anv: Plumb timeline semaphore signal/wait values through from the API
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define HIGH_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131
132 #define LOW_HEAP_SIZE \
133 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
134 #define DYNAMIC_STATE_POOL_SIZE \
135 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
136 #define BINDING_TABLE_POOL_SIZE \
137 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
138 #define SURFACE_STATE_POOL_SIZE \
139 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
140 #define INSTRUCTION_STATE_POOL_SIZE \
141 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
142
143 /* Allowing different clear colors requires us to perform a depth resolve at
144 * the end of certain render passes. This is because while slow clears store
145 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
146 * See the PRMs for examples describing when additional resolves would be
147 * necessary. To enable fast clears without requiring extra resolves, we set
148 * the clear value to a globally-defined one. We could allow different values
149 * if the user doesn't expect coherent data during or after a render passes
150 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
151 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
152 * 1.0f seems to be the only value used. The only application that doesn't set
153 * this value does so through the usage of an seemingly uninitialized clear
154 * value.
155 */
156 #define ANV_HZ_FC_VAL 1.0f
157
158 #define MAX_VBS 28
159 #define MAX_XFB_BUFFERS 4
160 #define MAX_XFB_STREAMS 4
161 #define MAX_SETS 8
162 #define MAX_RTS 8
163 #define MAX_VIEWPORTS 16
164 #define MAX_SCISSORS 16
165 #define MAX_PUSH_CONSTANTS_SIZE 128
166 #define MAX_DYNAMIC_BUFFERS 16
167 #define MAX_IMAGES 64
168 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
169 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
170 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
171
172 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
173 *
174 * "The surface state model is used when a Binding Table Index (specified
175 * in the message descriptor) of less than 240 is specified. In this model,
176 * the Binding Table Index is used to index into the binding table, and the
177 * binding table entry contains a pointer to the SURFACE_STATE."
178 *
179 * Binding table values above 240 are used for various things in the hardware
180 * such as stateless, stateless with incoherent cache, SLM, and bindless.
181 */
182 #define MAX_BINDING_TABLE_SIZE 240
183
184 /* The kernel relocation API has a limitation of a 32-bit delta value
185 * applied to the address before it is written which, in spite of it being
186 * unsigned, is treated as signed . Because of the way that this maps to
187 * the Vulkan API, we cannot handle an offset into a buffer that does not
188 * fit into a signed 32 bits. The only mechanism we have for dealing with
189 * this at the moment is to limit all VkDeviceMemory objects to a maximum
190 * of 2GB each. The Vulkan spec allows us to do this:
191 *
192 * "Some platforms may have a limit on the maximum size of a single
193 * allocation. For example, certain systems may fail to create
194 * allocations with a size greater than or equal to 4GB. Such a limit is
195 * implementation-dependent, and if such a failure occurs then the error
196 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
197 *
198 * We don't use vk_error here because it's not an error so much as an
199 * indication to the application that the allocation is too large.
200 */
201 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
202
203 #define ANV_SVGS_VB_INDEX MAX_VBS
204 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
205
206 /* We reserve this MI ALU register for the purpose of handling predication.
207 * Other code which uses the MI ALU should leave it alone.
208 */
209 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
210
211 /* For gen12 we set the streamout buffers using 4 separate commands
212 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
213 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
214 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
215 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
216 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
217 * 3DSTATE_SO_BUFFER_INDEX_0.
218 */
219 #define SO_BUFFER_INDEX_0_CMD 0x60
220 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
221
222 static inline uint32_t
223 align_down_npot_u32(uint32_t v, uint32_t a)
224 {
225 return v - (v % a);
226 }
227
228 static inline uint32_t
229 align_u32(uint32_t v, uint32_t a)
230 {
231 assert(a != 0 && a == (a & -a));
232 return (v + a - 1) & ~(a - 1);
233 }
234
235 static inline uint64_t
236 align_u64(uint64_t v, uint64_t a)
237 {
238 assert(a != 0 && a == (a & -a));
239 return (v + a - 1) & ~(a - 1);
240 }
241
242 static inline int32_t
243 align_i32(int32_t v, int32_t a)
244 {
245 assert(a != 0 && a == (a & -a));
246 return (v + a - 1) & ~(a - 1);
247 }
248
249 /** Alignment must be a power of 2. */
250 static inline bool
251 anv_is_aligned(uintmax_t n, uintmax_t a)
252 {
253 assert(a == (a & -a));
254 return (n & (a - 1)) == 0;
255 }
256
257 static inline uint32_t
258 anv_minify(uint32_t n, uint32_t levels)
259 {
260 if (unlikely(n == 0))
261 return 0;
262 else
263 return MAX2(n >> levels, 1);
264 }
265
266 static inline float
267 anv_clamp_f(float f, float min, float max)
268 {
269 assert(min < max);
270
271 if (f > max)
272 return max;
273 else if (f < min)
274 return min;
275 else
276 return f;
277 }
278
279 static inline bool
280 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
281 {
282 if (*inout_mask & clear_mask) {
283 *inout_mask &= ~clear_mask;
284 return true;
285 } else {
286 return false;
287 }
288 }
289
290 static inline union isl_color_value
291 vk_to_isl_color(VkClearColorValue color)
292 {
293 return (union isl_color_value) {
294 .u32 = {
295 color.uint32[0],
296 color.uint32[1],
297 color.uint32[2],
298 color.uint32[3],
299 },
300 };
301 }
302
303 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
304 {
305 uintptr_t mask = (1ull << bits) - 1;
306 *flags = ptr & mask;
307 return (void *) (ptr & ~mask);
308 }
309
310 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
311 {
312 uintptr_t value = (uintptr_t) ptr;
313 uintptr_t mask = (1ull << bits) - 1;
314 return value | (mask & flags);
315 }
316
317 #define for_each_bit(b, dword) \
318 for (uint32_t __dword = (dword); \
319 (b) = __builtin_ffs(__dword) - 1, __dword; \
320 __dword &= ~(1 << (b)))
321
322 #define typed_memcpy(dest, src, count) ({ \
323 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
324 memcpy((dest), (src), (count) * sizeof(*(src))); \
325 })
326
327 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
328 * to be added here in order to utilize mapping in debug/error/perf macros.
329 */
330 #define REPORT_OBJECT_TYPE(o) \
331 __builtin_choose_expr ( \
332 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
333 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
334 __builtin_choose_expr ( \
335 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
336 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
337 __builtin_choose_expr ( \
338 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
339 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
340 __builtin_choose_expr ( \
341 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
342 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
343 __builtin_choose_expr ( \
344 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
345 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
346 __builtin_choose_expr ( \
347 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
348 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
349 __builtin_choose_expr ( \
350 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
351 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
352 __builtin_choose_expr ( \
353 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
354 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
355 __builtin_choose_expr ( \
356 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
357 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
358 __builtin_choose_expr ( \
359 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
360 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
361 __builtin_choose_expr ( \
362 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
363 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
364 __builtin_choose_expr ( \
365 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
366 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
367 __builtin_choose_expr ( \
368 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
369 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
370 __builtin_choose_expr ( \
371 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
372 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
373 __builtin_choose_expr ( \
374 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
375 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
376 __builtin_choose_expr ( \
377 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
378 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
379 __builtin_choose_expr ( \
380 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
381 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
382 __builtin_choose_expr ( \
383 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
384 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
385 __builtin_choose_expr ( \
386 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
387 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
388 __builtin_choose_expr ( \
389 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
390 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
391 __builtin_choose_expr ( \
392 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
393 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
394 __builtin_choose_expr ( \
395 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
396 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
397 __builtin_choose_expr ( \
398 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
399 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
400 __builtin_choose_expr ( \
401 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
402 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
403 __builtin_choose_expr ( \
404 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
405 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
406 __builtin_choose_expr ( \
407 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
408 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
409 __builtin_choose_expr ( \
410 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
411 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
412 __builtin_choose_expr ( \
413 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
414 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
415 __builtin_choose_expr ( \
416 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
417 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
418 __builtin_choose_expr ( \
419 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
420 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
421 __builtin_choose_expr ( \
422 __builtin_types_compatible_p (__typeof (o), void*), \
423 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
424 /* The void expression results in a compile-time error \
425 when assigning the result to something. */ \
426 (void)0)))))))))))))))))))))))))))))))
427
428 /* Whenever we generate an error, pass it through this function. Useful for
429 * debugging, where we can break on it. Only call at error site, not when
430 * propagating errors. Might be useful to plug in a stack trace here.
431 */
432
433 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
434 VkDebugReportObjectTypeEXT type, VkResult error,
435 const char *file, int line, const char *format,
436 va_list args);
437
438 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
439 VkDebugReportObjectTypeEXT type, VkResult error,
440 const char *file, int line, const char *format, ...)
441 anv_printflike(7, 8);
442
443 #ifdef DEBUG
444 #define vk_error(error) __vk_errorf(NULL, NULL,\
445 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
446 error, __FILE__, __LINE__, NULL)
447 #define vk_errorv(instance, obj, error, format, args)\
448 __vk_errorv(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
449 __FILE__, __LINE__, format, args)
450 #define vk_errorf(instance, obj, error, format, ...)\
451 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
452 __FILE__, __LINE__, format, ## __VA_ARGS__)
453 #else
454 #define vk_error(error) error
455 #define vk_errorf(instance, obj, error, format, ...) error
456 #endif
457
458 /**
459 * Warn on ignored extension structs.
460 *
461 * The Vulkan spec requires us to ignore unsupported or unknown structs in
462 * a pNext chain. In debug mode, emitting warnings for ignored structs may
463 * help us discover structs that we should not have ignored.
464 *
465 *
466 * From the Vulkan 1.0.38 spec:
467 *
468 * Any component of the implementation (the loader, any enabled layers,
469 * and drivers) must skip over, without processing (other than reading the
470 * sType and pNext members) any chained structures with sType values not
471 * defined by extensions supported by that component.
472 */
473 #define anv_debug_ignored_stype(sType) \
474 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
475
476 void __anv_perf_warn(struct anv_instance *instance, const void *object,
477 VkDebugReportObjectTypeEXT type, const char *file,
478 int line, const char *format, ...)
479 anv_printflike(6, 7);
480 void anv_loge(const char *format, ...) anv_printflike(1, 2);
481 void anv_loge_v(const char *format, va_list va);
482
483 /**
484 * Print a FINISHME message, including its source location.
485 */
486 #define anv_finishme(format, ...) \
487 do { \
488 static bool reported = false; \
489 if (!reported) { \
490 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
491 ##__VA_ARGS__); \
492 reported = true; \
493 } \
494 } while (0)
495
496 /**
497 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
498 */
499 #define anv_perf_warn(instance, obj, format, ...) \
500 do { \
501 static bool reported = false; \
502 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
503 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
504 format, ##__VA_ARGS__); \
505 reported = true; \
506 } \
507 } while (0)
508
509 /* A non-fatal assert. Useful for debugging. */
510 #ifdef DEBUG
511 #define anv_assert(x) ({ \
512 if (unlikely(!(x))) \
513 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
514 })
515 #else
516 #define anv_assert(x)
517 #endif
518
519 /* A multi-pointer allocator
520 *
521 * When copying data structures from the user (such as a render pass), it's
522 * common to need to allocate data for a bunch of different things. Instead
523 * of doing several allocations and having to handle all of the error checking
524 * that entails, it can be easier to do a single allocation. This struct
525 * helps facilitate that. The intended usage looks like this:
526 *
527 * ANV_MULTIALLOC(ma)
528 * anv_multialloc_add(&ma, &main_ptr, 1);
529 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
530 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
531 *
532 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
533 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
534 */
535 struct anv_multialloc {
536 size_t size;
537 size_t align;
538
539 uint32_t ptr_count;
540 void **ptrs[8];
541 };
542
543 #define ANV_MULTIALLOC_INIT \
544 ((struct anv_multialloc) { 0, })
545
546 #define ANV_MULTIALLOC(_name) \
547 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
548
549 __attribute__((always_inline))
550 static inline void
551 _anv_multialloc_add(struct anv_multialloc *ma,
552 void **ptr, size_t size, size_t align)
553 {
554 size_t offset = align_u64(ma->size, align);
555 ma->size = offset + size;
556 ma->align = MAX2(ma->align, align);
557
558 /* Store the offset in the pointer. */
559 *ptr = (void *)(uintptr_t)offset;
560
561 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
562 ma->ptrs[ma->ptr_count++] = ptr;
563 }
564
565 #define anv_multialloc_add_size(_ma, _ptr, _size) \
566 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
567
568 #define anv_multialloc_add(_ma, _ptr, _count) \
569 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
570
571 __attribute__((always_inline))
572 static inline void *
573 anv_multialloc_alloc(struct anv_multialloc *ma,
574 const VkAllocationCallbacks *alloc,
575 VkSystemAllocationScope scope)
576 {
577 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
578 if (!ptr)
579 return NULL;
580
581 /* Fill out each of the pointers with their final value.
582 *
583 * for (uint32_t i = 0; i < ma->ptr_count; i++)
584 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
585 *
586 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
587 * constant, GCC is incapable of figuring this out and unrolling the loop
588 * so we have to give it a little help.
589 */
590 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
591 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
592 if ((_i) < ma->ptr_count) \
593 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
594 _ANV_MULTIALLOC_UPDATE_POINTER(0);
595 _ANV_MULTIALLOC_UPDATE_POINTER(1);
596 _ANV_MULTIALLOC_UPDATE_POINTER(2);
597 _ANV_MULTIALLOC_UPDATE_POINTER(3);
598 _ANV_MULTIALLOC_UPDATE_POINTER(4);
599 _ANV_MULTIALLOC_UPDATE_POINTER(5);
600 _ANV_MULTIALLOC_UPDATE_POINTER(6);
601 _ANV_MULTIALLOC_UPDATE_POINTER(7);
602 #undef _ANV_MULTIALLOC_UPDATE_POINTER
603
604 return ptr;
605 }
606
607 __attribute__((always_inline))
608 static inline void *
609 anv_multialloc_alloc2(struct anv_multialloc *ma,
610 const VkAllocationCallbacks *parent_alloc,
611 const VkAllocationCallbacks *alloc,
612 VkSystemAllocationScope scope)
613 {
614 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
615 }
616
617 struct anv_bo {
618 uint32_t gem_handle;
619
620 uint32_t refcount;
621
622 /* Index into the current validation list. This is used by the
623 * validation list building alrogithm to track which buffers are already
624 * in the validation list so that we can ensure uniqueness.
625 */
626 uint32_t index;
627
628 /* Index for use with util_sparse_array_free_list */
629 uint32_t free_index;
630
631 /* Last known offset. This value is provided by the kernel when we
632 * execbuf and is used as the presumed offset for the next bunch of
633 * relocations.
634 */
635 uint64_t offset;
636
637 uint64_t size;
638
639 /* Map for internally mapped BOs.
640 *
641 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
642 */
643 void *map;
644
645 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
646 uint32_t flags;
647
648 /** True if this BO may be shared with other processes */
649 bool is_external:1;
650
651 /** True if this BO is a wrapper
652 *
653 * When set to true, none of the fields in this BO are meaningful except
654 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
655 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
656 * is set in the physical device.
657 */
658 bool is_wrapper:1;
659
660 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
661 bool has_fixed_address:1;
662
663 /** True if this BO wraps a host pointer */
664 bool from_host_ptr:1;
665 };
666
667 static inline struct anv_bo *
668 anv_bo_unwrap(struct anv_bo *bo)
669 {
670 while (bo->is_wrapper)
671 bo = bo->map;
672 return bo;
673 }
674
675 /* Represents a lock-free linked list of "free" things. This is used by
676 * both the block pool and the state pools. Unfortunately, in order to
677 * solve the ABA problem, we can't use a single uint32_t head.
678 */
679 union anv_free_list {
680 struct {
681 uint32_t offset;
682
683 /* A simple count that is incremented every time the head changes. */
684 uint32_t count;
685 };
686 /* Make sure it's aligned to 64 bits. This will make atomic operations
687 * faster on 32 bit platforms.
688 */
689 uint64_t u64 __attribute__ ((aligned (8)));
690 };
691
692 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
693
694 struct anv_block_state {
695 union {
696 struct {
697 uint32_t next;
698 uint32_t end;
699 };
700 /* Make sure it's aligned to 64 bits. This will make atomic operations
701 * faster on 32 bit platforms.
702 */
703 uint64_t u64 __attribute__ ((aligned (8)));
704 };
705 };
706
707 #define anv_block_pool_foreach_bo(bo, pool) \
708 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
709 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
710 _pp_bo++)
711
712 #define ANV_MAX_BLOCK_POOL_BOS 20
713
714 struct anv_block_pool {
715 struct anv_device *device;
716 bool use_softpin;
717
718 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
719 * around the actual BO so that we grow the pool after the wrapper BO has
720 * been put in a relocation list. This is only used in the non-softpin
721 * case.
722 */
723 struct anv_bo wrapper_bo;
724
725 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
726 struct anv_bo *bo;
727 uint32_t nbos;
728
729 uint64_t size;
730
731 /* The address where the start of the pool is pinned. The various bos that
732 * are created as the pool grows will have addresses in the range
733 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
734 */
735 uint64_t start_address;
736
737 /* The offset from the start of the bo to the "center" of the block
738 * pool. Pointers to allocated blocks are given by
739 * bo.map + center_bo_offset + offsets.
740 */
741 uint32_t center_bo_offset;
742
743 /* Current memory map of the block pool. This pointer may or may not
744 * point to the actual beginning of the block pool memory. If
745 * anv_block_pool_alloc_back has ever been called, then this pointer
746 * will point to the "center" position of the buffer and all offsets
747 * (negative or positive) given out by the block pool alloc functions
748 * will be valid relative to this pointer.
749 *
750 * In particular, map == bo.map + center_offset
751 *
752 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
753 * since it will handle the softpin case as well, where this points to NULL.
754 */
755 void *map;
756 int fd;
757
758 /**
759 * Array of mmaps and gem handles owned by the block pool, reclaimed when
760 * the block pool is destroyed.
761 */
762 struct u_vector mmap_cleanups;
763
764 struct anv_block_state state;
765
766 struct anv_block_state back_state;
767 };
768
769 /* Block pools are backed by a fixed-size 1GB memfd */
770 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
771
772 /* The center of the block pool is also the middle of the memfd. This may
773 * change in the future if we decide differently for some reason.
774 */
775 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
776
777 static inline uint32_t
778 anv_block_pool_size(struct anv_block_pool *pool)
779 {
780 return pool->state.end + pool->back_state.end;
781 }
782
783 struct anv_state {
784 int32_t offset;
785 uint32_t alloc_size;
786 void *map;
787 uint32_t idx;
788 };
789
790 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
791
792 struct anv_fixed_size_state_pool {
793 union anv_free_list free_list;
794 struct anv_block_state block;
795 };
796
797 #define ANV_MIN_STATE_SIZE_LOG2 6
798 #define ANV_MAX_STATE_SIZE_LOG2 21
799
800 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
801
802 struct anv_free_entry {
803 uint32_t next;
804 struct anv_state state;
805 };
806
807 struct anv_state_table {
808 struct anv_device *device;
809 int fd;
810 struct anv_free_entry *map;
811 uint32_t size;
812 struct anv_block_state state;
813 struct u_vector cleanups;
814 };
815
816 struct anv_state_pool {
817 struct anv_block_pool block_pool;
818
819 struct anv_state_table table;
820
821 /* The size of blocks which will be allocated from the block pool */
822 uint32_t block_size;
823
824 /** Free list for "back" allocations */
825 union anv_free_list back_alloc_free_list;
826
827 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
828 };
829
830 struct anv_state_stream_block;
831
832 struct anv_state_stream {
833 struct anv_state_pool *state_pool;
834
835 /* The size of blocks to allocate from the state pool */
836 uint32_t block_size;
837
838 /* Current block we're allocating from */
839 struct anv_state block;
840
841 /* Offset into the current block at which to allocate the next state */
842 uint32_t next;
843
844 /* List of all blocks allocated from this pool */
845 struct anv_state_stream_block *block_list;
846 };
847
848 /* The block_pool functions exported for testing only. The block pool should
849 * only be used via a state pool (see below).
850 */
851 VkResult anv_block_pool_init(struct anv_block_pool *pool,
852 struct anv_device *device,
853 uint64_t start_address,
854 uint32_t initial_size);
855 void anv_block_pool_finish(struct anv_block_pool *pool);
856 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
857 uint32_t block_size, uint32_t *padding);
858 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
859 uint32_t block_size);
860 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
861
862 VkResult anv_state_pool_init(struct anv_state_pool *pool,
863 struct anv_device *device,
864 uint64_t start_address,
865 uint32_t block_size);
866 void anv_state_pool_finish(struct anv_state_pool *pool);
867 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
868 uint32_t state_size, uint32_t alignment);
869 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
870 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
871 void anv_state_stream_init(struct anv_state_stream *stream,
872 struct anv_state_pool *state_pool,
873 uint32_t block_size);
874 void anv_state_stream_finish(struct anv_state_stream *stream);
875 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
876 uint32_t size, uint32_t alignment);
877
878 VkResult anv_state_table_init(struct anv_state_table *table,
879 struct anv_device *device,
880 uint32_t initial_entries);
881 void anv_state_table_finish(struct anv_state_table *table);
882 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
883 uint32_t count);
884 void anv_free_list_push(union anv_free_list *list,
885 struct anv_state_table *table,
886 uint32_t idx, uint32_t count);
887 struct anv_state* anv_free_list_pop(union anv_free_list *list,
888 struct anv_state_table *table);
889
890
891 static inline struct anv_state *
892 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
893 {
894 return &table->map[idx].state;
895 }
896 /**
897 * Implements a pool of re-usable BOs. The interface is identical to that
898 * of block_pool except that each block is its own BO.
899 */
900 struct anv_bo_pool {
901 struct anv_device *device;
902
903 uint64_t bo_flags;
904
905 struct util_sparse_array_free_list free_list[16];
906 };
907
908 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
909 uint64_t bo_flags);
910 void anv_bo_pool_finish(struct anv_bo_pool *pool);
911 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
912 struct anv_bo **bo_out);
913 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
914
915 struct anv_scratch_pool {
916 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
917 struct anv_bo *bos[16][MESA_SHADER_STAGES];
918 };
919
920 void anv_scratch_pool_init(struct anv_device *device,
921 struct anv_scratch_pool *pool);
922 void anv_scratch_pool_finish(struct anv_device *device,
923 struct anv_scratch_pool *pool);
924 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
925 struct anv_scratch_pool *pool,
926 gl_shader_stage stage,
927 unsigned per_thread_scratch);
928
929 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
930 struct anv_bo_cache {
931 struct util_sparse_array bo_map;
932 pthread_mutex_t mutex;
933 };
934
935 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
936 void anv_bo_cache_finish(struct anv_bo_cache *cache);
937
938 struct anv_memory_type {
939 /* Standard bits passed on to the client */
940 VkMemoryPropertyFlags propertyFlags;
941 uint32_t heapIndex;
942
943 /* Driver-internal book-keeping */
944 VkBufferUsageFlags valid_buffer_usage;
945 };
946
947 struct anv_memory_heap {
948 /* Standard bits passed on to the client */
949 VkDeviceSize size;
950 VkMemoryHeapFlags flags;
951
952 /* Driver-internal book-keeping */
953 uint64_t vma_start;
954 uint64_t vma_size;
955 bool supports_48bit_addresses;
956 VkDeviceSize used;
957 };
958
959 struct anv_physical_device {
960 VK_LOADER_DATA _loader_data;
961
962 struct anv_instance * instance;
963 uint32_t chipset_id;
964 bool no_hw;
965 char path[20];
966 const char * name;
967 struct {
968 uint16_t domain;
969 uint8_t bus;
970 uint8_t device;
971 uint8_t function;
972 } pci_info;
973 struct gen_device_info info;
974 /** Amount of "GPU memory" we want to advertise
975 *
976 * Clearly, this value is bogus since Intel is a UMA architecture. On
977 * gen7 platforms, we are limited by GTT size unless we want to implement
978 * fine-grained tracking and GTT splitting. On Broadwell and above we are
979 * practically unlimited. However, we will never report more than 3/4 of
980 * the total system ram to try and avoid running out of RAM.
981 */
982 bool supports_48bit_addresses;
983 struct brw_compiler * compiler;
984 struct isl_device isl_dev;
985 struct gen_perf_config * perf;
986 int cmd_parser_version;
987 bool has_exec_async;
988 bool has_exec_capture;
989 bool has_exec_fence;
990 bool has_syncobj;
991 bool has_syncobj_wait;
992 bool has_context_priority;
993 bool use_softpin;
994 bool has_context_isolation;
995 bool has_mem_available;
996 bool always_use_bindless;
997
998 /** True if we can access buffers using A64 messages */
999 bool has_a64_buffer_access;
1000 /** True if we can use bindless access for images */
1001 bool has_bindless_images;
1002 /** True if we can use bindless access for samplers */
1003 bool has_bindless_samplers;
1004
1005 struct anv_device_extension_table supported_extensions;
1006 struct anv_physical_device_dispatch_table dispatch;
1007
1008 uint32_t eu_total;
1009 uint32_t subslice_total;
1010
1011 struct {
1012 uint32_t type_count;
1013 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1014 uint32_t heap_count;
1015 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1016 } memory;
1017
1018 uint8_t driver_build_sha1[20];
1019 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1020 uint8_t driver_uuid[VK_UUID_SIZE];
1021 uint8_t device_uuid[VK_UUID_SIZE];
1022
1023 struct disk_cache * disk_cache;
1024
1025 struct wsi_device wsi_device;
1026 int local_fd;
1027 int master_fd;
1028 };
1029
1030 struct anv_app_info {
1031 const char* app_name;
1032 uint32_t app_version;
1033 const char* engine_name;
1034 uint32_t engine_version;
1035 uint32_t api_version;
1036 };
1037
1038 struct anv_instance {
1039 VK_LOADER_DATA _loader_data;
1040
1041 VkAllocationCallbacks alloc;
1042
1043 struct anv_app_info app_info;
1044
1045 struct anv_instance_extension_table enabled_extensions;
1046 struct anv_instance_dispatch_table dispatch;
1047 struct anv_device_dispatch_table device_dispatch;
1048
1049 int physicalDeviceCount;
1050 struct anv_physical_device physicalDevice;
1051
1052 bool pipeline_cache_enabled;
1053
1054 struct vk_debug_report_instance debug_report_callbacks;
1055
1056 struct driOptionCache dri_options;
1057 struct driOptionCache available_dri_options;
1058 };
1059
1060 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1061 void anv_finish_wsi(struct anv_physical_device *physical_device);
1062
1063 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1064 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1065 const char *name);
1066
1067 struct anv_queue_submit {
1068 struct anv_cmd_buffer * cmd_buffer;
1069
1070 uint32_t fence_count;
1071 uint32_t fence_array_length;
1072 struct drm_i915_gem_exec_fence * fences;
1073
1074 uint32_t temporary_semaphore_count;
1075 uint32_t temporary_semaphore_array_length;
1076 struct anv_semaphore_impl * temporary_semaphores;
1077
1078 /* Semaphores to be signaled with a SYNC_FD. */
1079 struct anv_semaphore ** sync_fd_semaphores;
1080 uint32_t sync_fd_semaphore_count;
1081 uint32_t sync_fd_semaphore_array_length;
1082
1083 int in_fence;
1084 bool need_out_fence;
1085 int out_fence;
1086
1087 uint32_t fence_bo_count;
1088 uint32_t fence_bo_array_length;
1089 /* An array of struct anv_bo pointers with lower bit used as a flag to
1090 * signal we will wait on that BO (see anv_(un)pack_ptr).
1091 */
1092 uintptr_t * fence_bos;
1093
1094 const VkAllocationCallbacks * alloc;
1095 VkSystemAllocationScope alloc_scope;
1096
1097 struct anv_bo * simple_bo;
1098 uint32_t simple_bo_size;
1099
1100 struct list_head link;
1101 };
1102
1103 struct anv_queue {
1104 VK_LOADER_DATA _loader_data;
1105
1106 struct anv_device * device;
1107
1108 VkDeviceQueueCreateFlags flags;
1109 };
1110
1111 struct anv_pipeline_cache {
1112 struct anv_device * device;
1113 pthread_mutex_t mutex;
1114
1115 struct hash_table * nir_cache;
1116
1117 struct hash_table * cache;
1118 };
1119
1120 struct nir_xfb_info;
1121 struct anv_pipeline_bind_map;
1122
1123 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1124 struct anv_device *device,
1125 bool cache_enabled);
1126 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1127
1128 struct anv_shader_bin *
1129 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1130 const void *key, uint32_t key_size);
1131 struct anv_shader_bin *
1132 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1133 const void *key_data, uint32_t key_size,
1134 const void *kernel_data, uint32_t kernel_size,
1135 const void *constant_data,
1136 uint32_t constant_data_size,
1137 const struct brw_stage_prog_data *prog_data,
1138 uint32_t prog_data_size,
1139 const struct brw_compile_stats *stats,
1140 uint32_t num_stats,
1141 const struct nir_xfb_info *xfb_info,
1142 const struct anv_pipeline_bind_map *bind_map);
1143
1144 struct anv_shader_bin *
1145 anv_device_search_for_kernel(struct anv_device *device,
1146 struct anv_pipeline_cache *cache,
1147 const void *key_data, uint32_t key_size,
1148 bool *user_cache_bit);
1149
1150 struct anv_shader_bin *
1151 anv_device_upload_kernel(struct anv_device *device,
1152 struct anv_pipeline_cache *cache,
1153 const void *key_data, uint32_t key_size,
1154 const void *kernel_data, uint32_t kernel_size,
1155 const void *constant_data,
1156 uint32_t constant_data_size,
1157 const struct brw_stage_prog_data *prog_data,
1158 uint32_t prog_data_size,
1159 const struct brw_compile_stats *stats,
1160 uint32_t num_stats,
1161 const struct nir_xfb_info *xfb_info,
1162 const struct anv_pipeline_bind_map *bind_map);
1163
1164 struct nir_shader;
1165 struct nir_shader_compiler_options;
1166
1167 struct nir_shader *
1168 anv_device_search_for_nir(struct anv_device *device,
1169 struct anv_pipeline_cache *cache,
1170 const struct nir_shader_compiler_options *nir_options,
1171 unsigned char sha1_key[20],
1172 void *mem_ctx);
1173
1174 void
1175 anv_device_upload_nir(struct anv_device *device,
1176 struct anv_pipeline_cache *cache,
1177 const struct nir_shader *nir,
1178 unsigned char sha1_key[20]);
1179
1180 struct anv_device {
1181 VK_LOADER_DATA _loader_data;
1182
1183 VkAllocationCallbacks alloc;
1184
1185 struct anv_instance * instance;
1186 uint32_t chipset_id;
1187 bool no_hw;
1188 struct gen_device_info info;
1189 struct isl_device isl_dev;
1190 int context_id;
1191 int fd;
1192 bool can_chain_batches;
1193 bool robust_buffer_access;
1194 struct anv_device_extension_table enabled_extensions;
1195 struct anv_device_dispatch_table dispatch;
1196
1197 pthread_mutex_t vma_mutex;
1198 struct util_vma_heap vma_lo;
1199 struct util_vma_heap vma_hi;
1200 uint64_t vma_lo_available;
1201 uint64_t vma_hi_available;
1202
1203 /** List of all anv_device_memory objects */
1204 struct list_head memory_objects;
1205
1206 struct anv_bo_pool batch_bo_pool;
1207
1208 struct anv_bo_cache bo_cache;
1209
1210 struct anv_state_pool dynamic_state_pool;
1211 struct anv_state_pool instruction_state_pool;
1212 struct anv_state_pool binding_table_pool;
1213 struct anv_state_pool surface_state_pool;
1214
1215 struct anv_bo * workaround_bo;
1216 struct anv_bo * trivial_batch_bo;
1217 struct anv_bo * hiz_clear_bo;
1218
1219 struct anv_pipeline_cache default_pipeline_cache;
1220 struct blorp_context blorp;
1221
1222 struct anv_state border_colors;
1223
1224 struct anv_state slice_hash;
1225
1226 struct anv_queue queue;
1227
1228 struct anv_scratch_pool scratch_pool;
1229
1230 uint32_t default_mocs;
1231 uint32_t external_mocs;
1232
1233 pthread_mutex_t mutex;
1234 pthread_cond_t queue_submit;
1235 int _lost;
1236
1237 struct gen_batch_decode_ctx decoder_ctx;
1238 /*
1239 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1240 * the cmd_buffer's list.
1241 */
1242 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1243
1244 int perf_fd; /* -1 if no opened */
1245 uint64_t perf_metric; /* 0 if unset */
1246
1247 struct gen_aux_map_context *aux_map_ctx;
1248 };
1249
1250 static inline struct anv_state_pool *
1251 anv_binding_table_pool(struct anv_device *device)
1252 {
1253 if (device->instance->physicalDevice.use_softpin)
1254 return &device->binding_table_pool;
1255 else
1256 return &device->surface_state_pool;
1257 }
1258
1259 static inline struct anv_state
1260 anv_binding_table_pool_alloc(struct anv_device *device) {
1261 if (device->instance->physicalDevice.use_softpin)
1262 return anv_state_pool_alloc(&device->binding_table_pool,
1263 device->binding_table_pool.block_size, 0);
1264 else
1265 return anv_state_pool_alloc_back(&device->surface_state_pool);
1266 }
1267
1268 static inline void
1269 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1270 anv_state_pool_free(anv_binding_table_pool(device), state);
1271 }
1272
1273 static inline uint32_t
1274 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1275 {
1276 if (bo->is_external)
1277 return device->external_mocs;
1278 else
1279 return device->default_mocs;
1280 }
1281
1282 void anv_device_init_blorp(struct anv_device *device);
1283 void anv_device_finish_blorp(struct anv_device *device);
1284
1285 void _anv_device_set_all_queue_lost(struct anv_device *device);
1286 VkResult _anv_device_set_lost(struct anv_device *device,
1287 const char *file, int line,
1288 const char *msg, ...)
1289 anv_printflike(4, 5);
1290 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1291 const char *file, int line,
1292 const char *msg, ...)
1293 anv_printflike(4, 5);
1294 #define anv_device_set_lost(dev, ...) \
1295 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1296 #define anv_queue_set_lost(queue, ...) \
1297 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1298
1299 static inline bool
1300 anv_device_is_lost(struct anv_device *device)
1301 {
1302 return unlikely(p_atomic_read(&device->_lost));
1303 }
1304
1305 VkResult anv_device_query_status(struct anv_device *device);
1306
1307
1308 enum anv_bo_alloc_flags {
1309 /** Specifies that the BO must have a 32-bit address
1310 *
1311 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1312 */
1313 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1314
1315 /** Specifies that the BO may be shared externally */
1316 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1317
1318 /** Specifies that the BO should be mapped */
1319 ANV_BO_ALLOC_MAPPED = (1 << 2),
1320
1321 /** Specifies that the BO should be snooped so we get coherency */
1322 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1323
1324 /** Specifies that the BO should be captured in error states */
1325 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1326
1327 /** Specifies that the BO will have an address assigned by the caller */
1328 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1329
1330 /** Enables implicit synchronization on the BO
1331 *
1332 * This is the opposite of EXEC_OBJECT_ASYNC.
1333 */
1334 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1335
1336 /** Enables implicit synchronization on the BO
1337 *
1338 * This is equivalent to EXEC_OBJECT_WRITE.
1339 */
1340 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1341 };
1342
1343 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1344 enum anv_bo_alloc_flags alloc_flags,
1345 struct anv_bo **bo);
1346 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1347 void *host_ptr, uint32_t size,
1348 enum anv_bo_alloc_flags alloc_flags,
1349 struct anv_bo **bo_out);
1350 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1351 enum anv_bo_alloc_flags alloc_flags,
1352 struct anv_bo **bo);
1353 VkResult anv_device_export_bo(struct anv_device *device,
1354 struct anv_bo *bo, int *fd_out);
1355 void anv_device_release_bo(struct anv_device *device,
1356 struct anv_bo *bo);
1357
1358 static inline struct anv_bo *
1359 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1360 {
1361 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1362 }
1363
1364 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1365 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1366 int64_t timeout);
1367
1368 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1369 void anv_queue_finish(struct anv_queue *queue);
1370
1371 VkResult anv_queue_execbuf(struct anv_queue *queue, struct anv_queue_submit *submit);
1372 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1373 struct anv_batch *batch);
1374
1375 uint64_t anv_gettime_ns(void);
1376 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1377
1378 void* anv_gem_mmap(struct anv_device *device,
1379 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1380 void anv_gem_munmap(void *p, uint64_t size);
1381 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1382 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1383 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1384 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1385 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1386 int anv_gem_execbuffer(struct anv_device *device,
1387 struct drm_i915_gem_execbuffer2 *execbuf);
1388 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1389 uint32_t stride, uint32_t tiling);
1390 int anv_gem_create_context(struct anv_device *device);
1391 bool anv_gem_has_context_priority(int fd);
1392 int anv_gem_destroy_context(struct anv_device *device, int context);
1393 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1394 uint64_t value);
1395 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1396 uint64_t *value);
1397 int anv_gem_get_param(int fd, uint32_t param);
1398 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1399 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1400 int anv_gem_get_aperture(int fd, uint64_t *size);
1401 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1402 uint32_t *active, uint32_t *pending);
1403 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1404 int anv_gem_reg_read(struct anv_device *device,
1405 uint32_t offset, uint64_t *result);
1406 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1407 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1408 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1409 uint32_t read_domains, uint32_t write_domain);
1410 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1411 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1412 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1413 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1414 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1415 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1416 uint32_t handle);
1417 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1418 uint32_t handle, int fd);
1419 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1420 bool anv_gem_supports_syncobj_wait(int fd);
1421 int anv_gem_syncobj_wait(struct anv_device *device,
1422 uint32_t *handles, uint32_t num_handles,
1423 int64_t abs_timeout_ns, bool wait_all);
1424
1425 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo);
1426 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1427
1428 struct anv_reloc_list {
1429 uint32_t num_relocs;
1430 uint32_t array_length;
1431 struct drm_i915_gem_relocation_entry * relocs;
1432 struct anv_bo ** reloc_bos;
1433 uint32_t dep_words;
1434 BITSET_WORD * deps;
1435 };
1436
1437 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1438 const VkAllocationCallbacks *alloc);
1439 void anv_reloc_list_finish(struct anv_reloc_list *list,
1440 const VkAllocationCallbacks *alloc);
1441
1442 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1443 const VkAllocationCallbacks *alloc,
1444 uint32_t offset, struct anv_bo *target_bo,
1445 uint32_t delta, uint64_t *address_u64_out);
1446
1447 struct anv_batch_bo {
1448 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1449 struct list_head link;
1450
1451 struct anv_bo * bo;
1452
1453 /* Bytes actually consumed in this batch BO */
1454 uint32_t length;
1455
1456 struct anv_reloc_list relocs;
1457 };
1458
1459 struct anv_batch {
1460 const VkAllocationCallbacks * alloc;
1461
1462 void * start;
1463 void * end;
1464 void * next;
1465
1466 struct anv_reloc_list * relocs;
1467
1468 /* This callback is called (with the associated user data) in the event
1469 * that the batch runs out of space.
1470 */
1471 VkResult (*extend_cb)(struct anv_batch *, void *);
1472 void * user_data;
1473
1474 /**
1475 * Current error status of the command buffer. Used to track inconsistent
1476 * or incomplete command buffer states that are the consequence of run-time
1477 * errors such as out of memory scenarios. We want to track this in the
1478 * batch because the command buffer object is not visible to some parts
1479 * of the driver.
1480 */
1481 VkResult status;
1482 };
1483
1484 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1485 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1486 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1487 void *location, struct anv_bo *bo, uint32_t offset);
1488
1489 static inline VkResult
1490 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1491 {
1492 assert(error != VK_SUCCESS);
1493 if (batch->status == VK_SUCCESS)
1494 batch->status = error;
1495 return batch->status;
1496 }
1497
1498 static inline bool
1499 anv_batch_has_error(struct anv_batch *batch)
1500 {
1501 return batch->status != VK_SUCCESS;
1502 }
1503
1504 struct anv_address {
1505 struct anv_bo *bo;
1506 uint32_t offset;
1507 };
1508
1509 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1510
1511 static inline bool
1512 anv_address_is_null(struct anv_address addr)
1513 {
1514 return addr.bo == NULL && addr.offset == 0;
1515 }
1516
1517 static inline uint64_t
1518 anv_address_physical(struct anv_address addr)
1519 {
1520 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1521 return gen_canonical_address(addr.bo->offset + addr.offset);
1522 else
1523 return gen_canonical_address(addr.offset);
1524 }
1525
1526 static inline struct anv_address
1527 anv_address_add(struct anv_address addr, uint64_t offset)
1528 {
1529 addr.offset += offset;
1530 return addr;
1531 }
1532
1533 static inline void
1534 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1535 {
1536 unsigned reloc_size = 0;
1537 if (device->info.gen >= 8) {
1538 reloc_size = sizeof(uint64_t);
1539 *(uint64_t *)p = gen_canonical_address(v);
1540 } else {
1541 reloc_size = sizeof(uint32_t);
1542 *(uint32_t *)p = v;
1543 }
1544
1545 if (flush && !device->info.has_llc)
1546 gen_flush_range(p, reloc_size);
1547 }
1548
1549 static inline uint64_t
1550 _anv_combine_address(struct anv_batch *batch, void *location,
1551 const struct anv_address address, uint32_t delta)
1552 {
1553 if (address.bo == NULL) {
1554 return address.offset + delta;
1555 } else {
1556 assert(batch->start <= location && location < batch->end);
1557
1558 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1559 }
1560 }
1561
1562 #define __gen_address_type struct anv_address
1563 #define __gen_user_data struct anv_batch
1564 #define __gen_combine_address _anv_combine_address
1565
1566 /* Wrapper macros needed to work around preprocessor argument issues. In
1567 * particular, arguments don't get pre-evaluated if they are concatenated.
1568 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1569 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1570 * We can work around this easily enough with these helpers.
1571 */
1572 #define __anv_cmd_length(cmd) cmd ## _length
1573 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1574 #define __anv_cmd_header(cmd) cmd ## _header
1575 #define __anv_cmd_pack(cmd) cmd ## _pack
1576 #define __anv_reg_num(reg) reg ## _num
1577
1578 #define anv_pack_struct(dst, struc, ...) do { \
1579 struct struc __template = { \
1580 __VA_ARGS__ \
1581 }; \
1582 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1583 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1584 } while (0)
1585
1586 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1587 void *__dst = anv_batch_emit_dwords(batch, n); \
1588 if (__dst) { \
1589 struct cmd __template = { \
1590 __anv_cmd_header(cmd), \
1591 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1592 __VA_ARGS__ \
1593 }; \
1594 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1595 } \
1596 __dst; \
1597 })
1598
1599 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1600 do { \
1601 uint32_t *dw; \
1602 \
1603 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1604 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1605 if (!dw) \
1606 break; \
1607 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1608 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1609 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1610 } while (0)
1611
1612 #define anv_batch_emit(batch, cmd, name) \
1613 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1614 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1615 __builtin_expect(_dst != NULL, 1); \
1616 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1617 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1618 _dst = NULL; \
1619 }))
1620
1621 /* MEMORY_OBJECT_CONTROL_STATE:
1622 * .GraphicsDataTypeGFDT = 0,
1623 * .LLCCacheabilityControlLLCCC = 0,
1624 * .L3CacheabilityControlL3CC = 1,
1625 */
1626 #define GEN7_MOCS 1
1627
1628 /* MEMORY_OBJECT_CONTROL_STATE:
1629 * .LLCeLLCCacheabilityControlLLCCC = 0,
1630 * .L3CacheabilityControlL3CC = 1,
1631 */
1632 #define GEN75_MOCS 1
1633
1634 /* MEMORY_OBJECT_CONTROL_STATE:
1635 * .MemoryTypeLLCeLLCCacheabilityControl = WB,
1636 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1637 * .AgeforQUADLRU = 0
1638 */
1639 #define GEN8_MOCS 0x78
1640
1641 /* MEMORY_OBJECT_CONTROL_STATE:
1642 * .MemoryTypeLLCeLLCCacheabilityControl = UCwithFenceifcoherentcycle,
1643 * .TargetCache = L3DefertoPATforLLCeLLCselection,
1644 * .AgeforQUADLRU = 0
1645 */
1646 #define GEN8_EXTERNAL_MOCS 0x18
1647
1648 /* Skylake: MOCS is now an index into an array of 62 different caching
1649 * configurations programmed by the kernel.
1650 */
1651
1652 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1653 #define GEN9_MOCS (2 << 1)
1654
1655 /* TC=LLC/eLLC, LeCC=WB, LRUM=3, L3CC=WB */
1656 #define GEN9_EXTERNAL_MOCS (1 << 1)
1657
1658 /* Cannonlake MOCS defines are duplicates of Skylake MOCS defines. */
1659 #define GEN10_MOCS GEN9_MOCS
1660 #define GEN10_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1661
1662 /* Ice Lake MOCS defines are duplicates of Skylake MOCS defines. */
1663 #define GEN11_MOCS GEN9_MOCS
1664 #define GEN11_EXTERNAL_MOCS GEN9_EXTERNAL_MOCS
1665
1666 /* TigerLake MOCS */
1667 #define GEN12_MOCS GEN9_MOCS
1668 /* TC=1/LLC Only, LeCC=1/Uncacheable, LRUM=0, L3CC=1/Uncacheable */
1669 #define GEN12_EXTERNAL_MOCS (3 << 1)
1670
1671 struct anv_device_memory {
1672 struct list_head link;
1673
1674 struct anv_bo * bo;
1675 struct anv_memory_type * type;
1676 VkDeviceSize map_size;
1677 void * map;
1678
1679 /* If set, we are holding reference to AHardwareBuffer
1680 * which we must release when memory is freed.
1681 */
1682 struct AHardwareBuffer * ahw;
1683
1684 /* If set, this memory comes from a host pointer. */
1685 void * host_ptr;
1686 };
1687
1688 /**
1689 * Header for Vertex URB Entry (VUE)
1690 */
1691 struct anv_vue_header {
1692 uint32_t Reserved;
1693 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1694 uint32_t ViewportIndex;
1695 float PointWidth;
1696 };
1697
1698 /** Struct representing a sampled image descriptor
1699 *
1700 * This descriptor layout is used for sampled images, bare sampler, and
1701 * combined image/sampler descriptors.
1702 */
1703 struct anv_sampled_image_descriptor {
1704 /** Bindless image handle
1705 *
1706 * This is expected to already be shifted such that the 20-bit
1707 * SURFACE_STATE table index is in the top 20 bits.
1708 */
1709 uint32_t image;
1710
1711 /** Bindless sampler handle
1712 *
1713 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1714 * to the dynamic state base address.
1715 */
1716 uint32_t sampler;
1717 };
1718
1719 struct anv_texture_swizzle_descriptor {
1720 /** Texture swizzle
1721 *
1722 * See also nir_intrinsic_channel_select_intel
1723 */
1724 uint8_t swizzle[4];
1725
1726 /** Unused padding to ensure the struct is a multiple of 64 bits */
1727 uint32_t _pad;
1728 };
1729
1730 /** Struct representing a storage image descriptor */
1731 struct anv_storage_image_descriptor {
1732 /** Bindless image handles
1733 *
1734 * These are expected to already be shifted such that the 20-bit
1735 * SURFACE_STATE table index is in the top 20 bits.
1736 */
1737 uint32_t read_write;
1738 uint32_t write_only;
1739 };
1740
1741 /** Struct representing a address/range descriptor
1742 *
1743 * The fields of this struct correspond directly to the data layout of
1744 * nir_address_format_64bit_bounded_global addresses. The last field is the
1745 * offset in the NIR address so it must be zero so that when you load the
1746 * descriptor you get a pointer to the start of the range.
1747 */
1748 struct anv_address_range_descriptor {
1749 uint64_t address;
1750 uint32_t range;
1751 uint32_t zero;
1752 };
1753
1754 enum anv_descriptor_data {
1755 /** The descriptor contains a BTI reference to a surface state */
1756 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1757 /** The descriptor contains a BTI reference to a sampler state */
1758 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1759 /** The descriptor contains an actual buffer view */
1760 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1761 /** The descriptor contains auxiliary image layout data */
1762 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1763 /** The descriptor contains auxiliary image layout data */
1764 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1765 /** anv_address_range_descriptor with a buffer address and range */
1766 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1767 /** Bindless surface handle */
1768 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1769 /** Storage image handles */
1770 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1771 /** Storage image handles */
1772 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1773 };
1774
1775 struct anv_descriptor_set_binding_layout {
1776 #ifndef NDEBUG
1777 /* The type of the descriptors in this binding */
1778 VkDescriptorType type;
1779 #endif
1780
1781 /* Flags provided when this binding was created */
1782 VkDescriptorBindingFlagsEXT flags;
1783
1784 /* Bitfield representing the type of data this descriptor contains */
1785 enum anv_descriptor_data data;
1786
1787 /* Maximum number of YCbCr texture/sampler planes */
1788 uint8_t max_plane_count;
1789
1790 /* Number of array elements in this binding (or size in bytes for inline
1791 * uniform data)
1792 */
1793 uint16_t array_size;
1794
1795 /* Index into the flattend descriptor set */
1796 uint16_t descriptor_index;
1797
1798 /* Index into the dynamic state array for a dynamic buffer */
1799 int16_t dynamic_offset_index;
1800
1801 /* Index into the descriptor set buffer views */
1802 int16_t buffer_view_index;
1803
1804 /* Offset into the descriptor buffer where this descriptor lives */
1805 uint32_t descriptor_offset;
1806
1807 /* Immutable samplers (or NULL if no immutable samplers) */
1808 struct anv_sampler **immutable_samplers;
1809 };
1810
1811 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1812
1813 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1814 VkDescriptorType type);
1815
1816 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1817 const struct anv_descriptor_set_binding_layout *binding,
1818 bool sampler);
1819
1820 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1821 const struct anv_descriptor_set_binding_layout *binding,
1822 bool sampler);
1823
1824 struct anv_descriptor_set_layout {
1825 /* Descriptor set layouts can be destroyed at almost any time */
1826 uint32_t ref_cnt;
1827
1828 /* Number of bindings in this descriptor set */
1829 uint16_t binding_count;
1830
1831 /* Total size of the descriptor set with room for all array entries */
1832 uint16_t size;
1833
1834 /* Shader stages affected by this descriptor set */
1835 uint16_t shader_stages;
1836
1837 /* Number of buffer views in this descriptor set */
1838 uint16_t buffer_view_count;
1839
1840 /* Number of dynamic offsets used by this descriptor set */
1841 uint16_t dynamic_offset_count;
1842
1843 /* Size of the descriptor buffer for this descriptor set */
1844 uint32_t descriptor_buffer_size;
1845
1846 /* Bindings in this descriptor set */
1847 struct anv_descriptor_set_binding_layout binding[0];
1848 };
1849
1850 static inline void
1851 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1852 {
1853 assert(layout && layout->ref_cnt >= 1);
1854 p_atomic_inc(&layout->ref_cnt);
1855 }
1856
1857 static inline void
1858 anv_descriptor_set_layout_unref(struct anv_device *device,
1859 struct anv_descriptor_set_layout *layout)
1860 {
1861 assert(layout && layout->ref_cnt >= 1);
1862 if (p_atomic_dec_zero(&layout->ref_cnt))
1863 vk_free(&device->alloc, layout);
1864 }
1865
1866 struct anv_descriptor {
1867 VkDescriptorType type;
1868
1869 union {
1870 struct {
1871 VkImageLayout layout;
1872 struct anv_image_view *image_view;
1873 struct anv_sampler *sampler;
1874 };
1875
1876 struct {
1877 struct anv_buffer *buffer;
1878 uint64_t offset;
1879 uint64_t range;
1880 };
1881
1882 struct anv_buffer_view *buffer_view;
1883 };
1884 };
1885
1886 struct anv_descriptor_set {
1887 struct anv_descriptor_pool *pool;
1888 struct anv_descriptor_set_layout *layout;
1889 uint32_t size;
1890
1891 /* State relative to anv_descriptor_pool::bo */
1892 struct anv_state desc_mem;
1893 /* Surface state for the descriptor buffer */
1894 struct anv_state desc_surface_state;
1895
1896 uint32_t buffer_view_count;
1897 struct anv_buffer_view *buffer_views;
1898
1899 /* Link to descriptor pool's desc_sets list . */
1900 struct list_head pool_link;
1901
1902 struct anv_descriptor descriptors[0];
1903 };
1904
1905 struct anv_buffer_view {
1906 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1907 uint64_t range; /**< VkBufferViewCreateInfo::range */
1908
1909 struct anv_address address;
1910
1911 struct anv_state surface_state;
1912 struct anv_state storage_surface_state;
1913 struct anv_state writeonly_storage_surface_state;
1914
1915 struct brw_image_param storage_image_param;
1916 };
1917
1918 struct anv_push_descriptor_set {
1919 struct anv_descriptor_set set;
1920
1921 /* Put this field right behind anv_descriptor_set so it fills up the
1922 * descriptors[0] field. */
1923 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1924
1925 /** True if the descriptor set buffer has been referenced by a draw or
1926 * dispatch command.
1927 */
1928 bool set_used_on_gpu;
1929
1930 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1931 };
1932
1933 struct anv_descriptor_pool {
1934 uint32_t size;
1935 uint32_t next;
1936 uint32_t free_list;
1937
1938 struct anv_bo *bo;
1939 struct util_vma_heap bo_heap;
1940
1941 struct anv_state_stream surface_state_stream;
1942 void *surface_state_free_list;
1943
1944 struct list_head desc_sets;
1945
1946 char data[0];
1947 };
1948
1949 enum anv_descriptor_template_entry_type {
1950 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1951 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1952 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1953 };
1954
1955 struct anv_descriptor_template_entry {
1956 /* The type of descriptor in this entry */
1957 VkDescriptorType type;
1958
1959 /* Binding in the descriptor set */
1960 uint32_t binding;
1961
1962 /* Offset at which to write into the descriptor set binding */
1963 uint32_t array_element;
1964
1965 /* Number of elements to write into the descriptor set binding */
1966 uint32_t array_count;
1967
1968 /* Offset into the user provided data */
1969 size_t offset;
1970
1971 /* Stride between elements into the user provided data */
1972 size_t stride;
1973 };
1974
1975 struct anv_descriptor_update_template {
1976 VkPipelineBindPoint bind_point;
1977
1978 /* The descriptor set this template corresponds to. This value is only
1979 * valid if the template was created with the templateType
1980 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1981 */
1982 uint8_t set;
1983
1984 /* Number of entries in this template */
1985 uint32_t entry_count;
1986
1987 /* Entries of the template */
1988 struct anv_descriptor_template_entry entries[0];
1989 };
1990
1991 size_t
1992 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1993
1994 void
1995 anv_descriptor_set_write_image_view(struct anv_device *device,
1996 struct anv_descriptor_set *set,
1997 const VkDescriptorImageInfo * const info,
1998 VkDescriptorType type,
1999 uint32_t binding,
2000 uint32_t element);
2001
2002 void
2003 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2004 struct anv_descriptor_set *set,
2005 VkDescriptorType type,
2006 struct anv_buffer_view *buffer_view,
2007 uint32_t binding,
2008 uint32_t element);
2009
2010 void
2011 anv_descriptor_set_write_buffer(struct anv_device *device,
2012 struct anv_descriptor_set *set,
2013 struct anv_state_stream *alloc_stream,
2014 VkDescriptorType type,
2015 struct anv_buffer *buffer,
2016 uint32_t binding,
2017 uint32_t element,
2018 VkDeviceSize offset,
2019 VkDeviceSize range);
2020 void
2021 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2022 struct anv_descriptor_set *set,
2023 uint32_t binding,
2024 const void *data,
2025 size_t offset,
2026 size_t size);
2027
2028 void
2029 anv_descriptor_set_write_template(struct anv_device *device,
2030 struct anv_descriptor_set *set,
2031 struct anv_state_stream *alloc_stream,
2032 const struct anv_descriptor_update_template *template,
2033 const void *data);
2034
2035 VkResult
2036 anv_descriptor_set_create(struct anv_device *device,
2037 struct anv_descriptor_pool *pool,
2038 struct anv_descriptor_set_layout *layout,
2039 struct anv_descriptor_set **out_set);
2040
2041 void
2042 anv_descriptor_set_destroy(struct anv_device *device,
2043 struct anv_descriptor_pool *pool,
2044 struct anv_descriptor_set *set);
2045
2046 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2047 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2048 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2049 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2050
2051 struct anv_pipeline_binding {
2052 /* The descriptor set this surface corresponds to. The special value of
2053 * ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS indicates that the offset refers
2054 * to a color attachment and not a regular descriptor.
2055 */
2056 uint8_t set;
2057
2058 /* Binding in the descriptor set */
2059 uint32_t binding;
2060
2061 /* Index in the binding */
2062 uint32_t index;
2063
2064 /* Plane in the binding index */
2065 uint8_t plane;
2066
2067 /* Input attachment index (relative to the subpass) */
2068 uint8_t input_attachment_index;
2069
2070 /* For a storage image, whether it is write-only */
2071 bool write_only;
2072 };
2073
2074 struct anv_pipeline_layout {
2075 struct {
2076 struct anv_descriptor_set_layout *layout;
2077 uint32_t dynamic_offset_start;
2078 } set[MAX_SETS];
2079
2080 uint32_t num_sets;
2081
2082 unsigned char sha1[20];
2083 };
2084
2085 struct anv_buffer {
2086 struct anv_device * device;
2087 VkDeviceSize size;
2088
2089 VkBufferUsageFlags usage;
2090
2091 /* Set when bound */
2092 struct anv_address address;
2093 };
2094
2095 static inline uint64_t
2096 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2097 {
2098 assert(offset <= buffer->size);
2099 if (range == VK_WHOLE_SIZE) {
2100 return buffer->size - offset;
2101 } else {
2102 assert(range + offset >= range);
2103 assert(range + offset <= buffer->size);
2104 return range;
2105 }
2106 }
2107
2108 enum anv_cmd_dirty_bits {
2109 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2110 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2111 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2112 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2113 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2114 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2115 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2116 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2117 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2118 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2119 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2120 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2121 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2122 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2123 };
2124 typedef uint32_t anv_cmd_dirty_mask_t;
2125
2126 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2127 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2128 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2129 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2130 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2131 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2132 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2133 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2134 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2135 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2136 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2137
2138 static inline enum anv_cmd_dirty_bits
2139 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2140 {
2141 switch (vk_state) {
2142 case VK_DYNAMIC_STATE_VIEWPORT:
2143 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2144 case VK_DYNAMIC_STATE_SCISSOR:
2145 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2146 case VK_DYNAMIC_STATE_LINE_WIDTH:
2147 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2148 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2149 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2150 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2151 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2152 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2153 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2154 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2155 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2156 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2157 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2158 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2159 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2160 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2161 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2162 default:
2163 assert(!"Unsupported dynamic state");
2164 return 0;
2165 }
2166 }
2167
2168
2169 enum anv_pipe_bits {
2170 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2171 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2172 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2173 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2174 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2175 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2176 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2177 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2178 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2179 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2180 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2181 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2182
2183 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2184 * a flush has happened but not a CS stall. The next time we do any sort
2185 * of invalidation we need to insert a CS stall at that time. Otherwise,
2186 * we would have to CS stall on every flush which could be bad.
2187 */
2188 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2189
2190 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2191 * target operations related to transfer commands with VkBuffer as
2192 * destination are ongoing. Some operations like copies on the command
2193 * streamer might need to be aware of this to trigger the appropriate stall
2194 * before they can proceed with the copy.
2195 */
2196 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2197 };
2198
2199 #define ANV_PIPE_FLUSH_BITS ( \
2200 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2201 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2202 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2203 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2204
2205 #define ANV_PIPE_STALL_BITS ( \
2206 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2207 ANV_PIPE_DEPTH_STALL_BIT | \
2208 ANV_PIPE_CS_STALL_BIT)
2209
2210 #define ANV_PIPE_INVALIDATE_BITS ( \
2211 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2212 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2213 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2214 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2215 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2216 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2217
2218 static inline enum anv_pipe_bits
2219 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2220 {
2221 enum anv_pipe_bits pipe_bits = 0;
2222
2223 unsigned b;
2224 for_each_bit(b, flags) {
2225 switch ((VkAccessFlagBits)(1 << b)) {
2226 case VK_ACCESS_SHADER_WRITE_BIT:
2227 /* We're transitioning a buffer that was previously used as write
2228 * destination through the data port. To make its content available
2229 * to future operations, flush the data cache.
2230 */
2231 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2232 break;
2233 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2234 /* We're transitioning a buffer that was previously used as render
2235 * target. To make its content available to future operations, flush
2236 * the render target cache.
2237 */
2238 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2239 break;
2240 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2241 /* We're transitioning a buffer that was previously used as depth
2242 * buffer. To make its content available to future operations, flush
2243 * the depth cache.
2244 */
2245 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2246 break;
2247 case VK_ACCESS_TRANSFER_WRITE_BIT:
2248 /* We're transitioning a buffer that was previously used as a
2249 * transfer write destination. Generic write operations include color
2250 * & depth operations as well as buffer operations like :
2251 * - vkCmdClearColorImage()
2252 * - vkCmdClearDepthStencilImage()
2253 * - vkCmdBlitImage()
2254 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2255 *
2256 * Most of these operations are implemented using Blorp which writes
2257 * through the render target, so flush that cache to make it visible
2258 * to future operations. And for depth related operations we also
2259 * need to flush the depth cache.
2260 */
2261 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2262 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2263 break;
2264 case VK_ACCESS_MEMORY_WRITE_BIT:
2265 /* We're transitioning a buffer for generic write operations. Flush
2266 * all the caches.
2267 */
2268 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2269 break;
2270 default:
2271 break; /* Nothing to do */
2272 }
2273 }
2274
2275 return pipe_bits;
2276 }
2277
2278 static inline enum anv_pipe_bits
2279 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2280 {
2281 enum anv_pipe_bits pipe_bits = 0;
2282
2283 unsigned b;
2284 for_each_bit(b, flags) {
2285 switch ((VkAccessFlagBits)(1 << b)) {
2286 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2287 /* Indirect draw commands take a buffer as input that we're going to
2288 * read from the command streamer to load some of the HW registers
2289 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2290 * command streamer stall so that all the cache flushes have
2291 * completed before the command streamer loads from memory.
2292 */
2293 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2294 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2295 * through a vertex buffer, so invalidate that cache.
2296 */
2297 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2298 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2299 * UBO from the buffer, so we need to invalidate constant cache.
2300 */
2301 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2302 break;
2303 case VK_ACCESS_INDEX_READ_BIT:
2304 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2305 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2306 * commands, so we invalidate the VF cache to make sure there is no
2307 * stale data when we start rendering.
2308 */
2309 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2310 break;
2311 case VK_ACCESS_UNIFORM_READ_BIT:
2312 /* We transitioning a buffer to be used as uniform data. Because
2313 * uniform is accessed through the data port & sampler, we need to
2314 * invalidate the texture cache (sampler) & constant cache (data
2315 * port) to avoid stale data.
2316 */
2317 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2318 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2319 break;
2320 case VK_ACCESS_SHADER_READ_BIT:
2321 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2322 case VK_ACCESS_TRANSFER_READ_BIT:
2323 /* Transitioning a buffer to be read through the sampler, so
2324 * invalidate the texture cache, we don't want any stale data.
2325 */
2326 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2327 break;
2328 case VK_ACCESS_MEMORY_READ_BIT:
2329 /* Transitioning a buffer for generic read, invalidate all the
2330 * caches.
2331 */
2332 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2333 break;
2334 case VK_ACCESS_MEMORY_WRITE_BIT:
2335 /* Generic write, make sure all previously written things land in
2336 * memory.
2337 */
2338 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2339 break;
2340 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2341 /* Transitioning a buffer for conditional rendering. We'll load the
2342 * content of this buffer into HW registers using the command
2343 * streamer, so we need to stall the command streamer to make sure
2344 * any in-flight flush operations have completed.
2345 */
2346 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2347 break;
2348 default:
2349 break; /* Nothing to do */
2350 }
2351 }
2352
2353 return pipe_bits;
2354 }
2355
2356 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2357 VK_IMAGE_ASPECT_COLOR_BIT | \
2358 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2359 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2360 VK_IMAGE_ASPECT_PLANE_2_BIT)
2361 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2362 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2363 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2364 VK_IMAGE_ASPECT_PLANE_2_BIT)
2365
2366 struct anv_vertex_binding {
2367 struct anv_buffer * buffer;
2368 VkDeviceSize offset;
2369 };
2370
2371 struct anv_xfb_binding {
2372 struct anv_buffer * buffer;
2373 VkDeviceSize offset;
2374 VkDeviceSize size;
2375 };
2376
2377 #define ANV_PARAM_PUSH(offset) ((1 << 16) | (uint32_t)(offset))
2378 #define ANV_PARAM_IS_PUSH(param) ((uint32_t)(param) >> 16 == 1)
2379 #define ANV_PARAM_PUSH_OFFSET(param) ((param) & 0xffff)
2380
2381 #define ANV_PARAM_DYN_OFFSET(offset) ((2 << 16) | (uint32_t)(offset))
2382 #define ANV_PARAM_IS_DYN_OFFSET(param) ((uint32_t)(param) >> 16 == 2)
2383 #define ANV_PARAM_DYN_OFFSET_IDX(param) ((param) & 0xffff)
2384
2385 struct anv_push_constants {
2386 /* Push constant data provided by the client through vkPushConstants */
2387 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2388
2389 /* Used for vkCmdDispatchBase */
2390 uint32_t base_work_group_id[3];
2391 };
2392
2393 struct anv_dynamic_state {
2394 struct {
2395 uint32_t count;
2396 VkViewport viewports[MAX_VIEWPORTS];
2397 } viewport;
2398
2399 struct {
2400 uint32_t count;
2401 VkRect2D scissors[MAX_SCISSORS];
2402 } scissor;
2403
2404 float line_width;
2405
2406 struct {
2407 float bias;
2408 float clamp;
2409 float slope;
2410 } depth_bias;
2411
2412 float blend_constants[4];
2413
2414 struct {
2415 float min;
2416 float max;
2417 } depth_bounds;
2418
2419 struct {
2420 uint32_t front;
2421 uint32_t back;
2422 } stencil_compare_mask;
2423
2424 struct {
2425 uint32_t front;
2426 uint32_t back;
2427 } stencil_write_mask;
2428
2429 struct {
2430 uint32_t front;
2431 uint32_t back;
2432 } stencil_reference;
2433
2434 struct {
2435 uint32_t factor;
2436 uint16_t pattern;
2437 } line_stipple;
2438 };
2439
2440 extern const struct anv_dynamic_state default_dynamic_state;
2441
2442 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2443 const struct anv_dynamic_state *src,
2444 uint32_t copy_mask);
2445
2446 struct anv_surface_state {
2447 struct anv_state state;
2448 /** Address of the surface referred to by this state
2449 *
2450 * This address is relative to the start of the BO.
2451 */
2452 struct anv_address address;
2453 /* Address of the aux surface, if any
2454 *
2455 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2456 *
2457 * With the exception of gen8, the bottom 12 bits of this address' offset
2458 * include extra aux information.
2459 */
2460 struct anv_address aux_address;
2461 /* Address of the clear color, if any
2462 *
2463 * This address is relative to the start of the BO.
2464 */
2465 struct anv_address clear_address;
2466 };
2467
2468 /**
2469 * Attachment state when recording a renderpass instance.
2470 *
2471 * The clear value is valid only if there exists a pending clear.
2472 */
2473 struct anv_attachment_state {
2474 enum isl_aux_usage aux_usage;
2475 enum isl_aux_usage input_aux_usage;
2476 struct anv_surface_state color;
2477 struct anv_surface_state input;
2478
2479 VkImageLayout current_layout;
2480 VkImageLayout current_stencil_layout;
2481 VkImageAspectFlags pending_clear_aspects;
2482 VkImageAspectFlags pending_load_aspects;
2483 bool fast_clear;
2484 VkClearValue clear_value;
2485 bool clear_color_is_zero_one;
2486 bool clear_color_is_zero;
2487
2488 /* When multiview is active, attachments with a renderpass clear
2489 * operation have their respective layers cleared on the first
2490 * subpass that uses them, and only in that subpass. We keep track
2491 * of this using a bitfield to indicate which layers of an attachment
2492 * have not been cleared yet when multiview is active.
2493 */
2494 uint32_t pending_clear_views;
2495 struct anv_image_view * image_view;
2496 };
2497
2498 /** State tracking for particular pipeline bind point
2499 *
2500 * This struct is the base struct for anv_cmd_graphics_state and
2501 * anv_cmd_compute_state. These are used to track state which is bound to a
2502 * particular type of pipeline. Generic state that applies per-stage such as
2503 * binding table offsets and push constants is tracked generically with a
2504 * per-stage array in anv_cmd_state.
2505 */
2506 struct anv_cmd_pipeline_state {
2507 struct anv_pipeline *pipeline;
2508 struct anv_pipeline_layout *layout;
2509
2510 struct anv_descriptor_set *descriptors[MAX_SETS];
2511 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2512
2513 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2514 };
2515
2516 /** State tracking for graphics pipeline
2517 *
2518 * This has anv_cmd_pipeline_state as a base struct to track things which get
2519 * bound to a graphics pipeline. Along with general pipeline bind point state
2520 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2521 * state which is graphics-specific.
2522 */
2523 struct anv_cmd_graphics_state {
2524 struct anv_cmd_pipeline_state base;
2525
2526 anv_cmd_dirty_mask_t dirty;
2527 uint32_t vb_dirty;
2528
2529 struct anv_dynamic_state dynamic;
2530
2531 struct {
2532 struct anv_buffer *index_buffer;
2533 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2534 uint32_t index_offset;
2535 } gen7;
2536 };
2537
2538 /** State tracking for compute pipeline
2539 *
2540 * This has anv_cmd_pipeline_state as a base struct to track things which get
2541 * bound to a compute pipeline. Along with general pipeline bind point state
2542 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2543 * state which is compute-specific.
2544 */
2545 struct anv_cmd_compute_state {
2546 struct anv_cmd_pipeline_state base;
2547
2548 bool pipeline_dirty;
2549
2550 struct anv_address num_workgroups;
2551 };
2552
2553 /** State required while building cmd buffer */
2554 struct anv_cmd_state {
2555 /* PIPELINE_SELECT.PipelineSelection */
2556 uint32_t current_pipeline;
2557 const struct gen_l3_config * current_l3_config;
2558 uint32_t last_aux_map_state;
2559
2560 struct anv_cmd_graphics_state gfx;
2561 struct anv_cmd_compute_state compute;
2562
2563 enum anv_pipe_bits pending_pipe_bits;
2564 VkShaderStageFlags descriptors_dirty;
2565 VkShaderStageFlags push_constants_dirty;
2566
2567 struct anv_framebuffer * framebuffer;
2568 struct anv_render_pass * pass;
2569 struct anv_subpass * subpass;
2570 VkRect2D render_area;
2571 uint32_t restart_index;
2572 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2573 bool xfb_enabled;
2574 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2575 VkShaderStageFlags push_constant_stages;
2576 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2577 struct anv_state binding_tables[MESA_SHADER_STAGES];
2578 struct anv_state samplers[MESA_SHADER_STAGES];
2579
2580 /**
2581 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2582 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2583 * and before invoking the secondary in ExecuteCommands.
2584 */
2585 bool pma_fix_enabled;
2586
2587 /**
2588 * Whether or not we know for certain that HiZ is enabled for the current
2589 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2590 * enabled or not, this will be false.
2591 */
2592 bool hiz_enabled;
2593
2594 bool conditional_render_enabled;
2595
2596 /**
2597 * Last rendering scale argument provided to
2598 * genX(cmd_buffer_emit_hashing_mode)().
2599 */
2600 unsigned current_hash_scale;
2601
2602 /**
2603 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2604 * valid only when recording a render pass instance.
2605 */
2606 struct anv_attachment_state * attachments;
2607
2608 /**
2609 * Surface states for color render targets. These are stored in a single
2610 * flat array. For depth-stencil attachments, the surface state is simply
2611 * left blank.
2612 */
2613 struct anv_state render_pass_states;
2614
2615 /**
2616 * A null surface state of the right size to match the framebuffer. This
2617 * is one of the states in render_pass_states.
2618 */
2619 struct anv_state null_surface_state;
2620 };
2621
2622 struct anv_cmd_pool {
2623 VkAllocationCallbacks alloc;
2624 struct list_head cmd_buffers;
2625 };
2626
2627 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2628
2629 enum anv_cmd_buffer_exec_mode {
2630 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2631 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2632 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2633 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2634 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2635 };
2636
2637 struct anv_cmd_buffer {
2638 VK_LOADER_DATA _loader_data;
2639
2640 struct anv_device * device;
2641
2642 struct anv_cmd_pool * pool;
2643 struct list_head pool_link;
2644
2645 struct anv_batch batch;
2646
2647 /* Fields required for the actual chain of anv_batch_bo's.
2648 *
2649 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2650 */
2651 struct list_head batch_bos;
2652 enum anv_cmd_buffer_exec_mode exec_mode;
2653
2654 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2655 * referenced by this command buffer
2656 *
2657 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2658 */
2659 struct u_vector seen_bbos;
2660
2661 /* A vector of int32_t's for every block of binding tables.
2662 *
2663 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2664 */
2665 struct u_vector bt_block_states;
2666 uint32_t bt_next;
2667
2668 struct anv_reloc_list surface_relocs;
2669 /** Last seen surface state block pool center bo offset */
2670 uint32_t last_ss_pool_center;
2671
2672 /* Serial for tracking buffer completion */
2673 uint32_t serial;
2674
2675 /* Stream objects for storing temporary data */
2676 struct anv_state_stream surface_state_stream;
2677 struct anv_state_stream dynamic_state_stream;
2678
2679 VkCommandBufferUsageFlags usage_flags;
2680 VkCommandBufferLevel level;
2681
2682 struct anv_cmd_state state;
2683
2684 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2685 uint64_t intel_perf_marker;
2686 };
2687
2688 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2689 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2690 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2691 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2692 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2693 struct anv_cmd_buffer *secondary);
2694 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2695 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2696 struct anv_cmd_buffer *cmd_buffer,
2697 const VkSemaphore *in_semaphores,
2698 const uint64_t *in_wait_values,
2699 uint32_t num_in_semaphores,
2700 const VkSemaphore *out_semaphores,
2701 const uint64_t *out_signal_values,
2702 uint32_t num_out_semaphores,
2703 VkFence fence);
2704
2705 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2706
2707 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2708 const void *data, uint32_t size, uint32_t alignment);
2709 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2710 uint32_t *a, uint32_t *b,
2711 uint32_t dwords, uint32_t alignment);
2712
2713 struct anv_address
2714 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2715 struct anv_state
2716 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2717 uint32_t entries, uint32_t *state_offset);
2718 struct anv_state
2719 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2720 struct anv_state
2721 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2722 uint32_t size, uint32_t alignment);
2723
2724 VkResult
2725 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2726
2727 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2728 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2729 bool depth_clamp_enable);
2730 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2731
2732 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2733 struct anv_render_pass *pass,
2734 struct anv_framebuffer *framebuffer,
2735 const VkClearValue *clear_values);
2736
2737 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2738
2739 struct anv_state
2740 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2741 gl_shader_stage stage);
2742 struct anv_state
2743 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2744
2745 const struct anv_image_view *
2746 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2747
2748 VkResult
2749 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2750 uint32_t num_entries,
2751 uint32_t *state_offset,
2752 struct anv_state *bt_state);
2753
2754 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2755
2756 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2757
2758 enum anv_fence_type {
2759 ANV_FENCE_TYPE_NONE = 0,
2760 ANV_FENCE_TYPE_BO,
2761 ANV_FENCE_TYPE_SYNCOBJ,
2762 ANV_FENCE_TYPE_WSI,
2763 };
2764
2765 enum anv_bo_fence_state {
2766 /** Indicates that this is a new (or newly reset fence) */
2767 ANV_BO_FENCE_STATE_RESET,
2768
2769 /** Indicates that this fence has been submitted to the GPU but is still
2770 * (as far as we know) in use by the GPU.
2771 */
2772 ANV_BO_FENCE_STATE_SUBMITTED,
2773
2774 ANV_BO_FENCE_STATE_SIGNALED,
2775 };
2776
2777 struct anv_fence_impl {
2778 enum anv_fence_type type;
2779
2780 union {
2781 /** Fence implementation for BO fences
2782 *
2783 * These fences use a BO and a set of CPU-tracked state flags. The BO
2784 * is added to the object list of the last execbuf call in a QueueSubmit
2785 * and is marked EXEC_WRITE. The state flags track when the BO has been
2786 * submitted to the kernel. We need to do this because Vulkan lets you
2787 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2788 * will say it's idle in this case.
2789 */
2790 struct {
2791 struct anv_bo *bo;
2792 enum anv_bo_fence_state state;
2793 } bo;
2794
2795 /** DRM syncobj handle for syncobj-based fences */
2796 uint32_t syncobj;
2797
2798 /** WSI fence */
2799 struct wsi_fence *fence_wsi;
2800 };
2801 };
2802
2803 struct anv_fence {
2804 /* Permanent fence state. Every fence has some form of permanent state
2805 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2806 * cross-process fences) or it could just be a dummy for use internally.
2807 */
2808 struct anv_fence_impl permanent;
2809
2810 /* Temporary fence state. A fence *may* have temporary state. That state
2811 * is added to the fence by an import operation and is reset back to
2812 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2813 * state cannot be signaled because the fence must already be signaled
2814 * before the temporary state can be exported from the fence in the other
2815 * process and imported here.
2816 */
2817 struct anv_fence_impl temporary;
2818 };
2819
2820 struct anv_event {
2821 uint64_t semaphore;
2822 struct anv_state state;
2823 };
2824
2825 enum anv_semaphore_type {
2826 ANV_SEMAPHORE_TYPE_NONE = 0,
2827 ANV_SEMAPHORE_TYPE_DUMMY,
2828 ANV_SEMAPHORE_TYPE_BO,
2829 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2830 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2831 };
2832
2833 struct anv_semaphore_impl {
2834 enum anv_semaphore_type type;
2835
2836 union {
2837 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO.
2838 * This BO will be added to the object list on any execbuf2 calls for
2839 * which this semaphore is used as a wait or signal fence. When used as
2840 * a signal fence, the EXEC_OBJECT_WRITE flag will be set.
2841 */
2842 struct anv_bo *bo;
2843
2844 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2845 * If the semaphore is in the unsignaled state due to either just being
2846 * created or because it has been used for a wait, fd will be -1.
2847 */
2848 int fd;
2849
2850 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2851 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2852 * import so we don't need to bother with a userspace cache.
2853 */
2854 uint32_t syncobj;
2855 };
2856 };
2857
2858 struct anv_semaphore {
2859 uint32_t refcount;
2860
2861 /* Permanent semaphore state. Every semaphore has some form of permanent
2862 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2863 * (for cross-process semaphores0 or it could just be a dummy for use
2864 * internally.
2865 */
2866 struct anv_semaphore_impl permanent;
2867
2868 /* Temporary semaphore state. A semaphore *may* have temporary state.
2869 * That state is added to the semaphore by an import operation and is reset
2870 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2871 * semaphore with temporary state cannot be signaled because the semaphore
2872 * must already be signaled before the temporary state can be exported from
2873 * the semaphore in the other process and imported here.
2874 */
2875 struct anv_semaphore_impl temporary;
2876 };
2877
2878 void anv_semaphore_reset_temporary(struct anv_device *device,
2879 struct anv_semaphore *semaphore);
2880
2881 struct anv_shader_module {
2882 unsigned char sha1[20];
2883 uint32_t size;
2884 char data[0];
2885 };
2886
2887 static inline gl_shader_stage
2888 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2889 {
2890 assert(__builtin_popcount(vk_stage) == 1);
2891 return ffs(vk_stage) - 1;
2892 }
2893
2894 static inline VkShaderStageFlagBits
2895 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2896 {
2897 return (1 << mesa_stage);
2898 }
2899
2900 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
2901
2902 #define anv_foreach_stage(stage, stage_bits) \
2903 for (gl_shader_stage stage, \
2904 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
2905 stage = __builtin_ffs(__tmp) - 1, __tmp; \
2906 __tmp &= ~(1 << (stage)))
2907
2908 struct anv_pipeline_bind_map {
2909 uint32_t surface_count;
2910 uint32_t sampler_count;
2911
2912 struct anv_pipeline_binding * surface_to_descriptor;
2913 struct anv_pipeline_binding * sampler_to_descriptor;
2914 };
2915
2916 struct anv_shader_bin_key {
2917 uint32_t size;
2918 uint8_t data[0];
2919 };
2920
2921 struct anv_shader_bin {
2922 uint32_t ref_cnt;
2923
2924 const struct anv_shader_bin_key *key;
2925
2926 struct anv_state kernel;
2927 uint32_t kernel_size;
2928
2929 struct anv_state constant_data;
2930 uint32_t constant_data_size;
2931
2932 const struct brw_stage_prog_data *prog_data;
2933 uint32_t prog_data_size;
2934
2935 struct brw_compile_stats stats[3];
2936 uint32_t num_stats;
2937
2938 struct nir_xfb_info *xfb_info;
2939
2940 struct anv_pipeline_bind_map bind_map;
2941 };
2942
2943 struct anv_shader_bin *
2944 anv_shader_bin_create(struct anv_device *device,
2945 const void *key, uint32_t key_size,
2946 const void *kernel, uint32_t kernel_size,
2947 const void *constant_data, uint32_t constant_data_size,
2948 const struct brw_stage_prog_data *prog_data,
2949 uint32_t prog_data_size, const void *prog_data_param,
2950 const struct brw_compile_stats *stats, uint32_t num_stats,
2951 const struct nir_xfb_info *xfb_info,
2952 const struct anv_pipeline_bind_map *bind_map);
2953
2954 void
2955 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
2956
2957 static inline void
2958 anv_shader_bin_ref(struct anv_shader_bin *shader)
2959 {
2960 assert(shader && shader->ref_cnt >= 1);
2961 p_atomic_inc(&shader->ref_cnt);
2962 }
2963
2964 static inline void
2965 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
2966 {
2967 assert(shader && shader->ref_cnt >= 1);
2968 if (p_atomic_dec_zero(&shader->ref_cnt))
2969 anv_shader_bin_destroy(device, shader);
2970 }
2971
2972 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
2973 #define MAX_PIPELINE_EXECUTABLES 7
2974
2975 struct anv_pipeline_executable {
2976 gl_shader_stage stage;
2977
2978 struct brw_compile_stats stats;
2979
2980 char *nir;
2981 char *disasm;
2982 };
2983
2984 struct anv_pipeline {
2985 struct anv_device * device;
2986 struct anv_batch batch;
2987 uint32_t batch_data[512];
2988 struct anv_reloc_list batch_relocs;
2989 anv_cmd_dirty_mask_t dynamic_state_mask;
2990 struct anv_dynamic_state dynamic_state;
2991
2992 void * mem_ctx;
2993
2994 VkPipelineCreateFlags flags;
2995 struct anv_subpass * subpass;
2996
2997 bool needs_data_cache;
2998
2999 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3000
3001 uint32_t num_executables;
3002 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3003
3004 struct {
3005 const struct gen_l3_config * l3_config;
3006 uint32_t total_size;
3007 } urb;
3008
3009 VkShaderStageFlags active_stages;
3010 struct anv_state blend_state;
3011
3012 uint32_t vb_used;
3013 struct anv_pipeline_vertex_binding {
3014 uint32_t stride;
3015 bool instanced;
3016 uint32_t instance_divisor;
3017 } vb[MAX_VBS];
3018
3019 uint8_t xfb_used;
3020
3021 bool primitive_restart;
3022 uint32_t topology;
3023
3024 uint32_t cs_right_mask;
3025
3026 bool writes_depth;
3027 bool depth_test_enable;
3028 bool writes_stencil;
3029 bool stencil_test_enable;
3030 bool depth_clamp_enable;
3031 bool depth_clip_enable;
3032 bool sample_shading_enable;
3033 bool kill_pixel;
3034 bool depth_bounds_test_enable;
3035
3036 struct {
3037 uint32_t sf[7];
3038 uint32_t depth_stencil_state[3];
3039 } gen7;
3040
3041 struct {
3042 uint32_t sf[4];
3043 uint32_t raster[5];
3044 uint32_t wm_depth_stencil[3];
3045 } gen8;
3046
3047 struct {
3048 uint32_t wm_depth_stencil[4];
3049 } gen9;
3050
3051 uint32_t interface_descriptor_data[8];
3052 };
3053
3054 static inline bool
3055 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3056 gl_shader_stage stage)
3057 {
3058 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3059 }
3060
3061 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3062 static inline const struct brw_##prefix##_prog_data * \
3063 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3064 { \
3065 if (anv_pipeline_has_stage(pipeline, stage)) { \
3066 return (const struct brw_##prefix##_prog_data *) \
3067 pipeline->shaders[stage]->prog_data; \
3068 } else { \
3069 return NULL; \
3070 } \
3071 }
3072
3073 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3074 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3075 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3076 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3077 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3078 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3079
3080 static inline const struct brw_vue_prog_data *
3081 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3082 {
3083 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3084 return &get_gs_prog_data(pipeline)->base;
3085 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3086 return &get_tes_prog_data(pipeline)->base;
3087 else
3088 return &get_vs_prog_data(pipeline)->base;
3089 }
3090
3091 VkResult
3092 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3093 struct anv_pipeline_cache *cache,
3094 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3095 const VkAllocationCallbacks *alloc);
3096
3097 VkResult
3098 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3099 struct anv_pipeline_cache *cache,
3100 const VkComputePipelineCreateInfo *info,
3101 const struct anv_shader_module *module,
3102 const char *entrypoint,
3103 const VkSpecializationInfo *spec_info);
3104
3105 struct anv_format_plane {
3106 enum isl_format isl_format:16;
3107 struct isl_swizzle swizzle;
3108
3109 /* Whether this plane contains chroma channels */
3110 bool has_chroma;
3111
3112 /* For downscaling of YUV planes */
3113 uint8_t denominator_scales[2];
3114
3115 /* How to map sampled ycbcr planes to a single 4 component element. */
3116 struct isl_swizzle ycbcr_swizzle;
3117
3118 /* What aspect is associated to this plane */
3119 VkImageAspectFlags aspect;
3120 };
3121
3122
3123 struct anv_format {
3124 struct anv_format_plane planes[3];
3125 VkFormat vk_format;
3126 uint8_t n_planes;
3127 bool can_ycbcr;
3128 };
3129
3130 static inline uint32_t
3131 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3132 VkImageAspectFlags aspect_mask)
3133 {
3134 switch (aspect_mask) {
3135 case VK_IMAGE_ASPECT_COLOR_BIT:
3136 case VK_IMAGE_ASPECT_DEPTH_BIT:
3137 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3138 return 0;
3139 case VK_IMAGE_ASPECT_STENCIL_BIT:
3140 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3141 return 0;
3142 /* Fall-through */
3143 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3144 return 1;
3145 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3146 return 2;
3147 default:
3148 /* Purposefully assert with depth/stencil aspects. */
3149 unreachable("invalid image aspect");
3150 }
3151 }
3152
3153 static inline VkImageAspectFlags
3154 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3155 uint32_t plane)
3156 {
3157 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3158 if (util_bitcount(image_aspects) > 1)
3159 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3160 return VK_IMAGE_ASPECT_COLOR_BIT;
3161 }
3162 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3163 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3164 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3165 return VK_IMAGE_ASPECT_STENCIL_BIT;
3166 }
3167
3168 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3169 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3170
3171 const struct anv_format *
3172 anv_get_format(VkFormat format);
3173
3174 static inline uint32_t
3175 anv_get_format_planes(VkFormat vk_format)
3176 {
3177 const struct anv_format *format = anv_get_format(vk_format);
3178
3179 return format != NULL ? format->n_planes : 0;
3180 }
3181
3182 struct anv_format_plane
3183 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3184 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3185
3186 static inline enum isl_format
3187 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3188 VkImageAspectFlags aspect, VkImageTiling tiling)
3189 {
3190 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3191 }
3192
3193 static inline struct isl_swizzle
3194 anv_swizzle_for_render(struct isl_swizzle swizzle)
3195 {
3196 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3197 * RGB as RGBA for texturing
3198 */
3199 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3200 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3201
3202 /* But it doesn't matter what we render to that channel */
3203 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3204
3205 return swizzle;
3206 }
3207
3208 void
3209 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3210
3211 /**
3212 * Subsurface of an anv_image.
3213 */
3214 struct anv_surface {
3215 /** Valid only if isl_surf::size_B > 0. */
3216 struct isl_surf isl;
3217
3218 /**
3219 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3220 */
3221 uint32_t offset;
3222 };
3223
3224 struct anv_image {
3225 VkImageType type; /**< VkImageCreateInfo::imageType */
3226 /* The original VkFormat provided by the client. This may not match any
3227 * of the actual surface formats.
3228 */
3229 VkFormat vk_format;
3230 const struct anv_format *format;
3231
3232 VkImageAspectFlags aspects;
3233 VkExtent3D extent;
3234 uint32_t levels;
3235 uint32_t array_size;
3236 uint32_t samples; /**< VkImageCreateInfo::samples */
3237 uint32_t n_planes;
3238 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3239 VkImageUsageFlags stencil_usage;
3240 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3241 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3242
3243 /** True if this is needs to be bound to an appropriately tiled BO.
3244 *
3245 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3246 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3247 * we require a dedicated allocation so that we can know to allocate a
3248 * tiled buffer.
3249 */
3250 bool needs_set_tiling;
3251
3252 /**
3253 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3254 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3255 */
3256 uint64_t drm_format_mod;
3257
3258 VkDeviceSize size;
3259 uint32_t alignment;
3260
3261 /* Whether the image is made of several underlying buffer objects rather a
3262 * single one with different offsets.
3263 */
3264 bool disjoint;
3265
3266 /* All the formats that can be used when creating views of this image
3267 * are CCS_E compatible.
3268 */
3269 bool ccs_e_compatible;
3270
3271 /* Image was created with external format. */
3272 bool external_format;
3273
3274 /**
3275 * Image subsurfaces
3276 *
3277 * For each foo, anv_image::planes[x].surface is valid if and only if
3278 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3279 * to figure the number associated with a given aspect.
3280 *
3281 * The hardware requires that the depth buffer and stencil buffer be
3282 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3283 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3284 * allocate the depth and stencil buffers as separate surfaces in the same
3285 * bo.
3286 *
3287 * Memory layout :
3288 *
3289 * -----------------------
3290 * | surface0 | /|\
3291 * ----------------------- |
3292 * | shadow surface0 | |
3293 * ----------------------- | Plane 0
3294 * | aux surface0 | |
3295 * ----------------------- |
3296 * | fast clear colors0 | \|/
3297 * -----------------------
3298 * | surface1 | /|\
3299 * ----------------------- |
3300 * | shadow surface1 | |
3301 * ----------------------- | Plane 1
3302 * | aux surface1 | |
3303 * ----------------------- |
3304 * | fast clear colors1 | \|/
3305 * -----------------------
3306 * | ... |
3307 * | |
3308 * -----------------------
3309 */
3310 struct {
3311 /**
3312 * Offset of the entire plane (whenever the image is disjoint this is
3313 * set to 0).
3314 */
3315 uint32_t offset;
3316
3317 VkDeviceSize size;
3318 uint32_t alignment;
3319
3320 struct anv_surface surface;
3321
3322 /**
3323 * A surface which shadows the main surface and may have different
3324 * tiling. This is used for sampling using a tiling that isn't supported
3325 * for other operations.
3326 */
3327 struct anv_surface shadow_surface;
3328
3329 /**
3330 * For color images, this is the aux usage for this image when not used
3331 * as a color attachment.
3332 *
3333 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3334 * image has a HiZ buffer.
3335 */
3336 enum isl_aux_usage aux_usage;
3337
3338 struct anv_surface aux_surface;
3339
3340 /**
3341 * Offset of the fast clear state (used to compute the
3342 * fast_clear_state_offset of the following planes).
3343 */
3344 uint32_t fast_clear_state_offset;
3345
3346 /**
3347 * BO associated with this plane, set when bound.
3348 */
3349 struct anv_address address;
3350
3351 /**
3352 * Address of the main surface used to fill the aux map table. This is
3353 * used at destruction of the image since the Vulkan spec does not
3354 * guarantee that the address.bo field we still be valid at destruction.
3355 */
3356 uint64_t aux_map_surface_address;
3357
3358 /**
3359 * When destroying the image, also free the bo.
3360 * */
3361 bool bo_is_owned;
3362 } planes[3];
3363 };
3364
3365 /* The ordering of this enum is important */
3366 enum anv_fast_clear_type {
3367 /** Image does not have/support any fast-clear blocks */
3368 ANV_FAST_CLEAR_NONE = 0,
3369 /** Image has/supports fast-clear but only to the default value */
3370 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3371 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3372 ANV_FAST_CLEAR_ANY = 2,
3373 };
3374
3375 /* Returns the number of auxiliary buffer levels attached to an image. */
3376 static inline uint8_t
3377 anv_image_aux_levels(const struct anv_image * const image,
3378 VkImageAspectFlagBits aspect)
3379 {
3380 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3381
3382 /* The Gen12 CCS aux surface is represented with only one level. */
3383 const uint8_t aux_logical_levels =
3384 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3385 image->planes[plane].surface.isl.levels :
3386 image->planes[plane].aux_surface.isl.levels;
3387
3388 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3389 aux_logical_levels : 0;
3390 }
3391
3392 /* Returns the number of auxiliary buffer layers attached to an image. */
3393 static inline uint32_t
3394 anv_image_aux_layers(const struct anv_image * const image,
3395 VkImageAspectFlagBits aspect,
3396 const uint8_t miplevel)
3397 {
3398 assert(image);
3399
3400 /* The miplevel must exist in the main buffer. */
3401 assert(miplevel < image->levels);
3402
3403 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3404 /* There are no layers with auxiliary data because the miplevel has no
3405 * auxiliary data.
3406 */
3407 return 0;
3408 } else {
3409 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3410
3411 /* The Gen12 CCS aux surface is represented with only one layer. */
3412 const struct isl_extent4d *aux_logical_level0_px =
3413 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3414 &image->planes[plane].surface.isl.logical_level0_px :
3415 &image->planes[plane].aux_surface.isl.logical_level0_px;
3416
3417 return MAX2(aux_logical_level0_px->array_len,
3418 aux_logical_level0_px->depth >> miplevel);
3419 }
3420 }
3421
3422 static inline struct anv_address
3423 anv_image_get_clear_color_addr(const struct anv_device *device,
3424 const struct anv_image *image,
3425 VkImageAspectFlagBits aspect)
3426 {
3427 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3428
3429 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3430 return anv_address_add(image->planes[plane].address,
3431 image->planes[plane].fast_clear_state_offset);
3432 }
3433
3434 static inline struct anv_address
3435 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3436 const struct anv_image *image,
3437 VkImageAspectFlagBits aspect)
3438 {
3439 struct anv_address addr =
3440 anv_image_get_clear_color_addr(device, image, aspect);
3441
3442 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3443 device->isl_dev.ss.clear_color_state_size :
3444 device->isl_dev.ss.clear_value_size;
3445 return anv_address_add(addr, clear_color_state_size);
3446 }
3447
3448 static inline struct anv_address
3449 anv_image_get_compression_state_addr(const struct anv_device *device,
3450 const struct anv_image *image,
3451 VkImageAspectFlagBits aspect,
3452 uint32_t level, uint32_t array_layer)
3453 {
3454 assert(level < anv_image_aux_levels(image, aspect));
3455 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3456 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3457 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3458
3459 struct anv_address addr =
3460 anv_image_get_fast_clear_type_addr(device, image, aspect);
3461 addr.offset += 4; /* Go past the fast clear type */
3462
3463 if (image->type == VK_IMAGE_TYPE_3D) {
3464 for (uint32_t l = 0; l < level; l++)
3465 addr.offset += anv_minify(image->extent.depth, l) * 4;
3466 } else {
3467 addr.offset += level * image->array_size * 4;
3468 }
3469 addr.offset += array_layer * 4;
3470
3471 assert(addr.offset <
3472 image->planes[plane].address.offset + image->planes[plane].size);
3473 return addr;
3474 }
3475
3476 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3477 static inline bool
3478 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3479 const struct anv_image *image)
3480 {
3481 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3482 return false;
3483
3484 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3485 * struct. There's documentation which suggests that this feature actually
3486 * reduces performance on BDW, but it has only been observed to help so
3487 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3488 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3489 */
3490 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3491 return false;
3492
3493 return image->samples == 1;
3494 }
3495
3496 static inline bool
3497 anv_image_plane_uses_aux_map(const struct anv_device *device,
3498 const struct anv_image *image,
3499 uint32_t plane)
3500 {
3501 return device->info.has_aux_map &&
3502 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3503 }
3504
3505 void
3506 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3507 const struct anv_image *image,
3508 VkImageAspectFlagBits aspect,
3509 enum isl_aux_usage aux_usage,
3510 uint32_t level,
3511 uint32_t base_layer,
3512 uint32_t layer_count);
3513
3514 void
3515 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3516 const struct anv_image *image,
3517 VkImageAspectFlagBits aspect,
3518 enum isl_aux_usage aux_usage,
3519 enum isl_format format, struct isl_swizzle swizzle,
3520 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3521 VkRect2D area, union isl_color_value clear_color);
3522 void
3523 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3524 const struct anv_image *image,
3525 VkImageAspectFlags aspects,
3526 enum isl_aux_usage depth_aux_usage,
3527 uint32_t level,
3528 uint32_t base_layer, uint32_t layer_count,
3529 VkRect2D area,
3530 float depth_value, uint8_t stencil_value);
3531 void
3532 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3533 const struct anv_image *src_image,
3534 enum isl_aux_usage src_aux_usage,
3535 uint32_t src_level, uint32_t src_base_layer,
3536 const struct anv_image *dst_image,
3537 enum isl_aux_usage dst_aux_usage,
3538 uint32_t dst_level, uint32_t dst_base_layer,
3539 VkImageAspectFlagBits aspect,
3540 uint32_t src_x, uint32_t src_y,
3541 uint32_t dst_x, uint32_t dst_y,
3542 uint32_t width, uint32_t height,
3543 uint32_t layer_count,
3544 enum blorp_filter filter);
3545 void
3546 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3547 const struct anv_image *image,
3548 VkImageAspectFlagBits aspect, uint32_t level,
3549 uint32_t base_layer, uint32_t layer_count,
3550 enum isl_aux_op hiz_op);
3551 void
3552 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3553 const struct anv_image *image,
3554 VkImageAspectFlags aspects,
3555 uint32_t level,
3556 uint32_t base_layer, uint32_t layer_count,
3557 VkRect2D area, uint8_t stencil_value);
3558 void
3559 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3560 const struct anv_image *image,
3561 enum isl_format format,
3562 VkImageAspectFlagBits aspect,
3563 uint32_t base_layer, uint32_t layer_count,
3564 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3565 bool predicate);
3566 void
3567 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3568 const struct anv_image *image,
3569 enum isl_format format,
3570 VkImageAspectFlagBits aspect, uint32_t level,
3571 uint32_t base_layer, uint32_t layer_count,
3572 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3573 bool predicate);
3574
3575 void
3576 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3577 const struct anv_image *image,
3578 VkImageAspectFlagBits aspect,
3579 uint32_t base_level, uint32_t level_count,
3580 uint32_t base_layer, uint32_t layer_count);
3581
3582 enum isl_aux_usage
3583 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3584 const struct anv_image *image,
3585 const VkImageAspectFlagBits aspect,
3586 const VkImageLayout layout);
3587
3588 enum anv_fast_clear_type
3589 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3590 const struct anv_image * const image,
3591 const VkImageAspectFlagBits aspect,
3592 const VkImageLayout layout);
3593
3594 /* This is defined as a macro so that it works for both
3595 * VkImageSubresourceRange and VkImageSubresourceLayers
3596 */
3597 #define anv_get_layerCount(_image, _range) \
3598 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3599 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3600
3601 static inline uint32_t
3602 anv_get_levelCount(const struct anv_image *image,
3603 const VkImageSubresourceRange *range)
3604 {
3605 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3606 image->levels - range->baseMipLevel : range->levelCount;
3607 }
3608
3609 static inline VkImageAspectFlags
3610 anv_image_expand_aspects(const struct anv_image *image,
3611 VkImageAspectFlags aspects)
3612 {
3613 /* If the underlying image has color plane aspects and
3614 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3615 * the underlying image. */
3616 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3617 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3618 return image->aspects;
3619
3620 return aspects;
3621 }
3622
3623 static inline bool
3624 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3625 VkImageAspectFlags aspects2)
3626 {
3627 if (aspects1 == aspects2)
3628 return true;
3629
3630 /* Only 1 color aspects are compatibles. */
3631 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3632 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3633 util_bitcount(aspects1) == util_bitcount(aspects2))
3634 return true;
3635
3636 return false;
3637 }
3638
3639 struct anv_image_view {
3640 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3641
3642 VkImageAspectFlags aspect_mask;
3643 VkFormat vk_format;
3644 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3645
3646 unsigned n_planes;
3647 struct {
3648 uint32_t image_plane;
3649
3650 struct isl_view isl;
3651
3652 /**
3653 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3654 * image layout of SHADER_READ_ONLY_OPTIMAL or
3655 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3656 */
3657 struct anv_surface_state optimal_sampler_surface_state;
3658
3659 /**
3660 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3661 * image layout of GENERAL.
3662 */
3663 struct anv_surface_state general_sampler_surface_state;
3664
3665 /**
3666 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3667 * states for write-only and readable, using the real format for
3668 * write-only and the lowered format for readable.
3669 */
3670 struct anv_surface_state storage_surface_state;
3671 struct anv_surface_state writeonly_storage_surface_state;
3672
3673 struct brw_image_param storage_image_param;
3674 } planes[3];
3675 };
3676
3677 enum anv_image_view_state_flags {
3678 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3679 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3680 };
3681
3682 void anv_image_fill_surface_state(struct anv_device *device,
3683 const struct anv_image *image,
3684 VkImageAspectFlagBits aspect,
3685 const struct isl_view *view,
3686 isl_surf_usage_flags_t view_usage,
3687 enum isl_aux_usage aux_usage,
3688 const union isl_color_value *clear_color,
3689 enum anv_image_view_state_flags flags,
3690 struct anv_surface_state *state_inout,
3691 struct brw_image_param *image_param_out);
3692
3693 struct anv_image_create_info {
3694 const VkImageCreateInfo *vk_info;
3695
3696 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3697 isl_tiling_flags_t isl_tiling_flags;
3698
3699 /** These flags will be added to any derived from VkImageCreateInfo. */
3700 isl_surf_usage_flags_t isl_extra_usage_flags;
3701
3702 uint32_t stride;
3703 bool external_format;
3704 };
3705
3706 VkResult anv_image_create(VkDevice _device,
3707 const struct anv_image_create_info *info,
3708 const VkAllocationCallbacks* alloc,
3709 VkImage *pImage);
3710
3711 const struct anv_surface *
3712 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3713 VkImageAspectFlags aspect_mask);
3714
3715 enum isl_format
3716 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3717
3718 static inline struct VkExtent3D
3719 anv_sanitize_image_extent(const VkImageType imageType,
3720 const struct VkExtent3D imageExtent)
3721 {
3722 switch (imageType) {
3723 case VK_IMAGE_TYPE_1D:
3724 return (VkExtent3D) { imageExtent.width, 1, 1 };
3725 case VK_IMAGE_TYPE_2D:
3726 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3727 case VK_IMAGE_TYPE_3D:
3728 return imageExtent;
3729 default:
3730 unreachable("invalid image type");
3731 }
3732 }
3733
3734 static inline struct VkOffset3D
3735 anv_sanitize_image_offset(const VkImageType imageType,
3736 const struct VkOffset3D imageOffset)
3737 {
3738 switch (imageType) {
3739 case VK_IMAGE_TYPE_1D:
3740 return (VkOffset3D) { imageOffset.x, 0, 0 };
3741 case VK_IMAGE_TYPE_2D:
3742 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3743 case VK_IMAGE_TYPE_3D:
3744 return imageOffset;
3745 default:
3746 unreachable("invalid image type");
3747 }
3748 }
3749
3750 VkFormatFeatureFlags
3751 anv_get_image_format_features(const struct gen_device_info *devinfo,
3752 VkFormat vk_format,
3753 const struct anv_format *anv_format,
3754 VkImageTiling vk_tiling);
3755
3756 void anv_fill_buffer_surface_state(struct anv_device *device,
3757 struct anv_state state,
3758 enum isl_format format,
3759 struct anv_address address,
3760 uint32_t range, uint32_t stride);
3761
3762 static inline void
3763 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3764 const struct anv_attachment_state *att_state,
3765 const struct anv_image_view *iview)
3766 {
3767 const struct isl_format_layout *view_fmtl =
3768 isl_format_get_layout(iview->planes[0].isl.format);
3769
3770 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3771 if (view_fmtl->channels.c.bits) \
3772 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3773
3774 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3775 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3776 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3777 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3778
3779 #undef COPY_CLEAR_COLOR_CHANNEL
3780 }
3781
3782
3783 struct anv_ycbcr_conversion {
3784 const struct anv_format * format;
3785 VkSamplerYcbcrModelConversion ycbcr_model;
3786 VkSamplerYcbcrRange ycbcr_range;
3787 VkComponentSwizzle mapping[4];
3788 VkChromaLocation chroma_offsets[2];
3789 VkFilter chroma_filter;
3790 bool chroma_reconstruction;
3791 };
3792
3793 struct anv_sampler {
3794 uint32_t state[3][4];
3795 uint32_t n_planes;
3796 struct anv_ycbcr_conversion *conversion;
3797
3798 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3799 * and with a 32-byte stride for use as bindless samplers.
3800 */
3801 struct anv_state bindless_state;
3802 };
3803
3804 struct anv_framebuffer {
3805 uint32_t width;
3806 uint32_t height;
3807 uint32_t layers;
3808
3809 uint32_t attachment_count;
3810 struct anv_image_view * attachments[0];
3811 };
3812
3813 struct anv_subpass_attachment {
3814 VkImageUsageFlagBits usage;
3815 uint32_t attachment;
3816 VkImageLayout layout;
3817
3818 /* Used only with attachment containing stencil data. */
3819 VkImageLayout stencil_layout;
3820 };
3821
3822 struct anv_subpass {
3823 uint32_t attachment_count;
3824
3825 /**
3826 * A pointer to all attachment references used in this subpass.
3827 * Only valid if ::attachment_count > 0.
3828 */
3829 struct anv_subpass_attachment * attachments;
3830 uint32_t input_count;
3831 struct anv_subpass_attachment * input_attachments;
3832 uint32_t color_count;
3833 struct anv_subpass_attachment * color_attachments;
3834 struct anv_subpass_attachment * resolve_attachments;
3835
3836 struct anv_subpass_attachment * depth_stencil_attachment;
3837 struct anv_subpass_attachment * ds_resolve_attachment;
3838 VkResolveModeFlagBitsKHR depth_resolve_mode;
3839 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3840
3841 uint32_t view_mask;
3842
3843 /** Subpass has a depth/stencil self-dependency */
3844 bool has_ds_self_dep;
3845
3846 /** Subpass has at least one color resolve attachment */
3847 bool has_color_resolve;
3848 };
3849
3850 static inline unsigned
3851 anv_subpass_view_count(const struct anv_subpass *subpass)
3852 {
3853 return MAX2(1, util_bitcount(subpass->view_mask));
3854 }
3855
3856 struct anv_render_pass_attachment {
3857 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3858 * its members individually.
3859 */
3860 VkFormat format;
3861 uint32_t samples;
3862 VkImageUsageFlags usage;
3863 VkAttachmentLoadOp load_op;
3864 VkAttachmentStoreOp store_op;
3865 VkAttachmentLoadOp stencil_load_op;
3866 VkImageLayout initial_layout;
3867 VkImageLayout final_layout;
3868 VkImageLayout first_subpass_layout;
3869
3870 VkImageLayout stencil_initial_layout;
3871 VkImageLayout stencil_final_layout;
3872
3873 /* The subpass id in which the attachment will be used last. */
3874 uint32_t last_subpass_idx;
3875 };
3876
3877 struct anv_render_pass {
3878 uint32_t attachment_count;
3879 uint32_t subpass_count;
3880 /* An array of subpass_count+1 flushes, one per subpass boundary */
3881 enum anv_pipe_bits * subpass_flushes;
3882 struct anv_render_pass_attachment * attachments;
3883 struct anv_subpass subpasses[0];
3884 };
3885
3886 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
3887
3888 struct anv_query_pool {
3889 VkQueryType type;
3890 VkQueryPipelineStatisticFlags pipeline_statistics;
3891 /** Stride between slots, in bytes */
3892 uint32_t stride;
3893 /** Number of slots in this query pool */
3894 uint32_t slots;
3895 struct anv_bo * bo;
3896 };
3897
3898 int anv_get_instance_entrypoint_index(const char *name);
3899 int anv_get_device_entrypoint_index(const char *name);
3900 int anv_get_physical_device_entrypoint_index(const char *name);
3901
3902 const char *anv_get_instance_entry_name(int index);
3903 const char *anv_get_physical_device_entry_name(int index);
3904 const char *anv_get_device_entry_name(int index);
3905
3906 bool
3907 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
3908 const struct anv_instance_extension_table *instance);
3909 bool
3910 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
3911 const struct anv_instance_extension_table *instance);
3912 bool
3913 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
3914 const struct anv_instance_extension_table *instance,
3915 const struct anv_device_extension_table *device);
3916
3917 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
3918 const char *name);
3919
3920 void anv_dump_image_to_ppm(struct anv_device *device,
3921 struct anv_image *image, unsigned miplevel,
3922 unsigned array_layer, VkImageAspectFlagBits aspect,
3923 const char *filename);
3924
3925 enum anv_dump_action {
3926 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
3927 };
3928
3929 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
3930 void anv_dump_finish(void);
3931
3932 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
3933
3934 static inline uint32_t
3935 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
3936 {
3937 /* This function must be called from within a subpass. */
3938 assert(cmd_state->pass && cmd_state->subpass);
3939
3940 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
3941
3942 /* The id of this subpass shouldn't exceed the number of subpasses in this
3943 * render pass minus 1.
3944 */
3945 assert(subpass_id < cmd_state->pass->subpass_count);
3946 return subpass_id;
3947 }
3948
3949 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
3950 void anv_device_perf_init(struct anv_device *device);
3951
3952 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
3953 \
3954 static inline struct __anv_type * \
3955 __anv_type ## _from_handle(__VkType _handle) \
3956 { \
3957 return (struct __anv_type *) _handle; \
3958 } \
3959 \
3960 static inline __VkType \
3961 __anv_type ## _to_handle(struct __anv_type *_obj) \
3962 { \
3963 return (__VkType) _obj; \
3964 }
3965
3966 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
3967 \
3968 static inline struct __anv_type * \
3969 __anv_type ## _from_handle(__VkType _handle) \
3970 { \
3971 return (struct __anv_type *)(uintptr_t) _handle; \
3972 } \
3973 \
3974 static inline __VkType \
3975 __anv_type ## _to_handle(struct __anv_type *_obj) \
3976 { \
3977 return (__VkType)(uintptr_t) _obj; \
3978 }
3979
3980 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
3981 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
3982
3983 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
3984 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
3985 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
3986 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
3987 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
3988
3989 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
3990 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
3991 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
3992 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
3993 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
3994 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
3995 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
3996 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
3997 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
3998 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
3999 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4000 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4001 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4002 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4003 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4004 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4005 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4006 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4007 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4008 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4009 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4010 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4011 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4012
4013 /* Gen-specific function declarations */
4014 #ifdef genX
4015 # include "anv_genX.h"
4016 #else
4017 # define genX(x) gen7_##x
4018 # include "anv_genX.h"
4019 # undef genX
4020 # define genX(x) gen75_##x
4021 # include "anv_genX.h"
4022 # undef genX
4023 # define genX(x) gen8_##x
4024 # include "anv_genX.h"
4025 # undef genX
4026 # define genX(x) gen9_##x
4027 # include "anv_genX.h"
4028 # undef genX
4029 # define genX(x) gen10_##x
4030 # include "anv_genX.h"
4031 # undef genX
4032 # define genX(x) gen11_##x
4033 # include "anv_genX.h"
4034 # undef genX
4035 # define genX(x) gen12_##x
4036 # include "anv_genX.h"
4037 # undef genX
4038 #endif
4039
4040 #endif /* ANV_PRIVATE_H */