943 /* The descriptor set this surface corresponds to. The special value of
944 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
945 * to a color attachment and not a regular descriptor.
946 */
947 uint8_t set;
948
949 /* Binding in the descriptor set */
950 uint8_t binding;
951
952 /* Index in the binding */
953 uint8_t index;
954
955 /* Input attachment index (relative to the subpass) */
956 uint8_t input_attachment_index;
957
958 /* For a storage image, whether it is write-only */
959 bool write_only;
960 };
961
962 struct anv_pipeline_layout {
963 struct {
964 struct anv_descriptor_set_layout *layout;
965 uint32_t dynamic_offset_start;
966 } set[MAX_SETS];
967
968 uint32_t num_sets;
969
970 struct {
971 bool has_dynamic_offsets;
972 } stage[MESA_SHADER_STAGES];
973
974 unsigned char sha1[20];
975 };
976
977 struct anv_buffer {
978 struct anv_device * device;
979 VkDeviceSize size;
980
981 VkBufferUsageFlags usage;
982
983 /* Set when bound */
984 struct anv_bo * bo;
985 VkDeviceSize offset;
986 };
987
988 enum anv_cmd_dirty_bits {
989 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
990 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
991 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
992 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
993 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
994 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
995 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
996 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
997 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
998 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
999 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1000 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1001 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1002 };
1003 typedef uint32_t anv_cmd_dirty_mask_t;
1004
1005 enum anv_pipe_bits {
1006 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1007 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1008 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1009 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1010 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1011 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1012 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1013 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1014 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1015 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1016 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1017
1018 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1019 * a flush has happened but not a CS stall. The next time we do any sort
1020 * of invalidation we need to insert a CS stall at that time. Otherwise,
1021 * we would have to CS stall on every flush which could be bad.
1022 */
1023 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1024 };
1025
1026 #define ANV_PIPE_FLUSH_BITS ( \
1027 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1028 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1029 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1030
1031 #define ANV_PIPE_STALL_BITS ( \
1032 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1033 ANV_PIPE_DEPTH_STALL_BIT | \
1034 ANV_PIPE_CS_STALL_BIT)
1035
1036 #define ANV_PIPE_INVALIDATE_BITS ( \
1037 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1038 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1039 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1040 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1041 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1042 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1043
1044 struct anv_vertex_binding {
1045 struct anv_buffer * buffer;
1046 VkDeviceSize offset;
1047 };
1048
1049 struct anv_push_constants {
1050 /* Current allocated size of this push constants data structure.
1051 * Because a decent chunk of it may not be used (images on SKL, for
1052 * instance), we won't actually allocate the entire structure up-front.
1053 */
1054 uint32_t size;
1055
1056 /* Push constant data provided by the client through vkPushConstants */
1057 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1058
1059 /* Our hardware only provides zero-based vertex and instance id so, in
1060 * order to satisfy the vulkan requirements, we may have to push one or
1061 * both of these into the shader.
1062 */
1063 uint32_t base_vertex;
1064 uint32_t base_instance;
1065
1066 /* Offsets and ranges for dynamically bound buffers */
1067 struct {
1068 uint32_t offset;
1069 uint32_t range;
1070 } dynamic[MAX_DYNAMIC_BUFFERS];
1071
1072 /* Image data for image_load_store on pre-SKL */
1073 struct brw_image_param images[MAX_IMAGES];
1074 };
1075
1076 struct anv_dynamic_state {
1077 struct {
1078 uint32_t count;
1079 VkViewport viewports[MAX_VIEWPORTS];
1080 } viewport;
1081
1082 struct {
1083 uint32_t count;
1084 VkRect2D scissors[MAX_SCISSORS];
1085 } scissor;
1086
1087 float line_width;
1088
1089 struct {
1090 float bias;
1091 float clamp;
1092 float slope;
1093 } depth_bias;
1094
1095 float blend_constants[4];
1096
1097 struct {
1098 float min;
1099 float max;
1100 } depth_bounds;
1101
1102 struct {
1103 uint32_t front;
1104 uint32_t back;
1105 } stencil_compare_mask;
1106
1107 struct {
1108 uint32_t front;
1109 uint32_t back;
1110 } stencil_write_mask;
1111
1112 struct {
1113 uint32_t front;
1114 uint32_t back;
1115 } stencil_reference;
1116 };
1117
1118 extern const struct anv_dynamic_state default_dynamic_state;
1119
1120 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1121 const struct anv_dynamic_state *src,
1122 uint32_t copy_mask);
1123
1124 /**
1125 * Attachment state when recording a renderpass instance.
1126 *
1127 * The clear value is valid only if there exists a pending clear.
1128 */
1129 struct anv_attachment_state {
1130 enum isl_aux_usage aux_usage;
1131 enum isl_aux_usage input_aux_usage;
1132 struct anv_state color_rt_state;
1133 struct anv_state input_att_state;
1134
1135 VkImageLayout current_layout;
1136 VkImageAspectFlags pending_clear_aspects;
1137 bool fast_clear;
1138 VkClearValue clear_value;
1139 bool clear_color_is_zero_one;
1140 };
1141
1142 /** State required while building cmd buffer */
1143 struct anv_cmd_state {
1144 /* PIPELINE_SELECT.PipelineSelection */
1145 uint32_t current_pipeline;
1146 const struct gen_l3_config * current_l3_config;
1147 uint32_t vb_dirty;
1148 anv_cmd_dirty_mask_t dirty;
1149 anv_cmd_dirty_mask_t compute_dirty;
1150 enum anv_pipe_bits pending_pipe_bits;
1151 uint32_t num_workgroups_offset;
1152 struct anv_bo *num_workgroups_bo;
1153 VkShaderStageFlags descriptors_dirty;
1154 VkShaderStageFlags push_constants_dirty;
1155 uint32_t scratch_size;
1156 struct anv_pipeline * pipeline;
1157 struct anv_pipeline * compute_pipeline;
1158 struct anv_framebuffer * framebuffer;
1159 struct anv_render_pass * pass;
1160 struct anv_subpass * subpass;
1161 VkRect2D render_area;
1162 uint32_t restart_index;
1163 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1164 struct anv_descriptor_set * descriptors[MAX_SETS];
1165 VkShaderStageFlags push_constant_stages;
1166 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1167 struct anv_state binding_tables[MESA_SHADER_STAGES];
1168 struct anv_state samplers[MESA_SHADER_STAGES];
1169 struct anv_dynamic_state dynamic;
1170 bool need_query_wa;
1171
1172 /**
1173 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1174 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1175 * and before invoking the secondary in ExecuteCommands.
1176 */
1177 bool pma_fix_enabled;
1178
1179 /**
1180 * Whether or not we know for certain that HiZ is enabled for the current
1181 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1182 * enabled or not, this will be false.
1183 */
1184 bool hiz_enabled;
1185
1186 /**
1187 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1188 * valid only when recording a render pass instance.
1189 */
1190 struct anv_attachment_state * attachments;
1191
1192 /**
1193 * Surface states for color render targets. These are stored in a single
1194 * flat array. For depth-stencil attachments, the surface state is simply
1195 * left blank.
1196 */
1197 struct anv_state render_pass_states;
1198
1199 /**
1200 * A null surface state of the right size to match the framebuffer. This
1201 * is one of the states in render_pass_states.
1202 */
1203 struct anv_state null_surface_state;
1204
1205 struct {
1206 struct anv_buffer * index_buffer;
1207 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1208 uint32_t index_offset;
1209 } gen7;
1210 };
1211
1212 struct anv_cmd_pool {
1213 VkAllocationCallbacks alloc;
1214 struct list_head cmd_buffers;
1215 };
1216
1217 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
1218
1219 enum anv_cmd_buffer_exec_mode {
1220 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
1221 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
1222 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
1223 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
1224 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
1225 };
1226
1227 struct anv_cmd_buffer {
1228 VK_LOADER_DATA _loader_data;
1229
1230 struct anv_device * device;
1231
1232 struct anv_cmd_pool * pool;
1233 struct list_head pool_link;
1234
1235 struct anv_batch batch;
1236
1237 /* Fields required for the actual chain of anv_batch_bo's.
1238 *
1239 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
1240 */
1241 struct list_head batch_bos;
1242 enum anv_cmd_buffer_exec_mode exec_mode;
1243
1244 /* A vector of anv_batch_bo pointers for every batch or surface buffer
1245 * referenced by this command buffer
1246 *
1247 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1248 */
1249 struct u_vector seen_bbos;
1250
1251 /* A vector of int32_t's for every block of binding tables.
1252 *
1253 * initialized by anv_cmd_buffer_init_batch_bo_chain()
1254 */
1255 struct u_vector bt_blocks;
1256 uint32_t bt_next;
1257
1258 struct anv_reloc_list surface_relocs;
1259 /** Last seen surface state block pool center bo offset */
1260 uint32_t last_ss_pool_center;
1261
1262 /* Serial for tracking buffer completion */
1263 uint32_t serial;
1264
1265 /* Stream objects for storing temporary data */
1266 struct anv_state_stream surface_state_stream;
1267 struct anv_state_stream dynamic_state_stream;
1268
1269 VkCommandBufferUsageFlags usage_flags;
1270 VkCommandBufferLevel level;
1271
1272 struct anv_cmd_state state;
1273 };
1274
1275 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1276 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1277 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
1278 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
1279 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
1280 struct anv_cmd_buffer *secondary);
1281 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
1282 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
1283 struct anv_cmd_buffer *cmd_buffer);
1284
1285 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
1286
1287 VkResult
1288 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
1289 gl_shader_stage stage, uint32_t size);
1290 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
1291 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
1292 (offsetof(struct anv_push_constants, field) + \
1293 sizeof(cmd_buffer->state.push_constants[0]->field)))
1294
1295 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
1296 const void *data, uint32_t size, uint32_t alignment);
1297 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
1298 uint32_t *a, uint32_t *b,
1299 uint32_t dwords, uint32_t alignment);
1300
1301 struct anv_address
1302 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
1303 struct anv_state
1304 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
1305 uint32_t entries, uint32_t *state_offset);
1306 struct anv_state
1307 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
1308 struct anv_state
1309 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
1310 uint32_t size, uint32_t alignment);
1311
1312 VkResult
1313 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
1314
1315 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
1316 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
1317 bool depth_clamp_enable);
1318 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
1319
1320 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
1321 struct anv_render_pass *pass,
1322 struct anv_framebuffer *framebuffer,
1323 const VkClearValue *clear_values);
1324
1325 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
1326
1327 struct anv_state
1328 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
1329 gl_shader_stage stage);
1330 struct anv_state
1331 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
1332
1333 void anv_cmd_buffer_clear_subpass(struct anv_cmd_buffer *cmd_buffer);
1334 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
1335
1336 const struct anv_image_view *
1337 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
1338
1339 struct anv_state
1340 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
1341 uint32_t num_entries,
1342 uint32_t *state_offset);
1343
1344 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
1345
1346 enum anv_fence_state {
1347 /** Indicates that this is a new (or newly reset fence) */
1348 ANV_FENCE_STATE_RESET,
1349
1350 /** Indicates that this fence has been submitted to the GPU but is still
1351 * (as far as we know) in use by the GPU.
1352 */
1353 ANV_FENCE_STATE_SUBMITTED,
1354
1355 ANV_FENCE_STATE_SIGNALED,
1356 };
1357
1358 struct anv_fence {
1359 struct anv_bo bo;
1360 struct drm_i915_gem_execbuffer2 execbuf;
1361 struct drm_i915_gem_exec_object2 exec2_objects[1];
1362 enum anv_fence_state state;
1363 };
1364
1365 struct anv_event {
1366 uint64_t semaphore;
1367 struct anv_state state;
1368 };
1369
1370 struct anv_shader_module {
1371 unsigned char sha1[20];
1372 uint32_t size;
1373 char data[0];
1374 };
1375
1376 void anv_hash_shader(unsigned char *hash, const void *key, size_t key_size,
1377 struct anv_shader_module *module,
1378 const char *entrypoint,
1379 const struct anv_pipeline_layout *pipeline_layout,
1380 const VkSpecializationInfo *spec_info);
1381
1382 static inline gl_shader_stage
1383 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
1384 {
1385 assert(__builtin_popcount(vk_stage) == 1);
1386 return ffs(vk_stage) - 1;
1387 }
1388
1389 static inline VkShaderStageFlagBits
1390 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
1391 {
1392 return (1 << mesa_stage);
1393 }
1394
1395 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
1396
1397 #define anv_foreach_stage(stage, stage_bits) \
1398 for (gl_shader_stage stage, \
1399 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
1400 stage = __builtin_ffs(__tmp) - 1, __tmp; \
1401 __tmp &= ~(1 << (stage)))
1402
1403 struct anv_pipeline_bind_map {
1404 uint32_t surface_count;
1405 uint32_t sampler_count;
1406 uint32_t image_count;
1407
1408 struct anv_pipeline_binding * surface_to_descriptor;
1409 struct anv_pipeline_binding * sampler_to_descriptor;
1410 };
1411
1412 struct anv_shader_bin_key {
1413 uint32_t size;
1414 uint8_t data[0];
1415 };
1416
1417 struct anv_shader_bin {
1418 uint32_t ref_cnt;
1419
1420 const struct anv_shader_bin_key *key;
1421
1422 struct anv_state kernel;
1423 uint32_t kernel_size;
1424
1425 const struct brw_stage_prog_data *prog_data;
1426 uint32_t prog_data_size;
1427
1428 struct anv_pipeline_bind_map bind_map;
1429
1430 /* Prog data follows, then params, then the key, all aligned to 8-bytes */
1431 };
1432
1433 struct anv_shader_bin *
1434 anv_shader_bin_create(struct anv_device *device,
1435 const void *key, uint32_t key_size,
1436 const void *kernel, uint32_t kernel_size,
1437 const struct brw_stage_prog_data *prog_data,
1438 uint32_t prog_data_size, const void *prog_data_param,
1439 const struct anv_pipeline_bind_map *bind_map);
1440
1441 void
1442 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
1443
1444 static inline void
1445 anv_shader_bin_ref(struct anv_shader_bin *shader)
1446 {
1447 assert(shader->ref_cnt >= 1);
1448 __sync_fetch_and_add(&shader->ref_cnt, 1);
1449 }
1450
1451 static inline void
1452 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
1453 {
1454 assert(shader->ref_cnt >= 1);
1455 if (__sync_fetch_and_add(&shader->ref_cnt, -1) == 1)
1456 anv_shader_bin_destroy(device, shader);
1457 }
1458
1459 struct anv_pipeline {
1460 struct anv_device * device;
1461 struct anv_batch batch;
1462 uint32_t batch_data[512];
1463 struct anv_reloc_list batch_relocs;
1464 uint32_t dynamic_state_mask;
1465 struct anv_dynamic_state dynamic_state;
1466
1467 struct anv_pipeline_layout * layout;
1468
1469 bool needs_data_cache;
1470
1471 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
1472
1473 struct {
1474 const struct gen_l3_config * l3_config;
1475 uint32_t total_size;
1476 } urb;
1477
1478 VkShaderStageFlags active_stages;
1479 struct anv_state blend_state;
1480
1481 uint32_t vb_used;
1482 uint32_t binding_stride[MAX_VBS];
1483 bool instancing_enable[MAX_VBS];
1484 bool primitive_restart;
1485 uint32_t topology;
1486
1487 uint32_t cs_right_mask;
1488
1489 bool writes_depth;
1490 bool depth_test_enable;
1491 bool writes_stencil;
1492 bool stencil_test_enable;
1493 bool depth_clamp_enable;
1494 bool kill_pixel;
1495
1496 struct {
1497 uint32_t sf[7];
1498 uint32_t depth_stencil_state[3];
1499 } gen7;
1500
1501 struct {
1502 uint32_t sf[4];
1503 uint32_t raster[5];
1504 uint32_t wm_depth_stencil[3];
1505 } gen8;
1506
1507 struct {
1508 uint32_t wm_depth_stencil[4];
1509 } gen9;
1510
1511 uint32_t interface_descriptor_data[8];
1512 };
1513
1514 static inline bool
1515 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
1516 gl_shader_stage stage)
1517 {
1518 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
1519 }
1520
1521 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
1522 static inline const struct brw_##prefix##_prog_data * \
1523 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
1524 { \
1525 if (anv_pipeline_has_stage(pipeline, stage)) { \
1526 return (const struct brw_##prefix##_prog_data *) \
1527 pipeline->shaders[stage]->prog_data; \
1528 } else { \
1529 return NULL; \
1530 } \
1531 }
1532
1533 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
1534 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
1535 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
1536 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
1537 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
1538 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
1539
1540 static inline const struct brw_vue_prog_data *
1541 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
1542 {
1543 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1544 return &get_gs_prog_data(pipeline)->base;
1545 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1546 return &get_tes_prog_data(pipeline)->base;
1547 else
1548 return &get_vs_prog_data(pipeline)->base;
1549 }
1550
1551 VkResult
1552 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
1553 struct anv_pipeline_cache *cache,
1554 const VkGraphicsPipelineCreateInfo *pCreateInfo,
1555 const VkAllocationCallbacks *alloc);
1556
1557 VkResult
1558 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
1559 struct anv_pipeline_cache *cache,
1560 const VkComputePipelineCreateInfo *info,
1561 struct anv_shader_module *module,
1562 const char *entrypoint,
1563 const VkSpecializationInfo *spec_info);
1564
1565 struct anv_format {
1566 enum isl_format isl_format:16;
1567 struct isl_swizzle swizzle;
1568 };
1569
1570 struct anv_format
1571 anv_get_format(const struct gen_device_info *devinfo, VkFormat format,
1572 VkImageAspectFlags aspect, VkImageTiling tiling);
1573
1574 static inline enum isl_format
1575 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
1576 VkImageAspectFlags aspect, VkImageTiling tiling)
1577 {
1578 return anv_get_format(devinfo, vk_format, aspect, tiling).isl_format;
1579 }
1580
1581 static inline struct isl_swizzle
1582 anv_swizzle_for_render(struct isl_swizzle swizzle)
1583 {
1584 /* Sometimes the swizzle will have alpha map to one. We do this to fake
1585 * RGB as RGBA for texturing
1586 */
1587 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
1588 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
1589
1590 /* But it doesn't matter what we render to that channel */
1591 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
1592
1593 return swizzle;
1594 }
1595
1596 void
1597 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
1598
1599 /**
1600 * Subsurface of an anv_image.
1601 */
1602 struct anv_surface {
1603 /** Valid only if isl_surf::size > 0. */
1604 struct isl_surf isl;
1605
1606 /**
1607 * Offset from VkImage's base address, as bound by vkBindImageMemory().
1608 */
1609 uint32_t offset;
1610 };
1611
1612 struct anv_image {
1613 VkImageType type;
1614 /* The original VkFormat provided by the client. This may not match any
1615 * of the actual surface formats.
1616 */
1617 VkFormat vk_format;
1618 VkImageAspectFlags aspects;
1619 VkExtent3D extent;
1620 uint32_t levels;
1621 uint32_t array_size;
1622 uint32_t samples; /**< VkImageCreateInfo::samples */
1623 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
1624 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
1625
1626 VkDeviceSize size;
1627 uint32_t alignment;
1628
1629 /* Set when bound */
1630 struct anv_bo *bo;
1631 VkDeviceSize offset;
1632
1633 /**
1634 * Image subsurfaces
1635 *
1636 * For each foo, anv_image::foo_surface is valid if and only if
1637 * anv_image::aspects has a foo aspect.
1638 *
1639 * The hardware requires that the depth buffer and stencil buffer be
1640 * separate surfaces. From Vulkan's perspective, though, depth and stencil
1641 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
1642 * allocate the depth and stencil buffers as separate surfaces in the same
1643 * bo.
1644 */
1645 union {
1646 struct anv_surface color_surface;
1647
1648 struct {
1649 struct anv_surface depth_surface;
1650 struct anv_surface stencil_surface;
1651 };
1652 };
1653
1654 /**
1655 * For color images, this is the aux usage for this image when not used as a
1656 * color attachment.
1657 *
1658 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the image
1659 * has a HiZ buffer.
1660 */
1661 enum isl_aux_usage aux_usage;
1662
1663 struct anv_surface aux_surface;
1664 };
1665
1666 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
1667 static inline bool
1668 anv_can_sample_with_hiz(uint8_t gen, uint32_t samples)
1669 {
1670 return gen >= 8 && samples == 1;
1671 }
1672
1673 void
1674 anv_gen8_hiz_op_resolve(struct anv_cmd_buffer *cmd_buffer,
1675 const struct anv_image *image,
1676 enum blorp_hiz_op op);
1677
1678 static inline uint32_t
1679 anv_get_layerCount(const struct anv_image *image,
1680 const VkImageSubresourceRange *range)
1681 {
1682 return range->layerCount == VK_REMAINING_ARRAY_LAYERS ?
1683 image->array_size - range->baseArrayLayer : range->layerCount;
1684 }
1685
1686 static inline uint32_t
1687 anv_get_levelCount(const struct anv_image *image,
1688 const VkImageSubresourceRange *range)
1689 {
1690 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
1691 image->levels - range->baseMipLevel : range->levelCount;
1692 }
1693
1694
1695 struct anv_image_view {
1696 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
1697 struct anv_bo *bo;
1698 uint32_t offset; /**< Offset into bo. */
1699
1700 struct isl_view isl;
1701
1702 VkImageAspectFlags aspect_mask;
1703 VkFormat vk_format;
1704 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
1705
1706 /** RENDER_SURFACE_STATE when using image as a sampler surface. */
1707 struct anv_state sampler_surface_state;
1708
1709 /**
1710 * RENDER_SURFACE_STATE when using image as a storage image. Separate states
1711 * for write-only and readable, using the real format for write-only and the
1712 * lowered format for readable.
1713 */
1714 struct anv_state storage_surface_state;
1715 struct anv_state writeonly_storage_surface_state;
1716
1717 struct brw_image_param storage_image_param;
1718 };
1719
1720 struct anv_image_create_info {
1721 const VkImageCreateInfo *vk_info;
1722
1723 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
1724 isl_tiling_flags_t isl_tiling_flags;
1725
1726 uint32_t stride;
1727 };
1728
1729 VkResult anv_image_create(VkDevice _device,
1730 const struct anv_image_create_info *info,
1731 const VkAllocationCallbacks* alloc,
1732 VkImage *pImage);
1733
1734 const struct anv_surface *
1735 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
1736 VkImageAspectFlags aspect_mask);
1737
1738 struct anv_buffer_view {
1739 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1740 struct anv_bo *bo;
1741 uint32_t offset; /**< Offset into bo. */
1742 uint64_t range; /**< VkBufferViewCreateInfo::range */
1743
1744 struct anv_state surface_state;
1745 struct anv_state storage_surface_state;
1746 struct anv_state writeonly_storage_surface_state;
1747
1748 struct brw_image_param storage_image_param;
1749 };
1750
1751 enum isl_format
1752 anv_isl_format_for_descriptor_type(VkDescriptorType type);
1753
1754 static inline struct VkExtent3D
1755 anv_sanitize_image_extent(const VkImageType imageType,
1756 const struct VkExtent3D imageExtent)
1757 {
1758 switch (imageType) {
1759 case VK_IMAGE_TYPE_1D:
1760 return (VkExtent3D) { imageExtent.width, 1, 1 };
1761 case VK_IMAGE_TYPE_2D:
1762 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
1763 case VK_IMAGE_TYPE_3D:
1764 return imageExtent;
1765 default:
1766 unreachable("invalid image type");
1767 }
1768 }
1769
1770 static inline struct VkOffset3D
1771 anv_sanitize_image_offset(const VkImageType imageType,
1772 const struct VkOffset3D imageOffset)
1773 {
1774 switch (imageType) {
1775 case VK_IMAGE_TYPE_1D:
1776 return (VkOffset3D) { imageOffset.x, 0, 0 };
1777 case VK_IMAGE_TYPE_2D:
1778 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
1779 case VK_IMAGE_TYPE_3D:
1780 return imageOffset;
1781 default:
1782 unreachable("invalid image type");
1783 }
1784 }
1785
1786
1787 void anv_fill_buffer_surface_state(struct anv_device *device,
1788 struct anv_state state,
1789 enum isl_format format,
1790 uint32_t offset, uint32_t range,
1791 uint32_t stride);
1792
1793 void anv_image_view_fill_image_param(struct anv_device *device,
1794 struct anv_image_view *view,
1795 struct brw_image_param *param);
1796 void anv_buffer_view_fill_image_param(struct anv_device *device,
1797 struct anv_buffer_view *view,
1798 struct brw_image_param *param);
1799
1800 struct anv_sampler {
1801 uint32_t state[4];
1802 };
1803
1804 struct anv_framebuffer {
1805 uint32_t width;
1806 uint32_t height;
1807 uint32_t layers;
1808
1809 uint32_t attachment_count;
1810 struct anv_image_view * attachments[0];
1811 };
1812
1813 struct anv_subpass {
1814 uint32_t input_count;
1815 uint32_t * input_attachments;
1816 uint32_t color_count;
1817 uint32_t * color_attachments;
1818 uint32_t * resolve_attachments;
1819
1820 /* TODO: Consider storing the depth/stencil VkAttachmentReference
1821 * instead of its two structure members (below) individually.
1822 */
1823 uint32_t depth_stencil_attachment;
1824 VkImageLayout depth_stencil_layout;
1825
1826 /** Subpass has a depth/stencil self-dependency */
1827 bool has_ds_self_dep;
1828
1829 /** Subpass has at least one resolve attachment */
1830 bool has_resolve;
1831 };
1832
1833 enum anv_subpass_usage {
1834 ANV_SUBPASS_USAGE_DRAW = (1 << 0),
1835 ANV_SUBPASS_USAGE_INPUT = (1 << 1),
1836 ANV_SUBPASS_USAGE_RESOLVE_SRC = (1 << 2),
1837 ANV_SUBPASS_USAGE_RESOLVE_DST = (1 << 3),
1838 };
1839
1840 struct anv_render_pass_attachment {
1841 /* TODO: Consider using VkAttachmentDescription instead of storing each of
1842 * its members individually.
1843 */
1844 VkFormat format;
1845 uint32_t samples;
1846 VkImageUsageFlags usage;
1847 VkAttachmentLoadOp load_op;
1848 VkAttachmentStoreOp store_op;
1849 VkAttachmentLoadOp stencil_load_op;
1850 VkImageLayout initial_layout;
1851 VkImageLayout final_layout;
1852
1853 /* An array, indexed by subpass id, of how the attachment will be used. */
1854 enum anv_subpass_usage * subpass_usage;
1855
1856 /* The subpass id in which the attachment will be used last. */
1857 uint32_t last_subpass_idx;
1858 };
1859
1860 struct anv_render_pass {
1861 uint32_t attachment_count;
1862 uint32_t subpass_count;
1863 uint32_t * subpass_attachments;
1864 enum anv_subpass_usage * subpass_usages;
1865 struct anv_render_pass_attachment * attachments;
1866 struct anv_subpass subpasses[0];
1867 };
1868
1869 struct anv_query_pool_slot {
1870 uint64_t begin;
1871 uint64_t end;
1872 uint64_t available;
1873 };
1874
1875 struct anv_query_pool {
1876 VkQueryType type;
1877 uint32_t slots;
1878 struct anv_bo bo;
1879 };
1880
1881 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
1882 const char *name);
1883
1884 void anv_dump_image_to_ppm(struct anv_device *device,
1885 struct anv_image *image, unsigned miplevel,
1886 unsigned array_layer, VkImageAspectFlagBits aspect,
1887 const char *filename);
1888
1889 enum anv_dump_action {
1890 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
1891 };
1892
1893 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
1894 void anv_dump_finish(void);
1895
1896 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
1897 struct anv_framebuffer *fb);
1898
1899 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
1900 \
1901 static inline struct __anv_type * \
1902 __anv_type ## _from_handle(__VkType _handle) \
1903 { \
1904 return (struct __anv_type *) _handle; \
1905 } \
1906 \
1907 static inline __VkType \
1908 __anv_type ## _to_handle(struct __anv_type *_obj) \
1909 { \
1910 return (__VkType) _obj; \
1911 }
1912
1913 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
1914 \
1915 static inline struct __anv_type * \
1916 __anv_type ## _from_handle(__VkType _handle) \
1917 { \
1918 return (struct __anv_type *)(uintptr_t) _handle; \
1919 } \
1920 \
1921 static inline __VkType \
1922 __anv_type ## _to_handle(struct __anv_type *_obj) \
1923 { \
1924 return (__VkType)(uintptr_t) _obj; \
1925 }
1926
1927 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
1928 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
1929
1930 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
1931 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
1932 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
1933 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
1934 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
1935
1936 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
1937 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
1938 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
1939 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
1940 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
1941 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
1942 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
1943 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
1944 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
1945 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
1946 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
1947 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
1948 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
1949 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
1950 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
1951 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
1952 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
1953 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
1954 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
1955
1956 /* Gen-specific function declarations */
1957 #ifdef genX
1958 # include "anv_genX.h"
1959 #else
1960 # define genX(x) gen7_##x
1961 # include "anv_genX.h"
1962 # undef genX
1963 # define genX(x) gen75_##x
1964 # include "anv_genX.h"
1965 # undef genX
1966 # define genX(x) gen8_##x
1967 # include "anv_genX.h"
1968 # undef genX
1969 # define genX(x) gen9_##x
1970 # include "anv_genX.h"
1971 # undef genX
1972 #endif
1973
1974 #ifdef __cplusplus
1975 }
1976 #endif
1977
1978 #endif /* ANV_PRIVATE_H */