anv: dynamic vertex input binding stride and size support
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65 #include "vk_object.h"
66
67 /* Pre-declarations needed for WSI entrypoints */
68 struct wl_surface;
69 struct wl_display;
70 typedef struct xcb_connection_t xcb_connection_t;
71 typedef uint32_t xcb_visualid_t;
72 typedef uint32_t xcb_window_t;
73
74 struct anv_batch;
75 struct anv_buffer;
76 struct anv_buffer_view;
77 struct anv_image_view;
78 struct anv_instance;
79
80 struct gen_aux_map_context;
81 struct gen_perf_config;
82 struct gen_perf_counter_pass;
83 struct gen_perf_query_result;
84
85 #include <vulkan/vulkan.h>
86 #include <vulkan/vulkan_intel.h>
87 #include <vulkan/vk_icd.h>
88
89 #include "anv_android.h"
90 #include "anv_entrypoints.h"
91 #include "anv_extensions.h"
92 #include "isl/isl.h"
93
94 #include "dev/gen_debug.h"
95 #include "common/intel_log.h"
96 #include "wsi_common.h"
97
98 #define NSEC_PER_SEC 1000000000ull
99
100 /* anv Virtual Memory Layout
101 * =========================
102 *
103 * When the anv driver is determining the virtual graphics addresses of memory
104 * objects itself using the softpin mechanism, the following memory ranges
105 * will be used.
106 *
107 * Three special considerations to notice:
108 *
109 * (1) the dynamic state pool is located within the same 4 GiB as the low
110 * heap. This is to work around a VF cache issue described in a comment in
111 * anv_physical_device_init_heaps.
112 *
113 * (2) the binding table pool is located at lower addresses than the surface
114 * state pool, within a 4 GiB range. This allows surface state base addresses
115 * to cover both binding tables (16 bit offsets) and surface states (32 bit
116 * offsets).
117 *
118 * (3) the last 4 GiB of the address space is withheld from the high
119 * heap. Various hardware units will read past the end of an object for
120 * various reasons. This healthy margin prevents reads from wrapping around
121 * 48-bit addresses.
122 */
123 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
124 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
125 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
126 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
127 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
128 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
129 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
130 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
131 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
132 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
133 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
134 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
135 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
136
137 #define LOW_HEAP_SIZE \
138 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
139 #define DYNAMIC_STATE_POOL_SIZE \
140 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
141 #define BINDING_TABLE_POOL_SIZE \
142 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
143 #define SURFACE_STATE_POOL_SIZE \
144 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
145 #define INSTRUCTION_STATE_POOL_SIZE \
146 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
147 #define CLIENT_VISIBLE_HEAP_SIZE \
148 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
149
150 /* Allowing different clear colors requires us to perform a depth resolve at
151 * the end of certain render passes. This is because while slow clears store
152 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
153 * See the PRMs for examples describing when additional resolves would be
154 * necessary. To enable fast clears without requiring extra resolves, we set
155 * the clear value to a globally-defined one. We could allow different values
156 * if the user doesn't expect coherent data during or after a render passes
157 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
158 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
159 * 1.0f seems to be the only value used. The only application that doesn't set
160 * this value does so through the usage of an seemingly uninitialized clear
161 * value.
162 */
163 #define ANV_HZ_FC_VAL 1.0f
164
165 #define MAX_VBS 28
166 #define MAX_XFB_BUFFERS 4
167 #define MAX_XFB_STREAMS 4
168 #define MAX_SETS 8
169 #define MAX_RTS 8
170 #define MAX_VIEWPORTS 16
171 #define MAX_SCISSORS 16
172 #define MAX_PUSH_CONSTANTS_SIZE 128
173 #define MAX_DYNAMIC_BUFFERS 16
174 #define MAX_IMAGES 64
175 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
176 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
177 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
178 /* We need 16 for UBO block reads to work and 32 for push UBOs. However, we
179 * use 64 here to avoid cache issues. This could most likely bring it back to
180 * 32 if we had different virtual addresses for the different views on a given
181 * GEM object.
182 */
183 #define ANV_UBO_ALIGNMENT 64
184 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
185 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
186
187 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
188 *
189 * "The surface state model is used when a Binding Table Index (specified
190 * in the message descriptor) of less than 240 is specified. In this model,
191 * the Binding Table Index is used to index into the binding table, and the
192 * binding table entry contains a pointer to the SURFACE_STATE."
193 *
194 * Binding table values above 240 are used for various things in the hardware
195 * such as stateless, stateless with incoherent cache, SLM, and bindless.
196 */
197 #define MAX_BINDING_TABLE_SIZE 240
198
199 /* The kernel relocation API has a limitation of a 32-bit delta value
200 * applied to the address before it is written which, in spite of it being
201 * unsigned, is treated as signed . Because of the way that this maps to
202 * the Vulkan API, we cannot handle an offset into a buffer that does not
203 * fit into a signed 32 bits. The only mechanism we have for dealing with
204 * this at the moment is to limit all VkDeviceMemory objects to a maximum
205 * of 2GB each. The Vulkan spec allows us to do this:
206 *
207 * "Some platforms may have a limit on the maximum size of a single
208 * allocation. For example, certain systems may fail to create
209 * allocations with a size greater than or equal to 4GB. Such a limit is
210 * implementation-dependent, and if such a failure occurs then the error
211 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
212 *
213 * We don't use vk_error here because it's not an error so much as an
214 * indication to the application that the allocation is too large.
215 */
216 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
217
218 #define ANV_SVGS_VB_INDEX MAX_VBS
219 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
220
221 /* We reserve this MI ALU register for the purpose of handling predication.
222 * Other code which uses the MI ALU should leave it alone.
223 */
224 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
225
226 /* We reserve this MI ALU register to pass around an offset computed from
227 * VkPerformanceQuerySubmitInfoKHR::counterPassIndex VK_KHR_performance_query.
228 * Other code which uses the MI ALU should leave it alone.
229 */
230 #define ANV_PERF_QUERY_OFFSET_REG 0x2670 /* MI_ALU_REG14 */
231
232 /* For gen12 we set the streamout buffers using 4 separate commands
233 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
234 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
235 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
236 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
237 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
238 * 3DSTATE_SO_BUFFER_INDEX_0.
239 */
240 #define SO_BUFFER_INDEX_0_CMD 0x60
241 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
242
243 static inline uint32_t
244 align_down_npot_u32(uint32_t v, uint32_t a)
245 {
246 return v - (v % a);
247 }
248
249 static inline uint32_t
250 align_down_u32(uint32_t v, uint32_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint32_t
257 align_u32(uint32_t v, uint32_t a)
258 {
259 assert(a != 0 && a == (a & -a));
260 return align_down_u32(v + a - 1, a);
261 }
262
263 static inline uint64_t
264 align_down_u64(uint64_t v, uint64_t a)
265 {
266 assert(a != 0 && a == (a & -a));
267 return v & ~(a - 1);
268 }
269
270 static inline uint64_t
271 align_u64(uint64_t v, uint64_t a)
272 {
273 return align_down_u64(v + a - 1, a);
274 }
275
276 static inline int32_t
277 align_i32(int32_t v, int32_t a)
278 {
279 assert(a != 0 && a == (a & -a));
280 return (v + a - 1) & ~(a - 1);
281 }
282
283 /** Alignment must be a power of 2. */
284 static inline bool
285 anv_is_aligned(uintmax_t n, uintmax_t a)
286 {
287 assert(a == (a & -a));
288 return (n & (a - 1)) == 0;
289 }
290
291 static inline uint32_t
292 anv_minify(uint32_t n, uint32_t levels)
293 {
294 if (unlikely(n == 0))
295 return 0;
296 else
297 return MAX2(n >> levels, 1);
298 }
299
300 static inline float
301 anv_clamp_f(float f, float min, float max)
302 {
303 assert(min < max);
304
305 if (f > max)
306 return max;
307 else if (f < min)
308 return min;
309 else
310 return f;
311 }
312
313 static inline bool
314 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
315 {
316 if (*inout_mask & clear_mask) {
317 *inout_mask &= ~clear_mask;
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324 static inline union isl_color_value
325 vk_to_isl_color(VkClearColorValue color)
326 {
327 return (union isl_color_value) {
328 .u32 = {
329 color.uint32[0],
330 color.uint32[1],
331 color.uint32[2],
332 color.uint32[3],
333 },
334 };
335 }
336
337 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
338 {
339 uintptr_t mask = (1ull << bits) - 1;
340 *flags = ptr & mask;
341 return (void *) (ptr & ~mask);
342 }
343
344 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
345 {
346 uintptr_t value = (uintptr_t) ptr;
347 uintptr_t mask = (1ull << bits) - 1;
348 return value | (mask & flags);
349 }
350
351 #define for_each_bit(b, dword) \
352 for (uint32_t __dword = (dword); \
353 (b) = __builtin_ffs(__dword) - 1, __dword; \
354 __dword &= ~(1 << (b)))
355
356 #define typed_memcpy(dest, src, count) ({ \
357 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
358 memcpy((dest), (src), (count) * sizeof(*(src))); \
359 })
360
361 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
362 * to be added here in order to utilize mapping in debug/error/perf macros.
363 */
364 #define REPORT_OBJECT_TYPE(o) \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
434 __builtin_choose_expr ( \
435 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
436 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
437 __builtin_choose_expr ( \
438 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
439 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
440 __builtin_choose_expr ( \
441 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
442 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
443 __builtin_choose_expr ( \
444 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
445 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
446 __builtin_choose_expr ( \
447 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
448 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
449 __builtin_choose_expr ( \
450 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
451 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
452 __builtin_choose_expr ( \
453 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
454 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
455 __builtin_choose_expr ( \
456 __builtin_types_compatible_p (__typeof (o), void*), \
457 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
458 /* The void expression results in a compile-time error \
459 when assigning the result to something. */ \
460 (void)0)))))))))))))))))))))))))))))))
461
462 /* Whenever we generate an error, pass it through this function. Useful for
463 * debugging, where we can break on it. Only call at error site, not when
464 * propagating errors. Might be useful to plug in a stack trace here.
465 */
466
467 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
468 VkDebugReportObjectTypeEXT type, VkResult error,
469 const char *file, int line, const char *format,
470 va_list args);
471
472 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
473 VkDebugReportObjectTypeEXT type, VkResult error,
474 const char *file, int line, const char *format, ...)
475 anv_printflike(7, 8);
476
477 #ifdef DEBUG
478 #define vk_error(error) __vk_errorf(NULL, NULL,\
479 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
480 error, __FILE__, __LINE__, NULL)
481 #define vk_errorfi(instance, obj, error, format, ...)\
482 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
483 __FILE__, __LINE__, format, ## __VA_ARGS__)
484 #define vk_errorf(device, obj, error, format, ...)\
485 vk_errorfi(anv_device_instance_or_null(device),\
486 obj, error, format, ## __VA_ARGS__)
487 #else
488 #define vk_error(error) error
489 #define vk_errorfi(instance, obj, error, format, ...) error
490 #define vk_errorf(device, obj, error, format, ...) error
491 #endif
492
493 /**
494 * Warn on ignored extension structs.
495 *
496 * The Vulkan spec requires us to ignore unsupported or unknown structs in
497 * a pNext chain. In debug mode, emitting warnings for ignored structs may
498 * help us discover structs that we should not have ignored.
499 *
500 *
501 * From the Vulkan 1.0.38 spec:
502 *
503 * Any component of the implementation (the loader, any enabled layers,
504 * and drivers) must skip over, without processing (other than reading the
505 * sType and pNext members) any chained structures with sType values not
506 * defined by extensions supported by that component.
507 */
508 #define anv_debug_ignored_stype(sType) \
509 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
510
511 void __anv_perf_warn(struct anv_device *device, const void *object,
512 VkDebugReportObjectTypeEXT type, const char *file,
513 int line, const char *format, ...)
514 anv_printflike(6, 7);
515 void anv_loge(const char *format, ...) anv_printflike(1, 2);
516 void anv_loge_v(const char *format, va_list va);
517
518 /**
519 * Print a FINISHME message, including its source location.
520 */
521 #define anv_finishme(format, ...) \
522 do { \
523 static bool reported = false; \
524 if (!reported) { \
525 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
526 ##__VA_ARGS__); \
527 reported = true; \
528 } \
529 } while (0)
530
531 /**
532 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
533 */
534 #define anv_perf_warn(instance, obj, format, ...) \
535 do { \
536 static bool reported = false; \
537 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
538 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
539 format, ##__VA_ARGS__); \
540 reported = true; \
541 } \
542 } while (0)
543
544 /* A non-fatal assert. Useful for debugging. */
545 #ifdef DEBUG
546 #define anv_assert(x) ({ \
547 if (unlikely(!(x))) \
548 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
549 })
550 #else
551 #define anv_assert(x)
552 #endif
553
554 /* A multi-pointer allocator
555 *
556 * When copying data structures from the user (such as a render pass), it's
557 * common to need to allocate data for a bunch of different things. Instead
558 * of doing several allocations and having to handle all of the error checking
559 * that entails, it can be easier to do a single allocation. This struct
560 * helps facilitate that. The intended usage looks like this:
561 *
562 * ANV_MULTIALLOC(ma)
563 * anv_multialloc_add(&ma, &main_ptr, 1);
564 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
565 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
566 *
567 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
568 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
569 */
570 struct anv_multialloc {
571 size_t size;
572 size_t align;
573
574 uint32_t ptr_count;
575 void **ptrs[8];
576 };
577
578 #define ANV_MULTIALLOC_INIT \
579 ((struct anv_multialloc) { 0, })
580
581 #define ANV_MULTIALLOC(_name) \
582 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
583
584 __attribute__((always_inline))
585 static inline void
586 _anv_multialloc_add(struct anv_multialloc *ma,
587 void **ptr, size_t size, size_t align)
588 {
589 size_t offset = align_u64(ma->size, align);
590 ma->size = offset + size;
591 ma->align = MAX2(ma->align, align);
592
593 /* Store the offset in the pointer. */
594 *ptr = (void *)(uintptr_t)offset;
595
596 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
597 ma->ptrs[ma->ptr_count++] = ptr;
598 }
599
600 #define anv_multialloc_add_size(_ma, _ptr, _size) \
601 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
602
603 #define anv_multialloc_add(_ma, _ptr, _count) \
604 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
605
606 __attribute__((always_inline))
607 static inline void *
608 anv_multialloc_alloc(struct anv_multialloc *ma,
609 const VkAllocationCallbacks *alloc,
610 VkSystemAllocationScope scope)
611 {
612 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
613 if (!ptr)
614 return NULL;
615
616 /* Fill out each of the pointers with their final value.
617 *
618 * for (uint32_t i = 0; i < ma->ptr_count; i++)
619 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
620 *
621 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
622 * constant, GCC is incapable of figuring this out and unrolling the loop
623 * so we have to give it a little help.
624 */
625 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
626 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
627 if ((_i) < ma->ptr_count) \
628 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
629 _ANV_MULTIALLOC_UPDATE_POINTER(0);
630 _ANV_MULTIALLOC_UPDATE_POINTER(1);
631 _ANV_MULTIALLOC_UPDATE_POINTER(2);
632 _ANV_MULTIALLOC_UPDATE_POINTER(3);
633 _ANV_MULTIALLOC_UPDATE_POINTER(4);
634 _ANV_MULTIALLOC_UPDATE_POINTER(5);
635 _ANV_MULTIALLOC_UPDATE_POINTER(6);
636 _ANV_MULTIALLOC_UPDATE_POINTER(7);
637 #undef _ANV_MULTIALLOC_UPDATE_POINTER
638
639 return ptr;
640 }
641
642 __attribute__((always_inline))
643 static inline void *
644 anv_multialloc_alloc2(struct anv_multialloc *ma,
645 const VkAllocationCallbacks *parent_alloc,
646 const VkAllocationCallbacks *alloc,
647 VkSystemAllocationScope scope)
648 {
649 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
650 }
651
652 struct anv_bo {
653 uint32_t gem_handle;
654
655 uint32_t refcount;
656
657 /* Index into the current validation list. This is used by the
658 * validation list building alrogithm to track which buffers are already
659 * in the validation list so that we can ensure uniqueness.
660 */
661 uint32_t index;
662
663 /* Index for use with util_sparse_array_free_list */
664 uint32_t free_index;
665
666 /* Last known offset. This value is provided by the kernel when we
667 * execbuf and is used as the presumed offset for the next bunch of
668 * relocations.
669 */
670 uint64_t offset;
671
672 /** Size of the buffer not including implicit aux */
673 uint64_t size;
674
675 /* Map for internally mapped BOs.
676 *
677 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
678 */
679 void *map;
680
681 /** Size of the implicit CCS range at the end of the buffer
682 *
683 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
684 * page of main surface data maps to a 256B chunk of CCS data and that
685 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
686 * addresses in the main surface to virtual memory addresses for CCS data.
687 *
688 * Because we can't change these maps around easily and because Vulkan
689 * allows two VkImages to be bound to overlapping memory regions (as long
690 * as the app is careful), it's not feasible to make this mapping part of
691 * the image. (On Gen11 and earlier, the mapping was provided via
692 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
693 * Instead, we attach the CCS data directly to the buffer object and setup
694 * the AUX table mapping at BO creation time.
695 *
696 * This field is for internal tracking use by the BO allocator only and
697 * should not be touched by other parts of the code. If something wants to
698 * know if a BO has implicit CCS data, it should instead look at the
699 * has_implicit_ccs boolean below.
700 *
701 * This data is not included in maps of this buffer.
702 */
703 uint32_t _ccs_size;
704
705 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
706 uint32_t flags;
707
708 /** True if this BO may be shared with other processes */
709 bool is_external:1;
710
711 /** True if this BO is a wrapper
712 *
713 * When set to true, none of the fields in this BO are meaningful except
714 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
715 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
716 * is set in the physical device.
717 */
718 bool is_wrapper:1;
719
720 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
721 bool has_fixed_address:1;
722
723 /** True if this BO wraps a host pointer */
724 bool from_host_ptr:1;
725
726 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
727 bool has_client_visible_address:1;
728
729 /** True if this BO has implicit CCS data attached to it */
730 bool has_implicit_ccs:1;
731 };
732
733 static inline struct anv_bo *
734 anv_bo_ref(struct anv_bo *bo)
735 {
736 p_atomic_inc(&bo->refcount);
737 return bo;
738 }
739
740 static inline struct anv_bo *
741 anv_bo_unwrap(struct anv_bo *bo)
742 {
743 while (bo->is_wrapper)
744 bo = bo->map;
745 return bo;
746 }
747
748 /* Represents a lock-free linked list of "free" things. This is used by
749 * both the block pool and the state pools. Unfortunately, in order to
750 * solve the ABA problem, we can't use a single uint32_t head.
751 */
752 union anv_free_list {
753 struct {
754 uint32_t offset;
755
756 /* A simple count that is incremented every time the head changes. */
757 uint32_t count;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764
765 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
766
767 struct anv_block_state {
768 union {
769 struct {
770 uint32_t next;
771 uint32_t end;
772 };
773 /* Make sure it's aligned to 64 bits. This will make atomic operations
774 * faster on 32 bit platforms.
775 */
776 uint64_t u64 __attribute__ ((aligned (8)));
777 };
778 };
779
780 #define anv_block_pool_foreach_bo(bo, pool) \
781 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
782 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
783 _pp_bo++)
784
785 #define ANV_MAX_BLOCK_POOL_BOS 20
786
787 struct anv_block_pool {
788 struct anv_device *device;
789 bool use_softpin;
790
791 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
792 * around the actual BO so that we grow the pool after the wrapper BO has
793 * been put in a relocation list. This is only used in the non-softpin
794 * case.
795 */
796 struct anv_bo wrapper_bo;
797
798 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
799 struct anv_bo *bo;
800 uint32_t nbos;
801
802 uint64_t size;
803
804 /* The address where the start of the pool is pinned. The various bos that
805 * are created as the pool grows will have addresses in the range
806 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
807 */
808 uint64_t start_address;
809
810 /* The offset from the start of the bo to the "center" of the block
811 * pool. Pointers to allocated blocks are given by
812 * bo.map + center_bo_offset + offsets.
813 */
814 uint32_t center_bo_offset;
815
816 /* Current memory map of the block pool. This pointer may or may not
817 * point to the actual beginning of the block pool memory. If
818 * anv_block_pool_alloc_back has ever been called, then this pointer
819 * will point to the "center" position of the buffer and all offsets
820 * (negative or positive) given out by the block pool alloc functions
821 * will be valid relative to this pointer.
822 *
823 * In particular, map == bo.map + center_offset
824 *
825 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
826 * since it will handle the softpin case as well, where this points to NULL.
827 */
828 void *map;
829 int fd;
830
831 /**
832 * Array of mmaps and gem handles owned by the block pool, reclaimed when
833 * the block pool is destroyed.
834 */
835 struct u_vector mmap_cleanups;
836
837 struct anv_block_state state;
838
839 struct anv_block_state back_state;
840 };
841
842 /* Block pools are backed by a fixed-size 1GB memfd */
843 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
844
845 /* The center of the block pool is also the middle of the memfd. This may
846 * change in the future if we decide differently for some reason.
847 */
848 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
849
850 static inline uint32_t
851 anv_block_pool_size(struct anv_block_pool *pool)
852 {
853 return pool->state.end + pool->back_state.end;
854 }
855
856 struct anv_state {
857 int32_t offset;
858 uint32_t alloc_size;
859 void *map;
860 uint32_t idx;
861 };
862
863 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
864
865 struct anv_fixed_size_state_pool {
866 union anv_free_list free_list;
867 struct anv_block_state block;
868 };
869
870 #define ANV_MIN_STATE_SIZE_LOG2 6
871 #define ANV_MAX_STATE_SIZE_LOG2 21
872
873 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
874
875 struct anv_free_entry {
876 uint32_t next;
877 struct anv_state state;
878 };
879
880 struct anv_state_table {
881 struct anv_device *device;
882 int fd;
883 struct anv_free_entry *map;
884 uint32_t size;
885 struct anv_block_state state;
886 struct u_vector cleanups;
887 };
888
889 struct anv_state_pool {
890 struct anv_block_pool block_pool;
891
892 /* Offset into the relevant state base address where the state pool starts
893 * allocating memory.
894 */
895 int32_t start_offset;
896
897 struct anv_state_table table;
898
899 /* The size of blocks which will be allocated from the block pool */
900 uint32_t block_size;
901
902 /** Free list for "back" allocations */
903 union anv_free_list back_alloc_free_list;
904
905 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
906 };
907
908 struct anv_state_reserved_pool {
909 struct anv_state_pool *pool;
910 union anv_free_list reserved_blocks;
911 uint32_t count;
912 };
913
914 struct anv_state_stream {
915 struct anv_state_pool *state_pool;
916
917 /* The size of blocks to allocate from the state pool */
918 uint32_t block_size;
919
920 /* Current block we're allocating from */
921 struct anv_state block;
922
923 /* Offset into the current block at which to allocate the next state */
924 uint32_t next;
925
926 /* List of all blocks allocated from this pool */
927 struct util_dynarray all_blocks;
928 };
929
930 /* The block_pool functions exported for testing only. The block pool should
931 * only be used via a state pool (see below).
932 */
933 VkResult anv_block_pool_init(struct anv_block_pool *pool,
934 struct anv_device *device,
935 uint64_t start_address,
936 uint32_t initial_size);
937 void anv_block_pool_finish(struct anv_block_pool *pool);
938 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
939 uint32_t block_size, uint32_t *padding);
940 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
941 uint32_t block_size);
942 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
943 size);
944
945 VkResult anv_state_pool_init(struct anv_state_pool *pool,
946 struct anv_device *device,
947 uint64_t base_address,
948 int32_t start_offset,
949 uint32_t block_size);
950 void anv_state_pool_finish(struct anv_state_pool *pool);
951 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
952 uint32_t state_size, uint32_t alignment);
953 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
954 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
955 void anv_state_stream_init(struct anv_state_stream *stream,
956 struct anv_state_pool *state_pool,
957 uint32_t block_size);
958 void anv_state_stream_finish(struct anv_state_stream *stream);
959 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
960 uint32_t size, uint32_t alignment);
961
962 void anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
963 struct anv_state_pool *parent,
964 uint32_t count, uint32_t size,
965 uint32_t alignment);
966 void anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool);
967 struct anv_state anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool);
968 void anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
969 struct anv_state state);
970
971 VkResult anv_state_table_init(struct anv_state_table *table,
972 struct anv_device *device,
973 uint32_t initial_entries);
974 void anv_state_table_finish(struct anv_state_table *table);
975 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
976 uint32_t count);
977 void anv_free_list_push(union anv_free_list *list,
978 struct anv_state_table *table,
979 uint32_t idx, uint32_t count);
980 struct anv_state* anv_free_list_pop(union anv_free_list *list,
981 struct anv_state_table *table);
982
983
984 static inline struct anv_state *
985 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
986 {
987 return &table->map[idx].state;
988 }
989 /**
990 * Implements a pool of re-usable BOs. The interface is identical to that
991 * of block_pool except that each block is its own BO.
992 */
993 struct anv_bo_pool {
994 struct anv_device *device;
995
996 struct util_sparse_array_free_list free_list[16];
997 };
998
999 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
1000 void anv_bo_pool_finish(struct anv_bo_pool *pool);
1001 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1002 struct anv_bo **bo_out);
1003 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
1004
1005 struct anv_scratch_pool {
1006 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
1007 struct anv_bo *bos[16][MESA_SHADER_STAGES];
1008 };
1009
1010 void anv_scratch_pool_init(struct anv_device *device,
1011 struct anv_scratch_pool *pool);
1012 void anv_scratch_pool_finish(struct anv_device *device,
1013 struct anv_scratch_pool *pool);
1014 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
1015 struct anv_scratch_pool *pool,
1016 gl_shader_stage stage,
1017 unsigned per_thread_scratch);
1018
1019 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
1020 struct anv_bo_cache {
1021 struct util_sparse_array bo_map;
1022 pthread_mutex_t mutex;
1023 };
1024
1025 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
1026 void anv_bo_cache_finish(struct anv_bo_cache *cache);
1027
1028 struct anv_memory_type {
1029 /* Standard bits passed on to the client */
1030 VkMemoryPropertyFlags propertyFlags;
1031 uint32_t heapIndex;
1032 };
1033
1034 struct anv_memory_heap {
1035 /* Standard bits passed on to the client */
1036 VkDeviceSize size;
1037 VkMemoryHeapFlags flags;
1038
1039 /** Driver-internal book-keeping.
1040 *
1041 * Align it to 64 bits to make atomic operations faster on 32 bit platforms.
1042 */
1043 VkDeviceSize used __attribute__ ((aligned (8)));
1044 };
1045
1046 struct anv_physical_device {
1047 struct vk_object_base base;
1048
1049 /* Link in anv_instance::physical_devices */
1050 struct list_head link;
1051
1052 struct anv_instance * instance;
1053 bool no_hw;
1054 char path[20];
1055 const char * name;
1056 struct {
1057 uint16_t domain;
1058 uint8_t bus;
1059 uint8_t device;
1060 uint8_t function;
1061 } pci_info;
1062 struct gen_device_info info;
1063 /** Amount of "GPU memory" we want to advertise
1064 *
1065 * Clearly, this value is bogus since Intel is a UMA architecture. On
1066 * gen7 platforms, we are limited by GTT size unless we want to implement
1067 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1068 * practically unlimited. However, we will never report more than 3/4 of
1069 * the total system ram to try and avoid running out of RAM.
1070 */
1071 bool supports_48bit_addresses;
1072 struct brw_compiler * compiler;
1073 struct isl_device isl_dev;
1074 struct gen_perf_config * perf;
1075 int cmd_parser_version;
1076 bool has_softpin;
1077 bool has_exec_async;
1078 bool has_exec_capture;
1079 bool has_exec_fence;
1080 bool has_syncobj;
1081 bool has_syncobj_wait;
1082 bool has_context_priority;
1083 bool has_context_isolation;
1084 bool has_mem_available;
1085 bool has_mmap_offset;
1086 uint64_t gtt_size;
1087
1088 bool use_softpin;
1089 bool always_use_bindless;
1090 bool use_call_secondary;
1091
1092 /** True if we can access buffers using A64 messages */
1093 bool has_a64_buffer_access;
1094 /** True if we can use bindless access for images */
1095 bool has_bindless_images;
1096 /** True if we can use bindless access for samplers */
1097 bool has_bindless_samplers;
1098
1099 /** True if we can read the GPU timestamp register
1100 *
1101 * When running in a virtual context, the timestamp register is unreadable
1102 * on Gen12+.
1103 */
1104 bool has_reg_timestamp;
1105
1106 /** True if this device has implicit AUX
1107 *
1108 * If true, CCS is handled as an implicit attachment to the BO rather than
1109 * as an explicitly bound surface.
1110 */
1111 bool has_implicit_ccs;
1112
1113 bool always_flush_cache;
1114
1115 struct anv_device_extension_table supported_extensions;
1116
1117 uint32_t eu_total;
1118 uint32_t subslice_total;
1119
1120 struct {
1121 uint32_t type_count;
1122 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1123 uint32_t heap_count;
1124 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1125 } memory;
1126
1127 uint8_t driver_build_sha1[20];
1128 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1129 uint8_t driver_uuid[VK_UUID_SIZE];
1130 uint8_t device_uuid[VK_UUID_SIZE];
1131
1132 struct disk_cache * disk_cache;
1133
1134 struct wsi_device wsi_device;
1135 int local_fd;
1136 int master_fd;
1137 };
1138
1139 struct anv_app_info {
1140 const char* app_name;
1141 uint32_t app_version;
1142 const char* engine_name;
1143 uint32_t engine_version;
1144 uint32_t api_version;
1145 };
1146
1147 struct anv_instance {
1148 struct vk_object_base base;
1149
1150 VkAllocationCallbacks alloc;
1151
1152 struct anv_app_info app_info;
1153
1154 struct anv_instance_extension_table enabled_extensions;
1155 struct anv_instance_dispatch_table dispatch;
1156 struct anv_physical_device_dispatch_table physical_device_dispatch;
1157 struct anv_device_dispatch_table device_dispatch;
1158
1159 bool physical_devices_enumerated;
1160 struct list_head physical_devices;
1161
1162 bool pipeline_cache_enabled;
1163
1164 struct vk_debug_report_instance debug_report_callbacks;
1165
1166 struct driOptionCache dri_options;
1167 struct driOptionCache available_dri_options;
1168 };
1169
1170 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1171 void anv_finish_wsi(struct anv_physical_device *physical_device);
1172
1173 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1174 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1175 const char *name);
1176
1177 struct anv_queue_submit {
1178 struct anv_cmd_buffer * cmd_buffer;
1179
1180 uint32_t fence_count;
1181 uint32_t fence_array_length;
1182 struct drm_i915_gem_exec_fence * fences;
1183
1184 uint32_t temporary_semaphore_count;
1185 uint32_t temporary_semaphore_array_length;
1186 struct anv_semaphore_impl * temporary_semaphores;
1187
1188 /* Semaphores to be signaled with a SYNC_FD. */
1189 struct anv_semaphore ** sync_fd_semaphores;
1190 uint32_t sync_fd_semaphore_count;
1191 uint32_t sync_fd_semaphore_array_length;
1192
1193 /* Allocated only with non shareable timelines. */
1194 struct anv_timeline ** wait_timelines;
1195 uint32_t wait_timeline_count;
1196 uint32_t wait_timeline_array_length;
1197 uint64_t * wait_timeline_values;
1198
1199 struct anv_timeline ** signal_timelines;
1200 uint32_t signal_timeline_count;
1201 uint32_t signal_timeline_array_length;
1202 uint64_t * signal_timeline_values;
1203
1204 int in_fence;
1205 bool need_out_fence;
1206 int out_fence;
1207
1208 uint32_t fence_bo_count;
1209 uint32_t fence_bo_array_length;
1210 /* An array of struct anv_bo pointers with lower bit used as a flag to
1211 * signal we will wait on that BO (see anv_(un)pack_ptr).
1212 */
1213 uintptr_t * fence_bos;
1214
1215 int perf_query_pass;
1216
1217 const VkAllocationCallbacks * alloc;
1218 VkSystemAllocationScope alloc_scope;
1219
1220 struct anv_bo * simple_bo;
1221 uint32_t simple_bo_size;
1222
1223 struct list_head link;
1224 };
1225
1226 struct anv_queue {
1227 struct vk_object_base base;
1228
1229 struct anv_device * device;
1230
1231 /*
1232 * A list of struct anv_queue_submit to be submitted to i915.
1233 */
1234 struct list_head queued_submits;
1235
1236 VkDeviceQueueCreateFlags flags;
1237 };
1238
1239 struct anv_pipeline_cache {
1240 struct vk_object_base base;
1241 struct anv_device * device;
1242 pthread_mutex_t mutex;
1243
1244 struct hash_table * nir_cache;
1245
1246 struct hash_table * cache;
1247
1248 bool external_sync;
1249 };
1250
1251 struct nir_xfb_info;
1252 struct anv_pipeline_bind_map;
1253
1254 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1255 struct anv_device *device,
1256 bool cache_enabled,
1257 bool external_sync);
1258 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1259
1260 struct anv_shader_bin *
1261 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1262 const void *key, uint32_t key_size);
1263 struct anv_shader_bin *
1264 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1265 gl_shader_stage stage,
1266 const void *key_data, uint32_t key_size,
1267 const void *kernel_data, uint32_t kernel_size,
1268 const void *constant_data,
1269 uint32_t constant_data_size,
1270 const struct brw_stage_prog_data *prog_data,
1271 uint32_t prog_data_size,
1272 const struct brw_compile_stats *stats,
1273 uint32_t num_stats,
1274 const struct nir_xfb_info *xfb_info,
1275 const struct anv_pipeline_bind_map *bind_map);
1276
1277 struct anv_shader_bin *
1278 anv_device_search_for_kernel(struct anv_device *device,
1279 struct anv_pipeline_cache *cache,
1280 const void *key_data, uint32_t key_size,
1281 bool *user_cache_bit);
1282
1283 struct anv_shader_bin *
1284 anv_device_upload_kernel(struct anv_device *device,
1285 struct anv_pipeline_cache *cache,
1286 gl_shader_stage stage,
1287 const void *key_data, uint32_t key_size,
1288 const void *kernel_data, uint32_t kernel_size,
1289 const void *constant_data,
1290 uint32_t constant_data_size,
1291 const struct brw_stage_prog_data *prog_data,
1292 uint32_t prog_data_size,
1293 const struct brw_compile_stats *stats,
1294 uint32_t num_stats,
1295 const struct nir_xfb_info *xfb_info,
1296 const struct anv_pipeline_bind_map *bind_map);
1297
1298 struct nir_shader;
1299 struct nir_shader_compiler_options;
1300
1301 struct nir_shader *
1302 anv_device_search_for_nir(struct anv_device *device,
1303 struct anv_pipeline_cache *cache,
1304 const struct nir_shader_compiler_options *nir_options,
1305 unsigned char sha1_key[20],
1306 void *mem_ctx);
1307
1308 void
1309 anv_device_upload_nir(struct anv_device *device,
1310 struct anv_pipeline_cache *cache,
1311 const struct nir_shader *nir,
1312 unsigned char sha1_key[20]);
1313
1314 struct anv_address {
1315 struct anv_bo *bo;
1316 uint32_t offset;
1317 };
1318
1319 struct anv_device {
1320 struct vk_device vk;
1321
1322 struct anv_physical_device * physical;
1323 bool no_hw;
1324 struct gen_device_info info;
1325 struct isl_device isl_dev;
1326 int context_id;
1327 int fd;
1328 bool can_chain_batches;
1329 bool robust_buffer_access;
1330 struct anv_device_extension_table enabled_extensions;
1331 struct anv_device_dispatch_table dispatch;
1332
1333 pthread_mutex_t vma_mutex;
1334 struct util_vma_heap vma_lo;
1335 struct util_vma_heap vma_cva;
1336 struct util_vma_heap vma_hi;
1337
1338 /** List of all anv_device_memory objects */
1339 struct list_head memory_objects;
1340
1341 struct anv_bo_pool batch_bo_pool;
1342
1343 struct anv_bo_cache bo_cache;
1344
1345 struct anv_state_pool dynamic_state_pool;
1346 struct anv_state_pool instruction_state_pool;
1347 struct anv_state_pool binding_table_pool;
1348 struct anv_state_pool surface_state_pool;
1349
1350 struct anv_state_reserved_pool custom_border_colors;
1351
1352 /** BO used for various workarounds
1353 *
1354 * There are a number of workarounds on our hardware which require writing
1355 * data somewhere and it doesn't really matter where. For that, we use
1356 * this BO and just write to the first dword or so.
1357 *
1358 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1359 * For that, we use the high bytes (>= 1024) of the workaround BO.
1360 */
1361 struct anv_bo * workaround_bo;
1362 struct anv_address workaround_address;
1363
1364 struct anv_bo * trivial_batch_bo;
1365 struct anv_bo * hiz_clear_bo;
1366 struct anv_state null_surface_state;
1367
1368 struct anv_pipeline_cache default_pipeline_cache;
1369 struct blorp_context blorp;
1370
1371 struct anv_state border_colors;
1372
1373 struct anv_state slice_hash;
1374
1375 struct anv_queue queue;
1376
1377 struct anv_scratch_pool scratch_pool;
1378
1379 pthread_mutex_t mutex;
1380 pthread_cond_t queue_submit;
1381 int _lost;
1382
1383 struct gen_batch_decode_ctx decoder_ctx;
1384 /*
1385 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1386 * the cmd_buffer's list.
1387 */
1388 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1389
1390 int perf_fd; /* -1 if no opened */
1391 uint64_t perf_metric; /* 0 if unset */
1392
1393 struct gen_aux_map_context *aux_map_ctx;
1394 };
1395
1396 static inline struct anv_instance *
1397 anv_device_instance_or_null(const struct anv_device *device)
1398 {
1399 return device ? device->physical->instance : NULL;
1400 }
1401
1402 static inline struct anv_state_pool *
1403 anv_binding_table_pool(struct anv_device *device)
1404 {
1405 if (device->physical->use_softpin)
1406 return &device->binding_table_pool;
1407 else
1408 return &device->surface_state_pool;
1409 }
1410
1411 static inline struct anv_state
1412 anv_binding_table_pool_alloc(struct anv_device *device) {
1413 if (device->physical->use_softpin)
1414 return anv_state_pool_alloc(&device->binding_table_pool,
1415 device->binding_table_pool.block_size, 0);
1416 else
1417 return anv_state_pool_alloc_back(&device->surface_state_pool);
1418 }
1419
1420 static inline void
1421 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1422 anv_state_pool_free(anv_binding_table_pool(device), state);
1423 }
1424
1425 static inline uint32_t
1426 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1427 {
1428 if (bo->is_external)
1429 return device->isl_dev.mocs.external;
1430 else
1431 return device->isl_dev.mocs.internal;
1432 }
1433
1434 void anv_device_init_blorp(struct anv_device *device);
1435 void anv_device_finish_blorp(struct anv_device *device);
1436
1437 void _anv_device_set_all_queue_lost(struct anv_device *device);
1438 VkResult _anv_device_set_lost(struct anv_device *device,
1439 const char *file, int line,
1440 const char *msg, ...)
1441 anv_printflike(4, 5);
1442 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1443 const char *file, int line,
1444 const char *msg, ...)
1445 anv_printflike(4, 5);
1446 #define anv_device_set_lost(dev, ...) \
1447 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1448 #define anv_queue_set_lost(queue, ...) \
1449 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1450
1451 static inline bool
1452 anv_device_is_lost(struct anv_device *device)
1453 {
1454 return unlikely(p_atomic_read(&device->_lost));
1455 }
1456
1457 VkResult anv_device_query_status(struct anv_device *device);
1458
1459
1460 enum anv_bo_alloc_flags {
1461 /** Specifies that the BO must have a 32-bit address
1462 *
1463 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1464 */
1465 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1466
1467 /** Specifies that the BO may be shared externally */
1468 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1469
1470 /** Specifies that the BO should be mapped */
1471 ANV_BO_ALLOC_MAPPED = (1 << 2),
1472
1473 /** Specifies that the BO should be snooped so we get coherency */
1474 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1475
1476 /** Specifies that the BO should be captured in error states */
1477 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1478
1479 /** Specifies that the BO will have an address assigned by the caller
1480 *
1481 * Such BOs do not exist in any VMA heap.
1482 */
1483 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1484
1485 /** Enables implicit synchronization on the BO
1486 *
1487 * This is the opposite of EXEC_OBJECT_ASYNC.
1488 */
1489 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1490
1491 /** Enables implicit synchronization on the BO
1492 *
1493 * This is equivalent to EXEC_OBJECT_WRITE.
1494 */
1495 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1496
1497 /** Has an address which is visible to the client */
1498 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1499
1500 /** This buffer has implicit CCS data attached to it */
1501 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1502 };
1503
1504 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1505 enum anv_bo_alloc_flags alloc_flags,
1506 uint64_t explicit_address,
1507 struct anv_bo **bo);
1508 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1509 void *host_ptr, uint32_t size,
1510 enum anv_bo_alloc_flags alloc_flags,
1511 uint64_t client_address,
1512 struct anv_bo **bo_out);
1513 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1514 enum anv_bo_alloc_flags alloc_flags,
1515 uint64_t client_address,
1516 struct anv_bo **bo);
1517 VkResult anv_device_export_bo(struct anv_device *device,
1518 struct anv_bo *bo, int *fd_out);
1519 void anv_device_release_bo(struct anv_device *device,
1520 struct anv_bo *bo);
1521
1522 static inline struct anv_bo *
1523 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1524 {
1525 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1526 }
1527
1528 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1529 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1530 int64_t timeout);
1531
1532 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1533 void anv_queue_finish(struct anv_queue *queue);
1534
1535 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1536 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1537 struct anv_batch *batch);
1538
1539 uint64_t anv_gettime_ns(void);
1540 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1541
1542 void* anv_gem_mmap(struct anv_device *device,
1543 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1544 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1545 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1546 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1547 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1548 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1549 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1550 int anv_gem_execbuffer(struct anv_device *device,
1551 struct drm_i915_gem_execbuffer2 *execbuf);
1552 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1553 uint32_t stride, uint32_t tiling);
1554 int anv_gem_create_context(struct anv_device *device);
1555 bool anv_gem_has_context_priority(int fd);
1556 int anv_gem_destroy_context(struct anv_device *device, int context);
1557 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1558 uint64_t value);
1559 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1560 uint64_t *value);
1561 int anv_gem_get_param(int fd, uint32_t param);
1562 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1563 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1564 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1565 uint32_t *active, uint32_t *pending);
1566 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1567 int anv_gem_reg_read(int fd, uint32_t offset, uint64_t *result);
1568 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1569 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1570 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1571 uint32_t read_domains, uint32_t write_domain);
1572 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1573 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1574 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1575 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1576 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1577 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1578 uint32_t handle);
1579 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1580 uint32_t handle, int fd);
1581 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1582 bool anv_gem_supports_syncobj_wait(int fd);
1583 int anv_gem_syncobj_wait(struct anv_device *device,
1584 uint32_t *handles, uint32_t num_handles,
1585 int64_t abs_timeout_ns, bool wait_all);
1586
1587 uint64_t anv_vma_alloc(struct anv_device *device,
1588 uint64_t size, uint64_t align,
1589 enum anv_bo_alloc_flags alloc_flags,
1590 uint64_t client_address);
1591 void anv_vma_free(struct anv_device *device,
1592 uint64_t address, uint64_t size);
1593
1594 struct anv_reloc_list {
1595 uint32_t num_relocs;
1596 uint32_t array_length;
1597 struct drm_i915_gem_relocation_entry * relocs;
1598 struct anv_bo ** reloc_bos;
1599 uint32_t dep_words;
1600 BITSET_WORD * deps;
1601 };
1602
1603 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1604 const VkAllocationCallbacks *alloc);
1605 void anv_reloc_list_finish(struct anv_reloc_list *list,
1606 const VkAllocationCallbacks *alloc);
1607
1608 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1609 const VkAllocationCallbacks *alloc,
1610 uint32_t offset, struct anv_bo *target_bo,
1611 uint32_t delta, uint64_t *address_u64_out);
1612
1613 struct anv_batch_bo {
1614 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1615 struct list_head link;
1616
1617 struct anv_bo * bo;
1618
1619 /* Bytes actually consumed in this batch BO */
1620 uint32_t length;
1621
1622 struct anv_reloc_list relocs;
1623 };
1624
1625 struct anv_batch {
1626 const VkAllocationCallbacks * alloc;
1627
1628 struct anv_address start_addr;
1629
1630 void * start;
1631 void * end;
1632 void * next;
1633
1634 struct anv_reloc_list * relocs;
1635
1636 /* This callback is called (with the associated user data) in the event
1637 * that the batch runs out of space.
1638 */
1639 VkResult (*extend_cb)(struct anv_batch *, void *);
1640 void * user_data;
1641
1642 /**
1643 * Current error status of the command buffer. Used to track inconsistent
1644 * or incomplete command buffer states that are the consequence of run-time
1645 * errors such as out of memory scenarios. We want to track this in the
1646 * batch because the command buffer object is not visible to some parts
1647 * of the driver.
1648 */
1649 VkResult status;
1650 };
1651
1652 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1653 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1654 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1655 void *location, struct anv_bo *bo, uint32_t offset);
1656 struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location);
1657
1658 static inline void
1659 anv_batch_set_storage(struct anv_batch *batch, struct anv_address addr,
1660 void *map, size_t size)
1661 {
1662 batch->start_addr = addr;
1663 batch->next = batch->start = map;
1664 batch->end = map + size;
1665 }
1666
1667 static inline VkResult
1668 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1669 {
1670 assert(error != VK_SUCCESS);
1671 if (batch->status == VK_SUCCESS)
1672 batch->status = error;
1673 return batch->status;
1674 }
1675
1676 static inline bool
1677 anv_batch_has_error(struct anv_batch *batch)
1678 {
1679 return batch->status != VK_SUCCESS;
1680 }
1681
1682 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1683
1684 static inline bool
1685 anv_address_is_null(struct anv_address addr)
1686 {
1687 return addr.bo == NULL && addr.offset == 0;
1688 }
1689
1690 static inline uint64_t
1691 anv_address_physical(struct anv_address addr)
1692 {
1693 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1694 return gen_canonical_address(addr.bo->offset + addr.offset);
1695 else
1696 return gen_canonical_address(addr.offset);
1697 }
1698
1699 static inline struct anv_address
1700 anv_address_add(struct anv_address addr, uint64_t offset)
1701 {
1702 addr.offset += offset;
1703 return addr;
1704 }
1705
1706 static inline void
1707 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1708 {
1709 unsigned reloc_size = 0;
1710 if (device->info.gen >= 8) {
1711 reloc_size = sizeof(uint64_t);
1712 *(uint64_t *)p = gen_canonical_address(v);
1713 } else {
1714 reloc_size = sizeof(uint32_t);
1715 *(uint32_t *)p = v;
1716 }
1717
1718 if (flush && !device->info.has_llc)
1719 gen_flush_range(p, reloc_size);
1720 }
1721
1722 static inline uint64_t
1723 _anv_combine_address(struct anv_batch *batch, void *location,
1724 const struct anv_address address, uint32_t delta)
1725 {
1726 if (address.bo == NULL) {
1727 return address.offset + delta;
1728 } else {
1729 assert(batch->start <= location && location < batch->end);
1730
1731 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1732 }
1733 }
1734
1735 #define __gen_address_type struct anv_address
1736 #define __gen_user_data struct anv_batch
1737 #define __gen_combine_address _anv_combine_address
1738
1739 /* Wrapper macros needed to work around preprocessor argument issues. In
1740 * particular, arguments don't get pre-evaluated if they are concatenated.
1741 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1742 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1743 * We can work around this easily enough with these helpers.
1744 */
1745 #define __anv_cmd_length(cmd) cmd ## _length
1746 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1747 #define __anv_cmd_header(cmd) cmd ## _header
1748 #define __anv_cmd_pack(cmd) cmd ## _pack
1749 #define __anv_reg_num(reg) reg ## _num
1750
1751 #define anv_pack_struct(dst, struc, ...) do { \
1752 struct struc __template = { \
1753 __VA_ARGS__ \
1754 }; \
1755 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1756 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1757 } while (0)
1758
1759 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1760 void *__dst = anv_batch_emit_dwords(batch, n); \
1761 if (__dst) { \
1762 struct cmd __template = { \
1763 __anv_cmd_header(cmd), \
1764 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1765 __VA_ARGS__ \
1766 }; \
1767 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1768 } \
1769 __dst; \
1770 })
1771
1772 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1773 do { \
1774 uint32_t *dw; \
1775 \
1776 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1777 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1778 if (!dw) \
1779 break; \
1780 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1781 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1782 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1783 } while (0)
1784
1785 #define anv_batch_emit(batch, cmd, name) \
1786 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1787 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1788 __builtin_expect(_dst != NULL, 1); \
1789 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1790 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1791 _dst = NULL; \
1792 }))
1793
1794 /* #define __gen_get_batch_dwords anv_batch_emit_dwords */
1795 /* #define __gen_get_batch_address anv_batch_address */
1796 /* #define __gen_address_value anv_address_physical */
1797 /* #define __gen_address_offset anv_address_add */
1798
1799 struct anv_device_memory {
1800 struct vk_object_base base;
1801
1802 struct list_head link;
1803
1804 struct anv_bo * bo;
1805 struct anv_memory_type * type;
1806 VkDeviceSize map_size;
1807 void * map;
1808
1809 /* If set, we are holding reference to AHardwareBuffer
1810 * which we must release when memory is freed.
1811 */
1812 struct AHardwareBuffer * ahw;
1813
1814 /* If set, this memory comes from a host pointer. */
1815 void * host_ptr;
1816 };
1817
1818 /**
1819 * Header for Vertex URB Entry (VUE)
1820 */
1821 struct anv_vue_header {
1822 uint32_t Reserved;
1823 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1824 uint32_t ViewportIndex;
1825 float PointWidth;
1826 };
1827
1828 /** Struct representing a sampled image descriptor
1829 *
1830 * This descriptor layout is used for sampled images, bare sampler, and
1831 * combined image/sampler descriptors.
1832 */
1833 struct anv_sampled_image_descriptor {
1834 /** Bindless image handle
1835 *
1836 * This is expected to already be shifted such that the 20-bit
1837 * SURFACE_STATE table index is in the top 20 bits.
1838 */
1839 uint32_t image;
1840
1841 /** Bindless sampler handle
1842 *
1843 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1844 * to the dynamic state base address.
1845 */
1846 uint32_t sampler;
1847 };
1848
1849 struct anv_texture_swizzle_descriptor {
1850 /** Texture swizzle
1851 *
1852 * See also nir_intrinsic_channel_select_intel
1853 */
1854 uint8_t swizzle[4];
1855
1856 /** Unused padding to ensure the struct is a multiple of 64 bits */
1857 uint32_t _pad;
1858 };
1859
1860 /** Struct representing a storage image descriptor */
1861 struct anv_storage_image_descriptor {
1862 /** Bindless image handles
1863 *
1864 * These are expected to already be shifted such that the 20-bit
1865 * SURFACE_STATE table index is in the top 20 bits.
1866 */
1867 uint32_t read_write;
1868 uint32_t write_only;
1869 };
1870
1871 /** Struct representing a address/range descriptor
1872 *
1873 * The fields of this struct correspond directly to the data layout of
1874 * nir_address_format_64bit_bounded_global addresses. The last field is the
1875 * offset in the NIR address so it must be zero so that when you load the
1876 * descriptor you get a pointer to the start of the range.
1877 */
1878 struct anv_address_range_descriptor {
1879 uint64_t address;
1880 uint32_t range;
1881 uint32_t zero;
1882 };
1883
1884 enum anv_descriptor_data {
1885 /** The descriptor contains a BTI reference to a surface state */
1886 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1887 /** The descriptor contains a BTI reference to a sampler state */
1888 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1889 /** The descriptor contains an actual buffer view */
1890 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1891 /** The descriptor contains auxiliary image layout data */
1892 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1893 /** The descriptor contains auxiliary image layout data */
1894 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1895 /** anv_address_range_descriptor with a buffer address and range */
1896 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1897 /** Bindless surface handle */
1898 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1899 /** Storage image handles */
1900 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1901 /** Storage image handles */
1902 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1903 };
1904
1905 struct anv_descriptor_set_binding_layout {
1906 #ifndef NDEBUG
1907 /* The type of the descriptors in this binding */
1908 VkDescriptorType type;
1909 #endif
1910
1911 /* Flags provided when this binding was created */
1912 VkDescriptorBindingFlagsEXT flags;
1913
1914 /* Bitfield representing the type of data this descriptor contains */
1915 enum anv_descriptor_data data;
1916
1917 /* Maximum number of YCbCr texture/sampler planes */
1918 uint8_t max_plane_count;
1919
1920 /* Number of array elements in this binding (or size in bytes for inline
1921 * uniform data)
1922 */
1923 uint16_t array_size;
1924
1925 /* Index into the flattend descriptor set */
1926 uint16_t descriptor_index;
1927
1928 /* Index into the dynamic state array for a dynamic buffer */
1929 int16_t dynamic_offset_index;
1930
1931 /* Index into the descriptor set buffer views */
1932 int16_t buffer_view_index;
1933
1934 /* Offset into the descriptor buffer where this descriptor lives */
1935 uint32_t descriptor_offset;
1936
1937 /* Immutable samplers (or NULL if no immutable samplers) */
1938 struct anv_sampler **immutable_samplers;
1939 };
1940
1941 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1942
1943 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1944 VkDescriptorType type);
1945
1946 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1947 const struct anv_descriptor_set_binding_layout *binding,
1948 bool sampler);
1949
1950 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1951 const struct anv_descriptor_set_binding_layout *binding,
1952 bool sampler);
1953
1954 struct anv_descriptor_set_layout {
1955 struct vk_object_base base;
1956
1957 /* Descriptor set layouts can be destroyed at almost any time */
1958 uint32_t ref_cnt;
1959
1960 /* Number of bindings in this descriptor set */
1961 uint16_t binding_count;
1962
1963 /* Total size of the descriptor set with room for all array entries */
1964 uint16_t size;
1965
1966 /* Shader stages affected by this descriptor set */
1967 uint16_t shader_stages;
1968
1969 /* Number of buffer views in this descriptor set */
1970 uint16_t buffer_view_count;
1971
1972 /* Number of dynamic offsets used by this descriptor set */
1973 uint16_t dynamic_offset_count;
1974
1975 /* For each shader stage, which offsets apply to that stage */
1976 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1977
1978 /* Size of the descriptor buffer for this descriptor set */
1979 uint32_t descriptor_buffer_size;
1980
1981 /* Bindings in this descriptor set */
1982 struct anv_descriptor_set_binding_layout binding[0];
1983 };
1984
1985 void anv_descriptor_set_layout_destroy(struct anv_device *device,
1986 struct anv_descriptor_set_layout *layout);
1987
1988 static inline void
1989 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1990 {
1991 assert(layout && layout->ref_cnt >= 1);
1992 p_atomic_inc(&layout->ref_cnt);
1993 }
1994
1995 static inline void
1996 anv_descriptor_set_layout_unref(struct anv_device *device,
1997 struct anv_descriptor_set_layout *layout)
1998 {
1999 assert(layout && layout->ref_cnt >= 1);
2000 if (p_atomic_dec_zero(&layout->ref_cnt))
2001 anv_descriptor_set_layout_destroy(device, layout);
2002 }
2003
2004 struct anv_descriptor {
2005 VkDescriptorType type;
2006
2007 union {
2008 struct {
2009 VkImageLayout layout;
2010 struct anv_image_view *image_view;
2011 struct anv_sampler *sampler;
2012 };
2013
2014 struct {
2015 struct anv_buffer *buffer;
2016 uint64_t offset;
2017 uint64_t range;
2018 };
2019
2020 struct anv_buffer_view *buffer_view;
2021 };
2022 };
2023
2024 struct anv_descriptor_set {
2025 struct vk_object_base base;
2026
2027 struct anv_descriptor_pool *pool;
2028 struct anv_descriptor_set_layout *layout;
2029
2030 /* Amount of space occupied in the the pool by this descriptor set. It can
2031 * be larger than the size of the descriptor set.
2032 */
2033 uint32_t size;
2034
2035 /* State relative to anv_descriptor_pool::bo */
2036 struct anv_state desc_mem;
2037 /* Surface state for the descriptor buffer */
2038 struct anv_state desc_surface_state;
2039
2040 uint32_t buffer_view_count;
2041 struct anv_buffer_view *buffer_views;
2042
2043 /* Link to descriptor pool's desc_sets list . */
2044 struct list_head pool_link;
2045
2046 struct anv_descriptor descriptors[0];
2047 };
2048
2049 struct anv_buffer_view {
2050 struct vk_object_base base;
2051
2052 enum isl_format format; /**< VkBufferViewCreateInfo::format */
2053 uint64_t range; /**< VkBufferViewCreateInfo::range */
2054
2055 struct anv_address address;
2056
2057 struct anv_state surface_state;
2058 struct anv_state storage_surface_state;
2059 struct anv_state writeonly_storage_surface_state;
2060
2061 struct brw_image_param storage_image_param;
2062 };
2063
2064 struct anv_push_descriptor_set {
2065 struct anv_descriptor_set set;
2066
2067 /* Put this field right behind anv_descriptor_set so it fills up the
2068 * descriptors[0] field. */
2069 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
2070
2071 /** True if the descriptor set buffer has been referenced by a draw or
2072 * dispatch command.
2073 */
2074 bool set_used_on_gpu;
2075
2076 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
2077 };
2078
2079 struct anv_descriptor_pool {
2080 struct vk_object_base base;
2081
2082 uint32_t size;
2083 uint32_t next;
2084 uint32_t free_list;
2085
2086 struct anv_bo *bo;
2087 struct util_vma_heap bo_heap;
2088
2089 struct anv_state_stream surface_state_stream;
2090 void *surface_state_free_list;
2091
2092 struct list_head desc_sets;
2093
2094 char data[0];
2095 };
2096
2097 enum anv_descriptor_template_entry_type {
2098 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2099 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2100 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2101 };
2102
2103 struct anv_descriptor_template_entry {
2104 /* The type of descriptor in this entry */
2105 VkDescriptorType type;
2106
2107 /* Binding in the descriptor set */
2108 uint32_t binding;
2109
2110 /* Offset at which to write into the descriptor set binding */
2111 uint32_t array_element;
2112
2113 /* Number of elements to write into the descriptor set binding */
2114 uint32_t array_count;
2115
2116 /* Offset into the user provided data */
2117 size_t offset;
2118
2119 /* Stride between elements into the user provided data */
2120 size_t stride;
2121 };
2122
2123 struct anv_descriptor_update_template {
2124 struct vk_object_base base;
2125
2126 VkPipelineBindPoint bind_point;
2127
2128 /* The descriptor set this template corresponds to. This value is only
2129 * valid if the template was created with the templateType
2130 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2131 */
2132 uint8_t set;
2133
2134 /* Number of entries in this template */
2135 uint32_t entry_count;
2136
2137 /* Entries of the template */
2138 struct anv_descriptor_template_entry entries[0];
2139 };
2140
2141 size_t
2142 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2143
2144 void
2145 anv_descriptor_set_write_image_view(struct anv_device *device,
2146 struct anv_descriptor_set *set,
2147 const VkDescriptorImageInfo * const info,
2148 VkDescriptorType type,
2149 uint32_t binding,
2150 uint32_t element);
2151
2152 void
2153 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2154 struct anv_descriptor_set *set,
2155 VkDescriptorType type,
2156 struct anv_buffer_view *buffer_view,
2157 uint32_t binding,
2158 uint32_t element);
2159
2160 void
2161 anv_descriptor_set_write_buffer(struct anv_device *device,
2162 struct anv_descriptor_set *set,
2163 struct anv_state_stream *alloc_stream,
2164 VkDescriptorType type,
2165 struct anv_buffer *buffer,
2166 uint32_t binding,
2167 uint32_t element,
2168 VkDeviceSize offset,
2169 VkDeviceSize range);
2170 void
2171 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2172 struct anv_descriptor_set *set,
2173 uint32_t binding,
2174 const void *data,
2175 size_t offset,
2176 size_t size);
2177
2178 void
2179 anv_descriptor_set_write_template(struct anv_device *device,
2180 struct anv_descriptor_set *set,
2181 struct anv_state_stream *alloc_stream,
2182 const struct anv_descriptor_update_template *template,
2183 const void *data);
2184
2185 VkResult
2186 anv_descriptor_set_create(struct anv_device *device,
2187 struct anv_descriptor_pool *pool,
2188 struct anv_descriptor_set_layout *layout,
2189 struct anv_descriptor_set **out_set);
2190
2191 void
2192 anv_descriptor_set_destroy(struct anv_device *device,
2193 struct anv_descriptor_pool *pool,
2194 struct anv_descriptor_set *set);
2195
2196 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2197 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2198 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2199 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2200 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2201 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2202
2203 struct anv_pipeline_binding {
2204 /** Index in the descriptor set
2205 *
2206 * This is a flattened index; the descriptor set layout is already taken
2207 * into account.
2208 */
2209 uint32_t index;
2210
2211 /** The descriptor set this surface corresponds to.
2212 *
2213 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2214 * binding is not a normal descriptor set but something else.
2215 */
2216 uint8_t set;
2217
2218 union {
2219 /** Plane in the binding index for images */
2220 uint8_t plane;
2221
2222 /** Input attachment index (relative to the subpass) */
2223 uint8_t input_attachment_index;
2224
2225 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2226 uint8_t dynamic_offset_index;
2227 };
2228
2229 /** For a storage image, whether it is write-only */
2230 uint8_t write_only;
2231
2232 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2233 * assuming POD zero-initialization.
2234 */
2235 uint8_t pad;
2236 };
2237
2238 struct anv_push_range {
2239 /** Index in the descriptor set */
2240 uint32_t index;
2241
2242 /** Descriptor set index */
2243 uint8_t set;
2244
2245 /** Dynamic offset index (for dynamic UBOs) */
2246 uint8_t dynamic_offset_index;
2247
2248 /** Start offset in units of 32B */
2249 uint8_t start;
2250
2251 /** Range in units of 32B */
2252 uint8_t length;
2253 };
2254
2255 struct anv_pipeline_layout {
2256 struct vk_object_base base;
2257
2258 struct {
2259 struct anv_descriptor_set_layout *layout;
2260 uint32_t dynamic_offset_start;
2261 } set[MAX_SETS];
2262
2263 uint32_t num_sets;
2264
2265 unsigned char sha1[20];
2266 };
2267
2268 struct anv_buffer {
2269 struct vk_object_base base;
2270
2271 struct anv_device * device;
2272 VkDeviceSize size;
2273
2274 VkBufferUsageFlags usage;
2275
2276 /* Set when bound */
2277 struct anv_address address;
2278 };
2279
2280 static inline uint64_t
2281 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2282 {
2283 assert(offset <= buffer->size);
2284 if (range == VK_WHOLE_SIZE) {
2285 return buffer->size - offset;
2286 } else {
2287 assert(range + offset >= range);
2288 assert(range + offset <= buffer->size);
2289 return range;
2290 }
2291 }
2292
2293 enum anv_cmd_dirty_bits {
2294 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2295 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2296 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2297 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2298 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2299 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2300 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2301 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2302 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2303 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2304 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2305 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2306 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2307 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2308 ANV_CMD_DIRTY_DYNAMIC_CULL_MODE = 1 << 14, /* VK_DYNAMIC_STATE_CULL_MODE_EXT */
2309 ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE = 1 << 15, /* VK_DYNAMIC_STATE_FRONT_FACE_EXT */
2310 ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY = 1 << 16, /* VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY_EXT */
2311 ANV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE = 1 << 17, /* VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT */
2312 ANV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE = 1 << 18, /* VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE_EXT */
2313 ANV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE = 1 << 19, /* VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE_EXT */
2314 ANV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP = 1 << 20, /* VK_DYNAMIC_STATE_DEPTH_COMPARE_OP_EXT */
2315 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE = 1 << 21, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE_EXT */
2316 ANV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE = 1 << 22, /* VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE_EXT */
2317 ANV_CMD_DIRTY_DYNAMIC_STENCIL_OP = 1 << 23, /* VK_DYNAMIC_STATE_STENCIL_OP_EXT */
2318 };
2319 typedef uint32_t anv_cmd_dirty_mask_t;
2320
2321 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2322 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2323 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2324 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2325 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2326 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2327 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2328 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2329 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2330 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2331 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE | \
2332 ANV_CMD_DIRTY_DYNAMIC_CULL_MODE | \
2333 ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE | \
2334 ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY | \
2335 ANV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE | \
2336 ANV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE | \
2337 ANV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE | \
2338 ANV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP | \
2339 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE | \
2340 ANV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE | \
2341 ANV_CMD_DIRTY_DYNAMIC_STENCIL_OP)
2342
2343 static inline enum anv_cmd_dirty_bits
2344 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2345 {
2346 switch (vk_state) {
2347 case VK_DYNAMIC_STATE_VIEWPORT:
2348 case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT:
2349 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2350 case VK_DYNAMIC_STATE_SCISSOR:
2351 case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT_EXT:
2352 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2353 case VK_DYNAMIC_STATE_LINE_WIDTH:
2354 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2355 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2356 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2357 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2358 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2359 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2360 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2361 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2362 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2363 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2364 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2365 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2366 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2367 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2368 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2369 case VK_DYNAMIC_STATE_CULL_MODE_EXT:
2370 return ANV_CMD_DIRTY_DYNAMIC_CULL_MODE;
2371 case VK_DYNAMIC_STATE_FRONT_FACE_EXT:
2372 return ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE;
2373 case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY_EXT:
2374 return ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY;
2375 case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT:
2376 return ANV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE;
2377 case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE_EXT:
2378 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE;
2379 case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE_EXT:
2380 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE;
2381 case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP_EXT:
2382 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP;
2383 case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE_EXT:
2384 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
2385 case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE_EXT:
2386 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE;
2387 case VK_DYNAMIC_STATE_STENCIL_OP_EXT:
2388 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_OP;
2389 default:
2390 assert(!"Unsupported dynamic state");
2391 return 0;
2392 }
2393 }
2394
2395
2396 enum anv_pipe_bits {
2397 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2398 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2399 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2400 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2401 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2402 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2403 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2404 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2405 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2406 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2407 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2408 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2409 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2410
2411 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2412 * a flush has happened but not a CS stall. The next time we do any sort
2413 * of invalidation we need to insert a CS stall at that time. Otherwise,
2414 * we would have to CS stall on every flush which could be bad.
2415 */
2416 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2417
2418 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2419 * target operations related to transfer commands with VkBuffer as
2420 * destination are ongoing. Some operations like copies on the command
2421 * streamer might need to be aware of this to trigger the appropriate stall
2422 * before they can proceed with the copy.
2423 */
2424 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2425
2426 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2427 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2428 * done by writing the AUX-TT register.
2429 */
2430 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2431
2432 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2433 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2434 * implement a workaround for Gen9.
2435 */
2436 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2437 };
2438
2439 #define ANV_PIPE_FLUSH_BITS ( \
2440 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2441 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2442 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2443 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2444
2445 #define ANV_PIPE_STALL_BITS ( \
2446 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2447 ANV_PIPE_DEPTH_STALL_BIT | \
2448 ANV_PIPE_CS_STALL_BIT)
2449
2450 #define ANV_PIPE_INVALIDATE_BITS ( \
2451 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2452 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2453 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2454 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2455 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2456 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2457 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2458
2459 static inline enum anv_pipe_bits
2460 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2461 {
2462 enum anv_pipe_bits pipe_bits = 0;
2463
2464 unsigned b;
2465 for_each_bit(b, flags) {
2466 switch ((VkAccessFlagBits)(1 << b)) {
2467 case VK_ACCESS_SHADER_WRITE_BIT:
2468 /* We're transitioning a buffer that was previously used as write
2469 * destination through the data port. To make its content available
2470 * to future operations, flush the data cache.
2471 */
2472 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2473 break;
2474 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2475 /* We're transitioning a buffer that was previously used as render
2476 * target. To make its content available to future operations, flush
2477 * the render target cache.
2478 */
2479 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2480 break;
2481 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2482 /* We're transitioning a buffer that was previously used as depth
2483 * buffer. To make its content available to future operations, flush
2484 * the depth cache.
2485 */
2486 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2487 break;
2488 case VK_ACCESS_TRANSFER_WRITE_BIT:
2489 /* We're transitioning a buffer that was previously used as a
2490 * transfer write destination. Generic write operations include color
2491 * & depth operations as well as buffer operations like :
2492 * - vkCmdClearColorImage()
2493 * - vkCmdClearDepthStencilImage()
2494 * - vkCmdBlitImage()
2495 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2496 *
2497 * Most of these operations are implemented using Blorp which writes
2498 * through the render target, so flush that cache to make it visible
2499 * to future operations. And for depth related operations we also
2500 * need to flush the depth cache.
2501 */
2502 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2503 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2504 break;
2505 case VK_ACCESS_MEMORY_WRITE_BIT:
2506 /* We're transitioning a buffer for generic write operations. Flush
2507 * all the caches.
2508 */
2509 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2510 break;
2511 default:
2512 break; /* Nothing to do */
2513 }
2514 }
2515
2516 return pipe_bits;
2517 }
2518
2519 static inline enum anv_pipe_bits
2520 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2521 {
2522 enum anv_pipe_bits pipe_bits = 0;
2523
2524 unsigned b;
2525 for_each_bit(b, flags) {
2526 switch ((VkAccessFlagBits)(1 << b)) {
2527 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2528 /* Indirect draw commands take a buffer as input that we're going to
2529 * read from the command streamer to load some of the HW registers
2530 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2531 * command streamer stall so that all the cache flushes have
2532 * completed before the command streamer loads from memory.
2533 */
2534 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2535 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2536 * through a vertex buffer, so invalidate that cache.
2537 */
2538 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2539 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2540 * UBO from the buffer, so we need to invalidate constant cache.
2541 */
2542 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2543 break;
2544 case VK_ACCESS_INDEX_READ_BIT:
2545 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2546 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2547 * commands, so we invalidate the VF cache to make sure there is no
2548 * stale data when we start rendering.
2549 */
2550 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2551 break;
2552 case VK_ACCESS_UNIFORM_READ_BIT:
2553 /* We transitioning a buffer to be used as uniform data. Because
2554 * uniform is accessed through the data port & sampler, we need to
2555 * invalidate the texture cache (sampler) & constant cache (data
2556 * port) to avoid stale data.
2557 */
2558 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2559 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2560 break;
2561 case VK_ACCESS_SHADER_READ_BIT:
2562 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2563 case VK_ACCESS_TRANSFER_READ_BIT:
2564 /* Transitioning a buffer to be read through the sampler, so
2565 * invalidate the texture cache, we don't want any stale data.
2566 */
2567 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2568 break;
2569 case VK_ACCESS_MEMORY_READ_BIT:
2570 /* Transitioning a buffer for generic read, invalidate all the
2571 * caches.
2572 */
2573 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2574 break;
2575 case VK_ACCESS_MEMORY_WRITE_BIT:
2576 /* Generic write, make sure all previously written things land in
2577 * memory.
2578 */
2579 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2580 break;
2581 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2582 /* Transitioning a buffer for conditional rendering. We'll load the
2583 * content of this buffer into HW registers using the command
2584 * streamer, so we need to stall the command streamer to make sure
2585 * any in-flight flush operations have completed.
2586 */
2587 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2588 break;
2589 default:
2590 break; /* Nothing to do */
2591 }
2592 }
2593
2594 return pipe_bits;
2595 }
2596
2597 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2598 VK_IMAGE_ASPECT_COLOR_BIT | \
2599 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2600 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2601 VK_IMAGE_ASPECT_PLANE_2_BIT)
2602 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2603 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2604 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2605 VK_IMAGE_ASPECT_PLANE_2_BIT)
2606
2607 struct anv_vertex_binding {
2608 struct anv_buffer * buffer;
2609 VkDeviceSize offset;
2610 VkDeviceSize stride;
2611 VkDeviceSize size;
2612 };
2613
2614 struct anv_xfb_binding {
2615 struct anv_buffer * buffer;
2616 VkDeviceSize offset;
2617 VkDeviceSize size;
2618 };
2619
2620 struct anv_push_constants {
2621 /** Push constant data provided by the client through vkPushConstants */
2622 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2623
2624 /** Dynamic offsets for dynamic UBOs and SSBOs */
2625 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2626
2627 uint64_t push_reg_mask;
2628
2629 /** Pad out to a multiple of 32 bytes */
2630 uint32_t pad[2];
2631
2632 struct {
2633 /** Base workgroup ID
2634 *
2635 * Used for vkCmdDispatchBase.
2636 */
2637 uint32_t base_work_group_id[3];
2638
2639 /** Subgroup ID
2640 *
2641 * This is never set by software but is implicitly filled out when
2642 * uploading the push constants for compute shaders.
2643 */
2644 uint32_t subgroup_id;
2645 } cs;
2646 };
2647
2648 struct anv_dynamic_state {
2649 struct {
2650 uint32_t count;
2651 VkViewport viewports[MAX_VIEWPORTS];
2652 } viewport;
2653
2654 struct {
2655 uint32_t count;
2656 VkRect2D scissors[MAX_SCISSORS];
2657 } scissor;
2658
2659 float line_width;
2660
2661 struct {
2662 float bias;
2663 float clamp;
2664 float slope;
2665 } depth_bias;
2666
2667 float blend_constants[4];
2668
2669 struct {
2670 float min;
2671 float max;
2672 } depth_bounds;
2673
2674 struct {
2675 uint32_t front;
2676 uint32_t back;
2677 } stencil_compare_mask;
2678
2679 struct {
2680 uint32_t front;
2681 uint32_t back;
2682 } stencil_write_mask;
2683
2684 struct {
2685 uint32_t front;
2686 uint32_t back;
2687 } stencil_reference;
2688
2689 struct {
2690 struct {
2691 VkStencilOp fail_op;
2692 VkStencilOp pass_op;
2693 VkStencilOp depth_fail_op;
2694 VkCompareOp compare_op;
2695 } front;
2696 struct {
2697 VkStencilOp fail_op;
2698 VkStencilOp pass_op;
2699 VkStencilOp depth_fail_op;
2700 VkCompareOp compare_op;
2701 } back;
2702 } stencil_op;
2703
2704 struct {
2705 uint32_t factor;
2706 uint16_t pattern;
2707 } line_stipple;
2708
2709 VkCullModeFlags cull_mode;
2710 VkFrontFace front_face;
2711 VkPrimitiveTopology primitive_topology;
2712 bool depth_test_enable;
2713 bool depth_write_enable;
2714 VkCompareOp depth_compare_op;
2715 bool depth_bounds_test_enable;
2716 bool stencil_test_enable;
2717 bool dyn_vbo_stride;
2718 bool dyn_vbo_size;
2719 };
2720
2721 extern const struct anv_dynamic_state default_dynamic_state;
2722
2723 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2724 const struct anv_dynamic_state *src,
2725 uint32_t copy_mask);
2726
2727 struct anv_surface_state {
2728 struct anv_state state;
2729 /** Address of the surface referred to by this state
2730 *
2731 * This address is relative to the start of the BO.
2732 */
2733 struct anv_address address;
2734 /* Address of the aux surface, if any
2735 *
2736 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2737 *
2738 * With the exception of gen8, the bottom 12 bits of this address' offset
2739 * include extra aux information.
2740 */
2741 struct anv_address aux_address;
2742 /* Address of the clear color, if any
2743 *
2744 * This address is relative to the start of the BO.
2745 */
2746 struct anv_address clear_address;
2747 };
2748
2749 /**
2750 * Attachment state when recording a renderpass instance.
2751 *
2752 * The clear value is valid only if there exists a pending clear.
2753 */
2754 struct anv_attachment_state {
2755 enum isl_aux_usage aux_usage;
2756 struct anv_surface_state color;
2757 struct anv_surface_state input;
2758
2759 VkImageLayout current_layout;
2760 VkImageLayout current_stencil_layout;
2761 VkImageAspectFlags pending_clear_aspects;
2762 VkImageAspectFlags pending_load_aspects;
2763 bool fast_clear;
2764 VkClearValue clear_value;
2765
2766 /* When multiview is active, attachments with a renderpass clear
2767 * operation have their respective layers cleared on the first
2768 * subpass that uses them, and only in that subpass. We keep track
2769 * of this using a bitfield to indicate which layers of an attachment
2770 * have not been cleared yet when multiview is active.
2771 */
2772 uint32_t pending_clear_views;
2773 struct anv_image_view * image_view;
2774 };
2775
2776 /** State tracking for vertex buffer flushes
2777 *
2778 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2779 * addresses. If you happen to have two vertex buffers which get placed
2780 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2781 * collisions. In order to solve this problem, we track vertex address ranges
2782 * which are live in the cache and invalidate the cache if one ever exceeds 32
2783 * bits.
2784 */
2785 struct anv_vb_cache_range {
2786 /* Virtual address at which the live vertex buffer cache range starts for
2787 * this vertex buffer index.
2788 */
2789 uint64_t start;
2790
2791 /* Virtual address of the byte after where vertex buffer cache range ends.
2792 * This is exclusive such that end - start is the size of the range.
2793 */
2794 uint64_t end;
2795 };
2796
2797 /** State tracking for particular pipeline bind point
2798 *
2799 * This struct is the base struct for anv_cmd_graphics_state and
2800 * anv_cmd_compute_state. These are used to track state which is bound to a
2801 * particular type of pipeline. Generic state that applies per-stage such as
2802 * binding table offsets and push constants is tracked generically with a
2803 * per-stage array in anv_cmd_state.
2804 */
2805 struct anv_cmd_pipeline_state {
2806 struct anv_descriptor_set *descriptors[MAX_SETS];
2807 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2808 };
2809
2810 /** State tracking for graphics pipeline
2811 *
2812 * This has anv_cmd_pipeline_state as a base struct to track things which get
2813 * bound to a graphics pipeline. Along with general pipeline bind point state
2814 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2815 * state which is graphics-specific.
2816 */
2817 struct anv_cmd_graphics_state {
2818 struct anv_cmd_pipeline_state base;
2819
2820 struct anv_graphics_pipeline *pipeline;
2821
2822 anv_cmd_dirty_mask_t dirty;
2823 uint32_t vb_dirty;
2824
2825 struct anv_vb_cache_range ib_bound_range;
2826 struct anv_vb_cache_range ib_dirty_range;
2827 struct anv_vb_cache_range vb_bound_ranges[33];
2828 struct anv_vb_cache_range vb_dirty_ranges[33];
2829
2830 struct anv_dynamic_state dynamic;
2831
2832 uint32_t primitive_topology;
2833
2834 struct {
2835 struct anv_buffer *index_buffer;
2836 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2837 uint32_t index_offset;
2838 } gen7;
2839 };
2840
2841 /** State tracking for compute pipeline
2842 *
2843 * This has anv_cmd_pipeline_state as a base struct to track things which get
2844 * bound to a compute pipeline. Along with general pipeline bind point state
2845 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2846 * state which is compute-specific.
2847 */
2848 struct anv_cmd_compute_state {
2849 struct anv_cmd_pipeline_state base;
2850
2851 struct anv_compute_pipeline *pipeline;
2852
2853 bool pipeline_dirty;
2854
2855 struct anv_address num_workgroups;
2856 };
2857
2858 /** State required while building cmd buffer */
2859 struct anv_cmd_state {
2860 /* PIPELINE_SELECT.PipelineSelection */
2861 uint32_t current_pipeline;
2862 const struct gen_l3_config * current_l3_config;
2863 uint32_t last_aux_map_state;
2864
2865 struct anv_cmd_graphics_state gfx;
2866 struct anv_cmd_compute_state compute;
2867
2868 enum anv_pipe_bits pending_pipe_bits;
2869 VkShaderStageFlags descriptors_dirty;
2870 VkShaderStageFlags push_constants_dirty;
2871
2872 struct anv_framebuffer * framebuffer;
2873 struct anv_render_pass * pass;
2874 struct anv_subpass * subpass;
2875 VkRect2D render_area;
2876 uint32_t restart_index;
2877 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2878 bool xfb_enabled;
2879 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2880 VkShaderStageFlags push_constant_stages;
2881 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2882 struct anv_state binding_tables[MESA_SHADER_STAGES];
2883 struct anv_state samplers[MESA_SHADER_STAGES];
2884
2885 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2886 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2887 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2888
2889 /**
2890 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2891 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2892 * and before invoking the secondary in ExecuteCommands.
2893 */
2894 bool pma_fix_enabled;
2895
2896 /**
2897 * Whether or not we know for certain that HiZ is enabled for the current
2898 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2899 * enabled or not, this will be false.
2900 */
2901 bool hiz_enabled;
2902
2903 bool conditional_render_enabled;
2904
2905 /**
2906 * Last rendering scale argument provided to
2907 * genX(cmd_buffer_emit_hashing_mode)().
2908 */
2909 unsigned current_hash_scale;
2910
2911 /**
2912 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2913 * valid only when recording a render pass instance.
2914 */
2915 struct anv_attachment_state * attachments;
2916
2917 /**
2918 * Surface states for color render targets. These are stored in a single
2919 * flat array. For depth-stencil attachments, the surface state is simply
2920 * left blank.
2921 */
2922 struct anv_state attachment_states;
2923
2924 /**
2925 * A null surface state of the right size to match the framebuffer. This
2926 * is one of the states in attachment_states.
2927 */
2928 struct anv_state null_surface_state;
2929 };
2930
2931 struct anv_cmd_pool {
2932 struct vk_object_base base;
2933 VkAllocationCallbacks alloc;
2934 struct list_head cmd_buffers;
2935 };
2936
2937 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2938
2939 enum anv_cmd_buffer_exec_mode {
2940 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2941 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2942 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2943 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2944 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2945 ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN,
2946 };
2947
2948 struct anv_cmd_buffer {
2949 struct vk_object_base base;
2950
2951 struct anv_device * device;
2952
2953 struct anv_cmd_pool * pool;
2954 struct list_head pool_link;
2955
2956 struct anv_batch batch;
2957
2958 /* Fields required for the actual chain of anv_batch_bo's.
2959 *
2960 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2961 */
2962 struct list_head batch_bos;
2963 enum anv_cmd_buffer_exec_mode exec_mode;
2964
2965 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2966 * referenced by this command buffer
2967 *
2968 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2969 */
2970 struct u_vector seen_bbos;
2971
2972 /* A vector of int32_t's for every block of binding tables.
2973 *
2974 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2975 */
2976 struct u_vector bt_block_states;
2977 struct anv_state bt_next;
2978
2979 struct anv_reloc_list surface_relocs;
2980 /** Last seen surface state block pool center bo offset */
2981 uint32_t last_ss_pool_center;
2982
2983 /* Serial for tracking buffer completion */
2984 uint32_t serial;
2985
2986 /* Stream objects for storing temporary data */
2987 struct anv_state_stream surface_state_stream;
2988 struct anv_state_stream dynamic_state_stream;
2989
2990 VkCommandBufferUsageFlags usage_flags;
2991 VkCommandBufferLevel level;
2992
2993 struct anv_query_pool *perf_query_pool;
2994
2995 struct anv_cmd_state state;
2996
2997 struct anv_address return_addr;
2998
2999 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
3000 uint64_t intel_perf_marker;
3001 };
3002
3003 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
3004 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
3005 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
3006 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
3007 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
3008 struct anv_cmd_buffer *secondary);
3009 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
3010 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
3011 struct anv_cmd_buffer *cmd_buffer,
3012 const VkSemaphore *in_semaphores,
3013 const uint64_t *in_wait_values,
3014 uint32_t num_in_semaphores,
3015 const VkSemaphore *out_semaphores,
3016 const uint64_t *out_signal_values,
3017 uint32_t num_out_semaphores,
3018 VkFence fence,
3019 int perf_query_pass);
3020
3021 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
3022
3023 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
3024 const void *data, uint32_t size, uint32_t alignment);
3025 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
3026 uint32_t *a, uint32_t *b,
3027 uint32_t dwords, uint32_t alignment);
3028
3029 struct anv_address
3030 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
3031 struct anv_state
3032 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
3033 uint32_t entries, uint32_t *state_offset);
3034 struct anv_state
3035 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
3036 struct anv_state
3037 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
3038 uint32_t size, uint32_t alignment);
3039
3040 VkResult
3041 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
3042
3043 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
3044 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
3045 bool depth_clamp_enable);
3046 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
3047
3048 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
3049 struct anv_render_pass *pass,
3050 struct anv_framebuffer *framebuffer,
3051 const VkClearValue *clear_values);
3052
3053 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
3054
3055 struct anv_state
3056 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
3057 gl_shader_stage stage);
3058 struct anv_state
3059 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
3060
3061 const struct anv_image_view *
3062 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
3063
3064 VkResult
3065 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
3066 uint32_t num_entries,
3067 uint32_t *state_offset,
3068 struct anv_state *bt_state);
3069
3070 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
3071
3072 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
3073
3074 enum anv_fence_type {
3075 ANV_FENCE_TYPE_NONE = 0,
3076 ANV_FENCE_TYPE_BO,
3077 ANV_FENCE_TYPE_WSI_BO,
3078 ANV_FENCE_TYPE_SYNCOBJ,
3079 ANV_FENCE_TYPE_WSI,
3080 };
3081
3082 enum anv_bo_fence_state {
3083 /** Indicates that this is a new (or newly reset fence) */
3084 ANV_BO_FENCE_STATE_RESET,
3085
3086 /** Indicates that this fence has been submitted to the GPU but is still
3087 * (as far as we know) in use by the GPU.
3088 */
3089 ANV_BO_FENCE_STATE_SUBMITTED,
3090
3091 ANV_BO_FENCE_STATE_SIGNALED,
3092 };
3093
3094 struct anv_fence_impl {
3095 enum anv_fence_type type;
3096
3097 union {
3098 /** Fence implementation for BO fences
3099 *
3100 * These fences use a BO and a set of CPU-tracked state flags. The BO
3101 * is added to the object list of the last execbuf call in a QueueSubmit
3102 * and is marked EXEC_WRITE. The state flags track when the BO has been
3103 * submitted to the kernel. We need to do this because Vulkan lets you
3104 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
3105 * will say it's idle in this case.
3106 */
3107 struct {
3108 struct anv_bo *bo;
3109 enum anv_bo_fence_state state;
3110 } bo;
3111
3112 /** DRM syncobj handle for syncobj-based fences */
3113 uint32_t syncobj;
3114
3115 /** WSI fence */
3116 struct wsi_fence *fence_wsi;
3117 };
3118 };
3119
3120 struct anv_fence {
3121 struct vk_object_base base;
3122
3123 /* Permanent fence state. Every fence has some form of permanent state
3124 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
3125 * cross-process fences) or it could just be a dummy for use internally.
3126 */
3127 struct anv_fence_impl permanent;
3128
3129 /* Temporary fence state. A fence *may* have temporary state. That state
3130 * is added to the fence by an import operation and is reset back to
3131 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
3132 * state cannot be signaled because the fence must already be signaled
3133 * before the temporary state can be exported from the fence in the other
3134 * process and imported here.
3135 */
3136 struct anv_fence_impl temporary;
3137 };
3138
3139 void anv_fence_reset_temporary(struct anv_device *device,
3140 struct anv_fence *fence);
3141
3142 struct anv_event {
3143 struct vk_object_base base;
3144 uint64_t semaphore;
3145 struct anv_state state;
3146 };
3147
3148 enum anv_semaphore_type {
3149 ANV_SEMAPHORE_TYPE_NONE = 0,
3150 ANV_SEMAPHORE_TYPE_DUMMY,
3151 ANV_SEMAPHORE_TYPE_BO,
3152 ANV_SEMAPHORE_TYPE_WSI_BO,
3153 ANV_SEMAPHORE_TYPE_SYNC_FILE,
3154 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
3155 ANV_SEMAPHORE_TYPE_TIMELINE,
3156 };
3157
3158 struct anv_timeline_point {
3159 struct list_head link;
3160
3161 uint64_t serial;
3162
3163 /* Number of waiter on this point, when > 0 the point should not be garbage
3164 * collected.
3165 */
3166 int waiting;
3167
3168 /* BO used for synchronization. */
3169 struct anv_bo *bo;
3170 };
3171
3172 struct anv_timeline {
3173 pthread_mutex_t mutex;
3174 pthread_cond_t cond;
3175
3176 uint64_t highest_past;
3177 uint64_t highest_pending;
3178
3179 struct list_head points;
3180 struct list_head free_points;
3181 };
3182
3183 struct anv_semaphore_impl {
3184 enum anv_semaphore_type type;
3185
3186 union {
3187 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3188 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3189 * object list on any execbuf2 calls for which this semaphore is used as
3190 * a wait or signal fence. When used as a signal fence or when type ==
3191 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3192 */
3193 struct anv_bo *bo;
3194
3195 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3196 * If the semaphore is in the unsignaled state due to either just being
3197 * created or because it has been used for a wait, fd will be -1.
3198 */
3199 int fd;
3200
3201 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3202 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3203 * import so we don't need to bother with a userspace cache.
3204 */
3205 uint32_t syncobj;
3206
3207 /* Non shareable timeline semaphore
3208 *
3209 * Used when kernel don't have support for timeline semaphores.
3210 */
3211 struct anv_timeline timeline;
3212 };
3213 };
3214
3215 struct anv_semaphore {
3216 struct vk_object_base base;
3217
3218 uint32_t refcount;
3219
3220 /* Permanent semaphore state. Every semaphore has some form of permanent
3221 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3222 * (for cross-process semaphores0 or it could just be a dummy for use
3223 * internally.
3224 */
3225 struct anv_semaphore_impl permanent;
3226
3227 /* Temporary semaphore state. A semaphore *may* have temporary state.
3228 * That state is added to the semaphore by an import operation and is reset
3229 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3230 * semaphore with temporary state cannot be signaled because the semaphore
3231 * must already be signaled before the temporary state can be exported from
3232 * the semaphore in the other process and imported here.
3233 */
3234 struct anv_semaphore_impl temporary;
3235 };
3236
3237 void anv_semaphore_reset_temporary(struct anv_device *device,
3238 struct anv_semaphore *semaphore);
3239
3240 struct anv_shader_module {
3241 struct vk_object_base base;
3242
3243 unsigned char sha1[20];
3244 uint32_t size;
3245 char data[0];
3246 };
3247
3248 static inline gl_shader_stage
3249 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3250 {
3251 assert(__builtin_popcount(vk_stage) == 1);
3252 return ffs(vk_stage) - 1;
3253 }
3254
3255 static inline VkShaderStageFlagBits
3256 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3257 {
3258 return (1 << mesa_stage);
3259 }
3260
3261 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3262
3263 #define anv_foreach_stage(stage, stage_bits) \
3264 for (gl_shader_stage stage, \
3265 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3266 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3267 __tmp &= ~(1 << (stage)))
3268
3269 struct anv_pipeline_bind_map {
3270 unsigned char surface_sha1[20];
3271 unsigned char sampler_sha1[20];
3272 unsigned char push_sha1[20];
3273
3274 uint32_t surface_count;
3275 uint32_t sampler_count;
3276
3277 struct anv_pipeline_binding * surface_to_descriptor;
3278 struct anv_pipeline_binding * sampler_to_descriptor;
3279
3280 struct anv_push_range push_ranges[4];
3281 };
3282
3283 struct anv_shader_bin_key {
3284 uint32_t size;
3285 uint8_t data[0];
3286 };
3287
3288 struct anv_shader_bin {
3289 uint32_t ref_cnt;
3290
3291 gl_shader_stage stage;
3292
3293 const struct anv_shader_bin_key *key;
3294
3295 struct anv_state kernel;
3296 uint32_t kernel_size;
3297
3298 struct anv_state constant_data;
3299 uint32_t constant_data_size;
3300
3301 const struct brw_stage_prog_data *prog_data;
3302 uint32_t prog_data_size;
3303
3304 struct brw_compile_stats stats[3];
3305 uint32_t num_stats;
3306
3307 struct nir_xfb_info *xfb_info;
3308
3309 struct anv_pipeline_bind_map bind_map;
3310 };
3311
3312 struct anv_shader_bin *
3313 anv_shader_bin_create(struct anv_device *device,
3314 gl_shader_stage stage,
3315 const void *key, uint32_t key_size,
3316 const void *kernel, uint32_t kernel_size,
3317 const void *constant_data, uint32_t constant_data_size,
3318 const struct brw_stage_prog_data *prog_data,
3319 uint32_t prog_data_size,
3320 const struct brw_compile_stats *stats, uint32_t num_stats,
3321 const struct nir_xfb_info *xfb_info,
3322 const struct anv_pipeline_bind_map *bind_map);
3323
3324 void
3325 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3326
3327 static inline void
3328 anv_shader_bin_ref(struct anv_shader_bin *shader)
3329 {
3330 assert(shader && shader->ref_cnt >= 1);
3331 p_atomic_inc(&shader->ref_cnt);
3332 }
3333
3334 static inline void
3335 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3336 {
3337 assert(shader && shader->ref_cnt >= 1);
3338 if (p_atomic_dec_zero(&shader->ref_cnt))
3339 anv_shader_bin_destroy(device, shader);
3340 }
3341
3342 struct anv_pipeline_executable {
3343 gl_shader_stage stage;
3344
3345 struct brw_compile_stats stats;
3346
3347 char *nir;
3348 char *disasm;
3349 };
3350
3351 enum anv_pipeline_type {
3352 ANV_PIPELINE_GRAPHICS,
3353 ANV_PIPELINE_COMPUTE,
3354 };
3355
3356 struct anv_pipeline {
3357 struct vk_object_base base;
3358
3359 struct anv_device * device;
3360
3361 struct anv_batch batch;
3362 struct anv_reloc_list batch_relocs;
3363
3364 void * mem_ctx;
3365
3366 enum anv_pipeline_type type;
3367 VkPipelineCreateFlags flags;
3368
3369 struct util_dynarray executables;
3370
3371 const struct gen_l3_config * l3_config;
3372 };
3373
3374 struct anv_graphics_pipeline {
3375 struct anv_pipeline base;
3376
3377 uint32_t batch_data[512];
3378
3379 anv_cmd_dirty_mask_t dynamic_state_mask;
3380 struct anv_dynamic_state dynamic_state;
3381
3382 uint32_t topology;
3383
3384 struct anv_subpass * subpass;
3385
3386 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3387
3388 VkShaderStageFlags active_stages;
3389
3390 bool primitive_restart;
3391 bool writes_depth;
3392 bool depth_test_enable;
3393 bool writes_stencil;
3394 bool stencil_test_enable;
3395 bool depth_clamp_enable;
3396 bool depth_clip_enable;
3397 bool sample_shading_enable;
3398 bool kill_pixel;
3399 bool depth_bounds_test_enable;
3400
3401 /* When primitive replication is used, subpass->view_mask will describe what
3402 * views to replicate.
3403 */
3404 bool use_primitive_replication;
3405
3406 struct anv_state blend_state;
3407
3408 uint32_t vb_used;
3409 struct anv_pipeline_vertex_binding {
3410 uint32_t stride;
3411 bool instanced;
3412 uint32_t instance_divisor;
3413 } vb[MAX_VBS];
3414
3415 struct {
3416 uint32_t sf[7];
3417 uint32_t depth_stencil_state[3];
3418 uint32_t clip[4];
3419 } gen7;
3420
3421 struct {
3422 uint32_t sf[4];
3423 uint32_t raster[5];
3424 uint32_t wm_depth_stencil[3];
3425 } gen8;
3426
3427 struct {
3428 uint32_t wm_depth_stencil[4];
3429 } gen9;
3430 };
3431
3432 struct anv_compute_pipeline {
3433 struct anv_pipeline base;
3434
3435 struct anv_shader_bin * cs;
3436 uint32_t cs_right_mask;
3437 uint32_t batch_data[9];
3438 uint32_t interface_descriptor_data[8];
3439 };
3440
3441 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3442 static inline struct anv_##pipe_type##_pipeline * \
3443 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3444 { \
3445 assert(pipeline->type == pipe_enum); \
3446 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3447 }
3448
3449 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3450 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3451
3452 static inline bool
3453 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3454 gl_shader_stage stage)
3455 {
3456 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3457 }
3458
3459 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3460 static inline const struct brw_##prefix##_prog_data * \
3461 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3462 { \
3463 if (anv_pipeline_has_stage(pipeline, stage)) { \
3464 return (const struct brw_##prefix##_prog_data *) \
3465 pipeline->shaders[stage]->prog_data; \
3466 } else { \
3467 return NULL; \
3468 } \
3469 }
3470
3471 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3472 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3473 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3474 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3475 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3476
3477 static inline const struct brw_cs_prog_data *
3478 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3479 {
3480 assert(pipeline->cs);
3481 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3482 }
3483
3484 static inline const struct brw_vue_prog_data *
3485 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3486 {
3487 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3488 return &get_gs_prog_data(pipeline)->base;
3489 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3490 return &get_tes_prog_data(pipeline)->base;
3491 else
3492 return &get_vs_prog_data(pipeline)->base;
3493 }
3494
3495 VkResult
3496 anv_pipeline_init(struct anv_pipeline *pipeline,
3497 struct anv_device *device,
3498 enum anv_pipeline_type type,
3499 VkPipelineCreateFlags flags,
3500 const VkAllocationCallbacks *pAllocator);
3501
3502 void
3503 anv_pipeline_finish(struct anv_pipeline *pipeline,
3504 struct anv_device *device,
3505 const VkAllocationCallbacks *pAllocator);
3506
3507 VkResult
3508 anv_graphics_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3509 struct anv_pipeline_cache *cache,
3510 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3511 const VkAllocationCallbacks *alloc);
3512
3513 VkResult
3514 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3515 struct anv_pipeline_cache *cache,
3516 const VkComputePipelineCreateInfo *info,
3517 const struct anv_shader_module *module,
3518 const char *entrypoint,
3519 const VkSpecializationInfo *spec_info);
3520
3521 struct anv_cs_parameters {
3522 uint32_t group_size;
3523 uint32_t simd_size;
3524 uint32_t threads;
3525 };
3526
3527 struct anv_cs_parameters
3528 anv_cs_parameters(const struct anv_compute_pipeline *pipeline);
3529
3530 struct anv_format_plane {
3531 enum isl_format isl_format:16;
3532 struct isl_swizzle swizzle;
3533
3534 /* Whether this plane contains chroma channels */
3535 bool has_chroma;
3536
3537 /* For downscaling of YUV planes */
3538 uint8_t denominator_scales[2];
3539
3540 /* How to map sampled ycbcr planes to a single 4 component element. */
3541 struct isl_swizzle ycbcr_swizzle;
3542
3543 /* What aspect is associated to this plane */
3544 VkImageAspectFlags aspect;
3545 };
3546
3547
3548 struct anv_format {
3549 struct anv_format_plane planes[3];
3550 VkFormat vk_format;
3551 uint8_t n_planes;
3552 bool can_ycbcr;
3553 };
3554
3555 /**
3556 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3557 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3558 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3559 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3560 */
3561 static inline uint32_t
3562 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3563 VkImageAspectFlags aspect_mask)
3564 {
3565 switch (aspect_mask) {
3566 case VK_IMAGE_ASPECT_COLOR_BIT:
3567 case VK_IMAGE_ASPECT_DEPTH_BIT:
3568 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3569 return 0;
3570 case VK_IMAGE_ASPECT_STENCIL_BIT:
3571 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3572 return 0;
3573 /* Fall-through */
3574 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3575 return 1;
3576 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3577 return 2;
3578 default:
3579 /* Purposefully assert with depth/stencil aspects. */
3580 unreachable("invalid image aspect");
3581 }
3582 }
3583
3584 static inline VkImageAspectFlags
3585 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3586 uint32_t plane)
3587 {
3588 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3589 if (util_bitcount(image_aspects) > 1)
3590 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3591 return VK_IMAGE_ASPECT_COLOR_BIT;
3592 }
3593 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3594 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3595 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3596 return VK_IMAGE_ASPECT_STENCIL_BIT;
3597 }
3598
3599 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3600 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3601
3602 const struct anv_format *
3603 anv_get_format(VkFormat format);
3604
3605 static inline uint32_t
3606 anv_get_format_planes(VkFormat vk_format)
3607 {
3608 const struct anv_format *format = anv_get_format(vk_format);
3609
3610 return format != NULL ? format->n_planes : 0;
3611 }
3612
3613 struct anv_format_plane
3614 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3615 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3616
3617 static inline enum isl_format
3618 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3619 VkImageAspectFlags aspect, VkImageTiling tiling)
3620 {
3621 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3622 }
3623
3624 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3625 VkImageCreateFlags create_flags,
3626 VkFormat vk_format,
3627 VkImageTiling vk_tiling,
3628 const VkImageFormatListCreateInfoKHR *fmt_list);
3629
3630 static inline struct isl_swizzle
3631 anv_swizzle_for_render(struct isl_swizzle swizzle)
3632 {
3633 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3634 * RGB as RGBA for texturing
3635 */
3636 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3637 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3638
3639 /* But it doesn't matter what we render to that channel */
3640 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3641
3642 return swizzle;
3643 }
3644
3645 void
3646 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3647
3648 /**
3649 * Subsurface of an anv_image.
3650 */
3651 struct anv_surface {
3652 /** Valid only if isl_surf::size_B > 0. */
3653 struct isl_surf isl;
3654
3655 /**
3656 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3657 */
3658 uint32_t offset;
3659 };
3660
3661 struct anv_image {
3662 struct vk_object_base base;
3663
3664 VkImageType type; /**< VkImageCreateInfo::imageType */
3665 /* The original VkFormat provided by the client. This may not match any
3666 * of the actual surface formats.
3667 */
3668 VkFormat vk_format;
3669 const struct anv_format *format;
3670
3671 VkImageAspectFlags aspects;
3672 VkExtent3D extent;
3673 uint32_t levels;
3674 uint32_t array_size;
3675 uint32_t samples; /**< VkImageCreateInfo::samples */
3676 uint32_t n_planes;
3677 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3678 VkImageUsageFlags stencil_usage;
3679 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3680 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3681
3682 /** True if this is needs to be bound to an appropriately tiled BO.
3683 *
3684 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3685 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3686 * we require a dedicated allocation so that we can know to allocate a
3687 * tiled buffer.
3688 */
3689 bool needs_set_tiling;
3690
3691 /**
3692 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3693 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3694 */
3695 uint64_t drm_format_mod;
3696
3697 VkDeviceSize size;
3698 uint32_t alignment;
3699
3700 /* Whether the image is made of several underlying buffer objects rather a
3701 * single one with different offsets.
3702 */
3703 bool disjoint;
3704
3705 /* Image was created with external format. */
3706 bool external_format;
3707
3708 /**
3709 * Image subsurfaces
3710 *
3711 * For each foo, anv_image::planes[x].surface is valid if and only if
3712 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3713 * to figure the number associated with a given aspect.
3714 *
3715 * The hardware requires that the depth buffer and stencil buffer be
3716 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3717 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3718 * allocate the depth and stencil buffers as separate surfaces in the same
3719 * bo.
3720 *
3721 * Memory layout :
3722 *
3723 * -----------------------
3724 * | surface0 | /|\
3725 * ----------------------- |
3726 * | shadow surface0 | |
3727 * ----------------------- | Plane 0
3728 * | aux surface0 | |
3729 * ----------------------- |
3730 * | fast clear colors0 | \|/
3731 * -----------------------
3732 * | surface1 | /|\
3733 * ----------------------- |
3734 * | shadow surface1 | |
3735 * ----------------------- | Plane 1
3736 * | aux surface1 | |
3737 * ----------------------- |
3738 * | fast clear colors1 | \|/
3739 * -----------------------
3740 * | ... |
3741 * | |
3742 * -----------------------
3743 */
3744 struct {
3745 /**
3746 * Offset of the entire plane (whenever the image is disjoint this is
3747 * set to 0).
3748 */
3749 uint32_t offset;
3750
3751 VkDeviceSize size;
3752 uint32_t alignment;
3753
3754 struct anv_surface surface;
3755
3756 /**
3757 * A surface which shadows the main surface and may have different
3758 * tiling. This is used for sampling using a tiling that isn't supported
3759 * for other operations.
3760 */
3761 struct anv_surface shadow_surface;
3762
3763 /**
3764 * The base aux usage for this image. For color images, this can be
3765 * either CCS_E or CCS_D depending on whether or not we can reliably
3766 * leave CCS on all the time.
3767 */
3768 enum isl_aux_usage aux_usage;
3769
3770 struct anv_surface aux_surface;
3771
3772 /**
3773 * Offset of the fast clear state (used to compute the
3774 * fast_clear_state_offset of the following planes).
3775 */
3776 uint32_t fast_clear_state_offset;
3777
3778 /**
3779 * BO associated with this plane, set when bound.
3780 */
3781 struct anv_address address;
3782
3783 /**
3784 * When destroying the image, also free the bo.
3785 * */
3786 bool bo_is_owned;
3787 } planes[3];
3788 };
3789
3790 /* The ordering of this enum is important */
3791 enum anv_fast_clear_type {
3792 /** Image does not have/support any fast-clear blocks */
3793 ANV_FAST_CLEAR_NONE = 0,
3794 /** Image has/supports fast-clear but only to the default value */
3795 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3796 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3797 ANV_FAST_CLEAR_ANY = 2,
3798 };
3799
3800 /* Returns the number of auxiliary buffer levels attached to an image. */
3801 static inline uint8_t
3802 anv_image_aux_levels(const struct anv_image * const image,
3803 VkImageAspectFlagBits aspect)
3804 {
3805 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3806 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3807 return 0;
3808
3809 /* The Gen12 CCS aux surface is represented with only one level. */
3810 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3811 image->planes[plane].surface.isl.levels :
3812 image->planes[plane].aux_surface.isl.levels;
3813 }
3814
3815 /* Returns the number of auxiliary buffer layers attached to an image. */
3816 static inline uint32_t
3817 anv_image_aux_layers(const struct anv_image * const image,
3818 VkImageAspectFlagBits aspect,
3819 const uint8_t miplevel)
3820 {
3821 assert(image);
3822
3823 /* The miplevel must exist in the main buffer. */
3824 assert(miplevel < image->levels);
3825
3826 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3827 /* There are no layers with auxiliary data because the miplevel has no
3828 * auxiliary data.
3829 */
3830 return 0;
3831 } else {
3832 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3833
3834 /* The Gen12 CCS aux surface is represented with only one layer. */
3835 const struct isl_extent4d *aux_logical_level0_px =
3836 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3837 &image->planes[plane].surface.isl.logical_level0_px :
3838 &image->planes[plane].aux_surface.isl.logical_level0_px;
3839
3840 return MAX2(aux_logical_level0_px->array_len,
3841 aux_logical_level0_px->depth >> miplevel);
3842 }
3843 }
3844
3845 static inline struct anv_address
3846 anv_image_get_clear_color_addr(UNUSED const struct anv_device *device,
3847 const struct anv_image *image,
3848 VkImageAspectFlagBits aspect)
3849 {
3850 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3851
3852 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3853 return anv_address_add(image->planes[plane].address,
3854 image->planes[plane].fast_clear_state_offset);
3855 }
3856
3857 static inline struct anv_address
3858 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3859 const struct anv_image *image,
3860 VkImageAspectFlagBits aspect)
3861 {
3862 struct anv_address addr =
3863 anv_image_get_clear_color_addr(device, image, aspect);
3864
3865 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3866 device->isl_dev.ss.clear_color_state_size :
3867 device->isl_dev.ss.clear_value_size;
3868 return anv_address_add(addr, clear_color_state_size);
3869 }
3870
3871 static inline struct anv_address
3872 anv_image_get_compression_state_addr(const struct anv_device *device,
3873 const struct anv_image *image,
3874 VkImageAspectFlagBits aspect,
3875 uint32_t level, uint32_t array_layer)
3876 {
3877 assert(level < anv_image_aux_levels(image, aspect));
3878 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3879 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3880 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3881
3882 struct anv_address addr =
3883 anv_image_get_fast_clear_type_addr(device, image, aspect);
3884 addr.offset += 4; /* Go past the fast clear type */
3885
3886 if (image->type == VK_IMAGE_TYPE_3D) {
3887 for (uint32_t l = 0; l < level; l++)
3888 addr.offset += anv_minify(image->extent.depth, l) * 4;
3889 } else {
3890 addr.offset += level * image->array_size * 4;
3891 }
3892 addr.offset += array_layer * 4;
3893
3894 assert(addr.offset <
3895 image->planes[plane].address.offset + image->planes[plane].size);
3896 return addr;
3897 }
3898
3899 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3900 static inline bool
3901 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3902 const struct anv_image *image)
3903 {
3904 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3905 return false;
3906
3907 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3908 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3909 * say:
3910 *
3911 * "If this field is set to AUX_HIZ, Number of Multisamples must
3912 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3913 */
3914 if (image->type == VK_IMAGE_TYPE_3D)
3915 return false;
3916
3917 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3918 * struct. There's documentation which suggests that this feature actually
3919 * reduces performance on BDW, but it has only been observed to help so
3920 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3921 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3922 */
3923 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3924 return false;
3925
3926 return image->samples == 1;
3927 }
3928
3929 static inline bool
3930 anv_image_plane_uses_aux_map(const struct anv_device *device,
3931 const struct anv_image *image,
3932 uint32_t plane)
3933 {
3934 return device->info.has_aux_map &&
3935 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3936 }
3937
3938 void
3939 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3940 const struct anv_image *image,
3941 VkImageAspectFlagBits aspect,
3942 enum isl_aux_usage aux_usage,
3943 uint32_t level,
3944 uint32_t base_layer,
3945 uint32_t layer_count);
3946
3947 void
3948 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3949 const struct anv_image *image,
3950 VkImageAspectFlagBits aspect,
3951 enum isl_aux_usage aux_usage,
3952 enum isl_format format, struct isl_swizzle swizzle,
3953 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3954 VkRect2D area, union isl_color_value clear_color);
3955 void
3956 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3957 const struct anv_image *image,
3958 VkImageAspectFlags aspects,
3959 enum isl_aux_usage depth_aux_usage,
3960 uint32_t level,
3961 uint32_t base_layer, uint32_t layer_count,
3962 VkRect2D area,
3963 float depth_value, uint8_t stencil_value);
3964 void
3965 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3966 const struct anv_image *src_image,
3967 enum isl_aux_usage src_aux_usage,
3968 uint32_t src_level, uint32_t src_base_layer,
3969 const struct anv_image *dst_image,
3970 enum isl_aux_usage dst_aux_usage,
3971 uint32_t dst_level, uint32_t dst_base_layer,
3972 VkImageAspectFlagBits aspect,
3973 uint32_t src_x, uint32_t src_y,
3974 uint32_t dst_x, uint32_t dst_y,
3975 uint32_t width, uint32_t height,
3976 uint32_t layer_count,
3977 enum blorp_filter filter);
3978 void
3979 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3980 const struct anv_image *image,
3981 VkImageAspectFlagBits aspect, uint32_t level,
3982 uint32_t base_layer, uint32_t layer_count,
3983 enum isl_aux_op hiz_op);
3984 void
3985 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3986 const struct anv_image *image,
3987 VkImageAspectFlags aspects,
3988 uint32_t level,
3989 uint32_t base_layer, uint32_t layer_count,
3990 VkRect2D area, uint8_t stencil_value);
3991 void
3992 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3993 const struct anv_image *image,
3994 enum isl_format format, struct isl_swizzle swizzle,
3995 VkImageAspectFlagBits aspect,
3996 uint32_t base_layer, uint32_t layer_count,
3997 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3998 bool predicate);
3999 void
4000 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
4001 const struct anv_image *image,
4002 enum isl_format format, struct isl_swizzle swizzle,
4003 VkImageAspectFlagBits aspect, uint32_t level,
4004 uint32_t base_layer, uint32_t layer_count,
4005 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
4006 bool predicate);
4007
4008 void
4009 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
4010 const struct anv_image *image,
4011 VkImageAspectFlagBits aspect,
4012 uint32_t base_level, uint32_t level_count,
4013 uint32_t base_layer, uint32_t layer_count);
4014
4015 enum isl_aux_state
4016 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
4017 const struct anv_image *image,
4018 const VkImageAspectFlagBits aspect,
4019 const VkImageLayout layout);
4020
4021 enum isl_aux_usage
4022 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
4023 const struct anv_image *image,
4024 const VkImageAspectFlagBits aspect,
4025 const VkImageUsageFlagBits usage,
4026 const VkImageLayout layout);
4027
4028 enum anv_fast_clear_type
4029 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
4030 const struct anv_image * const image,
4031 const VkImageAspectFlagBits aspect,
4032 const VkImageLayout layout);
4033
4034 /* This is defined as a macro so that it works for both
4035 * VkImageSubresourceRange and VkImageSubresourceLayers
4036 */
4037 #define anv_get_layerCount(_image, _range) \
4038 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
4039 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
4040
4041 static inline uint32_t
4042 anv_get_levelCount(const struct anv_image *image,
4043 const VkImageSubresourceRange *range)
4044 {
4045 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
4046 image->levels - range->baseMipLevel : range->levelCount;
4047 }
4048
4049 static inline VkImageAspectFlags
4050 anv_image_expand_aspects(const struct anv_image *image,
4051 VkImageAspectFlags aspects)
4052 {
4053 /* If the underlying image has color plane aspects and
4054 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
4055 * the underlying image. */
4056 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
4057 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
4058 return image->aspects;
4059
4060 return aspects;
4061 }
4062
4063 static inline bool
4064 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
4065 VkImageAspectFlags aspects2)
4066 {
4067 if (aspects1 == aspects2)
4068 return true;
4069
4070 /* Only 1 color aspects are compatibles. */
4071 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
4072 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
4073 util_bitcount(aspects1) == util_bitcount(aspects2))
4074 return true;
4075
4076 return false;
4077 }
4078
4079 struct anv_image_view {
4080 struct vk_object_base base;
4081
4082 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
4083
4084 VkImageAspectFlags aspect_mask;
4085 VkFormat vk_format;
4086 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
4087
4088 unsigned n_planes;
4089 struct {
4090 uint32_t image_plane;
4091
4092 struct isl_view isl;
4093
4094 /**
4095 * RENDER_SURFACE_STATE when using image as a sampler surface with an
4096 * image layout of SHADER_READ_ONLY_OPTIMAL or
4097 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
4098 */
4099 struct anv_surface_state optimal_sampler_surface_state;
4100
4101 /**
4102 * RENDER_SURFACE_STATE when using image as a sampler surface with an
4103 * image layout of GENERAL.
4104 */
4105 struct anv_surface_state general_sampler_surface_state;
4106
4107 /**
4108 * RENDER_SURFACE_STATE when using image as a storage image. Separate
4109 * states for write-only and readable, using the real format for
4110 * write-only and the lowered format for readable.
4111 */
4112 struct anv_surface_state storage_surface_state;
4113 struct anv_surface_state writeonly_storage_surface_state;
4114
4115 struct brw_image_param storage_image_param;
4116 } planes[3];
4117 };
4118
4119 enum anv_image_view_state_flags {
4120 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
4121 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
4122 };
4123
4124 void anv_image_fill_surface_state(struct anv_device *device,
4125 const struct anv_image *image,
4126 VkImageAspectFlagBits aspect,
4127 const struct isl_view *view,
4128 isl_surf_usage_flags_t view_usage,
4129 enum isl_aux_usage aux_usage,
4130 const union isl_color_value *clear_color,
4131 enum anv_image_view_state_flags flags,
4132 struct anv_surface_state *state_inout,
4133 struct brw_image_param *image_param_out);
4134
4135 struct anv_image_create_info {
4136 const VkImageCreateInfo *vk_info;
4137
4138 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
4139 isl_tiling_flags_t isl_tiling_flags;
4140
4141 /** These flags will be added to any derived from VkImageCreateInfo. */
4142 isl_surf_usage_flags_t isl_extra_usage_flags;
4143
4144 uint32_t stride;
4145 bool external_format;
4146 };
4147
4148 VkResult anv_image_create(VkDevice _device,
4149 const struct anv_image_create_info *info,
4150 const VkAllocationCallbacks* alloc,
4151 VkImage *pImage);
4152
4153 enum isl_format
4154 anv_isl_format_for_descriptor_type(VkDescriptorType type);
4155
4156 static inline VkExtent3D
4157 anv_sanitize_image_extent(const VkImageType imageType,
4158 const VkExtent3D imageExtent)
4159 {
4160 switch (imageType) {
4161 case VK_IMAGE_TYPE_1D:
4162 return (VkExtent3D) { imageExtent.width, 1, 1 };
4163 case VK_IMAGE_TYPE_2D:
4164 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
4165 case VK_IMAGE_TYPE_3D:
4166 return imageExtent;
4167 default:
4168 unreachable("invalid image type");
4169 }
4170 }
4171
4172 static inline VkOffset3D
4173 anv_sanitize_image_offset(const VkImageType imageType,
4174 const VkOffset3D imageOffset)
4175 {
4176 switch (imageType) {
4177 case VK_IMAGE_TYPE_1D:
4178 return (VkOffset3D) { imageOffset.x, 0, 0 };
4179 case VK_IMAGE_TYPE_2D:
4180 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
4181 case VK_IMAGE_TYPE_3D:
4182 return imageOffset;
4183 default:
4184 unreachable("invalid image type");
4185 }
4186 }
4187
4188 VkFormatFeatureFlags
4189 anv_get_image_format_features(const struct gen_device_info *devinfo,
4190 VkFormat vk_format,
4191 const struct anv_format *anv_format,
4192 VkImageTiling vk_tiling);
4193
4194 void anv_fill_buffer_surface_state(struct anv_device *device,
4195 struct anv_state state,
4196 enum isl_format format,
4197 struct anv_address address,
4198 uint32_t range, uint32_t stride);
4199
4200 static inline void
4201 anv_clear_color_from_att_state(union isl_color_value *clear_color,
4202 const struct anv_attachment_state *att_state,
4203 const struct anv_image_view *iview)
4204 {
4205 const struct isl_format_layout *view_fmtl =
4206 isl_format_get_layout(iview->planes[0].isl.format);
4207
4208 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
4209 if (view_fmtl->channels.c.bits) \
4210 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4211
4212 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4213 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4214 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4215 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4216
4217 #undef COPY_CLEAR_COLOR_CHANNEL
4218 }
4219
4220
4221 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
4222 * straightforward 32-bit float color in the first 64 bytes. Instead of using
4223 * a nice float/integer union like Gen8+, Haswell specifies the integer border
4224 * color as a separate entry /after/ the float color. The layout of this entry
4225 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
4226 *
4227 * Since we don't know the format/bpp, we can't make any of the border colors
4228 * containing '1' work for all formats, as it would be in the wrong place for
4229 * some of them. We opt to make 32-bit integers work as this seems like the
4230 * most common option. Fortunately, transparent black works regardless, as
4231 * all zeroes is the same in every bit-size.
4232 */
4233 struct hsw_border_color {
4234 float float32[4];
4235 uint32_t _pad0[12];
4236 uint32_t uint32[4];
4237 uint32_t _pad1[108];
4238 };
4239
4240 struct gen8_border_color {
4241 union {
4242 float float32[4];
4243 uint32_t uint32[4];
4244 };
4245 /* Pad out to 64 bytes */
4246 uint32_t _pad[12];
4247 };
4248
4249 struct anv_ycbcr_conversion {
4250 struct vk_object_base base;
4251
4252 const struct anv_format * format;
4253 VkSamplerYcbcrModelConversion ycbcr_model;
4254 VkSamplerYcbcrRange ycbcr_range;
4255 VkComponentSwizzle mapping[4];
4256 VkChromaLocation chroma_offsets[2];
4257 VkFilter chroma_filter;
4258 bool chroma_reconstruction;
4259 };
4260
4261 struct anv_sampler {
4262 struct vk_object_base base;
4263
4264 uint32_t state[3][4];
4265 uint32_t n_planes;
4266 struct anv_ycbcr_conversion *conversion;
4267
4268 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4269 * and with a 32-byte stride for use as bindless samplers.
4270 */
4271 struct anv_state bindless_state;
4272
4273 struct anv_state custom_border_color;
4274 };
4275
4276 struct anv_framebuffer {
4277 struct vk_object_base base;
4278
4279 uint32_t width;
4280 uint32_t height;
4281 uint32_t layers;
4282
4283 uint32_t attachment_count;
4284 struct anv_image_view * attachments[0];
4285 };
4286
4287 struct anv_subpass_attachment {
4288 VkImageUsageFlagBits usage;
4289 uint32_t attachment;
4290 VkImageLayout layout;
4291
4292 /* Used only with attachment containing stencil data. */
4293 VkImageLayout stencil_layout;
4294 };
4295
4296 struct anv_subpass {
4297 uint32_t attachment_count;
4298
4299 /**
4300 * A pointer to all attachment references used in this subpass.
4301 * Only valid if ::attachment_count > 0.
4302 */
4303 struct anv_subpass_attachment * attachments;
4304 uint32_t input_count;
4305 struct anv_subpass_attachment * input_attachments;
4306 uint32_t color_count;
4307 struct anv_subpass_attachment * color_attachments;
4308 struct anv_subpass_attachment * resolve_attachments;
4309
4310 struct anv_subpass_attachment * depth_stencil_attachment;
4311 struct anv_subpass_attachment * ds_resolve_attachment;
4312 VkResolveModeFlagBitsKHR depth_resolve_mode;
4313 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4314
4315 uint32_t view_mask;
4316
4317 /** Subpass has a depth/stencil self-dependency */
4318 bool has_ds_self_dep;
4319
4320 /** Subpass has at least one color resolve attachment */
4321 bool has_color_resolve;
4322 };
4323
4324 static inline unsigned
4325 anv_subpass_view_count(const struct anv_subpass *subpass)
4326 {
4327 return MAX2(1, util_bitcount(subpass->view_mask));
4328 }
4329
4330 struct anv_render_pass_attachment {
4331 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4332 * its members individually.
4333 */
4334 VkFormat format;
4335 uint32_t samples;
4336 VkImageUsageFlags usage;
4337 VkAttachmentLoadOp load_op;
4338 VkAttachmentStoreOp store_op;
4339 VkAttachmentLoadOp stencil_load_op;
4340 VkImageLayout initial_layout;
4341 VkImageLayout final_layout;
4342 VkImageLayout first_subpass_layout;
4343
4344 VkImageLayout stencil_initial_layout;
4345 VkImageLayout stencil_final_layout;
4346
4347 /* The subpass id in which the attachment will be used last. */
4348 uint32_t last_subpass_idx;
4349 };
4350
4351 struct anv_render_pass {
4352 struct vk_object_base base;
4353
4354 uint32_t attachment_count;
4355 uint32_t subpass_count;
4356 /* An array of subpass_count+1 flushes, one per subpass boundary */
4357 enum anv_pipe_bits * subpass_flushes;
4358 struct anv_render_pass_attachment * attachments;
4359 struct anv_subpass subpasses[0];
4360 };
4361
4362 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4363
4364 #define OA_SNAPSHOT_SIZE (256)
4365 #define ANV_KHR_PERF_QUERY_SIZE (ALIGN(sizeof(uint64_t), 64) + 2 * OA_SNAPSHOT_SIZE)
4366
4367 struct anv_query_pool {
4368 struct vk_object_base base;
4369
4370 VkQueryType type;
4371 VkQueryPipelineStatisticFlags pipeline_statistics;
4372 /** Stride between slots, in bytes */
4373 uint32_t stride;
4374 /** Number of slots in this query pool */
4375 uint32_t slots;
4376 struct anv_bo * bo;
4377
4378 /* Perf queries : */
4379 struct anv_bo reset_bo;
4380 uint32_t n_counters;
4381 struct gen_perf_counter_pass *counter_pass;
4382 uint32_t n_passes;
4383 struct gen_perf_query_info **pass_query;
4384 };
4385
4386 static inline uint32_t khr_perf_query_preamble_offset(struct anv_query_pool *pool,
4387 uint32_t pass)
4388 {
4389 return pass * ANV_KHR_PERF_QUERY_SIZE + 8;
4390 }
4391
4392 int anv_get_instance_entrypoint_index(const char *name);
4393 int anv_get_device_entrypoint_index(const char *name);
4394 int anv_get_physical_device_entrypoint_index(const char *name);
4395
4396 const char *anv_get_instance_entry_name(int index);
4397 const char *anv_get_physical_device_entry_name(int index);
4398 const char *anv_get_device_entry_name(int index);
4399
4400 bool
4401 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4402 const struct anv_instance_extension_table *instance);
4403 bool
4404 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4405 const struct anv_instance_extension_table *instance);
4406 bool
4407 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4408 const struct anv_instance_extension_table *instance,
4409 const struct anv_device_extension_table *device);
4410
4411 void *anv_resolve_device_entrypoint(const struct gen_device_info *devinfo,
4412 uint32_t index);
4413 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4414 const char *name);
4415
4416 void anv_dump_image_to_ppm(struct anv_device *device,
4417 struct anv_image *image, unsigned miplevel,
4418 unsigned array_layer, VkImageAspectFlagBits aspect,
4419 const char *filename);
4420
4421 enum anv_dump_action {
4422 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4423 };
4424
4425 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4426 void anv_dump_finish(void);
4427
4428 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4429
4430 static inline uint32_t
4431 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4432 {
4433 /* This function must be called from within a subpass. */
4434 assert(cmd_state->pass && cmd_state->subpass);
4435
4436 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4437
4438 /* The id of this subpass shouldn't exceed the number of subpasses in this
4439 * render pass minus 1.
4440 */
4441 assert(subpass_id < cmd_state->pass->subpass_count);
4442 return subpass_id;
4443 }
4444
4445 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4446 void anv_device_perf_init(struct anv_device *device);
4447 void anv_perf_write_pass_results(struct gen_perf_config *perf,
4448 struct anv_query_pool *pool, uint32_t pass,
4449 const struct gen_perf_query_result *accumulated_results,
4450 union VkPerformanceCounterResultKHR *results);
4451
4452 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4453 VK_FROM_HANDLE(__anv_type, __name, __handle)
4454
4455 VK_DEFINE_HANDLE_CASTS(anv_cmd_buffer, base, VkCommandBuffer,
4456 VK_OBJECT_TYPE_COMMAND_BUFFER)
4457 VK_DEFINE_HANDLE_CASTS(anv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
4458 VK_DEFINE_HANDLE_CASTS(anv_instance, base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
4459 VK_DEFINE_HANDLE_CASTS(anv_physical_device, base, VkPhysicalDevice,
4460 VK_OBJECT_TYPE_PHYSICAL_DEVICE)
4461 VK_DEFINE_HANDLE_CASTS(anv_queue, base, VkQueue, VK_OBJECT_TYPE_QUEUE)
4462
4463 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, base, VkCommandPool,
4464 VK_OBJECT_TYPE_COMMAND_POOL)
4465 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, base, VkBuffer,
4466 VK_OBJECT_TYPE_BUFFER)
4467 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, base, VkBufferView,
4468 VK_OBJECT_TYPE_BUFFER_VIEW)
4469 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, base, VkDescriptorPool,
4470 VK_OBJECT_TYPE_DESCRIPTOR_POOL)
4471 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, base, VkDescriptorSet,
4472 VK_OBJECT_TYPE_DESCRIPTOR_SET)
4473 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, base,
4474 VkDescriptorSetLayout,
4475 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
4476 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, base,
4477 VkDescriptorUpdateTemplate,
4478 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
4479 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, base, VkDeviceMemory,
4480 VK_OBJECT_TYPE_DEVICE_MEMORY)
4481 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, base, VkFence, VK_OBJECT_TYPE_FENCE)
4482 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
4483 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, base, VkFramebuffer,
4484 VK_OBJECT_TYPE_FRAMEBUFFER)
4485 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image, base, VkImage, VK_OBJECT_TYPE_IMAGE)
4486 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, base, VkImageView,
4487 VK_OBJECT_TYPE_IMAGE_VIEW);
4488 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, base, VkPipelineCache,
4489 VK_OBJECT_TYPE_PIPELINE_CACHE)
4490 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, base, VkPipeline,
4491 VK_OBJECT_TYPE_PIPELINE)
4492 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, base, VkPipelineLayout,
4493 VK_OBJECT_TYPE_PIPELINE_LAYOUT)
4494 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, base, VkQueryPool,
4495 VK_OBJECT_TYPE_QUERY_POOL)
4496 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, base, VkRenderPass,
4497 VK_OBJECT_TYPE_RENDER_PASS)
4498 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, base, VkSampler,
4499 VK_OBJECT_TYPE_SAMPLER)
4500 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, base, VkSemaphore,
4501 VK_OBJECT_TYPE_SEMAPHORE)
4502 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, base, VkShaderModule,
4503 VK_OBJECT_TYPE_SHADER_MODULE)
4504 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, base,
4505 VkSamplerYcbcrConversion,
4506 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION)
4507
4508 /* Gen-specific function declarations */
4509 #ifdef genX
4510 # include "anv_genX.h"
4511 #else
4512 # define genX(x) gen7_##x
4513 # include "anv_genX.h"
4514 # undef genX
4515 # define genX(x) gen75_##x
4516 # include "anv_genX.h"
4517 # undef genX
4518 # define genX(x) gen8_##x
4519 # include "anv_genX.h"
4520 # undef genX
4521 # define genX(x) gen9_##x
4522 # include "anv_genX.h"
4523 # undef genX
4524 # define genX(x) gen10_##x
4525 # include "anv_genX.h"
4526 # undef genX
4527 # define genX(x) gen11_##x
4528 # include "anv_genX.h"
4529 # undef genX
4530 # define genX(x) gen12_##x
4531 # include "anv_genX.h"
4532 # undef genX
4533 #endif
4534
4535 #endif /* ANV_PRIVATE_H */