vulkan,anv: Add a common base object type for VkDevice
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65 #include "vk_object.h"
66
67 /* Pre-declarations needed for WSI entrypoints */
68 struct wl_surface;
69 struct wl_display;
70 typedef struct xcb_connection_t xcb_connection_t;
71 typedef uint32_t xcb_visualid_t;
72 typedef uint32_t xcb_window_t;
73
74 struct anv_batch;
75 struct anv_buffer;
76 struct anv_buffer_view;
77 struct anv_image_view;
78 struct anv_instance;
79
80 struct gen_aux_map_context;
81 struct gen_perf_config;
82
83 #include <vulkan/vulkan.h>
84 #include <vulkan/vulkan_intel.h>
85 #include <vulkan/vk_icd.h>
86
87 #include "anv_android.h"
88 #include "anv_entrypoints.h"
89 #include "anv_extensions.h"
90 #include "isl/isl.h"
91
92 #include "dev/gen_debug.h"
93 #include "common/intel_log.h"
94 #include "wsi_common.h"
95
96 #define NSEC_PER_SEC 1000000000ull
97
98 /* anv Virtual Memory Layout
99 * =========================
100 *
101 * When the anv driver is determining the virtual graphics addresses of memory
102 * objects itself using the softpin mechanism, the following memory ranges
103 * will be used.
104 *
105 * Three special considerations to notice:
106 *
107 * (1) the dynamic state pool is located within the same 4 GiB as the low
108 * heap. This is to work around a VF cache issue described in a comment in
109 * anv_physical_device_init_heaps.
110 *
111 * (2) the binding table pool is located at lower addresses than the surface
112 * state pool, within a 4 GiB range. This allows surface state base addresses
113 * to cover both binding tables (16 bit offsets) and surface states (32 bit
114 * offsets).
115 *
116 * (3) the last 4 GiB of the address space is withheld from the high
117 * heap. Various hardware units will read past the end of an object for
118 * various reasons. This healthy margin prevents reads from wrapping around
119 * 48-bit addresses.
120 */
121 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
122 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
123 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
124 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
125 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
126 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
127 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
128 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
129 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
130 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
131 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
132 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
133 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
134
135 #define LOW_HEAP_SIZE \
136 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
137 #define DYNAMIC_STATE_POOL_SIZE \
138 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
139 #define BINDING_TABLE_POOL_SIZE \
140 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
141 #define SURFACE_STATE_POOL_SIZE \
142 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
143 #define INSTRUCTION_STATE_POOL_SIZE \
144 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
145 #define CLIENT_VISIBLE_HEAP_SIZE \
146 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
147
148 /* Allowing different clear colors requires us to perform a depth resolve at
149 * the end of certain render passes. This is because while slow clears store
150 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
151 * See the PRMs for examples describing when additional resolves would be
152 * necessary. To enable fast clears without requiring extra resolves, we set
153 * the clear value to a globally-defined one. We could allow different values
154 * if the user doesn't expect coherent data during or after a render passes
155 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
156 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
157 * 1.0f seems to be the only value used. The only application that doesn't set
158 * this value does so through the usage of an seemingly uninitialized clear
159 * value.
160 */
161 #define ANV_HZ_FC_VAL 1.0f
162
163 #define MAX_VBS 28
164 #define MAX_XFB_BUFFERS 4
165 #define MAX_XFB_STREAMS 4
166 #define MAX_SETS 8
167 #define MAX_RTS 8
168 #define MAX_VIEWPORTS 16
169 #define MAX_SCISSORS 16
170 #define MAX_PUSH_CONSTANTS_SIZE 128
171 #define MAX_DYNAMIC_BUFFERS 16
172 #define MAX_IMAGES 64
173 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
174 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
175 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
176 #define ANV_UBO_BOUNDS_CHECK_ALIGNMENT 32
177 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
178 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
179
180 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
181 *
182 * "The surface state model is used when a Binding Table Index (specified
183 * in the message descriptor) of less than 240 is specified. In this model,
184 * the Binding Table Index is used to index into the binding table, and the
185 * binding table entry contains a pointer to the SURFACE_STATE."
186 *
187 * Binding table values above 240 are used for various things in the hardware
188 * such as stateless, stateless with incoherent cache, SLM, and bindless.
189 */
190 #define MAX_BINDING_TABLE_SIZE 240
191
192 /* The kernel relocation API has a limitation of a 32-bit delta value
193 * applied to the address before it is written which, in spite of it being
194 * unsigned, is treated as signed . Because of the way that this maps to
195 * the Vulkan API, we cannot handle an offset into a buffer that does not
196 * fit into a signed 32 bits. The only mechanism we have for dealing with
197 * this at the moment is to limit all VkDeviceMemory objects to a maximum
198 * of 2GB each. The Vulkan spec allows us to do this:
199 *
200 * "Some platforms may have a limit on the maximum size of a single
201 * allocation. For example, certain systems may fail to create
202 * allocations with a size greater than or equal to 4GB. Such a limit is
203 * implementation-dependent, and if such a failure occurs then the error
204 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
205 *
206 * We don't use vk_error here because it's not an error so much as an
207 * indication to the application that the allocation is too large.
208 */
209 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
210
211 #define ANV_SVGS_VB_INDEX MAX_VBS
212 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
213
214 /* We reserve this MI ALU register for the purpose of handling predication.
215 * Other code which uses the MI ALU should leave it alone.
216 */
217 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
218
219 /* For gen12 we set the streamout buffers using 4 separate commands
220 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
221 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
222 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
223 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
224 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
225 * 3DSTATE_SO_BUFFER_INDEX_0.
226 */
227 #define SO_BUFFER_INDEX_0_CMD 0x60
228 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
229
230 static inline uint32_t
231 align_down_npot_u32(uint32_t v, uint32_t a)
232 {
233 return v - (v % a);
234 }
235
236 static inline uint32_t
237 align_down_u32(uint32_t v, uint32_t a)
238 {
239 assert(a != 0 && a == (a & -a));
240 return v & ~(a - 1);
241 }
242
243 static inline uint32_t
244 align_u32(uint32_t v, uint32_t a)
245 {
246 assert(a != 0 && a == (a & -a));
247 return align_down_u32(v + a - 1, a);
248 }
249
250 static inline uint64_t
251 align_down_u64(uint64_t v, uint64_t a)
252 {
253 assert(a != 0 && a == (a & -a));
254 return v & ~(a - 1);
255 }
256
257 static inline uint64_t
258 align_u64(uint64_t v, uint64_t a)
259 {
260 return align_down_u64(v + a - 1, a);
261 }
262
263 static inline int32_t
264 align_i32(int32_t v, int32_t a)
265 {
266 assert(a != 0 && a == (a & -a));
267 return (v + a - 1) & ~(a - 1);
268 }
269
270 /** Alignment must be a power of 2. */
271 static inline bool
272 anv_is_aligned(uintmax_t n, uintmax_t a)
273 {
274 assert(a == (a & -a));
275 return (n & (a - 1)) == 0;
276 }
277
278 static inline uint32_t
279 anv_minify(uint32_t n, uint32_t levels)
280 {
281 if (unlikely(n == 0))
282 return 0;
283 else
284 return MAX2(n >> levels, 1);
285 }
286
287 static inline float
288 anv_clamp_f(float f, float min, float max)
289 {
290 assert(min < max);
291
292 if (f > max)
293 return max;
294 else if (f < min)
295 return min;
296 else
297 return f;
298 }
299
300 static inline bool
301 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
302 {
303 if (*inout_mask & clear_mask) {
304 *inout_mask &= ~clear_mask;
305 return true;
306 } else {
307 return false;
308 }
309 }
310
311 static inline union isl_color_value
312 vk_to_isl_color(VkClearColorValue color)
313 {
314 return (union isl_color_value) {
315 .u32 = {
316 color.uint32[0],
317 color.uint32[1],
318 color.uint32[2],
319 color.uint32[3],
320 },
321 };
322 }
323
324 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
325 {
326 uintptr_t mask = (1ull << bits) - 1;
327 *flags = ptr & mask;
328 return (void *) (ptr & ~mask);
329 }
330
331 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
332 {
333 uintptr_t value = (uintptr_t) ptr;
334 uintptr_t mask = (1ull << bits) - 1;
335 return value | (mask & flags);
336 }
337
338 #define for_each_bit(b, dword) \
339 for (uint32_t __dword = (dword); \
340 (b) = __builtin_ffs(__dword) - 1, __dword; \
341 __dword &= ~(1 << (b)))
342
343 #define typed_memcpy(dest, src, count) ({ \
344 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
345 memcpy((dest), (src), (count) * sizeof(*(src))); \
346 })
347
348 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
349 * to be added here in order to utilize mapping in debug/error/perf macros.
350 */
351 #define REPORT_OBJECT_TYPE(o) \
352 __builtin_choose_expr ( \
353 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
354 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
355 __builtin_choose_expr ( \
356 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
357 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
358 __builtin_choose_expr ( \
359 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
360 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
361 __builtin_choose_expr ( \
362 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
363 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
364 __builtin_choose_expr ( \
365 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
366 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
367 __builtin_choose_expr ( \
368 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
369 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
370 __builtin_choose_expr ( \
371 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
372 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
373 __builtin_choose_expr ( \
374 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
375 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
376 __builtin_choose_expr ( \
377 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
378 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
379 __builtin_choose_expr ( \
380 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
381 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
382 __builtin_choose_expr ( \
383 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
384 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
385 __builtin_choose_expr ( \
386 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
387 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
388 __builtin_choose_expr ( \
389 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
390 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
391 __builtin_choose_expr ( \
392 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
393 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
394 __builtin_choose_expr ( \
395 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
396 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
397 __builtin_choose_expr ( \
398 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
399 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
400 __builtin_choose_expr ( \
401 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
402 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
403 __builtin_choose_expr ( \
404 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
405 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
406 __builtin_choose_expr ( \
407 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
408 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
409 __builtin_choose_expr ( \
410 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
411 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
412 __builtin_choose_expr ( \
413 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
414 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
415 __builtin_choose_expr ( \
416 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
417 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
418 __builtin_choose_expr ( \
419 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
420 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
421 __builtin_choose_expr ( \
422 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
423 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
424 __builtin_choose_expr ( \
425 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
426 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
427 __builtin_choose_expr ( \
428 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
429 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
430 __builtin_choose_expr ( \
431 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
432 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
433 __builtin_choose_expr ( \
434 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
435 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
436 __builtin_choose_expr ( \
437 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
438 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
439 __builtin_choose_expr ( \
440 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
441 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
442 __builtin_choose_expr ( \
443 __builtin_types_compatible_p (__typeof (o), void*), \
444 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
445 /* The void expression results in a compile-time error \
446 when assigning the result to something. */ \
447 (void)0)))))))))))))))))))))))))))))))
448
449 /* Whenever we generate an error, pass it through this function. Useful for
450 * debugging, where we can break on it. Only call at error site, not when
451 * propagating errors. Might be useful to plug in a stack trace here.
452 */
453
454 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
455 VkDebugReportObjectTypeEXT type, VkResult error,
456 const char *file, int line, const char *format,
457 va_list args);
458
459 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
460 VkDebugReportObjectTypeEXT type, VkResult error,
461 const char *file, int line, const char *format, ...)
462 anv_printflike(7, 8);
463
464 #ifdef DEBUG
465 #define vk_error(error) __vk_errorf(NULL, NULL,\
466 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
467 error, __FILE__, __LINE__, NULL)
468 #define vk_errorfi(instance, obj, error, format, ...)\
469 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
470 __FILE__, __LINE__, format, ## __VA_ARGS__)
471 #define vk_errorf(device, obj, error, format, ...)\
472 vk_errorfi(anv_device_instance_or_null(device),\
473 obj, error, format, ## __VA_ARGS__)
474 #else
475 #define vk_error(error) error
476 #define vk_errorfi(instance, obj, error, format, ...) error
477 #define vk_errorf(device, obj, error, format, ...) error
478 #endif
479
480 /**
481 * Warn on ignored extension structs.
482 *
483 * The Vulkan spec requires us to ignore unsupported or unknown structs in
484 * a pNext chain. In debug mode, emitting warnings for ignored structs may
485 * help us discover structs that we should not have ignored.
486 *
487 *
488 * From the Vulkan 1.0.38 spec:
489 *
490 * Any component of the implementation (the loader, any enabled layers,
491 * and drivers) must skip over, without processing (other than reading the
492 * sType and pNext members) any chained structures with sType values not
493 * defined by extensions supported by that component.
494 */
495 #define anv_debug_ignored_stype(sType) \
496 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
497
498 void __anv_perf_warn(struct anv_device *device, const void *object,
499 VkDebugReportObjectTypeEXT type, const char *file,
500 int line, const char *format, ...)
501 anv_printflike(6, 7);
502 void anv_loge(const char *format, ...) anv_printflike(1, 2);
503 void anv_loge_v(const char *format, va_list va);
504
505 /**
506 * Print a FINISHME message, including its source location.
507 */
508 #define anv_finishme(format, ...) \
509 do { \
510 static bool reported = false; \
511 if (!reported) { \
512 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
513 ##__VA_ARGS__); \
514 reported = true; \
515 } \
516 } while (0)
517
518 /**
519 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
520 */
521 #define anv_perf_warn(instance, obj, format, ...) \
522 do { \
523 static bool reported = false; \
524 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
525 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
526 format, ##__VA_ARGS__); \
527 reported = true; \
528 } \
529 } while (0)
530
531 /* A non-fatal assert. Useful for debugging. */
532 #ifdef DEBUG
533 #define anv_assert(x) ({ \
534 if (unlikely(!(x))) \
535 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
536 })
537 #else
538 #define anv_assert(x)
539 #endif
540
541 /* A multi-pointer allocator
542 *
543 * When copying data structures from the user (such as a render pass), it's
544 * common to need to allocate data for a bunch of different things. Instead
545 * of doing several allocations and having to handle all of the error checking
546 * that entails, it can be easier to do a single allocation. This struct
547 * helps facilitate that. The intended usage looks like this:
548 *
549 * ANV_MULTIALLOC(ma)
550 * anv_multialloc_add(&ma, &main_ptr, 1);
551 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
552 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
553 *
554 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
555 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
556 */
557 struct anv_multialloc {
558 size_t size;
559 size_t align;
560
561 uint32_t ptr_count;
562 void **ptrs[8];
563 };
564
565 #define ANV_MULTIALLOC_INIT \
566 ((struct anv_multialloc) { 0, })
567
568 #define ANV_MULTIALLOC(_name) \
569 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
570
571 __attribute__((always_inline))
572 static inline void
573 _anv_multialloc_add(struct anv_multialloc *ma,
574 void **ptr, size_t size, size_t align)
575 {
576 size_t offset = align_u64(ma->size, align);
577 ma->size = offset + size;
578 ma->align = MAX2(ma->align, align);
579
580 /* Store the offset in the pointer. */
581 *ptr = (void *)(uintptr_t)offset;
582
583 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
584 ma->ptrs[ma->ptr_count++] = ptr;
585 }
586
587 #define anv_multialloc_add_size(_ma, _ptr, _size) \
588 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
589
590 #define anv_multialloc_add(_ma, _ptr, _count) \
591 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
592
593 __attribute__((always_inline))
594 static inline void *
595 anv_multialloc_alloc(struct anv_multialloc *ma,
596 const VkAllocationCallbacks *alloc,
597 VkSystemAllocationScope scope)
598 {
599 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
600 if (!ptr)
601 return NULL;
602
603 /* Fill out each of the pointers with their final value.
604 *
605 * for (uint32_t i = 0; i < ma->ptr_count; i++)
606 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
607 *
608 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
609 * constant, GCC is incapable of figuring this out and unrolling the loop
610 * so we have to give it a little help.
611 */
612 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
613 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
614 if ((_i) < ma->ptr_count) \
615 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
616 _ANV_MULTIALLOC_UPDATE_POINTER(0);
617 _ANV_MULTIALLOC_UPDATE_POINTER(1);
618 _ANV_MULTIALLOC_UPDATE_POINTER(2);
619 _ANV_MULTIALLOC_UPDATE_POINTER(3);
620 _ANV_MULTIALLOC_UPDATE_POINTER(4);
621 _ANV_MULTIALLOC_UPDATE_POINTER(5);
622 _ANV_MULTIALLOC_UPDATE_POINTER(6);
623 _ANV_MULTIALLOC_UPDATE_POINTER(7);
624 #undef _ANV_MULTIALLOC_UPDATE_POINTER
625
626 return ptr;
627 }
628
629 __attribute__((always_inline))
630 static inline void *
631 anv_multialloc_alloc2(struct anv_multialloc *ma,
632 const VkAllocationCallbacks *parent_alloc,
633 const VkAllocationCallbacks *alloc,
634 VkSystemAllocationScope scope)
635 {
636 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
637 }
638
639 struct anv_bo {
640 uint32_t gem_handle;
641
642 uint32_t refcount;
643
644 /* Index into the current validation list. This is used by the
645 * validation list building alrogithm to track which buffers are already
646 * in the validation list so that we can ensure uniqueness.
647 */
648 uint32_t index;
649
650 /* Index for use with util_sparse_array_free_list */
651 uint32_t free_index;
652
653 /* Last known offset. This value is provided by the kernel when we
654 * execbuf and is used as the presumed offset for the next bunch of
655 * relocations.
656 */
657 uint64_t offset;
658
659 /** Size of the buffer not including implicit aux */
660 uint64_t size;
661
662 /* Map for internally mapped BOs.
663 *
664 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
665 */
666 void *map;
667
668 /** Size of the implicit CCS range at the end of the buffer
669 *
670 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
671 * page of main surface data maps to a 256B chunk of CCS data and that
672 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
673 * addresses in the main surface to virtual memory addresses for CCS data.
674 *
675 * Because we can't change these maps around easily and because Vulkan
676 * allows two VkImages to be bound to overlapping memory regions (as long
677 * as the app is careful), it's not feasible to make this mapping part of
678 * the image. (On Gen11 and earlier, the mapping was provided via
679 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
680 * Instead, we attach the CCS data directly to the buffer object and setup
681 * the AUX table mapping at BO creation time.
682 *
683 * This field is for internal tracking use by the BO allocator only and
684 * should not be touched by other parts of the code. If something wants to
685 * know if a BO has implicit CCS data, it should instead look at the
686 * has_implicit_ccs boolean below.
687 *
688 * This data is not included in maps of this buffer.
689 */
690 uint32_t _ccs_size;
691
692 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
693 uint32_t flags;
694
695 /** True if this BO may be shared with other processes */
696 bool is_external:1;
697
698 /** True if this BO is a wrapper
699 *
700 * When set to true, none of the fields in this BO are meaningful except
701 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
702 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
703 * is set in the physical device.
704 */
705 bool is_wrapper:1;
706
707 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
708 bool has_fixed_address:1;
709
710 /** True if this BO wraps a host pointer */
711 bool from_host_ptr:1;
712
713 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
714 bool has_client_visible_address:1;
715
716 /** True if this BO has implicit CCS data attached to it */
717 bool has_implicit_ccs:1;
718 };
719
720 static inline struct anv_bo *
721 anv_bo_ref(struct anv_bo *bo)
722 {
723 p_atomic_inc(&bo->refcount);
724 return bo;
725 }
726
727 static inline struct anv_bo *
728 anv_bo_unwrap(struct anv_bo *bo)
729 {
730 while (bo->is_wrapper)
731 bo = bo->map;
732 return bo;
733 }
734
735 /* Represents a lock-free linked list of "free" things. This is used by
736 * both the block pool and the state pools. Unfortunately, in order to
737 * solve the ABA problem, we can't use a single uint32_t head.
738 */
739 union anv_free_list {
740 struct {
741 uint32_t offset;
742
743 /* A simple count that is incremented every time the head changes. */
744 uint32_t count;
745 };
746 /* Make sure it's aligned to 64 bits. This will make atomic operations
747 * faster on 32 bit platforms.
748 */
749 uint64_t u64 __attribute__ ((aligned (8)));
750 };
751
752 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
753
754 struct anv_block_state {
755 union {
756 struct {
757 uint32_t next;
758 uint32_t end;
759 };
760 /* Make sure it's aligned to 64 bits. This will make atomic operations
761 * faster on 32 bit platforms.
762 */
763 uint64_t u64 __attribute__ ((aligned (8)));
764 };
765 };
766
767 #define anv_block_pool_foreach_bo(bo, pool) \
768 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
769 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
770 _pp_bo++)
771
772 #define ANV_MAX_BLOCK_POOL_BOS 20
773
774 struct anv_block_pool {
775 struct anv_device *device;
776 bool use_softpin;
777
778 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
779 * around the actual BO so that we grow the pool after the wrapper BO has
780 * been put in a relocation list. This is only used in the non-softpin
781 * case.
782 */
783 struct anv_bo wrapper_bo;
784
785 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
786 struct anv_bo *bo;
787 uint32_t nbos;
788
789 uint64_t size;
790
791 /* The address where the start of the pool is pinned. The various bos that
792 * are created as the pool grows will have addresses in the range
793 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
794 */
795 uint64_t start_address;
796
797 /* The offset from the start of the bo to the "center" of the block
798 * pool. Pointers to allocated blocks are given by
799 * bo.map + center_bo_offset + offsets.
800 */
801 uint32_t center_bo_offset;
802
803 /* Current memory map of the block pool. This pointer may or may not
804 * point to the actual beginning of the block pool memory. If
805 * anv_block_pool_alloc_back has ever been called, then this pointer
806 * will point to the "center" position of the buffer and all offsets
807 * (negative or positive) given out by the block pool alloc functions
808 * will be valid relative to this pointer.
809 *
810 * In particular, map == bo.map + center_offset
811 *
812 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
813 * since it will handle the softpin case as well, where this points to NULL.
814 */
815 void *map;
816 int fd;
817
818 /**
819 * Array of mmaps and gem handles owned by the block pool, reclaimed when
820 * the block pool is destroyed.
821 */
822 struct u_vector mmap_cleanups;
823
824 struct anv_block_state state;
825
826 struct anv_block_state back_state;
827 };
828
829 /* Block pools are backed by a fixed-size 1GB memfd */
830 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
831
832 /* The center of the block pool is also the middle of the memfd. This may
833 * change in the future if we decide differently for some reason.
834 */
835 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
836
837 static inline uint32_t
838 anv_block_pool_size(struct anv_block_pool *pool)
839 {
840 return pool->state.end + pool->back_state.end;
841 }
842
843 struct anv_state {
844 int32_t offset;
845 uint32_t alloc_size;
846 void *map;
847 uint32_t idx;
848 };
849
850 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
851
852 struct anv_fixed_size_state_pool {
853 union anv_free_list free_list;
854 struct anv_block_state block;
855 };
856
857 #define ANV_MIN_STATE_SIZE_LOG2 6
858 #define ANV_MAX_STATE_SIZE_LOG2 21
859
860 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
861
862 struct anv_free_entry {
863 uint32_t next;
864 struct anv_state state;
865 };
866
867 struct anv_state_table {
868 struct anv_device *device;
869 int fd;
870 struct anv_free_entry *map;
871 uint32_t size;
872 struct anv_block_state state;
873 struct u_vector cleanups;
874 };
875
876 struct anv_state_pool {
877 struct anv_block_pool block_pool;
878
879 struct anv_state_table table;
880
881 /* The size of blocks which will be allocated from the block pool */
882 uint32_t block_size;
883
884 /** Free list for "back" allocations */
885 union anv_free_list back_alloc_free_list;
886
887 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
888 };
889
890 struct anv_state_stream {
891 struct anv_state_pool *state_pool;
892
893 /* The size of blocks to allocate from the state pool */
894 uint32_t block_size;
895
896 /* Current block we're allocating from */
897 struct anv_state block;
898
899 /* Offset into the current block at which to allocate the next state */
900 uint32_t next;
901
902 /* List of all blocks allocated from this pool */
903 struct util_dynarray all_blocks;
904 };
905
906 /* The block_pool functions exported for testing only. The block pool should
907 * only be used via a state pool (see below).
908 */
909 VkResult anv_block_pool_init(struct anv_block_pool *pool,
910 struct anv_device *device,
911 uint64_t start_address,
912 uint32_t initial_size);
913 void anv_block_pool_finish(struct anv_block_pool *pool);
914 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
915 uint32_t block_size, uint32_t *padding);
916 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
917 uint32_t block_size);
918 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
919 size);
920
921 VkResult anv_state_pool_init(struct anv_state_pool *pool,
922 struct anv_device *device,
923 uint64_t start_address,
924 uint32_t block_size);
925 void anv_state_pool_finish(struct anv_state_pool *pool);
926 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
927 uint32_t state_size, uint32_t alignment);
928 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
929 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
930 void anv_state_stream_init(struct anv_state_stream *stream,
931 struct anv_state_pool *state_pool,
932 uint32_t block_size);
933 void anv_state_stream_finish(struct anv_state_stream *stream);
934 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
935 uint32_t size, uint32_t alignment);
936
937 VkResult anv_state_table_init(struct anv_state_table *table,
938 struct anv_device *device,
939 uint32_t initial_entries);
940 void anv_state_table_finish(struct anv_state_table *table);
941 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
942 uint32_t count);
943 void anv_free_list_push(union anv_free_list *list,
944 struct anv_state_table *table,
945 uint32_t idx, uint32_t count);
946 struct anv_state* anv_free_list_pop(union anv_free_list *list,
947 struct anv_state_table *table);
948
949
950 static inline struct anv_state *
951 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
952 {
953 return &table->map[idx].state;
954 }
955 /**
956 * Implements a pool of re-usable BOs. The interface is identical to that
957 * of block_pool except that each block is its own BO.
958 */
959 struct anv_bo_pool {
960 struct anv_device *device;
961
962 struct util_sparse_array_free_list free_list[16];
963 };
964
965 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
966 void anv_bo_pool_finish(struct anv_bo_pool *pool);
967 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
968 struct anv_bo **bo_out);
969 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
970
971 struct anv_scratch_pool {
972 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
973 struct anv_bo *bos[16][MESA_SHADER_STAGES];
974 };
975
976 void anv_scratch_pool_init(struct anv_device *device,
977 struct anv_scratch_pool *pool);
978 void anv_scratch_pool_finish(struct anv_device *device,
979 struct anv_scratch_pool *pool);
980 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
981 struct anv_scratch_pool *pool,
982 gl_shader_stage stage,
983 unsigned per_thread_scratch);
984
985 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
986 struct anv_bo_cache {
987 struct util_sparse_array bo_map;
988 pthread_mutex_t mutex;
989 };
990
991 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
992 void anv_bo_cache_finish(struct anv_bo_cache *cache);
993
994 struct anv_memory_type {
995 /* Standard bits passed on to the client */
996 VkMemoryPropertyFlags propertyFlags;
997 uint32_t heapIndex;
998 };
999
1000 struct anv_memory_heap {
1001 /* Standard bits passed on to the client */
1002 VkDeviceSize size;
1003 VkMemoryHeapFlags flags;
1004
1005 /* Driver-internal book-keeping */
1006 VkDeviceSize used;
1007 };
1008
1009 struct anv_physical_device {
1010 VK_LOADER_DATA _loader_data;
1011
1012 /* Link in anv_instance::physical_devices */
1013 struct list_head link;
1014
1015 struct anv_instance * instance;
1016 bool no_hw;
1017 char path[20];
1018 const char * name;
1019 struct {
1020 uint16_t domain;
1021 uint8_t bus;
1022 uint8_t device;
1023 uint8_t function;
1024 } pci_info;
1025 struct gen_device_info info;
1026 /** Amount of "GPU memory" we want to advertise
1027 *
1028 * Clearly, this value is bogus since Intel is a UMA architecture. On
1029 * gen7 platforms, we are limited by GTT size unless we want to implement
1030 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1031 * practically unlimited. However, we will never report more than 3/4 of
1032 * the total system ram to try and avoid running out of RAM.
1033 */
1034 bool supports_48bit_addresses;
1035 struct brw_compiler * compiler;
1036 struct isl_device isl_dev;
1037 struct gen_perf_config * perf;
1038 int cmd_parser_version;
1039 bool has_softpin;
1040 bool has_exec_async;
1041 bool has_exec_capture;
1042 bool has_exec_fence;
1043 bool has_syncobj;
1044 bool has_syncobj_wait;
1045 bool has_context_priority;
1046 bool has_context_isolation;
1047 bool has_mem_available;
1048 bool has_mmap_offset;
1049 uint64_t gtt_size;
1050
1051 bool use_softpin;
1052 bool always_use_bindless;
1053
1054 /** True if we can access buffers using A64 messages */
1055 bool has_a64_buffer_access;
1056 /** True if we can use bindless access for images */
1057 bool has_bindless_images;
1058 /** True if we can use bindless access for samplers */
1059 bool has_bindless_samplers;
1060
1061 /** True if this device has implicit AUX
1062 *
1063 * If true, CCS is handled as an implicit attachment to the BO rather than
1064 * as an explicitly bound surface.
1065 */
1066 bool has_implicit_ccs;
1067
1068 bool always_flush_cache;
1069
1070 struct anv_device_extension_table supported_extensions;
1071
1072 uint32_t eu_total;
1073 uint32_t subslice_total;
1074
1075 struct {
1076 uint32_t type_count;
1077 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1078 uint32_t heap_count;
1079 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1080 } memory;
1081
1082 uint8_t driver_build_sha1[20];
1083 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1084 uint8_t driver_uuid[VK_UUID_SIZE];
1085 uint8_t device_uuid[VK_UUID_SIZE];
1086
1087 struct disk_cache * disk_cache;
1088
1089 struct wsi_device wsi_device;
1090 int local_fd;
1091 int master_fd;
1092 };
1093
1094 struct anv_app_info {
1095 const char* app_name;
1096 uint32_t app_version;
1097 const char* engine_name;
1098 uint32_t engine_version;
1099 uint32_t api_version;
1100 };
1101
1102 struct anv_instance {
1103 VK_LOADER_DATA _loader_data;
1104
1105 VkAllocationCallbacks alloc;
1106
1107 struct anv_app_info app_info;
1108
1109 struct anv_instance_extension_table enabled_extensions;
1110 struct anv_instance_dispatch_table dispatch;
1111 struct anv_physical_device_dispatch_table physical_device_dispatch;
1112 struct anv_device_dispatch_table device_dispatch;
1113
1114 bool physical_devices_enumerated;
1115 struct list_head physical_devices;
1116
1117 bool pipeline_cache_enabled;
1118
1119 struct vk_debug_report_instance debug_report_callbacks;
1120
1121 struct driOptionCache dri_options;
1122 struct driOptionCache available_dri_options;
1123 };
1124
1125 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1126 void anv_finish_wsi(struct anv_physical_device *physical_device);
1127
1128 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1129 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1130 const char *name);
1131
1132 struct anv_queue_submit {
1133 struct anv_cmd_buffer * cmd_buffer;
1134
1135 uint32_t fence_count;
1136 uint32_t fence_array_length;
1137 struct drm_i915_gem_exec_fence * fences;
1138
1139 uint32_t temporary_semaphore_count;
1140 uint32_t temporary_semaphore_array_length;
1141 struct anv_semaphore_impl * temporary_semaphores;
1142
1143 /* Semaphores to be signaled with a SYNC_FD. */
1144 struct anv_semaphore ** sync_fd_semaphores;
1145 uint32_t sync_fd_semaphore_count;
1146 uint32_t sync_fd_semaphore_array_length;
1147
1148 /* Allocated only with non shareable timelines. */
1149 struct anv_timeline ** wait_timelines;
1150 uint32_t wait_timeline_count;
1151 uint32_t wait_timeline_array_length;
1152 uint64_t * wait_timeline_values;
1153
1154 struct anv_timeline ** signal_timelines;
1155 uint32_t signal_timeline_count;
1156 uint32_t signal_timeline_array_length;
1157 uint64_t * signal_timeline_values;
1158
1159 int in_fence;
1160 bool need_out_fence;
1161 int out_fence;
1162
1163 uint32_t fence_bo_count;
1164 uint32_t fence_bo_array_length;
1165 /* An array of struct anv_bo pointers with lower bit used as a flag to
1166 * signal we will wait on that BO (see anv_(un)pack_ptr).
1167 */
1168 uintptr_t * fence_bos;
1169
1170 const VkAllocationCallbacks * alloc;
1171 VkSystemAllocationScope alloc_scope;
1172
1173 struct anv_bo * simple_bo;
1174 uint32_t simple_bo_size;
1175
1176 struct list_head link;
1177 };
1178
1179 struct anv_queue {
1180 VK_LOADER_DATA _loader_data;
1181
1182 struct anv_device * device;
1183
1184 /*
1185 * A list of struct anv_queue_submit to be submitted to i915.
1186 */
1187 struct list_head queued_submits;
1188
1189 VkDeviceQueueCreateFlags flags;
1190 };
1191
1192 struct anv_pipeline_cache {
1193 struct anv_device * device;
1194 pthread_mutex_t mutex;
1195
1196 struct hash_table * nir_cache;
1197
1198 struct hash_table * cache;
1199 };
1200
1201 struct nir_xfb_info;
1202 struct anv_pipeline_bind_map;
1203
1204 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1205 struct anv_device *device,
1206 bool cache_enabled);
1207 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1208
1209 struct anv_shader_bin *
1210 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1211 const void *key, uint32_t key_size);
1212 struct anv_shader_bin *
1213 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1214 gl_shader_stage stage,
1215 const void *key_data, uint32_t key_size,
1216 const void *kernel_data, uint32_t kernel_size,
1217 const void *constant_data,
1218 uint32_t constant_data_size,
1219 const struct brw_stage_prog_data *prog_data,
1220 uint32_t prog_data_size,
1221 const struct brw_compile_stats *stats,
1222 uint32_t num_stats,
1223 const struct nir_xfb_info *xfb_info,
1224 const struct anv_pipeline_bind_map *bind_map);
1225
1226 struct anv_shader_bin *
1227 anv_device_search_for_kernel(struct anv_device *device,
1228 struct anv_pipeline_cache *cache,
1229 const void *key_data, uint32_t key_size,
1230 bool *user_cache_bit);
1231
1232 struct anv_shader_bin *
1233 anv_device_upload_kernel(struct anv_device *device,
1234 struct anv_pipeline_cache *cache,
1235 gl_shader_stage stage,
1236 const void *key_data, uint32_t key_size,
1237 const void *kernel_data, uint32_t kernel_size,
1238 const void *constant_data,
1239 uint32_t constant_data_size,
1240 const struct brw_stage_prog_data *prog_data,
1241 uint32_t prog_data_size,
1242 const struct brw_compile_stats *stats,
1243 uint32_t num_stats,
1244 const struct nir_xfb_info *xfb_info,
1245 const struct anv_pipeline_bind_map *bind_map);
1246
1247 struct nir_shader;
1248 struct nir_shader_compiler_options;
1249
1250 struct nir_shader *
1251 anv_device_search_for_nir(struct anv_device *device,
1252 struct anv_pipeline_cache *cache,
1253 const struct nir_shader_compiler_options *nir_options,
1254 unsigned char sha1_key[20],
1255 void *mem_ctx);
1256
1257 void
1258 anv_device_upload_nir(struct anv_device *device,
1259 struct anv_pipeline_cache *cache,
1260 const struct nir_shader *nir,
1261 unsigned char sha1_key[20]);
1262
1263 struct anv_device {
1264 struct vk_device vk;
1265
1266 struct anv_physical_device * physical;
1267 bool no_hw;
1268 struct gen_device_info info;
1269 struct isl_device isl_dev;
1270 int context_id;
1271 int fd;
1272 bool can_chain_batches;
1273 bool robust_buffer_access;
1274 struct anv_device_extension_table enabled_extensions;
1275 struct anv_device_dispatch_table dispatch;
1276
1277 pthread_mutex_t vma_mutex;
1278 struct util_vma_heap vma_lo;
1279 struct util_vma_heap vma_cva;
1280 struct util_vma_heap vma_hi;
1281
1282 /** List of all anv_device_memory objects */
1283 struct list_head memory_objects;
1284
1285 struct anv_bo_pool batch_bo_pool;
1286
1287 struct anv_bo_cache bo_cache;
1288
1289 struct anv_state_pool dynamic_state_pool;
1290 struct anv_state_pool instruction_state_pool;
1291 struct anv_state_pool binding_table_pool;
1292 struct anv_state_pool surface_state_pool;
1293
1294 /** BO used for various workarounds
1295 *
1296 * There are a number of workarounds on our hardware which require writing
1297 * data somewhere and it doesn't really matter where. For that, we use
1298 * this BO and just write to the first dword or so.
1299 *
1300 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1301 * For that, we use the high bytes (>= 1024) of the workaround BO.
1302 */
1303 struct anv_bo * workaround_bo;
1304 struct anv_bo * trivial_batch_bo;
1305 struct anv_bo * hiz_clear_bo;
1306 struct anv_state null_surface_state;
1307
1308 struct anv_pipeline_cache default_pipeline_cache;
1309 struct blorp_context blorp;
1310
1311 struct anv_state border_colors;
1312
1313 struct anv_state slice_hash;
1314
1315 struct anv_queue queue;
1316
1317 struct anv_scratch_pool scratch_pool;
1318
1319 pthread_mutex_t mutex;
1320 pthread_cond_t queue_submit;
1321 int _lost;
1322
1323 struct gen_batch_decode_ctx decoder_ctx;
1324 /*
1325 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1326 * the cmd_buffer's list.
1327 */
1328 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1329
1330 int perf_fd; /* -1 if no opened */
1331 uint64_t perf_metric; /* 0 if unset */
1332
1333 struct gen_aux_map_context *aux_map_ctx;
1334 };
1335
1336 static inline struct anv_instance *
1337 anv_device_instance_or_null(const struct anv_device *device)
1338 {
1339 return device ? device->physical->instance : NULL;
1340 }
1341
1342 static inline struct anv_state_pool *
1343 anv_binding_table_pool(struct anv_device *device)
1344 {
1345 if (device->physical->use_softpin)
1346 return &device->binding_table_pool;
1347 else
1348 return &device->surface_state_pool;
1349 }
1350
1351 static inline struct anv_state
1352 anv_binding_table_pool_alloc(struct anv_device *device) {
1353 if (device->physical->use_softpin)
1354 return anv_state_pool_alloc(&device->binding_table_pool,
1355 device->binding_table_pool.block_size, 0);
1356 else
1357 return anv_state_pool_alloc_back(&device->surface_state_pool);
1358 }
1359
1360 static inline void
1361 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1362 anv_state_pool_free(anv_binding_table_pool(device), state);
1363 }
1364
1365 static inline uint32_t
1366 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1367 {
1368 if (bo->is_external)
1369 return device->isl_dev.mocs.external;
1370 else
1371 return device->isl_dev.mocs.internal;
1372 }
1373
1374 void anv_device_init_blorp(struct anv_device *device);
1375 void anv_device_finish_blorp(struct anv_device *device);
1376
1377 void _anv_device_set_all_queue_lost(struct anv_device *device);
1378 VkResult _anv_device_set_lost(struct anv_device *device,
1379 const char *file, int line,
1380 const char *msg, ...)
1381 anv_printflike(4, 5);
1382 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1383 const char *file, int line,
1384 const char *msg, ...)
1385 anv_printflike(4, 5);
1386 #define anv_device_set_lost(dev, ...) \
1387 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1388 #define anv_queue_set_lost(queue, ...) \
1389 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1390
1391 static inline bool
1392 anv_device_is_lost(struct anv_device *device)
1393 {
1394 return unlikely(p_atomic_read(&device->_lost));
1395 }
1396
1397 VkResult anv_device_query_status(struct anv_device *device);
1398
1399
1400 enum anv_bo_alloc_flags {
1401 /** Specifies that the BO must have a 32-bit address
1402 *
1403 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1404 */
1405 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1406
1407 /** Specifies that the BO may be shared externally */
1408 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1409
1410 /** Specifies that the BO should be mapped */
1411 ANV_BO_ALLOC_MAPPED = (1 << 2),
1412
1413 /** Specifies that the BO should be snooped so we get coherency */
1414 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1415
1416 /** Specifies that the BO should be captured in error states */
1417 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1418
1419 /** Specifies that the BO will have an address assigned by the caller
1420 *
1421 * Such BOs do not exist in any VMA heap.
1422 */
1423 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1424
1425 /** Enables implicit synchronization on the BO
1426 *
1427 * This is the opposite of EXEC_OBJECT_ASYNC.
1428 */
1429 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1430
1431 /** Enables implicit synchronization on the BO
1432 *
1433 * This is equivalent to EXEC_OBJECT_WRITE.
1434 */
1435 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1436
1437 /** Has an address which is visible to the client */
1438 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1439
1440 /** This buffer has implicit CCS data attached to it */
1441 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1442 };
1443
1444 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1445 enum anv_bo_alloc_flags alloc_flags,
1446 uint64_t explicit_address,
1447 struct anv_bo **bo);
1448 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1449 void *host_ptr, uint32_t size,
1450 enum anv_bo_alloc_flags alloc_flags,
1451 uint64_t client_address,
1452 struct anv_bo **bo_out);
1453 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1454 enum anv_bo_alloc_flags alloc_flags,
1455 uint64_t client_address,
1456 struct anv_bo **bo);
1457 VkResult anv_device_export_bo(struct anv_device *device,
1458 struct anv_bo *bo, int *fd_out);
1459 void anv_device_release_bo(struct anv_device *device,
1460 struct anv_bo *bo);
1461
1462 static inline struct anv_bo *
1463 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1464 {
1465 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1466 }
1467
1468 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1469 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1470 int64_t timeout);
1471
1472 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1473 void anv_queue_finish(struct anv_queue *queue);
1474
1475 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1476 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1477 struct anv_batch *batch);
1478
1479 uint64_t anv_gettime_ns(void);
1480 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1481
1482 void* anv_gem_mmap(struct anv_device *device,
1483 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1484 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1485 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1486 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1487 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1488 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1489 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1490 int anv_gem_execbuffer(struct anv_device *device,
1491 struct drm_i915_gem_execbuffer2 *execbuf);
1492 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1493 uint32_t stride, uint32_t tiling);
1494 int anv_gem_create_context(struct anv_device *device);
1495 bool anv_gem_has_context_priority(int fd);
1496 int anv_gem_destroy_context(struct anv_device *device, int context);
1497 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1498 uint64_t value);
1499 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1500 uint64_t *value);
1501 int anv_gem_get_param(int fd, uint32_t param);
1502 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1503 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1504 int anv_gem_get_aperture(int fd, uint64_t *size);
1505 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1506 uint32_t *active, uint32_t *pending);
1507 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1508 int anv_gem_reg_read(struct anv_device *device,
1509 uint32_t offset, uint64_t *result);
1510 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1511 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1512 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1513 uint32_t read_domains, uint32_t write_domain);
1514 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1515 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1516 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1517 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1518 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1519 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1520 uint32_t handle);
1521 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1522 uint32_t handle, int fd);
1523 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1524 bool anv_gem_supports_syncobj_wait(int fd);
1525 int anv_gem_syncobj_wait(struct anv_device *device,
1526 uint32_t *handles, uint32_t num_handles,
1527 int64_t abs_timeout_ns, bool wait_all);
1528
1529 uint64_t anv_vma_alloc(struct anv_device *device,
1530 uint64_t size, uint64_t align,
1531 enum anv_bo_alloc_flags alloc_flags,
1532 uint64_t client_address);
1533 void anv_vma_free(struct anv_device *device,
1534 uint64_t address, uint64_t size);
1535
1536 struct anv_reloc_list {
1537 uint32_t num_relocs;
1538 uint32_t array_length;
1539 struct drm_i915_gem_relocation_entry * relocs;
1540 struct anv_bo ** reloc_bos;
1541 uint32_t dep_words;
1542 BITSET_WORD * deps;
1543 };
1544
1545 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1546 const VkAllocationCallbacks *alloc);
1547 void anv_reloc_list_finish(struct anv_reloc_list *list,
1548 const VkAllocationCallbacks *alloc);
1549
1550 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1551 const VkAllocationCallbacks *alloc,
1552 uint32_t offset, struct anv_bo *target_bo,
1553 uint32_t delta, uint64_t *address_u64_out);
1554
1555 struct anv_batch_bo {
1556 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1557 struct list_head link;
1558
1559 struct anv_bo * bo;
1560
1561 /* Bytes actually consumed in this batch BO */
1562 uint32_t length;
1563
1564 struct anv_reloc_list relocs;
1565 };
1566
1567 struct anv_batch {
1568 const VkAllocationCallbacks * alloc;
1569
1570 void * start;
1571 void * end;
1572 void * next;
1573
1574 struct anv_reloc_list * relocs;
1575
1576 /* This callback is called (with the associated user data) in the event
1577 * that the batch runs out of space.
1578 */
1579 VkResult (*extend_cb)(struct anv_batch *, void *);
1580 void * user_data;
1581
1582 /**
1583 * Current error status of the command buffer. Used to track inconsistent
1584 * or incomplete command buffer states that are the consequence of run-time
1585 * errors such as out of memory scenarios. We want to track this in the
1586 * batch because the command buffer object is not visible to some parts
1587 * of the driver.
1588 */
1589 VkResult status;
1590 };
1591
1592 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1593 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1594 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1595 void *location, struct anv_bo *bo, uint32_t offset);
1596
1597 static inline VkResult
1598 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1599 {
1600 assert(error != VK_SUCCESS);
1601 if (batch->status == VK_SUCCESS)
1602 batch->status = error;
1603 return batch->status;
1604 }
1605
1606 static inline bool
1607 anv_batch_has_error(struct anv_batch *batch)
1608 {
1609 return batch->status != VK_SUCCESS;
1610 }
1611
1612 struct anv_address {
1613 struct anv_bo *bo;
1614 uint32_t offset;
1615 };
1616
1617 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1618
1619 static inline bool
1620 anv_address_is_null(struct anv_address addr)
1621 {
1622 return addr.bo == NULL && addr.offset == 0;
1623 }
1624
1625 static inline uint64_t
1626 anv_address_physical(struct anv_address addr)
1627 {
1628 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1629 return gen_canonical_address(addr.bo->offset + addr.offset);
1630 else
1631 return gen_canonical_address(addr.offset);
1632 }
1633
1634 static inline struct anv_address
1635 anv_address_add(struct anv_address addr, uint64_t offset)
1636 {
1637 addr.offset += offset;
1638 return addr;
1639 }
1640
1641 static inline void
1642 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1643 {
1644 unsigned reloc_size = 0;
1645 if (device->info.gen >= 8) {
1646 reloc_size = sizeof(uint64_t);
1647 *(uint64_t *)p = gen_canonical_address(v);
1648 } else {
1649 reloc_size = sizeof(uint32_t);
1650 *(uint32_t *)p = v;
1651 }
1652
1653 if (flush && !device->info.has_llc)
1654 gen_flush_range(p, reloc_size);
1655 }
1656
1657 static inline uint64_t
1658 _anv_combine_address(struct anv_batch *batch, void *location,
1659 const struct anv_address address, uint32_t delta)
1660 {
1661 if (address.bo == NULL) {
1662 return address.offset + delta;
1663 } else {
1664 assert(batch->start <= location && location < batch->end);
1665
1666 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1667 }
1668 }
1669
1670 #define __gen_address_type struct anv_address
1671 #define __gen_user_data struct anv_batch
1672 #define __gen_combine_address _anv_combine_address
1673
1674 /* Wrapper macros needed to work around preprocessor argument issues. In
1675 * particular, arguments don't get pre-evaluated if they are concatenated.
1676 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1677 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1678 * We can work around this easily enough with these helpers.
1679 */
1680 #define __anv_cmd_length(cmd) cmd ## _length
1681 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1682 #define __anv_cmd_header(cmd) cmd ## _header
1683 #define __anv_cmd_pack(cmd) cmd ## _pack
1684 #define __anv_reg_num(reg) reg ## _num
1685
1686 #define anv_pack_struct(dst, struc, ...) do { \
1687 struct struc __template = { \
1688 __VA_ARGS__ \
1689 }; \
1690 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1691 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1692 } while (0)
1693
1694 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1695 void *__dst = anv_batch_emit_dwords(batch, n); \
1696 if (__dst) { \
1697 struct cmd __template = { \
1698 __anv_cmd_header(cmd), \
1699 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1700 __VA_ARGS__ \
1701 }; \
1702 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1703 } \
1704 __dst; \
1705 })
1706
1707 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1708 do { \
1709 uint32_t *dw; \
1710 \
1711 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1712 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1713 if (!dw) \
1714 break; \
1715 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1716 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1717 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1718 } while (0)
1719
1720 #define anv_batch_emit(batch, cmd, name) \
1721 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1722 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1723 __builtin_expect(_dst != NULL, 1); \
1724 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1725 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1726 _dst = NULL; \
1727 }))
1728
1729 struct anv_device_memory {
1730 struct list_head link;
1731
1732 struct anv_bo * bo;
1733 struct anv_memory_type * type;
1734 VkDeviceSize map_size;
1735 void * map;
1736
1737 /* If set, we are holding reference to AHardwareBuffer
1738 * which we must release when memory is freed.
1739 */
1740 struct AHardwareBuffer * ahw;
1741
1742 /* If set, this memory comes from a host pointer. */
1743 void * host_ptr;
1744 };
1745
1746 /**
1747 * Header for Vertex URB Entry (VUE)
1748 */
1749 struct anv_vue_header {
1750 uint32_t Reserved;
1751 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1752 uint32_t ViewportIndex;
1753 float PointWidth;
1754 };
1755
1756 /** Struct representing a sampled image descriptor
1757 *
1758 * This descriptor layout is used for sampled images, bare sampler, and
1759 * combined image/sampler descriptors.
1760 */
1761 struct anv_sampled_image_descriptor {
1762 /** Bindless image handle
1763 *
1764 * This is expected to already be shifted such that the 20-bit
1765 * SURFACE_STATE table index is in the top 20 bits.
1766 */
1767 uint32_t image;
1768
1769 /** Bindless sampler handle
1770 *
1771 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1772 * to the dynamic state base address.
1773 */
1774 uint32_t sampler;
1775 };
1776
1777 struct anv_texture_swizzle_descriptor {
1778 /** Texture swizzle
1779 *
1780 * See also nir_intrinsic_channel_select_intel
1781 */
1782 uint8_t swizzle[4];
1783
1784 /** Unused padding to ensure the struct is a multiple of 64 bits */
1785 uint32_t _pad;
1786 };
1787
1788 /** Struct representing a storage image descriptor */
1789 struct anv_storage_image_descriptor {
1790 /** Bindless image handles
1791 *
1792 * These are expected to already be shifted such that the 20-bit
1793 * SURFACE_STATE table index is in the top 20 bits.
1794 */
1795 uint32_t read_write;
1796 uint32_t write_only;
1797 };
1798
1799 /** Struct representing a address/range descriptor
1800 *
1801 * The fields of this struct correspond directly to the data layout of
1802 * nir_address_format_64bit_bounded_global addresses. The last field is the
1803 * offset in the NIR address so it must be zero so that when you load the
1804 * descriptor you get a pointer to the start of the range.
1805 */
1806 struct anv_address_range_descriptor {
1807 uint64_t address;
1808 uint32_t range;
1809 uint32_t zero;
1810 };
1811
1812 enum anv_descriptor_data {
1813 /** The descriptor contains a BTI reference to a surface state */
1814 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1815 /** The descriptor contains a BTI reference to a sampler state */
1816 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1817 /** The descriptor contains an actual buffer view */
1818 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1819 /** The descriptor contains auxiliary image layout data */
1820 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1821 /** The descriptor contains auxiliary image layout data */
1822 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1823 /** anv_address_range_descriptor with a buffer address and range */
1824 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1825 /** Bindless surface handle */
1826 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1827 /** Storage image handles */
1828 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1829 /** Storage image handles */
1830 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1831 };
1832
1833 struct anv_descriptor_set_binding_layout {
1834 #ifndef NDEBUG
1835 /* The type of the descriptors in this binding */
1836 VkDescriptorType type;
1837 #endif
1838
1839 /* Flags provided when this binding was created */
1840 VkDescriptorBindingFlagsEXT flags;
1841
1842 /* Bitfield representing the type of data this descriptor contains */
1843 enum anv_descriptor_data data;
1844
1845 /* Maximum number of YCbCr texture/sampler planes */
1846 uint8_t max_plane_count;
1847
1848 /* Number of array elements in this binding (or size in bytes for inline
1849 * uniform data)
1850 */
1851 uint16_t array_size;
1852
1853 /* Index into the flattend descriptor set */
1854 uint16_t descriptor_index;
1855
1856 /* Index into the dynamic state array for a dynamic buffer */
1857 int16_t dynamic_offset_index;
1858
1859 /* Index into the descriptor set buffer views */
1860 int16_t buffer_view_index;
1861
1862 /* Offset into the descriptor buffer where this descriptor lives */
1863 uint32_t descriptor_offset;
1864
1865 /* Immutable samplers (or NULL if no immutable samplers) */
1866 struct anv_sampler **immutable_samplers;
1867 };
1868
1869 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1870
1871 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1872 VkDescriptorType type);
1873
1874 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1875 const struct anv_descriptor_set_binding_layout *binding,
1876 bool sampler);
1877
1878 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1879 const struct anv_descriptor_set_binding_layout *binding,
1880 bool sampler);
1881
1882 struct anv_descriptor_set_layout {
1883 /* Descriptor set layouts can be destroyed at almost any time */
1884 uint32_t ref_cnt;
1885
1886 /* Number of bindings in this descriptor set */
1887 uint16_t binding_count;
1888
1889 /* Total size of the descriptor set with room for all array entries */
1890 uint16_t size;
1891
1892 /* Shader stages affected by this descriptor set */
1893 uint16_t shader_stages;
1894
1895 /* Number of buffer views in this descriptor set */
1896 uint16_t buffer_view_count;
1897
1898 /* Number of dynamic offsets used by this descriptor set */
1899 uint16_t dynamic_offset_count;
1900
1901 /* For each shader stage, which offsets apply to that stage */
1902 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1903
1904 /* Size of the descriptor buffer for this descriptor set */
1905 uint32_t descriptor_buffer_size;
1906
1907 /* Bindings in this descriptor set */
1908 struct anv_descriptor_set_binding_layout binding[0];
1909 };
1910
1911 static inline void
1912 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1913 {
1914 assert(layout && layout->ref_cnt >= 1);
1915 p_atomic_inc(&layout->ref_cnt);
1916 }
1917
1918 static inline void
1919 anv_descriptor_set_layout_unref(struct anv_device *device,
1920 struct anv_descriptor_set_layout *layout)
1921 {
1922 assert(layout && layout->ref_cnt >= 1);
1923 if (p_atomic_dec_zero(&layout->ref_cnt))
1924 vk_free(&device->vk.alloc, layout);
1925 }
1926
1927 struct anv_descriptor {
1928 VkDescriptorType type;
1929
1930 union {
1931 struct {
1932 VkImageLayout layout;
1933 struct anv_image_view *image_view;
1934 struct anv_sampler *sampler;
1935 };
1936
1937 struct {
1938 struct anv_buffer *buffer;
1939 uint64_t offset;
1940 uint64_t range;
1941 };
1942
1943 struct anv_buffer_view *buffer_view;
1944 };
1945 };
1946
1947 struct anv_descriptor_set {
1948 struct anv_descriptor_pool *pool;
1949 struct anv_descriptor_set_layout *layout;
1950 uint32_t size;
1951
1952 /* State relative to anv_descriptor_pool::bo */
1953 struct anv_state desc_mem;
1954 /* Surface state for the descriptor buffer */
1955 struct anv_state desc_surface_state;
1956
1957 uint32_t buffer_view_count;
1958 struct anv_buffer_view *buffer_views;
1959
1960 /* Link to descriptor pool's desc_sets list . */
1961 struct list_head pool_link;
1962
1963 struct anv_descriptor descriptors[0];
1964 };
1965
1966 struct anv_buffer_view {
1967 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1968 uint64_t range; /**< VkBufferViewCreateInfo::range */
1969
1970 struct anv_address address;
1971
1972 struct anv_state surface_state;
1973 struct anv_state storage_surface_state;
1974 struct anv_state writeonly_storage_surface_state;
1975
1976 struct brw_image_param storage_image_param;
1977 };
1978
1979 struct anv_push_descriptor_set {
1980 struct anv_descriptor_set set;
1981
1982 /* Put this field right behind anv_descriptor_set so it fills up the
1983 * descriptors[0] field. */
1984 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1985
1986 /** True if the descriptor set buffer has been referenced by a draw or
1987 * dispatch command.
1988 */
1989 bool set_used_on_gpu;
1990
1991 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1992 };
1993
1994 struct anv_descriptor_pool {
1995 uint32_t size;
1996 uint32_t next;
1997 uint32_t free_list;
1998
1999 struct anv_bo *bo;
2000 struct util_vma_heap bo_heap;
2001
2002 struct anv_state_stream surface_state_stream;
2003 void *surface_state_free_list;
2004
2005 struct list_head desc_sets;
2006
2007 char data[0];
2008 };
2009
2010 enum anv_descriptor_template_entry_type {
2011 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2012 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2013 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2014 };
2015
2016 struct anv_descriptor_template_entry {
2017 /* The type of descriptor in this entry */
2018 VkDescriptorType type;
2019
2020 /* Binding in the descriptor set */
2021 uint32_t binding;
2022
2023 /* Offset at which to write into the descriptor set binding */
2024 uint32_t array_element;
2025
2026 /* Number of elements to write into the descriptor set binding */
2027 uint32_t array_count;
2028
2029 /* Offset into the user provided data */
2030 size_t offset;
2031
2032 /* Stride between elements into the user provided data */
2033 size_t stride;
2034 };
2035
2036 struct anv_descriptor_update_template {
2037 VkPipelineBindPoint bind_point;
2038
2039 /* The descriptor set this template corresponds to. This value is only
2040 * valid if the template was created with the templateType
2041 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2042 */
2043 uint8_t set;
2044
2045 /* Number of entries in this template */
2046 uint32_t entry_count;
2047
2048 /* Entries of the template */
2049 struct anv_descriptor_template_entry entries[0];
2050 };
2051
2052 size_t
2053 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2054
2055 void
2056 anv_descriptor_set_write_image_view(struct anv_device *device,
2057 struct anv_descriptor_set *set,
2058 const VkDescriptorImageInfo * const info,
2059 VkDescriptorType type,
2060 uint32_t binding,
2061 uint32_t element);
2062
2063 void
2064 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2065 struct anv_descriptor_set *set,
2066 VkDescriptorType type,
2067 struct anv_buffer_view *buffer_view,
2068 uint32_t binding,
2069 uint32_t element);
2070
2071 void
2072 anv_descriptor_set_write_buffer(struct anv_device *device,
2073 struct anv_descriptor_set *set,
2074 struct anv_state_stream *alloc_stream,
2075 VkDescriptorType type,
2076 struct anv_buffer *buffer,
2077 uint32_t binding,
2078 uint32_t element,
2079 VkDeviceSize offset,
2080 VkDeviceSize range);
2081 void
2082 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2083 struct anv_descriptor_set *set,
2084 uint32_t binding,
2085 const void *data,
2086 size_t offset,
2087 size_t size);
2088
2089 void
2090 anv_descriptor_set_write_template(struct anv_device *device,
2091 struct anv_descriptor_set *set,
2092 struct anv_state_stream *alloc_stream,
2093 const struct anv_descriptor_update_template *template,
2094 const void *data);
2095
2096 VkResult
2097 anv_descriptor_set_create(struct anv_device *device,
2098 struct anv_descriptor_pool *pool,
2099 struct anv_descriptor_set_layout *layout,
2100 struct anv_descriptor_set **out_set);
2101
2102 void
2103 anv_descriptor_set_destroy(struct anv_device *device,
2104 struct anv_descriptor_pool *pool,
2105 struct anv_descriptor_set *set);
2106
2107 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2108 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2109 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2110 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2111 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2112 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2113
2114 struct anv_pipeline_binding {
2115 /** Index in the descriptor set
2116 *
2117 * This is a flattened index; the descriptor set layout is already taken
2118 * into account.
2119 */
2120 uint32_t index;
2121
2122 /** The descriptor set this surface corresponds to.
2123 *
2124 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2125 * binding is not a normal descriptor set but something else.
2126 */
2127 uint8_t set;
2128
2129 union {
2130 /** Plane in the binding index for images */
2131 uint8_t plane;
2132
2133 /** Input attachment index (relative to the subpass) */
2134 uint8_t input_attachment_index;
2135
2136 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2137 uint8_t dynamic_offset_index;
2138 };
2139
2140 /** For a storage image, whether it is write-only */
2141 uint8_t write_only;
2142
2143 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2144 * assuming POD zero-initialization.
2145 */
2146 uint8_t pad;
2147 };
2148
2149 struct anv_push_range {
2150 /** Index in the descriptor set */
2151 uint32_t index;
2152
2153 /** Descriptor set index */
2154 uint8_t set;
2155
2156 /** Dynamic offset index (for dynamic UBOs) */
2157 uint8_t dynamic_offset_index;
2158
2159 /** Start offset in units of 32B */
2160 uint8_t start;
2161
2162 /** Range in units of 32B */
2163 uint8_t length;
2164 };
2165
2166 struct anv_pipeline_layout {
2167 struct {
2168 struct anv_descriptor_set_layout *layout;
2169 uint32_t dynamic_offset_start;
2170 } set[MAX_SETS];
2171
2172 uint32_t num_sets;
2173
2174 unsigned char sha1[20];
2175 };
2176
2177 struct anv_buffer {
2178 struct anv_device * device;
2179 VkDeviceSize size;
2180
2181 VkBufferUsageFlags usage;
2182
2183 /* Set when bound */
2184 struct anv_address address;
2185 };
2186
2187 static inline uint64_t
2188 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2189 {
2190 assert(offset <= buffer->size);
2191 if (range == VK_WHOLE_SIZE) {
2192 return buffer->size - offset;
2193 } else {
2194 assert(range + offset >= range);
2195 assert(range + offset <= buffer->size);
2196 return range;
2197 }
2198 }
2199
2200 enum anv_cmd_dirty_bits {
2201 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2202 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2203 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2204 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2205 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2206 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2207 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2208 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2209 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2210 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2211 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2212 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2213 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2214 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2215 };
2216 typedef uint32_t anv_cmd_dirty_mask_t;
2217
2218 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2219 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2220 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2221 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2222 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2223 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2224 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2225 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2226 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2227 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2228 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2229
2230 static inline enum anv_cmd_dirty_bits
2231 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2232 {
2233 switch (vk_state) {
2234 case VK_DYNAMIC_STATE_VIEWPORT:
2235 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2236 case VK_DYNAMIC_STATE_SCISSOR:
2237 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2238 case VK_DYNAMIC_STATE_LINE_WIDTH:
2239 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2240 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2241 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2242 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2243 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2244 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2245 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2246 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2247 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2248 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2249 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2250 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2251 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2252 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2253 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2254 default:
2255 assert(!"Unsupported dynamic state");
2256 return 0;
2257 }
2258 }
2259
2260
2261 enum anv_pipe_bits {
2262 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2263 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2264 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2265 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2266 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2267 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2268 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2269 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2270 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2271 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2272 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2273 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2274 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2275
2276 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2277 * a flush has happened but not a CS stall. The next time we do any sort
2278 * of invalidation we need to insert a CS stall at that time. Otherwise,
2279 * we would have to CS stall on every flush which could be bad.
2280 */
2281 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2282
2283 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2284 * target operations related to transfer commands with VkBuffer as
2285 * destination are ongoing. Some operations like copies on the command
2286 * streamer might need to be aware of this to trigger the appropriate stall
2287 * before they can proceed with the copy.
2288 */
2289 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2290
2291 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2292 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2293 * done by writing the AUX-TT register.
2294 */
2295 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2296
2297 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2298 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2299 * implement a workaround for Gen9.
2300 */
2301 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2302 };
2303
2304 #define ANV_PIPE_FLUSH_BITS ( \
2305 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2306 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2307 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2308 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2309
2310 #define ANV_PIPE_STALL_BITS ( \
2311 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2312 ANV_PIPE_DEPTH_STALL_BIT | \
2313 ANV_PIPE_CS_STALL_BIT)
2314
2315 #define ANV_PIPE_INVALIDATE_BITS ( \
2316 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2317 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2318 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2319 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2320 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2321 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2322 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2323
2324 static inline enum anv_pipe_bits
2325 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2326 {
2327 enum anv_pipe_bits pipe_bits = 0;
2328
2329 unsigned b;
2330 for_each_bit(b, flags) {
2331 switch ((VkAccessFlagBits)(1 << b)) {
2332 case VK_ACCESS_SHADER_WRITE_BIT:
2333 /* We're transitioning a buffer that was previously used as write
2334 * destination through the data port. To make its content available
2335 * to future operations, flush the data cache.
2336 */
2337 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2338 break;
2339 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2340 /* We're transitioning a buffer that was previously used as render
2341 * target. To make its content available to future operations, flush
2342 * the render target cache.
2343 */
2344 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2345 break;
2346 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2347 /* We're transitioning a buffer that was previously used as depth
2348 * buffer. To make its content available to future operations, flush
2349 * the depth cache.
2350 */
2351 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2352 break;
2353 case VK_ACCESS_TRANSFER_WRITE_BIT:
2354 /* We're transitioning a buffer that was previously used as a
2355 * transfer write destination. Generic write operations include color
2356 * & depth operations as well as buffer operations like :
2357 * - vkCmdClearColorImage()
2358 * - vkCmdClearDepthStencilImage()
2359 * - vkCmdBlitImage()
2360 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2361 *
2362 * Most of these operations are implemented using Blorp which writes
2363 * through the render target, so flush that cache to make it visible
2364 * to future operations. And for depth related operations we also
2365 * need to flush the depth cache.
2366 */
2367 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2368 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2369 break;
2370 case VK_ACCESS_MEMORY_WRITE_BIT:
2371 /* We're transitioning a buffer for generic write operations. Flush
2372 * all the caches.
2373 */
2374 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2375 break;
2376 default:
2377 break; /* Nothing to do */
2378 }
2379 }
2380
2381 return pipe_bits;
2382 }
2383
2384 static inline enum anv_pipe_bits
2385 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2386 {
2387 enum anv_pipe_bits pipe_bits = 0;
2388
2389 unsigned b;
2390 for_each_bit(b, flags) {
2391 switch ((VkAccessFlagBits)(1 << b)) {
2392 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2393 /* Indirect draw commands take a buffer as input that we're going to
2394 * read from the command streamer to load some of the HW registers
2395 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2396 * command streamer stall so that all the cache flushes have
2397 * completed before the command streamer loads from memory.
2398 */
2399 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2400 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2401 * through a vertex buffer, so invalidate that cache.
2402 */
2403 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2404 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2405 * UBO from the buffer, so we need to invalidate constant cache.
2406 */
2407 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2408 break;
2409 case VK_ACCESS_INDEX_READ_BIT:
2410 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2411 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2412 * commands, so we invalidate the VF cache to make sure there is no
2413 * stale data when we start rendering.
2414 */
2415 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2416 break;
2417 case VK_ACCESS_UNIFORM_READ_BIT:
2418 /* We transitioning a buffer to be used as uniform data. Because
2419 * uniform is accessed through the data port & sampler, we need to
2420 * invalidate the texture cache (sampler) & constant cache (data
2421 * port) to avoid stale data.
2422 */
2423 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2424 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2425 break;
2426 case VK_ACCESS_SHADER_READ_BIT:
2427 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2428 case VK_ACCESS_TRANSFER_READ_BIT:
2429 /* Transitioning a buffer to be read through the sampler, so
2430 * invalidate the texture cache, we don't want any stale data.
2431 */
2432 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2433 break;
2434 case VK_ACCESS_MEMORY_READ_BIT:
2435 /* Transitioning a buffer for generic read, invalidate all the
2436 * caches.
2437 */
2438 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2439 break;
2440 case VK_ACCESS_MEMORY_WRITE_BIT:
2441 /* Generic write, make sure all previously written things land in
2442 * memory.
2443 */
2444 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2445 break;
2446 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2447 /* Transitioning a buffer for conditional rendering. We'll load the
2448 * content of this buffer into HW registers using the command
2449 * streamer, so we need to stall the command streamer to make sure
2450 * any in-flight flush operations have completed.
2451 */
2452 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2453 break;
2454 default:
2455 break; /* Nothing to do */
2456 }
2457 }
2458
2459 return pipe_bits;
2460 }
2461
2462 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2463 VK_IMAGE_ASPECT_COLOR_BIT | \
2464 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2465 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2466 VK_IMAGE_ASPECT_PLANE_2_BIT)
2467 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2468 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2469 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2470 VK_IMAGE_ASPECT_PLANE_2_BIT)
2471
2472 struct anv_vertex_binding {
2473 struct anv_buffer * buffer;
2474 VkDeviceSize offset;
2475 };
2476
2477 struct anv_xfb_binding {
2478 struct anv_buffer * buffer;
2479 VkDeviceSize offset;
2480 VkDeviceSize size;
2481 };
2482
2483 struct anv_push_constants {
2484 /** Push constant data provided by the client through vkPushConstants */
2485 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2486
2487 /** Dynamic offsets for dynamic UBOs and SSBOs */
2488 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2489
2490 uint64_t push_reg_mask;
2491
2492 /** Pad out to a multiple of 32 bytes */
2493 uint32_t pad[2];
2494
2495 struct {
2496 /** Base workgroup ID
2497 *
2498 * Used for vkCmdDispatchBase.
2499 */
2500 uint32_t base_work_group_id[3];
2501
2502 /** Subgroup ID
2503 *
2504 * This is never set by software but is implicitly filled out when
2505 * uploading the push constants for compute shaders.
2506 */
2507 uint32_t subgroup_id;
2508 } cs;
2509 };
2510
2511 struct anv_dynamic_state {
2512 struct {
2513 uint32_t count;
2514 VkViewport viewports[MAX_VIEWPORTS];
2515 } viewport;
2516
2517 struct {
2518 uint32_t count;
2519 VkRect2D scissors[MAX_SCISSORS];
2520 } scissor;
2521
2522 float line_width;
2523
2524 struct {
2525 float bias;
2526 float clamp;
2527 float slope;
2528 } depth_bias;
2529
2530 float blend_constants[4];
2531
2532 struct {
2533 float min;
2534 float max;
2535 } depth_bounds;
2536
2537 struct {
2538 uint32_t front;
2539 uint32_t back;
2540 } stencil_compare_mask;
2541
2542 struct {
2543 uint32_t front;
2544 uint32_t back;
2545 } stencil_write_mask;
2546
2547 struct {
2548 uint32_t front;
2549 uint32_t back;
2550 } stencil_reference;
2551
2552 struct {
2553 uint32_t factor;
2554 uint16_t pattern;
2555 } line_stipple;
2556 };
2557
2558 extern const struct anv_dynamic_state default_dynamic_state;
2559
2560 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2561 const struct anv_dynamic_state *src,
2562 uint32_t copy_mask);
2563
2564 struct anv_surface_state {
2565 struct anv_state state;
2566 /** Address of the surface referred to by this state
2567 *
2568 * This address is relative to the start of the BO.
2569 */
2570 struct anv_address address;
2571 /* Address of the aux surface, if any
2572 *
2573 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2574 *
2575 * With the exception of gen8, the bottom 12 bits of this address' offset
2576 * include extra aux information.
2577 */
2578 struct anv_address aux_address;
2579 /* Address of the clear color, if any
2580 *
2581 * This address is relative to the start of the BO.
2582 */
2583 struct anv_address clear_address;
2584 };
2585
2586 /**
2587 * Attachment state when recording a renderpass instance.
2588 *
2589 * The clear value is valid only if there exists a pending clear.
2590 */
2591 struct anv_attachment_state {
2592 enum isl_aux_usage aux_usage;
2593 struct anv_surface_state color;
2594 struct anv_surface_state input;
2595
2596 VkImageLayout current_layout;
2597 VkImageLayout current_stencil_layout;
2598 VkImageAspectFlags pending_clear_aspects;
2599 VkImageAspectFlags pending_load_aspects;
2600 bool fast_clear;
2601 VkClearValue clear_value;
2602
2603 /* When multiview is active, attachments with a renderpass clear
2604 * operation have their respective layers cleared on the first
2605 * subpass that uses them, and only in that subpass. We keep track
2606 * of this using a bitfield to indicate which layers of an attachment
2607 * have not been cleared yet when multiview is active.
2608 */
2609 uint32_t pending_clear_views;
2610 struct anv_image_view * image_view;
2611 };
2612
2613 /** State tracking for vertex buffer flushes
2614 *
2615 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2616 * addresses. If you happen to have two vertex buffers which get placed
2617 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2618 * collisions. In order to solve this problem, we track vertex address ranges
2619 * which are live in the cache and invalidate the cache if one ever exceeds 32
2620 * bits.
2621 */
2622 struct anv_vb_cache_range {
2623 /* Virtual address at which the live vertex buffer cache range starts for
2624 * this vertex buffer index.
2625 */
2626 uint64_t start;
2627
2628 /* Virtual address of the byte after where vertex buffer cache range ends.
2629 * This is exclusive such that end - start is the size of the range.
2630 */
2631 uint64_t end;
2632 };
2633
2634 /** State tracking for particular pipeline bind point
2635 *
2636 * This struct is the base struct for anv_cmd_graphics_state and
2637 * anv_cmd_compute_state. These are used to track state which is bound to a
2638 * particular type of pipeline. Generic state that applies per-stage such as
2639 * binding table offsets and push constants is tracked generically with a
2640 * per-stage array in anv_cmd_state.
2641 */
2642 struct anv_cmd_pipeline_state {
2643 struct anv_descriptor_set *descriptors[MAX_SETS];
2644 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2645 };
2646
2647 /** State tracking for graphics pipeline
2648 *
2649 * This has anv_cmd_pipeline_state as a base struct to track things which get
2650 * bound to a graphics pipeline. Along with general pipeline bind point state
2651 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2652 * state which is graphics-specific.
2653 */
2654 struct anv_cmd_graphics_state {
2655 struct anv_cmd_pipeline_state base;
2656
2657 struct anv_graphics_pipeline *pipeline;
2658
2659 anv_cmd_dirty_mask_t dirty;
2660 uint32_t vb_dirty;
2661
2662 struct anv_vb_cache_range ib_bound_range;
2663 struct anv_vb_cache_range ib_dirty_range;
2664 struct anv_vb_cache_range vb_bound_ranges[33];
2665 struct anv_vb_cache_range vb_dirty_ranges[33];
2666
2667 struct anv_dynamic_state dynamic;
2668
2669 struct {
2670 struct anv_buffer *index_buffer;
2671 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2672 uint32_t index_offset;
2673 } gen7;
2674 };
2675
2676 /** State tracking for compute pipeline
2677 *
2678 * This has anv_cmd_pipeline_state as a base struct to track things which get
2679 * bound to a compute pipeline. Along with general pipeline bind point state
2680 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2681 * state which is compute-specific.
2682 */
2683 struct anv_cmd_compute_state {
2684 struct anv_cmd_pipeline_state base;
2685
2686 struct anv_compute_pipeline *pipeline;
2687
2688 bool pipeline_dirty;
2689
2690 struct anv_address num_workgroups;
2691 };
2692
2693 /** State required while building cmd buffer */
2694 struct anv_cmd_state {
2695 /* PIPELINE_SELECT.PipelineSelection */
2696 uint32_t current_pipeline;
2697 const struct gen_l3_config * current_l3_config;
2698 uint32_t last_aux_map_state;
2699
2700 struct anv_cmd_graphics_state gfx;
2701 struct anv_cmd_compute_state compute;
2702
2703 enum anv_pipe_bits pending_pipe_bits;
2704 VkShaderStageFlags descriptors_dirty;
2705 VkShaderStageFlags push_constants_dirty;
2706
2707 struct anv_framebuffer * framebuffer;
2708 struct anv_render_pass * pass;
2709 struct anv_subpass * subpass;
2710 VkRect2D render_area;
2711 uint32_t restart_index;
2712 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2713 bool xfb_enabled;
2714 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2715 VkShaderStageFlags push_constant_stages;
2716 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2717 struct anv_state binding_tables[MESA_SHADER_STAGES];
2718 struct anv_state samplers[MESA_SHADER_STAGES];
2719
2720 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2721 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2722 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2723
2724 /**
2725 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2726 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2727 * and before invoking the secondary in ExecuteCommands.
2728 */
2729 bool pma_fix_enabled;
2730
2731 /**
2732 * Whether or not we know for certain that HiZ is enabled for the current
2733 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2734 * enabled or not, this will be false.
2735 */
2736 bool hiz_enabled;
2737
2738 bool conditional_render_enabled;
2739
2740 /**
2741 * Last rendering scale argument provided to
2742 * genX(cmd_buffer_emit_hashing_mode)().
2743 */
2744 unsigned current_hash_scale;
2745
2746 /**
2747 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2748 * valid only when recording a render pass instance.
2749 */
2750 struct anv_attachment_state * attachments;
2751
2752 /**
2753 * Surface states for color render targets. These are stored in a single
2754 * flat array. For depth-stencil attachments, the surface state is simply
2755 * left blank.
2756 */
2757 struct anv_state attachment_states;
2758
2759 /**
2760 * A null surface state of the right size to match the framebuffer. This
2761 * is one of the states in attachment_states.
2762 */
2763 struct anv_state null_surface_state;
2764 };
2765
2766 struct anv_cmd_pool {
2767 VkAllocationCallbacks alloc;
2768 struct list_head cmd_buffers;
2769 };
2770
2771 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2772
2773 enum anv_cmd_buffer_exec_mode {
2774 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2775 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2776 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2777 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2778 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2779 };
2780
2781 struct anv_cmd_buffer {
2782 VK_LOADER_DATA _loader_data;
2783
2784 struct anv_device * device;
2785
2786 struct anv_cmd_pool * pool;
2787 struct list_head pool_link;
2788
2789 struct anv_batch batch;
2790
2791 /* Fields required for the actual chain of anv_batch_bo's.
2792 *
2793 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2794 */
2795 struct list_head batch_bos;
2796 enum anv_cmd_buffer_exec_mode exec_mode;
2797
2798 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2799 * referenced by this command buffer
2800 *
2801 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2802 */
2803 struct u_vector seen_bbos;
2804
2805 /* A vector of int32_t's for every block of binding tables.
2806 *
2807 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2808 */
2809 struct u_vector bt_block_states;
2810 struct anv_state bt_next;
2811
2812 struct anv_reloc_list surface_relocs;
2813 /** Last seen surface state block pool center bo offset */
2814 uint32_t last_ss_pool_center;
2815
2816 /* Serial for tracking buffer completion */
2817 uint32_t serial;
2818
2819 /* Stream objects for storing temporary data */
2820 struct anv_state_stream surface_state_stream;
2821 struct anv_state_stream dynamic_state_stream;
2822
2823 VkCommandBufferUsageFlags usage_flags;
2824 VkCommandBufferLevel level;
2825
2826 struct anv_cmd_state state;
2827
2828 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2829 uint64_t intel_perf_marker;
2830 };
2831
2832 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2833 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2834 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2835 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2836 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2837 struct anv_cmd_buffer *secondary);
2838 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2839 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2840 struct anv_cmd_buffer *cmd_buffer,
2841 const VkSemaphore *in_semaphores,
2842 const uint64_t *in_wait_values,
2843 uint32_t num_in_semaphores,
2844 const VkSemaphore *out_semaphores,
2845 const uint64_t *out_signal_values,
2846 uint32_t num_out_semaphores,
2847 VkFence fence);
2848
2849 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2850
2851 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2852 const void *data, uint32_t size, uint32_t alignment);
2853 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2854 uint32_t *a, uint32_t *b,
2855 uint32_t dwords, uint32_t alignment);
2856
2857 struct anv_address
2858 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2859 struct anv_state
2860 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2861 uint32_t entries, uint32_t *state_offset);
2862 struct anv_state
2863 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2864 struct anv_state
2865 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2866 uint32_t size, uint32_t alignment);
2867
2868 VkResult
2869 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2870
2871 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2872 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2873 bool depth_clamp_enable);
2874 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2875
2876 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2877 struct anv_render_pass *pass,
2878 struct anv_framebuffer *framebuffer,
2879 const VkClearValue *clear_values);
2880
2881 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2882
2883 struct anv_state
2884 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2885 gl_shader_stage stage);
2886 struct anv_state
2887 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2888
2889 const struct anv_image_view *
2890 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2891
2892 VkResult
2893 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2894 uint32_t num_entries,
2895 uint32_t *state_offset,
2896 struct anv_state *bt_state);
2897
2898 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2899
2900 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2901
2902 enum anv_fence_type {
2903 ANV_FENCE_TYPE_NONE = 0,
2904 ANV_FENCE_TYPE_BO,
2905 ANV_FENCE_TYPE_WSI_BO,
2906 ANV_FENCE_TYPE_SYNCOBJ,
2907 ANV_FENCE_TYPE_WSI,
2908 };
2909
2910 enum anv_bo_fence_state {
2911 /** Indicates that this is a new (or newly reset fence) */
2912 ANV_BO_FENCE_STATE_RESET,
2913
2914 /** Indicates that this fence has been submitted to the GPU but is still
2915 * (as far as we know) in use by the GPU.
2916 */
2917 ANV_BO_FENCE_STATE_SUBMITTED,
2918
2919 ANV_BO_FENCE_STATE_SIGNALED,
2920 };
2921
2922 struct anv_fence_impl {
2923 enum anv_fence_type type;
2924
2925 union {
2926 /** Fence implementation for BO fences
2927 *
2928 * These fences use a BO and a set of CPU-tracked state flags. The BO
2929 * is added to the object list of the last execbuf call in a QueueSubmit
2930 * and is marked EXEC_WRITE. The state flags track when the BO has been
2931 * submitted to the kernel. We need to do this because Vulkan lets you
2932 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2933 * will say it's idle in this case.
2934 */
2935 struct {
2936 struct anv_bo *bo;
2937 enum anv_bo_fence_state state;
2938 } bo;
2939
2940 /** DRM syncobj handle for syncobj-based fences */
2941 uint32_t syncobj;
2942
2943 /** WSI fence */
2944 struct wsi_fence *fence_wsi;
2945 };
2946 };
2947
2948 struct anv_fence {
2949 /* Permanent fence state. Every fence has some form of permanent state
2950 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2951 * cross-process fences) or it could just be a dummy for use internally.
2952 */
2953 struct anv_fence_impl permanent;
2954
2955 /* Temporary fence state. A fence *may* have temporary state. That state
2956 * is added to the fence by an import operation and is reset back to
2957 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2958 * state cannot be signaled because the fence must already be signaled
2959 * before the temporary state can be exported from the fence in the other
2960 * process and imported here.
2961 */
2962 struct anv_fence_impl temporary;
2963 };
2964
2965 void anv_fence_reset_temporary(struct anv_device *device,
2966 struct anv_fence *fence);
2967
2968 struct anv_event {
2969 uint64_t semaphore;
2970 struct anv_state state;
2971 };
2972
2973 enum anv_semaphore_type {
2974 ANV_SEMAPHORE_TYPE_NONE = 0,
2975 ANV_SEMAPHORE_TYPE_DUMMY,
2976 ANV_SEMAPHORE_TYPE_BO,
2977 ANV_SEMAPHORE_TYPE_WSI_BO,
2978 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2979 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2980 ANV_SEMAPHORE_TYPE_TIMELINE,
2981 };
2982
2983 struct anv_timeline_point {
2984 struct list_head link;
2985
2986 uint64_t serial;
2987
2988 /* Number of waiter on this point, when > 0 the point should not be garbage
2989 * collected.
2990 */
2991 int waiting;
2992
2993 /* BO used for synchronization. */
2994 struct anv_bo *bo;
2995 };
2996
2997 struct anv_timeline {
2998 pthread_mutex_t mutex;
2999 pthread_cond_t cond;
3000
3001 uint64_t highest_past;
3002 uint64_t highest_pending;
3003
3004 struct list_head points;
3005 struct list_head free_points;
3006 };
3007
3008 struct anv_semaphore_impl {
3009 enum anv_semaphore_type type;
3010
3011 union {
3012 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3013 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3014 * object list on any execbuf2 calls for which this semaphore is used as
3015 * a wait or signal fence. When used as a signal fence or when type ==
3016 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3017 */
3018 struct anv_bo *bo;
3019
3020 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3021 * If the semaphore is in the unsignaled state due to either just being
3022 * created or because it has been used for a wait, fd will be -1.
3023 */
3024 int fd;
3025
3026 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3027 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3028 * import so we don't need to bother with a userspace cache.
3029 */
3030 uint32_t syncobj;
3031
3032 /* Non shareable timeline semaphore
3033 *
3034 * Used when kernel don't have support for timeline semaphores.
3035 */
3036 struct anv_timeline timeline;
3037 };
3038 };
3039
3040 struct anv_semaphore {
3041 uint32_t refcount;
3042
3043 /* Permanent semaphore state. Every semaphore has some form of permanent
3044 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3045 * (for cross-process semaphores0 or it could just be a dummy for use
3046 * internally.
3047 */
3048 struct anv_semaphore_impl permanent;
3049
3050 /* Temporary semaphore state. A semaphore *may* have temporary state.
3051 * That state is added to the semaphore by an import operation and is reset
3052 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3053 * semaphore with temporary state cannot be signaled because the semaphore
3054 * must already be signaled before the temporary state can be exported from
3055 * the semaphore in the other process and imported here.
3056 */
3057 struct anv_semaphore_impl temporary;
3058 };
3059
3060 void anv_semaphore_reset_temporary(struct anv_device *device,
3061 struct anv_semaphore *semaphore);
3062
3063 struct anv_shader_module {
3064 unsigned char sha1[20];
3065 uint32_t size;
3066 char data[0];
3067 };
3068
3069 static inline gl_shader_stage
3070 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3071 {
3072 assert(__builtin_popcount(vk_stage) == 1);
3073 return ffs(vk_stage) - 1;
3074 }
3075
3076 static inline VkShaderStageFlagBits
3077 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3078 {
3079 return (1 << mesa_stage);
3080 }
3081
3082 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3083
3084 #define anv_foreach_stage(stage, stage_bits) \
3085 for (gl_shader_stage stage, \
3086 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3087 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3088 __tmp &= ~(1 << (stage)))
3089
3090 struct anv_pipeline_bind_map {
3091 unsigned char surface_sha1[20];
3092 unsigned char sampler_sha1[20];
3093 unsigned char push_sha1[20];
3094
3095 uint32_t surface_count;
3096 uint32_t sampler_count;
3097
3098 struct anv_pipeline_binding * surface_to_descriptor;
3099 struct anv_pipeline_binding * sampler_to_descriptor;
3100
3101 struct anv_push_range push_ranges[4];
3102 };
3103
3104 struct anv_shader_bin_key {
3105 uint32_t size;
3106 uint8_t data[0];
3107 };
3108
3109 struct anv_shader_bin {
3110 uint32_t ref_cnt;
3111
3112 gl_shader_stage stage;
3113
3114 const struct anv_shader_bin_key *key;
3115
3116 struct anv_state kernel;
3117 uint32_t kernel_size;
3118
3119 struct anv_state constant_data;
3120 uint32_t constant_data_size;
3121
3122 const struct brw_stage_prog_data *prog_data;
3123 uint32_t prog_data_size;
3124
3125 struct brw_compile_stats stats[3];
3126 uint32_t num_stats;
3127
3128 struct nir_xfb_info *xfb_info;
3129
3130 struct anv_pipeline_bind_map bind_map;
3131 };
3132
3133 struct anv_shader_bin *
3134 anv_shader_bin_create(struct anv_device *device,
3135 gl_shader_stage stage,
3136 const void *key, uint32_t key_size,
3137 const void *kernel, uint32_t kernel_size,
3138 const void *constant_data, uint32_t constant_data_size,
3139 const struct brw_stage_prog_data *prog_data,
3140 uint32_t prog_data_size,
3141 const struct brw_compile_stats *stats, uint32_t num_stats,
3142 const struct nir_xfb_info *xfb_info,
3143 const struct anv_pipeline_bind_map *bind_map);
3144
3145 void
3146 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3147
3148 static inline void
3149 anv_shader_bin_ref(struct anv_shader_bin *shader)
3150 {
3151 assert(shader && shader->ref_cnt >= 1);
3152 p_atomic_inc(&shader->ref_cnt);
3153 }
3154
3155 static inline void
3156 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3157 {
3158 assert(shader && shader->ref_cnt >= 1);
3159 if (p_atomic_dec_zero(&shader->ref_cnt))
3160 anv_shader_bin_destroy(device, shader);
3161 }
3162
3163 struct anv_pipeline_executable {
3164 gl_shader_stage stage;
3165
3166 struct brw_compile_stats stats;
3167
3168 char *nir;
3169 char *disasm;
3170 };
3171
3172 enum anv_pipeline_type {
3173 ANV_PIPELINE_GRAPHICS,
3174 ANV_PIPELINE_COMPUTE,
3175 };
3176
3177 struct anv_pipeline {
3178 struct anv_device * device;
3179
3180 struct anv_batch batch;
3181 struct anv_reloc_list batch_relocs;
3182
3183 void * mem_ctx;
3184
3185 enum anv_pipeline_type type;
3186 VkPipelineCreateFlags flags;
3187
3188 struct util_dynarray executables;
3189
3190 const struct gen_l3_config * l3_config;
3191 };
3192
3193 struct anv_graphics_pipeline {
3194 struct anv_pipeline base;
3195
3196 uint32_t batch_data[512];
3197
3198 anv_cmd_dirty_mask_t dynamic_state_mask;
3199 struct anv_dynamic_state dynamic_state;
3200
3201 uint32_t topology;
3202
3203 struct anv_subpass * subpass;
3204
3205 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3206
3207 VkShaderStageFlags active_stages;
3208
3209 bool primitive_restart;
3210 bool writes_depth;
3211 bool depth_test_enable;
3212 bool writes_stencil;
3213 bool stencil_test_enable;
3214 bool depth_clamp_enable;
3215 bool depth_clip_enable;
3216 bool sample_shading_enable;
3217 bool kill_pixel;
3218 bool depth_bounds_test_enable;
3219
3220 /* When primitive replication is used, subpass->view_mask will describe what
3221 * views to replicate.
3222 */
3223 bool use_primitive_replication;
3224
3225 struct anv_state blend_state;
3226
3227 uint32_t vb_used;
3228 struct anv_pipeline_vertex_binding {
3229 uint32_t stride;
3230 bool instanced;
3231 uint32_t instance_divisor;
3232 } vb[MAX_VBS];
3233
3234 struct {
3235 uint32_t sf[7];
3236 uint32_t depth_stencil_state[3];
3237 } gen7;
3238
3239 struct {
3240 uint32_t sf[4];
3241 uint32_t raster[5];
3242 uint32_t wm_depth_stencil[3];
3243 } gen8;
3244
3245 struct {
3246 uint32_t wm_depth_stencil[4];
3247 } gen9;
3248 };
3249
3250 struct anv_compute_pipeline {
3251 struct anv_pipeline base;
3252
3253 struct anv_shader_bin * cs;
3254 uint32_t cs_right_mask;
3255 uint32_t batch_data[9];
3256 uint32_t interface_descriptor_data[8];
3257 };
3258
3259 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3260 static inline struct anv_##pipe_type##_pipeline * \
3261 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3262 { \
3263 assert(pipeline->type == pipe_enum); \
3264 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3265 }
3266
3267 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3268 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3269
3270 static inline bool
3271 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3272 gl_shader_stage stage)
3273 {
3274 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3275 }
3276
3277 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3278 static inline const struct brw_##prefix##_prog_data * \
3279 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3280 { \
3281 if (anv_pipeline_has_stage(pipeline, stage)) { \
3282 return (const struct brw_##prefix##_prog_data *) \
3283 pipeline->shaders[stage]->prog_data; \
3284 } else { \
3285 return NULL; \
3286 } \
3287 }
3288
3289 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3290 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3291 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3292 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3293 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3294
3295 static inline const struct brw_cs_prog_data *
3296 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3297 {
3298 assert(pipeline->cs);
3299 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3300 }
3301
3302 static inline const struct brw_vue_prog_data *
3303 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3304 {
3305 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3306 return &get_gs_prog_data(pipeline)->base;
3307 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3308 return &get_tes_prog_data(pipeline)->base;
3309 else
3310 return &get_vs_prog_data(pipeline)->base;
3311 }
3312
3313 VkResult
3314 anv_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3315 struct anv_pipeline_cache *cache,
3316 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3317 const VkAllocationCallbacks *alloc);
3318
3319 VkResult
3320 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3321 struct anv_pipeline_cache *cache,
3322 const VkComputePipelineCreateInfo *info,
3323 const struct anv_shader_module *module,
3324 const char *entrypoint,
3325 const VkSpecializationInfo *spec_info);
3326
3327 uint32_t
3328 anv_cs_workgroup_size(const struct anv_compute_pipeline *pipeline);
3329
3330 uint32_t
3331 anv_cs_threads(const struct anv_compute_pipeline *pipeline);
3332
3333 struct anv_format_plane {
3334 enum isl_format isl_format:16;
3335 struct isl_swizzle swizzle;
3336
3337 /* Whether this plane contains chroma channels */
3338 bool has_chroma;
3339
3340 /* For downscaling of YUV planes */
3341 uint8_t denominator_scales[2];
3342
3343 /* How to map sampled ycbcr planes to a single 4 component element. */
3344 struct isl_swizzle ycbcr_swizzle;
3345
3346 /* What aspect is associated to this plane */
3347 VkImageAspectFlags aspect;
3348 };
3349
3350
3351 struct anv_format {
3352 struct anv_format_plane planes[3];
3353 VkFormat vk_format;
3354 uint8_t n_planes;
3355 bool can_ycbcr;
3356 };
3357
3358 /**
3359 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3360 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3361 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3362 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3363 */
3364 static inline uint32_t
3365 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3366 VkImageAspectFlags aspect_mask)
3367 {
3368 switch (aspect_mask) {
3369 case VK_IMAGE_ASPECT_COLOR_BIT:
3370 case VK_IMAGE_ASPECT_DEPTH_BIT:
3371 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3372 return 0;
3373 case VK_IMAGE_ASPECT_STENCIL_BIT:
3374 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3375 return 0;
3376 /* Fall-through */
3377 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3378 return 1;
3379 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3380 return 2;
3381 default:
3382 /* Purposefully assert with depth/stencil aspects. */
3383 unreachable("invalid image aspect");
3384 }
3385 }
3386
3387 static inline VkImageAspectFlags
3388 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3389 uint32_t plane)
3390 {
3391 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3392 if (util_bitcount(image_aspects) > 1)
3393 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3394 return VK_IMAGE_ASPECT_COLOR_BIT;
3395 }
3396 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3397 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3398 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3399 return VK_IMAGE_ASPECT_STENCIL_BIT;
3400 }
3401
3402 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3403 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3404
3405 const struct anv_format *
3406 anv_get_format(VkFormat format);
3407
3408 static inline uint32_t
3409 anv_get_format_planes(VkFormat vk_format)
3410 {
3411 const struct anv_format *format = anv_get_format(vk_format);
3412
3413 return format != NULL ? format->n_planes : 0;
3414 }
3415
3416 struct anv_format_plane
3417 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3418 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3419
3420 static inline enum isl_format
3421 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3422 VkImageAspectFlags aspect, VkImageTiling tiling)
3423 {
3424 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3425 }
3426
3427 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3428 VkImageCreateFlags create_flags,
3429 VkFormat vk_format,
3430 VkImageTiling vk_tiling,
3431 const VkImageFormatListCreateInfoKHR *fmt_list);
3432
3433 static inline struct isl_swizzle
3434 anv_swizzle_for_render(struct isl_swizzle swizzle)
3435 {
3436 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3437 * RGB as RGBA for texturing
3438 */
3439 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3440 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3441
3442 /* But it doesn't matter what we render to that channel */
3443 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3444
3445 return swizzle;
3446 }
3447
3448 void
3449 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3450
3451 /**
3452 * Subsurface of an anv_image.
3453 */
3454 struct anv_surface {
3455 /** Valid only if isl_surf::size_B > 0. */
3456 struct isl_surf isl;
3457
3458 /**
3459 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3460 */
3461 uint32_t offset;
3462 };
3463
3464 struct anv_image {
3465 VkImageType type; /**< VkImageCreateInfo::imageType */
3466 /* The original VkFormat provided by the client. This may not match any
3467 * of the actual surface formats.
3468 */
3469 VkFormat vk_format;
3470 const struct anv_format *format;
3471
3472 VkImageAspectFlags aspects;
3473 VkExtent3D extent;
3474 uint32_t levels;
3475 uint32_t array_size;
3476 uint32_t samples; /**< VkImageCreateInfo::samples */
3477 uint32_t n_planes;
3478 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3479 VkImageUsageFlags stencil_usage;
3480 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3481 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3482
3483 /** True if this is needs to be bound to an appropriately tiled BO.
3484 *
3485 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3486 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3487 * we require a dedicated allocation so that we can know to allocate a
3488 * tiled buffer.
3489 */
3490 bool needs_set_tiling;
3491
3492 /**
3493 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3494 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3495 */
3496 uint64_t drm_format_mod;
3497
3498 VkDeviceSize size;
3499 uint32_t alignment;
3500
3501 /* Whether the image is made of several underlying buffer objects rather a
3502 * single one with different offsets.
3503 */
3504 bool disjoint;
3505
3506 /* Image was created with external format. */
3507 bool external_format;
3508
3509 /**
3510 * Image subsurfaces
3511 *
3512 * For each foo, anv_image::planes[x].surface is valid if and only if
3513 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3514 * to figure the number associated with a given aspect.
3515 *
3516 * The hardware requires that the depth buffer and stencil buffer be
3517 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3518 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3519 * allocate the depth and stencil buffers as separate surfaces in the same
3520 * bo.
3521 *
3522 * Memory layout :
3523 *
3524 * -----------------------
3525 * | surface0 | /|\
3526 * ----------------------- |
3527 * | shadow surface0 | |
3528 * ----------------------- | Plane 0
3529 * | aux surface0 | |
3530 * ----------------------- |
3531 * | fast clear colors0 | \|/
3532 * -----------------------
3533 * | surface1 | /|\
3534 * ----------------------- |
3535 * | shadow surface1 | |
3536 * ----------------------- | Plane 1
3537 * | aux surface1 | |
3538 * ----------------------- |
3539 * | fast clear colors1 | \|/
3540 * -----------------------
3541 * | ... |
3542 * | |
3543 * -----------------------
3544 */
3545 struct {
3546 /**
3547 * Offset of the entire plane (whenever the image is disjoint this is
3548 * set to 0).
3549 */
3550 uint32_t offset;
3551
3552 VkDeviceSize size;
3553 uint32_t alignment;
3554
3555 struct anv_surface surface;
3556
3557 /**
3558 * A surface which shadows the main surface and may have different
3559 * tiling. This is used for sampling using a tiling that isn't supported
3560 * for other operations.
3561 */
3562 struct anv_surface shadow_surface;
3563
3564 /**
3565 * The base aux usage for this image. For color images, this can be
3566 * either CCS_E or CCS_D depending on whether or not we can reliably
3567 * leave CCS on all the time.
3568 */
3569 enum isl_aux_usage aux_usage;
3570
3571 struct anv_surface aux_surface;
3572
3573 /**
3574 * Offset of the fast clear state (used to compute the
3575 * fast_clear_state_offset of the following planes).
3576 */
3577 uint32_t fast_clear_state_offset;
3578
3579 /**
3580 * BO associated with this plane, set when bound.
3581 */
3582 struct anv_address address;
3583
3584 /**
3585 * When destroying the image, also free the bo.
3586 * */
3587 bool bo_is_owned;
3588 } planes[3];
3589 };
3590
3591 /* The ordering of this enum is important */
3592 enum anv_fast_clear_type {
3593 /** Image does not have/support any fast-clear blocks */
3594 ANV_FAST_CLEAR_NONE = 0,
3595 /** Image has/supports fast-clear but only to the default value */
3596 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3597 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3598 ANV_FAST_CLEAR_ANY = 2,
3599 };
3600
3601 /* Returns the number of auxiliary buffer levels attached to an image. */
3602 static inline uint8_t
3603 anv_image_aux_levels(const struct anv_image * const image,
3604 VkImageAspectFlagBits aspect)
3605 {
3606 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3607 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3608 return 0;
3609
3610 /* The Gen12 CCS aux surface is represented with only one level. */
3611 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3612 image->planes[plane].surface.isl.levels :
3613 image->planes[plane].aux_surface.isl.levels;
3614 }
3615
3616 /* Returns the number of auxiliary buffer layers attached to an image. */
3617 static inline uint32_t
3618 anv_image_aux_layers(const struct anv_image * const image,
3619 VkImageAspectFlagBits aspect,
3620 const uint8_t miplevel)
3621 {
3622 assert(image);
3623
3624 /* The miplevel must exist in the main buffer. */
3625 assert(miplevel < image->levels);
3626
3627 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3628 /* There are no layers with auxiliary data because the miplevel has no
3629 * auxiliary data.
3630 */
3631 return 0;
3632 } else {
3633 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3634
3635 /* The Gen12 CCS aux surface is represented with only one layer. */
3636 const struct isl_extent4d *aux_logical_level0_px =
3637 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3638 &image->planes[plane].surface.isl.logical_level0_px :
3639 &image->planes[plane].aux_surface.isl.logical_level0_px;
3640
3641 return MAX2(aux_logical_level0_px->array_len,
3642 aux_logical_level0_px->depth >> miplevel);
3643 }
3644 }
3645
3646 static inline struct anv_address
3647 anv_image_get_clear_color_addr(const struct anv_device *device,
3648 const struct anv_image *image,
3649 VkImageAspectFlagBits aspect)
3650 {
3651 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3652
3653 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3654 return anv_address_add(image->planes[plane].address,
3655 image->planes[plane].fast_clear_state_offset);
3656 }
3657
3658 static inline struct anv_address
3659 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3660 const struct anv_image *image,
3661 VkImageAspectFlagBits aspect)
3662 {
3663 struct anv_address addr =
3664 anv_image_get_clear_color_addr(device, image, aspect);
3665
3666 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3667 device->isl_dev.ss.clear_color_state_size :
3668 device->isl_dev.ss.clear_value_size;
3669 return anv_address_add(addr, clear_color_state_size);
3670 }
3671
3672 static inline struct anv_address
3673 anv_image_get_compression_state_addr(const struct anv_device *device,
3674 const struct anv_image *image,
3675 VkImageAspectFlagBits aspect,
3676 uint32_t level, uint32_t array_layer)
3677 {
3678 assert(level < anv_image_aux_levels(image, aspect));
3679 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3680 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3681 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3682
3683 struct anv_address addr =
3684 anv_image_get_fast_clear_type_addr(device, image, aspect);
3685 addr.offset += 4; /* Go past the fast clear type */
3686
3687 if (image->type == VK_IMAGE_TYPE_3D) {
3688 for (uint32_t l = 0; l < level; l++)
3689 addr.offset += anv_minify(image->extent.depth, l) * 4;
3690 } else {
3691 addr.offset += level * image->array_size * 4;
3692 }
3693 addr.offset += array_layer * 4;
3694
3695 assert(addr.offset <
3696 image->planes[plane].address.offset + image->planes[plane].size);
3697 return addr;
3698 }
3699
3700 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3701 static inline bool
3702 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3703 const struct anv_image *image)
3704 {
3705 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3706 return false;
3707
3708 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3709 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3710 * say:
3711 *
3712 * "If this field is set to AUX_HIZ, Number of Multisamples must
3713 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3714 */
3715 if (image->type == VK_IMAGE_TYPE_3D)
3716 return false;
3717
3718 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3719 * struct. There's documentation which suggests that this feature actually
3720 * reduces performance on BDW, but it has only been observed to help so
3721 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3722 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3723 */
3724 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3725 return false;
3726
3727 return image->samples == 1;
3728 }
3729
3730 static inline bool
3731 anv_image_plane_uses_aux_map(const struct anv_device *device,
3732 const struct anv_image *image,
3733 uint32_t plane)
3734 {
3735 return device->info.has_aux_map &&
3736 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3737 }
3738
3739 void
3740 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3741 const struct anv_image *image,
3742 VkImageAspectFlagBits aspect,
3743 enum isl_aux_usage aux_usage,
3744 uint32_t level,
3745 uint32_t base_layer,
3746 uint32_t layer_count);
3747
3748 void
3749 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3750 const struct anv_image *image,
3751 VkImageAspectFlagBits aspect,
3752 enum isl_aux_usage aux_usage,
3753 enum isl_format format, struct isl_swizzle swizzle,
3754 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3755 VkRect2D area, union isl_color_value clear_color);
3756 void
3757 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3758 const struct anv_image *image,
3759 VkImageAspectFlags aspects,
3760 enum isl_aux_usage depth_aux_usage,
3761 uint32_t level,
3762 uint32_t base_layer, uint32_t layer_count,
3763 VkRect2D area,
3764 float depth_value, uint8_t stencil_value);
3765 void
3766 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3767 const struct anv_image *src_image,
3768 enum isl_aux_usage src_aux_usage,
3769 uint32_t src_level, uint32_t src_base_layer,
3770 const struct anv_image *dst_image,
3771 enum isl_aux_usage dst_aux_usage,
3772 uint32_t dst_level, uint32_t dst_base_layer,
3773 VkImageAspectFlagBits aspect,
3774 uint32_t src_x, uint32_t src_y,
3775 uint32_t dst_x, uint32_t dst_y,
3776 uint32_t width, uint32_t height,
3777 uint32_t layer_count,
3778 enum blorp_filter filter);
3779 void
3780 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3781 const struct anv_image *image,
3782 VkImageAspectFlagBits aspect, uint32_t level,
3783 uint32_t base_layer, uint32_t layer_count,
3784 enum isl_aux_op hiz_op);
3785 void
3786 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3787 const struct anv_image *image,
3788 VkImageAspectFlags aspects,
3789 uint32_t level,
3790 uint32_t base_layer, uint32_t layer_count,
3791 VkRect2D area, uint8_t stencil_value);
3792 void
3793 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3794 const struct anv_image *image,
3795 enum isl_format format, struct isl_swizzle swizzle,
3796 VkImageAspectFlagBits aspect,
3797 uint32_t base_layer, uint32_t layer_count,
3798 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3799 bool predicate);
3800 void
3801 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3802 const struct anv_image *image,
3803 enum isl_format format, struct isl_swizzle swizzle,
3804 VkImageAspectFlagBits aspect, uint32_t level,
3805 uint32_t base_layer, uint32_t layer_count,
3806 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3807 bool predicate);
3808
3809 void
3810 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3811 const struct anv_image *image,
3812 VkImageAspectFlagBits aspect,
3813 uint32_t base_level, uint32_t level_count,
3814 uint32_t base_layer, uint32_t layer_count);
3815
3816 enum isl_aux_state
3817 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3818 const struct anv_image *image,
3819 const VkImageAspectFlagBits aspect,
3820 const VkImageLayout layout);
3821
3822 enum isl_aux_usage
3823 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3824 const struct anv_image *image,
3825 const VkImageAspectFlagBits aspect,
3826 const VkImageUsageFlagBits usage,
3827 const VkImageLayout layout);
3828
3829 enum anv_fast_clear_type
3830 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3831 const struct anv_image * const image,
3832 const VkImageAspectFlagBits aspect,
3833 const VkImageLayout layout);
3834
3835 /* This is defined as a macro so that it works for both
3836 * VkImageSubresourceRange and VkImageSubresourceLayers
3837 */
3838 #define anv_get_layerCount(_image, _range) \
3839 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3840 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3841
3842 static inline uint32_t
3843 anv_get_levelCount(const struct anv_image *image,
3844 const VkImageSubresourceRange *range)
3845 {
3846 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3847 image->levels - range->baseMipLevel : range->levelCount;
3848 }
3849
3850 static inline VkImageAspectFlags
3851 anv_image_expand_aspects(const struct anv_image *image,
3852 VkImageAspectFlags aspects)
3853 {
3854 /* If the underlying image has color plane aspects and
3855 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3856 * the underlying image. */
3857 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3858 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3859 return image->aspects;
3860
3861 return aspects;
3862 }
3863
3864 static inline bool
3865 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3866 VkImageAspectFlags aspects2)
3867 {
3868 if (aspects1 == aspects2)
3869 return true;
3870
3871 /* Only 1 color aspects are compatibles. */
3872 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3873 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3874 util_bitcount(aspects1) == util_bitcount(aspects2))
3875 return true;
3876
3877 return false;
3878 }
3879
3880 struct anv_image_view {
3881 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3882
3883 VkImageAspectFlags aspect_mask;
3884 VkFormat vk_format;
3885 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3886
3887 unsigned n_planes;
3888 struct {
3889 uint32_t image_plane;
3890
3891 struct isl_view isl;
3892
3893 /**
3894 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3895 * image layout of SHADER_READ_ONLY_OPTIMAL or
3896 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3897 */
3898 struct anv_surface_state optimal_sampler_surface_state;
3899
3900 /**
3901 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3902 * image layout of GENERAL.
3903 */
3904 struct anv_surface_state general_sampler_surface_state;
3905
3906 /**
3907 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3908 * states for write-only and readable, using the real format for
3909 * write-only and the lowered format for readable.
3910 */
3911 struct anv_surface_state storage_surface_state;
3912 struct anv_surface_state writeonly_storage_surface_state;
3913
3914 struct brw_image_param storage_image_param;
3915 } planes[3];
3916 };
3917
3918 enum anv_image_view_state_flags {
3919 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3920 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3921 };
3922
3923 void anv_image_fill_surface_state(struct anv_device *device,
3924 const struct anv_image *image,
3925 VkImageAspectFlagBits aspect,
3926 const struct isl_view *view,
3927 isl_surf_usage_flags_t view_usage,
3928 enum isl_aux_usage aux_usage,
3929 const union isl_color_value *clear_color,
3930 enum anv_image_view_state_flags flags,
3931 struct anv_surface_state *state_inout,
3932 struct brw_image_param *image_param_out);
3933
3934 struct anv_image_create_info {
3935 const VkImageCreateInfo *vk_info;
3936
3937 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3938 isl_tiling_flags_t isl_tiling_flags;
3939
3940 /** These flags will be added to any derived from VkImageCreateInfo. */
3941 isl_surf_usage_flags_t isl_extra_usage_flags;
3942
3943 uint32_t stride;
3944 bool external_format;
3945 };
3946
3947 VkResult anv_image_create(VkDevice _device,
3948 const struct anv_image_create_info *info,
3949 const VkAllocationCallbacks* alloc,
3950 VkImage *pImage);
3951
3952 enum isl_format
3953 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3954
3955 static inline VkExtent3D
3956 anv_sanitize_image_extent(const VkImageType imageType,
3957 const VkExtent3D imageExtent)
3958 {
3959 switch (imageType) {
3960 case VK_IMAGE_TYPE_1D:
3961 return (VkExtent3D) { imageExtent.width, 1, 1 };
3962 case VK_IMAGE_TYPE_2D:
3963 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3964 case VK_IMAGE_TYPE_3D:
3965 return imageExtent;
3966 default:
3967 unreachable("invalid image type");
3968 }
3969 }
3970
3971 static inline VkOffset3D
3972 anv_sanitize_image_offset(const VkImageType imageType,
3973 const VkOffset3D imageOffset)
3974 {
3975 switch (imageType) {
3976 case VK_IMAGE_TYPE_1D:
3977 return (VkOffset3D) { imageOffset.x, 0, 0 };
3978 case VK_IMAGE_TYPE_2D:
3979 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3980 case VK_IMAGE_TYPE_3D:
3981 return imageOffset;
3982 default:
3983 unreachable("invalid image type");
3984 }
3985 }
3986
3987 VkFormatFeatureFlags
3988 anv_get_image_format_features(const struct gen_device_info *devinfo,
3989 VkFormat vk_format,
3990 const struct anv_format *anv_format,
3991 VkImageTiling vk_tiling);
3992
3993 void anv_fill_buffer_surface_state(struct anv_device *device,
3994 struct anv_state state,
3995 enum isl_format format,
3996 struct anv_address address,
3997 uint32_t range, uint32_t stride);
3998
3999 static inline void
4000 anv_clear_color_from_att_state(union isl_color_value *clear_color,
4001 const struct anv_attachment_state *att_state,
4002 const struct anv_image_view *iview)
4003 {
4004 const struct isl_format_layout *view_fmtl =
4005 isl_format_get_layout(iview->planes[0].isl.format);
4006
4007 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
4008 if (view_fmtl->channels.c.bits) \
4009 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4010
4011 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4012 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4013 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4014 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4015
4016 #undef COPY_CLEAR_COLOR_CHANNEL
4017 }
4018
4019
4020 struct anv_ycbcr_conversion {
4021 const struct anv_format * format;
4022 VkSamplerYcbcrModelConversion ycbcr_model;
4023 VkSamplerYcbcrRange ycbcr_range;
4024 VkComponentSwizzle mapping[4];
4025 VkChromaLocation chroma_offsets[2];
4026 VkFilter chroma_filter;
4027 bool chroma_reconstruction;
4028 };
4029
4030 struct anv_sampler {
4031 uint32_t state[3][4];
4032 uint32_t n_planes;
4033 struct anv_ycbcr_conversion *conversion;
4034
4035 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4036 * and with a 32-byte stride for use as bindless samplers.
4037 */
4038 struct anv_state bindless_state;
4039 };
4040
4041 struct anv_framebuffer {
4042 uint32_t width;
4043 uint32_t height;
4044 uint32_t layers;
4045
4046 uint32_t attachment_count;
4047 struct anv_image_view * attachments[0];
4048 };
4049
4050 struct anv_subpass_attachment {
4051 VkImageUsageFlagBits usage;
4052 uint32_t attachment;
4053 VkImageLayout layout;
4054
4055 /* Used only with attachment containing stencil data. */
4056 VkImageLayout stencil_layout;
4057 };
4058
4059 struct anv_subpass {
4060 uint32_t attachment_count;
4061
4062 /**
4063 * A pointer to all attachment references used in this subpass.
4064 * Only valid if ::attachment_count > 0.
4065 */
4066 struct anv_subpass_attachment * attachments;
4067 uint32_t input_count;
4068 struct anv_subpass_attachment * input_attachments;
4069 uint32_t color_count;
4070 struct anv_subpass_attachment * color_attachments;
4071 struct anv_subpass_attachment * resolve_attachments;
4072
4073 struct anv_subpass_attachment * depth_stencil_attachment;
4074 struct anv_subpass_attachment * ds_resolve_attachment;
4075 VkResolveModeFlagBitsKHR depth_resolve_mode;
4076 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4077
4078 uint32_t view_mask;
4079
4080 /** Subpass has a depth/stencil self-dependency */
4081 bool has_ds_self_dep;
4082
4083 /** Subpass has at least one color resolve attachment */
4084 bool has_color_resolve;
4085 };
4086
4087 static inline unsigned
4088 anv_subpass_view_count(const struct anv_subpass *subpass)
4089 {
4090 return MAX2(1, util_bitcount(subpass->view_mask));
4091 }
4092
4093 struct anv_render_pass_attachment {
4094 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4095 * its members individually.
4096 */
4097 VkFormat format;
4098 uint32_t samples;
4099 VkImageUsageFlags usage;
4100 VkAttachmentLoadOp load_op;
4101 VkAttachmentStoreOp store_op;
4102 VkAttachmentLoadOp stencil_load_op;
4103 VkImageLayout initial_layout;
4104 VkImageLayout final_layout;
4105 VkImageLayout first_subpass_layout;
4106
4107 VkImageLayout stencil_initial_layout;
4108 VkImageLayout stencil_final_layout;
4109
4110 /* The subpass id in which the attachment will be used last. */
4111 uint32_t last_subpass_idx;
4112 };
4113
4114 struct anv_render_pass {
4115 uint32_t attachment_count;
4116 uint32_t subpass_count;
4117 /* An array of subpass_count+1 flushes, one per subpass boundary */
4118 enum anv_pipe_bits * subpass_flushes;
4119 struct anv_render_pass_attachment * attachments;
4120 struct anv_subpass subpasses[0];
4121 };
4122
4123 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4124
4125 struct anv_query_pool {
4126 VkQueryType type;
4127 VkQueryPipelineStatisticFlags pipeline_statistics;
4128 /** Stride between slots, in bytes */
4129 uint32_t stride;
4130 /** Number of slots in this query pool */
4131 uint32_t slots;
4132 struct anv_bo * bo;
4133 };
4134
4135 int anv_get_instance_entrypoint_index(const char *name);
4136 int anv_get_device_entrypoint_index(const char *name);
4137 int anv_get_physical_device_entrypoint_index(const char *name);
4138
4139 const char *anv_get_instance_entry_name(int index);
4140 const char *anv_get_physical_device_entry_name(int index);
4141 const char *anv_get_device_entry_name(int index);
4142
4143 bool
4144 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4145 const struct anv_instance_extension_table *instance);
4146 bool
4147 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4148 const struct anv_instance_extension_table *instance);
4149 bool
4150 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4151 const struct anv_instance_extension_table *instance,
4152 const struct anv_device_extension_table *device);
4153
4154 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4155 const char *name);
4156
4157 void anv_dump_image_to_ppm(struct anv_device *device,
4158 struct anv_image *image, unsigned miplevel,
4159 unsigned array_layer, VkImageAspectFlagBits aspect,
4160 const char *filename);
4161
4162 enum anv_dump_action {
4163 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4164 };
4165
4166 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4167 void anv_dump_finish(void);
4168
4169 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4170
4171 static inline uint32_t
4172 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4173 {
4174 /* This function must be called from within a subpass. */
4175 assert(cmd_state->pass && cmd_state->subpass);
4176
4177 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4178
4179 /* The id of this subpass shouldn't exceed the number of subpasses in this
4180 * render pass minus 1.
4181 */
4182 assert(subpass_id < cmd_state->pass->subpass_count);
4183 return subpass_id;
4184 }
4185
4186 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4187 void anv_device_perf_init(struct anv_device *device);
4188
4189 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4190 \
4191 static inline struct __anv_type * \
4192 __anv_type ## _from_handle(__VkType _handle) \
4193 { \
4194 return (struct __anv_type *) _handle; \
4195 } \
4196 \
4197 static inline __VkType \
4198 __anv_type ## _to_handle(struct __anv_type *_obj) \
4199 { \
4200 return (__VkType) _obj; \
4201 }
4202
4203 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4204 \
4205 static inline struct __anv_type * \
4206 __anv_type ## _from_handle(__VkType _handle) \
4207 { \
4208 return (struct __anv_type *)(uintptr_t) _handle; \
4209 } \
4210 \
4211 static inline __VkType \
4212 __anv_type ## _to_handle(struct __anv_type *_obj) \
4213 { \
4214 return (__VkType)(uintptr_t) _obj; \
4215 }
4216
4217 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4218 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4219
4220 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4221 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4222 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4223 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4224 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4225
4226 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4227 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4228 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4229 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4230 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4231 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4232 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4233 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4234 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4235 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4236 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4237 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4238 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4239 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4240 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4241 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4242 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4243 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4244 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4245 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4246 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4247 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4248 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4249
4250 /* Gen-specific function declarations */
4251 #ifdef genX
4252 # include "anv_genX.h"
4253 #else
4254 # define genX(x) gen7_##x
4255 # include "anv_genX.h"
4256 # undef genX
4257 # define genX(x) gen75_##x
4258 # include "anv_genX.h"
4259 # undef genX
4260 # define genX(x) gen8_##x
4261 # include "anv_genX.h"
4262 # undef genX
4263 # define genX(x) gen9_##x
4264 # include "anv_genX.h"
4265 # undef genX
4266 # define genX(x) gen10_##x
4267 # include "anv_genX.h"
4268 # undef genX
4269 # define genX(x) gen11_##x
4270 # include "anv_genX.h"
4271 # undef genX
4272 # define genX(x) gen12_##x
4273 # include "anv_genX.h"
4274 # undef genX
4275 #endif
4276
4277 #endif /* ANV_PRIVATE_H */