vulkan: Add KHR_display extension using DRM [v10]
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include <i915_drm.h>
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_gem.h"
48 #include "dev/gen_device_info.h"
49 #include "blorp/blorp.h"
50 #include "compiler/brw_compiler.h"
51 #include "util/macros.h"
52 #include "util/hash_table.h"
53 #include "util/list.h"
54 #include "util/set.h"
55 #include "util/u_atomic.h"
56 #include "util/u_vector.h"
57 #include "util/vma.h"
58 #include "vk_alloc.h"
59 #include "vk_debug_report.h"
60
61 /* Pre-declarations needed for WSI entrypoints */
62 struct wl_surface;
63 struct wl_display;
64 typedef struct xcb_connection_t xcb_connection_t;
65 typedef uint32_t xcb_visualid_t;
66 typedef uint32_t xcb_window_t;
67
68 struct anv_buffer;
69 struct anv_buffer_view;
70 struct anv_image_view;
71 struct anv_instance;
72
73 struct gen_l3_config;
74
75 #include <vulkan/vulkan.h>
76 #include <vulkan/vulkan_intel.h>
77 #include <vulkan/vk_icd.h>
78 #include <vulkan/vk_android_native_buffer.h>
79
80 #include "anv_entrypoints.h"
81 #include "anv_extensions.h"
82 #include "isl/isl.h"
83
84 #include "common/gen_debug.h"
85 #include "common/intel_log.h"
86 #include "wsi_common.h"
87
88 /* anv Virtual Memory Layout
89 * =========================
90 *
91 * When the anv driver is determining the virtual graphics addresses of memory
92 * objects itself using the softpin mechanism, the following memory ranges
93 * will be used.
94 *
95 * Three special considerations to notice:
96 *
97 * (1) the dynamic state pool is located within the same 4 GiB as the low
98 * heap. This is to work around a VF cache issue described in a comment in
99 * anv_physical_device_init_heaps.
100 *
101 * (2) the binding table pool is located at lower addresses than the surface
102 * state pool, within a 4 GiB range. This allows surface state base addresses
103 * to cover both binding tables (16 bit offsets) and surface states (32 bit
104 * offsets).
105 *
106 * (3) the last 4 GiB of the address space is withheld from the high
107 * heap. Various hardware units will read past the end of an object for
108 * various reasons. This healthy margin prevents reads from wrapping around
109 * 48-bit addresses.
110 */
111 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
112 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
113 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
114 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
115 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
116 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
117 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
118 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
119 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
120 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
121 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
122 #define HIGH_HEAP_MAX_ADDRESS 0xfffeffffffffULL
123
124 #define LOW_HEAP_SIZE \
125 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
126 #define HIGH_HEAP_SIZE \
127 (HIGH_HEAP_MAX_ADDRESS - HIGH_HEAP_MIN_ADDRESS + 1)
128 #define DYNAMIC_STATE_POOL_SIZE \
129 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
130 #define BINDING_TABLE_POOL_SIZE \
131 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
132 #define SURFACE_STATE_POOL_SIZE \
133 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
134 #define INSTRUCTION_STATE_POOL_SIZE \
135 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
136
137 /* Allowing different clear colors requires us to perform a depth resolve at
138 * the end of certain render passes. This is because while slow clears store
139 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
140 * See the PRMs for examples describing when additional resolves would be
141 * necessary. To enable fast clears without requiring extra resolves, we set
142 * the clear value to a globally-defined one. We could allow different values
143 * if the user doesn't expect coherent data during or after a render passes
144 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
145 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
146 * 1.0f seems to be the only value used. The only application that doesn't set
147 * this value does so through the usage of an seemingly uninitialized clear
148 * value.
149 */
150 #define ANV_HZ_FC_VAL 1.0f
151
152 #define MAX_VBS 28
153 #define MAX_SETS 8
154 #define MAX_RTS 8
155 #define MAX_VIEWPORTS 16
156 #define MAX_SCISSORS 16
157 #define MAX_PUSH_CONSTANTS_SIZE 128
158 #define MAX_DYNAMIC_BUFFERS 16
159 #define MAX_IMAGES 8
160 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
161
162 /* The kernel relocation API has a limitation of a 32-bit delta value
163 * applied to the address before it is written which, in spite of it being
164 * unsigned, is treated as signed . Because of the way that this maps to
165 * the Vulkan API, we cannot handle an offset into a buffer that does not
166 * fit into a signed 32 bits. The only mechanism we have for dealing with
167 * this at the moment is to limit all VkDeviceMemory objects to a maximum
168 * of 2GB each. The Vulkan spec allows us to do this:
169 *
170 * "Some platforms may have a limit on the maximum size of a single
171 * allocation. For example, certain systems may fail to create
172 * allocations with a size greater than or equal to 4GB. Such a limit is
173 * implementation-dependent, and if such a failure occurs then the error
174 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
175 *
176 * We don't use vk_error here because it's not an error so much as an
177 * indication to the application that the allocation is too large.
178 */
179 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
180
181 #define ANV_SVGS_VB_INDEX MAX_VBS
182 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
183
184 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
185
186 static inline uint32_t
187 align_down_npot_u32(uint32_t v, uint32_t a)
188 {
189 return v - (v % a);
190 }
191
192 static inline uint32_t
193 align_u32(uint32_t v, uint32_t a)
194 {
195 assert(a != 0 && a == (a & -a));
196 return (v + a - 1) & ~(a - 1);
197 }
198
199 static inline uint64_t
200 align_u64(uint64_t v, uint64_t a)
201 {
202 assert(a != 0 && a == (a & -a));
203 return (v + a - 1) & ~(a - 1);
204 }
205
206 static inline int32_t
207 align_i32(int32_t v, int32_t a)
208 {
209 assert(a != 0 && a == (a & -a));
210 return (v + a - 1) & ~(a - 1);
211 }
212
213 /** Alignment must be a power of 2. */
214 static inline bool
215 anv_is_aligned(uintmax_t n, uintmax_t a)
216 {
217 assert(a == (a & -a));
218 return (n & (a - 1)) == 0;
219 }
220
221 static inline uint32_t
222 anv_minify(uint32_t n, uint32_t levels)
223 {
224 if (unlikely(n == 0))
225 return 0;
226 else
227 return MAX2(n >> levels, 1);
228 }
229
230 static inline float
231 anv_clamp_f(float f, float min, float max)
232 {
233 assert(min < max);
234
235 if (f > max)
236 return max;
237 else if (f < min)
238 return min;
239 else
240 return f;
241 }
242
243 static inline bool
244 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
245 {
246 if (*inout_mask & clear_mask) {
247 *inout_mask &= ~clear_mask;
248 return true;
249 } else {
250 return false;
251 }
252 }
253
254 static inline union isl_color_value
255 vk_to_isl_color(VkClearColorValue color)
256 {
257 return (union isl_color_value) {
258 .u32 = {
259 color.uint32[0],
260 color.uint32[1],
261 color.uint32[2],
262 color.uint32[3],
263 },
264 };
265 }
266
267 #define for_each_bit(b, dword) \
268 for (uint32_t __dword = (dword); \
269 (b) = __builtin_ffs(__dword) - 1, __dword; \
270 __dword &= ~(1 << (b)))
271
272 #define typed_memcpy(dest, src, count) ({ \
273 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
274 memcpy((dest), (src), (count) * sizeof(*(src))); \
275 })
276
277 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
278 * to be added here in order to utilize mapping in debug/error/perf macros.
279 */
280 #define REPORT_OBJECT_TYPE(o) \
281 __builtin_choose_expr ( \
282 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
283 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
284 __builtin_choose_expr ( \
285 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
286 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
287 __builtin_choose_expr ( \
288 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
289 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
290 __builtin_choose_expr ( \
291 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
292 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
293 __builtin_choose_expr ( \
294 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
295 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
296 __builtin_choose_expr ( \
297 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
298 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
299 __builtin_choose_expr ( \
300 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
301 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
302 __builtin_choose_expr ( \
303 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
304 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
305 __builtin_choose_expr ( \
306 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
307 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
308 __builtin_choose_expr ( \
309 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
310 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
311 __builtin_choose_expr ( \
312 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
313 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
314 __builtin_choose_expr ( \
315 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
316 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
317 __builtin_choose_expr ( \
318 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
319 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
320 __builtin_choose_expr ( \
321 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
322 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
323 __builtin_choose_expr ( \
324 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
325 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
326 __builtin_choose_expr ( \
327 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
328 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
329 __builtin_choose_expr ( \
330 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
331 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
332 __builtin_choose_expr ( \
333 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
334 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), void*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
374 /* The void expression results in a compile-time error \
375 when assigning the result to something. */ \
376 (void)0)))))))))))))))))))))))))))))))
377
378 /* Whenever we generate an error, pass it through this function. Useful for
379 * debugging, where we can break on it. Only call at error site, not when
380 * propagating errors. Might be useful to plug in a stack trace here.
381 */
382
383 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
384 VkDebugReportObjectTypeEXT type, VkResult error,
385 const char *file, int line, const char *format, ...);
386
387 #ifdef DEBUG
388 #define vk_error(error) __vk_errorf(NULL, NULL,\
389 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
390 error, __FILE__, __LINE__, NULL)
391 #define vk_errorf(instance, obj, error, format, ...)\
392 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
393 __FILE__, __LINE__, format, ## __VA_ARGS__)
394 #else
395 #define vk_error(error) error
396 #define vk_errorf(instance, obj, error, format, ...) error
397 #endif
398
399 /**
400 * Warn on ignored extension structs.
401 *
402 * The Vulkan spec requires us to ignore unsupported or unknown structs in
403 * a pNext chain. In debug mode, emitting warnings for ignored structs may
404 * help us discover structs that we should not have ignored.
405 *
406 *
407 * From the Vulkan 1.0.38 spec:
408 *
409 * Any component of the implementation (the loader, any enabled layers,
410 * and drivers) must skip over, without processing (other than reading the
411 * sType and pNext members) any chained structures with sType values not
412 * defined by extensions supported by that component.
413 */
414 #define anv_debug_ignored_stype(sType) \
415 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
416
417 void __anv_perf_warn(struct anv_instance *instance, const void *object,
418 VkDebugReportObjectTypeEXT type, const char *file,
419 int line, const char *format, ...)
420 anv_printflike(6, 7);
421 void anv_loge(const char *format, ...) anv_printflike(1, 2);
422 void anv_loge_v(const char *format, va_list va);
423
424 /**
425 * Print a FINISHME message, including its source location.
426 */
427 #define anv_finishme(format, ...) \
428 do { \
429 static bool reported = false; \
430 if (!reported) { \
431 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
432 ##__VA_ARGS__); \
433 reported = true; \
434 } \
435 } while (0)
436
437 /**
438 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
439 */
440 #define anv_perf_warn(instance, obj, format, ...) \
441 do { \
442 static bool reported = false; \
443 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
444 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
445 format, ##__VA_ARGS__); \
446 reported = true; \
447 } \
448 } while (0)
449
450 /* A non-fatal assert. Useful for debugging. */
451 #ifdef DEBUG
452 #define anv_assert(x) ({ \
453 if (unlikely(!(x))) \
454 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
455 })
456 #else
457 #define anv_assert(x)
458 #endif
459
460 /* A multi-pointer allocator
461 *
462 * When copying data structures from the user (such as a render pass), it's
463 * common to need to allocate data for a bunch of different things. Instead
464 * of doing several allocations and having to handle all of the error checking
465 * that entails, it can be easier to do a single allocation. This struct
466 * helps facilitate that. The intended usage looks like this:
467 *
468 * ANV_MULTIALLOC(ma)
469 * anv_multialloc_add(&ma, &main_ptr, 1);
470 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
471 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
472 *
473 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
474 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
475 */
476 struct anv_multialloc {
477 size_t size;
478 size_t align;
479
480 uint32_t ptr_count;
481 void **ptrs[8];
482 };
483
484 #define ANV_MULTIALLOC_INIT \
485 ((struct anv_multialloc) { 0, })
486
487 #define ANV_MULTIALLOC(_name) \
488 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
489
490 __attribute__((always_inline))
491 static inline void
492 _anv_multialloc_add(struct anv_multialloc *ma,
493 void **ptr, size_t size, size_t align)
494 {
495 size_t offset = align_u64(ma->size, align);
496 ma->size = offset + size;
497 ma->align = MAX2(ma->align, align);
498
499 /* Store the offset in the pointer. */
500 *ptr = (void *)(uintptr_t)offset;
501
502 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
503 ma->ptrs[ma->ptr_count++] = ptr;
504 }
505
506 #define anv_multialloc_add_size(_ma, _ptr, _size) \
507 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
508
509 #define anv_multialloc_add(_ma, _ptr, _count) \
510 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
511
512 __attribute__((always_inline))
513 static inline void *
514 anv_multialloc_alloc(struct anv_multialloc *ma,
515 const VkAllocationCallbacks *alloc,
516 VkSystemAllocationScope scope)
517 {
518 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
519 if (!ptr)
520 return NULL;
521
522 /* Fill out each of the pointers with their final value.
523 *
524 * for (uint32_t i = 0; i < ma->ptr_count; i++)
525 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
526 *
527 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
528 * constant, GCC is incapable of figuring this out and unrolling the loop
529 * so we have to give it a little help.
530 */
531 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
532 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
533 if ((_i) < ma->ptr_count) \
534 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
535 _ANV_MULTIALLOC_UPDATE_POINTER(0);
536 _ANV_MULTIALLOC_UPDATE_POINTER(1);
537 _ANV_MULTIALLOC_UPDATE_POINTER(2);
538 _ANV_MULTIALLOC_UPDATE_POINTER(3);
539 _ANV_MULTIALLOC_UPDATE_POINTER(4);
540 _ANV_MULTIALLOC_UPDATE_POINTER(5);
541 _ANV_MULTIALLOC_UPDATE_POINTER(6);
542 _ANV_MULTIALLOC_UPDATE_POINTER(7);
543 #undef _ANV_MULTIALLOC_UPDATE_POINTER
544
545 return ptr;
546 }
547
548 __attribute__((always_inline))
549 static inline void *
550 anv_multialloc_alloc2(struct anv_multialloc *ma,
551 const VkAllocationCallbacks *parent_alloc,
552 const VkAllocationCallbacks *alloc,
553 VkSystemAllocationScope scope)
554 {
555 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
556 }
557
558 struct anv_bo {
559 uint32_t gem_handle;
560
561 /* Index into the current validation list. This is used by the
562 * validation list building alrogithm to track which buffers are already
563 * in the validation list so that we can ensure uniqueness.
564 */
565 uint32_t index;
566
567 /* Last known offset. This value is provided by the kernel when we
568 * execbuf and is used as the presumed offset for the next bunch of
569 * relocations.
570 */
571 uint64_t offset;
572
573 uint64_t size;
574 void *map;
575
576 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
577 uint32_t flags;
578 };
579
580 static inline void
581 anv_bo_init(struct anv_bo *bo, uint32_t gem_handle, uint64_t size)
582 {
583 bo->gem_handle = gem_handle;
584 bo->index = 0;
585 bo->offset = -1;
586 bo->size = size;
587 bo->map = NULL;
588 bo->flags = 0;
589 }
590
591 /* Represents a lock-free linked list of "free" things. This is used by
592 * both the block pool and the state pools. Unfortunately, in order to
593 * solve the ABA problem, we can't use a single uint32_t head.
594 */
595 union anv_free_list {
596 struct {
597 int32_t offset;
598
599 /* A simple count that is incremented every time the head changes. */
600 uint32_t count;
601 };
602 uint64_t u64;
603 };
604
605 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { 1, 0 } })
606
607 struct anv_block_state {
608 union {
609 struct {
610 uint32_t next;
611 uint32_t end;
612 };
613 uint64_t u64;
614 };
615 };
616
617 struct anv_block_pool {
618 struct anv_device *device;
619
620 uint64_t bo_flags;
621
622 struct anv_bo bo;
623
624 /* The address where the start of the pool is pinned. The various bos that
625 * are created as the pool grows will have addresses in the range
626 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
627 */
628 uint64_t start_address;
629
630 /* The offset from the start of the bo to the "center" of the block
631 * pool. Pointers to allocated blocks are given by
632 * bo.map + center_bo_offset + offsets.
633 */
634 uint32_t center_bo_offset;
635
636 /* Current memory map of the block pool. This pointer may or may not
637 * point to the actual beginning of the block pool memory. If
638 * anv_block_pool_alloc_back has ever been called, then this pointer
639 * will point to the "center" position of the buffer and all offsets
640 * (negative or positive) given out by the block pool alloc functions
641 * will be valid relative to this pointer.
642 *
643 * In particular, map == bo.map + center_offset
644 */
645 void *map;
646 int fd;
647
648 /**
649 * Array of mmaps and gem handles owned by the block pool, reclaimed when
650 * the block pool is destroyed.
651 */
652 struct u_vector mmap_cleanups;
653
654 struct anv_block_state state;
655
656 struct anv_block_state back_state;
657 };
658
659 /* Block pools are backed by a fixed-size 1GB memfd */
660 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
661
662 /* The center of the block pool is also the middle of the memfd. This may
663 * change in the future if we decide differently for some reason.
664 */
665 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
666
667 static inline uint32_t
668 anv_block_pool_size(struct anv_block_pool *pool)
669 {
670 return pool->state.end + pool->back_state.end;
671 }
672
673 struct anv_state {
674 int32_t offset;
675 uint32_t alloc_size;
676 void *map;
677 };
678
679 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
680
681 struct anv_fixed_size_state_pool {
682 union anv_free_list free_list;
683 struct anv_block_state block;
684 };
685
686 #define ANV_MIN_STATE_SIZE_LOG2 6
687 #define ANV_MAX_STATE_SIZE_LOG2 20
688
689 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
690
691 struct anv_state_pool {
692 struct anv_block_pool block_pool;
693
694 /* The size of blocks which will be allocated from the block pool */
695 uint32_t block_size;
696
697 /** Free list for "back" allocations */
698 union anv_free_list back_alloc_free_list;
699
700 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
701 };
702
703 struct anv_state_stream_block;
704
705 struct anv_state_stream {
706 struct anv_state_pool *state_pool;
707
708 /* The size of blocks to allocate from the state pool */
709 uint32_t block_size;
710
711 /* Current block we're allocating from */
712 struct anv_state block;
713
714 /* Offset into the current block at which to allocate the next state */
715 uint32_t next;
716
717 /* List of all blocks allocated from this pool */
718 struct anv_state_stream_block *block_list;
719 };
720
721 /* The block_pool functions exported for testing only. The block pool should
722 * only be used via a state pool (see below).
723 */
724 VkResult anv_block_pool_init(struct anv_block_pool *pool,
725 struct anv_device *device,
726 uint64_t start_address,
727 uint32_t initial_size,
728 uint64_t bo_flags);
729 void anv_block_pool_finish(struct anv_block_pool *pool);
730 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
731 uint32_t block_size);
732 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
733 uint32_t block_size);
734
735 VkResult anv_state_pool_init(struct anv_state_pool *pool,
736 struct anv_device *device,
737 uint64_t start_address,
738 uint32_t block_size,
739 uint64_t bo_flags);
740 void anv_state_pool_finish(struct anv_state_pool *pool);
741 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
742 uint32_t state_size, uint32_t alignment);
743 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
744 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
745 void anv_state_stream_init(struct anv_state_stream *stream,
746 struct anv_state_pool *state_pool,
747 uint32_t block_size);
748 void anv_state_stream_finish(struct anv_state_stream *stream);
749 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
750 uint32_t size, uint32_t alignment);
751
752 /**
753 * Implements a pool of re-usable BOs. The interface is identical to that
754 * of block_pool except that each block is its own BO.
755 */
756 struct anv_bo_pool {
757 struct anv_device *device;
758
759 uint64_t bo_flags;
760
761 void *free_list[16];
762 };
763
764 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
765 uint64_t bo_flags);
766 void anv_bo_pool_finish(struct anv_bo_pool *pool);
767 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo,
768 uint32_t size);
769 void anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo);
770
771 struct anv_scratch_bo {
772 bool exists;
773 struct anv_bo bo;
774 };
775
776 struct anv_scratch_pool {
777 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
778 struct anv_scratch_bo bos[16][MESA_SHADER_STAGES];
779 };
780
781 void anv_scratch_pool_init(struct anv_device *device,
782 struct anv_scratch_pool *pool);
783 void anv_scratch_pool_finish(struct anv_device *device,
784 struct anv_scratch_pool *pool);
785 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
786 struct anv_scratch_pool *pool,
787 gl_shader_stage stage,
788 unsigned per_thread_scratch);
789
790 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
791 struct anv_bo_cache {
792 struct hash_table *bo_map;
793 pthread_mutex_t mutex;
794 };
795
796 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
797 void anv_bo_cache_finish(struct anv_bo_cache *cache);
798 VkResult anv_bo_cache_alloc(struct anv_device *device,
799 struct anv_bo_cache *cache,
800 uint64_t size, uint64_t bo_flags,
801 struct anv_bo **bo);
802 VkResult anv_bo_cache_import(struct anv_device *device,
803 struct anv_bo_cache *cache,
804 int fd, uint64_t bo_flags,
805 struct anv_bo **bo);
806 VkResult anv_bo_cache_export(struct anv_device *device,
807 struct anv_bo_cache *cache,
808 struct anv_bo *bo_in, int *fd_out);
809 void anv_bo_cache_release(struct anv_device *device,
810 struct anv_bo_cache *cache,
811 struct anv_bo *bo);
812
813 struct anv_memory_type {
814 /* Standard bits passed on to the client */
815 VkMemoryPropertyFlags propertyFlags;
816 uint32_t heapIndex;
817
818 /* Driver-internal book-keeping */
819 VkBufferUsageFlags valid_buffer_usage;
820 };
821
822 struct anv_memory_heap {
823 /* Standard bits passed on to the client */
824 VkDeviceSize size;
825 VkMemoryHeapFlags flags;
826
827 /* Driver-internal book-keeping */
828 bool supports_48bit_addresses;
829 };
830
831 struct anv_physical_device {
832 VK_LOADER_DATA _loader_data;
833
834 struct anv_instance * instance;
835 uint32_t chipset_id;
836 bool no_hw;
837 char path[20];
838 const char * name;
839 struct gen_device_info info;
840 /** Amount of "GPU memory" we want to advertise
841 *
842 * Clearly, this value is bogus since Intel is a UMA architecture. On
843 * gen7 platforms, we are limited by GTT size unless we want to implement
844 * fine-grained tracking and GTT splitting. On Broadwell and above we are
845 * practically unlimited. However, we will never report more than 3/4 of
846 * the total system ram to try and avoid running out of RAM.
847 */
848 bool supports_48bit_addresses;
849 struct brw_compiler * compiler;
850 struct isl_device isl_dev;
851 int cmd_parser_version;
852 bool has_exec_async;
853 bool has_exec_capture;
854 bool has_exec_fence;
855 bool has_syncobj;
856 bool has_syncobj_wait;
857 bool has_context_priority;
858 bool use_softpin;
859 bool has_context_isolation;
860
861 struct anv_device_extension_table supported_extensions;
862
863 uint32_t eu_total;
864 uint32_t subslice_total;
865
866 struct {
867 uint32_t type_count;
868 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
869 uint32_t heap_count;
870 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
871 } memory;
872
873 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
874 uint8_t driver_uuid[VK_UUID_SIZE];
875 uint8_t device_uuid[VK_UUID_SIZE];
876
877 struct wsi_device wsi_device;
878 int local_fd;
879 int master_fd;
880 };
881
882 struct anv_instance {
883 VK_LOADER_DATA _loader_data;
884
885 VkAllocationCallbacks alloc;
886
887 uint32_t apiVersion;
888 struct anv_instance_extension_table enabled_extensions;
889 struct anv_dispatch_table dispatch;
890
891 int physicalDeviceCount;
892 struct anv_physical_device physicalDevice;
893
894 struct vk_debug_report_instance debug_report_callbacks;
895 };
896
897 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
898 void anv_finish_wsi(struct anv_physical_device *physical_device);
899
900 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
901 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
902 const char *name);
903
904 struct anv_queue {
905 VK_LOADER_DATA _loader_data;
906
907 struct anv_device * device;
908
909 VkDeviceQueueCreateFlags flags;
910 };
911
912 struct anv_pipeline_cache {
913 struct anv_device * device;
914 pthread_mutex_t mutex;
915
916 struct hash_table * cache;
917 };
918
919 struct anv_pipeline_bind_map;
920
921 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
922 struct anv_device *device,
923 bool cache_enabled);
924 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
925
926 struct anv_shader_bin *
927 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
928 const void *key, uint32_t key_size);
929 struct anv_shader_bin *
930 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
931 const void *key_data, uint32_t key_size,
932 const void *kernel_data, uint32_t kernel_size,
933 const struct brw_stage_prog_data *prog_data,
934 uint32_t prog_data_size,
935 const struct anv_pipeline_bind_map *bind_map);
936
937 struct anv_device {
938 VK_LOADER_DATA _loader_data;
939
940 VkAllocationCallbacks alloc;
941
942 struct anv_instance * instance;
943 uint32_t chipset_id;
944 bool no_hw;
945 struct gen_device_info info;
946 struct isl_device isl_dev;
947 int context_id;
948 int fd;
949 bool can_chain_batches;
950 bool robust_buffer_access;
951 struct anv_device_extension_table enabled_extensions;
952 struct anv_dispatch_table dispatch;
953
954 pthread_mutex_t vma_mutex;
955 struct util_vma_heap vma_lo;
956 struct util_vma_heap vma_hi;
957 uint64_t vma_lo_available;
958 uint64_t vma_hi_available;
959
960 struct anv_bo_pool batch_bo_pool;
961
962 struct anv_bo_cache bo_cache;
963
964 struct anv_state_pool dynamic_state_pool;
965 struct anv_state_pool instruction_state_pool;
966 struct anv_state_pool binding_table_pool;
967 struct anv_state_pool surface_state_pool;
968
969 struct anv_bo workaround_bo;
970 struct anv_bo trivial_batch_bo;
971 struct anv_bo hiz_clear_bo;
972
973 struct anv_pipeline_cache blorp_shader_cache;
974 struct blorp_context blorp;
975
976 struct anv_state border_colors;
977
978 struct anv_queue queue;
979
980 struct anv_scratch_pool scratch_pool;
981
982 uint32_t default_mocs;
983
984 pthread_mutex_t mutex;
985 pthread_cond_t queue_submit;
986 bool lost;
987 };
988
989 static inline struct anv_state_pool *
990 anv_binding_table_pool(struct anv_device *device)
991 {
992 if (device->instance->physicalDevice.use_softpin)
993 return &device->binding_table_pool;
994 else
995 return &device->surface_state_pool;
996 }
997
998 static inline struct anv_state
999 anv_binding_table_pool_alloc(struct anv_device *device) {
1000 if (device->instance->physicalDevice.use_softpin)
1001 return anv_state_pool_alloc(&device->binding_table_pool,
1002 device->binding_table_pool.block_size, 0);
1003 else
1004 return anv_state_pool_alloc_back(&device->surface_state_pool);
1005 }
1006
1007 static inline void
1008 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1009 anv_state_pool_free(anv_binding_table_pool(device), state);
1010 }
1011
1012 static void inline
1013 anv_state_flush(struct anv_device *device, struct anv_state state)
1014 {
1015 if (device->info.has_llc)
1016 return;
1017
1018 gen_flush_range(state.map, state.alloc_size);
1019 }
1020
1021 void anv_device_init_blorp(struct anv_device *device);
1022 void anv_device_finish_blorp(struct anv_device *device);
1023
1024 VkResult anv_device_execbuf(struct anv_device *device,
1025 struct drm_i915_gem_execbuffer2 *execbuf,
1026 struct anv_bo **execbuf_bos);
1027 VkResult anv_device_query_status(struct anv_device *device);
1028 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1029 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1030 int64_t timeout);
1031
1032 void* anv_gem_mmap(struct anv_device *device,
1033 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1034 void anv_gem_munmap(void *p, uint64_t size);
1035 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1036 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1037 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1038 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1039 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1040 int anv_gem_execbuffer(struct anv_device *device,
1041 struct drm_i915_gem_execbuffer2 *execbuf);
1042 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1043 uint32_t stride, uint32_t tiling);
1044 int anv_gem_create_context(struct anv_device *device);
1045 bool anv_gem_has_context_priority(int fd);
1046 int anv_gem_destroy_context(struct anv_device *device, int context);
1047 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1048 uint64_t value);
1049 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1050 uint64_t *value);
1051 int anv_gem_get_param(int fd, uint32_t param);
1052 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1053 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1054 int anv_gem_get_aperture(int fd, uint64_t *size);
1055 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1056 uint32_t *active, uint32_t *pending);
1057 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1058 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1059 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1060 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1061 uint32_t read_domains, uint32_t write_domain);
1062 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1063 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1064 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1065 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1066 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1067 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1068 uint32_t handle);
1069 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1070 uint32_t handle, int fd);
1071 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1072 bool anv_gem_supports_syncobj_wait(int fd);
1073 int anv_gem_syncobj_wait(struct anv_device *device,
1074 uint32_t *handles, uint32_t num_handles,
1075 int64_t abs_timeout_ns, bool wait_all);
1076
1077 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1078 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1079
1080 VkResult anv_bo_init_new(struct anv_bo *bo, struct anv_device *device, uint64_t size);
1081
1082 struct anv_reloc_list {
1083 uint32_t num_relocs;
1084 uint32_t array_length;
1085 struct drm_i915_gem_relocation_entry * relocs;
1086 struct anv_bo ** reloc_bos;
1087 struct set * deps;
1088 };
1089
1090 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1091 const VkAllocationCallbacks *alloc);
1092 void anv_reloc_list_finish(struct anv_reloc_list *list,
1093 const VkAllocationCallbacks *alloc);
1094
1095 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1096 const VkAllocationCallbacks *alloc,
1097 uint32_t offset, struct anv_bo *target_bo,
1098 uint32_t delta);
1099
1100 struct anv_batch_bo {
1101 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1102 struct list_head link;
1103
1104 struct anv_bo bo;
1105
1106 /* Bytes actually consumed in this batch BO */
1107 uint32_t length;
1108
1109 struct anv_reloc_list relocs;
1110 };
1111
1112 struct anv_batch {
1113 const VkAllocationCallbacks * alloc;
1114
1115 void * start;
1116 void * end;
1117 void * next;
1118
1119 struct anv_reloc_list * relocs;
1120
1121 /* This callback is called (with the associated user data) in the event
1122 * that the batch runs out of space.
1123 */
1124 VkResult (*extend_cb)(struct anv_batch *, void *);
1125 void * user_data;
1126
1127 /**
1128 * Current error status of the command buffer. Used to track inconsistent
1129 * or incomplete command buffer states that are the consequence of run-time
1130 * errors such as out of memory scenarios. We want to track this in the
1131 * batch because the command buffer object is not visible to some parts
1132 * of the driver.
1133 */
1134 VkResult status;
1135 };
1136
1137 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1138 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1139 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1140 void *location, struct anv_bo *bo, uint32_t offset);
1141 VkResult anv_device_submit_simple_batch(struct anv_device *device,
1142 struct anv_batch *batch);
1143
1144 static inline VkResult
1145 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1146 {
1147 assert(error != VK_SUCCESS);
1148 if (batch->status == VK_SUCCESS)
1149 batch->status = error;
1150 return batch->status;
1151 }
1152
1153 static inline bool
1154 anv_batch_has_error(struct anv_batch *batch)
1155 {
1156 return batch->status != VK_SUCCESS;
1157 }
1158
1159 struct anv_address {
1160 struct anv_bo *bo;
1161 uint32_t offset;
1162 };
1163
1164 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1165
1166 static inline bool
1167 anv_address_is_null(struct anv_address addr)
1168 {
1169 return addr.bo == NULL && addr.offset == 0;
1170 }
1171
1172 static inline uint64_t
1173 anv_address_physical(struct anv_address addr)
1174 {
1175 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1176 return gen_canonical_address(addr.bo->offset + addr.offset);
1177 else
1178 return gen_canonical_address(addr.offset);
1179 }
1180
1181 static inline struct anv_address
1182 anv_address_add(struct anv_address addr, uint64_t offset)
1183 {
1184 addr.offset += offset;
1185 return addr;
1186 }
1187
1188 static inline void
1189 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1190 {
1191 unsigned reloc_size = 0;
1192 if (device->info.gen >= 8) {
1193 reloc_size = sizeof(uint64_t);
1194 *(uint64_t *)p = gen_canonical_address(v);
1195 } else {
1196 reloc_size = sizeof(uint32_t);
1197 *(uint32_t *)p = v;
1198 }
1199
1200 if (flush && !device->info.has_llc)
1201 gen_flush_range(p, reloc_size);
1202 }
1203
1204 static inline uint64_t
1205 _anv_combine_address(struct anv_batch *batch, void *location,
1206 const struct anv_address address, uint32_t delta)
1207 {
1208 if (address.bo == NULL) {
1209 return address.offset + delta;
1210 } else {
1211 assert(batch->start <= location && location < batch->end);
1212
1213 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1214 }
1215 }
1216
1217 #define __gen_address_type struct anv_address
1218 #define __gen_user_data struct anv_batch
1219 #define __gen_combine_address _anv_combine_address
1220
1221 /* Wrapper macros needed to work around preprocessor argument issues. In
1222 * particular, arguments don't get pre-evaluated if they are concatenated.
1223 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1224 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1225 * We can work around this easily enough with these helpers.
1226 */
1227 #define __anv_cmd_length(cmd) cmd ## _length
1228 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1229 #define __anv_cmd_header(cmd) cmd ## _header
1230 #define __anv_cmd_pack(cmd) cmd ## _pack
1231 #define __anv_reg_num(reg) reg ## _num
1232
1233 #define anv_pack_struct(dst, struc, ...) do { \
1234 struct struc __template = { \
1235 __VA_ARGS__ \
1236 }; \
1237 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1238 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1239 } while (0)
1240
1241 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1242 void *__dst = anv_batch_emit_dwords(batch, n); \
1243 if (__dst) { \
1244 struct cmd __template = { \
1245 __anv_cmd_header(cmd), \
1246 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1247 __VA_ARGS__ \
1248 }; \
1249 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1250 } \
1251 __dst; \
1252 })
1253
1254 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1255 do { \
1256 uint32_t *dw; \
1257 \
1258 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1259 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1260 if (!dw) \
1261 break; \
1262 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1263 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1264 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1265 } while (0)
1266
1267 #define anv_batch_emit(batch, cmd, name) \
1268 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1269 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1270 __builtin_expect(_dst != NULL, 1); \
1271 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1272 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1273 _dst = NULL; \
1274 }))
1275
1276 #define GEN7_MOCS (struct GEN7_MEMORY_OBJECT_CONTROL_STATE) { \
1277 .GraphicsDataTypeGFDT = 0, \
1278 .LLCCacheabilityControlLLCCC = 0, \
1279 .L3CacheabilityControlL3CC = 1, \
1280 }
1281
1282 #define GEN75_MOCS (struct GEN75_MEMORY_OBJECT_CONTROL_STATE) { \
1283 .LLCeLLCCacheabilityControlLLCCC = 0, \
1284 .L3CacheabilityControlL3CC = 1, \
1285 }
1286
1287 #define GEN8_MOCS (struct GEN8_MEMORY_OBJECT_CONTROL_STATE) { \
1288 .MemoryTypeLLCeLLCCacheabilityControl = WB, \
1289 .TargetCache = L3DefertoPATforLLCeLLCselection, \
1290 .AgeforQUADLRU = 0 \
1291 }
1292
1293 /* Skylake: MOCS is now an index into an array of 62 different caching
1294 * configurations programmed by the kernel.
1295 */
1296
1297 #define GEN9_MOCS (struct GEN9_MEMORY_OBJECT_CONTROL_STATE) { \
1298 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1299 .IndextoMOCSTables = 2 \
1300 }
1301
1302 #define GEN9_MOCS_PTE { \
1303 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1304 .IndextoMOCSTables = 1 \
1305 }
1306
1307 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1308 #define GEN10_MOCS (struct GEN10_MEMORY_OBJECT_CONTROL_STATE) { \
1309 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1310 .IndextoMOCSTables = 2 \
1311 }
1312
1313 #define GEN10_MOCS_PTE { \
1314 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1315 .IndextoMOCSTables = 1 \
1316 }
1317
1318 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1319 #define GEN11_MOCS (struct GEN11_MEMORY_OBJECT_CONTROL_STATE) { \
1320 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1321 .IndextoMOCSTables = 2 \
1322 }
1323
1324 #define GEN11_MOCS_PTE { \
1325 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */ \
1326 .IndextoMOCSTables = 1 \
1327 }
1328
1329 struct anv_device_memory {
1330 struct anv_bo * bo;
1331 struct anv_memory_type * type;
1332 VkDeviceSize map_size;
1333 void * map;
1334 };
1335
1336 /**
1337 * Header for Vertex URB Entry (VUE)
1338 */
1339 struct anv_vue_header {
1340 uint32_t Reserved;
1341 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1342 uint32_t ViewportIndex;
1343 float PointWidth;
1344 };
1345
1346 struct anv_descriptor_set_binding_layout {
1347 #ifndef NDEBUG
1348 /* The type of the descriptors in this binding */
1349 VkDescriptorType type;
1350 #endif
1351
1352 /* Number of array elements in this binding */
1353 uint16_t array_size;
1354
1355 /* Index into the flattend descriptor set */
1356 uint16_t descriptor_index;
1357
1358 /* Index into the dynamic state array for a dynamic buffer */
1359 int16_t dynamic_offset_index;
1360
1361 /* Index into the descriptor set buffer views */
1362 int16_t buffer_index;
1363
1364 struct {
1365 /* Index into the binding table for the associated surface */
1366 int16_t surface_index;
1367
1368 /* Index into the sampler table for the associated sampler */
1369 int16_t sampler_index;
1370
1371 /* Index into the image table for the associated image */
1372 int16_t image_index;
1373 } stage[MESA_SHADER_STAGES];
1374
1375 /* Immutable samplers (or NULL if no immutable samplers) */
1376 struct anv_sampler **immutable_samplers;
1377 };
1378
1379 struct anv_descriptor_set_layout {
1380 /* Descriptor set layouts can be destroyed at almost any time */
1381 uint32_t ref_cnt;
1382
1383 /* Number of bindings in this descriptor set */
1384 uint16_t binding_count;
1385
1386 /* Total size of the descriptor set with room for all array entries */
1387 uint16_t size;
1388
1389 /* Shader stages affected by this descriptor set */
1390 uint16_t shader_stages;
1391
1392 /* Number of buffers in this descriptor set */
1393 uint16_t buffer_count;
1394
1395 /* Number of dynamic offsets used by this descriptor set */
1396 uint16_t dynamic_offset_count;
1397
1398 /* Bindings in this descriptor set */
1399 struct anv_descriptor_set_binding_layout binding[0];
1400 };
1401
1402 static inline void
1403 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1404 {
1405 assert(layout && layout->ref_cnt >= 1);
1406 p_atomic_inc(&layout->ref_cnt);
1407 }
1408
1409 static inline void
1410 anv_descriptor_set_layout_unref(struct anv_device *device,
1411 struct anv_descriptor_set_layout *layout)
1412 {
1413 assert(layout && layout->ref_cnt >= 1);
1414 if (p_atomic_dec_zero(&layout->ref_cnt))
1415 vk_free(&device->alloc, layout);
1416 }
1417
1418 struct anv_descriptor {
1419 VkDescriptorType type;
1420
1421 union {
1422 struct {
1423 VkImageLayout layout;
1424 struct anv_image_view *image_view;
1425 struct anv_sampler *sampler;
1426 };
1427
1428 struct {
1429 struct anv_buffer *buffer;
1430 uint64_t offset;
1431 uint64_t range;
1432 };
1433
1434 struct anv_buffer_view *buffer_view;
1435 };
1436 };
1437
1438 struct anv_descriptor_set {
1439 struct anv_descriptor_set_layout *layout;
1440 uint32_t size;
1441 uint32_t buffer_count;
1442 struct anv_buffer_view *buffer_views;
1443 struct anv_descriptor descriptors[0];
1444 };
1445
1446 struct anv_buffer_view {
1447 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1448 uint64_t range; /**< VkBufferViewCreateInfo::range */
1449
1450 struct anv_address address;
1451
1452 struct anv_state surface_state;
1453 struct anv_state storage_surface_state;
1454 struct anv_state writeonly_storage_surface_state;
1455
1456 struct brw_image_param storage_image_param;
1457 };
1458
1459 struct anv_push_descriptor_set {
1460 struct anv_descriptor_set set;
1461
1462 /* Put this field right behind anv_descriptor_set so it fills up the
1463 * descriptors[0] field. */
1464 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1465 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1466 };
1467
1468 struct anv_descriptor_pool {
1469 uint32_t size;
1470 uint32_t next;
1471 uint32_t free_list;
1472
1473 struct anv_state_stream surface_state_stream;
1474 void *surface_state_free_list;
1475
1476 char data[0];
1477 };
1478
1479 enum anv_descriptor_template_entry_type {
1480 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1481 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1482 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1483 };
1484
1485 struct anv_descriptor_template_entry {
1486 /* The type of descriptor in this entry */
1487 VkDescriptorType type;
1488
1489 /* Binding in the descriptor set */
1490 uint32_t binding;
1491
1492 /* Offset at which to write into the descriptor set binding */
1493 uint32_t array_element;
1494
1495 /* Number of elements to write into the descriptor set binding */
1496 uint32_t array_count;
1497
1498 /* Offset into the user provided data */
1499 size_t offset;
1500
1501 /* Stride between elements into the user provided data */
1502 size_t stride;
1503 };
1504
1505 struct anv_descriptor_update_template {
1506 VkPipelineBindPoint bind_point;
1507
1508 /* The descriptor set this template corresponds to. This value is only
1509 * valid if the template was created with the templateType
1510 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET_KHR.
1511 */
1512 uint8_t set;
1513
1514 /* Number of entries in this template */
1515 uint32_t entry_count;
1516
1517 /* Entries of the template */
1518 struct anv_descriptor_template_entry entries[0];
1519 };
1520
1521 size_t
1522 anv_descriptor_set_binding_layout_get_hw_size(const struct anv_descriptor_set_binding_layout *binding);
1523
1524 size_t
1525 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1526
1527 void
1528 anv_descriptor_set_write_image_view(struct anv_descriptor_set *set,
1529 const struct gen_device_info * const devinfo,
1530 const VkDescriptorImageInfo * const info,
1531 VkDescriptorType type,
1532 uint32_t binding,
1533 uint32_t element);
1534
1535 void
1536 anv_descriptor_set_write_buffer_view(struct anv_descriptor_set *set,
1537 VkDescriptorType type,
1538 struct anv_buffer_view *buffer_view,
1539 uint32_t binding,
1540 uint32_t element);
1541
1542 void
1543 anv_descriptor_set_write_buffer(struct anv_descriptor_set *set,
1544 struct anv_device *device,
1545 struct anv_state_stream *alloc_stream,
1546 VkDescriptorType type,
1547 struct anv_buffer *buffer,
1548 uint32_t binding,
1549 uint32_t element,
1550 VkDeviceSize offset,
1551 VkDeviceSize range);
1552
1553 void
1554 anv_descriptor_set_write_template(struct anv_descriptor_set *set,
1555 struct anv_device *device,
1556 struct anv_state_stream *alloc_stream,
1557 const struct anv_descriptor_update_template *template,
1558 const void *data);
1559
1560 VkResult
1561 anv_descriptor_set_create(struct anv_device *device,
1562 struct anv_descriptor_pool *pool,
1563 struct anv_descriptor_set_layout *layout,
1564 struct anv_descriptor_set **out_set);
1565
1566 void
1567 anv_descriptor_set_destroy(struct anv_device *device,
1568 struct anv_descriptor_pool *pool,
1569 struct anv_descriptor_set *set);
1570
1571 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
1572
1573 struct anv_pipeline_binding {
1574 /* The descriptor set this surface corresponds to. The special value of
1575 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
1576 * to a color attachment and not a regular descriptor.
1577 */
1578 uint8_t set;
1579
1580 /* Binding in the descriptor set */
1581 uint32_t binding;
1582
1583 /* Index in the binding */
1584 uint32_t index;
1585
1586 /* Plane in the binding index */
1587 uint8_t plane;
1588
1589 /* Input attachment index (relative to the subpass) */
1590 uint8_t input_attachment_index;
1591
1592 /* For a storage image, whether it is write-only */
1593 bool write_only;
1594 };
1595
1596 struct anv_pipeline_layout {
1597 struct {
1598 struct anv_descriptor_set_layout *layout;
1599 uint32_t dynamic_offset_start;
1600 } set[MAX_SETS];
1601
1602 uint32_t num_sets;
1603
1604 struct {
1605 bool has_dynamic_offsets;
1606 } stage[MESA_SHADER_STAGES];
1607
1608 unsigned char sha1[20];
1609 };
1610
1611 struct anv_buffer {
1612 struct anv_device * device;
1613 VkDeviceSize size;
1614
1615 VkBufferUsageFlags usage;
1616
1617 /* Set when bound */
1618 struct anv_address address;
1619 };
1620
1621 static inline uint64_t
1622 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
1623 {
1624 assert(offset <= buffer->size);
1625 if (range == VK_WHOLE_SIZE) {
1626 return buffer->size - offset;
1627 } else {
1628 assert(range <= buffer->size);
1629 return range;
1630 }
1631 }
1632
1633 enum anv_cmd_dirty_bits {
1634 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
1635 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
1636 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
1637 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
1638 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
1639 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
1640 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
1641 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
1642 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
1643 ANV_CMD_DIRTY_DYNAMIC_ALL = (1 << 9) - 1,
1644 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
1645 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
1646 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
1647 };
1648 typedef uint32_t anv_cmd_dirty_mask_t;
1649
1650 enum anv_pipe_bits {
1651 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
1652 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
1653 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
1654 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
1655 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
1656 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
1657 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
1658 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
1659 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
1660 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
1661 ANV_PIPE_CS_STALL_BIT = (1 << 20),
1662
1663 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
1664 * a flush has happened but not a CS stall. The next time we do any sort
1665 * of invalidation we need to insert a CS stall at that time. Otherwise,
1666 * we would have to CS stall on every flush which could be bad.
1667 */
1668 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
1669 };
1670
1671 #define ANV_PIPE_FLUSH_BITS ( \
1672 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
1673 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1674 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1675
1676 #define ANV_PIPE_STALL_BITS ( \
1677 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
1678 ANV_PIPE_DEPTH_STALL_BIT | \
1679 ANV_PIPE_CS_STALL_BIT)
1680
1681 #define ANV_PIPE_INVALIDATE_BITS ( \
1682 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
1683 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
1684 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
1685 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
1686 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
1687 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
1688
1689 static inline enum anv_pipe_bits
1690 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
1691 {
1692 enum anv_pipe_bits pipe_bits = 0;
1693
1694 unsigned b;
1695 for_each_bit(b, flags) {
1696 switch ((VkAccessFlagBits)(1 << b)) {
1697 case VK_ACCESS_SHADER_WRITE_BIT:
1698 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1699 break;
1700 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
1701 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1702 break;
1703 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
1704 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1705 break;
1706 case VK_ACCESS_TRANSFER_WRITE_BIT:
1707 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1708 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1709 break;
1710 default:
1711 break; /* Nothing to do */
1712 }
1713 }
1714
1715 return pipe_bits;
1716 }
1717
1718 static inline enum anv_pipe_bits
1719 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
1720 {
1721 enum anv_pipe_bits pipe_bits = 0;
1722
1723 unsigned b;
1724 for_each_bit(b, flags) {
1725 switch ((VkAccessFlagBits)(1 << b)) {
1726 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
1727 case VK_ACCESS_INDEX_READ_BIT:
1728 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
1729 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1730 break;
1731 case VK_ACCESS_UNIFORM_READ_BIT:
1732 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1733 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1734 break;
1735 case VK_ACCESS_SHADER_READ_BIT:
1736 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
1737 case VK_ACCESS_TRANSFER_READ_BIT:
1738 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1739 break;
1740 default:
1741 break; /* Nothing to do */
1742 }
1743 }
1744
1745 return pipe_bits;
1746 }
1747
1748 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
1749 VK_IMAGE_ASPECT_COLOR_BIT | \
1750 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1751 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1752 VK_IMAGE_ASPECT_PLANE_2_BIT)
1753 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
1754 VK_IMAGE_ASPECT_PLANE_0_BIT | \
1755 VK_IMAGE_ASPECT_PLANE_1_BIT | \
1756 VK_IMAGE_ASPECT_PLANE_2_BIT)
1757
1758 struct anv_vertex_binding {
1759 struct anv_buffer * buffer;
1760 VkDeviceSize offset;
1761 };
1762
1763 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
1764 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
1765
1766 struct anv_push_constants {
1767 /* Current allocated size of this push constants data structure.
1768 * Because a decent chunk of it may not be used (images on SKL, for
1769 * instance), we won't actually allocate the entire structure up-front.
1770 */
1771 uint32_t size;
1772
1773 /* Push constant data provided by the client through vkPushConstants */
1774 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
1775
1776 /* Used for vkCmdDispatchBase */
1777 uint32_t base_work_group_id[3];
1778
1779 /* Image data for image_load_store on pre-SKL */
1780 struct brw_image_param images[MAX_IMAGES];
1781 };
1782
1783 struct anv_dynamic_state {
1784 struct {
1785 uint32_t count;
1786 VkViewport viewports[MAX_VIEWPORTS];
1787 } viewport;
1788
1789 struct {
1790 uint32_t count;
1791 VkRect2D scissors[MAX_SCISSORS];
1792 } scissor;
1793
1794 float line_width;
1795
1796 struct {
1797 float bias;
1798 float clamp;
1799 float slope;
1800 } depth_bias;
1801
1802 float blend_constants[4];
1803
1804 struct {
1805 float min;
1806 float max;
1807 } depth_bounds;
1808
1809 struct {
1810 uint32_t front;
1811 uint32_t back;
1812 } stencil_compare_mask;
1813
1814 struct {
1815 uint32_t front;
1816 uint32_t back;
1817 } stencil_write_mask;
1818
1819 struct {
1820 uint32_t front;
1821 uint32_t back;
1822 } stencil_reference;
1823 };
1824
1825 extern const struct anv_dynamic_state default_dynamic_state;
1826
1827 void anv_dynamic_state_copy(struct anv_dynamic_state *dest,
1828 const struct anv_dynamic_state *src,
1829 uint32_t copy_mask);
1830
1831 struct anv_surface_state {
1832 struct anv_state state;
1833 /** Address of the surface referred to by this state
1834 *
1835 * This address is relative to the start of the BO.
1836 */
1837 struct anv_address address;
1838 /* Address of the aux surface, if any
1839 *
1840 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
1841 *
1842 * With the exception of gen8, the bottom 12 bits of this address' offset
1843 * include extra aux information.
1844 */
1845 struct anv_address aux_address;
1846 /* Address of the clear color, if any
1847 *
1848 * This address is relative to the start of the BO.
1849 */
1850 struct anv_address clear_address;
1851 };
1852
1853 /**
1854 * Attachment state when recording a renderpass instance.
1855 *
1856 * The clear value is valid only if there exists a pending clear.
1857 */
1858 struct anv_attachment_state {
1859 enum isl_aux_usage aux_usage;
1860 enum isl_aux_usage input_aux_usage;
1861 struct anv_surface_state color;
1862 struct anv_surface_state input;
1863
1864 VkImageLayout current_layout;
1865 VkImageAspectFlags pending_clear_aspects;
1866 VkImageAspectFlags pending_load_aspects;
1867 bool fast_clear;
1868 VkClearValue clear_value;
1869 bool clear_color_is_zero_one;
1870 bool clear_color_is_zero;
1871
1872 /* When multiview is active, attachments with a renderpass clear
1873 * operation have their respective layers cleared on the first
1874 * subpass that uses them, and only in that subpass. We keep track
1875 * of this using a bitfield to indicate which layers of an attachment
1876 * have not been cleared yet when multiview is active.
1877 */
1878 uint32_t pending_clear_views;
1879 };
1880
1881 /** State tracking for particular pipeline bind point
1882 *
1883 * This struct is the base struct for anv_cmd_graphics_state and
1884 * anv_cmd_compute_state. These are used to track state which is bound to a
1885 * particular type of pipeline. Generic state that applies per-stage such as
1886 * binding table offsets and push constants is tracked generically with a
1887 * per-stage array in anv_cmd_state.
1888 */
1889 struct anv_cmd_pipeline_state {
1890 struct anv_pipeline *pipeline;
1891 struct anv_pipeline_layout *layout;
1892
1893 struct anv_descriptor_set *descriptors[MAX_SETS];
1894 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
1895
1896 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
1897 };
1898
1899 /** State tracking for graphics pipeline
1900 *
1901 * This has anv_cmd_pipeline_state as a base struct to track things which get
1902 * bound to a graphics pipeline. Along with general pipeline bind point state
1903 * which is in the anv_cmd_pipeline_state base struct, it also contains other
1904 * state which is graphics-specific.
1905 */
1906 struct anv_cmd_graphics_state {
1907 struct anv_cmd_pipeline_state base;
1908
1909 anv_cmd_dirty_mask_t dirty;
1910 uint32_t vb_dirty;
1911
1912 struct anv_dynamic_state dynamic;
1913
1914 struct {
1915 struct anv_buffer *index_buffer;
1916 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
1917 uint32_t index_offset;
1918 } gen7;
1919 };
1920
1921 /** State tracking for compute pipeline
1922 *
1923 * This has anv_cmd_pipeline_state as a base struct to track things which get
1924 * bound to a compute pipeline. Along with general pipeline bind point state
1925 * which is in the anv_cmd_pipeline_state base struct, it also contains other
1926 * state which is compute-specific.
1927 */
1928 struct anv_cmd_compute_state {
1929 struct anv_cmd_pipeline_state base;
1930
1931 bool pipeline_dirty;
1932
1933 struct anv_address num_workgroups;
1934 };
1935
1936 /** State required while building cmd buffer */
1937 struct anv_cmd_state {
1938 /* PIPELINE_SELECT.PipelineSelection */
1939 uint32_t current_pipeline;
1940 const struct gen_l3_config * current_l3_config;
1941
1942 struct anv_cmd_graphics_state gfx;
1943 struct anv_cmd_compute_state compute;
1944
1945 enum anv_pipe_bits pending_pipe_bits;
1946 VkShaderStageFlags descriptors_dirty;
1947 VkShaderStageFlags push_constants_dirty;
1948
1949 struct anv_framebuffer * framebuffer;
1950 struct anv_render_pass * pass;
1951 struct anv_subpass * subpass;
1952 VkRect2D render_area;
1953 uint32_t restart_index;
1954 struct anv_vertex_binding vertex_bindings[MAX_VBS];
1955 VkShaderStageFlags push_constant_stages;
1956 struct anv_push_constants * push_constants[MESA_SHADER_STAGES];
1957 struct anv_state binding_tables[MESA_SHADER_STAGES];
1958 struct anv_state samplers[MESA_SHADER_STAGES];
1959
1960 /**
1961 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
1962 * of any command buffer it is disabled by disabling it in EndCommandBuffer
1963 * and before invoking the secondary in ExecuteCommands.
1964 */
1965 bool pma_fix_enabled;
1966
1967 /**
1968 * Whether or not we know for certain that HiZ is enabled for the current
1969 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
1970 * enabled or not, this will be false.
1971 */
1972 bool hiz_enabled;
1973
1974 /**
1975 * Array length is anv_cmd_state::pass::attachment_count. Array content is
1976 * valid only when recording a render pass instance.
1977 */
1978 struct anv_attachment_state * attachments;
1979
1980 /**
1981 * Surface states for color render targets. These are stored in a single
1982 * flat array. For depth-stencil attachments, the surface state is simply
1983 * left blank.
1984 */
1985 struct anv_state render_pass_states;
1986
1987 /**
1988 * A null surface state of the right size to match the framebuffer. This
1989 * is one of the states in render_pass_states.
1990 */
1991 struct anv_state null_surface_state;
1992 };
1993
1994 struct anv_cmd_pool {
1995 VkAllocationCallbacks alloc;
1996 struct list_head cmd_buffers;
1997 };
1998
1999 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2000
2001 enum anv_cmd_buffer_exec_mode {
2002 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2003 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2004 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2005 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2006 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2007 };
2008
2009 struct anv_cmd_buffer {
2010 VK_LOADER_DATA _loader_data;
2011
2012 struct anv_device * device;
2013
2014 struct anv_cmd_pool * pool;
2015 struct list_head pool_link;
2016
2017 struct anv_batch batch;
2018
2019 /* Fields required for the actual chain of anv_batch_bo's.
2020 *
2021 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2022 */
2023 struct list_head batch_bos;
2024 enum anv_cmd_buffer_exec_mode exec_mode;
2025
2026 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2027 * referenced by this command buffer
2028 *
2029 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2030 */
2031 struct u_vector seen_bbos;
2032
2033 /* A vector of int32_t's for every block of binding tables.
2034 *
2035 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2036 */
2037 struct u_vector bt_block_states;
2038 uint32_t bt_next;
2039
2040 struct anv_reloc_list surface_relocs;
2041 /** Last seen surface state block pool center bo offset */
2042 uint32_t last_ss_pool_center;
2043
2044 /* Serial for tracking buffer completion */
2045 uint32_t serial;
2046
2047 /* Stream objects for storing temporary data */
2048 struct anv_state_stream surface_state_stream;
2049 struct anv_state_stream dynamic_state_stream;
2050
2051 VkCommandBufferUsageFlags usage_flags;
2052 VkCommandBufferLevel level;
2053
2054 struct anv_cmd_state state;
2055 };
2056
2057 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2058 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2059 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2060 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2061 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2062 struct anv_cmd_buffer *secondary);
2063 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2064 VkResult anv_cmd_buffer_execbuf(struct anv_device *device,
2065 struct anv_cmd_buffer *cmd_buffer,
2066 const VkSemaphore *in_semaphores,
2067 uint32_t num_in_semaphores,
2068 const VkSemaphore *out_semaphores,
2069 uint32_t num_out_semaphores,
2070 VkFence fence);
2071
2072 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2073
2074 VkResult
2075 anv_cmd_buffer_ensure_push_constants_size(struct anv_cmd_buffer *cmd_buffer,
2076 gl_shader_stage stage, uint32_t size);
2077 #define anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, field) \
2078 anv_cmd_buffer_ensure_push_constants_size(cmd_buffer, stage, \
2079 (offsetof(struct anv_push_constants, field) + \
2080 sizeof(cmd_buffer->state.push_constants[0]->field)))
2081
2082 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2083 const void *data, uint32_t size, uint32_t alignment);
2084 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2085 uint32_t *a, uint32_t *b,
2086 uint32_t dwords, uint32_t alignment);
2087
2088 struct anv_address
2089 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2090 struct anv_state
2091 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2092 uint32_t entries, uint32_t *state_offset);
2093 struct anv_state
2094 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2095 struct anv_state
2096 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2097 uint32_t size, uint32_t alignment);
2098
2099 VkResult
2100 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2101
2102 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2103 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2104 bool depth_clamp_enable);
2105 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2106
2107 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2108 struct anv_render_pass *pass,
2109 struct anv_framebuffer *framebuffer,
2110 const VkClearValue *clear_values);
2111
2112 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2113
2114 struct anv_state
2115 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2116 gl_shader_stage stage);
2117 struct anv_state
2118 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2119
2120 void anv_cmd_buffer_resolve_subpass(struct anv_cmd_buffer *cmd_buffer);
2121
2122 const struct anv_image_view *
2123 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2124
2125 VkResult
2126 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2127 uint32_t num_entries,
2128 uint32_t *state_offset,
2129 struct anv_state *bt_state);
2130
2131 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2132
2133 enum anv_fence_type {
2134 ANV_FENCE_TYPE_NONE = 0,
2135 ANV_FENCE_TYPE_BO,
2136 ANV_FENCE_TYPE_SYNCOBJ,
2137 };
2138
2139 enum anv_bo_fence_state {
2140 /** Indicates that this is a new (or newly reset fence) */
2141 ANV_BO_FENCE_STATE_RESET,
2142
2143 /** Indicates that this fence has been submitted to the GPU but is still
2144 * (as far as we know) in use by the GPU.
2145 */
2146 ANV_BO_FENCE_STATE_SUBMITTED,
2147
2148 ANV_BO_FENCE_STATE_SIGNALED,
2149 };
2150
2151 struct anv_fence_impl {
2152 enum anv_fence_type type;
2153
2154 union {
2155 /** Fence implementation for BO fences
2156 *
2157 * These fences use a BO and a set of CPU-tracked state flags. The BO
2158 * is added to the object list of the last execbuf call in a QueueSubmit
2159 * and is marked EXEC_WRITE. The state flags track when the BO has been
2160 * submitted to the kernel. We need to do this because Vulkan lets you
2161 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2162 * will say it's idle in this case.
2163 */
2164 struct {
2165 struct anv_bo bo;
2166 enum anv_bo_fence_state state;
2167 } bo;
2168
2169 /** DRM syncobj handle for syncobj-based fences */
2170 uint32_t syncobj;
2171 };
2172 };
2173
2174 struct anv_fence {
2175 /* Permanent fence state. Every fence has some form of permanent state
2176 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2177 * cross-process fences) or it could just be a dummy for use internally.
2178 */
2179 struct anv_fence_impl permanent;
2180
2181 /* Temporary fence state. A fence *may* have temporary state. That state
2182 * is added to the fence by an import operation and is reset back to
2183 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2184 * state cannot be signaled because the fence must already be signaled
2185 * before the temporary state can be exported from the fence in the other
2186 * process and imported here.
2187 */
2188 struct anv_fence_impl temporary;
2189 };
2190
2191 struct anv_event {
2192 uint64_t semaphore;
2193 struct anv_state state;
2194 };
2195
2196 enum anv_semaphore_type {
2197 ANV_SEMAPHORE_TYPE_NONE = 0,
2198 ANV_SEMAPHORE_TYPE_DUMMY,
2199 ANV_SEMAPHORE_TYPE_BO,
2200 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2201 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2202 };
2203
2204 struct anv_semaphore_impl {
2205 enum anv_semaphore_type type;
2206
2207 union {
2208 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2209 * This BO will be added to the object list on any execbuf2 calls for
2210 * which this semaphore is used as a wait or signal fence. When used as
2211 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2212 */
2213 struct anv_bo *bo;
2214
2215 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2216 * If the semaphore is in the unsignaled state due to either just being
2217 * created or because it has been used for a wait, fd will be -1.
2218 */
2219 int fd;
2220
2221 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2222 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2223 * import so we don't need to bother with a userspace cache.
2224 */
2225 uint32_t syncobj;
2226 };
2227 };
2228
2229 struct anv_semaphore {
2230 /* Permanent semaphore state. Every semaphore has some form of permanent
2231 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2232 * (for cross-process semaphores0 or it could just be a dummy for use
2233 * internally.
2234 */
2235 struct anv_semaphore_impl permanent;
2236
2237 /* Temporary semaphore state. A semaphore *may* have temporary state.
2238 * That state is added to the semaphore by an import operation and is reset
2239 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2240 * semaphore with temporary state cannot be signaled because the semaphore
2241 * must already be signaled before the temporary state can be exported from
2242 * the semaphore in the other process and imported here.
2243 */
2244 struct anv_semaphore_impl temporary;
2245 };
2246
2247 void anv_semaphore_reset_temporary(struct anv_device *device,
2248 struct anv_semaphore *semaphore);
2249
2250 struct anv_shader_module {
2251 unsigned char sha1[20];
2252 uint32_t size;
2253 char data[0];
2254 };
2255
2256 static inline gl_shader_stage
2257 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2258 {
2259 assert(__builtin_popcount(vk_stage) == 1);
2260 return ffs(vk_stage) - 1;
2261 }
2262
2263 static inline VkShaderStageFlagBits
2264 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2265 {
2266 return (1 << mesa_stage);
2267 }
2268
2269 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2270
2271 #define anv_foreach_stage(stage, stage_bits) \
2272 for (gl_shader_stage stage, \
2273 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2274 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2275 __tmp &= ~(1 << (stage)))
2276
2277 struct anv_pipeline_bind_map {
2278 uint32_t surface_count;
2279 uint32_t sampler_count;
2280 uint32_t image_count;
2281
2282 struct anv_pipeline_binding * surface_to_descriptor;
2283 struct anv_pipeline_binding * sampler_to_descriptor;
2284 };
2285
2286 struct anv_shader_bin_key {
2287 uint32_t size;
2288 uint8_t data[0];
2289 };
2290
2291 struct anv_shader_bin {
2292 uint32_t ref_cnt;
2293
2294 const struct anv_shader_bin_key *key;
2295
2296 struct anv_state kernel;
2297 uint32_t kernel_size;
2298
2299 const struct brw_stage_prog_data *prog_data;
2300 uint32_t prog_data_size;
2301
2302 struct anv_pipeline_bind_map bind_map;
2303 };
2304
2305 struct anv_shader_bin *
2306 anv_shader_bin_create(struct anv_device *device,
2307 const void *key, uint32_t key_size,
2308 const void *kernel, uint32_t kernel_size,
2309 const struct brw_stage_prog_data *prog_data,
2310 uint32_t prog_data_size, const void *prog_data_param,
2311 const struct anv_pipeline_bind_map *bind_map);
2312
2313 void
2314 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2315
2316 static inline void
2317 anv_shader_bin_ref(struct anv_shader_bin *shader)
2318 {
2319 assert(shader && shader->ref_cnt >= 1);
2320 p_atomic_inc(&shader->ref_cnt);
2321 }
2322
2323 static inline void
2324 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2325 {
2326 assert(shader && shader->ref_cnt >= 1);
2327 if (p_atomic_dec_zero(&shader->ref_cnt))
2328 anv_shader_bin_destroy(device, shader);
2329 }
2330
2331 struct anv_pipeline {
2332 struct anv_device * device;
2333 struct anv_batch batch;
2334 uint32_t batch_data[512];
2335 struct anv_reloc_list batch_relocs;
2336 uint32_t dynamic_state_mask;
2337 struct anv_dynamic_state dynamic_state;
2338
2339 struct anv_subpass * subpass;
2340
2341 bool needs_data_cache;
2342
2343 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
2344
2345 struct {
2346 const struct gen_l3_config * l3_config;
2347 uint32_t total_size;
2348 } urb;
2349
2350 VkShaderStageFlags active_stages;
2351 struct anv_state blend_state;
2352
2353 uint32_t vb_used;
2354 uint32_t binding_stride[MAX_VBS];
2355 bool instancing_enable[MAX_VBS];
2356 bool primitive_restart;
2357 uint32_t topology;
2358
2359 uint32_t cs_right_mask;
2360
2361 bool writes_depth;
2362 bool depth_test_enable;
2363 bool writes_stencil;
2364 bool stencil_test_enable;
2365 bool depth_clamp_enable;
2366 bool sample_shading_enable;
2367 bool kill_pixel;
2368
2369 struct {
2370 uint32_t sf[7];
2371 uint32_t depth_stencil_state[3];
2372 } gen7;
2373
2374 struct {
2375 uint32_t sf[4];
2376 uint32_t raster[5];
2377 uint32_t wm_depth_stencil[3];
2378 } gen8;
2379
2380 struct {
2381 uint32_t wm_depth_stencil[4];
2382 } gen9;
2383
2384 uint32_t interface_descriptor_data[8];
2385 };
2386
2387 static inline bool
2388 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
2389 gl_shader_stage stage)
2390 {
2391 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
2392 }
2393
2394 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
2395 static inline const struct brw_##prefix##_prog_data * \
2396 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
2397 { \
2398 if (anv_pipeline_has_stage(pipeline, stage)) { \
2399 return (const struct brw_##prefix##_prog_data *) \
2400 pipeline->shaders[stage]->prog_data; \
2401 } else { \
2402 return NULL; \
2403 } \
2404 }
2405
2406 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
2407 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
2408 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
2409 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
2410 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
2411 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
2412
2413 static inline const struct brw_vue_prog_data *
2414 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
2415 {
2416 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
2417 return &get_gs_prog_data(pipeline)->base;
2418 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
2419 return &get_tes_prog_data(pipeline)->base;
2420 else
2421 return &get_vs_prog_data(pipeline)->base;
2422 }
2423
2424 VkResult
2425 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
2426 struct anv_pipeline_cache *cache,
2427 const VkGraphicsPipelineCreateInfo *pCreateInfo,
2428 const VkAllocationCallbacks *alloc);
2429
2430 VkResult
2431 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
2432 struct anv_pipeline_cache *cache,
2433 const VkComputePipelineCreateInfo *info,
2434 struct anv_shader_module *module,
2435 const char *entrypoint,
2436 const VkSpecializationInfo *spec_info);
2437
2438 struct anv_format_plane {
2439 enum isl_format isl_format:16;
2440 struct isl_swizzle swizzle;
2441
2442 /* Whether this plane contains chroma channels */
2443 bool has_chroma;
2444
2445 /* For downscaling of YUV planes */
2446 uint8_t denominator_scales[2];
2447
2448 /* How to map sampled ycbcr planes to a single 4 component element. */
2449 struct isl_swizzle ycbcr_swizzle;
2450 };
2451
2452
2453 struct anv_format {
2454 struct anv_format_plane planes[3];
2455 uint8_t n_planes;
2456 bool can_ycbcr;
2457 };
2458
2459 static inline uint32_t
2460 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
2461 VkImageAspectFlags aspect_mask)
2462 {
2463 switch (aspect_mask) {
2464 case VK_IMAGE_ASPECT_COLOR_BIT:
2465 case VK_IMAGE_ASPECT_DEPTH_BIT:
2466 case VK_IMAGE_ASPECT_PLANE_0_BIT:
2467 return 0;
2468 case VK_IMAGE_ASPECT_STENCIL_BIT:
2469 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
2470 return 0;
2471 /* Fall-through */
2472 case VK_IMAGE_ASPECT_PLANE_1_BIT:
2473 return 1;
2474 case VK_IMAGE_ASPECT_PLANE_2_BIT:
2475 return 2;
2476 default:
2477 /* Purposefully assert with depth/stencil aspects. */
2478 unreachable("invalid image aspect");
2479 }
2480 }
2481
2482 static inline uint32_t
2483 anv_image_aspect_get_planes(VkImageAspectFlags aspect_mask)
2484 {
2485 uint32_t planes = 0;
2486
2487 if (aspect_mask & (VK_IMAGE_ASPECT_COLOR_BIT |
2488 VK_IMAGE_ASPECT_DEPTH_BIT |
2489 VK_IMAGE_ASPECT_STENCIL_BIT |
2490 VK_IMAGE_ASPECT_PLANE_0_BIT))
2491 planes++;
2492 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_1_BIT)
2493 planes++;
2494 if (aspect_mask & VK_IMAGE_ASPECT_PLANE_2_BIT)
2495 planes++;
2496
2497 if ((aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) != 0 &&
2498 (aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) != 0)
2499 planes++;
2500
2501 return planes;
2502 }
2503
2504 static inline VkImageAspectFlags
2505 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
2506 uint32_t plane)
2507 {
2508 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2509 if (_mesa_bitcount(image_aspects) > 1)
2510 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
2511 return VK_IMAGE_ASPECT_COLOR_BIT;
2512 }
2513 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
2514 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
2515 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
2516 return VK_IMAGE_ASPECT_STENCIL_BIT;
2517 }
2518
2519 #define anv_foreach_image_aspect_bit(b, image, aspects) \
2520 for_each_bit(b, anv_image_expand_aspects(image, aspects))
2521
2522 const struct anv_format *
2523 anv_get_format(VkFormat format);
2524
2525 static inline uint32_t
2526 anv_get_format_planes(VkFormat vk_format)
2527 {
2528 const struct anv_format *format = anv_get_format(vk_format);
2529
2530 return format != NULL ? format->n_planes : 0;
2531 }
2532
2533 struct anv_format_plane
2534 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
2535 VkImageAspectFlagBits aspect, VkImageTiling tiling);
2536
2537 static inline enum isl_format
2538 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
2539 VkImageAspectFlags aspect, VkImageTiling tiling)
2540 {
2541 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
2542 }
2543
2544 static inline struct isl_swizzle
2545 anv_swizzle_for_render(struct isl_swizzle swizzle)
2546 {
2547 /* Sometimes the swizzle will have alpha map to one. We do this to fake
2548 * RGB as RGBA for texturing
2549 */
2550 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
2551 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
2552
2553 /* But it doesn't matter what we render to that channel */
2554 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
2555
2556 return swizzle;
2557 }
2558
2559 void
2560 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
2561
2562 /**
2563 * Subsurface of an anv_image.
2564 */
2565 struct anv_surface {
2566 /** Valid only if isl_surf::size > 0. */
2567 struct isl_surf isl;
2568
2569 /**
2570 * Offset from VkImage's base address, as bound by vkBindImageMemory().
2571 */
2572 uint32_t offset;
2573 };
2574
2575 struct anv_image {
2576 VkImageType type;
2577 /* The original VkFormat provided by the client. This may not match any
2578 * of the actual surface formats.
2579 */
2580 VkFormat vk_format;
2581 const struct anv_format *format;
2582
2583 VkImageAspectFlags aspects;
2584 VkExtent3D extent;
2585 uint32_t levels;
2586 uint32_t array_size;
2587 uint32_t samples; /**< VkImageCreateInfo::samples */
2588 uint32_t n_planes;
2589 VkImageUsageFlags usage; /**< Superset of VkImageCreateInfo::usage. */
2590 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
2591
2592 /** True if this is needs to be bound to an appropriately tiled BO.
2593 *
2594 * When not using modifiers, consumers such as X11, Wayland, and KMS need
2595 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
2596 * we require a dedicated allocation so that we can know to allocate a
2597 * tiled buffer.
2598 */
2599 bool needs_set_tiling;
2600
2601 /**
2602 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
2603 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
2604 */
2605 uint64_t drm_format_mod;
2606
2607 VkDeviceSize size;
2608 uint32_t alignment;
2609
2610 /* Whether the image is made of several underlying buffer objects rather a
2611 * single one with different offsets.
2612 */
2613 bool disjoint;
2614
2615 /**
2616 * Image subsurfaces
2617 *
2618 * For each foo, anv_image::planes[x].surface is valid if and only if
2619 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
2620 * to figure the number associated with a given aspect.
2621 *
2622 * The hardware requires that the depth buffer and stencil buffer be
2623 * separate surfaces. From Vulkan's perspective, though, depth and stencil
2624 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
2625 * allocate the depth and stencil buffers as separate surfaces in the same
2626 * bo.
2627 *
2628 * Memory layout :
2629 *
2630 * -----------------------
2631 * | surface0 | /|\
2632 * ----------------------- |
2633 * | shadow surface0 | |
2634 * ----------------------- | Plane 0
2635 * | aux surface0 | |
2636 * ----------------------- |
2637 * | fast clear colors0 | \|/
2638 * -----------------------
2639 * | surface1 | /|\
2640 * ----------------------- |
2641 * | shadow surface1 | |
2642 * ----------------------- | Plane 1
2643 * | aux surface1 | |
2644 * ----------------------- |
2645 * | fast clear colors1 | \|/
2646 * -----------------------
2647 * | ... |
2648 * | |
2649 * -----------------------
2650 */
2651 struct {
2652 /**
2653 * Offset of the entire plane (whenever the image is disjoint this is
2654 * set to 0).
2655 */
2656 uint32_t offset;
2657
2658 VkDeviceSize size;
2659 uint32_t alignment;
2660
2661 struct anv_surface surface;
2662
2663 /**
2664 * A surface which shadows the main surface and may have different
2665 * tiling. This is used for sampling using a tiling that isn't supported
2666 * for other operations.
2667 */
2668 struct anv_surface shadow_surface;
2669
2670 /**
2671 * For color images, this is the aux usage for this image when not used
2672 * as a color attachment.
2673 *
2674 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
2675 * image has a HiZ buffer.
2676 */
2677 enum isl_aux_usage aux_usage;
2678
2679 struct anv_surface aux_surface;
2680
2681 /**
2682 * Offset of the fast clear state (used to compute the
2683 * fast_clear_state_offset of the following planes).
2684 */
2685 uint32_t fast_clear_state_offset;
2686
2687 /**
2688 * BO associated with this plane, set when bound.
2689 */
2690 struct anv_address address;
2691
2692 /**
2693 * When destroying the image, also free the bo.
2694 * */
2695 bool bo_is_owned;
2696 } planes[3];
2697 };
2698
2699 /* The ordering of this enum is important */
2700 enum anv_fast_clear_type {
2701 /** Image does not have/support any fast-clear blocks */
2702 ANV_FAST_CLEAR_NONE = 0,
2703 /** Image has/supports fast-clear but only to the default value */
2704 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
2705 /** Image has/supports fast-clear with an arbitrary fast-clear value */
2706 ANV_FAST_CLEAR_ANY = 2,
2707 };
2708
2709 /* Returns the number of auxiliary buffer levels attached to an image. */
2710 static inline uint8_t
2711 anv_image_aux_levels(const struct anv_image * const image,
2712 VkImageAspectFlagBits aspect)
2713 {
2714 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2715 return image->planes[plane].aux_surface.isl.size > 0 ?
2716 image->planes[plane].aux_surface.isl.levels : 0;
2717 }
2718
2719 /* Returns the number of auxiliary buffer layers attached to an image. */
2720 static inline uint32_t
2721 anv_image_aux_layers(const struct anv_image * const image,
2722 VkImageAspectFlagBits aspect,
2723 const uint8_t miplevel)
2724 {
2725 assert(image);
2726
2727 /* The miplevel must exist in the main buffer. */
2728 assert(miplevel < image->levels);
2729
2730 if (miplevel >= anv_image_aux_levels(image, aspect)) {
2731 /* There are no layers with auxiliary data because the miplevel has no
2732 * auxiliary data.
2733 */
2734 return 0;
2735 } else {
2736 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2737 return MAX2(image->planes[plane].aux_surface.isl.logical_level0_px.array_len,
2738 image->planes[plane].aux_surface.isl.logical_level0_px.depth >> miplevel);
2739 }
2740 }
2741
2742 static inline struct anv_address
2743 anv_image_get_clear_color_addr(const struct anv_device *device,
2744 const struct anv_image *image,
2745 VkImageAspectFlagBits aspect)
2746 {
2747 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
2748
2749 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2750 return anv_address_add(image->planes[plane].address,
2751 image->planes[plane].fast_clear_state_offset);
2752 }
2753
2754 static inline struct anv_address
2755 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
2756 const struct anv_image *image,
2757 VkImageAspectFlagBits aspect)
2758 {
2759 struct anv_address addr =
2760 anv_image_get_clear_color_addr(device, image, aspect);
2761
2762 const unsigned clear_color_state_size = device->info.gen >= 10 ?
2763 device->isl_dev.ss.clear_color_state_size :
2764 device->isl_dev.ss.clear_value_size;
2765 addr.offset += clear_color_state_size;
2766 return addr;
2767 }
2768
2769 static inline struct anv_address
2770 anv_image_get_compression_state_addr(const struct anv_device *device,
2771 const struct anv_image *image,
2772 VkImageAspectFlagBits aspect,
2773 uint32_t level, uint32_t array_layer)
2774 {
2775 assert(level < anv_image_aux_levels(image, aspect));
2776 assert(array_layer < anv_image_aux_layers(image, aspect, level));
2777 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
2778 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
2779
2780 struct anv_address addr =
2781 anv_image_get_fast_clear_type_addr(device, image, aspect);
2782 addr.offset += 4; /* Go past the fast clear type */
2783
2784 if (image->type == VK_IMAGE_TYPE_3D) {
2785 for (uint32_t l = 0; l < level; l++)
2786 addr.offset += anv_minify(image->extent.depth, l) * 4;
2787 } else {
2788 addr.offset += level * image->array_size * 4;
2789 }
2790 addr.offset += array_layer * 4;
2791
2792 return addr;
2793 }
2794
2795 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
2796 static inline bool
2797 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
2798 const struct anv_image *image)
2799 {
2800 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
2801 return false;
2802
2803 if (devinfo->gen < 8)
2804 return false;
2805
2806 return image->samples == 1;
2807 }
2808
2809 void
2810 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
2811 const struct anv_image *image,
2812 VkImageAspectFlagBits aspect,
2813 enum isl_aux_usage aux_usage,
2814 uint32_t level,
2815 uint32_t base_layer,
2816 uint32_t layer_count);
2817
2818 void
2819 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
2820 const struct anv_image *image,
2821 VkImageAspectFlagBits aspect,
2822 enum isl_aux_usage aux_usage,
2823 enum isl_format format, struct isl_swizzle swizzle,
2824 uint32_t level, uint32_t base_layer, uint32_t layer_count,
2825 VkRect2D area, union isl_color_value clear_color);
2826 void
2827 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
2828 const struct anv_image *image,
2829 VkImageAspectFlags aspects,
2830 enum isl_aux_usage depth_aux_usage,
2831 uint32_t level,
2832 uint32_t base_layer, uint32_t layer_count,
2833 VkRect2D area,
2834 float depth_value, uint8_t stencil_value);
2835 void
2836 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
2837 const struct anv_image *image,
2838 VkImageAspectFlagBits aspect, uint32_t level,
2839 uint32_t base_layer, uint32_t layer_count,
2840 enum isl_aux_op hiz_op);
2841 void
2842 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
2843 const struct anv_image *image,
2844 VkImageAspectFlags aspects,
2845 uint32_t level,
2846 uint32_t base_layer, uint32_t layer_count,
2847 VkRect2D area, uint8_t stencil_value);
2848 void
2849 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
2850 const struct anv_image *image,
2851 VkImageAspectFlagBits aspect,
2852 uint32_t base_layer, uint32_t layer_count,
2853 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
2854 bool predicate);
2855 void
2856 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
2857 const struct anv_image *image,
2858 VkImageAspectFlagBits aspect, uint32_t level,
2859 uint32_t base_layer, uint32_t layer_count,
2860 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
2861 bool predicate);
2862
2863 void
2864 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
2865 const struct anv_image *image,
2866 uint32_t base_level, uint32_t level_count,
2867 uint32_t base_layer, uint32_t layer_count);
2868
2869 enum isl_aux_usage
2870 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
2871 const struct anv_image *image,
2872 const VkImageAspectFlagBits aspect,
2873 const VkImageLayout layout);
2874
2875 enum anv_fast_clear_type
2876 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
2877 const struct anv_image * const image,
2878 const VkImageAspectFlagBits aspect,
2879 const VkImageLayout layout);
2880
2881 /* This is defined as a macro so that it works for both
2882 * VkImageSubresourceRange and VkImageSubresourceLayers
2883 */
2884 #define anv_get_layerCount(_image, _range) \
2885 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
2886 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
2887
2888 static inline uint32_t
2889 anv_get_levelCount(const struct anv_image *image,
2890 const VkImageSubresourceRange *range)
2891 {
2892 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
2893 image->levels - range->baseMipLevel : range->levelCount;
2894 }
2895
2896 static inline VkImageAspectFlags
2897 anv_image_expand_aspects(const struct anv_image *image,
2898 VkImageAspectFlags aspects)
2899 {
2900 /* If the underlying image has color plane aspects and
2901 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
2902 * the underlying image. */
2903 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
2904 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
2905 return image->aspects;
2906
2907 return aspects;
2908 }
2909
2910 static inline bool
2911 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
2912 VkImageAspectFlags aspects2)
2913 {
2914 if (aspects1 == aspects2)
2915 return true;
2916
2917 /* Only 1 color aspects are compatibles. */
2918 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
2919 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
2920 _mesa_bitcount(aspects1) == _mesa_bitcount(aspects2))
2921 return true;
2922
2923 return false;
2924 }
2925
2926 struct anv_image_view {
2927 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
2928
2929 VkImageAspectFlags aspect_mask;
2930 VkFormat vk_format;
2931 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
2932
2933 unsigned n_planes;
2934 struct {
2935 uint32_t image_plane;
2936
2937 struct isl_view isl;
2938
2939 /**
2940 * RENDER_SURFACE_STATE when using image as a sampler surface with an
2941 * image layout of SHADER_READ_ONLY_OPTIMAL or
2942 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
2943 */
2944 struct anv_surface_state optimal_sampler_surface_state;
2945
2946 /**
2947 * RENDER_SURFACE_STATE when using image as a sampler surface with an
2948 * image layout of GENERAL.
2949 */
2950 struct anv_surface_state general_sampler_surface_state;
2951
2952 /**
2953 * RENDER_SURFACE_STATE when using image as a storage image. Separate
2954 * states for write-only and readable, using the real format for
2955 * write-only and the lowered format for readable.
2956 */
2957 struct anv_surface_state storage_surface_state;
2958 struct anv_surface_state writeonly_storage_surface_state;
2959
2960 struct brw_image_param storage_image_param;
2961 } planes[3];
2962 };
2963
2964 enum anv_image_view_state_flags {
2965 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
2966 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
2967 };
2968
2969 void anv_image_fill_surface_state(struct anv_device *device,
2970 const struct anv_image *image,
2971 VkImageAspectFlagBits aspect,
2972 const struct isl_view *view,
2973 isl_surf_usage_flags_t view_usage,
2974 enum isl_aux_usage aux_usage,
2975 const union isl_color_value *clear_color,
2976 enum anv_image_view_state_flags flags,
2977 struct anv_surface_state *state_inout,
2978 struct brw_image_param *image_param_out);
2979
2980 struct anv_image_create_info {
2981 const VkImageCreateInfo *vk_info;
2982
2983 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
2984 isl_tiling_flags_t isl_tiling_flags;
2985
2986 /** These flags will be added to any derived from VkImageCreateInfo. */
2987 isl_surf_usage_flags_t isl_extra_usage_flags;
2988
2989 uint32_t stride;
2990 };
2991
2992 VkResult anv_image_create(VkDevice _device,
2993 const struct anv_image_create_info *info,
2994 const VkAllocationCallbacks* alloc,
2995 VkImage *pImage);
2996
2997 #ifdef ANDROID
2998 VkResult anv_image_from_gralloc(VkDevice device_h,
2999 const VkImageCreateInfo *base_info,
3000 const VkNativeBufferANDROID *gralloc_info,
3001 const VkAllocationCallbacks *alloc,
3002 VkImage *pImage);
3003 #endif
3004
3005 const struct anv_surface *
3006 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3007 VkImageAspectFlags aspect_mask);
3008
3009 enum isl_format
3010 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3011
3012 static inline struct VkExtent3D
3013 anv_sanitize_image_extent(const VkImageType imageType,
3014 const struct VkExtent3D imageExtent)
3015 {
3016 switch (imageType) {
3017 case VK_IMAGE_TYPE_1D:
3018 return (VkExtent3D) { imageExtent.width, 1, 1 };
3019 case VK_IMAGE_TYPE_2D:
3020 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3021 case VK_IMAGE_TYPE_3D:
3022 return imageExtent;
3023 default:
3024 unreachable("invalid image type");
3025 }
3026 }
3027
3028 static inline struct VkOffset3D
3029 anv_sanitize_image_offset(const VkImageType imageType,
3030 const struct VkOffset3D imageOffset)
3031 {
3032 switch (imageType) {
3033 case VK_IMAGE_TYPE_1D:
3034 return (VkOffset3D) { imageOffset.x, 0, 0 };
3035 case VK_IMAGE_TYPE_2D:
3036 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3037 case VK_IMAGE_TYPE_3D:
3038 return imageOffset;
3039 default:
3040 unreachable("invalid image type");
3041 }
3042 }
3043
3044
3045 void anv_fill_buffer_surface_state(struct anv_device *device,
3046 struct anv_state state,
3047 enum isl_format format,
3048 struct anv_address address,
3049 uint32_t range, uint32_t stride);
3050
3051 static inline void
3052 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3053 const struct anv_attachment_state *att_state,
3054 const struct anv_image_view *iview)
3055 {
3056 const struct isl_format_layout *view_fmtl =
3057 isl_format_get_layout(iview->planes[0].isl.format);
3058
3059 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3060 if (view_fmtl->channels.c.bits) \
3061 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3062
3063 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3064 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3065 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3066 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3067
3068 #undef COPY_CLEAR_COLOR_CHANNEL
3069 }
3070
3071
3072 struct anv_ycbcr_conversion {
3073 const struct anv_format * format;
3074 VkSamplerYcbcrModelConversion ycbcr_model;
3075 VkSamplerYcbcrRange ycbcr_range;
3076 VkComponentSwizzle mapping[4];
3077 VkChromaLocation chroma_offsets[2];
3078 VkFilter chroma_filter;
3079 bool chroma_reconstruction;
3080 };
3081
3082 struct anv_sampler {
3083 uint32_t state[3][4];
3084 uint32_t n_planes;
3085 struct anv_ycbcr_conversion *conversion;
3086 };
3087
3088 struct anv_framebuffer {
3089 uint32_t width;
3090 uint32_t height;
3091 uint32_t layers;
3092
3093 uint32_t attachment_count;
3094 struct anv_image_view * attachments[0];
3095 };
3096
3097 struct anv_subpass_attachment {
3098 VkImageUsageFlagBits usage;
3099 uint32_t attachment;
3100 VkImageLayout layout;
3101 };
3102
3103 struct anv_subpass {
3104 uint32_t attachment_count;
3105
3106 /**
3107 * A pointer to all attachment references used in this subpass.
3108 * Only valid if ::attachment_count > 0.
3109 */
3110 struct anv_subpass_attachment * attachments;
3111 uint32_t input_count;
3112 struct anv_subpass_attachment * input_attachments;
3113 uint32_t color_count;
3114 struct anv_subpass_attachment * color_attachments;
3115 struct anv_subpass_attachment * resolve_attachments;
3116
3117 struct anv_subpass_attachment depth_stencil_attachment;
3118
3119 uint32_t view_mask;
3120
3121 /** Subpass has a depth/stencil self-dependency */
3122 bool has_ds_self_dep;
3123
3124 /** Subpass has at least one resolve attachment */
3125 bool has_resolve;
3126 };
3127
3128 static inline unsigned
3129 anv_subpass_view_count(const struct anv_subpass *subpass)
3130 {
3131 return MAX2(1, _mesa_bitcount(subpass->view_mask));
3132 }
3133
3134 struct anv_render_pass_attachment {
3135 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3136 * its members individually.
3137 */
3138 VkFormat format;
3139 uint32_t samples;
3140 VkImageUsageFlags usage;
3141 VkAttachmentLoadOp load_op;
3142 VkAttachmentStoreOp store_op;
3143 VkAttachmentLoadOp stencil_load_op;
3144 VkImageLayout initial_layout;
3145 VkImageLayout final_layout;
3146 VkImageLayout first_subpass_layout;
3147
3148 /* The subpass id in which the attachment will be used last. */
3149 uint32_t last_subpass_idx;
3150 };
3151
3152 struct anv_render_pass {
3153 uint32_t attachment_count;
3154 uint32_t subpass_count;
3155 /* An array of subpass_count+1 flushes, one per subpass boundary */
3156 enum anv_pipe_bits * subpass_flushes;
3157 struct anv_render_pass_attachment * attachments;
3158 struct anv_subpass subpasses[0];
3159 };
3160
3161 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3162
3163 struct anv_query_pool {
3164 VkQueryType type;
3165 VkQueryPipelineStatisticFlags pipeline_statistics;
3166 /** Stride between slots, in bytes */
3167 uint32_t stride;
3168 /** Number of slots in this query pool */
3169 uint32_t slots;
3170 struct anv_bo bo;
3171 };
3172
3173 int anv_get_entrypoint_index(const char *name);
3174
3175 bool
3176 anv_entrypoint_is_enabled(int index, uint32_t core_version,
3177 const struct anv_instance_extension_table *instance,
3178 const struct anv_device_extension_table *device);
3179
3180 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3181 const char *name);
3182
3183 void anv_dump_image_to_ppm(struct anv_device *device,
3184 struct anv_image *image, unsigned miplevel,
3185 unsigned array_layer, VkImageAspectFlagBits aspect,
3186 const char *filename);
3187
3188 enum anv_dump_action {
3189 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3190 };
3191
3192 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3193 void anv_dump_finish(void);
3194
3195 void anv_dump_add_framebuffer(struct anv_cmd_buffer *cmd_buffer,
3196 struct anv_framebuffer *fb);
3197
3198 static inline uint32_t
3199 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3200 {
3201 /* This function must be called from within a subpass. */
3202 assert(cmd_state->pass && cmd_state->subpass);
3203
3204 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3205
3206 /* The id of this subpass shouldn't exceed the number of subpasses in this
3207 * render pass minus 1.
3208 */
3209 assert(subpass_id < cmd_state->pass->subpass_count);
3210 return subpass_id;
3211 }
3212
3213 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3214 \
3215 static inline struct __anv_type * \
3216 __anv_type ## _from_handle(__VkType _handle) \
3217 { \
3218 return (struct __anv_type *) _handle; \
3219 } \
3220 \
3221 static inline __VkType \
3222 __anv_type ## _to_handle(struct __anv_type *_obj) \
3223 { \
3224 return (__VkType) _obj; \
3225 }
3226
3227 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3228 \
3229 static inline struct __anv_type * \
3230 __anv_type ## _from_handle(__VkType _handle) \
3231 { \
3232 return (struct __anv_type *)(uintptr_t) _handle; \
3233 } \
3234 \
3235 static inline __VkType \
3236 __anv_type ## _to_handle(struct __anv_type *_obj) \
3237 { \
3238 return (__VkType)(uintptr_t) _obj; \
3239 }
3240
3241 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3242 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3243
3244 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3245 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3246 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3247 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3248 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3249
3250 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3251 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3252 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3253 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3254 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3255 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3256 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplateKHR)
3257 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3258 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3259 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3260 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
3261 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
3262 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
3263 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
3264 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
3265 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
3266 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
3267 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
3268 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
3269 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
3270 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
3271 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
3272 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
3273
3274 /* Gen-specific function declarations */
3275 #ifdef genX
3276 # include "anv_genX.h"
3277 #else
3278 # define genX(x) gen7_##x
3279 # include "anv_genX.h"
3280 # undef genX
3281 # define genX(x) gen75_##x
3282 # include "anv_genX.h"
3283 # undef genX
3284 # define genX(x) gen8_##x
3285 # include "anv_genX.h"
3286 # undef genX
3287 # define genX(x) gen9_##x
3288 # include "anv_genX.h"
3289 # undef genX
3290 # define genX(x) gen10_##x
3291 # include "anv_genX.h"
3292 # undef genX
3293 # define genX(x) gen11_##x
3294 # include "anv_genX.h"
3295 # undef genX
3296 #endif
3297
3298 #endif /* ANV_PRIVATE_H */