f73b695ab99a2e51dd1dab69fcc98098850a167c
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65 #include "vk_object.h"
66
67 /* Pre-declarations needed for WSI entrypoints */
68 struct wl_surface;
69 struct wl_display;
70 typedef struct xcb_connection_t xcb_connection_t;
71 typedef uint32_t xcb_visualid_t;
72 typedef uint32_t xcb_window_t;
73
74 struct anv_batch;
75 struct anv_buffer;
76 struct anv_buffer_view;
77 struct anv_image_view;
78 struct anv_instance;
79
80 struct gen_aux_map_context;
81 struct gen_perf_config;
82 struct gen_perf_counter_pass;
83 struct gen_perf_query_result;
84
85 #include <vulkan/vulkan.h>
86 #include <vulkan/vulkan_intel.h>
87 #include <vulkan/vk_icd.h>
88
89 #include "anv_android.h"
90 #include "anv_entrypoints.h"
91 #include "anv_extensions.h"
92 #include "isl/isl.h"
93
94 #include "dev/gen_debug.h"
95 #include "common/intel_log.h"
96 #include "wsi_common.h"
97
98 #define NSEC_PER_SEC 1000000000ull
99
100 /* anv Virtual Memory Layout
101 * =========================
102 *
103 * When the anv driver is determining the virtual graphics addresses of memory
104 * objects itself using the softpin mechanism, the following memory ranges
105 * will be used.
106 *
107 * Three special considerations to notice:
108 *
109 * (1) the dynamic state pool is located within the same 4 GiB as the low
110 * heap. This is to work around a VF cache issue described in a comment in
111 * anv_physical_device_init_heaps.
112 *
113 * (2) the binding table pool is located at lower addresses than the surface
114 * state pool, within a 4 GiB range. This allows surface state base addresses
115 * to cover both binding tables (16 bit offsets) and surface states (32 bit
116 * offsets).
117 *
118 * (3) the last 4 GiB of the address space is withheld from the high
119 * heap. Various hardware units will read past the end of an object for
120 * various reasons. This healthy margin prevents reads from wrapping around
121 * 48-bit addresses.
122 */
123 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
124 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
125 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
126 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
127 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
128 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
129 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
130 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
131 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
132 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
133 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
134 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
135 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
136
137 #define LOW_HEAP_SIZE \
138 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
139 #define DYNAMIC_STATE_POOL_SIZE \
140 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
141 #define BINDING_TABLE_POOL_SIZE \
142 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
143 #define SURFACE_STATE_POOL_SIZE \
144 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
145 #define INSTRUCTION_STATE_POOL_SIZE \
146 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
147 #define CLIENT_VISIBLE_HEAP_SIZE \
148 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
149
150 /* Allowing different clear colors requires us to perform a depth resolve at
151 * the end of certain render passes. This is because while slow clears store
152 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
153 * See the PRMs for examples describing when additional resolves would be
154 * necessary. To enable fast clears without requiring extra resolves, we set
155 * the clear value to a globally-defined one. We could allow different values
156 * if the user doesn't expect coherent data during or after a render passes
157 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
158 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
159 * 1.0f seems to be the only value used. The only application that doesn't set
160 * this value does so through the usage of an seemingly uninitialized clear
161 * value.
162 */
163 #define ANV_HZ_FC_VAL 1.0f
164
165 #define MAX_VBS 28
166 #define MAX_XFB_BUFFERS 4
167 #define MAX_XFB_STREAMS 4
168 #define MAX_SETS 8
169 #define MAX_RTS 8
170 #define MAX_VIEWPORTS 16
171 #define MAX_SCISSORS 16
172 #define MAX_PUSH_CONSTANTS_SIZE 128
173 #define MAX_DYNAMIC_BUFFERS 16
174 #define MAX_IMAGES 64
175 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
176 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
177 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
178 /* We need 16 for UBO block reads to work and 32 for push UBOs. However, we
179 * use 64 here to avoid cache issues. This could most likely bring it back to
180 * 32 if we had different virtual addresses for the different views on a given
181 * GEM object.
182 */
183 #define ANV_UBO_ALIGNMENT 64
184 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
185 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
186
187 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
188 *
189 * "The surface state model is used when a Binding Table Index (specified
190 * in the message descriptor) of less than 240 is specified. In this model,
191 * the Binding Table Index is used to index into the binding table, and the
192 * binding table entry contains a pointer to the SURFACE_STATE."
193 *
194 * Binding table values above 240 are used for various things in the hardware
195 * such as stateless, stateless with incoherent cache, SLM, and bindless.
196 */
197 #define MAX_BINDING_TABLE_SIZE 240
198
199 /* The kernel relocation API has a limitation of a 32-bit delta value
200 * applied to the address before it is written which, in spite of it being
201 * unsigned, is treated as signed . Because of the way that this maps to
202 * the Vulkan API, we cannot handle an offset into a buffer that does not
203 * fit into a signed 32 bits. The only mechanism we have for dealing with
204 * this at the moment is to limit all VkDeviceMemory objects to a maximum
205 * of 2GB each. The Vulkan spec allows us to do this:
206 *
207 * "Some platforms may have a limit on the maximum size of a single
208 * allocation. For example, certain systems may fail to create
209 * allocations with a size greater than or equal to 4GB. Such a limit is
210 * implementation-dependent, and if such a failure occurs then the error
211 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
212 *
213 * We don't use vk_error here because it's not an error so much as an
214 * indication to the application that the allocation is too large.
215 */
216 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
217
218 #define ANV_SVGS_VB_INDEX MAX_VBS
219 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
220
221 /* We reserve this MI ALU register for the purpose of handling predication.
222 * Other code which uses the MI ALU should leave it alone.
223 */
224 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
225
226 /* We reserve this MI ALU register to pass around an offset computed from
227 * VkPerformanceQuerySubmitInfoKHR::counterPassIndex VK_KHR_performance_query.
228 * Other code which uses the MI ALU should leave it alone.
229 */
230 #define ANV_PERF_QUERY_OFFSET_REG 0x2670 /* MI_ALU_REG14 */
231
232 /* For gen12 we set the streamout buffers using 4 separate commands
233 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
234 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
235 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
236 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
237 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
238 * 3DSTATE_SO_BUFFER_INDEX_0.
239 */
240 #define SO_BUFFER_INDEX_0_CMD 0x60
241 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
242
243 static inline uint32_t
244 align_down_npot_u32(uint32_t v, uint32_t a)
245 {
246 return v - (v % a);
247 }
248
249 static inline uint32_t
250 align_down_u32(uint32_t v, uint32_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint32_t
257 align_u32(uint32_t v, uint32_t a)
258 {
259 assert(a != 0 && a == (a & -a));
260 return align_down_u32(v + a - 1, a);
261 }
262
263 static inline uint64_t
264 align_down_u64(uint64_t v, uint64_t a)
265 {
266 assert(a != 0 && a == (a & -a));
267 return v & ~(a - 1);
268 }
269
270 static inline uint64_t
271 align_u64(uint64_t v, uint64_t a)
272 {
273 return align_down_u64(v + a - 1, a);
274 }
275
276 static inline int32_t
277 align_i32(int32_t v, int32_t a)
278 {
279 assert(a != 0 && a == (a & -a));
280 return (v + a - 1) & ~(a - 1);
281 }
282
283 /** Alignment must be a power of 2. */
284 static inline bool
285 anv_is_aligned(uintmax_t n, uintmax_t a)
286 {
287 assert(a == (a & -a));
288 return (n & (a - 1)) == 0;
289 }
290
291 static inline uint32_t
292 anv_minify(uint32_t n, uint32_t levels)
293 {
294 if (unlikely(n == 0))
295 return 0;
296 else
297 return MAX2(n >> levels, 1);
298 }
299
300 static inline float
301 anv_clamp_f(float f, float min, float max)
302 {
303 assert(min < max);
304
305 if (f > max)
306 return max;
307 else if (f < min)
308 return min;
309 else
310 return f;
311 }
312
313 static inline bool
314 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
315 {
316 if (*inout_mask & clear_mask) {
317 *inout_mask &= ~clear_mask;
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324 static inline union isl_color_value
325 vk_to_isl_color(VkClearColorValue color)
326 {
327 return (union isl_color_value) {
328 .u32 = {
329 color.uint32[0],
330 color.uint32[1],
331 color.uint32[2],
332 color.uint32[3],
333 },
334 };
335 }
336
337 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
338 {
339 uintptr_t mask = (1ull << bits) - 1;
340 *flags = ptr & mask;
341 return (void *) (ptr & ~mask);
342 }
343
344 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
345 {
346 uintptr_t value = (uintptr_t) ptr;
347 uintptr_t mask = (1ull << bits) - 1;
348 return value | (mask & flags);
349 }
350
351 #define for_each_bit(b, dword) \
352 for (uint32_t __dword = (dword); \
353 (b) = __builtin_ffs(__dword) - 1, __dword; \
354 __dword &= ~(1 << (b)))
355
356 #define typed_memcpy(dest, src, count) ({ \
357 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
358 memcpy((dest), (src), (count) * sizeof(*(src))); \
359 })
360
361 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
362 * to be added here in order to utilize mapping in debug/error/perf macros.
363 */
364 #define REPORT_OBJECT_TYPE(o) \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
434 __builtin_choose_expr ( \
435 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
436 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
437 __builtin_choose_expr ( \
438 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
439 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
440 __builtin_choose_expr ( \
441 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
442 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
443 __builtin_choose_expr ( \
444 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
445 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
446 __builtin_choose_expr ( \
447 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
448 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
449 __builtin_choose_expr ( \
450 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
451 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
452 __builtin_choose_expr ( \
453 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
454 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
455 __builtin_choose_expr ( \
456 __builtin_types_compatible_p (__typeof (o), void*), \
457 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
458 /* The void expression results in a compile-time error \
459 when assigning the result to something. */ \
460 (void)0)))))))))))))))))))))))))))))))
461
462 /* Whenever we generate an error, pass it through this function. Useful for
463 * debugging, where we can break on it. Only call at error site, not when
464 * propagating errors. Might be useful to plug in a stack trace here.
465 */
466
467 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
468 VkDebugReportObjectTypeEXT type, VkResult error,
469 const char *file, int line, const char *format,
470 va_list args);
471
472 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
473 VkDebugReportObjectTypeEXT type, VkResult error,
474 const char *file, int line, const char *format, ...)
475 anv_printflike(7, 8);
476
477 #ifdef DEBUG
478 #define vk_error(error) __vk_errorf(NULL, NULL,\
479 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
480 error, __FILE__, __LINE__, NULL)
481 #define vk_errorfi(instance, obj, error, format, ...)\
482 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
483 __FILE__, __LINE__, format, ## __VA_ARGS__)
484 #define vk_errorf(device, obj, error, format, ...)\
485 vk_errorfi(anv_device_instance_or_null(device),\
486 obj, error, format, ## __VA_ARGS__)
487 #else
488 #define vk_error(error) error
489 #define vk_errorfi(instance, obj, error, format, ...) error
490 #define vk_errorf(device, obj, error, format, ...) error
491 #endif
492
493 /**
494 * Warn on ignored extension structs.
495 *
496 * The Vulkan spec requires us to ignore unsupported or unknown structs in
497 * a pNext chain. In debug mode, emitting warnings for ignored structs may
498 * help us discover structs that we should not have ignored.
499 *
500 *
501 * From the Vulkan 1.0.38 spec:
502 *
503 * Any component of the implementation (the loader, any enabled layers,
504 * and drivers) must skip over, without processing (other than reading the
505 * sType and pNext members) any chained structures with sType values not
506 * defined by extensions supported by that component.
507 */
508 #define anv_debug_ignored_stype(sType) \
509 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
510
511 void __anv_perf_warn(struct anv_device *device, const void *object,
512 VkDebugReportObjectTypeEXT type, const char *file,
513 int line, const char *format, ...)
514 anv_printflike(6, 7);
515 void anv_loge(const char *format, ...) anv_printflike(1, 2);
516 void anv_loge_v(const char *format, va_list va);
517
518 /**
519 * Print a FINISHME message, including its source location.
520 */
521 #define anv_finishme(format, ...) \
522 do { \
523 static bool reported = false; \
524 if (!reported) { \
525 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
526 ##__VA_ARGS__); \
527 reported = true; \
528 } \
529 } while (0)
530
531 /**
532 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
533 */
534 #define anv_perf_warn(instance, obj, format, ...) \
535 do { \
536 static bool reported = false; \
537 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
538 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
539 format, ##__VA_ARGS__); \
540 reported = true; \
541 } \
542 } while (0)
543
544 /* A non-fatal assert. Useful for debugging. */
545 #ifdef DEBUG
546 #define anv_assert(x) ({ \
547 if (unlikely(!(x))) \
548 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
549 })
550 #else
551 #define anv_assert(x)
552 #endif
553
554 /* A multi-pointer allocator
555 *
556 * When copying data structures from the user (such as a render pass), it's
557 * common to need to allocate data for a bunch of different things. Instead
558 * of doing several allocations and having to handle all of the error checking
559 * that entails, it can be easier to do a single allocation. This struct
560 * helps facilitate that. The intended usage looks like this:
561 *
562 * ANV_MULTIALLOC(ma)
563 * anv_multialloc_add(&ma, &main_ptr, 1);
564 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
565 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
566 *
567 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
568 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
569 */
570 struct anv_multialloc {
571 size_t size;
572 size_t align;
573
574 uint32_t ptr_count;
575 void **ptrs[8];
576 };
577
578 #define ANV_MULTIALLOC_INIT \
579 ((struct anv_multialloc) { 0, })
580
581 #define ANV_MULTIALLOC(_name) \
582 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
583
584 __attribute__((always_inline))
585 static inline void
586 _anv_multialloc_add(struct anv_multialloc *ma,
587 void **ptr, size_t size, size_t align)
588 {
589 size_t offset = align_u64(ma->size, align);
590 ma->size = offset + size;
591 ma->align = MAX2(ma->align, align);
592
593 /* Store the offset in the pointer. */
594 *ptr = (void *)(uintptr_t)offset;
595
596 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
597 ma->ptrs[ma->ptr_count++] = ptr;
598 }
599
600 #define anv_multialloc_add_size(_ma, _ptr, _size) \
601 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
602
603 #define anv_multialloc_add(_ma, _ptr, _count) \
604 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
605
606 __attribute__((always_inline))
607 static inline void *
608 anv_multialloc_alloc(struct anv_multialloc *ma,
609 const VkAllocationCallbacks *alloc,
610 VkSystemAllocationScope scope)
611 {
612 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
613 if (!ptr)
614 return NULL;
615
616 /* Fill out each of the pointers with their final value.
617 *
618 * for (uint32_t i = 0; i < ma->ptr_count; i++)
619 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
620 *
621 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
622 * constant, GCC is incapable of figuring this out and unrolling the loop
623 * so we have to give it a little help.
624 */
625 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
626 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
627 if ((_i) < ma->ptr_count) \
628 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
629 _ANV_MULTIALLOC_UPDATE_POINTER(0);
630 _ANV_MULTIALLOC_UPDATE_POINTER(1);
631 _ANV_MULTIALLOC_UPDATE_POINTER(2);
632 _ANV_MULTIALLOC_UPDATE_POINTER(3);
633 _ANV_MULTIALLOC_UPDATE_POINTER(4);
634 _ANV_MULTIALLOC_UPDATE_POINTER(5);
635 _ANV_MULTIALLOC_UPDATE_POINTER(6);
636 _ANV_MULTIALLOC_UPDATE_POINTER(7);
637 #undef _ANV_MULTIALLOC_UPDATE_POINTER
638
639 return ptr;
640 }
641
642 __attribute__((always_inline))
643 static inline void *
644 anv_multialloc_alloc2(struct anv_multialloc *ma,
645 const VkAllocationCallbacks *parent_alloc,
646 const VkAllocationCallbacks *alloc,
647 VkSystemAllocationScope scope)
648 {
649 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
650 }
651
652 struct anv_bo {
653 uint32_t gem_handle;
654
655 uint32_t refcount;
656
657 /* Index into the current validation list. This is used by the
658 * validation list building alrogithm to track which buffers are already
659 * in the validation list so that we can ensure uniqueness.
660 */
661 uint32_t index;
662
663 /* Index for use with util_sparse_array_free_list */
664 uint32_t free_index;
665
666 /* Last known offset. This value is provided by the kernel when we
667 * execbuf and is used as the presumed offset for the next bunch of
668 * relocations.
669 */
670 uint64_t offset;
671
672 /** Size of the buffer not including implicit aux */
673 uint64_t size;
674
675 /* Map for internally mapped BOs.
676 *
677 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
678 */
679 void *map;
680
681 /** Size of the implicit CCS range at the end of the buffer
682 *
683 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
684 * page of main surface data maps to a 256B chunk of CCS data and that
685 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
686 * addresses in the main surface to virtual memory addresses for CCS data.
687 *
688 * Because we can't change these maps around easily and because Vulkan
689 * allows two VkImages to be bound to overlapping memory regions (as long
690 * as the app is careful), it's not feasible to make this mapping part of
691 * the image. (On Gen11 and earlier, the mapping was provided via
692 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
693 * Instead, we attach the CCS data directly to the buffer object and setup
694 * the AUX table mapping at BO creation time.
695 *
696 * This field is for internal tracking use by the BO allocator only and
697 * should not be touched by other parts of the code. If something wants to
698 * know if a BO has implicit CCS data, it should instead look at the
699 * has_implicit_ccs boolean below.
700 *
701 * This data is not included in maps of this buffer.
702 */
703 uint32_t _ccs_size;
704
705 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
706 uint32_t flags;
707
708 /** True if this BO may be shared with other processes */
709 bool is_external:1;
710
711 /** True if this BO is a wrapper
712 *
713 * When set to true, none of the fields in this BO are meaningful except
714 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
715 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
716 * is set in the physical device.
717 */
718 bool is_wrapper:1;
719
720 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
721 bool has_fixed_address:1;
722
723 /** True if this BO wraps a host pointer */
724 bool from_host_ptr:1;
725
726 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
727 bool has_client_visible_address:1;
728
729 /** True if this BO has implicit CCS data attached to it */
730 bool has_implicit_ccs:1;
731 };
732
733 static inline struct anv_bo *
734 anv_bo_ref(struct anv_bo *bo)
735 {
736 p_atomic_inc(&bo->refcount);
737 return bo;
738 }
739
740 static inline struct anv_bo *
741 anv_bo_unwrap(struct anv_bo *bo)
742 {
743 while (bo->is_wrapper)
744 bo = bo->map;
745 return bo;
746 }
747
748 /* Represents a lock-free linked list of "free" things. This is used by
749 * both the block pool and the state pools. Unfortunately, in order to
750 * solve the ABA problem, we can't use a single uint32_t head.
751 */
752 union anv_free_list {
753 struct {
754 uint32_t offset;
755
756 /* A simple count that is incremented every time the head changes. */
757 uint32_t count;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764
765 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
766
767 struct anv_block_state {
768 union {
769 struct {
770 uint32_t next;
771 uint32_t end;
772 };
773 /* Make sure it's aligned to 64 bits. This will make atomic operations
774 * faster on 32 bit platforms.
775 */
776 uint64_t u64 __attribute__ ((aligned (8)));
777 };
778 };
779
780 #define anv_block_pool_foreach_bo(bo, pool) \
781 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
782 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
783 _pp_bo++)
784
785 #define ANV_MAX_BLOCK_POOL_BOS 20
786
787 struct anv_block_pool {
788 struct anv_device *device;
789 bool use_softpin;
790
791 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
792 * around the actual BO so that we grow the pool after the wrapper BO has
793 * been put in a relocation list. This is only used in the non-softpin
794 * case.
795 */
796 struct anv_bo wrapper_bo;
797
798 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
799 struct anv_bo *bo;
800 uint32_t nbos;
801
802 uint64_t size;
803
804 /* The address where the start of the pool is pinned. The various bos that
805 * are created as the pool grows will have addresses in the range
806 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
807 */
808 uint64_t start_address;
809
810 /* The offset from the start of the bo to the "center" of the block
811 * pool. Pointers to allocated blocks are given by
812 * bo.map + center_bo_offset + offsets.
813 */
814 uint32_t center_bo_offset;
815
816 /* Current memory map of the block pool. This pointer may or may not
817 * point to the actual beginning of the block pool memory. If
818 * anv_block_pool_alloc_back has ever been called, then this pointer
819 * will point to the "center" position of the buffer and all offsets
820 * (negative or positive) given out by the block pool alloc functions
821 * will be valid relative to this pointer.
822 *
823 * In particular, map == bo.map + center_offset
824 *
825 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
826 * since it will handle the softpin case as well, where this points to NULL.
827 */
828 void *map;
829 int fd;
830
831 /**
832 * Array of mmaps and gem handles owned by the block pool, reclaimed when
833 * the block pool is destroyed.
834 */
835 struct u_vector mmap_cleanups;
836
837 struct anv_block_state state;
838
839 struct anv_block_state back_state;
840 };
841
842 /* Block pools are backed by a fixed-size 1GB memfd */
843 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
844
845 /* The center of the block pool is also the middle of the memfd. This may
846 * change in the future if we decide differently for some reason.
847 */
848 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
849
850 static inline uint32_t
851 anv_block_pool_size(struct anv_block_pool *pool)
852 {
853 return pool->state.end + pool->back_state.end;
854 }
855
856 struct anv_state {
857 int32_t offset;
858 uint32_t alloc_size;
859 void *map;
860 uint32_t idx;
861 };
862
863 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
864
865 struct anv_fixed_size_state_pool {
866 union anv_free_list free_list;
867 struct anv_block_state block;
868 };
869
870 #define ANV_MIN_STATE_SIZE_LOG2 6
871 #define ANV_MAX_STATE_SIZE_LOG2 21
872
873 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
874
875 struct anv_free_entry {
876 uint32_t next;
877 struct anv_state state;
878 };
879
880 struct anv_state_table {
881 struct anv_device *device;
882 int fd;
883 struct anv_free_entry *map;
884 uint32_t size;
885 struct anv_block_state state;
886 struct u_vector cleanups;
887 };
888
889 struct anv_state_pool {
890 struct anv_block_pool block_pool;
891
892 /* Offset into the relevant state base address where the state pool starts
893 * allocating memory.
894 */
895 int32_t start_offset;
896
897 struct anv_state_table table;
898
899 /* The size of blocks which will be allocated from the block pool */
900 uint32_t block_size;
901
902 /** Free list for "back" allocations */
903 union anv_free_list back_alloc_free_list;
904
905 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
906 };
907
908 struct anv_state_reserved_pool {
909 struct anv_state_pool *pool;
910 union anv_free_list reserved_blocks;
911 uint32_t count;
912 };
913
914 struct anv_state_stream {
915 struct anv_state_pool *state_pool;
916
917 /* The size of blocks to allocate from the state pool */
918 uint32_t block_size;
919
920 /* Current block we're allocating from */
921 struct anv_state block;
922
923 /* Offset into the current block at which to allocate the next state */
924 uint32_t next;
925
926 /* List of all blocks allocated from this pool */
927 struct util_dynarray all_blocks;
928 };
929
930 /* The block_pool functions exported for testing only. The block pool should
931 * only be used via a state pool (see below).
932 */
933 VkResult anv_block_pool_init(struct anv_block_pool *pool,
934 struct anv_device *device,
935 uint64_t start_address,
936 uint32_t initial_size);
937 void anv_block_pool_finish(struct anv_block_pool *pool);
938 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
939 uint32_t block_size, uint32_t *padding);
940 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
941 uint32_t block_size);
942 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
943 size);
944
945 VkResult anv_state_pool_init(struct anv_state_pool *pool,
946 struct anv_device *device,
947 uint64_t base_address,
948 int32_t start_offset,
949 uint32_t block_size);
950 void anv_state_pool_finish(struct anv_state_pool *pool);
951 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
952 uint32_t state_size, uint32_t alignment);
953 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
954 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
955 void anv_state_stream_init(struct anv_state_stream *stream,
956 struct anv_state_pool *state_pool,
957 uint32_t block_size);
958 void anv_state_stream_finish(struct anv_state_stream *stream);
959 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
960 uint32_t size, uint32_t alignment);
961
962 void anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
963 struct anv_state_pool *parent,
964 uint32_t count, uint32_t size,
965 uint32_t alignment);
966 void anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool);
967 struct anv_state anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool);
968 void anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
969 struct anv_state state);
970
971 VkResult anv_state_table_init(struct anv_state_table *table,
972 struct anv_device *device,
973 uint32_t initial_entries);
974 void anv_state_table_finish(struct anv_state_table *table);
975 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
976 uint32_t count);
977 void anv_free_list_push(union anv_free_list *list,
978 struct anv_state_table *table,
979 uint32_t idx, uint32_t count);
980 struct anv_state* anv_free_list_pop(union anv_free_list *list,
981 struct anv_state_table *table);
982
983
984 static inline struct anv_state *
985 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
986 {
987 return &table->map[idx].state;
988 }
989 /**
990 * Implements a pool of re-usable BOs. The interface is identical to that
991 * of block_pool except that each block is its own BO.
992 */
993 struct anv_bo_pool {
994 struct anv_device *device;
995
996 struct util_sparse_array_free_list free_list[16];
997 };
998
999 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
1000 void anv_bo_pool_finish(struct anv_bo_pool *pool);
1001 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1002 struct anv_bo **bo_out);
1003 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
1004
1005 struct anv_scratch_pool {
1006 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
1007 struct anv_bo *bos[16][MESA_SHADER_STAGES];
1008 };
1009
1010 void anv_scratch_pool_init(struct anv_device *device,
1011 struct anv_scratch_pool *pool);
1012 void anv_scratch_pool_finish(struct anv_device *device,
1013 struct anv_scratch_pool *pool);
1014 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
1015 struct anv_scratch_pool *pool,
1016 gl_shader_stage stage,
1017 unsigned per_thread_scratch);
1018
1019 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
1020 struct anv_bo_cache {
1021 struct util_sparse_array bo_map;
1022 pthread_mutex_t mutex;
1023 };
1024
1025 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
1026 void anv_bo_cache_finish(struct anv_bo_cache *cache);
1027
1028 struct anv_memory_type {
1029 /* Standard bits passed on to the client */
1030 VkMemoryPropertyFlags propertyFlags;
1031 uint32_t heapIndex;
1032 };
1033
1034 struct anv_memory_heap {
1035 /* Standard bits passed on to the client */
1036 VkDeviceSize size;
1037 VkMemoryHeapFlags flags;
1038
1039 /** Driver-internal book-keeping.
1040 *
1041 * Align it to 64 bits to make atomic operations faster on 32 bit platforms.
1042 */
1043 VkDeviceSize used __attribute__ ((aligned (8)));
1044 };
1045
1046 struct anv_physical_device {
1047 struct vk_object_base base;
1048
1049 /* Link in anv_instance::physical_devices */
1050 struct list_head link;
1051
1052 struct anv_instance * instance;
1053 bool no_hw;
1054 char path[20];
1055 const char * name;
1056 struct {
1057 uint16_t domain;
1058 uint8_t bus;
1059 uint8_t device;
1060 uint8_t function;
1061 } pci_info;
1062 struct gen_device_info info;
1063 /** Amount of "GPU memory" we want to advertise
1064 *
1065 * Clearly, this value is bogus since Intel is a UMA architecture. On
1066 * gen7 platforms, we are limited by GTT size unless we want to implement
1067 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1068 * practically unlimited. However, we will never report more than 3/4 of
1069 * the total system ram to try and avoid running out of RAM.
1070 */
1071 bool supports_48bit_addresses;
1072 struct brw_compiler * compiler;
1073 struct isl_device isl_dev;
1074 struct gen_perf_config * perf;
1075 int cmd_parser_version;
1076 bool has_softpin;
1077 bool has_exec_async;
1078 bool has_exec_capture;
1079 bool has_exec_fence;
1080 bool has_syncobj;
1081 bool has_syncobj_wait;
1082 bool has_syncobj_wait_available;
1083 bool has_context_priority;
1084 bool has_context_isolation;
1085 bool has_thread_submit;
1086 bool has_mem_available;
1087 bool has_mmap_offset;
1088 uint64_t gtt_size;
1089
1090 bool use_softpin;
1091 bool always_use_bindless;
1092 bool use_call_secondary;
1093
1094 /** True if we can access buffers using A64 messages */
1095 bool has_a64_buffer_access;
1096 /** True if we can use bindless access for images */
1097 bool has_bindless_images;
1098 /** True if we can use bindless access for samplers */
1099 bool has_bindless_samplers;
1100 /** True if we can use timeline semaphores through execbuf */
1101 bool has_exec_timeline;
1102
1103 /** True if we can read the GPU timestamp register
1104 *
1105 * When running in a virtual context, the timestamp register is unreadable
1106 * on Gen12+.
1107 */
1108 bool has_reg_timestamp;
1109
1110 /** True if this device has implicit AUX
1111 *
1112 * If true, CCS is handled as an implicit attachment to the BO rather than
1113 * as an explicitly bound surface.
1114 */
1115 bool has_implicit_ccs;
1116
1117 bool always_flush_cache;
1118
1119 struct anv_device_extension_table supported_extensions;
1120
1121 uint32_t eu_total;
1122 uint32_t subslice_total;
1123
1124 struct {
1125 uint32_t type_count;
1126 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1127 uint32_t heap_count;
1128 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1129 } memory;
1130
1131 uint8_t driver_build_sha1[20];
1132 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1133 uint8_t driver_uuid[VK_UUID_SIZE];
1134 uint8_t device_uuid[VK_UUID_SIZE];
1135
1136 struct disk_cache * disk_cache;
1137
1138 struct wsi_device wsi_device;
1139 int local_fd;
1140 int master_fd;
1141 };
1142
1143 struct anv_app_info {
1144 const char* app_name;
1145 uint32_t app_version;
1146 const char* engine_name;
1147 uint32_t engine_version;
1148 uint32_t api_version;
1149 };
1150
1151 struct anv_instance {
1152 struct vk_object_base base;
1153
1154 VkAllocationCallbacks alloc;
1155
1156 struct anv_app_info app_info;
1157
1158 struct anv_instance_extension_table enabled_extensions;
1159 struct anv_instance_dispatch_table dispatch;
1160 struct anv_physical_device_dispatch_table physical_device_dispatch;
1161 struct anv_device_dispatch_table device_dispatch;
1162
1163 bool physical_devices_enumerated;
1164 struct list_head physical_devices;
1165
1166 bool pipeline_cache_enabled;
1167
1168 struct vk_debug_report_instance debug_report_callbacks;
1169
1170 struct driOptionCache dri_options;
1171 struct driOptionCache available_dri_options;
1172 };
1173
1174 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1175 void anv_finish_wsi(struct anv_physical_device *physical_device);
1176
1177 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1178 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1179 const char *name);
1180
1181 struct anv_queue_submit {
1182 struct anv_cmd_buffer * cmd_buffer;
1183
1184 uint32_t fence_count;
1185 uint32_t fence_array_length;
1186 struct drm_i915_gem_exec_fence * fences;
1187 uint64_t * fence_values;
1188
1189 uint32_t temporary_semaphore_count;
1190 uint32_t temporary_semaphore_array_length;
1191 struct anv_semaphore_impl * temporary_semaphores;
1192
1193 /* Semaphores to be signaled with a SYNC_FD. */
1194 struct anv_semaphore ** sync_fd_semaphores;
1195 uint32_t sync_fd_semaphore_count;
1196 uint32_t sync_fd_semaphore_array_length;
1197
1198 /* Allocated only with non shareable timelines. */
1199 union {
1200 struct anv_timeline ** wait_timelines;
1201 uint32_t * wait_timeline_syncobjs;
1202 };
1203 uint32_t wait_timeline_count;
1204 uint32_t wait_timeline_array_length;
1205 uint64_t * wait_timeline_values;
1206
1207 struct anv_timeline ** signal_timelines;
1208 uint32_t signal_timeline_count;
1209 uint32_t signal_timeline_array_length;
1210 uint64_t * signal_timeline_values;
1211
1212 int in_fence;
1213 bool need_out_fence;
1214 int out_fence;
1215
1216 uint32_t fence_bo_count;
1217 uint32_t fence_bo_array_length;
1218 /* An array of struct anv_bo pointers with lower bit used as a flag to
1219 * signal we will wait on that BO (see anv_(un)pack_ptr).
1220 */
1221 uintptr_t * fence_bos;
1222
1223 int perf_query_pass;
1224
1225 const VkAllocationCallbacks * alloc;
1226 VkSystemAllocationScope alloc_scope;
1227
1228 struct anv_bo * simple_bo;
1229 uint32_t simple_bo_size;
1230
1231 struct list_head link;
1232 };
1233
1234 struct anv_queue {
1235 struct vk_object_base base;
1236
1237 struct anv_device * device;
1238
1239 VkDeviceQueueCreateFlags flags;
1240
1241 /* Set once from the device api calls. */
1242 bool lost_signaled;
1243
1244 /* Only set once atomically by the queue */
1245 int lost;
1246 int error_line;
1247 const char * error_file;
1248 char error_msg[80];
1249
1250 /*
1251 * This mutext protects the variables below.
1252 */
1253 pthread_mutex_t mutex;
1254
1255 pthread_t thread;
1256 pthread_cond_t cond;
1257
1258 /*
1259 * A list of struct anv_queue_submit to be submitted to i915.
1260 */
1261 struct list_head queued_submits;
1262
1263 /* Set to true to stop the submission thread */
1264 bool quit;
1265 };
1266
1267 struct anv_pipeline_cache {
1268 struct vk_object_base base;
1269 struct anv_device * device;
1270 pthread_mutex_t mutex;
1271
1272 struct hash_table * nir_cache;
1273
1274 struct hash_table * cache;
1275
1276 bool external_sync;
1277 };
1278
1279 struct nir_xfb_info;
1280 struct anv_pipeline_bind_map;
1281
1282 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1283 struct anv_device *device,
1284 bool cache_enabled,
1285 bool external_sync);
1286 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1287
1288 struct anv_shader_bin *
1289 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1290 const void *key, uint32_t key_size);
1291 struct anv_shader_bin *
1292 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1293 gl_shader_stage stage,
1294 const void *key_data, uint32_t key_size,
1295 const void *kernel_data, uint32_t kernel_size,
1296 const struct brw_stage_prog_data *prog_data,
1297 uint32_t prog_data_size,
1298 const struct brw_compile_stats *stats,
1299 uint32_t num_stats,
1300 const struct nir_xfb_info *xfb_info,
1301 const struct anv_pipeline_bind_map *bind_map);
1302
1303 struct anv_shader_bin *
1304 anv_device_search_for_kernel(struct anv_device *device,
1305 struct anv_pipeline_cache *cache,
1306 const void *key_data, uint32_t key_size,
1307 bool *user_cache_bit);
1308
1309 struct anv_shader_bin *
1310 anv_device_upload_kernel(struct anv_device *device,
1311 struct anv_pipeline_cache *cache,
1312 gl_shader_stage stage,
1313 const void *key_data, uint32_t key_size,
1314 const void *kernel_data, uint32_t kernel_size,
1315 const struct brw_stage_prog_data *prog_data,
1316 uint32_t prog_data_size,
1317 const struct brw_compile_stats *stats,
1318 uint32_t num_stats,
1319 const struct nir_xfb_info *xfb_info,
1320 const struct anv_pipeline_bind_map *bind_map);
1321
1322 struct nir_shader;
1323 struct nir_shader_compiler_options;
1324
1325 struct nir_shader *
1326 anv_device_search_for_nir(struct anv_device *device,
1327 struct anv_pipeline_cache *cache,
1328 const struct nir_shader_compiler_options *nir_options,
1329 unsigned char sha1_key[20],
1330 void *mem_ctx);
1331
1332 void
1333 anv_device_upload_nir(struct anv_device *device,
1334 struct anv_pipeline_cache *cache,
1335 const struct nir_shader *nir,
1336 unsigned char sha1_key[20]);
1337
1338 struct anv_address {
1339 struct anv_bo *bo;
1340 uint32_t offset;
1341 };
1342
1343 struct anv_device {
1344 struct vk_device vk;
1345
1346 struct anv_physical_device * physical;
1347 bool no_hw;
1348 struct gen_device_info info;
1349 struct isl_device isl_dev;
1350 int context_id;
1351 int fd;
1352 bool can_chain_batches;
1353 bool robust_buffer_access;
1354 bool has_thread_submit;
1355 struct anv_device_extension_table enabled_extensions;
1356 struct anv_device_dispatch_table dispatch;
1357
1358 pthread_mutex_t vma_mutex;
1359 struct util_vma_heap vma_lo;
1360 struct util_vma_heap vma_cva;
1361 struct util_vma_heap vma_hi;
1362
1363 /** List of all anv_device_memory objects */
1364 struct list_head memory_objects;
1365
1366 struct anv_bo_pool batch_bo_pool;
1367
1368 struct anv_bo_cache bo_cache;
1369
1370 struct anv_state_pool dynamic_state_pool;
1371 struct anv_state_pool instruction_state_pool;
1372 struct anv_state_pool binding_table_pool;
1373 struct anv_state_pool surface_state_pool;
1374
1375 struct anv_state_reserved_pool custom_border_colors;
1376
1377 /** BO used for various workarounds
1378 *
1379 * There are a number of workarounds on our hardware which require writing
1380 * data somewhere and it doesn't really matter where. For that, we use
1381 * this BO and just write to the first dword or so.
1382 *
1383 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1384 * For that, we use the high bytes (>= 1024) of the workaround BO.
1385 */
1386 struct anv_bo * workaround_bo;
1387 struct anv_address workaround_address;
1388
1389 struct anv_bo * trivial_batch_bo;
1390 struct anv_bo * hiz_clear_bo;
1391 struct anv_state null_surface_state;
1392
1393 struct anv_pipeline_cache default_pipeline_cache;
1394 struct blorp_context blorp;
1395
1396 struct anv_state border_colors;
1397
1398 struct anv_state slice_hash;
1399
1400 struct anv_queue queue;
1401
1402 struct anv_scratch_pool scratch_pool;
1403
1404 pthread_mutex_t mutex;
1405 pthread_cond_t queue_submit;
1406 int _lost;
1407 int lost_reported;
1408
1409 struct gen_batch_decode_ctx decoder_ctx;
1410 /*
1411 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1412 * the cmd_buffer's list.
1413 */
1414 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1415
1416 int perf_fd; /* -1 if no opened */
1417 uint64_t perf_metric; /* 0 if unset */
1418
1419 struct gen_aux_map_context *aux_map_ctx;
1420
1421 struct gen_debug_block_frame *debug_frame_desc;
1422 };
1423
1424 static inline struct anv_instance *
1425 anv_device_instance_or_null(const struct anv_device *device)
1426 {
1427 return device ? device->physical->instance : NULL;
1428 }
1429
1430 static inline struct anv_state_pool *
1431 anv_binding_table_pool(struct anv_device *device)
1432 {
1433 if (device->physical->use_softpin)
1434 return &device->binding_table_pool;
1435 else
1436 return &device->surface_state_pool;
1437 }
1438
1439 static inline struct anv_state
1440 anv_binding_table_pool_alloc(struct anv_device *device) {
1441 if (device->physical->use_softpin)
1442 return anv_state_pool_alloc(&device->binding_table_pool,
1443 device->binding_table_pool.block_size, 0);
1444 else
1445 return anv_state_pool_alloc_back(&device->surface_state_pool);
1446 }
1447
1448 static inline void
1449 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1450 anv_state_pool_free(anv_binding_table_pool(device), state);
1451 }
1452
1453 static inline uint32_t
1454 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1455 {
1456 if (bo->is_external)
1457 return device->isl_dev.mocs.external;
1458 else
1459 return device->isl_dev.mocs.internal;
1460 }
1461
1462 void anv_device_init_blorp(struct anv_device *device);
1463 void anv_device_finish_blorp(struct anv_device *device);
1464
1465 void _anv_device_report_lost(struct anv_device *device);
1466 VkResult _anv_device_set_lost(struct anv_device *device,
1467 const char *file, int line,
1468 const char *msg, ...)
1469 anv_printflike(4, 5);
1470 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1471 const char *file, int line,
1472 const char *msg, ...)
1473 anv_printflike(4, 5);
1474 #define anv_device_set_lost(dev, ...) \
1475 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1476 #define anv_queue_set_lost(queue, ...) \
1477 (queue)->device->has_thread_submit ? \
1478 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__) : \
1479 _anv_device_set_lost(queue->device, __FILE__, __LINE__, __VA_ARGS__)
1480
1481 static inline bool
1482 anv_device_is_lost(struct anv_device *device)
1483 {
1484 int lost = p_atomic_read(&device->_lost);
1485 if (unlikely(lost && !device->lost_reported))
1486 _anv_device_report_lost(device);
1487 return lost;
1488 }
1489
1490 VkResult anv_device_query_status(struct anv_device *device);
1491
1492
1493 enum anv_bo_alloc_flags {
1494 /** Specifies that the BO must have a 32-bit address
1495 *
1496 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1497 */
1498 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1499
1500 /** Specifies that the BO may be shared externally */
1501 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1502
1503 /** Specifies that the BO should be mapped */
1504 ANV_BO_ALLOC_MAPPED = (1 << 2),
1505
1506 /** Specifies that the BO should be snooped so we get coherency */
1507 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1508
1509 /** Specifies that the BO should be captured in error states */
1510 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1511
1512 /** Specifies that the BO will have an address assigned by the caller
1513 *
1514 * Such BOs do not exist in any VMA heap.
1515 */
1516 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1517
1518 /** Enables implicit synchronization on the BO
1519 *
1520 * This is the opposite of EXEC_OBJECT_ASYNC.
1521 */
1522 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1523
1524 /** Enables implicit synchronization on the BO
1525 *
1526 * This is equivalent to EXEC_OBJECT_WRITE.
1527 */
1528 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1529
1530 /** Has an address which is visible to the client */
1531 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1532
1533 /** This buffer has implicit CCS data attached to it */
1534 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1535 };
1536
1537 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1538 enum anv_bo_alloc_flags alloc_flags,
1539 uint64_t explicit_address,
1540 struct anv_bo **bo);
1541 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1542 void *host_ptr, uint32_t size,
1543 enum anv_bo_alloc_flags alloc_flags,
1544 uint64_t client_address,
1545 struct anv_bo **bo_out);
1546 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1547 enum anv_bo_alloc_flags alloc_flags,
1548 uint64_t client_address,
1549 struct anv_bo **bo);
1550 VkResult anv_device_export_bo(struct anv_device *device,
1551 struct anv_bo *bo, int *fd_out);
1552 void anv_device_release_bo(struct anv_device *device,
1553 struct anv_bo *bo);
1554
1555 static inline struct anv_bo *
1556 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1557 {
1558 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1559 }
1560
1561 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1562 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1563 int64_t timeout);
1564
1565 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1566 void anv_queue_finish(struct anv_queue *queue);
1567
1568 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1569 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1570 struct anv_batch *batch);
1571
1572 uint64_t anv_gettime_ns(void);
1573 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1574
1575 void* anv_gem_mmap(struct anv_device *device,
1576 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1577 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1578 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1579 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1580 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1581 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1582 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1583 int anv_gem_execbuffer(struct anv_device *device,
1584 struct drm_i915_gem_execbuffer2 *execbuf);
1585 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1586 uint32_t stride, uint32_t tiling);
1587 int anv_gem_create_context(struct anv_device *device);
1588 bool anv_gem_has_context_priority(int fd);
1589 int anv_gem_destroy_context(struct anv_device *device, int context);
1590 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1591 uint64_t value);
1592 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1593 uint64_t *value);
1594 int anv_gem_get_param(int fd, uint32_t param);
1595 uint64_t anv_gem_get_drm_cap(int fd, uint32_t capability);
1596 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1597 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1598 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1599 uint32_t *active, uint32_t *pending);
1600 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1601 int anv_gem_reg_read(int fd, uint32_t offset, uint64_t *result);
1602 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1603 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1604 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1605 uint32_t read_domains, uint32_t write_domain);
1606 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1607 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1608 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1609 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1610 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1611 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1612 uint32_t handle);
1613 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1614 uint32_t handle, int fd);
1615 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1616 bool anv_gem_supports_syncobj_wait(int fd);
1617 int anv_gem_syncobj_wait(struct anv_device *device,
1618 const uint32_t *handles, uint32_t num_handles,
1619 int64_t abs_timeout_ns, bool wait_all);
1620 int anv_gem_syncobj_timeline_wait(struct anv_device *device,
1621 const uint32_t *handles, const uint64_t *points,
1622 uint32_t num_items, int64_t abs_timeout_ns,
1623 bool wait_all, bool wait_materialize);
1624 int anv_gem_syncobj_timeline_signal(struct anv_device *device,
1625 const uint32_t *handles, const uint64_t *points,
1626 uint32_t num_items);
1627 int anv_gem_syncobj_timeline_query(struct anv_device *device,
1628 const uint32_t *handles, uint64_t *points,
1629 uint32_t num_items);
1630
1631 uint64_t anv_vma_alloc(struct anv_device *device,
1632 uint64_t size, uint64_t align,
1633 enum anv_bo_alloc_flags alloc_flags,
1634 uint64_t client_address);
1635 void anv_vma_free(struct anv_device *device,
1636 uint64_t address, uint64_t size);
1637
1638 struct anv_reloc_list {
1639 uint32_t num_relocs;
1640 uint32_t array_length;
1641 struct drm_i915_gem_relocation_entry * relocs;
1642 struct anv_bo ** reloc_bos;
1643 uint32_t dep_words;
1644 BITSET_WORD * deps;
1645 };
1646
1647 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1648 const VkAllocationCallbacks *alloc);
1649 void anv_reloc_list_finish(struct anv_reloc_list *list,
1650 const VkAllocationCallbacks *alloc);
1651
1652 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1653 const VkAllocationCallbacks *alloc,
1654 uint32_t offset, struct anv_bo *target_bo,
1655 uint32_t delta, uint64_t *address_u64_out);
1656
1657 struct anv_batch_bo {
1658 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1659 struct list_head link;
1660
1661 struct anv_bo * bo;
1662
1663 /* Bytes actually consumed in this batch BO */
1664 uint32_t length;
1665
1666 struct anv_reloc_list relocs;
1667 };
1668
1669 struct anv_batch {
1670 const VkAllocationCallbacks * alloc;
1671
1672 struct anv_address start_addr;
1673
1674 void * start;
1675 void * end;
1676 void * next;
1677
1678 struct anv_reloc_list * relocs;
1679
1680 /* This callback is called (with the associated user data) in the event
1681 * that the batch runs out of space.
1682 */
1683 VkResult (*extend_cb)(struct anv_batch *, void *);
1684 void * user_data;
1685
1686 /**
1687 * Current error status of the command buffer. Used to track inconsistent
1688 * or incomplete command buffer states that are the consequence of run-time
1689 * errors such as out of memory scenarios. We want to track this in the
1690 * batch because the command buffer object is not visible to some parts
1691 * of the driver.
1692 */
1693 VkResult status;
1694 };
1695
1696 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1697 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1698 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1699 void *location, struct anv_bo *bo, uint32_t offset);
1700 struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location);
1701
1702 static inline void
1703 anv_batch_set_storage(struct anv_batch *batch, struct anv_address addr,
1704 void *map, size_t size)
1705 {
1706 batch->start_addr = addr;
1707 batch->next = batch->start = map;
1708 batch->end = map + size;
1709 }
1710
1711 static inline VkResult
1712 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1713 {
1714 assert(error != VK_SUCCESS);
1715 if (batch->status == VK_SUCCESS)
1716 batch->status = error;
1717 return batch->status;
1718 }
1719
1720 static inline bool
1721 anv_batch_has_error(struct anv_batch *batch)
1722 {
1723 return batch->status != VK_SUCCESS;
1724 }
1725
1726 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1727
1728 static inline bool
1729 anv_address_is_null(struct anv_address addr)
1730 {
1731 return addr.bo == NULL && addr.offset == 0;
1732 }
1733
1734 static inline uint64_t
1735 anv_address_physical(struct anv_address addr)
1736 {
1737 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1738 return gen_canonical_address(addr.bo->offset + addr.offset);
1739 else
1740 return gen_canonical_address(addr.offset);
1741 }
1742
1743 static inline struct anv_address
1744 anv_address_add(struct anv_address addr, uint64_t offset)
1745 {
1746 addr.offset += offset;
1747 return addr;
1748 }
1749
1750 static inline void
1751 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1752 {
1753 unsigned reloc_size = 0;
1754 if (device->info.gen >= 8) {
1755 reloc_size = sizeof(uint64_t);
1756 *(uint64_t *)p = gen_canonical_address(v);
1757 } else {
1758 reloc_size = sizeof(uint32_t);
1759 *(uint32_t *)p = v;
1760 }
1761
1762 if (flush && !device->info.has_llc)
1763 gen_flush_range(p, reloc_size);
1764 }
1765
1766 static inline uint64_t
1767 _anv_combine_address(struct anv_batch *batch, void *location,
1768 const struct anv_address address, uint32_t delta)
1769 {
1770 if (address.bo == NULL) {
1771 return address.offset + delta;
1772 } else {
1773 assert(batch->start <= location && location < batch->end);
1774
1775 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1776 }
1777 }
1778
1779 #define __gen_address_type struct anv_address
1780 #define __gen_user_data struct anv_batch
1781 #define __gen_combine_address _anv_combine_address
1782
1783 /* Wrapper macros needed to work around preprocessor argument issues. In
1784 * particular, arguments don't get pre-evaluated if they are concatenated.
1785 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1786 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1787 * We can work around this easily enough with these helpers.
1788 */
1789 #define __anv_cmd_length(cmd) cmd ## _length
1790 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1791 #define __anv_cmd_header(cmd) cmd ## _header
1792 #define __anv_cmd_pack(cmd) cmd ## _pack
1793 #define __anv_reg_num(reg) reg ## _num
1794
1795 #define anv_pack_struct(dst, struc, ...) do { \
1796 struct struc __template = { \
1797 __VA_ARGS__ \
1798 }; \
1799 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1800 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1801 } while (0)
1802
1803 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1804 void *__dst = anv_batch_emit_dwords(batch, n); \
1805 if (__dst) { \
1806 struct cmd __template = { \
1807 __anv_cmd_header(cmd), \
1808 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1809 __VA_ARGS__ \
1810 }; \
1811 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1812 } \
1813 __dst; \
1814 })
1815
1816 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1817 do { \
1818 uint32_t *dw; \
1819 \
1820 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1821 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1822 if (!dw) \
1823 break; \
1824 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1825 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1826 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1827 } while (0)
1828
1829 #define anv_batch_emit(batch, cmd, name) \
1830 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1831 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1832 __builtin_expect(_dst != NULL, 1); \
1833 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1834 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1835 _dst = NULL; \
1836 }))
1837
1838 /* #define __gen_get_batch_dwords anv_batch_emit_dwords */
1839 /* #define __gen_get_batch_address anv_batch_address */
1840 /* #define __gen_address_value anv_address_physical */
1841 /* #define __gen_address_offset anv_address_add */
1842
1843 struct anv_device_memory {
1844 struct vk_object_base base;
1845
1846 struct list_head link;
1847
1848 struct anv_bo * bo;
1849 struct anv_memory_type * type;
1850 VkDeviceSize map_size;
1851 void * map;
1852
1853 /* If set, we are holding reference to AHardwareBuffer
1854 * which we must release when memory is freed.
1855 */
1856 struct AHardwareBuffer * ahw;
1857
1858 /* If set, this memory comes from a host pointer. */
1859 void * host_ptr;
1860 };
1861
1862 /**
1863 * Header for Vertex URB Entry (VUE)
1864 */
1865 struct anv_vue_header {
1866 uint32_t Reserved;
1867 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1868 uint32_t ViewportIndex;
1869 float PointWidth;
1870 };
1871
1872 /** Struct representing a sampled image descriptor
1873 *
1874 * This descriptor layout is used for sampled images, bare sampler, and
1875 * combined image/sampler descriptors.
1876 */
1877 struct anv_sampled_image_descriptor {
1878 /** Bindless image handle
1879 *
1880 * This is expected to already be shifted such that the 20-bit
1881 * SURFACE_STATE table index is in the top 20 bits.
1882 */
1883 uint32_t image;
1884
1885 /** Bindless sampler handle
1886 *
1887 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1888 * to the dynamic state base address.
1889 */
1890 uint32_t sampler;
1891 };
1892
1893 struct anv_texture_swizzle_descriptor {
1894 /** Texture swizzle
1895 *
1896 * See also nir_intrinsic_channel_select_intel
1897 */
1898 uint8_t swizzle[4];
1899
1900 /** Unused padding to ensure the struct is a multiple of 64 bits */
1901 uint32_t _pad;
1902 };
1903
1904 /** Struct representing a storage image descriptor */
1905 struct anv_storage_image_descriptor {
1906 /** Bindless image handles
1907 *
1908 * These are expected to already be shifted such that the 20-bit
1909 * SURFACE_STATE table index is in the top 20 bits.
1910 */
1911 uint32_t read_write;
1912 uint32_t write_only;
1913 };
1914
1915 /** Struct representing a address/range descriptor
1916 *
1917 * The fields of this struct correspond directly to the data layout of
1918 * nir_address_format_64bit_bounded_global addresses. The last field is the
1919 * offset in the NIR address so it must be zero so that when you load the
1920 * descriptor you get a pointer to the start of the range.
1921 */
1922 struct anv_address_range_descriptor {
1923 uint64_t address;
1924 uint32_t range;
1925 uint32_t zero;
1926 };
1927
1928 enum anv_descriptor_data {
1929 /** The descriptor contains a BTI reference to a surface state */
1930 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1931 /** The descriptor contains a BTI reference to a sampler state */
1932 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1933 /** The descriptor contains an actual buffer view */
1934 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1935 /** The descriptor contains auxiliary image layout data */
1936 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1937 /** The descriptor contains auxiliary image layout data */
1938 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1939 /** anv_address_range_descriptor with a buffer address and range */
1940 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1941 /** Bindless surface handle */
1942 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1943 /** Storage image handles */
1944 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1945 /** Storage image handles */
1946 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1947 };
1948
1949 struct anv_descriptor_set_binding_layout {
1950 #ifndef NDEBUG
1951 /* The type of the descriptors in this binding */
1952 VkDescriptorType type;
1953 #endif
1954
1955 /* Flags provided when this binding was created */
1956 VkDescriptorBindingFlagsEXT flags;
1957
1958 /* Bitfield representing the type of data this descriptor contains */
1959 enum anv_descriptor_data data;
1960
1961 /* Maximum number of YCbCr texture/sampler planes */
1962 uint8_t max_plane_count;
1963
1964 /* Number of array elements in this binding (or size in bytes for inline
1965 * uniform data)
1966 */
1967 uint16_t array_size;
1968
1969 /* Index into the flattend descriptor set */
1970 uint16_t descriptor_index;
1971
1972 /* Index into the dynamic state array for a dynamic buffer */
1973 int16_t dynamic_offset_index;
1974
1975 /* Index into the descriptor set buffer views */
1976 int16_t buffer_view_index;
1977
1978 /* Offset into the descriptor buffer where this descriptor lives */
1979 uint32_t descriptor_offset;
1980
1981 /* Immutable samplers (or NULL if no immutable samplers) */
1982 struct anv_sampler **immutable_samplers;
1983 };
1984
1985 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1986
1987 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1988 VkDescriptorType type);
1989
1990 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1991 const struct anv_descriptor_set_binding_layout *binding,
1992 bool sampler);
1993
1994 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1995 const struct anv_descriptor_set_binding_layout *binding,
1996 bool sampler);
1997
1998 struct anv_descriptor_set_layout {
1999 struct vk_object_base base;
2000
2001 /* Descriptor set layouts can be destroyed at almost any time */
2002 uint32_t ref_cnt;
2003
2004 /* Number of bindings in this descriptor set */
2005 uint16_t binding_count;
2006
2007 /* Total size of the descriptor set with room for all array entries */
2008 uint16_t size;
2009
2010 /* Shader stages affected by this descriptor set */
2011 uint16_t shader_stages;
2012
2013 /* Number of buffer views in this descriptor set */
2014 uint16_t buffer_view_count;
2015
2016 /* Number of dynamic offsets used by this descriptor set */
2017 uint16_t dynamic_offset_count;
2018
2019 /* For each dynamic buffer, which VkShaderStageFlagBits stages are using
2020 * this buffer
2021 */
2022 VkShaderStageFlags dynamic_offset_stages[MAX_DYNAMIC_BUFFERS];
2023
2024 /* Size of the descriptor buffer for this descriptor set */
2025 uint32_t descriptor_buffer_size;
2026
2027 /* Bindings in this descriptor set */
2028 struct anv_descriptor_set_binding_layout binding[0];
2029 };
2030
2031 void anv_descriptor_set_layout_destroy(struct anv_device *device,
2032 struct anv_descriptor_set_layout *layout);
2033
2034 static inline void
2035 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
2036 {
2037 assert(layout && layout->ref_cnt >= 1);
2038 p_atomic_inc(&layout->ref_cnt);
2039 }
2040
2041 static inline void
2042 anv_descriptor_set_layout_unref(struct anv_device *device,
2043 struct anv_descriptor_set_layout *layout)
2044 {
2045 assert(layout && layout->ref_cnt >= 1);
2046 if (p_atomic_dec_zero(&layout->ref_cnt))
2047 anv_descriptor_set_layout_destroy(device, layout);
2048 }
2049
2050 struct anv_descriptor {
2051 VkDescriptorType type;
2052
2053 union {
2054 struct {
2055 VkImageLayout layout;
2056 struct anv_image_view *image_view;
2057 struct anv_sampler *sampler;
2058 };
2059
2060 struct {
2061 struct anv_buffer *buffer;
2062 uint64_t offset;
2063 uint64_t range;
2064 };
2065
2066 struct anv_buffer_view *buffer_view;
2067 };
2068 };
2069
2070 struct anv_descriptor_set {
2071 struct vk_object_base base;
2072
2073 struct anv_descriptor_pool *pool;
2074 struct anv_descriptor_set_layout *layout;
2075
2076 /* Amount of space occupied in the the pool by this descriptor set. It can
2077 * be larger than the size of the descriptor set.
2078 */
2079 uint32_t size;
2080
2081 /* State relative to anv_descriptor_pool::bo */
2082 struct anv_state desc_mem;
2083 /* Surface state for the descriptor buffer */
2084 struct anv_state desc_surface_state;
2085
2086 uint32_t buffer_view_count;
2087 struct anv_buffer_view *buffer_views;
2088
2089 /* Link to descriptor pool's desc_sets list . */
2090 struct list_head pool_link;
2091
2092 struct anv_descriptor descriptors[0];
2093 };
2094
2095 struct anv_buffer_view {
2096 struct vk_object_base base;
2097
2098 enum isl_format format; /**< VkBufferViewCreateInfo::format */
2099 uint64_t range; /**< VkBufferViewCreateInfo::range */
2100
2101 struct anv_address address;
2102
2103 struct anv_state surface_state;
2104 struct anv_state storage_surface_state;
2105 struct anv_state writeonly_storage_surface_state;
2106
2107 struct brw_image_param storage_image_param;
2108 };
2109
2110 struct anv_push_descriptor_set {
2111 struct anv_descriptor_set set;
2112
2113 /* Put this field right behind anv_descriptor_set so it fills up the
2114 * descriptors[0] field. */
2115 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
2116
2117 /** True if the descriptor set buffer has been referenced by a draw or
2118 * dispatch command.
2119 */
2120 bool set_used_on_gpu;
2121
2122 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
2123 };
2124
2125 struct anv_descriptor_pool {
2126 struct vk_object_base base;
2127
2128 uint32_t size;
2129 uint32_t next;
2130 uint32_t free_list;
2131
2132 struct anv_bo *bo;
2133 struct util_vma_heap bo_heap;
2134
2135 struct anv_state_stream surface_state_stream;
2136 void *surface_state_free_list;
2137
2138 struct list_head desc_sets;
2139
2140 char data[0];
2141 };
2142
2143 enum anv_descriptor_template_entry_type {
2144 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2145 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2146 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2147 };
2148
2149 struct anv_descriptor_template_entry {
2150 /* The type of descriptor in this entry */
2151 VkDescriptorType type;
2152
2153 /* Binding in the descriptor set */
2154 uint32_t binding;
2155
2156 /* Offset at which to write into the descriptor set binding */
2157 uint32_t array_element;
2158
2159 /* Number of elements to write into the descriptor set binding */
2160 uint32_t array_count;
2161
2162 /* Offset into the user provided data */
2163 size_t offset;
2164
2165 /* Stride between elements into the user provided data */
2166 size_t stride;
2167 };
2168
2169 struct anv_descriptor_update_template {
2170 struct vk_object_base base;
2171
2172 VkPipelineBindPoint bind_point;
2173
2174 /* The descriptor set this template corresponds to. This value is only
2175 * valid if the template was created with the templateType
2176 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2177 */
2178 uint8_t set;
2179
2180 /* Number of entries in this template */
2181 uint32_t entry_count;
2182
2183 /* Entries of the template */
2184 struct anv_descriptor_template_entry entries[0];
2185 };
2186
2187 size_t
2188 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2189
2190 void
2191 anv_descriptor_set_write_image_view(struct anv_device *device,
2192 struct anv_descriptor_set *set,
2193 const VkDescriptorImageInfo * const info,
2194 VkDescriptorType type,
2195 uint32_t binding,
2196 uint32_t element);
2197
2198 void
2199 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2200 struct anv_descriptor_set *set,
2201 VkDescriptorType type,
2202 struct anv_buffer_view *buffer_view,
2203 uint32_t binding,
2204 uint32_t element);
2205
2206 void
2207 anv_descriptor_set_write_buffer(struct anv_device *device,
2208 struct anv_descriptor_set *set,
2209 struct anv_state_stream *alloc_stream,
2210 VkDescriptorType type,
2211 struct anv_buffer *buffer,
2212 uint32_t binding,
2213 uint32_t element,
2214 VkDeviceSize offset,
2215 VkDeviceSize range);
2216 void
2217 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2218 struct anv_descriptor_set *set,
2219 uint32_t binding,
2220 const void *data,
2221 size_t offset,
2222 size_t size);
2223
2224 void
2225 anv_descriptor_set_write_template(struct anv_device *device,
2226 struct anv_descriptor_set *set,
2227 struct anv_state_stream *alloc_stream,
2228 const struct anv_descriptor_update_template *template,
2229 const void *data);
2230
2231 VkResult
2232 anv_descriptor_set_create(struct anv_device *device,
2233 struct anv_descriptor_pool *pool,
2234 struct anv_descriptor_set_layout *layout,
2235 struct anv_descriptor_set **out_set);
2236
2237 void
2238 anv_descriptor_set_destroy(struct anv_device *device,
2239 struct anv_descriptor_pool *pool,
2240 struct anv_descriptor_set *set);
2241
2242 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2243 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2244 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2245 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2246 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2247 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2248
2249 struct anv_pipeline_binding {
2250 /** Index in the descriptor set
2251 *
2252 * This is a flattened index; the descriptor set layout is already taken
2253 * into account.
2254 */
2255 uint32_t index;
2256
2257 /** The descriptor set this surface corresponds to.
2258 *
2259 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2260 * binding is not a normal descriptor set but something else.
2261 */
2262 uint8_t set;
2263
2264 union {
2265 /** Plane in the binding index for images */
2266 uint8_t plane;
2267
2268 /** Input attachment index (relative to the subpass) */
2269 uint8_t input_attachment_index;
2270
2271 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2272 uint8_t dynamic_offset_index;
2273 };
2274
2275 /** For a storage image, whether it is write-only */
2276 uint8_t write_only;
2277
2278 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2279 * assuming POD zero-initialization.
2280 */
2281 uint8_t pad;
2282 };
2283
2284 struct anv_push_range {
2285 /** Index in the descriptor set */
2286 uint32_t index;
2287
2288 /** Descriptor set index */
2289 uint8_t set;
2290
2291 /** Dynamic offset index (for dynamic UBOs) */
2292 uint8_t dynamic_offset_index;
2293
2294 /** Start offset in units of 32B */
2295 uint8_t start;
2296
2297 /** Range in units of 32B */
2298 uint8_t length;
2299 };
2300
2301 struct anv_pipeline_layout {
2302 struct vk_object_base base;
2303
2304 struct {
2305 struct anv_descriptor_set_layout *layout;
2306 uint32_t dynamic_offset_start;
2307 } set[MAX_SETS];
2308
2309 uint32_t num_sets;
2310
2311 unsigned char sha1[20];
2312 };
2313
2314 struct anv_buffer {
2315 struct vk_object_base base;
2316
2317 struct anv_device * device;
2318 VkDeviceSize size;
2319
2320 VkBufferUsageFlags usage;
2321
2322 /* Set when bound */
2323 struct anv_address address;
2324 };
2325
2326 static inline uint64_t
2327 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2328 {
2329 assert(offset <= buffer->size);
2330 if (range == VK_WHOLE_SIZE) {
2331 return buffer->size - offset;
2332 } else {
2333 assert(range + offset >= range);
2334 assert(range + offset <= buffer->size);
2335 return range;
2336 }
2337 }
2338
2339 enum anv_cmd_dirty_bits {
2340 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2341 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2342 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2343 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2344 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2345 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2346 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2347 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2348 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2349 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2350 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2351 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2352 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2353 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2354 ANV_CMD_DIRTY_DYNAMIC_CULL_MODE = 1 << 14, /* VK_DYNAMIC_STATE_CULL_MODE_EXT */
2355 ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE = 1 << 15, /* VK_DYNAMIC_STATE_FRONT_FACE_EXT */
2356 ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY = 1 << 16, /* VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY_EXT */
2357 ANV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE = 1 << 17, /* VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT */
2358 ANV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE = 1 << 18, /* VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE_EXT */
2359 ANV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE = 1 << 19, /* VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE_EXT */
2360 ANV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP = 1 << 20, /* VK_DYNAMIC_STATE_DEPTH_COMPARE_OP_EXT */
2361 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE = 1 << 21, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE_EXT */
2362 ANV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE = 1 << 22, /* VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE_EXT */
2363 ANV_CMD_DIRTY_DYNAMIC_STENCIL_OP = 1 << 23, /* VK_DYNAMIC_STATE_STENCIL_OP_EXT */
2364 };
2365 typedef uint32_t anv_cmd_dirty_mask_t;
2366
2367 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2368 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2369 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2370 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2371 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2372 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2373 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2374 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2375 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2376 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2377 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE | \
2378 ANV_CMD_DIRTY_DYNAMIC_CULL_MODE | \
2379 ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE | \
2380 ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY | \
2381 ANV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE | \
2382 ANV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE | \
2383 ANV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE | \
2384 ANV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP | \
2385 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE | \
2386 ANV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE | \
2387 ANV_CMD_DIRTY_DYNAMIC_STENCIL_OP)
2388
2389 static inline enum anv_cmd_dirty_bits
2390 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2391 {
2392 switch (vk_state) {
2393 case VK_DYNAMIC_STATE_VIEWPORT:
2394 case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT:
2395 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2396 case VK_DYNAMIC_STATE_SCISSOR:
2397 case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT_EXT:
2398 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2399 case VK_DYNAMIC_STATE_LINE_WIDTH:
2400 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2401 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2402 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2403 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2404 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2405 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2406 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2407 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2408 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2409 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2410 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2411 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2412 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2413 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2414 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2415 case VK_DYNAMIC_STATE_CULL_MODE_EXT:
2416 return ANV_CMD_DIRTY_DYNAMIC_CULL_MODE;
2417 case VK_DYNAMIC_STATE_FRONT_FACE_EXT:
2418 return ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE;
2419 case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY_EXT:
2420 return ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY;
2421 case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT:
2422 return ANV_CMD_DIRTY_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE;
2423 case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE_EXT:
2424 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE;
2425 case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE_EXT:
2426 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE;
2427 case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP_EXT:
2428 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP;
2429 case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE_EXT:
2430 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE;
2431 case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE_EXT:
2432 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE;
2433 case VK_DYNAMIC_STATE_STENCIL_OP_EXT:
2434 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_OP;
2435 default:
2436 assert(!"Unsupported dynamic state");
2437 return 0;
2438 }
2439 }
2440
2441
2442 enum anv_pipe_bits {
2443 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2444 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2445 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2446 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2447 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2448 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2449 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2450 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2451 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2452 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2453 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2454 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2455 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2456
2457 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2458 * a flush has happened but not a CS stall. The next time we do any sort
2459 * of invalidation we need to insert a CS stall at that time. Otherwise,
2460 * we would have to CS stall on every flush which could be bad.
2461 */
2462 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2463
2464 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2465 * target operations related to transfer commands with VkBuffer as
2466 * destination are ongoing. Some operations like copies on the command
2467 * streamer might need to be aware of this to trigger the appropriate stall
2468 * before they can proceed with the copy.
2469 */
2470 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2471
2472 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2473 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2474 * done by writing the AUX-TT register.
2475 */
2476 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2477
2478 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2479 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2480 * implement a workaround for Gen9.
2481 */
2482 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2483 };
2484
2485 #define ANV_PIPE_FLUSH_BITS ( \
2486 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2487 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2488 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2489 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2490
2491 #define ANV_PIPE_STALL_BITS ( \
2492 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2493 ANV_PIPE_DEPTH_STALL_BIT | \
2494 ANV_PIPE_CS_STALL_BIT)
2495
2496 #define ANV_PIPE_INVALIDATE_BITS ( \
2497 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2498 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2499 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2500 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2501 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2502 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2503 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2504
2505 static inline enum anv_pipe_bits
2506 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2507 {
2508 enum anv_pipe_bits pipe_bits = 0;
2509
2510 unsigned b;
2511 for_each_bit(b, flags) {
2512 switch ((VkAccessFlagBits)(1 << b)) {
2513 case VK_ACCESS_SHADER_WRITE_BIT:
2514 /* We're transitioning a buffer that was previously used as write
2515 * destination through the data port. To make its content available
2516 * to future operations, flush the data cache.
2517 */
2518 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2519 break;
2520 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2521 /* We're transitioning a buffer that was previously used as render
2522 * target. To make its content available to future operations, flush
2523 * the render target cache.
2524 */
2525 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2526 break;
2527 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2528 /* We're transitioning a buffer that was previously used as depth
2529 * buffer. To make its content available to future operations, flush
2530 * the depth cache.
2531 */
2532 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2533 break;
2534 case VK_ACCESS_TRANSFER_WRITE_BIT:
2535 /* We're transitioning a buffer that was previously used as a
2536 * transfer write destination. Generic write operations include color
2537 * & depth operations as well as buffer operations like :
2538 * - vkCmdClearColorImage()
2539 * - vkCmdClearDepthStencilImage()
2540 * - vkCmdBlitImage()
2541 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2542 *
2543 * Most of these operations are implemented using Blorp which writes
2544 * through the render target, so flush that cache to make it visible
2545 * to future operations. And for depth related operations we also
2546 * need to flush the depth cache.
2547 */
2548 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2549 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2550 break;
2551 case VK_ACCESS_MEMORY_WRITE_BIT:
2552 /* We're transitioning a buffer for generic write operations. Flush
2553 * all the caches.
2554 */
2555 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2556 break;
2557 default:
2558 break; /* Nothing to do */
2559 }
2560 }
2561
2562 return pipe_bits;
2563 }
2564
2565 static inline enum anv_pipe_bits
2566 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2567 {
2568 enum anv_pipe_bits pipe_bits = 0;
2569
2570 unsigned b;
2571 for_each_bit(b, flags) {
2572 switch ((VkAccessFlagBits)(1 << b)) {
2573 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2574 /* Indirect draw commands take a buffer as input that we're going to
2575 * read from the command streamer to load some of the HW registers
2576 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2577 * command streamer stall so that all the cache flushes have
2578 * completed before the command streamer loads from memory.
2579 */
2580 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2581 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2582 * through a vertex buffer, so invalidate that cache.
2583 */
2584 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2585 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2586 * UBO from the buffer, so we need to invalidate constant cache.
2587 */
2588 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2589 break;
2590 case VK_ACCESS_INDEX_READ_BIT:
2591 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2592 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2593 * commands, so we invalidate the VF cache to make sure there is no
2594 * stale data when we start rendering.
2595 */
2596 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2597 break;
2598 case VK_ACCESS_UNIFORM_READ_BIT:
2599 /* We transitioning a buffer to be used as uniform data. Because
2600 * uniform is accessed through the data port & sampler, we need to
2601 * invalidate the texture cache (sampler) & constant cache (data
2602 * port) to avoid stale data.
2603 */
2604 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2605 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2606 break;
2607 case VK_ACCESS_SHADER_READ_BIT:
2608 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2609 case VK_ACCESS_TRANSFER_READ_BIT:
2610 /* Transitioning a buffer to be read through the sampler, so
2611 * invalidate the texture cache, we don't want any stale data.
2612 */
2613 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2614 break;
2615 case VK_ACCESS_MEMORY_READ_BIT:
2616 /* Transitioning a buffer for generic read, invalidate all the
2617 * caches.
2618 */
2619 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2620 break;
2621 case VK_ACCESS_MEMORY_WRITE_BIT:
2622 /* Generic write, make sure all previously written things land in
2623 * memory.
2624 */
2625 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2626 break;
2627 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2628 /* Transitioning a buffer for conditional rendering. We'll load the
2629 * content of this buffer into HW registers using the command
2630 * streamer, so we need to stall the command streamer to make sure
2631 * any in-flight flush operations have completed.
2632 */
2633 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2634 break;
2635 default:
2636 break; /* Nothing to do */
2637 }
2638 }
2639
2640 return pipe_bits;
2641 }
2642
2643 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2644 VK_IMAGE_ASPECT_COLOR_BIT | \
2645 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2646 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2647 VK_IMAGE_ASPECT_PLANE_2_BIT)
2648 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2649 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2650 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2651 VK_IMAGE_ASPECT_PLANE_2_BIT)
2652
2653 struct anv_vertex_binding {
2654 struct anv_buffer * buffer;
2655 VkDeviceSize offset;
2656 VkDeviceSize stride;
2657 VkDeviceSize size;
2658 };
2659
2660 struct anv_xfb_binding {
2661 struct anv_buffer * buffer;
2662 VkDeviceSize offset;
2663 VkDeviceSize size;
2664 };
2665
2666 struct anv_push_constants {
2667 /** Push constant data provided by the client through vkPushConstants */
2668 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2669
2670 /** Dynamic offsets for dynamic UBOs and SSBOs */
2671 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2672
2673 /* Robust access pushed registers. */
2674 uint64_t push_reg_mask[MESA_SHADER_STAGES];
2675
2676 /** Pad out to a multiple of 32 bytes */
2677 uint32_t pad[2];
2678
2679 struct {
2680 /** Base workgroup ID
2681 *
2682 * Used for vkCmdDispatchBase.
2683 */
2684 uint32_t base_work_group_id[3];
2685
2686 /** Subgroup ID
2687 *
2688 * This is never set by software but is implicitly filled out when
2689 * uploading the push constants for compute shaders.
2690 */
2691 uint32_t subgroup_id;
2692 } cs;
2693 };
2694
2695 struct anv_dynamic_state {
2696 struct {
2697 uint32_t count;
2698 VkViewport viewports[MAX_VIEWPORTS];
2699 } viewport;
2700
2701 struct {
2702 uint32_t count;
2703 VkRect2D scissors[MAX_SCISSORS];
2704 } scissor;
2705
2706 float line_width;
2707
2708 struct {
2709 float bias;
2710 float clamp;
2711 float slope;
2712 } depth_bias;
2713
2714 float blend_constants[4];
2715
2716 struct {
2717 float min;
2718 float max;
2719 } depth_bounds;
2720
2721 struct {
2722 uint32_t front;
2723 uint32_t back;
2724 } stencil_compare_mask;
2725
2726 struct {
2727 uint32_t front;
2728 uint32_t back;
2729 } stencil_write_mask;
2730
2731 struct {
2732 uint32_t front;
2733 uint32_t back;
2734 } stencil_reference;
2735
2736 struct {
2737 struct {
2738 VkStencilOp fail_op;
2739 VkStencilOp pass_op;
2740 VkStencilOp depth_fail_op;
2741 VkCompareOp compare_op;
2742 } front;
2743 struct {
2744 VkStencilOp fail_op;
2745 VkStencilOp pass_op;
2746 VkStencilOp depth_fail_op;
2747 VkCompareOp compare_op;
2748 } back;
2749 } stencil_op;
2750
2751 struct {
2752 uint32_t factor;
2753 uint16_t pattern;
2754 } line_stipple;
2755
2756 VkCullModeFlags cull_mode;
2757 VkFrontFace front_face;
2758 VkPrimitiveTopology primitive_topology;
2759 bool depth_test_enable;
2760 bool depth_write_enable;
2761 VkCompareOp depth_compare_op;
2762 bool depth_bounds_test_enable;
2763 bool stencil_test_enable;
2764 bool dyn_vbo_stride;
2765 bool dyn_vbo_size;
2766 };
2767
2768 extern const struct anv_dynamic_state default_dynamic_state;
2769
2770 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2771 const struct anv_dynamic_state *src,
2772 uint32_t copy_mask);
2773
2774 struct anv_surface_state {
2775 struct anv_state state;
2776 /** Address of the surface referred to by this state
2777 *
2778 * This address is relative to the start of the BO.
2779 */
2780 struct anv_address address;
2781 /* Address of the aux surface, if any
2782 *
2783 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2784 *
2785 * With the exception of gen8, the bottom 12 bits of this address' offset
2786 * include extra aux information.
2787 */
2788 struct anv_address aux_address;
2789 /* Address of the clear color, if any
2790 *
2791 * This address is relative to the start of the BO.
2792 */
2793 struct anv_address clear_address;
2794 };
2795
2796 /**
2797 * Attachment state when recording a renderpass instance.
2798 *
2799 * The clear value is valid only if there exists a pending clear.
2800 */
2801 struct anv_attachment_state {
2802 enum isl_aux_usage aux_usage;
2803 struct anv_surface_state color;
2804 struct anv_surface_state input;
2805
2806 VkImageLayout current_layout;
2807 VkImageLayout current_stencil_layout;
2808 VkImageAspectFlags pending_clear_aspects;
2809 VkImageAspectFlags pending_load_aspects;
2810 bool fast_clear;
2811 VkClearValue clear_value;
2812
2813 /* When multiview is active, attachments with a renderpass clear
2814 * operation have their respective layers cleared on the first
2815 * subpass that uses them, and only in that subpass. We keep track
2816 * of this using a bitfield to indicate which layers of an attachment
2817 * have not been cleared yet when multiview is active.
2818 */
2819 uint32_t pending_clear_views;
2820 struct anv_image_view * image_view;
2821 };
2822
2823 /** State tracking for vertex buffer flushes
2824 *
2825 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2826 * addresses. If you happen to have two vertex buffers which get placed
2827 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2828 * collisions. In order to solve this problem, we track vertex address ranges
2829 * which are live in the cache and invalidate the cache if one ever exceeds 32
2830 * bits.
2831 */
2832 struct anv_vb_cache_range {
2833 /* Virtual address at which the live vertex buffer cache range starts for
2834 * this vertex buffer index.
2835 */
2836 uint64_t start;
2837
2838 /* Virtual address of the byte after where vertex buffer cache range ends.
2839 * This is exclusive such that end - start is the size of the range.
2840 */
2841 uint64_t end;
2842 };
2843
2844 /** State tracking for particular pipeline bind point
2845 *
2846 * This struct is the base struct for anv_cmd_graphics_state and
2847 * anv_cmd_compute_state. These are used to track state which is bound to a
2848 * particular type of pipeline. Generic state that applies per-stage such as
2849 * binding table offsets and push constants is tracked generically with a
2850 * per-stage array in anv_cmd_state.
2851 */
2852 struct anv_cmd_pipeline_state {
2853 struct anv_descriptor_set *descriptors[MAX_SETS];
2854 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2855
2856 struct anv_push_constants push_constants;
2857
2858 /* Push constant state allocated when flushing push constants. */
2859 struct anv_state push_constants_state;
2860 };
2861
2862 /** State tracking for graphics pipeline
2863 *
2864 * This has anv_cmd_pipeline_state as a base struct to track things which get
2865 * bound to a graphics pipeline. Along with general pipeline bind point state
2866 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2867 * state which is graphics-specific.
2868 */
2869 struct anv_cmd_graphics_state {
2870 struct anv_cmd_pipeline_state base;
2871
2872 struct anv_graphics_pipeline *pipeline;
2873
2874 anv_cmd_dirty_mask_t dirty;
2875 uint32_t vb_dirty;
2876
2877 struct anv_vb_cache_range ib_bound_range;
2878 struct anv_vb_cache_range ib_dirty_range;
2879 struct anv_vb_cache_range vb_bound_ranges[33];
2880 struct anv_vb_cache_range vb_dirty_ranges[33];
2881
2882 VkShaderStageFlags push_constant_stages;
2883
2884 struct anv_dynamic_state dynamic;
2885
2886 uint32_t primitive_topology;
2887
2888 struct {
2889 struct anv_buffer *index_buffer;
2890 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2891 uint32_t index_offset;
2892 } gen7;
2893 };
2894
2895 /** State tracking for compute pipeline
2896 *
2897 * This has anv_cmd_pipeline_state as a base struct to track things which get
2898 * bound to a compute pipeline. Along with general pipeline bind point state
2899 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2900 * state which is compute-specific.
2901 */
2902 struct anv_cmd_compute_state {
2903 struct anv_cmd_pipeline_state base;
2904
2905 struct anv_compute_pipeline *pipeline;
2906
2907 bool pipeline_dirty;
2908
2909 struct anv_address num_workgroups;
2910 };
2911
2912 /** State required while building cmd buffer */
2913 struct anv_cmd_state {
2914 /* PIPELINE_SELECT.PipelineSelection */
2915 uint32_t current_pipeline;
2916 const struct gen_l3_config * current_l3_config;
2917 uint32_t last_aux_map_state;
2918
2919 struct anv_cmd_graphics_state gfx;
2920 struct anv_cmd_compute_state compute;
2921
2922 enum anv_pipe_bits pending_pipe_bits;
2923 VkShaderStageFlags descriptors_dirty;
2924 VkShaderStageFlags push_constants_dirty;
2925
2926 struct anv_framebuffer * framebuffer;
2927 struct anv_render_pass * pass;
2928 struct anv_subpass * subpass;
2929 VkRect2D render_area;
2930 uint32_t restart_index;
2931 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2932 bool xfb_enabled;
2933 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2934 struct anv_state binding_tables[MESA_SHADER_STAGES];
2935 struct anv_state samplers[MESA_SHADER_STAGES];
2936
2937 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2938 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2939 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2940
2941 /**
2942 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2943 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2944 * and before invoking the secondary in ExecuteCommands.
2945 */
2946 bool pma_fix_enabled;
2947
2948 /**
2949 * Whether or not we know for certain that HiZ is enabled for the current
2950 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2951 * enabled or not, this will be false.
2952 */
2953 bool hiz_enabled;
2954
2955 bool conditional_render_enabled;
2956
2957 /**
2958 * Last rendering scale argument provided to
2959 * genX(cmd_buffer_emit_hashing_mode)().
2960 */
2961 unsigned current_hash_scale;
2962
2963 /**
2964 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2965 * valid only when recording a render pass instance.
2966 */
2967 struct anv_attachment_state * attachments;
2968
2969 /**
2970 * Surface states for color render targets. These are stored in a single
2971 * flat array. For depth-stencil attachments, the surface state is simply
2972 * left blank.
2973 */
2974 struct anv_state attachment_states;
2975
2976 /**
2977 * A null surface state of the right size to match the framebuffer. This
2978 * is one of the states in attachment_states.
2979 */
2980 struct anv_state null_surface_state;
2981 };
2982
2983 struct anv_cmd_pool {
2984 struct vk_object_base base;
2985 VkAllocationCallbacks alloc;
2986 struct list_head cmd_buffers;
2987 };
2988
2989 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2990
2991 enum anv_cmd_buffer_exec_mode {
2992 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2993 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2994 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2995 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2996 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2997 ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN,
2998 };
2999
3000 struct anv_cmd_buffer {
3001 struct vk_object_base base;
3002
3003 struct anv_device * device;
3004
3005 struct anv_cmd_pool * pool;
3006 struct list_head pool_link;
3007
3008 struct anv_batch batch;
3009
3010 /* Fields required for the actual chain of anv_batch_bo's.
3011 *
3012 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
3013 */
3014 struct list_head batch_bos;
3015 enum anv_cmd_buffer_exec_mode exec_mode;
3016
3017 /* A vector of anv_batch_bo pointers for every batch or surface buffer
3018 * referenced by this command buffer
3019 *
3020 * initialized by anv_cmd_buffer_init_batch_bo_chain()
3021 */
3022 struct u_vector seen_bbos;
3023
3024 /* A vector of int32_t's for every block of binding tables.
3025 *
3026 * initialized by anv_cmd_buffer_init_batch_bo_chain()
3027 */
3028 struct u_vector bt_block_states;
3029 struct anv_state bt_next;
3030
3031 struct anv_reloc_list surface_relocs;
3032 /** Last seen surface state block pool center bo offset */
3033 uint32_t last_ss_pool_center;
3034
3035 /* Serial for tracking buffer completion */
3036 uint32_t serial;
3037
3038 /* Stream objects for storing temporary data */
3039 struct anv_state_stream surface_state_stream;
3040 struct anv_state_stream dynamic_state_stream;
3041
3042 VkCommandBufferUsageFlags usage_flags;
3043 VkCommandBufferLevel level;
3044
3045 struct anv_query_pool *perf_query_pool;
3046
3047 struct anv_cmd_state state;
3048
3049 struct anv_address return_addr;
3050
3051 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
3052 uint64_t intel_perf_marker;
3053 };
3054
3055 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
3056 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
3057 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
3058 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
3059 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
3060 struct anv_cmd_buffer *secondary);
3061 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
3062 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
3063 struct anv_cmd_buffer *cmd_buffer,
3064 const VkSemaphore *in_semaphores,
3065 const uint64_t *in_wait_values,
3066 uint32_t num_in_semaphores,
3067 const VkSemaphore *out_semaphores,
3068 const uint64_t *out_signal_values,
3069 uint32_t num_out_semaphores,
3070 VkFence fence,
3071 int perf_query_pass);
3072
3073 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
3074
3075 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
3076 const void *data, uint32_t size, uint32_t alignment);
3077 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
3078 uint32_t *a, uint32_t *b,
3079 uint32_t dwords, uint32_t alignment);
3080
3081 struct anv_address
3082 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
3083 struct anv_state
3084 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
3085 uint32_t entries, uint32_t *state_offset);
3086 struct anv_state
3087 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
3088 struct anv_state
3089 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
3090 uint32_t size, uint32_t alignment);
3091
3092 VkResult
3093 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
3094
3095 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
3096 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
3097 bool depth_clamp_enable);
3098 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
3099
3100 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
3101 struct anv_render_pass *pass,
3102 struct anv_framebuffer *framebuffer,
3103 const VkClearValue *clear_values);
3104
3105 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
3106
3107 struct anv_state
3108 anv_cmd_buffer_gfx_push_constants(struct anv_cmd_buffer *cmd_buffer);
3109 struct anv_state
3110 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
3111
3112 const struct anv_image_view *
3113 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
3114
3115 VkResult
3116 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
3117 uint32_t num_entries,
3118 uint32_t *state_offset,
3119 struct anv_state *bt_state);
3120
3121 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
3122
3123 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
3124
3125 enum anv_fence_type {
3126 ANV_FENCE_TYPE_NONE = 0,
3127 ANV_FENCE_TYPE_BO,
3128 ANV_FENCE_TYPE_WSI_BO,
3129 ANV_FENCE_TYPE_SYNCOBJ,
3130 ANV_FENCE_TYPE_WSI,
3131 };
3132
3133 enum anv_bo_fence_state {
3134 /** Indicates that this is a new (or newly reset fence) */
3135 ANV_BO_FENCE_STATE_RESET,
3136
3137 /** Indicates that this fence has been submitted to the GPU but is still
3138 * (as far as we know) in use by the GPU.
3139 */
3140 ANV_BO_FENCE_STATE_SUBMITTED,
3141
3142 ANV_BO_FENCE_STATE_SIGNALED,
3143 };
3144
3145 struct anv_fence_impl {
3146 enum anv_fence_type type;
3147
3148 union {
3149 /** Fence implementation for BO fences
3150 *
3151 * These fences use a BO and a set of CPU-tracked state flags. The BO
3152 * is added to the object list of the last execbuf call in a QueueSubmit
3153 * and is marked EXEC_WRITE. The state flags track when the BO has been
3154 * submitted to the kernel. We need to do this because Vulkan lets you
3155 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
3156 * will say it's idle in this case.
3157 */
3158 struct {
3159 struct anv_bo *bo;
3160 enum anv_bo_fence_state state;
3161 } bo;
3162
3163 /** DRM syncobj handle for syncobj-based fences */
3164 uint32_t syncobj;
3165
3166 /** WSI fence */
3167 struct wsi_fence *fence_wsi;
3168 };
3169 };
3170
3171 struct anv_fence {
3172 struct vk_object_base base;
3173
3174 /* Permanent fence state. Every fence has some form of permanent state
3175 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
3176 * cross-process fences) or it could just be a dummy for use internally.
3177 */
3178 struct anv_fence_impl permanent;
3179
3180 /* Temporary fence state. A fence *may* have temporary state. That state
3181 * is added to the fence by an import operation and is reset back to
3182 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
3183 * state cannot be signaled because the fence must already be signaled
3184 * before the temporary state can be exported from the fence in the other
3185 * process and imported here.
3186 */
3187 struct anv_fence_impl temporary;
3188 };
3189
3190 void anv_fence_reset_temporary(struct anv_device *device,
3191 struct anv_fence *fence);
3192
3193 struct anv_event {
3194 struct vk_object_base base;
3195 uint64_t semaphore;
3196 struct anv_state state;
3197 };
3198
3199 enum anv_semaphore_type {
3200 ANV_SEMAPHORE_TYPE_NONE = 0,
3201 ANV_SEMAPHORE_TYPE_DUMMY,
3202 ANV_SEMAPHORE_TYPE_BO,
3203 ANV_SEMAPHORE_TYPE_WSI_BO,
3204 ANV_SEMAPHORE_TYPE_SYNC_FILE,
3205 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
3206 ANV_SEMAPHORE_TYPE_TIMELINE,
3207 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ_TIMELINE,
3208 };
3209
3210 struct anv_timeline_point {
3211 struct list_head link;
3212
3213 uint64_t serial;
3214
3215 /* Number of waiter on this point, when > 0 the point should not be garbage
3216 * collected.
3217 */
3218 int waiting;
3219
3220 /* BO used for synchronization. */
3221 struct anv_bo *bo;
3222 };
3223
3224 struct anv_timeline {
3225 pthread_mutex_t mutex;
3226 pthread_cond_t cond;
3227
3228 uint64_t highest_past;
3229 uint64_t highest_pending;
3230
3231 struct list_head points;
3232 struct list_head free_points;
3233 };
3234
3235 struct anv_semaphore_impl {
3236 enum anv_semaphore_type type;
3237
3238 union {
3239 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3240 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3241 * object list on any execbuf2 calls for which this semaphore is used as
3242 * a wait or signal fence. When used as a signal fence or when type ==
3243 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3244 */
3245 struct anv_bo *bo;
3246
3247 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3248 * If the semaphore is in the unsignaled state due to either just being
3249 * created or because it has been used for a wait, fd will be -1.
3250 */
3251 int fd;
3252
3253 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3254 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3255 * import so we don't need to bother with a userspace cache.
3256 */
3257 uint32_t syncobj;
3258
3259 /* Non shareable timeline semaphore
3260 *
3261 * Used when kernel don't have support for timeline semaphores.
3262 */
3263 struct anv_timeline timeline;
3264 };
3265 };
3266
3267 struct anv_semaphore {
3268 struct vk_object_base base;
3269
3270 uint32_t refcount;
3271
3272 /* Permanent semaphore state. Every semaphore has some form of permanent
3273 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3274 * (for cross-process semaphores0 or it could just be a dummy for use
3275 * internally.
3276 */
3277 struct anv_semaphore_impl permanent;
3278
3279 /* Temporary semaphore state. A semaphore *may* have temporary state.
3280 * That state is added to the semaphore by an import operation and is reset
3281 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3282 * semaphore with temporary state cannot be signaled because the semaphore
3283 * must already be signaled before the temporary state can be exported from
3284 * the semaphore in the other process and imported here.
3285 */
3286 struct anv_semaphore_impl temporary;
3287 };
3288
3289 void anv_semaphore_reset_temporary(struct anv_device *device,
3290 struct anv_semaphore *semaphore);
3291
3292 struct anv_shader_module {
3293 struct vk_object_base base;
3294
3295 unsigned char sha1[20];
3296 uint32_t size;
3297 char data[0];
3298 };
3299
3300 static inline gl_shader_stage
3301 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3302 {
3303 assert(__builtin_popcount(vk_stage) == 1);
3304 return ffs(vk_stage) - 1;
3305 }
3306
3307 static inline VkShaderStageFlagBits
3308 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3309 {
3310 return (1 << mesa_stage);
3311 }
3312
3313 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3314
3315 #define anv_foreach_stage(stage, stage_bits) \
3316 for (gl_shader_stage stage, \
3317 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3318 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3319 __tmp &= ~(1 << (stage)))
3320
3321 struct anv_pipeline_bind_map {
3322 unsigned char surface_sha1[20];
3323 unsigned char sampler_sha1[20];
3324 unsigned char push_sha1[20];
3325
3326 uint32_t surface_count;
3327 uint32_t sampler_count;
3328
3329 struct anv_pipeline_binding * surface_to_descriptor;
3330 struct anv_pipeline_binding * sampler_to_descriptor;
3331
3332 struct anv_push_range push_ranges[4];
3333 };
3334
3335 struct anv_shader_bin_key {
3336 uint32_t size;
3337 uint8_t data[0];
3338 };
3339
3340 struct anv_shader_bin {
3341 uint32_t ref_cnt;
3342
3343 gl_shader_stage stage;
3344
3345 const struct anv_shader_bin_key *key;
3346
3347 struct anv_state kernel;
3348 uint32_t kernel_size;
3349
3350 const struct brw_stage_prog_data *prog_data;
3351 uint32_t prog_data_size;
3352
3353 struct brw_compile_stats stats[3];
3354 uint32_t num_stats;
3355
3356 struct nir_xfb_info *xfb_info;
3357
3358 struct anv_pipeline_bind_map bind_map;
3359 };
3360
3361 struct anv_shader_bin *
3362 anv_shader_bin_create(struct anv_device *device,
3363 gl_shader_stage stage,
3364 const void *key, uint32_t key_size,
3365 const void *kernel, uint32_t kernel_size,
3366 const struct brw_stage_prog_data *prog_data,
3367 uint32_t prog_data_size,
3368 const struct brw_compile_stats *stats, uint32_t num_stats,
3369 const struct nir_xfb_info *xfb_info,
3370 const struct anv_pipeline_bind_map *bind_map);
3371
3372 void
3373 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3374
3375 static inline void
3376 anv_shader_bin_ref(struct anv_shader_bin *shader)
3377 {
3378 assert(shader && shader->ref_cnt >= 1);
3379 p_atomic_inc(&shader->ref_cnt);
3380 }
3381
3382 static inline void
3383 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3384 {
3385 assert(shader && shader->ref_cnt >= 1);
3386 if (p_atomic_dec_zero(&shader->ref_cnt))
3387 anv_shader_bin_destroy(device, shader);
3388 }
3389
3390 struct anv_pipeline_executable {
3391 gl_shader_stage stage;
3392
3393 struct brw_compile_stats stats;
3394
3395 char *nir;
3396 char *disasm;
3397 };
3398
3399 enum anv_pipeline_type {
3400 ANV_PIPELINE_GRAPHICS,
3401 ANV_PIPELINE_COMPUTE,
3402 };
3403
3404 struct anv_pipeline {
3405 struct vk_object_base base;
3406
3407 struct anv_device * device;
3408
3409 struct anv_batch batch;
3410 struct anv_reloc_list batch_relocs;
3411
3412 void * mem_ctx;
3413
3414 enum anv_pipeline_type type;
3415 VkPipelineCreateFlags flags;
3416
3417 struct util_dynarray executables;
3418
3419 const struct gen_l3_config * l3_config;
3420 };
3421
3422 struct anv_graphics_pipeline {
3423 struct anv_pipeline base;
3424
3425 uint32_t batch_data[512];
3426
3427 anv_cmd_dirty_mask_t dynamic_state_mask;
3428 struct anv_dynamic_state dynamic_state;
3429
3430 uint32_t topology;
3431
3432 struct anv_subpass * subpass;
3433
3434 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3435
3436 VkShaderStageFlags active_stages;
3437
3438 bool primitive_restart;
3439 bool writes_depth;
3440 bool depth_test_enable;
3441 bool writes_stencil;
3442 bool stencil_test_enable;
3443 bool depth_clamp_enable;
3444 bool depth_clip_enable;
3445 bool sample_shading_enable;
3446 bool kill_pixel;
3447 bool depth_bounds_test_enable;
3448
3449 /* When primitive replication is used, subpass->view_mask will describe what
3450 * views to replicate.
3451 */
3452 bool use_primitive_replication;
3453
3454 struct anv_state blend_state;
3455
3456 uint32_t vb_used;
3457 struct anv_pipeline_vertex_binding {
3458 uint32_t stride;
3459 bool instanced;
3460 uint32_t instance_divisor;
3461 } vb[MAX_VBS];
3462
3463 struct {
3464 uint32_t sf[7];
3465 uint32_t depth_stencil_state[3];
3466 uint32_t clip[4];
3467 } gen7;
3468
3469 struct {
3470 uint32_t sf[4];
3471 uint32_t raster[5];
3472 uint32_t wm_depth_stencil[3];
3473 } gen8;
3474
3475 struct {
3476 uint32_t wm_depth_stencil[4];
3477 } gen9;
3478 };
3479
3480 struct anv_compute_pipeline {
3481 struct anv_pipeline base;
3482
3483 struct anv_shader_bin * cs;
3484 uint32_t cs_right_mask;
3485 uint32_t batch_data[9];
3486 uint32_t interface_descriptor_data[8];
3487 };
3488
3489 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3490 static inline struct anv_##pipe_type##_pipeline * \
3491 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3492 { \
3493 assert(pipeline->type == pipe_enum); \
3494 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3495 }
3496
3497 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3498 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3499
3500 static inline bool
3501 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3502 gl_shader_stage stage)
3503 {
3504 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3505 }
3506
3507 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3508 static inline const struct brw_##prefix##_prog_data * \
3509 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3510 { \
3511 if (anv_pipeline_has_stage(pipeline, stage)) { \
3512 return (const struct brw_##prefix##_prog_data *) \
3513 pipeline->shaders[stage]->prog_data; \
3514 } else { \
3515 return NULL; \
3516 } \
3517 }
3518
3519 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3520 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3521 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3522 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3523 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3524
3525 static inline const struct brw_cs_prog_data *
3526 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3527 {
3528 assert(pipeline->cs);
3529 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3530 }
3531
3532 static inline const struct brw_vue_prog_data *
3533 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3534 {
3535 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3536 return &get_gs_prog_data(pipeline)->base;
3537 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3538 return &get_tes_prog_data(pipeline)->base;
3539 else
3540 return &get_vs_prog_data(pipeline)->base;
3541 }
3542
3543 VkResult
3544 anv_pipeline_init(struct anv_pipeline *pipeline,
3545 struct anv_device *device,
3546 enum anv_pipeline_type type,
3547 VkPipelineCreateFlags flags,
3548 const VkAllocationCallbacks *pAllocator);
3549
3550 void
3551 anv_pipeline_finish(struct anv_pipeline *pipeline,
3552 struct anv_device *device,
3553 const VkAllocationCallbacks *pAllocator);
3554
3555 VkResult
3556 anv_graphics_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3557 struct anv_pipeline_cache *cache,
3558 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3559 const VkAllocationCallbacks *alloc);
3560
3561 VkResult
3562 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3563 struct anv_pipeline_cache *cache,
3564 const VkComputePipelineCreateInfo *info,
3565 const struct anv_shader_module *module,
3566 const char *entrypoint,
3567 const VkSpecializationInfo *spec_info);
3568
3569 struct anv_cs_parameters {
3570 uint32_t group_size;
3571 uint32_t simd_size;
3572 uint32_t threads;
3573 };
3574
3575 struct anv_cs_parameters
3576 anv_cs_parameters(const struct anv_compute_pipeline *pipeline);
3577
3578 struct anv_format_plane {
3579 enum isl_format isl_format:16;
3580 struct isl_swizzle swizzle;
3581
3582 /* Whether this plane contains chroma channels */
3583 bool has_chroma;
3584
3585 /* For downscaling of YUV planes */
3586 uint8_t denominator_scales[2];
3587
3588 /* How to map sampled ycbcr planes to a single 4 component element. */
3589 struct isl_swizzle ycbcr_swizzle;
3590
3591 /* What aspect is associated to this plane */
3592 VkImageAspectFlags aspect;
3593 };
3594
3595
3596 struct anv_format {
3597 struct anv_format_plane planes[3];
3598 VkFormat vk_format;
3599 uint8_t n_planes;
3600 bool can_ycbcr;
3601 };
3602
3603 /**
3604 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3605 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3606 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3607 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3608 */
3609 static inline uint32_t
3610 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3611 VkImageAspectFlags aspect_mask)
3612 {
3613 switch (aspect_mask) {
3614 case VK_IMAGE_ASPECT_COLOR_BIT:
3615 case VK_IMAGE_ASPECT_DEPTH_BIT:
3616 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3617 return 0;
3618 case VK_IMAGE_ASPECT_STENCIL_BIT:
3619 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3620 return 0;
3621 /* Fall-through */
3622 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3623 return 1;
3624 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3625 return 2;
3626 default:
3627 /* Purposefully assert with depth/stencil aspects. */
3628 unreachable("invalid image aspect");
3629 }
3630 }
3631
3632 static inline VkImageAspectFlags
3633 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3634 uint32_t plane)
3635 {
3636 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3637 if (util_bitcount(image_aspects) > 1)
3638 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3639 return VK_IMAGE_ASPECT_COLOR_BIT;
3640 }
3641 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3642 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3643 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3644 return VK_IMAGE_ASPECT_STENCIL_BIT;
3645 }
3646
3647 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3648 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3649
3650 const struct anv_format *
3651 anv_get_format(VkFormat format);
3652
3653 static inline uint32_t
3654 anv_get_format_planes(VkFormat vk_format)
3655 {
3656 const struct anv_format *format = anv_get_format(vk_format);
3657
3658 return format != NULL ? format->n_planes : 0;
3659 }
3660
3661 struct anv_format_plane
3662 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3663 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3664
3665 static inline enum isl_format
3666 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3667 VkImageAspectFlags aspect, VkImageTiling tiling)
3668 {
3669 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3670 }
3671
3672 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3673 VkImageCreateFlags create_flags,
3674 VkFormat vk_format,
3675 VkImageTiling vk_tiling,
3676 const VkImageFormatListCreateInfoKHR *fmt_list);
3677
3678 static inline struct isl_swizzle
3679 anv_swizzle_for_render(struct isl_swizzle swizzle)
3680 {
3681 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3682 * RGB as RGBA for texturing
3683 */
3684 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3685 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3686
3687 /* But it doesn't matter what we render to that channel */
3688 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3689
3690 return swizzle;
3691 }
3692
3693 void
3694 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3695
3696 /**
3697 * Subsurface of an anv_image.
3698 */
3699 struct anv_surface {
3700 /** Valid only if isl_surf::size_B > 0. */
3701 struct isl_surf isl;
3702
3703 /**
3704 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3705 */
3706 uint32_t offset;
3707 };
3708
3709 struct anv_image {
3710 struct vk_object_base base;
3711
3712 VkImageType type; /**< VkImageCreateInfo::imageType */
3713 /* The original VkFormat provided by the client. This may not match any
3714 * of the actual surface formats.
3715 */
3716 VkFormat vk_format;
3717 const struct anv_format *format;
3718
3719 VkImageAspectFlags aspects;
3720 VkExtent3D extent;
3721 uint32_t levels;
3722 uint32_t array_size;
3723 uint32_t samples; /**< VkImageCreateInfo::samples */
3724 uint32_t n_planes;
3725 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3726 VkImageUsageFlags stencil_usage;
3727 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3728 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3729
3730 /** True if this is needs to be bound to an appropriately tiled BO.
3731 *
3732 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3733 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3734 * we require a dedicated allocation so that we can know to allocate a
3735 * tiled buffer.
3736 */
3737 bool needs_set_tiling;
3738
3739 /**
3740 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3741 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3742 */
3743 uint64_t drm_format_mod;
3744
3745 VkDeviceSize size;
3746 uint32_t alignment;
3747
3748 /* Whether the image is made of several underlying buffer objects rather a
3749 * single one with different offsets.
3750 */
3751 bool disjoint;
3752
3753 /* Image was created with external format. */
3754 bool external_format;
3755
3756 /**
3757 * Image subsurfaces
3758 *
3759 * For each foo, anv_image::planes[x].surface is valid if and only if
3760 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3761 * to figure the number associated with a given aspect.
3762 *
3763 * The hardware requires that the depth buffer and stencil buffer be
3764 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3765 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3766 * allocate the depth and stencil buffers as separate surfaces in the same
3767 * bo.
3768 *
3769 * Memory layout :
3770 *
3771 * -----------------------
3772 * | surface0 | /|\
3773 * ----------------------- |
3774 * | shadow surface0 | |
3775 * ----------------------- | Plane 0
3776 * | aux surface0 | |
3777 * ----------------------- |
3778 * | fast clear colors0 | \|/
3779 * -----------------------
3780 * | surface1 | /|\
3781 * ----------------------- |
3782 * | shadow surface1 | |
3783 * ----------------------- | Plane 1
3784 * | aux surface1 | |
3785 * ----------------------- |
3786 * | fast clear colors1 | \|/
3787 * -----------------------
3788 * | ... |
3789 * | |
3790 * -----------------------
3791 */
3792 struct {
3793 /**
3794 * Offset of the entire plane (whenever the image is disjoint this is
3795 * set to 0).
3796 */
3797 uint32_t offset;
3798
3799 VkDeviceSize size;
3800 uint32_t alignment;
3801
3802 struct anv_surface surface;
3803
3804 /**
3805 * A surface which shadows the main surface and may have different
3806 * tiling. This is used for sampling using a tiling that isn't supported
3807 * for other operations.
3808 */
3809 struct anv_surface shadow_surface;
3810
3811 /**
3812 * The base aux usage for this image. For color images, this can be
3813 * either CCS_E or CCS_D depending on whether or not we can reliably
3814 * leave CCS on all the time.
3815 */
3816 enum isl_aux_usage aux_usage;
3817
3818 struct anv_surface aux_surface;
3819
3820 /**
3821 * Offset of the fast clear state (used to compute the
3822 * fast_clear_state_offset of the following planes).
3823 */
3824 uint32_t fast_clear_state_offset;
3825
3826 /**
3827 * BO associated with this plane, set when bound.
3828 */
3829 struct anv_address address;
3830
3831 /**
3832 * When destroying the image, also free the bo.
3833 * */
3834 bool bo_is_owned;
3835 } planes[3];
3836 };
3837
3838 /* The ordering of this enum is important */
3839 enum anv_fast_clear_type {
3840 /** Image does not have/support any fast-clear blocks */
3841 ANV_FAST_CLEAR_NONE = 0,
3842 /** Image has/supports fast-clear but only to the default value */
3843 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3844 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3845 ANV_FAST_CLEAR_ANY = 2,
3846 };
3847
3848 /* Returns the number of auxiliary buffer levels attached to an image. */
3849 static inline uint8_t
3850 anv_image_aux_levels(const struct anv_image * const image,
3851 VkImageAspectFlagBits aspect)
3852 {
3853 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3854 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3855 return 0;
3856
3857 /* The Gen12 CCS aux surface is represented with only one level. */
3858 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3859 image->planes[plane].surface.isl.levels :
3860 image->planes[plane].aux_surface.isl.levels;
3861 }
3862
3863 /* Returns the number of auxiliary buffer layers attached to an image. */
3864 static inline uint32_t
3865 anv_image_aux_layers(const struct anv_image * const image,
3866 VkImageAspectFlagBits aspect,
3867 const uint8_t miplevel)
3868 {
3869 assert(image);
3870
3871 /* The miplevel must exist in the main buffer. */
3872 assert(miplevel < image->levels);
3873
3874 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3875 /* There are no layers with auxiliary data because the miplevel has no
3876 * auxiliary data.
3877 */
3878 return 0;
3879 } else {
3880 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3881
3882 /* The Gen12 CCS aux surface is represented with only one layer. */
3883 const struct isl_extent4d *aux_logical_level0_px =
3884 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3885 &image->planes[plane].surface.isl.logical_level0_px :
3886 &image->planes[plane].aux_surface.isl.logical_level0_px;
3887
3888 return MAX2(aux_logical_level0_px->array_len,
3889 aux_logical_level0_px->depth >> miplevel);
3890 }
3891 }
3892
3893 static inline struct anv_address
3894 anv_image_get_clear_color_addr(UNUSED const struct anv_device *device,
3895 const struct anv_image *image,
3896 VkImageAspectFlagBits aspect)
3897 {
3898 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3899
3900 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3901 return anv_address_add(image->planes[plane].address,
3902 image->planes[plane].fast_clear_state_offset);
3903 }
3904
3905 static inline struct anv_address
3906 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3907 const struct anv_image *image,
3908 VkImageAspectFlagBits aspect)
3909 {
3910 struct anv_address addr =
3911 anv_image_get_clear_color_addr(device, image, aspect);
3912
3913 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3914 device->isl_dev.ss.clear_color_state_size :
3915 device->isl_dev.ss.clear_value_size;
3916 return anv_address_add(addr, clear_color_state_size);
3917 }
3918
3919 static inline struct anv_address
3920 anv_image_get_compression_state_addr(const struct anv_device *device,
3921 const struct anv_image *image,
3922 VkImageAspectFlagBits aspect,
3923 uint32_t level, uint32_t array_layer)
3924 {
3925 assert(level < anv_image_aux_levels(image, aspect));
3926 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3927 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3928 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3929
3930 struct anv_address addr =
3931 anv_image_get_fast_clear_type_addr(device, image, aspect);
3932 addr.offset += 4; /* Go past the fast clear type */
3933
3934 if (image->type == VK_IMAGE_TYPE_3D) {
3935 for (uint32_t l = 0; l < level; l++)
3936 addr.offset += anv_minify(image->extent.depth, l) * 4;
3937 } else {
3938 addr.offset += level * image->array_size * 4;
3939 }
3940 addr.offset += array_layer * 4;
3941
3942 assert(addr.offset <
3943 image->planes[plane].address.offset + image->planes[plane].size);
3944 return addr;
3945 }
3946
3947 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3948 static inline bool
3949 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3950 const struct anv_image *image)
3951 {
3952 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3953 return false;
3954
3955 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3956 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3957 * say:
3958 *
3959 * "If this field is set to AUX_HIZ, Number of Multisamples must
3960 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3961 */
3962 if (image->type == VK_IMAGE_TYPE_3D)
3963 return false;
3964
3965 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3966 * struct. There's documentation which suggests that this feature actually
3967 * reduces performance on BDW, but it has only been observed to help so
3968 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3969 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3970 */
3971 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3972 return false;
3973
3974 return image->samples == 1;
3975 }
3976
3977 static inline bool
3978 anv_image_plane_uses_aux_map(const struct anv_device *device,
3979 const struct anv_image *image,
3980 uint32_t plane)
3981 {
3982 return device->info.has_aux_map &&
3983 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3984 }
3985
3986 void
3987 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3988 const struct anv_image *image,
3989 VkImageAspectFlagBits aspect,
3990 enum isl_aux_usage aux_usage,
3991 uint32_t level,
3992 uint32_t base_layer,
3993 uint32_t layer_count);
3994
3995 void
3996 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3997 const struct anv_image *image,
3998 VkImageAspectFlagBits aspect,
3999 enum isl_aux_usage aux_usage,
4000 enum isl_format format, struct isl_swizzle swizzle,
4001 uint32_t level, uint32_t base_layer, uint32_t layer_count,
4002 VkRect2D area, union isl_color_value clear_color);
4003 void
4004 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
4005 const struct anv_image *image,
4006 VkImageAspectFlags aspects,
4007 enum isl_aux_usage depth_aux_usage,
4008 uint32_t level,
4009 uint32_t base_layer, uint32_t layer_count,
4010 VkRect2D area,
4011 float depth_value, uint8_t stencil_value);
4012 void
4013 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
4014 const struct anv_image *src_image,
4015 enum isl_aux_usage src_aux_usage,
4016 uint32_t src_level, uint32_t src_base_layer,
4017 const struct anv_image *dst_image,
4018 enum isl_aux_usage dst_aux_usage,
4019 uint32_t dst_level, uint32_t dst_base_layer,
4020 VkImageAspectFlagBits aspect,
4021 uint32_t src_x, uint32_t src_y,
4022 uint32_t dst_x, uint32_t dst_y,
4023 uint32_t width, uint32_t height,
4024 uint32_t layer_count,
4025 enum blorp_filter filter);
4026 void
4027 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
4028 const struct anv_image *image,
4029 VkImageAspectFlagBits aspect, uint32_t level,
4030 uint32_t base_layer, uint32_t layer_count,
4031 enum isl_aux_op hiz_op);
4032 void
4033 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
4034 const struct anv_image *image,
4035 VkImageAspectFlags aspects,
4036 uint32_t level,
4037 uint32_t base_layer, uint32_t layer_count,
4038 VkRect2D area, uint8_t stencil_value);
4039 void
4040 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
4041 const struct anv_image *image,
4042 enum isl_format format, struct isl_swizzle swizzle,
4043 VkImageAspectFlagBits aspect,
4044 uint32_t base_layer, uint32_t layer_count,
4045 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
4046 bool predicate);
4047 void
4048 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
4049 const struct anv_image *image,
4050 enum isl_format format, struct isl_swizzle swizzle,
4051 VkImageAspectFlagBits aspect, uint32_t level,
4052 uint32_t base_layer, uint32_t layer_count,
4053 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
4054 bool predicate);
4055
4056 void
4057 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
4058 const struct anv_image *image,
4059 VkImageAspectFlagBits aspect,
4060 uint32_t base_level, uint32_t level_count,
4061 uint32_t base_layer, uint32_t layer_count);
4062
4063 enum isl_aux_state
4064 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
4065 const struct anv_image *image,
4066 const VkImageAspectFlagBits aspect,
4067 const VkImageLayout layout);
4068
4069 enum isl_aux_usage
4070 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
4071 const struct anv_image *image,
4072 const VkImageAspectFlagBits aspect,
4073 const VkImageUsageFlagBits usage,
4074 const VkImageLayout layout);
4075
4076 enum anv_fast_clear_type
4077 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
4078 const struct anv_image * const image,
4079 const VkImageAspectFlagBits aspect,
4080 const VkImageLayout layout);
4081
4082 /* This is defined as a macro so that it works for both
4083 * VkImageSubresourceRange and VkImageSubresourceLayers
4084 */
4085 #define anv_get_layerCount(_image, _range) \
4086 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
4087 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
4088
4089 static inline uint32_t
4090 anv_get_levelCount(const struct anv_image *image,
4091 const VkImageSubresourceRange *range)
4092 {
4093 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
4094 image->levels - range->baseMipLevel : range->levelCount;
4095 }
4096
4097 static inline VkImageAspectFlags
4098 anv_image_expand_aspects(const struct anv_image *image,
4099 VkImageAspectFlags aspects)
4100 {
4101 /* If the underlying image has color plane aspects and
4102 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
4103 * the underlying image. */
4104 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
4105 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
4106 return image->aspects;
4107
4108 return aspects;
4109 }
4110
4111 static inline bool
4112 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
4113 VkImageAspectFlags aspects2)
4114 {
4115 if (aspects1 == aspects2)
4116 return true;
4117
4118 /* Only 1 color aspects are compatibles. */
4119 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
4120 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
4121 util_bitcount(aspects1) == util_bitcount(aspects2))
4122 return true;
4123
4124 return false;
4125 }
4126
4127 struct anv_image_view {
4128 struct vk_object_base base;
4129
4130 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
4131
4132 VkImageAspectFlags aspect_mask;
4133 VkFormat vk_format;
4134 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
4135
4136 unsigned n_planes;
4137 struct {
4138 uint32_t image_plane;
4139
4140 struct isl_view isl;
4141
4142 /**
4143 * RENDER_SURFACE_STATE when using image as a sampler surface with an
4144 * image layout of SHADER_READ_ONLY_OPTIMAL or
4145 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
4146 */
4147 struct anv_surface_state optimal_sampler_surface_state;
4148
4149 /**
4150 * RENDER_SURFACE_STATE when using image as a sampler surface with an
4151 * image layout of GENERAL.
4152 */
4153 struct anv_surface_state general_sampler_surface_state;
4154
4155 /**
4156 * RENDER_SURFACE_STATE when using image as a storage image. Separate
4157 * states for write-only and readable, using the real format for
4158 * write-only and the lowered format for readable.
4159 */
4160 struct anv_surface_state storage_surface_state;
4161 struct anv_surface_state writeonly_storage_surface_state;
4162
4163 struct brw_image_param storage_image_param;
4164 } planes[3];
4165 };
4166
4167 enum anv_image_view_state_flags {
4168 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
4169 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
4170 };
4171
4172 void anv_image_fill_surface_state(struct anv_device *device,
4173 const struct anv_image *image,
4174 VkImageAspectFlagBits aspect,
4175 const struct isl_view *view,
4176 isl_surf_usage_flags_t view_usage,
4177 enum isl_aux_usage aux_usage,
4178 const union isl_color_value *clear_color,
4179 enum anv_image_view_state_flags flags,
4180 struct anv_surface_state *state_inout,
4181 struct brw_image_param *image_param_out);
4182
4183 struct anv_image_create_info {
4184 const VkImageCreateInfo *vk_info;
4185
4186 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
4187 isl_tiling_flags_t isl_tiling_flags;
4188
4189 /** These flags will be added to any derived from VkImageCreateInfo. */
4190 isl_surf_usage_flags_t isl_extra_usage_flags;
4191
4192 uint32_t stride;
4193 bool external_format;
4194 };
4195
4196 VkResult anv_image_create(VkDevice _device,
4197 const struct anv_image_create_info *info,
4198 const VkAllocationCallbacks* alloc,
4199 VkImage *pImage);
4200
4201 enum isl_format
4202 anv_isl_format_for_descriptor_type(VkDescriptorType type);
4203
4204 static inline VkExtent3D
4205 anv_sanitize_image_extent(const VkImageType imageType,
4206 const VkExtent3D imageExtent)
4207 {
4208 switch (imageType) {
4209 case VK_IMAGE_TYPE_1D:
4210 return (VkExtent3D) { imageExtent.width, 1, 1 };
4211 case VK_IMAGE_TYPE_2D:
4212 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
4213 case VK_IMAGE_TYPE_3D:
4214 return imageExtent;
4215 default:
4216 unreachable("invalid image type");
4217 }
4218 }
4219
4220 static inline VkOffset3D
4221 anv_sanitize_image_offset(const VkImageType imageType,
4222 const VkOffset3D imageOffset)
4223 {
4224 switch (imageType) {
4225 case VK_IMAGE_TYPE_1D:
4226 return (VkOffset3D) { imageOffset.x, 0, 0 };
4227 case VK_IMAGE_TYPE_2D:
4228 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
4229 case VK_IMAGE_TYPE_3D:
4230 return imageOffset;
4231 default:
4232 unreachable("invalid image type");
4233 }
4234 }
4235
4236 VkFormatFeatureFlags
4237 anv_get_image_format_features(const struct gen_device_info *devinfo,
4238 VkFormat vk_format,
4239 const struct anv_format *anv_format,
4240 VkImageTiling vk_tiling);
4241
4242 void anv_fill_buffer_surface_state(struct anv_device *device,
4243 struct anv_state state,
4244 enum isl_format format,
4245 struct anv_address address,
4246 uint32_t range, uint32_t stride);
4247
4248 static inline void
4249 anv_clear_color_from_att_state(union isl_color_value *clear_color,
4250 const struct anv_attachment_state *att_state,
4251 const struct anv_image_view *iview)
4252 {
4253 const struct isl_format_layout *view_fmtl =
4254 isl_format_get_layout(iview->planes[0].isl.format);
4255
4256 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
4257 if (view_fmtl->channels.c.bits) \
4258 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4259
4260 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4261 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4262 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4263 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4264
4265 #undef COPY_CLEAR_COLOR_CHANNEL
4266 }
4267
4268
4269 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
4270 * straightforward 32-bit float color in the first 64 bytes. Instead of using
4271 * a nice float/integer union like Gen8+, Haswell specifies the integer border
4272 * color as a separate entry /after/ the float color. The layout of this entry
4273 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
4274 *
4275 * Since we don't know the format/bpp, we can't make any of the border colors
4276 * containing '1' work for all formats, as it would be in the wrong place for
4277 * some of them. We opt to make 32-bit integers work as this seems like the
4278 * most common option. Fortunately, transparent black works regardless, as
4279 * all zeroes is the same in every bit-size.
4280 */
4281 struct hsw_border_color {
4282 float float32[4];
4283 uint32_t _pad0[12];
4284 uint32_t uint32[4];
4285 uint32_t _pad1[108];
4286 };
4287
4288 struct gen8_border_color {
4289 union {
4290 float float32[4];
4291 uint32_t uint32[4];
4292 };
4293 /* Pad out to 64 bytes */
4294 uint32_t _pad[12];
4295 };
4296
4297 struct anv_ycbcr_conversion {
4298 struct vk_object_base base;
4299
4300 const struct anv_format * format;
4301 VkSamplerYcbcrModelConversion ycbcr_model;
4302 VkSamplerYcbcrRange ycbcr_range;
4303 VkComponentSwizzle mapping[4];
4304 VkChromaLocation chroma_offsets[2];
4305 VkFilter chroma_filter;
4306 bool chroma_reconstruction;
4307 };
4308
4309 struct anv_sampler {
4310 struct vk_object_base base;
4311
4312 uint32_t state[3][4];
4313 uint32_t n_planes;
4314 struct anv_ycbcr_conversion *conversion;
4315
4316 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4317 * and with a 32-byte stride for use as bindless samplers.
4318 */
4319 struct anv_state bindless_state;
4320
4321 struct anv_state custom_border_color;
4322 };
4323
4324 struct anv_framebuffer {
4325 struct vk_object_base base;
4326
4327 uint32_t width;
4328 uint32_t height;
4329 uint32_t layers;
4330
4331 uint32_t attachment_count;
4332 struct anv_image_view * attachments[0];
4333 };
4334
4335 struct anv_subpass_attachment {
4336 VkImageUsageFlagBits usage;
4337 uint32_t attachment;
4338 VkImageLayout layout;
4339
4340 /* Used only with attachment containing stencil data. */
4341 VkImageLayout stencil_layout;
4342 };
4343
4344 struct anv_subpass {
4345 uint32_t attachment_count;
4346
4347 /**
4348 * A pointer to all attachment references used in this subpass.
4349 * Only valid if ::attachment_count > 0.
4350 */
4351 struct anv_subpass_attachment * attachments;
4352 uint32_t input_count;
4353 struct anv_subpass_attachment * input_attachments;
4354 uint32_t color_count;
4355 struct anv_subpass_attachment * color_attachments;
4356 struct anv_subpass_attachment * resolve_attachments;
4357
4358 struct anv_subpass_attachment * depth_stencil_attachment;
4359 struct anv_subpass_attachment * ds_resolve_attachment;
4360 VkResolveModeFlagBitsKHR depth_resolve_mode;
4361 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4362
4363 uint32_t view_mask;
4364
4365 /** Subpass has a depth/stencil self-dependency */
4366 bool has_ds_self_dep;
4367
4368 /** Subpass has at least one color resolve attachment */
4369 bool has_color_resolve;
4370 };
4371
4372 static inline unsigned
4373 anv_subpass_view_count(const struct anv_subpass *subpass)
4374 {
4375 return MAX2(1, util_bitcount(subpass->view_mask));
4376 }
4377
4378 struct anv_render_pass_attachment {
4379 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4380 * its members individually.
4381 */
4382 VkFormat format;
4383 uint32_t samples;
4384 VkImageUsageFlags usage;
4385 VkAttachmentLoadOp load_op;
4386 VkAttachmentStoreOp store_op;
4387 VkAttachmentLoadOp stencil_load_op;
4388 VkImageLayout initial_layout;
4389 VkImageLayout final_layout;
4390 VkImageLayout first_subpass_layout;
4391
4392 VkImageLayout stencil_initial_layout;
4393 VkImageLayout stencil_final_layout;
4394
4395 /* The subpass id in which the attachment will be used last. */
4396 uint32_t last_subpass_idx;
4397 };
4398
4399 struct anv_render_pass {
4400 struct vk_object_base base;
4401
4402 uint32_t attachment_count;
4403 uint32_t subpass_count;
4404 /* An array of subpass_count+1 flushes, one per subpass boundary */
4405 enum anv_pipe_bits * subpass_flushes;
4406 struct anv_render_pass_attachment * attachments;
4407 struct anv_subpass subpasses[0];
4408 };
4409
4410 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4411
4412 #define OA_SNAPSHOT_SIZE (256)
4413 #define ANV_KHR_PERF_QUERY_SIZE (ALIGN(sizeof(uint64_t), 64) + 2 * OA_SNAPSHOT_SIZE)
4414
4415 struct anv_query_pool {
4416 struct vk_object_base base;
4417
4418 VkQueryType type;
4419 VkQueryPipelineStatisticFlags pipeline_statistics;
4420 /** Stride between slots, in bytes */
4421 uint32_t stride;
4422 /** Number of slots in this query pool */
4423 uint32_t slots;
4424 struct anv_bo * bo;
4425
4426 /* Perf queries : */
4427 struct anv_bo reset_bo;
4428 uint32_t n_counters;
4429 struct gen_perf_counter_pass *counter_pass;
4430 uint32_t n_passes;
4431 struct gen_perf_query_info **pass_query;
4432 };
4433
4434 static inline uint32_t khr_perf_query_preamble_offset(struct anv_query_pool *pool,
4435 uint32_t pass)
4436 {
4437 return pass * ANV_KHR_PERF_QUERY_SIZE + 8;
4438 }
4439
4440 int anv_get_instance_entrypoint_index(const char *name);
4441 int anv_get_device_entrypoint_index(const char *name);
4442 int anv_get_physical_device_entrypoint_index(const char *name);
4443
4444 const char *anv_get_instance_entry_name(int index);
4445 const char *anv_get_physical_device_entry_name(int index);
4446 const char *anv_get_device_entry_name(int index);
4447
4448 bool
4449 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4450 const struct anv_instance_extension_table *instance);
4451 bool
4452 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4453 const struct anv_instance_extension_table *instance);
4454 bool
4455 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4456 const struct anv_instance_extension_table *instance,
4457 const struct anv_device_extension_table *device);
4458
4459 void *anv_resolve_device_entrypoint(const struct gen_device_info *devinfo,
4460 uint32_t index);
4461 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4462 const char *name);
4463
4464 void anv_dump_image_to_ppm(struct anv_device *device,
4465 struct anv_image *image, unsigned miplevel,
4466 unsigned array_layer, VkImageAspectFlagBits aspect,
4467 const char *filename);
4468
4469 enum anv_dump_action {
4470 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4471 };
4472
4473 #ifdef DEBUG
4474 PUBLIC
4475 #endif
4476 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4477 #ifdef DEBUG
4478 PUBLIC
4479 #endif
4480 void anv_dump_finish(void);
4481
4482 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4483
4484 static inline uint32_t
4485 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4486 {
4487 /* This function must be called from within a subpass. */
4488 assert(cmd_state->pass && cmd_state->subpass);
4489
4490 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4491
4492 /* The id of this subpass shouldn't exceed the number of subpasses in this
4493 * render pass minus 1.
4494 */
4495 assert(subpass_id < cmd_state->pass->subpass_count);
4496 return subpass_id;
4497 }
4498
4499 struct anv_performance_configuration_intel {
4500 struct vk_object_base base;
4501
4502 struct gen_perf_registers *register_config;
4503
4504 uint64_t config_id;
4505 };
4506
4507 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4508 void anv_device_perf_init(struct anv_device *device);
4509 void anv_perf_write_pass_results(struct gen_perf_config *perf,
4510 struct anv_query_pool *pool, uint32_t pass,
4511 const struct gen_perf_query_result *accumulated_results,
4512 union VkPerformanceCounterResultKHR *results);
4513
4514 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4515 VK_FROM_HANDLE(__anv_type, __name, __handle)
4516
4517 VK_DEFINE_HANDLE_CASTS(anv_cmd_buffer, base, VkCommandBuffer,
4518 VK_OBJECT_TYPE_COMMAND_BUFFER)
4519 VK_DEFINE_HANDLE_CASTS(anv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
4520 VK_DEFINE_HANDLE_CASTS(anv_instance, base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
4521 VK_DEFINE_HANDLE_CASTS(anv_physical_device, base, VkPhysicalDevice,
4522 VK_OBJECT_TYPE_PHYSICAL_DEVICE)
4523 VK_DEFINE_HANDLE_CASTS(anv_queue, base, VkQueue, VK_OBJECT_TYPE_QUEUE)
4524
4525 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, base, VkCommandPool,
4526 VK_OBJECT_TYPE_COMMAND_POOL)
4527 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, base, VkBuffer,
4528 VK_OBJECT_TYPE_BUFFER)
4529 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, base, VkBufferView,
4530 VK_OBJECT_TYPE_BUFFER_VIEW)
4531 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, base, VkDescriptorPool,
4532 VK_OBJECT_TYPE_DESCRIPTOR_POOL)
4533 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, base, VkDescriptorSet,
4534 VK_OBJECT_TYPE_DESCRIPTOR_SET)
4535 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, base,
4536 VkDescriptorSetLayout,
4537 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
4538 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, base,
4539 VkDescriptorUpdateTemplate,
4540 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
4541 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, base, VkDeviceMemory,
4542 VK_OBJECT_TYPE_DEVICE_MEMORY)
4543 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, base, VkFence, VK_OBJECT_TYPE_FENCE)
4544 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
4545 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, base, VkFramebuffer,
4546 VK_OBJECT_TYPE_FRAMEBUFFER)
4547 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image, base, VkImage, VK_OBJECT_TYPE_IMAGE)
4548 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, base, VkImageView,
4549 VK_OBJECT_TYPE_IMAGE_VIEW);
4550 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, base, VkPipelineCache,
4551 VK_OBJECT_TYPE_PIPELINE_CACHE)
4552 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, base, VkPipeline,
4553 VK_OBJECT_TYPE_PIPELINE)
4554 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, base, VkPipelineLayout,
4555 VK_OBJECT_TYPE_PIPELINE_LAYOUT)
4556 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, base, VkQueryPool,
4557 VK_OBJECT_TYPE_QUERY_POOL)
4558 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, base, VkRenderPass,
4559 VK_OBJECT_TYPE_RENDER_PASS)
4560 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, base, VkSampler,
4561 VK_OBJECT_TYPE_SAMPLER)
4562 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, base, VkSemaphore,
4563 VK_OBJECT_TYPE_SEMAPHORE)
4564 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, base, VkShaderModule,
4565 VK_OBJECT_TYPE_SHADER_MODULE)
4566 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, base,
4567 VkSamplerYcbcrConversion,
4568 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION)
4569 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_performance_configuration_intel, base,
4570 VkPerformanceConfigurationINTEL,
4571 VK_OBJECT_TYPE_PERFORMANCE_CONFIGURATION_INTEL)
4572
4573 /* Gen-specific function declarations */
4574 #ifdef genX
4575 # include "anv_genX.h"
4576 #else
4577 # define genX(x) gen7_##x
4578 # include "anv_genX.h"
4579 # undef genX
4580 # define genX(x) gen75_##x
4581 # include "anv_genX.h"
4582 # undef genX
4583 # define genX(x) gen8_##x
4584 # include "anv_genX.h"
4585 # undef genX
4586 # define genX(x) gen9_##x
4587 # include "anv_genX.h"
4588 # undef genX
4589 # define genX(x) gen10_##x
4590 # include "anv_genX.h"
4591 # undef genX
4592 # define genX(x) gen11_##x
4593 # include "anv_genX.h"
4594 # undef genX
4595 # define genX(x) gen12_##x
4596 # include "anv_genX.h"
4597 # undef genX
4598 #endif
4599
4600 #endif /* ANV_PRIVATE_H */