ed851f5aacf3d6e18e83ca379fcab55707d21a92
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65
66 /* Pre-declarations needed for WSI entrypoints */
67 struct wl_surface;
68 struct wl_display;
69 typedef struct xcb_connection_t xcb_connection_t;
70 typedef uint32_t xcb_visualid_t;
71 typedef uint32_t xcb_window_t;
72
73 struct anv_batch;
74 struct anv_buffer;
75 struct anv_buffer_view;
76 struct anv_image_view;
77 struct anv_instance;
78
79 struct gen_aux_map_context;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175 #define ANV_UBO_BOUNDS_CHECK_ALIGNMENT 32
176 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
177 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
178
179 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
180 *
181 * "The surface state model is used when a Binding Table Index (specified
182 * in the message descriptor) of less than 240 is specified. In this model,
183 * the Binding Table Index is used to index into the binding table, and the
184 * binding table entry contains a pointer to the SURFACE_STATE."
185 *
186 * Binding table values above 240 are used for various things in the hardware
187 * such as stateless, stateless with incoherent cache, SLM, and bindless.
188 */
189 #define MAX_BINDING_TABLE_SIZE 240
190
191 /* The kernel relocation API has a limitation of a 32-bit delta value
192 * applied to the address before it is written which, in spite of it being
193 * unsigned, is treated as signed . Because of the way that this maps to
194 * the Vulkan API, we cannot handle an offset into a buffer that does not
195 * fit into a signed 32 bits. The only mechanism we have for dealing with
196 * this at the moment is to limit all VkDeviceMemory objects to a maximum
197 * of 2GB each. The Vulkan spec allows us to do this:
198 *
199 * "Some platforms may have a limit on the maximum size of a single
200 * allocation. For example, certain systems may fail to create
201 * allocations with a size greater than or equal to 4GB. Such a limit is
202 * implementation-dependent, and if such a failure occurs then the error
203 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
204 *
205 * We don't use vk_error here because it's not an error so much as an
206 * indication to the application that the allocation is too large.
207 */
208 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
209
210 #define ANV_SVGS_VB_INDEX MAX_VBS
211 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
212
213 /* We reserve this MI ALU register for the purpose of handling predication.
214 * Other code which uses the MI ALU should leave it alone.
215 */
216 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
217
218 /* For gen12 we set the streamout buffers using 4 separate commands
219 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
220 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
221 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
222 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
223 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
224 * 3DSTATE_SO_BUFFER_INDEX_0.
225 */
226 #define SO_BUFFER_INDEX_0_CMD 0x60
227 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
228
229 static inline uint32_t
230 align_down_npot_u32(uint32_t v, uint32_t a)
231 {
232 return v - (v % a);
233 }
234
235 static inline uint32_t
236 align_down_u32(uint32_t v, uint32_t a)
237 {
238 assert(a != 0 && a == (a & -a));
239 return v & ~(a - 1);
240 }
241
242 static inline uint32_t
243 align_u32(uint32_t v, uint32_t a)
244 {
245 assert(a != 0 && a == (a & -a));
246 return align_down_u32(v + a - 1, a);
247 }
248
249 static inline uint64_t
250 align_down_u64(uint64_t v, uint64_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint64_t
257 align_u64(uint64_t v, uint64_t a)
258 {
259 return align_down_u64(v + a - 1, a);
260 }
261
262 static inline int32_t
263 align_i32(int32_t v, int32_t a)
264 {
265 assert(a != 0 && a == (a & -a));
266 return (v + a - 1) & ~(a - 1);
267 }
268
269 /** Alignment must be a power of 2. */
270 static inline bool
271 anv_is_aligned(uintmax_t n, uintmax_t a)
272 {
273 assert(a == (a & -a));
274 return (n & (a - 1)) == 0;
275 }
276
277 static inline uint32_t
278 anv_minify(uint32_t n, uint32_t levels)
279 {
280 if (unlikely(n == 0))
281 return 0;
282 else
283 return MAX2(n >> levels, 1);
284 }
285
286 static inline float
287 anv_clamp_f(float f, float min, float max)
288 {
289 assert(min < max);
290
291 if (f > max)
292 return max;
293 else if (f < min)
294 return min;
295 else
296 return f;
297 }
298
299 static inline bool
300 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
301 {
302 if (*inout_mask & clear_mask) {
303 *inout_mask &= ~clear_mask;
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310 static inline union isl_color_value
311 vk_to_isl_color(VkClearColorValue color)
312 {
313 return (union isl_color_value) {
314 .u32 = {
315 color.uint32[0],
316 color.uint32[1],
317 color.uint32[2],
318 color.uint32[3],
319 },
320 };
321 }
322
323 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
324 {
325 uintptr_t mask = (1ull << bits) - 1;
326 *flags = ptr & mask;
327 return (void *) (ptr & ~mask);
328 }
329
330 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
331 {
332 uintptr_t value = (uintptr_t) ptr;
333 uintptr_t mask = (1ull << bits) - 1;
334 return value | (mask & flags);
335 }
336
337 #define for_each_bit(b, dword) \
338 for (uint32_t __dword = (dword); \
339 (b) = __builtin_ffs(__dword) - 1, __dword; \
340 __dword &= ~(1 << (b)))
341
342 #define typed_memcpy(dest, src, count) ({ \
343 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
344 memcpy((dest), (src), (count) * sizeof(*(src))); \
345 })
346
347 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
348 * to be added here in order to utilize mapping in debug/error/perf macros.
349 */
350 #define REPORT_OBJECT_TYPE(o) \
351 __builtin_choose_expr ( \
352 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
353 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
354 __builtin_choose_expr ( \
355 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
356 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
357 __builtin_choose_expr ( \
358 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
359 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
360 __builtin_choose_expr ( \
361 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
362 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
363 __builtin_choose_expr ( \
364 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
365 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
366 __builtin_choose_expr ( \
367 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
368 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
369 __builtin_choose_expr ( \
370 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
371 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
372 __builtin_choose_expr ( \
373 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
374 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
375 __builtin_choose_expr ( \
376 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
377 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
378 __builtin_choose_expr ( \
379 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
380 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
381 __builtin_choose_expr ( \
382 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
383 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
384 __builtin_choose_expr ( \
385 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
386 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
387 __builtin_choose_expr ( \
388 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
389 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
390 __builtin_choose_expr ( \
391 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
392 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
393 __builtin_choose_expr ( \
394 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
395 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
396 __builtin_choose_expr ( \
397 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
398 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
399 __builtin_choose_expr ( \
400 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
401 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
402 __builtin_choose_expr ( \
403 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
404 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
405 __builtin_choose_expr ( \
406 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
407 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
408 __builtin_choose_expr ( \
409 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
410 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
411 __builtin_choose_expr ( \
412 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
413 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
414 __builtin_choose_expr ( \
415 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
416 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
417 __builtin_choose_expr ( \
418 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
419 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
420 __builtin_choose_expr ( \
421 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
422 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
423 __builtin_choose_expr ( \
424 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
425 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
426 __builtin_choose_expr ( \
427 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
428 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
429 __builtin_choose_expr ( \
430 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
431 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
432 __builtin_choose_expr ( \
433 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
434 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
435 __builtin_choose_expr ( \
436 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
437 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
438 __builtin_choose_expr ( \
439 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
440 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
441 __builtin_choose_expr ( \
442 __builtin_types_compatible_p (__typeof (o), void*), \
443 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
444 /* The void expression results in a compile-time error \
445 when assigning the result to something. */ \
446 (void)0)))))))))))))))))))))))))))))))
447
448 /* Whenever we generate an error, pass it through this function. Useful for
449 * debugging, where we can break on it. Only call at error site, not when
450 * propagating errors. Might be useful to plug in a stack trace here.
451 */
452
453 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
454 VkDebugReportObjectTypeEXT type, VkResult error,
455 const char *file, int line, const char *format,
456 va_list args);
457
458 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
459 VkDebugReportObjectTypeEXT type, VkResult error,
460 const char *file, int line, const char *format, ...)
461 anv_printflike(7, 8);
462
463 #ifdef DEBUG
464 #define vk_error(error) __vk_errorf(NULL, NULL,\
465 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
466 error, __FILE__, __LINE__, NULL)
467 #define vk_errorfi(instance, obj, error, format, ...)\
468 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
469 __FILE__, __LINE__, format, ## __VA_ARGS__)
470 #define vk_errorf(device, obj, error, format, ...)\
471 vk_errorfi(anv_device_instance_or_null(device),\
472 obj, error, format, ## __VA_ARGS__)
473 #else
474 #define vk_error(error) error
475 #define vk_errorfi(instance, obj, error, format, ...) error
476 #define vk_errorf(device, obj, error, format, ...) error
477 #endif
478
479 /**
480 * Warn on ignored extension structs.
481 *
482 * The Vulkan spec requires us to ignore unsupported or unknown structs in
483 * a pNext chain. In debug mode, emitting warnings for ignored structs may
484 * help us discover structs that we should not have ignored.
485 *
486 *
487 * From the Vulkan 1.0.38 spec:
488 *
489 * Any component of the implementation (the loader, any enabled layers,
490 * and drivers) must skip over, without processing (other than reading the
491 * sType and pNext members) any chained structures with sType values not
492 * defined by extensions supported by that component.
493 */
494 #define anv_debug_ignored_stype(sType) \
495 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
496
497 void __anv_perf_warn(struct anv_device *device, const void *object,
498 VkDebugReportObjectTypeEXT type, const char *file,
499 int line, const char *format, ...)
500 anv_printflike(6, 7);
501 void anv_loge(const char *format, ...) anv_printflike(1, 2);
502 void anv_loge_v(const char *format, va_list va);
503
504 /**
505 * Print a FINISHME message, including its source location.
506 */
507 #define anv_finishme(format, ...) \
508 do { \
509 static bool reported = false; \
510 if (!reported) { \
511 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
512 ##__VA_ARGS__); \
513 reported = true; \
514 } \
515 } while (0)
516
517 /**
518 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
519 */
520 #define anv_perf_warn(instance, obj, format, ...) \
521 do { \
522 static bool reported = false; \
523 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
524 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
525 format, ##__VA_ARGS__); \
526 reported = true; \
527 } \
528 } while (0)
529
530 /* A non-fatal assert. Useful for debugging. */
531 #ifdef DEBUG
532 #define anv_assert(x) ({ \
533 if (unlikely(!(x))) \
534 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
535 })
536 #else
537 #define anv_assert(x)
538 #endif
539
540 /* A multi-pointer allocator
541 *
542 * When copying data structures from the user (such as a render pass), it's
543 * common to need to allocate data for a bunch of different things. Instead
544 * of doing several allocations and having to handle all of the error checking
545 * that entails, it can be easier to do a single allocation. This struct
546 * helps facilitate that. The intended usage looks like this:
547 *
548 * ANV_MULTIALLOC(ma)
549 * anv_multialloc_add(&ma, &main_ptr, 1);
550 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
551 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
552 *
553 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
554 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
555 */
556 struct anv_multialloc {
557 size_t size;
558 size_t align;
559
560 uint32_t ptr_count;
561 void **ptrs[8];
562 };
563
564 #define ANV_MULTIALLOC_INIT \
565 ((struct anv_multialloc) { 0, })
566
567 #define ANV_MULTIALLOC(_name) \
568 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
569
570 __attribute__((always_inline))
571 static inline void
572 _anv_multialloc_add(struct anv_multialloc *ma,
573 void **ptr, size_t size, size_t align)
574 {
575 size_t offset = align_u64(ma->size, align);
576 ma->size = offset + size;
577 ma->align = MAX2(ma->align, align);
578
579 /* Store the offset in the pointer. */
580 *ptr = (void *)(uintptr_t)offset;
581
582 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
583 ma->ptrs[ma->ptr_count++] = ptr;
584 }
585
586 #define anv_multialloc_add_size(_ma, _ptr, _size) \
587 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
588
589 #define anv_multialloc_add(_ma, _ptr, _count) \
590 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
591
592 __attribute__((always_inline))
593 static inline void *
594 anv_multialloc_alloc(struct anv_multialloc *ma,
595 const VkAllocationCallbacks *alloc,
596 VkSystemAllocationScope scope)
597 {
598 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
599 if (!ptr)
600 return NULL;
601
602 /* Fill out each of the pointers with their final value.
603 *
604 * for (uint32_t i = 0; i < ma->ptr_count; i++)
605 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
606 *
607 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
608 * constant, GCC is incapable of figuring this out and unrolling the loop
609 * so we have to give it a little help.
610 */
611 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
612 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
613 if ((_i) < ma->ptr_count) \
614 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
615 _ANV_MULTIALLOC_UPDATE_POINTER(0);
616 _ANV_MULTIALLOC_UPDATE_POINTER(1);
617 _ANV_MULTIALLOC_UPDATE_POINTER(2);
618 _ANV_MULTIALLOC_UPDATE_POINTER(3);
619 _ANV_MULTIALLOC_UPDATE_POINTER(4);
620 _ANV_MULTIALLOC_UPDATE_POINTER(5);
621 _ANV_MULTIALLOC_UPDATE_POINTER(6);
622 _ANV_MULTIALLOC_UPDATE_POINTER(7);
623 #undef _ANV_MULTIALLOC_UPDATE_POINTER
624
625 return ptr;
626 }
627
628 __attribute__((always_inline))
629 static inline void *
630 anv_multialloc_alloc2(struct anv_multialloc *ma,
631 const VkAllocationCallbacks *parent_alloc,
632 const VkAllocationCallbacks *alloc,
633 VkSystemAllocationScope scope)
634 {
635 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
636 }
637
638 struct anv_bo {
639 uint32_t gem_handle;
640
641 uint32_t refcount;
642
643 /* Index into the current validation list. This is used by the
644 * validation list building alrogithm to track which buffers are already
645 * in the validation list so that we can ensure uniqueness.
646 */
647 uint32_t index;
648
649 /* Index for use with util_sparse_array_free_list */
650 uint32_t free_index;
651
652 /* Last known offset. This value is provided by the kernel when we
653 * execbuf and is used as the presumed offset for the next bunch of
654 * relocations.
655 */
656 uint64_t offset;
657
658 /** Size of the buffer not including implicit aux */
659 uint64_t size;
660
661 /* Map for internally mapped BOs.
662 *
663 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
664 */
665 void *map;
666
667 /** Size of the implicit CCS range at the end of the buffer
668 *
669 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
670 * page of main surface data maps to a 256B chunk of CCS data and that
671 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
672 * addresses in the main surface to virtual memory addresses for CCS data.
673 *
674 * Because we can't change these maps around easily and because Vulkan
675 * allows two VkImages to be bound to overlapping memory regions (as long
676 * as the app is careful), it's not feasible to make this mapping part of
677 * the image. (On Gen11 and earlier, the mapping was provided via
678 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
679 * Instead, we attach the CCS data directly to the buffer object and setup
680 * the AUX table mapping at BO creation time.
681 *
682 * This field is for internal tracking use by the BO allocator only and
683 * should not be touched by other parts of the code. If something wants to
684 * know if a BO has implicit CCS data, it should instead look at the
685 * has_implicit_ccs boolean below.
686 *
687 * This data is not included in maps of this buffer.
688 */
689 uint32_t _ccs_size;
690
691 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
692 uint32_t flags;
693
694 /** True if this BO may be shared with other processes */
695 bool is_external:1;
696
697 /** True if this BO is a wrapper
698 *
699 * When set to true, none of the fields in this BO are meaningful except
700 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
701 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
702 * is set in the physical device.
703 */
704 bool is_wrapper:1;
705
706 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
707 bool has_fixed_address:1;
708
709 /** True if this BO wraps a host pointer */
710 bool from_host_ptr:1;
711
712 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
713 bool has_client_visible_address:1;
714
715 /** True if this BO has implicit CCS data attached to it */
716 bool has_implicit_ccs:1;
717 };
718
719 static inline struct anv_bo *
720 anv_bo_ref(struct anv_bo *bo)
721 {
722 p_atomic_inc(&bo->refcount);
723 return bo;
724 }
725
726 static inline struct anv_bo *
727 anv_bo_unwrap(struct anv_bo *bo)
728 {
729 while (bo->is_wrapper)
730 bo = bo->map;
731 return bo;
732 }
733
734 /* Represents a lock-free linked list of "free" things. This is used by
735 * both the block pool and the state pools. Unfortunately, in order to
736 * solve the ABA problem, we can't use a single uint32_t head.
737 */
738 union anv_free_list {
739 struct {
740 uint32_t offset;
741
742 /* A simple count that is incremented every time the head changes. */
743 uint32_t count;
744 };
745 /* Make sure it's aligned to 64 bits. This will make atomic operations
746 * faster on 32 bit platforms.
747 */
748 uint64_t u64 __attribute__ ((aligned (8)));
749 };
750
751 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
752
753 struct anv_block_state {
754 union {
755 struct {
756 uint32_t next;
757 uint32_t end;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764 };
765
766 #define anv_block_pool_foreach_bo(bo, pool) \
767 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
768 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
769 _pp_bo++)
770
771 #define ANV_MAX_BLOCK_POOL_BOS 20
772
773 struct anv_block_pool {
774 struct anv_device *device;
775 bool use_softpin;
776
777 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
778 * around the actual BO so that we grow the pool after the wrapper BO has
779 * been put in a relocation list. This is only used in the non-softpin
780 * case.
781 */
782 struct anv_bo wrapper_bo;
783
784 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
785 struct anv_bo *bo;
786 uint32_t nbos;
787
788 uint64_t size;
789
790 /* The address where the start of the pool is pinned. The various bos that
791 * are created as the pool grows will have addresses in the range
792 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
793 */
794 uint64_t start_address;
795
796 /* The offset from the start of the bo to the "center" of the block
797 * pool. Pointers to allocated blocks are given by
798 * bo.map + center_bo_offset + offsets.
799 */
800 uint32_t center_bo_offset;
801
802 /* Current memory map of the block pool. This pointer may or may not
803 * point to the actual beginning of the block pool memory. If
804 * anv_block_pool_alloc_back has ever been called, then this pointer
805 * will point to the "center" position of the buffer and all offsets
806 * (negative or positive) given out by the block pool alloc functions
807 * will be valid relative to this pointer.
808 *
809 * In particular, map == bo.map + center_offset
810 *
811 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
812 * since it will handle the softpin case as well, where this points to NULL.
813 */
814 void *map;
815 int fd;
816
817 /**
818 * Array of mmaps and gem handles owned by the block pool, reclaimed when
819 * the block pool is destroyed.
820 */
821 struct u_vector mmap_cleanups;
822
823 struct anv_block_state state;
824
825 struct anv_block_state back_state;
826 };
827
828 /* Block pools are backed by a fixed-size 1GB memfd */
829 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
830
831 /* The center of the block pool is also the middle of the memfd. This may
832 * change in the future if we decide differently for some reason.
833 */
834 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
835
836 static inline uint32_t
837 anv_block_pool_size(struct anv_block_pool *pool)
838 {
839 return pool->state.end + pool->back_state.end;
840 }
841
842 struct anv_state {
843 int32_t offset;
844 uint32_t alloc_size;
845 void *map;
846 uint32_t idx;
847 };
848
849 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
850
851 struct anv_fixed_size_state_pool {
852 union anv_free_list free_list;
853 struct anv_block_state block;
854 };
855
856 #define ANV_MIN_STATE_SIZE_LOG2 6
857 #define ANV_MAX_STATE_SIZE_LOG2 21
858
859 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
860
861 struct anv_free_entry {
862 uint32_t next;
863 struct anv_state state;
864 };
865
866 struct anv_state_table {
867 struct anv_device *device;
868 int fd;
869 struct anv_free_entry *map;
870 uint32_t size;
871 struct anv_block_state state;
872 struct u_vector cleanups;
873 };
874
875 struct anv_state_pool {
876 struct anv_block_pool block_pool;
877
878 struct anv_state_table table;
879
880 /* The size of blocks which will be allocated from the block pool */
881 uint32_t block_size;
882
883 /** Free list for "back" allocations */
884 union anv_free_list back_alloc_free_list;
885
886 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
887 };
888
889 struct anv_state_stream {
890 struct anv_state_pool *state_pool;
891
892 /* The size of blocks to allocate from the state pool */
893 uint32_t block_size;
894
895 /* Current block we're allocating from */
896 struct anv_state block;
897
898 /* Offset into the current block at which to allocate the next state */
899 uint32_t next;
900
901 /* List of all blocks allocated from this pool */
902 struct util_dynarray all_blocks;
903 };
904
905 /* The block_pool functions exported for testing only. The block pool should
906 * only be used via a state pool (see below).
907 */
908 VkResult anv_block_pool_init(struct anv_block_pool *pool,
909 struct anv_device *device,
910 uint64_t start_address,
911 uint32_t initial_size);
912 void anv_block_pool_finish(struct anv_block_pool *pool);
913 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
914 uint32_t block_size, uint32_t *padding);
915 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
916 uint32_t block_size);
917 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
918 size);
919
920 VkResult anv_state_pool_init(struct anv_state_pool *pool,
921 struct anv_device *device,
922 uint64_t start_address,
923 uint32_t block_size);
924 void anv_state_pool_finish(struct anv_state_pool *pool);
925 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
926 uint32_t state_size, uint32_t alignment);
927 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
928 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
929 void anv_state_stream_init(struct anv_state_stream *stream,
930 struct anv_state_pool *state_pool,
931 uint32_t block_size);
932 void anv_state_stream_finish(struct anv_state_stream *stream);
933 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
934 uint32_t size, uint32_t alignment);
935
936 VkResult anv_state_table_init(struct anv_state_table *table,
937 struct anv_device *device,
938 uint32_t initial_entries);
939 void anv_state_table_finish(struct anv_state_table *table);
940 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
941 uint32_t count);
942 void anv_free_list_push(union anv_free_list *list,
943 struct anv_state_table *table,
944 uint32_t idx, uint32_t count);
945 struct anv_state* anv_free_list_pop(union anv_free_list *list,
946 struct anv_state_table *table);
947
948
949 static inline struct anv_state *
950 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
951 {
952 return &table->map[idx].state;
953 }
954 /**
955 * Implements a pool of re-usable BOs. The interface is identical to that
956 * of block_pool except that each block is its own BO.
957 */
958 struct anv_bo_pool {
959 struct anv_device *device;
960
961 struct util_sparse_array_free_list free_list[16];
962 };
963
964 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
965 void anv_bo_pool_finish(struct anv_bo_pool *pool);
966 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
967 struct anv_bo **bo_out);
968 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
969
970 struct anv_scratch_pool {
971 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
972 struct anv_bo *bos[16][MESA_SHADER_STAGES];
973 };
974
975 void anv_scratch_pool_init(struct anv_device *device,
976 struct anv_scratch_pool *pool);
977 void anv_scratch_pool_finish(struct anv_device *device,
978 struct anv_scratch_pool *pool);
979 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
980 struct anv_scratch_pool *pool,
981 gl_shader_stage stage,
982 unsigned per_thread_scratch);
983
984 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
985 struct anv_bo_cache {
986 struct util_sparse_array bo_map;
987 pthread_mutex_t mutex;
988 };
989
990 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
991 void anv_bo_cache_finish(struct anv_bo_cache *cache);
992
993 struct anv_memory_type {
994 /* Standard bits passed on to the client */
995 VkMemoryPropertyFlags propertyFlags;
996 uint32_t heapIndex;
997 };
998
999 struct anv_memory_heap {
1000 /* Standard bits passed on to the client */
1001 VkDeviceSize size;
1002 VkMemoryHeapFlags flags;
1003
1004 /* Driver-internal book-keeping */
1005 VkDeviceSize used;
1006 };
1007
1008 struct anv_physical_device {
1009 VK_LOADER_DATA _loader_data;
1010
1011 /* Link in anv_instance::physical_devices */
1012 struct list_head link;
1013
1014 struct anv_instance * instance;
1015 bool no_hw;
1016 char path[20];
1017 const char * name;
1018 struct {
1019 uint16_t domain;
1020 uint8_t bus;
1021 uint8_t device;
1022 uint8_t function;
1023 } pci_info;
1024 struct gen_device_info info;
1025 /** Amount of "GPU memory" we want to advertise
1026 *
1027 * Clearly, this value is bogus since Intel is a UMA architecture. On
1028 * gen7 platforms, we are limited by GTT size unless we want to implement
1029 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1030 * practically unlimited. However, we will never report more than 3/4 of
1031 * the total system ram to try and avoid running out of RAM.
1032 */
1033 bool supports_48bit_addresses;
1034 struct brw_compiler * compiler;
1035 struct isl_device isl_dev;
1036 struct gen_perf_config * perf;
1037 int cmd_parser_version;
1038 bool has_softpin;
1039 bool has_exec_async;
1040 bool has_exec_capture;
1041 bool has_exec_fence;
1042 bool has_syncobj;
1043 bool has_syncobj_wait;
1044 bool has_context_priority;
1045 bool has_context_isolation;
1046 bool has_mem_available;
1047 bool has_mmap_offset;
1048 uint64_t gtt_size;
1049
1050 bool use_softpin;
1051 bool always_use_bindless;
1052
1053 /** True if we can access buffers using A64 messages */
1054 bool has_a64_buffer_access;
1055 /** True if we can use bindless access for images */
1056 bool has_bindless_images;
1057 /** True if we can use bindless access for samplers */
1058 bool has_bindless_samplers;
1059
1060 /** True if this device has implicit AUX
1061 *
1062 * If true, CCS is handled as an implicit attachment to the BO rather than
1063 * as an explicitly bound surface.
1064 */
1065 bool has_implicit_ccs;
1066
1067 bool always_flush_cache;
1068
1069 struct anv_device_extension_table supported_extensions;
1070
1071 uint32_t eu_total;
1072 uint32_t subslice_total;
1073
1074 struct {
1075 uint32_t type_count;
1076 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1077 uint32_t heap_count;
1078 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1079 } memory;
1080
1081 uint8_t driver_build_sha1[20];
1082 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1083 uint8_t driver_uuid[VK_UUID_SIZE];
1084 uint8_t device_uuid[VK_UUID_SIZE];
1085
1086 struct disk_cache * disk_cache;
1087
1088 struct wsi_device wsi_device;
1089 int local_fd;
1090 int master_fd;
1091 };
1092
1093 struct anv_app_info {
1094 const char* app_name;
1095 uint32_t app_version;
1096 const char* engine_name;
1097 uint32_t engine_version;
1098 uint32_t api_version;
1099 };
1100
1101 struct anv_instance {
1102 VK_LOADER_DATA _loader_data;
1103
1104 VkAllocationCallbacks alloc;
1105
1106 struct anv_app_info app_info;
1107
1108 struct anv_instance_extension_table enabled_extensions;
1109 struct anv_instance_dispatch_table dispatch;
1110 struct anv_physical_device_dispatch_table physical_device_dispatch;
1111 struct anv_device_dispatch_table device_dispatch;
1112
1113 bool physical_devices_enumerated;
1114 struct list_head physical_devices;
1115
1116 bool pipeline_cache_enabled;
1117
1118 struct vk_debug_report_instance debug_report_callbacks;
1119
1120 struct driOptionCache dri_options;
1121 struct driOptionCache available_dri_options;
1122 };
1123
1124 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1125 void anv_finish_wsi(struct anv_physical_device *physical_device);
1126
1127 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1128 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1129 const char *name);
1130
1131 struct anv_queue_submit {
1132 struct anv_cmd_buffer * cmd_buffer;
1133
1134 uint32_t fence_count;
1135 uint32_t fence_array_length;
1136 struct drm_i915_gem_exec_fence * fences;
1137
1138 uint32_t temporary_semaphore_count;
1139 uint32_t temporary_semaphore_array_length;
1140 struct anv_semaphore_impl * temporary_semaphores;
1141
1142 /* Semaphores to be signaled with a SYNC_FD. */
1143 struct anv_semaphore ** sync_fd_semaphores;
1144 uint32_t sync_fd_semaphore_count;
1145 uint32_t sync_fd_semaphore_array_length;
1146
1147 /* Allocated only with non shareable timelines. */
1148 struct anv_timeline ** wait_timelines;
1149 uint32_t wait_timeline_count;
1150 uint32_t wait_timeline_array_length;
1151 uint64_t * wait_timeline_values;
1152
1153 struct anv_timeline ** signal_timelines;
1154 uint32_t signal_timeline_count;
1155 uint32_t signal_timeline_array_length;
1156 uint64_t * signal_timeline_values;
1157
1158 int in_fence;
1159 bool need_out_fence;
1160 int out_fence;
1161
1162 uint32_t fence_bo_count;
1163 uint32_t fence_bo_array_length;
1164 /* An array of struct anv_bo pointers with lower bit used as a flag to
1165 * signal we will wait on that BO (see anv_(un)pack_ptr).
1166 */
1167 uintptr_t * fence_bos;
1168
1169 const VkAllocationCallbacks * alloc;
1170 VkSystemAllocationScope alloc_scope;
1171
1172 struct anv_bo * simple_bo;
1173 uint32_t simple_bo_size;
1174
1175 struct list_head link;
1176 };
1177
1178 struct anv_queue {
1179 VK_LOADER_DATA _loader_data;
1180
1181 struct anv_device * device;
1182
1183 /*
1184 * A list of struct anv_queue_submit to be submitted to i915.
1185 */
1186 struct list_head queued_submits;
1187
1188 VkDeviceQueueCreateFlags flags;
1189 };
1190
1191 struct anv_pipeline_cache {
1192 struct anv_device * device;
1193 pthread_mutex_t mutex;
1194
1195 struct hash_table * nir_cache;
1196
1197 struct hash_table * cache;
1198 };
1199
1200 struct nir_xfb_info;
1201 struct anv_pipeline_bind_map;
1202
1203 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1204 struct anv_device *device,
1205 bool cache_enabled);
1206 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1207
1208 struct anv_shader_bin *
1209 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1210 const void *key, uint32_t key_size);
1211 struct anv_shader_bin *
1212 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1213 gl_shader_stage stage,
1214 const void *key_data, uint32_t key_size,
1215 const void *kernel_data, uint32_t kernel_size,
1216 const void *constant_data,
1217 uint32_t constant_data_size,
1218 const struct brw_stage_prog_data *prog_data,
1219 uint32_t prog_data_size,
1220 const struct brw_compile_stats *stats,
1221 uint32_t num_stats,
1222 const struct nir_xfb_info *xfb_info,
1223 const struct anv_pipeline_bind_map *bind_map);
1224
1225 struct anv_shader_bin *
1226 anv_device_search_for_kernel(struct anv_device *device,
1227 struct anv_pipeline_cache *cache,
1228 const void *key_data, uint32_t key_size,
1229 bool *user_cache_bit);
1230
1231 struct anv_shader_bin *
1232 anv_device_upload_kernel(struct anv_device *device,
1233 struct anv_pipeline_cache *cache,
1234 gl_shader_stage stage,
1235 const void *key_data, uint32_t key_size,
1236 const void *kernel_data, uint32_t kernel_size,
1237 const void *constant_data,
1238 uint32_t constant_data_size,
1239 const struct brw_stage_prog_data *prog_data,
1240 uint32_t prog_data_size,
1241 const struct brw_compile_stats *stats,
1242 uint32_t num_stats,
1243 const struct nir_xfb_info *xfb_info,
1244 const struct anv_pipeline_bind_map *bind_map);
1245
1246 struct nir_shader;
1247 struct nir_shader_compiler_options;
1248
1249 struct nir_shader *
1250 anv_device_search_for_nir(struct anv_device *device,
1251 struct anv_pipeline_cache *cache,
1252 const struct nir_shader_compiler_options *nir_options,
1253 unsigned char sha1_key[20],
1254 void *mem_ctx);
1255
1256 void
1257 anv_device_upload_nir(struct anv_device *device,
1258 struct anv_pipeline_cache *cache,
1259 const struct nir_shader *nir,
1260 unsigned char sha1_key[20]);
1261
1262 struct anv_device {
1263 VK_LOADER_DATA _loader_data;
1264
1265 VkAllocationCallbacks alloc;
1266
1267 struct anv_physical_device * physical;
1268 bool no_hw;
1269 struct gen_device_info info;
1270 struct isl_device isl_dev;
1271 int context_id;
1272 int fd;
1273 bool can_chain_batches;
1274 bool robust_buffer_access;
1275 struct anv_device_extension_table enabled_extensions;
1276 struct anv_device_dispatch_table dispatch;
1277
1278 pthread_mutex_t vma_mutex;
1279 struct util_vma_heap vma_lo;
1280 struct util_vma_heap vma_cva;
1281 struct util_vma_heap vma_hi;
1282
1283 /** List of all anv_device_memory objects */
1284 struct list_head memory_objects;
1285
1286 struct anv_bo_pool batch_bo_pool;
1287
1288 struct anv_bo_cache bo_cache;
1289
1290 struct anv_state_pool dynamic_state_pool;
1291 struct anv_state_pool instruction_state_pool;
1292 struct anv_state_pool binding_table_pool;
1293 struct anv_state_pool surface_state_pool;
1294
1295 /** BO used for various workarounds
1296 *
1297 * There are a number of workarounds on our hardware which require writing
1298 * data somewhere and it doesn't really matter where. For that, we use
1299 * this BO and just write to the first dword or so.
1300 *
1301 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1302 * For that, we use the high bytes (>= 1024) of the workaround BO.
1303 */
1304 struct anv_bo * workaround_bo;
1305 struct anv_bo * trivial_batch_bo;
1306 struct anv_bo * hiz_clear_bo;
1307 struct anv_state null_surface_state;
1308
1309 struct anv_pipeline_cache default_pipeline_cache;
1310 struct blorp_context blorp;
1311
1312 struct anv_state border_colors;
1313
1314 struct anv_state slice_hash;
1315
1316 struct anv_queue queue;
1317
1318 struct anv_scratch_pool scratch_pool;
1319
1320 pthread_mutex_t mutex;
1321 pthread_cond_t queue_submit;
1322 int _lost;
1323
1324 struct gen_batch_decode_ctx decoder_ctx;
1325 /*
1326 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1327 * the cmd_buffer's list.
1328 */
1329 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1330
1331 int perf_fd; /* -1 if no opened */
1332 uint64_t perf_metric; /* 0 if unset */
1333
1334 struct gen_aux_map_context *aux_map_ctx;
1335 };
1336
1337 static inline struct anv_instance *
1338 anv_device_instance_or_null(const struct anv_device *device)
1339 {
1340 return device ? device->physical->instance : NULL;
1341 }
1342
1343 static inline struct anv_state_pool *
1344 anv_binding_table_pool(struct anv_device *device)
1345 {
1346 if (device->physical->use_softpin)
1347 return &device->binding_table_pool;
1348 else
1349 return &device->surface_state_pool;
1350 }
1351
1352 static inline struct anv_state
1353 anv_binding_table_pool_alloc(struct anv_device *device) {
1354 if (device->physical->use_softpin)
1355 return anv_state_pool_alloc(&device->binding_table_pool,
1356 device->binding_table_pool.block_size, 0);
1357 else
1358 return anv_state_pool_alloc_back(&device->surface_state_pool);
1359 }
1360
1361 static inline void
1362 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1363 anv_state_pool_free(anv_binding_table_pool(device), state);
1364 }
1365
1366 static inline uint32_t
1367 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1368 {
1369 if (bo->is_external)
1370 return device->isl_dev.mocs.external;
1371 else
1372 return device->isl_dev.mocs.internal;
1373 }
1374
1375 void anv_device_init_blorp(struct anv_device *device);
1376 void anv_device_finish_blorp(struct anv_device *device);
1377
1378 void _anv_device_set_all_queue_lost(struct anv_device *device);
1379 VkResult _anv_device_set_lost(struct anv_device *device,
1380 const char *file, int line,
1381 const char *msg, ...)
1382 anv_printflike(4, 5);
1383 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1384 const char *file, int line,
1385 const char *msg, ...)
1386 anv_printflike(4, 5);
1387 #define anv_device_set_lost(dev, ...) \
1388 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1389 #define anv_queue_set_lost(queue, ...) \
1390 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1391
1392 static inline bool
1393 anv_device_is_lost(struct anv_device *device)
1394 {
1395 return unlikely(p_atomic_read(&device->_lost));
1396 }
1397
1398 VkResult anv_device_query_status(struct anv_device *device);
1399
1400
1401 enum anv_bo_alloc_flags {
1402 /** Specifies that the BO must have a 32-bit address
1403 *
1404 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1405 */
1406 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1407
1408 /** Specifies that the BO may be shared externally */
1409 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1410
1411 /** Specifies that the BO should be mapped */
1412 ANV_BO_ALLOC_MAPPED = (1 << 2),
1413
1414 /** Specifies that the BO should be snooped so we get coherency */
1415 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1416
1417 /** Specifies that the BO should be captured in error states */
1418 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1419
1420 /** Specifies that the BO will have an address assigned by the caller
1421 *
1422 * Such BOs do not exist in any VMA heap.
1423 */
1424 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1425
1426 /** Enables implicit synchronization on the BO
1427 *
1428 * This is the opposite of EXEC_OBJECT_ASYNC.
1429 */
1430 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1431
1432 /** Enables implicit synchronization on the BO
1433 *
1434 * This is equivalent to EXEC_OBJECT_WRITE.
1435 */
1436 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1437
1438 /** Has an address which is visible to the client */
1439 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1440
1441 /** This buffer has implicit CCS data attached to it */
1442 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1443 };
1444
1445 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1446 enum anv_bo_alloc_flags alloc_flags,
1447 uint64_t explicit_address,
1448 struct anv_bo **bo);
1449 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1450 void *host_ptr, uint32_t size,
1451 enum anv_bo_alloc_flags alloc_flags,
1452 uint64_t client_address,
1453 struct anv_bo **bo_out);
1454 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1455 enum anv_bo_alloc_flags alloc_flags,
1456 uint64_t client_address,
1457 struct anv_bo **bo);
1458 VkResult anv_device_export_bo(struct anv_device *device,
1459 struct anv_bo *bo, int *fd_out);
1460 void anv_device_release_bo(struct anv_device *device,
1461 struct anv_bo *bo);
1462
1463 static inline struct anv_bo *
1464 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1465 {
1466 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1467 }
1468
1469 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1470 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1471 int64_t timeout);
1472
1473 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1474 void anv_queue_finish(struct anv_queue *queue);
1475
1476 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1477 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1478 struct anv_batch *batch);
1479
1480 uint64_t anv_gettime_ns(void);
1481 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1482
1483 void* anv_gem_mmap(struct anv_device *device,
1484 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1485 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1486 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1487 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1488 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1489 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1490 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1491 int anv_gem_execbuffer(struct anv_device *device,
1492 struct drm_i915_gem_execbuffer2 *execbuf);
1493 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1494 uint32_t stride, uint32_t tiling);
1495 int anv_gem_create_context(struct anv_device *device);
1496 bool anv_gem_has_context_priority(int fd);
1497 int anv_gem_destroy_context(struct anv_device *device, int context);
1498 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1499 uint64_t value);
1500 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1501 uint64_t *value);
1502 int anv_gem_get_param(int fd, uint32_t param);
1503 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1504 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1505 int anv_gem_get_aperture(int fd, uint64_t *size);
1506 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1507 uint32_t *active, uint32_t *pending);
1508 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1509 int anv_gem_reg_read(struct anv_device *device,
1510 uint32_t offset, uint64_t *result);
1511 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1512 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1513 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1514 uint32_t read_domains, uint32_t write_domain);
1515 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1516 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1517 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1518 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1519 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1520 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1521 uint32_t handle);
1522 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1523 uint32_t handle, int fd);
1524 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1525 bool anv_gem_supports_syncobj_wait(int fd);
1526 int anv_gem_syncobj_wait(struct anv_device *device,
1527 uint32_t *handles, uint32_t num_handles,
1528 int64_t abs_timeout_ns, bool wait_all);
1529
1530 uint64_t anv_vma_alloc(struct anv_device *device,
1531 uint64_t size, uint64_t align,
1532 enum anv_bo_alloc_flags alloc_flags,
1533 uint64_t client_address);
1534 void anv_vma_free(struct anv_device *device,
1535 uint64_t address, uint64_t size);
1536
1537 struct anv_reloc_list {
1538 uint32_t num_relocs;
1539 uint32_t array_length;
1540 struct drm_i915_gem_relocation_entry * relocs;
1541 struct anv_bo ** reloc_bos;
1542 uint32_t dep_words;
1543 BITSET_WORD * deps;
1544 };
1545
1546 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1547 const VkAllocationCallbacks *alloc);
1548 void anv_reloc_list_finish(struct anv_reloc_list *list,
1549 const VkAllocationCallbacks *alloc);
1550
1551 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1552 const VkAllocationCallbacks *alloc,
1553 uint32_t offset, struct anv_bo *target_bo,
1554 uint32_t delta, uint64_t *address_u64_out);
1555
1556 struct anv_batch_bo {
1557 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1558 struct list_head link;
1559
1560 struct anv_bo * bo;
1561
1562 /* Bytes actually consumed in this batch BO */
1563 uint32_t length;
1564
1565 struct anv_reloc_list relocs;
1566 };
1567
1568 struct anv_batch {
1569 const VkAllocationCallbacks * alloc;
1570
1571 void * start;
1572 void * end;
1573 void * next;
1574
1575 struct anv_reloc_list * relocs;
1576
1577 /* This callback is called (with the associated user data) in the event
1578 * that the batch runs out of space.
1579 */
1580 VkResult (*extend_cb)(struct anv_batch *, void *);
1581 void * user_data;
1582
1583 /**
1584 * Current error status of the command buffer. Used to track inconsistent
1585 * or incomplete command buffer states that are the consequence of run-time
1586 * errors such as out of memory scenarios. We want to track this in the
1587 * batch because the command buffer object is not visible to some parts
1588 * of the driver.
1589 */
1590 VkResult status;
1591 };
1592
1593 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1594 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1595 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1596 void *location, struct anv_bo *bo, uint32_t offset);
1597
1598 static inline VkResult
1599 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1600 {
1601 assert(error != VK_SUCCESS);
1602 if (batch->status == VK_SUCCESS)
1603 batch->status = error;
1604 return batch->status;
1605 }
1606
1607 static inline bool
1608 anv_batch_has_error(struct anv_batch *batch)
1609 {
1610 return batch->status != VK_SUCCESS;
1611 }
1612
1613 struct anv_address {
1614 struct anv_bo *bo;
1615 uint32_t offset;
1616 };
1617
1618 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1619
1620 static inline bool
1621 anv_address_is_null(struct anv_address addr)
1622 {
1623 return addr.bo == NULL && addr.offset == 0;
1624 }
1625
1626 static inline uint64_t
1627 anv_address_physical(struct anv_address addr)
1628 {
1629 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1630 return gen_canonical_address(addr.bo->offset + addr.offset);
1631 else
1632 return gen_canonical_address(addr.offset);
1633 }
1634
1635 static inline struct anv_address
1636 anv_address_add(struct anv_address addr, uint64_t offset)
1637 {
1638 addr.offset += offset;
1639 return addr;
1640 }
1641
1642 static inline void
1643 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1644 {
1645 unsigned reloc_size = 0;
1646 if (device->info.gen >= 8) {
1647 reloc_size = sizeof(uint64_t);
1648 *(uint64_t *)p = gen_canonical_address(v);
1649 } else {
1650 reloc_size = sizeof(uint32_t);
1651 *(uint32_t *)p = v;
1652 }
1653
1654 if (flush && !device->info.has_llc)
1655 gen_flush_range(p, reloc_size);
1656 }
1657
1658 static inline uint64_t
1659 _anv_combine_address(struct anv_batch *batch, void *location,
1660 const struct anv_address address, uint32_t delta)
1661 {
1662 if (address.bo == NULL) {
1663 return address.offset + delta;
1664 } else {
1665 assert(batch->start <= location && location < batch->end);
1666
1667 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1668 }
1669 }
1670
1671 #define __gen_address_type struct anv_address
1672 #define __gen_user_data struct anv_batch
1673 #define __gen_combine_address _anv_combine_address
1674
1675 /* Wrapper macros needed to work around preprocessor argument issues. In
1676 * particular, arguments don't get pre-evaluated if they are concatenated.
1677 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1678 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1679 * We can work around this easily enough with these helpers.
1680 */
1681 #define __anv_cmd_length(cmd) cmd ## _length
1682 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1683 #define __anv_cmd_header(cmd) cmd ## _header
1684 #define __anv_cmd_pack(cmd) cmd ## _pack
1685 #define __anv_reg_num(reg) reg ## _num
1686
1687 #define anv_pack_struct(dst, struc, ...) do { \
1688 struct struc __template = { \
1689 __VA_ARGS__ \
1690 }; \
1691 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1692 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1693 } while (0)
1694
1695 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1696 void *__dst = anv_batch_emit_dwords(batch, n); \
1697 if (__dst) { \
1698 struct cmd __template = { \
1699 __anv_cmd_header(cmd), \
1700 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1701 __VA_ARGS__ \
1702 }; \
1703 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1704 } \
1705 __dst; \
1706 })
1707
1708 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1709 do { \
1710 uint32_t *dw; \
1711 \
1712 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1713 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1714 if (!dw) \
1715 break; \
1716 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1717 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1718 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1719 } while (0)
1720
1721 #define anv_batch_emit(batch, cmd, name) \
1722 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1723 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1724 __builtin_expect(_dst != NULL, 1); \
1725 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1726 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1727 _dst = NULL; \
1728 }))
1729
1730 struct anv_device_memory {
1731 struct list_head link;
1732
1733 struct anv_bo * bo;
1734 struct anv_memory_type * type;
1735 VkDeviceSize map_size;
1736 void * map;
1737
1738 /* If set, we are holding reference to AHardwareBuffer
1739 * which we must release when memory is freed.
1740 */
1741 struct AHardwareBuffer * ahw;
1742
1743 /* If set, this memory comes from a host pointer. */
1744 void * host_ptr;
1745 };
1746
1747 /**
1748 * Header for Vertex URB Entry (VUE)
1749 */
1750 struct anv_vue_header {
1751 uint32_t Reserved;
1752 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1753 uint32_t ViewportIndex;
1754 float PointWidth;
1755 };
1756
1757 /** Struct representing a sampled image descriptor
1758 *
1759 * This descriptor layout is used for sampled images, bare sampler, and
1760 * combined image/sampler descriptors.
1761 */
1762 struct anv_sampled_image_descriptor {
1763 /** Bindless image handle
1764 *
1765 * This is expected to already be shifted such that the 20-bit
1766 * SURFACE_STATE table index is in the top 20 bits.
1767 */
1768 uint32_t image;
1769
1770 /** Bindless sampler handle
1771 *
1772 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1773 * to the dynamic state base address.
1774 */
1775 uint32_t sampler;
1776 };
1777
1778 struct anv_texture_swizzle_descriptor {
1779 /** Texture swizzle
1780 *
1781 * See also nir_intrinsic_channel_select_intel
1782 */
1783 uint8_t swizzle[4];
1784
1785 /** Unused padding to ensure the struct is a multiple of 64 bits */
1786 uint32_t _pad;
1787 };
1788
1789 /** Struct representing a storage image descriptor */
1790 struct anv_storage_image_descriptor {
1791 /** Bindless image handles
1792 *
1793 * These are expected to already be shifted such that the 20-bit
1794 * SURFACE_STATE table index is in the top 20 bits.
1795 */
1796 uint32_t read_write;
1797 uint32_t write_only;
1798 };
1799
1800 /** Struct representing a address/range descriptor
1801 *
1802 * The fields of this struct correspond directly to the data layout of
1803 * nir_address_format_64bit_bounded_global addresses. The last field is the
1804 * offset in the NIR address so it must be zero so that when you load the
1805 * descriptor you get a pointer to the start of the range.
1806 */
1807 struct anv_address_range_descriptor {
1808 uint64_t address;
1809 uint32_t range;
1810 uint32_t zero;
1811 };
1812
1813 enum anv_descriptor_data {
1814 /** The descriptor contains a BTI reference to a surface state */
1815 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1816 /** The descriptor contains a BTI reference to a sampler state */
1817 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1818 /** The descriptor contains an actual buffer view */
1819 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1820 /** The descriptor contains auxiliary image layout data */
1821 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1822 /** The descriptor contains auxiliary image layout data */
1823 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1824 /** anv_address_range_descriptor with a buffer address and range */
1825 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1826 /** Bindless surface handle */
1827 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1828 /** Storage image handles */
1829 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1830 /** Storage image handles */
1831 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1832 };
1833
1834 struct anv_descriptor_set_binding_layout {
1835 #ifndef NDEBUG
1836 /* The type of the descriptors in this binding */
1837 VkDescriptorType type;
1838 #endif
1839
1840 /* Flags provided when this binding was created */
1841 VkDescriptorBindingFlagsEXT flags;
1842
1843 /* Bitfield representing the type of data this descriptor contains */
1844 enum anv_descriptor_data data;
1845
1846 /* Maximum number of YCbCr texture/sampler planes */
1847 uint8_t max_plane_count;
1848
1849 /* Number of array elements in this binding (or size in bytes for inline
1850 * uniform data)
1851 */
1852 uint16_t array_size;
1853
1854 /* Index into the flattend descriptor set */
1855 uint16_t descriptor_index;
1856
1857 /* Index into the dynamic state array for a dynamic buffer */
1858 int16_t dynamic_offset_index;
1859
1860 /* Index into the descriptor set buffer views */
1861 int16_t buffer_view_index;
1862
1863 /* Offset into the descriptor buffer where this descriptor lives */
1864 uint32_t descriptor_offset;
1865
1866 /* Immutable samplers (or NULL if no immutable samplers) */
1867 struct anv_sampler **immutable_samplers;
1868 };
1869
1870 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1871
1872 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1873 VkDescriptorType type);
1874
1875 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1876 const struct anv_descriptor_set_binding_layout *binding,
1877 bool sampler);
1878
1879 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1880 const struct anv_descriptor_set_binding_layout *binding,
1881 bool sampler);
1882
1883 struct anv_descriptor_set_layout {
1884 /* Descriptor set layouts can be destroyed at almost any time */
1885 uint32_t ref_cnt;
1886
1887 /* Number of bindings in this descriptor set */
1888 uint16_t binding_count;
1889
1890 /* Total size of the descriptor set with room for all array entries */
1891 uint16_t size;
1892
1893 /* Shader stages affected by this descriptor set */
1894 uint16_t shader_stages;
1895
1896 /* Number of buffer views in this descriptor set */
1897 uint16_t buffer_view_count;
1898
1899 /* Number of dynamic offsets used by this descriptor set */
1900 uint16_t dynamic_offset_count;
1901
1902 /* For each shader stage, which offsets apply to that stage */
1903 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1904
1905 /* Size of the descriptor buffer for this descriptor set */
1906 uint32_t descriptor_buffer_size;
1907
1908 /* Bindings in this descriptor set */
1909 struct anv_descriptor_set_binding_layout binding[0];
1910 };
1911
1912 static inline void
1913 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1914 {
1915 assert(layout && layout->ref_cnt >= 1);
1916 p_atomic_inc(&layout->ref_cnt);
1917 }
1918
1919 static inline void
1920 anv_descriptor_set_layout_unref(struct anv_device *device,
1921 struct anv_descriptor_set_layout *layout)
1922 {
1923 assert(layout && layout->ref_cnt >= 1);
1924 if (p_atomic_dec_zero(&layout->ref_cnt))
1925 vk_free(&device->alloc, layout);
1926 }
1927
1928 struct anv_descriptor {
1929 VkDescriptorType type;
1930
1931 union {
1932 struct {
1933 VkImageLayout layout;
1934 struct anv_image_view *image_view;
1935 struct anv_sampler *sampler;
1936 };
1937
1938 struct {
1939 struct anv_buffer *buffer;
1940 uint64_t offset;
1941 uint64_t range;
1942 };
1943
1944 struct anv_buffer_view *buffer_view;
1945 };
1946 };
1947
1948 struct anv_descriptor_set {
1949 struct anv_descriptor_pool *pool;
1950 struct anv_descriptor_set_layout *layout;
1951 uint32_t size;
1952
1953 /* State relative to anv_descriptor_pool::bo */
1954 struct anv_state desc_mem;
1955 /* Surface state for the descriptor buffer */
1956 struct anv_state desc_surface_state;
1957
1958 uint32_t buffer_view_count;
1959 struct anv_buffer_view *buffer_views;
1960
1961 /* Link to descriptor pool's desc_sets list . */
1962 struct list_head pool_link;
1963
1964 struct anv_descriptor descriptors[0];
1965 };
1966
1967 struct anv_buffer_view {
1968 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1969 uint64_t range; /**< VkBufferViewCreateInfo::range */
1970
1971 struct anv_address address;
1972
1973 struct anv_state surface_state;
1974 struct anv_state storage_surface_state;
1975 struct anv_state writeonly_storage_surface_state;
1976
1977 struct brw_image_param storage_image_param;
1978 };
1979
1980 struct anv_push_descriptor_set {
1981 struct anv_descriptor_set set;
1982
1983 /* Put this field right behind anv_descriptor_set so it fills up the
1984 * descriptors[0] field. */
1985 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1986
1987 /** True if the descriptor set buffer has been referenced by a draw or
1988 * dispatch command.
1989 */
1990 bool set_used_on_gpu;
1991
1992 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1993 };
1994
1995 struct anv_descriptor_pool {
1996 uint32_t size;
1997 uint32_t next;
1998 uint32_t free_list;
1999
2000 struct anv_bo *bo;
2001 struct util_vma_heap bo_heap;
2002
2003 struct anv_state_stream surface_state_stream;
2004 void *surface_state_free_list;
2005
2006 struct list_head desc_sets;
2007
2008 char data[0];
2009 };
2010
2011 enum anv_descriptor_template_entry_type {
2012 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2013 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2014 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2015 };
2016
2017 struct anv_descriptor_template_entry {
2018 /* The type of descriptor in this entry */
2019 VkDescriptorType type;
2020
2021 /* Binding in the descriptor set */
2022 uint32_t binding;
2023
2024 /* Offset at which to write into the descriptor set binding */
2025 uint32_t array_element;
2026
2027 /* Number of elements to write into the descriptor set binding */
2028 uint32_t array_count;
2029
2030 /* Offset into the user provided data */
2031 size_t offset;
2032
2033 /* Stride between elements into the user provided data */
2034 size_t stride;
2035 };
2036
2037 struct anv_descriptor_update_template {
2038 VkPipelineBindPoint bind_point;
2039
2040 /* The descriptor set this template corresponds to. This value is only
2041 * valid if the template was created with the templateType
2042 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2043 */
2044 uint8_t set;
2045
2046 /* Number of entries in this template */
2047 uint32_t entry_count;
2048
2049 /* Entries of the template */
2050 struct anv_descriptor_template_entry entries[0];
2051 };
2052
2053 size_t
2054 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2055
2056 void
2057 anv_descriptor_set_write_image_view(struct anv_device *device,
2058 struct anv_descriptor_set *set,
2059 const VkDescriptorImageInfo * const info,
2060 VkDescriptorType type,
2061 uint32_t binding,
2062 uint32_t element);
2063
2064 void
2065 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2066 struct anv_descriptor_set *set,
2067 VkDescriptorType type,
2068 struct anv_buffer_view *buffer_view,
2069 uint32_t binding,
2070 uint32_t element);
2071
2072 void
2073 anv_descriptor_set_write_buffer(struct anv_device *device,
2074 struct anv_descriptor_set *set,
2075 struct anv_state_stream *alloc_stream,
2076 VkDescriptorType type,
2077 struct anv_buffer *buffer,
2078 uint32_t binding,
2079 uint32_t element,
2080 VkDeviceSize offset,
2081 VkDeviceSize range);
2082 void
2083 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2084 struct anv_descriptor_set *set,
2085 uint32_t binding,
2086 const void *data,
2087 size_t offset,
2088 size_t size);
2089
2090 void
2091 anv_descriptor_set_write_template(struct anv_device *device,
2092 struct anv_descriptor_set *set,
2093 struct anv_state_stream *alloc_stream,
2094 const struct anv_descriptor_update_template *template,
2095 const void *data);
2096
2097 VkResult
2098 anv_descriptor_set_create(struct anv_device *device,
2099 struct anv_descriptor_pool *pool,
2100 struct anv_descriptor_set_layout *layout,
2101 struct anv_descriptor_set **out_set);
2102
2103 void
2104 anv_descriptor_set_destroy(struct anv_device *device,
2105 struct anv_descriptor_pool *pool,
2106 struct anv_descriptor_set *set);
2107
2108 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2109 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2110 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2111 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2112 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2113 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2114
2115 struct anv_pipeline_binding {
2116 /** Index in the descriptor set
2117 *
2118 * This is a flattened index; the descriptor set layout is already taken
2119 * into account.
2120 */
2121 uint32_t index;
2122
2123 /** The descriptor set this surface corresponds to.
2124 *
2125 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2126 * binding is not a normal descriptor set but something else.
2127 */
2128 uint8_t set;
2129
2130 union {
2131 /** Plane in the binding index for images */
2132 uint8_t plane;
2133
2134 /** Input attachment index (relative to the subpass) */
2135 uint8_t input_attachment_index;
2136
2137 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2138 uint8_t dynamic_offset_index;
2139 };
2140
2141 /** For a storage image, whether it is write-only */
2142 uint8_t write_only;
2143
2144 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2145 * assuming POD zero-initialization.
2146 */
2147 uint8_t pad;
2148 };
2149
2150 struct anv_push_range {
2151 /** Index in the descriptor set */
2152 uint32_t index;
2153
2154 /** Descriptor set index */
2155 uint8_t set;
2156
2157 /** Dynamic offset index (for dynamic UBOs) */
2158 uint8_t dynamic_offset_index;
2159
2160 /** Start offset in units of 32B */
2161 uint8_t start;
2162
2163 /** Range in units of 32B */
2164 uint8_t length;
2165 };
2166
2167 struct anv_pipeline_layout {
2168 struct {
2169 struct anv_descriptor_set_layout *layout;
2170 uint32_t dynamic_offset_start;
2171 } set[MAX_SETS];
2172
2173 uint32_t num_sets;
2174
2175 unsigned char sha1[20];
2176 };
2177
2178 struct anv_buffer {
2179 struct anv_device * device;
2180 VkDeviceSize size;
2181
2182 VkBufferUsageFlags usage;
2183
2184 /* Set when bound */
2185 struct anv_address address;
2186 };
2187
2188 static inline uint64_t
2189 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2190 {
2191 assert(offset <= buffer->size);
2192 if (range == VK_WHOLE_SIZE) {
2193 return buffer->size - offset;
2194 } else {
2195 assert(range + offset >= range);
2196 assert(range + offset <= buffer->size);
2197 return range;
2198 }
2199 }
2200
2201 enum anv_cmd_dirty_bits {
2202 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2203 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2204 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2205 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2206 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2207 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2208 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2209 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2210 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2211 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2212 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2213 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2214 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2215 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2216 };
2217 typedef uint32_t anv_cmd_dirty_mask_t;
2218
2219 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2220 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2221 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2222 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2223 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2224 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2225 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2226 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2227 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2228 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2229 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2230
2231 static inline enum anv_cmd_dirty_bits
2232 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2233 {
2234 switch (vk_state) {
2235 case VK_DYNAMIC_STATE_VIEWPORT:
2236 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2237 case VK_DYNAMIC_STATE_SCISSOR:
2238 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2239 case VK_DYNAMIC_STATE_LINE_WIDTH:
2240 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2241 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2242 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2243 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2244 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2245 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2246 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2247 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2248 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2249 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2250 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2251 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2252 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2253 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2254 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2255 default:
2256 assert(!"Unsupported dynamic state");
2257 return 0;
2258 }
2259 }
2260
2261
2262 enum anv_pipe_bits {
2263 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2264 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2265 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2266 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2267 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2268 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2269 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2270 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2271 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2272 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2273 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2274 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2275 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2276
2277 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2278 * a flush has happened but not a CS stall. The next time we do any sort
2279 * of invalidation we need to insert a CS stall at that time. Otherwise,
2280 * we would have to CS stall on every flush which could be bad.
2281 */
2282 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2283
2284 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2285 * target operations related to transfer commands with VkBuffer as
2286 * destination are ongoing. Some operations like copies on the command
2287 * streamer might need to be aware of this to trigger the appropriate stall
2288 * before they can proceed with the copy.
2289 */
2290 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2291
2292 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2293 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2294 * done by writing the AUX-TT register.
2295 */
2296 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2297
2298 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2299 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2300 * implement a workaround for Gen9.
2301 */
2302 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2303 };
2304
2305 #define ANV_PIPE_FLUSH_BITS ( \
2306 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2307 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2308 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2309 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2310
2311 #define ANV_PIPE_STALL_BITS ( \
2312 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2313 ANV_PIPE_DEPTH_STALL_BIT | \
2314 ANV_PIPE_CS_STALL_BIT)
2315
2316 #define ANV_PIPE_INVALIDATE_BITS ( \
2317 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2318 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2319 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2320 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2321 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2322 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2323 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2324
2325 static inline enum anv_pipe_bits
2326 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2327 {
2328 enum anv_pipe_bits pipe_bits = 0;
2329
2330 unsigned b;
2331 for_each_bit(b, flags) {
2332 switch ((VkAccessFlagBits)(1 << b)) {
2333 case VK_ACCESS_SHADER_WRITE_BIT:
2334 /* We're transitioning a buffer that was previously used as write
2335 * destination through the data port. To make its content available
2336 * to future operations, flush the data cache.
2337 */
2338 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2339 break;
2340 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2341 /* We're transitioning a buffer that was previously used as render
2342 * target. To make its content available to future operations, flush
2343 * the render target cache.
2344 */
2345 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2346 break;
2347 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2348 /* We're transitioning a buffer that was previously used as depth
2349 * buffer. To make its content available to future operations, flush
2350 * the depth cache.
2351 */
2352 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2353 break;
2354 case VK_ACCESS_TRANSFER_WRITE_BIT:
2355 /* We're transitioning a buffer that was previously used as a
2356 * transfer write destination. Generic write operations include color
2357 * & depth operations as well as buffer operations like :
2358 * - vkCmdClearColorImage()
2359 * - vkCmdClearDepthStencilImage()
2360 * - vkCmdBlitImage()
2361 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2362 *
2363 * Most of these operations are implemented using Blorp which writes
2364 * through the render target, so flush that cache to make it visible
2365 * to future operations. And for depth related operations we also
2366 * need to flush the depth cache.
2367 */
2368 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2369 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2370 break;
2371 case VK_ACCESS_MEMORY_WRITE_BIT:
2372 /* We're transitioning a buffer for generic write operations. Flush
2373 * all the caches.
2374 */
2375 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2376 break;
2377 default:
2378 break; /* Nothing to do */
2379 }
2380 }
2381
2382 return pipe_bits;
2383 }
2384
2385 static inline enum anv_pipe_bits
2386 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2387 {
2388 enum anv_pipe_bits pipe_bits = 0;
2389
2390 unsigned b;
2391 for_each_bit(b, flags) {
2392 switch ((VkAccessFlagBits)(1 << b)) {
2393 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2394 /* Indirect draw commands take a buffer as input that we're going to
2395 * read from the command streamer to load some of the HW registers
2396 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2397 * command streamer stall so that all the cache flushes have
2398 * completed before the command streamer loads from memory.
2399 */
2400 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2401 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2402 * through a vertex buffer, so invalidate that cache.
2403 */
2404 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2405 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2406 * UBO from the buffer, so we need to invalidate constant cache.
2407 */
2408 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2409 break;
2410 case VK_ACCESS_INDEX_READ_BIT:
2411 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2412 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2413 * commands, so we invalidate the VF cache to make sure there is no
2414 * stale data when we start rendering.
2415 */
2416 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2417 break;
2418 case VK_ACCESS_UNIFORM_READ_BIT:
2419 /* We transitioning a buffer to be used as uniform data. Because
2420 * uniform is accessed through the data port & sampler, we need to
2421 * invalidate the texture cache (sampler) & constant cache (data
2422 * port) to avoid stale data.
2423 */
2424 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2425 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2426 break;
2427 case VK_ACCESS_SHADER_READ_BIT:
2428 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2429 case VK_ACCESS_TRANSFER_READ_BIT:
2430 /* Transitioning a buffer to be read through the sampler, so
2431 * invalidate the texture cache, we don't want any stale data.
2432 */
2433 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2434 break;
2435 case VK_ACCESS_MEMORY_READ_BIT:
2436 /* Transitioning a buffer for generic read, invalidate all the
2437 * caches.
2438 */
2439 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2440 break;
2441 case VK_ACCESS_MEMORY_WRITE_BIT:
2442 /* Generic write, make sure all previously written things land in
2443 * memory.
2444 */
2445 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2446 break;
2447 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2448 /* Transitioning a buffer for conditional rendering. We'll load the
2449 * content of this buffer into HW registers using the command
2450 * streamer, so we need to stall the command streamer to make sure
2451 * any in-flight flush operations have completed.
2452 */
2453 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2454 break;
2455 default:
2456 break; /* Nothing to do */
2457 }
2458 }
2459
2460 return pipe_bits;
2461 }
2462
2463 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2464 VK_IMAGE_ASPECT_COLOR_BIT | \
2465 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2466 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2467 VK_IMAGE_ASPECT_PLANE_2_BIT)
2468 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2469 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2470 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2471 VK_IMAGE_ASPECT_PLANE_2_BIT)
2472
2473 struct anv_vertex_binding {
2474 struct anv_buffer * buffer;
2475 VkDeviceSize offset;
2476 };
2477
2478 struct anv_xfb_binding {
2479 struct anv_buffer * buffer;
2480 VkDeviceSize offset;
2481 VkDeviceSize size;
2482 };
2483
2484 struct anv_push_constants {
2485 /** Push constant data provided by the client through vkPushConstants */
2486 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2487
2488 /** Dynamic offsets for dynamic UBOs and SSBOs */
2489 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2490
2491 uint64_t push_reg_mask;
2492
2493 /** Pad out to a multiple of 32 bytes */
2494 uint32_t pad[2];
2495
2496 struct {
2497 /** Base workgroup ID
2498 *
2499 * Used for vkCmdDispatchBase.
2500 */
2501 uint32_t base_work_group_id[3];
2502
2503 /** Subgroup ID
2504 *
2505 * This is never set by software but is implicitly filled out when
2506 * uploading the push constants for compute shaders.
2507 */
2508 uint32_t subgroup_id;
2509 } cs;
2510 };
2511
2512 struct anv_dynamic_state {
2513 struct {
2514 uint32_t count;
2515 VkViewport viewports[MAX_VIEWPORTS];
2516 } viewport;
2517
2518 struct {
2519 uint32_t count;
2520 VkRect2D scissors[MAX_SCISSORS];
2521 } scissor;
2522
2523 float line_width;
2524
2525 struct {
2526 float bias;
2527 float clamp;
2528 float slope;
2529 } depth_bias;
2530
2531 float blend_constants[4];
2532
2533 struct {
2534 float min;
2535 float max;
2536 } depth_bounds;
2537
2538 struct {
2539 uint32_t front;
2540 uint32_t back;
2541 } stencil_compare_mask;
2542
2543 struct {
2544 uint32_t front;
2545 uint32_t back;
2546 } stencil_write_mask;
2547
2548 struct {
2549 uint32_t front;
2550 uint32_t back;
2551 } stencil_reference;
2552
2553 struct {
2554 uint32_t factor;
2555 uint16_t pattern;
2556 } line_stipple;
2557 };
2558
2559 extern const struct anv_dynamic_state default_dynamic_state;
2560
2561 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2562 const struct anv_dynamic_state *src,
2563 uint32_t copy_mask);
2564
2565 struct anv_surface_state {
2566 struct anv_state state;
2567 /** Address of the surface referred to by this state
2568 *
2569 * This address is relative to the start of the BO.
2570 */
2571 struct anv_address address;
2572 /* Address of the aux surface, if any
2573 *
2574 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2575 *
2576 * With the exception of gen8, the bottom 12 bits of this address' offset
2577 * include extra aux information.
2578 */
2579 struct anv_address aux_address;
2580 /* Address of the clear color, if any
2581 *
2582 * This address is relative to the start of the BO.
2583 */
2584 struct anv_address clear_address;
2585 };
2586
2587 /**
2588 * Attachment state when recording a renderpass instance.
2589 *
2590 * The clear value is valid only if there exists a pending clear.
2591 */
2592 struct anv_attachment_state {
2593 enum isl_aux_usage aux_usage;
2594 struct anv_surface_state color;
2595 struct anv_surface_state input;
2596
2597 VkImageLayout current_layout;
2598 VkImageLayout current_stencil_layout;
2599 VkImageAspectFlags pending_clear_aspects;
2600 VkImageAspectFlags pending_load_aspects;
2601 bool fast_clear;
2602 VkClearValue clear_value;
2603
2604 /* When multiview is active, attachments with a renderpass clear
2605 * operation have their respective layers cleared on the first
2606 * subpass that uses them, and only in that subpass. We keep track
2607 * of this using a bitfield to indicate which layers of an attachment
2608 * have not been cleared yet when multiview is active.
2609 */
2610 uint32_t pending_clear_views;
2611 struct anv_image_view * image_view;
2612 };
2613
2614 /** State tracking for vertex buffer flushes
2615 *
2616 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2617 * addresses. If you happen to have two vertex buffers which get placed
2618 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2619 * collisions. In order to solve this problem, we track vertex address ranges
2620 * which are live in the cache and invalidate the cache if one ever exceeds 32
2621 * bits.
2622 */
2623 struct anv_vb_cache_range {
2624 /* Virtual address at which the live vertex buffer cache range starts for
2625 * this vertex buffer index.
2626 */
2627 uint64_t start;
2628
2629 /* Virtual address of the byte after where vertex buffer cache range ends.
2630 * This is exclusive such that end - start is the size of the range.
2631 */
2632 uint64_t end;
2633 };
2634
2635 /** State tracking for particular pipeline bind point
2636 *
2637 * This struct is the base struct for anv_cmd_graphics_state and
2638 * anv_cmd_compute_state. These are used to track state which is bound to a
2639 * particular type of pipeline. Generic state that applies per-stage such as
2640 * binding table offsets and push constants is tracked generically with a
2641 * per-stage array in anv_cmd_state.
2642 */
2643 struct anv_cmd_pipeline_state {
2644 struct anv_descriptor_set *descriptors[MAX_SETS];
2645 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2646 };
2647
2648 /** State tracking for graphics pipeline
2649 *
2650 * This has anv_cmd_pipeline_state as a base struct to track things which get
2651 * bound to a graphics pipeline. Along with general pipeline bind point state
2652 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2653 * state which is graphics-specific.
2654 */
2655 struct anv_cmd_graphics_state {
2656 struct anv_cmd_pipeline_state base;
2657
2658 struct anv_graphics_pipeline *pipeline;
2659
2660 anv_cmd_dirty_mask_t dirty;
2661 uint32_t vb_dirty;
2662
2663 struct anv_vb_cache_range ib_bound_range;
2664 struct anv_vb_cache_range ib_dirty_range;
2665 struct anv_vb_cache_range vb_bound_ranges[33];
2666 struct anv_vb_cache_range vb_dirty_ranges[33];
2667
2668 struct anv_dynamic_state dynamic;
2669
2670 struct {
2671 struct anv_buffer *index_buffer;
2672 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2673 uint32_t index_offset;
2674 } gen7;
2675 };
2676
2677 /** State tracking for compute pipeline
2678 *
2679 * This has anv_cmd_pipeline_state as a base struct to track things which get
2680 * bound to a compute pipeline. Along with general pipeline bind point state
2681 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2682 * state which is compute-specific.
2683 */
2684 struct anv_cmd_compute_state {
2685 struct anv_cmd_pipeline_state base;
2686
2687 struct anv_compute_pipeline *pipeline;
2688
2689 bool pipeline_dirty;
2690
2691 struct anv_address num_workgroups;
2692 };
2693
2694 /** State required while building cmd buffer */
2695 struct anv_cmd_state {
2696 /* PIPELINE_SELECT.PipelineSelection */
2697 uint32_t current_pipeline;
2698 const struct gen_l3_config * current_l3_config;
2699 uint32_t last_aux_map_state;
2700
2701 struct anv_cmd_graphics_state gfx;
2702 struct anv_cmd_compute_state compute;
2703
2704 enum anv_pipe_bits pending_pipe_bits;
2705 VkShaderStageFlags descriptors_dirty;
2706 VkShaderStageFlags push_constants_dirty;
2707
2708 struct anv_framebuffer * framebuffer;
2709 struct anv_render_pass * pass;
2710 struct anv_subpass * subpass;
2711 VkRect2D render_area;
2712 uint32_t restart_index;
2713 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2714 bool xfb_enabled;
2715 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2716 VkShaderStageFlags push_constant_stages;
2717 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2718 struct anv_state binding_tables[MESA_SHADER_STAGES];
2719 struct anv_state samplers[MESA_SHADER_STAGES];
2720
2721 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2722 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2723 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2724
2725 /**
2726 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2727 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2728 * and before invoking the secondary in ExecuteCommands.
2729 */
2730 bool pma_fix_enabled;
2731
2732 /**
2733 * Whether or not we know for certain that HiZ is enabled for the current
2734 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2735 * enabled or not, this will be false.
2736 */
2737 bool hiz_enabled;
2738
2739 bool conditional_render_enabled;
2740
2741 /**
2742 * Last rendering scale argument provided to
2743 * genX(cmd_buffer_emit_hashing_mode)().
2744 */
2745 unsigned current_hash_scale;
2746
2747 /**
2748 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2749 * valid only when recording a render pass instance.
2750 */
2751 struct anv_attachment_state * attachments;
2752
2753 /**
2754 * Surface states for color render targets. These are stored in a single
2755 * flat array. For depth-stencil attachments, the surface state is simply
2756 * left blank.
2757 */
2758 struct anv_state attachment_states;
2759
2760 /**
2761 * A null surface state of the right size to match the framebuffer. This
2762 * is one of the states in attachment_states.
2763 */
2764 struct anv_state null_surface_state;
2765 };
2766
2767 struct anv_cmd_pool {
2768 VkAllocationCallbacks alloc;
2769 struct list_head cmd_buffers;
2770 };
2771
2772 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2773
2774 enum anv_cmd_buffer_exec_mode {
2775 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2776 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2777 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2778 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2779 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2780 };
2781
2782 struct anv_cmd_buffer {
2783 VK_LOADER_DATA _loader_data;
2784
2785 struct anv_device * device;
2786
2787 struct anv_cmd_pool * pool;
2788 struct list_head pool_link;
2789
2790 struct anv_batch batch;
2791
2792 /* Fields required for the actual chain of anv_batch_bo's.
2793 *
2794 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2795 */
2796 struct list_head batch_bos;
2797 enum anv_cmd_buffer_exec_mode exec_mode;
2798
2799 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2800 * referenced by this command buffer
2801 *
2802 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2803 */
2804 struct u_vector seen_bbos;
2805
2806 /* A vector of int32_t's for every block of binding tables.
2807 *
2808 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2809 */
2810 struct u_vector bt_block_states;
2811 struct anv_state bt_next;
2812
2813 struct anv_reloc_list surface_relocs;
2814 /** Last seen surface state block pool center bo offset */
2815 uint32_t last_ss_pool_center;
2816
2817 /* Serial for tracking buffer completion */
2818 uint32_t serial;
2819
2820 /* Stream objects for storing temporary data */
2821 struct anv_state_stream surface_state_stream;
2822 struct anv_state_stream dynamic_state_stream;
2823
2824 VkCommandBufferUsageFlags usage_flags;
2825 VkCommandBufferLevel level;
2826
2827 struct anv_cmd_state state;
2828
2829 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2830 uint64_t intel_perf_marker;
2831 };
2832
2833 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2834 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2835 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2836 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2837 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2838 struct anv_cmd_buffer *secondary);
2839 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2840 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2841 struct anv_cmd_buffer *cmd_buffer,
2842 const VkSemaphore *in_semaphores,
2843 const uint64_t *in_wait_values,
2844 uint32_t num_in_semaphores,
2845 const VkSemaphore *out_semaphores,
2846 const uint64_t *out_signal_values,
2847 uint32_t num_out_semaphores,
2848 VkFence fence);
2849
2850 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2851
2852 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2853 const void *data, uint32_t size, uint32_t alignment);
2854 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2855 uint32_t *a, uint32_t *b,
2856 uint32_t dwords, uint32_t alignment);
2857
2858 struct anv_address
2859 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2860 struct anv_state
2861 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2862 uint32_t entries, uint32_t *state_offset);
2863 struct anv_state
2864 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2865 struct anv_state
2866 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2867 uint32_t size, uint32_t alignment);
2868
2869 VkResult
2870 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2871
2872 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2873 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2874 bool depth_clamp_enable);
2875 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2876
2877 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2878 struct anv_render_pass *pass,
2879 struct anv_framebuffer *framebuffer,
2880 const VkClearValue *clear_values);
2881
2882 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2883
2884 struct anv_state
2885 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2886 gl_shader_stage stage);
2887 struct anv_state
2888 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2889
2890 const struct anv_image_view *
2891 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2892
2893 VkResult
2894 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2895 uint32_t num_entries,
2896 uint32_t *state_offset,
2897 struct anv_state *bt_state);
2898
2899 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2900
2901 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2902
2903 enum anv_fence_type {
2904 ANV_FENCE_TYPE_NONE = 0,
2905 ANV_FENCE_TYPE_BO,
2906 ANV_FENCE_TYPE_WSI_BO,
2907 ANV_FENCE_TYPE_SYNCOBJ,
2908 ANV_FENCE_TYPE_WSI,
2909 };
2910
2911 enum anv_bo_fence_state {
2912 /** Indicates that this is a new (or newly reset fence) */
2913 ANV_BO_FENCE_STATE_RESET,
2914
2915 /** Indicates that this fence has been submitted to the GPU but is still
2916 * (as far as we know) in use by the GPU.
2917 */
2918 ANV_BO_FENCE_STATE_SUBMITTED,
2919
2920 ANV_BO_FENCE_STATE_SIGNALED,
2921 };
2922
2923 struct anv_fence_impl {
2924 enum anv_fence_type type;
2925
2926 union {
2927 /** Fence implementation for BO fences
2928 *
2929 * These fences use a BO and a set of CPU-tracked state flags. The BO
2930 * is added to the object list of the last execbuf call in a QueueSubmit
2931 * and is marked EXEC_WRITE. The state flags track when the BO has been
2932 * submitted to the kernel. We need to do this because Vulkan lets you
2933 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2934 * will say it's idle in this case.
2935 */
2936 struct {
2937 struct anv_bo *bo;
2938 enum anv_bo_fence_state state;
2939 } bo;
2940
2941 /** DRM syncobj handle for syncobj-based fences */
2942 uint32_t syncobj;
2943
2944 /** WSI fence */
2945 struct wsi_fence *fence_wsi;
2946 };
2947 };
2948
2949 struct anv_fence {
2950 /* Permanent fence state. Every fence has some form of permanent state
2951 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2952 * cross-process fences) or it could just be a dummy for use internally.
2953 */
2954 struct anv_fence_impl permanent;
2955
2956 /* Temporary fence state. A fence *may* have temporary state. That state
2957 * is added to the fence by an import operation and is reset back to
2958 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2959 * state cannot be signaled because the fence must already be signaled
2960 * before the temporary state can be exported from the fence in the other
2961 * process and imported here.
2962 */
2963 struct anv_fence_impl temporary;
2964 };
2965
2966 void anv_fence_reset_temporary(struct anv_device *device,
2967 struct anv_fence *fence);
2968
2969 struct anv_event {
2970 uint64_t semaphore;
2971 struct anv_state state;
2972 };
2973
2974 enum anv_semaphore_type {
2975 ANV_SEMAPHORE_TYPE_NONE = 0,
2976 ANV_SEMAPHORE_TYPE_DUMMY,
2977 ANV_SEMAPHORE_TYPE_BO,
2978 ANV_SEMAPHORE_TYPE_WSI_BO,
2979 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2980 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2981 ANV_SEMAPHORE_TYPE_TIMELINE,
2982 };
2983
2984 struct anv_timeline_point {
2985 struct list_head link;
2986
2987 uint64_t serial;
2988
2989 /* Number of waiter on this point, when > 0 the point should not be garbage
2990 * collected.
2991 */
2992 int waiting;
2993
2994 /* BO used for synchronization. */
2995 struct anv_bo *bo;
2996 };
2997
2998 struct anv_timeline {
2999 pthread_mutex_t mutex;
3000 pthread_cond_t cond;
3001
3002 uint64_t highest_past;
3003 uint64_t highest_pending;
3004
3005 struct list_head points;
3006 struct list_head free_points;
3007 };
3008
3009 struct anv_semaphore_impl {
3010 enum anv_semaphore_type type;
3011
3012 union {
3013 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3014 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3015 * object list on any execbuf2 calls for which this semaphore is used as
3016 * a wait or signal fence. When used as a signal fence or when type ==
3017 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3018 */
3019 struct anv_bo *bo;
3020
3021 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3022 * If the semaphore is in the unsignaled state due to either just being
3023 * created or because it has been used for a wait, fd will be -1.
3024 */
3025 int fd;
3026
3027 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3028 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3029 * import so we don't need to bother with a userspace cache.
3030 */
3031 uint32_t syncobj;
3032
3033 /* Non shareable timeline semaphore
3034 *
3035 * Used when kernel don't have support for timeline semaphores.
3036 */
3037 struct anv_timeline timeline;
3038 };
3039 };
3040
3041 struct anv_semaphore {
3042 uint32_t refcount;
3043
3044 /* Permanent semaphore state. Every semaphore has some form of permanent
3045 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3046 * (for cross-process semaphores0 or it could just be a dummy for use
3047 * internally.
3048 */
3049 struct anv_semaphore_impl permanent;
3050
3051 /* Temporary semaphore state. A semaphore *may* have temporary state.
3052 * That state is added to the semaphore by an import operation and is reset
3053 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3054 * semaphore with temporary state cannot be signaled because the semaphore
3055 * must already be signaled before the temporary state can be exported from
3056 * the semaphore in the other process and imported here.
3057 */
3058 struct anv_semaphore_impl temporary;
3059 };
3060
3061 void anv_semaphore_reset_temporary(struct anv_device *device,
3062 struct anv_semaphore *semaphore);
3063
3064 struct anv_shader_module {
3065 unsigned char sha1[20];
3066 uint32_t size;
3067 char data[0];
3068 };
3069
3070 static inline gl_shader_stage
3071 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3072 {
3073 assert(__builtin_popcount(vk_stage) == 1);
3074 return ffs(vk_stage) - 1;
3075 }
3076
3077 static inline VkShaderStageFlagBits
3078 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3079 {
3080 return (1 << mesa_stage);
3081 }
3082
3083 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3084
3085 #define anv_foreach_stage(stage, stage_bits) \
3086 for (gl_shader_stage stage, \
3087 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3088 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3089 __tmp &= ~(1 << (stage)))
3090
3091 struct anv_pipeline_bind_map {
3092 unsigned char surface_sha1[20];
3093 unsigned char sampler_sha1[20];
3094 unsigned char push_sha1[20];
3095
3096 uint32_t surface_count;
3097 uint32_t sampler_count;
3098
3099 struct anv_pipeline_binding * surface_to_descriptor;
3100 struct anv_pipeline_binding * sampler_to_descriptor;
3101
3102 struct anv_push_range push_ranges[4];
3103 };
3104
3105 struct anv_shader_bin_key {
3106 uint32_t size;
3107 uint8_t data[0];
3108 };
3109
3110 struct anv_shader_bin {
3111 uint32_t ref_cnt;
3112
3113 gl_shader_stage stage;
3114
3115 const struct anv_shader_bin_key *key;
3116
3117 struct anv_state kernel;
3118 uint32_t kernel_size;
3119
3120 struct anv_state constant_data;
3121 uint32_t constant_data_size;
3122
3123 const struct brw_stage_prog_data *prog_data;
3124 uint32_t prog_data_size;
3125
3126 struct brw_compile_stats stats[3];
3127 uint32_t num_stats;
3128
3129 struct nir_xfb_info *xfb_info;
3130
3131 struct anv_pipeline_bind_map bind_map;
3132 };
3133
3134 struct anv_shader_bin *
3135 anv_shader_bin_create(struct anv_device *device,
3136 gl_shader_stage stage,
3137 const void *key, uint32_t key_size,
3138 const void *kernel, uint32_t kernel_size,
3139 const void *constant_data, uint32_t constant_data_size,
3140 const struct brw_stage_prog_data *prog_data,
3141 uint32_t prog_data_size,
3142 const struct brw_compile_stats *stats, uint32_t num_stats,
3143 const struct nir_xfb_info *xfb_info,
3144 const struct anv_pipeline_bind_map *bind_map);
3145
3146 void
3147 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3148
3149 static inline void
3150 anv_shader_bin_ref(struct anv_shader_bin *shader)
3151 {
3152 assert(shader && shader->ref_cnt >= 1);
3153 p_atomic_inc(&shader->ref_cnt);
3154 }
3155
3156 static inline void
3157 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3158 {
3159 assert(shader && shader->ref_cnt >= 1);
3160 if (p_atomic_dec_zero(&shader->ref_cnt))
3161 anv_shader_bin_destroy(device, shader);
3162 }
3163
3164 struct anv_pipeline_executable {
3165 gl_shader_stage stage;
3166
3167 struct brw_compile_stats stats;
3168
3169 char *nir;
3170 char *disasm;
3171 };
3172
3173 enum anv_pipeline_type {
3174 ANV_PIPELINE_GRAPHICS,
3175 ANV_PIPELINE_COMPUTE,
3176 };
3177
3178 struct anv_pipeline {
3179 struct anv_device * device;
3180
3181 struct anv_batch batch;
3182 struct anv_reloc_list batch_relocs;
3183
3184 void * mem_ctx;
3185
3186 enum anv_pipeline_type type;
3187 VkPipelineCreateFlags flags;
3188
3189 struct util_dynarray executables;
3190
3191 const struct gen_l3_config * l3_config;
3192 };
3193
3194 struct anv_graphics_pipeline {
3195 struct anv_pipeline base;
3196
3197 uint32_t batch_data[512];
3198
3199 anv_cmd_dirty_mask_t dynamic_state_mask;
3200 struct anv_dynamic_state dynamic_state;
3201
3202 uint32_t topology;
3203
3204 struct anv_subpass * subpass;
3205
3206 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3207
3208 VkShaderStageFlags active_stages;
3209
3210 bool primitive_restart;
3211 bool writes_depth;
3212 bool depth_test_enable;
3213 bool writes_stencil;
3214 bool stencil_test_enable;
3215 bool depth_clamp_enable;
3216 bool depth_clip_enable;
3217 bool sample_shading_enable;
3218 bool kill_pixel;
3219 bool depth_bounds_test_enable;
3220
3221 /* When primitive replication is used, subpass->view_mask will describe what
3222 * views to replicate.
3223 */
3224 bool use_primitive_replication;
3225
3226 struct anv_state blend_state;
3227
3228 uint32_t vb_used;
3229 struct anv_pipeline_vertex_binding {
3230 uint32_t stride;
3231 bool instanced;
3232 uint32_t instance_divisor;
3233 } vb[MAX_VBS];
3234
3235 struct {
3236 uint32_t sf[7];
3237 uint32_t depth_stencil_state[3];
3238 } gen7;
3239
3240 struct {
3241 uint32_t sf[4];
3242 uint32_t raster[5];
3243 uint32_t wm_depth_stencil[3];
3244 } gen8;
3245
3246 struct {
3247 uint32_t wm_depth_stencil[4];
3248 } gen9;
3249 };
3250
3251 struct anv_compute_pipeline {
3252 struct anv_pipeline base;
3253
3254 struct anv_shader_bin * cs;
3255 uint32_t cs_right_mask;
3256 uint32_t batch_data[9];
3257 uint32_t interface_descriptor_data[8];
3258 };
3259
3260 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3261 static inline struct anv_##pipe_type##_pipeline * \
3262 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3263 { \
3264 assert(pipeline->type == pipe_enum); \
3265 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3266 }
3267
3268 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3269 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3270
3271 static inline bool
3272 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3273 gl_shader_stage stage)
3274 {
3275 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3276 }
3277
3278 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3279 static inline const struct brw_##prefix##_prog_data * \
3280 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3281 { \
3282 if (anv_pipeline_has_stage(pipeline, stage)) { \
3283 return (const struct brw_##prefix##_prog_data *) \
3284 pipeline->shaders[stage]->prog_data; \
3285 } else { \
3286 return NULL; \
3287 } \
3288 }
3289
3290 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3291 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3292 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3293 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3294 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3295
3296 static inline const struct brw_cs_prog_data *
3297 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3298 {
3299 assert(pipeline->cs);
3300 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3301 }
3302
3303 static inline const struct brw_vue_prog_data *
3304 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3305 {
3306 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3307 return &get_gs_prog_data(pipeline)->base;
3308 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3309 return &get_tes_prog_data(pipeline)->base;
3310 else
3311 return &get_vs_prog_data(pipeline)->base;
3312 }
3313
3314 VkResult
3315 anv_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3316 struct anv_pipeline_cache *cache,
3317 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3318 const VkAllocationCallbacks *alloc);
3319
3320 VkResult
3321 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3322 struct anv_pipeline_cache *cache,
3323 const VkComputePipelineCreateInfo *info,
3324 const struct anv_shader_module *module,
3325 const char *entrypoint,
3326 const VkSpecializationInfo *spec_info);
3327
3328 uint32_t
3329 anv_cs_workgroup_size(const struct anv_compute_pipeline *pipeline);
3330
3331 uint32_t
3332 anv_cs_threads(const struct anv_compute_pipeline *pipeline);
3333
3334 struct anv_format_plane {
3335 enum isl_format isl_format:16;
3336 struct isl_swizzle swizzle;
3337
3338 /* Whether this plane contains chroma channels */
3339 bool has_chroma;
3340
3341 /* For downscaling of YUV planes */
3342 uint8_t denominator_scales[2];
3343
3344 /* How to map sampled ycbcr planes to a single 4 component element. */
3345 struct isl_swizzle ycbcr_swizzle;
3346
3347 /* What aspect is associated to this plane */
3348 VkImageAspectFlags aspect;
3349 };
3350
3351
3352 struct anv_format {
3353 struct anv_format_plane planes[3];
3354 VkFormat vk_format;
3355 uint8_t n_planes;
3356 bool can_ycbcr;
3357 };
3358
3359 /**
3360 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3361 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3362 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3363 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3364 */
3365 static inline uint32_t
3366 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3367 VkImageAspectFlags aspect_mask)
3368 {
3369 switch (aspect_mask) {
3370 case VK_IMAGE_ASPECT_COLOR_BIT:
3371 case VK_IMAGE_ASPECT_DEPTH_BIT:
3372 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3373 return 0;
3374 case VK_IMAGE_ASPECT_STENCIL_BIT:
3375 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3376 return 0;
3377 /* Fall-through */
3378 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3379 return 1;
3380 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3381 return 2;
3382 default:
3383 /* Purposefully assert with depth/stencil aspects. */
3384 unreachable("invalid image aspect");
3385 }
3386 }
3387
3388 static inline VkImageAspectFlags
3389 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3390 uint32_t plane)
3391 {
3392 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3393 if (util_bitcount(image_aspects) > 1)
3394 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3395 return VK_IMAGE_ASPECT_COLOR_BIT;
3396 }
3397 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3398 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3399 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3400 return VK_IMAGE_ASPECT_STENCIL_BIT;
3401 }
3402
3403 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3404 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3405
3406 const struct anv_format *
3407 anv_get_format(VkFormat format);
3408
3409 static inline uint32_t
3410 anv_get_format_planes(VkFormat vk_format)
3411 {
3412 const struct anv_format *format = anv_get_format(vk_format);
3413
3414 return format != NULL ? format->n_planes : 0;
3415 }
3416
3417 struct anv_format_plane
3418 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3419 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3420
3421 static inline enum isl_format
3422 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3423 VkImageAspectFlags aspect, VkImageTiling tiling)
3424 {
3425 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3426 }
3427
3428 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3429 VkImageCreateFlags create_flags,
3430 VkFormat vk_format,
3431 VkImageTiling vk_tiling,
3432 const VkImageFormatListCreateInfoKHR *fmt_list);
3433
3434 static inline struct isl_swizzle
3435 anv_swizzle_for_render(struct isl_swizzle swizzle)
3436 {
3437 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3438 * RGB as RGBA for texturing
3439 */
3440 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3441 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3442
3443 /* But it doesn't matter what we render to that channel */
3444 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3445
3446 return swizzle;
3447 }
3448
3449 void
3450 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3451
3452 /**
3453 * Subsurface of an anv_image.
3454 */
3455 struct anv_surface {
3456 /** Valid only if isl_surf::size_B > 0. */
3457 struct isl_surf isl;
3458
3459 /**
3460 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3461 */
3462 uint32_t offset;
3463 };
3464
3465 struct anv_image {
3466 VkImageType type; /**< VkImageCreateInfo::imageType */
3467 /* The original VkFormat provided by the client. This may not match any
3468 * of the actual surface formats.
3469 */
3470 VkFormat vk_format;
3471 const struct anv_format *format;
3472
3473 VkImageAspectFlags aspects;
3474 VkExtent3D extent;
3475 uint32_t levels;
3476 uint32_t array_size;
3477 uint32_t samples; /**< VkImageCreateInfo::samples */
3478 uint32_t n_planes;
3479 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3480 VkImageUsageFlags stencil_usage;
3481 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3482 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3483
3484 /** True if this is needs to be bound to an appropriately tiled BO.
3485 *
3486 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3487 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3488 * we require a dedicated allocation so that we can know to allocate a
3489 * tiled buffer.
3490 */
3491 bool needs_set_tiling;
3492
3493 /**
3494 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3495 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3496 */
3497 uint64_t drm_format_mod;
3498
3499 VkDeviceSize size;
3500 uint32_t alignment;
3501
3502 /* Whether the image is made of several underlying buffer objects rather a
3503 * single one with different offsets.
3504 */
3505 bool disjoint;
3506
3507 /* Image was created with external format. */
3508 bool external_format;
3509
3510 /**
3511 * Image subsurfaces
3512 *
3513 * For each foo, anv_image::planes[x].surface is valid if and only if
3514 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3515 * to figure the number associated with a given aspect.
3516 *
3517 * The hardware requires that the depth buffer and stencil buffer be
3518 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3519 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3520 * allocate the depth and stencil buffers as separate surfaces in the same
3521 * bo.
3522 *
3523 * Memory layout :
3524 *
3525 * -----------------------
3526 * | surface0 | /|\
3527 * ----------------------- |
3528 * | shadow surface0 | |
3529 * ----------------------- | Plane 0
3530 * | aux surface0 | |
3531 * ----------------------- |
3532 * | fast clear colors0 | \|/
3533 * -----------------------
3534 * | surface1 | /|\
3535 * ----------------------- |
3536 * | shadow surface1 | |
3537 * ----------------------- | Plane 1
3538 * | aux surface1 | |
3539 * ----------------------- |
3540 * | fast clear colors1 | \|/
3541 * -----------------------
3542 * | ... |
3543 * | |
3544 * -----------------------
3545 */
3546 struct {
3547 /**
3548 * Offset of the entire plane (whenever the image is disjoint this is
3549 * set to 0).
3550 */
3551 uint32_t offset;
3552
3553 VkDeviceSize size;
3554 uint32_t alignment;
3555
3556 struct anv_surface surface;
3557
3558 /**
3559 * A surface which shadows the main surface and may have different
3560 * tiling. This is used for sampling using a tiling that isn't supported
3561 * for other operations.
3562 */
3563 struct anv_surface shadow_surface;
3564
3565 /**
3566 * The base aux usage for this image. For color images, this can be
3567 * either CCS_E or CCS_D depending on whether or not we can reliably
3568 * leave CCS on all the time.
3569 */
3570 enum isl_aux_usage aux_usage;
3571
3572 struct anv_surface aux_surface;
3573
3574 /**
3575 * Offset of the fast clear state (used to compute the
3576 * fast_clear_state_offset of the following planes).
3577 */
3578 uint32_t fast_clear_state_offset;
3579
3580 /**
3581 * BO associated with this plane, set when bound.
3582 */
3583 struct anv_address address;
3584
3585 /**
3586 * When destroying the image, also free the bo.
3587 * */
3588 bool bo_is_owned;
3589 } planes[3];
3590 };
3591
3592 /* The ordering of this enum is important */
3593 enum anv_fast_clear_type {
3594 /** Image does not have/support any fast-clear blocks */
3595 ANV_FAST_CLEAR_NONE = 0,
3596 /** Image has/supports fast-clear but only to the default value */
3597 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3598 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3599 ANV_FAST_CLEAR_ANY = 2,
3600 };
3601
3602 /* Returns the number of auxiliary buffer levels attached to an image. */
3603 static inline uint8_t
3604 anv_image_aux_levels(const struct anv_image * const image,
3605 VkImageAspectFlagBits aspect)
3606 {
3607 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3608 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3609 return 0;
3610
3611 /* The Gen12 CCS aux surface is represented with only one level. */
3612 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3613 image->planes[plane].surface.isl.levels :
3614 image->planes[plane].aux_surface.isl.levels;
3615 }
3616
3617 /* Returns the number of auxiliary buffer layers attached to an image. */
3618 static inline uint32_t
3619 anv_image_aux_layers(const struct anv_image * const image,
3620 VkImageAspectFlagBits aspect,
3621 const uint8_t miplevel)
3622 {
3623 assert(image);
3624
3625 /* The miplevel must exist in the main buffer. */
3626 assert(miplevel < image->levels);
3627
3628 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3629 /* There are no layers with auxiliary data because the miplevel has no
3630 * auxiliary data.
3631 */
3632 return 0;
3633 } else {
3634 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3635
3636 /* The Gen12 CCS aux surface is represented with only one layer. */
3637 const struct isl_extent4d *aux_logical_level0_px =
3638 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3639 &image->planes[plane].surface.isl.logical_level0_px :
3640 &image->planes[plane].aux_surface.isl.logical_level0_px;
3641
3642 return MAX2(aux_logical_level0_px->array_len,
3643 aux_logical_level0_px->depth >> miplevel);
3644 }
3645 }
3646
3647 static inline struct anv_address
3648 anv_image_get_clear_color_addr(const struct anv_device *device,
3649 const struct anv_image *image,
3650 VkImageAspectFlagBits aspect)
3651 {
3652 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3653
3654 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3655 return anv_address_add(image->planes[plane].address,
3656 image->planes[plane].fast_clear_state_offset);
3657 }
3658
3659 static inline struct anv_address
3660 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3661 const struct anv_image *image,
3662 VkImageAspectFlagBits aspect)
3663 {
3664 struct anv_address addr =
3665 anv_image_get_clear_color_addr(device, image, aspect);
3666
3667 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3668 device->isl_dev.ss.clear_color_state_size :
3669 device->isl_dev.ss.clear_value_size;
3670 return anv_address_add(addr, clear_color_state_size);
3671 }
3672
3673 static inline struct anv_address
3674 anv_image_get_compression_state_addr(const struct anv_device *device,
3675 const struct anv_image *image,
3676 VkImageAspectFlagBits aspect,
3677 uint32_t level, uint32_t array_layer)
3678 {
3679 assert(level < anv_image_aux_levels(image, aspect));
3680 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3681 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3682 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3683
3684 struct anv_address addr =
3685 anv_image_get_fast_clear_type_addr(device, image, aspect);
3686 addr.offset += 4; /* Go past the fast clear type */
3687
3688 if (image->type == VK_IMAGE_TYPE_3D) {
3689 for (uint32_t l = 0; l < level; l++)
3690 addr.offset += anv_minify(image->extent.depth, l) * 4;
3691 } else {
3692 addr.offset += level * image->array_size * 4;
3693 }
3694 addr.offset += array_layer * 4;
3695
3696 assert(addr.offset <
3697 image->planes[plane].address.offset + image->planes[plane].size);
3698 return addr;
3699 }
3700
3701 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3702 static inline bool
3703 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3704 const struct anv_image *image)
3705 {
3706 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3707 return false;
3708
3709 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3710 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3711 * say:
3712 *
3713 * "If this field is set to AUX_HIZ, Number of Multisamples must
3714 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3715 */
3716 if (image->type == VK_IMAGE_TYPE_3D)
3717 return false;
3718
3719 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3720 * struct. There's documentation which suggests that this feature actually
3721 * reduces performance on BDW, but it has only been observed to help so
3722 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3723 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3724 */
3725 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3726 return false;
3727
3728 return image->samples == 1;
3729 }
3730
3731 static inline bool
3732 anv_image_plane_uses_aux_map(const struct anv_device *device,
3733 const struct anv_image *image,
3734 uint32_t plane)
3735 {
3736 return device->info.has_aux_map &&
3737 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3738 }
3739
3740 void
3741 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3742 const struct anv_image *image,
3743 VkImageAspectFlagBits aspect,
3744 enum isl_aux_usage aux_usage,
3745 uint32_t level,
3746 uint32_t base_layer,
3747 uint32_t layer_count);
3748
3749 void
3750 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3751 const struct anv_image *image,
3752 VkImageAspectFlagBits aspect,
3753 enum isl_aux_usage aux_usage,
3754 enum isl_format format, struct isl_swizzle swizzle,
3755 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3756 VkRect2D area, union isl_color_value clear_color);
3757 void
3758 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3759 const struct anv_image *image,
3760 VkImageAspectFlags aspects,
3761 enum isl_aux_usage depth_aux_usage,
3762 uint32_t level,
3763 uint32_t base_layer, uint32_t layer_count,
3764 VkRect2D area,
3765 float depth_value, uint8_t stencil_value);
3766 void
3767 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3768 const struct anv_image *src_image,
3769 enum isl_aux_usage src_aux_usage,
3770 uint32_t src_level, uint32_t src_base_layer,
3771 const struct anv_image *dst_image,
3772 enum isl_aux_usage dst_aux_usage,
3773 uint32_t dst_level, uint32_t dst_base_layer,
3774 VkImageAspectFlagBits aspect,
3775 uint32_t src_x, uint32_t src_y,
3776 uint32_t dst_x, uint32_t dst_y,
3777 uint32_t width, uint32_t height,
3778 uint32_t layer_count,
3779 enum blorp_filter filter);
3780 void
3781 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3782 const struct anv_image *image,
3783 VkImageAspectFlagBits aspect, uint32_t level,
3784 uint32_t base_layer, uint32_t layer_count,
3785 enum isl_aux_op hiz_op);
3786 void
3787 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3788 const struct anv_image *image,
3789 VkImageAspectFlags aspects,
3790 uint32_t level,
3791 uint32_t base_layer, uint32_t layer_count,
3792 VkRect2D area, uint8_t stencil_value);
3793 void
3794 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3795 const struct anv_image *image,
3796 enum isl_format format, struct isl_swizzle swizzle,
3797 VkImageAspectFlagBits aspect,
3798 uint32_t base_layer, uint32_t layer_count,
3799 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3800 bool predicate);
3801 void
3802 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3803 const struct anv_image *image,
3804 enum isl_format format, struct isl_swizzle swizzle,
3805 VkImageAspectFlagBits aspect, uint32_t level,
3806 uint32_t base_layer, uint32_t layer_count,
3807 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3808 bool predicate);
3809
3810 void
3811 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3812 const struct anv_image *image,
3813 VkImageAspectFlagBits aspect,
3814 uint32_t base_level, uint32_t level_count,
3815 uint32_t base_layer, uint32_t layer_count);
3816
3817 enum isl_aux_state
3818 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3819 const struct anv_image *image,
3820 const VkImageAspectFlagBits aspect,
3821 const VkImageLayout layout);
3822
3823 enum isl_aux_usage
3824 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3825 const struct anv_image *image,
3826 const VkImageAspectFlagBits aspect,
3827 const VkImageUsageFlagBits usage,
3828 const VkImageLayout layout);
3829
3830 enum anv_fast_clear_type
3831 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3832 const struct anv_image * const image,
3833 const VkImageAspectFlagBits aspect,
3834 const VkImageLayout layout);
3835
3836 /* This is defined as a macro so that it works for both
3837 * VkImageSubresourceRange and VkImageSubresourceLayers
3838 */
3839 #define anv_get_layerCount(_image, _range) \
3840 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3841 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3842
3843 static inline uint32_t
3844 anv_get_levelCount(const struct anv_image *image,
3845 const VkImageSubresourceRange *range)
3846 {
3847 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3848 image->levels - range->baseMipLevel : range->levelCount;
3849 }
3850
3851 static inline VkImageAspectFlags
3852 anv_image_expand_aspects(const struct anv_image *image,
3853 VkImageAspectFlags aspects)
3854 {
3855 /* If the underlying image has color plane aspects and
3856 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3857 * the underlying image. */
3858 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3859 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3860 return image->aspects;
3861
3862 return aspects;
3863 }
3864
3865 static inline bool
3866 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3867 VkImageAspectFlags aspects2)
3868 {
3869 if (aspects1 == aspects2)
3870 return true;
3871
3872 /* Only 1 color aspects are compatibles. */
3873 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3874 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3875 util_bitcount(aspects1) == util_bitcount(aspects2))
3876 return true;
3877
3878 return false;
3879 }
3880
3881 struct anv_image_view {
3882 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3883
3884 VkImageAspectFlags aspect_mask;
3885 VkFormat vk_format;
3886 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3887
3888 unsigned n_planes;
3889 struct {
3890 uint32_t image_plane;
3891
3892 struct isl_view isl;
3893
3894 /**
3895 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3896 * image layout of SHADER_READ_ONLY_OPTIMAL or
3897 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3898 */
3899 struct anv_surface_state optimal_sampler_surface_state;
3900
3901 /**
3902 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3903 * image layout of GENERAL.
3904 */
3905 struct anv_surface_state general_sampler_surface_state;
3906
3907 /**
3908 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3909 * states for write-only and readable, using the real format for
3910 * write-only and the lowered format for readable.
3911 */
3912 struct anv_surface_state storage_surface_state;
3913 struct anv_surface_state writeonly_storage_surface_state;
3914
3915 struct brw_image_param storage_image_param;
3916 } planes[3];
3917 };
3918
3919 enum anv_image_view_state_flags {
3920 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3921 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3922 };
3923
3924 void anv_image_fill_surface_state(struct anv_device *device,
3925 const struct anv_image *image,
3926 VkImageAspectFlagBits aspect,
3927 const struct isl_view *view,
3928 isl_surf_usage_flags_t view_usage,
3929 enum isl_aux_usage aux_usage,
3930 const union isl_color_value *clear_color,
3931 enum anv_image_view_state_flags flags,
3932 struct anv_surface_state *state_inout,
3933 struct brw_image_param *image_param_out);
3934
3935 struct anv_image_create_info {
3936 const VkImageCreateInfo *vk_info;
3937
3938 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3939 isl_tiling_flags_t isl_tiling_flags;
3940
3941 /** These flags will be added to any derived from VkImageCreateInfo. */
3942 isl_surf_usage_flags_t isl_extra_usage_flags;
3943
3944 uint32_t stride;
3945 bool external_format;
3946 };
3947
3948 VkResult anv_image_create(VkDevice _device,
3949 const struct anv_image_create_info *info,
3950 const VkAllocationCallbacks* alloc,
3951 VkImage *pImage);
3952
3953 enum isl_format
3954 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3955
3956 static inline VkExtent3D
3957 anv_sanitize_image_extent(const VkImageType imageType,
3958 const VkExtent3D imageExtent)
3959 {
3960 switch (imageType) {
3961 case VK_IMAGE_TYPE_1D:
3962 return (VkExtent3D) { imageExtent.width, 1, 1 };
3963 case VK_IMAGE_TYPE_2D:
3964 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3965 case VK_IMAGE_TYPE_3D:
3966 return imageExtent;
3967 default:
3968 unreachable("invalid image type");
3969 }
3970 }
3971
3972 static inline VkOffset3D
3973 anv_sanitize_image_offset(const VkImageType imageType,
3974 const VkOffset3D imageOffset)
3975 {
3976 switch (imageType) {
3977 case VK_IMAGE_TYPE_1D:
3978 return (VkOffset3D) { imageOffset.x, 0, 0 };
3979 case VK_IMAGE_TYPE_2D:
3980 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3981 case VK_IMAGE_TYPE_3D:
3982 return imageOffset;
3983 default:
3984 unreachable("invalid image type");
3985 }
3986 }
3987
3988 VkFormatFeatureFlags
3989 anv_get_image_format_features(const struct gen_device_info *devinfo,
3990 VkFormat vk_format,
3991 const struct anv_format *anv_format,
3992 VkImageTiling vk_tiling);
3993
3994 void anv_fill_buffer_surface_state(struct anv_device *device,
3995 struct anv_state state,
3996 enum isl_format format,
3997 struct anv_address address,
3998 uint32_t range, uint32_t stride);
3999
4000 static inline void
4001 anv_clear_color_from_att_state(union isl_color_value *clear_color,
4002 const struct anv_attachment_state *att_state,
4003 const struct anv_image_view *iview)
4004 {
4005 const struct isl_format_layout *view_fmtl =
4006 isl_format_get_layout(iview->planes[0].isl.format);
4007
4008 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
4009 if (view_fmtl->channels.c.bits) \
4010 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4011
4012 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4013 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4014 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4015 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4016
4017 #undef COPY_CLEAR_COLOR_CHANNEL
4018 }
4019
4020
4021 struct anv_ycbcr_conversion {
4022 const struct anv_format * format;
4023 VkSamplerYcbcrModelConversion ycbcr_model;
4024 VkSamplerYcbcrRange ycbcr_range;
4025 VkComponentSwizzle mapping[4];
4026 VkChromaLocation chroma_offsets[2];
4027 VkFilter chroma_filter;
4028 bool chroma_reconstruction;
4029 };
4030
4031 struct anv_sampler {
4032 uint32_t state[3][4];
4033 uint32_t n_planes;
4034 struct anv_ycbcr_conversion *conversion;
4035
4036 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4037 * and with a 32-byte stride for use as bindless samplers.
4038 */
4039 struct anv_state bindless_state;
4040 };
4041
4042 struct anv_framebuffer {
4043 uint32_t width;
4044 uint32_t height;
4045 uint32_t layers;
4046
4047 uint32_t attachment_count;
4048 struct anv_image_view * attachments[0];
4049 };
4050
4051 struct anv_subpass_attachment {
4052 VkImageUsageFlagBits usage;
4053 uint32_t attachment;
4054 VkImageLayout layout;
4055
4056 /* Used only with attachment containing stencil data. */
4057 VkImageLayout stencil_layout;
4058 };
4059
4060 struct anv_subpass {
4061 uint32_t attachment_count;
4062
4063 /**
4064 * A pointer to all attachment references used in this subpass.
4065 * Only valid if ::attachment_count > 0.
4066 */
4067 struct anv_subpass_attachment * attachments;
4068 uint32_t input_count;
4069 struct anv_subpass_attachment * input_attachments;
4070 uint32_t color_count;
4071 struct anv_subpass_attachment * color_attachments;
4072 struct anv_subpass_attachment * resolve_attachments;
4073
4074 struct anv_subpass_attachment * depth_stencil_attachment;
4075 struct anv_subpass_attachment * ds_resolve_attachment;
4076 VkResolveModeFlagBitsKHR depth_resolve_mode;
4077 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4078
4079 uint32_t view_mask;
4080
4081 /** Subpass has a depth/stencil self-dependency */
4082 bool has_ds_self_dep;
4083
4084 /** Subpass has at least one color resolve attachment */
4085 bool has_color_resolve;
4086 };
4087
4088 static inline unsigned
4089 anv_subpass_view_count(const struct anv_subpass *subpass)
4090 {
4091 return MAX2(1, util_bitcount(subpass->view_mask));
4092 }
4093
4094 struct anv_render_pass_attachment {
4095 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4096 * its members individually.
4097 */
4098 VkFormat format;
4099 uint32_t samples;
4100 VkImageUsageFlags usage;
4101 VkAttachmentLoadOp load_op;
4102 VkAttachmentStoreOp store_op;
4103 VkAttachmentLoadOp stencil_load_op;
4104 VkImageLayout initial_layout;
4105 VkImageLayout final_layout;
4106 VkImageLayout first_subpass_layout;
4107
4108 VkImageLayout stencil_initial_layout;
4109 VkImageLayout stencil_final_layout;
4110
4111 /* The subpass id in which the attachment will be used last. */
4112 uint32_t last_subpass_idx;
4113 };
4114
4115 struct anv_render_pass {
4116 uint32_t attachment_count;
4117 uint32_t subpass_count;
4118 /* An array of subpass_count+1 flushes, one per subpass boundary */
4119 enum anv_pipe_bits * subpass_flushes;
4120 struct anv_render_pass_attachment * attachments;
4121 struct anv_subpass subpasses[0];
4122 };
4123
4124 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4125
4126 struct anv_query_pool {
4127 VkQueryType type;
4128 VkQueryPipelineStatisticFlags pipeline_statistics;
4129 /** Stride between slots, in bytes */
4130 uint32_t stride;
4131 /** Number of slots in this query pool */
4132 uint32_t slots;
4133 struct anv_bo * bo;
4134 };
4135
4136 int anv_get_instance_entrypoint_index(const char *name);
4137 int anv_get_device_entrypoint_index(const char *name);
4138 int anv_get_physical_device_entrypoint_index(const char *name);
4139
4140 const char *anv_get_instance_entry_name(int index);
4141 const char *anv_get_physical_device_entry_name(int index);
4142 const char *anv_get_device_entry_name(int index);
4143
4144 bool
4145 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4146 const struct anv_instance_extension_table *instance);
4147 bool
4148 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4149 const struct anv_instance_extension_table *instance);
4150 bool
4151 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4152 const struct anv_instance_extension_table *instance,
4153 const struct anv_device_extension_table *device);
4154
4155 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4156 const char *name);
4157
4158 void anv_dump_image_to_ppm(struct anv_device *device,
4159 struct anv_image *image, unsigned miplevel,
4160 unsigned array_layer, VkImageAspectFlagBits aspect,
4161 const char *filename);
4162
4163 enum anv_dump_action {
4164 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4165 };
4166
4167 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4168 void anv_dump_finish(void);
4169
4170 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4171
4172 static inline uint32_t
4173 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4174 {
4175 /* This function must be called from within a subpass. */
4176 assert(cmd_state->pass && cmd_state->subpass);
4177
4178 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4179
4180 /* The id of this subpass shouldn't exceed the number of subpasses in this
4181 * render pass minus 1.
4182 */
4183 assert(subpass_id < cmd_state->pass->subpass_count);
4184 return subpass_id;
4185 }
4186
4187 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4188 void anv_device_perf_init(struct anv_device *device);
4189
4190 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4191 \
4192 static inline struct __anv_type * \
4193 __anv_type ## _from_handle(__VkType _handle) \
4194 { \
4195 return (struct __anv_type *) _handle; \
4196 } \
4197 \
4198 static inline __VkType \
4199 __anv_type ## _to_handle(struct __anv_type *_obj) \
4200 { \
4201 return (__VkType) _obj; \
4202 }
4203
4204 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4205 \
4206 static inline struct __anv_type * \
4207 __anv_type ## _from_handle(__VkType _handle) \
4208 { \
4209 return (struct __anv_type *)(uintptr_t) _handle; \
4210 } \
4211 \
4212 static inline __VkType \
4213 __anv_type ## _to_handle(struct __anv_type *_obj) \
4214 { \
4215 return (__VkType)(uintptr_t) _obj; \
4216 }
4217
4218 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4219 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4220
4221 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4222 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4223 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4224 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4225 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4226
4227 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4228 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4229 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4230 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4231 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4232 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4233 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4234 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4235 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4236 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4237 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4238 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4239 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4240 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4241 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4242 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4243 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4244 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4245 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4246 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4247 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4248 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4249 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4250
4251 /* Gen-specific function declarations */
4252 #ifdef genX
4253 # include "anv_genX.h"
4254 #else
4255 # define genX(x) gen7_##x
4256 # include "anv_genX.h"
4257 # undef genX
4258 # define genX(x) gen75_##x
4259 # include "anv_genX.h"
4260 # undef genX
4261 # define genX(x) gen8_##x
4262 # include "anv_genX.h"
4263 # undef genX
4264 # define genX(x) gen9_##x
4265 # include "anv_genX.h"
4266 # undef genX
4267 # define genX(x) gen10_##x
4268 # include "anv_genX.h"
4269 # undef genX
4270 # define genX(x) gen11_##x
4271 # include "anv_genX.h"
4272 # undef genX
4273 # define genX(x) gen12_##x
4274 # include "anv_genX.h"
4275 # undef genX
4276 #endif
4277
4278 #endif /* ANV_PRIVATE_H */