anv: Add another align_down helper
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175
176 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
177 *
178 * "The surface state model is used when a Binding Table Index (specified
179 * in the message descriptor) of less than 240 is specified. In this model,
180 * the Binding Table Index is used to index into the binding table, and the
181 * binding table entry contains a pointer to the SURFACE_STATE."
182 *
183 * Binding table values above 240 are used for various things in the hardware
184 * such as stateless, stateless with incoherent cache, SLM, and bindless.
185 */
186 #define MAX_BINDING_TABLE_SIZE 240
187
188 /* The kernel relocation API has a limitation of a 32-bit delta value
189 * applied to the address before it is written which, in spite of it being
190 * unsigned, is treated as signed . Because of the way that this maps to
191 * the Vulkan API, we cannot handle an offset into a buffer that does not
192 * fit into a signed 32 bits. The only mechanism we have for dealing with
193 * this at the moment is to limit all VkDeviceMemory objects to a maximum
194 * of 2GB each. The Vulkan spec allows us to do this:
195 *
196 * "Some platforms may have a limit on the maximum size of a single
197 * allocation. For example, certain systems may fail to create
198 * allocations with a size greater than or equal to 4GB. Such a limit is
199 * implementation-dependent, and if such a failure occurs then the error
200 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
201 *
202 * We don't use vk_error here because it's not an error so much as an
203 * indication to the application that the allocation is too large.
204 */
205 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
206
207 #define ANV_SVGS_VB_INDEX MAX_VBS
208 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
209
210 /* We reserve this MI ALU register for the purpose of handling predication.
211 * Other code which uses the MI ALU should leave it alone.
212 */
213 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
214
215 /* For gen12 we set the streamout buffers using 4 separate commands
216 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
217 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
218 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
219 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
220 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
221 * 3DSTATE_SO_BUFFER_INDEX_0.
222 */
223 #define SO_BUFFER_INDEX_0_CMD 0x60
224 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
225
226 static inline uint32_t
227 align_down_npot_u32(uint32_t v, uint32_t a)
228 {
229 return v - (v % a);
230 }
231
232 static inline uint32_t
233 align_u32(uint32_t v, uint32_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline uint64_t
240 align_down_u64(uint64_t v, uint64_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return v & ~(a - 1);
244 }
245
246 static inline uint64_t
247 align_u64(uint64_t v, uint64_t a)
248 {
249 return align_down_u64(v + a - 1, a);
250 }
251
252 static inline int32_t
253 align_i32(int32_t v, int32_t a)
254 {
255 assert(a != 0 && a == (a & -a));
256 return (v + a - 1) & ~(a - 1);
257 }
258
259 /** Alignment must be a power of 2. */
260 static inline bool
261 anv_is_aligned(uintmax_t n, uintmax_t a)
262 {
263 assert(a == (a & -a));
264 return (n & (a - 1)) == 0;
265 }
266
267 static inline uint32_t
268 anv_minify(uint32_t n, uint32_t levels)
269 {
270 if (unlikely(n == 0))
271 return 0;
272 else
273 return MAX2(n >> levels, 1);
274 }
275
276 static inline float
277 anv_clamp_f(float f, float min, float max)
278 {
279 assert(min < max);
280
281 if (f > max)
282 return max;
283 else if (f < min)
284 return min;
285 else
286 return f;
287 }
288
289 static inline bool
290 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
291 {
292 if (*inout_mask & clear_mask) {
293 *inout_mask &= ~clear_mask;
294 return true;
295 } else {
296 return false;
297 }
298 }
299
300 static inline union isl_color_value
301 vk_to_isl_color(VkClearColorValue color)
302 {
303 return (union isl_color_value) {
304 .u32 = {
305 color.uint32[0],
306 color.uint32[1],
307 color.uint32[2],
308 color.uint32[3],
309 },
310 };
311 }
312
313 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
314 {
315 uintptr_t mask = (1ull << bits) - 1;
316 *flags = ptr & mask;
317 return (void *) (ptr & ~mask);
318 }
319
320 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
321 {
322 uintptr_t value = (uintptr_t) ptr;
323 uintptr_t mask = (1ull << bits) - 1;
324 return value | (mask & flags);
325 }
326
327 #define for_each_bit(b, dword) \
328 for (uint32_t __dword = (dword); \
329 (b) = __builtin_ffs(__dword) - 1, __dword; \
330 __dword &= ~(1 << (b)))
331
332 #define typed_memcpy(dest, src, count) ({ \
333 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
334 memcpy((dest), (src), (count) * sizeof(*(src))); \
335 })
336
337 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
338 * to be added here in order to utilize mapping in debug/error/perf macros.
339 */
340 #define REPORT_OBJECT_TYPE(o) \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), void*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
434 /* The void expression results in a compile-time error \
435 when assigning the result to something. */ \
436 (void)0)))))))))))))))))))))))))))))))
437
438 /* Whenever we generate an error, pass it through this function. Useful for
439 * debugging, where we can break on it. Only call at error site, not when
440 * propagating errors. Might be useful to plug in a stack trace here.
441 */
442
443 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
444 VkDebugReportObjectTypeEXT type, VkResult error,
445 const char *file, int line, const char *format,
446 va_list args);
447
448 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
449 VkDebugReportObjectTypeEXT type, VkResult error,
450 const char *file, int line, const char *format, ...)
451 anv_printflike(7, 8);
452
453 #ifdef DEBUG
454 #define vk_error(error) __vk_errorf(NULL, NULL,\
455 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
456 error, __FILE__, __LINE__, NULL)
457 #define vk_errorfi(instance, obj, error, format, ...)\
458 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
459 __FILE__, __LINE__, format, ## __VA_ARGS__)
460 #define vk_errorf(device, obj, error, format, ...)\
461 vk_errorfi(anv_device_instance_or_null(device),\
462 obj, error, format, ## __VA_ARGS__)
463 #else
464 #define vk_error(error) error
465 #define vk_errorfi(instance, obj, error, format, ...) error
466 #define vk_errorf(device, obj, error, format, ...) error
467 #endif
468
469 /**
470 * Warn on ignored extension structs.
471 *
472 * The Vulkan spec requires us to ignore unsupported or unknown structs in
473 * a pNext chain. In debug mode, emitting warnings for ignored structs may
474 * help us discover structs that we should not have ignored.
475 *
476 *
477 * From the Vulkan 1.0.38 spec:
478 *
479 * Any component of the implementation (the loader, any enabled layers,
480 * and drivers) must skip over, without processing (other than reading the
481 * sType and pNext members) any chained structures with sType values not
482 * defined by extensions supported by that component.
483 */
484 #define anv_debug_ignored_stype(sType) \
485 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
486
487 void __anv_perf_warn(struct anv_device *device, const void *object,
488 VkDebugReportObjectTypeEXT type, const char *file,
489 int line, const char *format, ...)
490 anv_printflike(6, 7);
491 void anv_loge(const char *format, ...) anv_printflike(1, 2);
492 void anv_loge_v(const char *format, va_list va);
493
494 /**
495 * Print a FINISHME message, including its source location.
496 */
497 #define anv_finishme(format, ...) \
498 do { \
499 static bool reported = false; \
500 if (!reported) { \
501 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
502 ##__VA_ARGS__); \
503 reported = true; \
504 } \
505 } while (0)
506
507 /**
508 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
509 */
510 #define anv_perf_warn(instance, obj, format, ...) \
511 do { \
512 static bool reported = false; \
513 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
514 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
515 format, ##__VA_ARGS__); \
516 reported = true; \
517 } \
518 } while (0)
519
520 /* A non-fatal assert. Useful for debugging. */
521 #ifdef DEBUG
522 #define anv_assert(x) ({ \
523 if (unlikely(!(x))) \
524 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
525 })
526 #else
527 #define anv_assert(x)
528 #endif
529
530 /* A multi-pointer allocator
531 *
532 * When copying data structures from the user (such as a render pass), it's
533 * common to need to allocate data for a bunch of different things. Instead
534 * of doing several allocations and having to handle all of the error checking
535 * that entails, it can be easier to do a single allocation. This struct
536 * helps facilitate that. The intended usage looks like this:
537 *
538 * ANV_MULTIALLOC(ma)
539 * anv_multialloc_add(&ma, &main_ptr, 1);
540 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
541 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
542 *
543 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
544 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
545 */
546 struct anv_multialloc {
547 size_t size;
548 size_t align;
549
550 uint32_t ptr_count;
551 void **ptrs[8];
552 };
553
554 #define ANV_MULTIALLOC_INIT \
555 ((struct anv_multialloc) { 0, })
556
557 #define ANV_MULTIALLOC(_name) \
558 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
559
560 __attribute__((always_inline))
561 static inline void
562 _anv_multialloc_add(struct anv_multialloc *ma,
563 void **ptr, size_t size, size_t align)
564 {
565 size_t offset = align_u64(ma->size, align);
566 ma->size = offset + size;
567 ma->align = MAX2(ma->align, align);
568
569 /* Store the offset in the pointer. */
570 *ptr = (void *)(uintptr_t)offset;
571
572 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
573 ma->ptrs[ma->ptr_count++] = ptr;
574 }
575
576 #define anv_multialloc_add_size(_ma, _ptr, _size) \
577 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
578
579 #define anv_multialloc_add(_ma, _ptr, _count) \
580 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
581
582 __attribute__((always_inline))
583 static inline void *
584 anv_multialloc_alloc(struct anv_multialloc *ma,
585 const VkAllocationCallbacks *alloc,
586 VkSystemAllocationScope scope)
587 {
588 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
589 if (!ptr)
590 return NULL;
591
592 /* Fill out each of the pointers with their final value.
593 *
594 * for (uint32_t i = 0; i < ma->ptr_count; i++)
595 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
596 *
597 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
598 * constant, GCC is incapable of figuring this out and unrolling the loop
599 * so we have to give it a little help.
600 */
601 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
602 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
603 if ((_i) < ma->ptr_count) \
604 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
605 _ANV_MULTIALLOC_UPDATE_POINTER(0);
606 _ANV_MULTIALLOC_UPDATE_POINTER(1);
607 _ANV_MULTIALLOC_UPDATE_POINTER(2);
608 _ANV_MULTIALLOC_UPDATE_POINTER(3);
609 _ANV_MULTIALLOC_UPDATE_POINTER(4);
610 _ANV_MULTIALLOC_UPDATE_POINTER(5);
611 _ANV_MULTIALLOC_UPDATE_POINTER(6);
612 _ANV_MULTIALLOC_UPDATE_POINTER(7);
613 #undef _ANV_MULTIALLOC_UPDATE_POINTER
614
615 return ptr;
616 }
617
618 __attribute__((always_inline))
619 static inline void *
620 anv_multialloc_alloc2(struct anv_multialloc *ma,
621 const VkAllocationCallbacks *parent_alloc,
622 const VkAllocationCallbacks *alloc,
623 VkSystemAllocationScope scope)
624 {
625 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
626 }
627
628 struct anv_bo {
629 uint32_t gem_handle;
630
631 uint32_t refcount;
632
633 /* Index into the current validation list. This is used by the
634 * validation list building alrogithm to track which buffers are already
635 * in the validation list so that we can ensure uniqueness.
636 */
637 uint32_t index;
638
639 /* Index for use with util_sparse_array_free_list */
640 uint32_t free_index;
641
642 /* Last known offset. This value is provided by the kernel when we
643 * execbuf and is used as the presumed offset for the next bunch of
644 * relocations.
645 */
646 uint64_t offset;
647
648 uint64_t size;
649
650 /* Map for internally mapped BOs.
651 *
652 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
653 */
654 void *map;
655
656 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
657 uint32_t flags;
658
659 /** True if this BO may be shared with other processes */
660 bool is_external:1;
661
662 /** True if this BO is a wrapper
663 *
664 * When set to true, none of the fields in this BO are meaningful except
665 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
666 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
667 * is set in the physical device.
668 */
669 bool is_wrapper:1;
670
671 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
672 bool has_fixed_address:1;
673
674 /** True if this BO wraps a host pointer */
675 bool from_host_ptr:1;
676
677 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
678 bool has_client_visible_address:1;
679 };
680
681 static inline struct anv_bo *
682 anv_bo_ref(struct anv_bo *bo)
683 {
684 p_atomic_inc(&bo->refcount);
685 return bo;
686 }
687
688 static inline struct anv_bo *
689 anv_bo_unwrap(struct anv_bo *bo)
690 {
691 while (bo->is_wrapper)
692 bo = bo->map;
693 return bo;
694 }
695
696 /* Represents a lock-free linked list of "free" things. This is used by
697 * both the block pool and the state pools. Unfortunately, in order to
698 * solve the ABA problem, we can't use a single uint32_t head.
699 */
700 union anv_free_list {
701 struct {
702 uint32_t offset;
703
704 /* A simple count that is incremented every time the head changes. */
705 uint32_t count;
706 };
707 /* Make sure it's aligned to 64 bits. This will make atomic operations
708 * faster on 32 bit platforms.
709 */
710 uint64_t u64 __attribute__ ((aligned (8)));
711 };
712
713 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
714
715 struct anv_block_state {
716 union {
717 struct {
718 uint32_t next;
719 uint32_t end;
720 };
721 /* Make sure it's aligned to 64 bits. This will make atomic operations
722 * faster on 32 bit platforms.
723 */
724 uint64_t u64 __attribute__ ((aligned (8)));
725 };
726 };
727
728 #define anv_block_pool_foreach_bo(bo, pool) \
729 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
730 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
731 _pp_bo++)
732
733 #define ANV_MAX_BLOCK_POOL_BOS 20
734
735 struct anv_block_pool {
736 struct anv_device *device;
737 bool use_softpin;
738
739 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
740 * around the actual BO so that we grow the pool after the wrapper BO has
741 * been put in a relocation list. This is only used in the non-softpin
742 * case.
743 */
744 struct anv_bo wrapper_bo;
745
746 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
747 struct anv_bo *bo;
748 uint32_t nbos;
749
750 uint64_t size;
751
752 /* The address where the start of the pool is pinned. The various bos that
753 * are created as the pool grows will have addresses in the range
754 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
755 */
756 uint64_t start_address;
757
758 /* The offset from the start of the bo to the "center" of the block
759 * pool. Pointers to allocated blocks are given by
760 * bo.map + center_bo_offset + offsets.
761 */
762 uint32_t center_bo_offset;
763
764 /* Current memory map of the block pool. This pointer may or may not
765 * point to the actual beginning of the block pool memory. If
766 * anv_block_pool_alloc_back has ever been called, then this pointer
767 * will point to the "center" position of the buffer and all offsets
768 * (negative or positive) given out by the block pool alloc functions
769 * will be valid relative to this pointer.
770 *
771 * In particular, map == bo.map + center_offset
772 *
773 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
774 * since it will handle the softpin case as well, where this points to NULL.
775 */
776 void *map;
777 int fd;
778
779 /**
780 * Array of mmaps and gem handles owned by the block pool, reclaimed when
781 * the block pool is destroyed.
782 */
783 struct u_vector mmap_cleanups;
784
785 struct anv_block_state state;
786
787 struct anv_block_state back_state;
788 };
789
790 /* Block pools are backed by a fixed-size 1GB memfd */
791 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
792
793 /* The center of the block pool is also the middle of the memfd. This may
794 * change in the future if we decide differently for some reason.
795 */
796 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
797
798 static inline uint32_t
799 anv_block_pool_size(struct anv_block_pool *pool)
800 {
801 return pool->state.end + pool->back_state.end;
802 }
803
804 struct anv_state {
805 int32_t offset;
806 uint32_t alloc_size;
807 void *map;
808 uint32_t idx;
809 };
810
811 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
812
813 struct anv_fixed_size_state_pool {
814 union anv_free_list free_list;
815 struct anv_block_state block;
816 };
817
818 #define ANV_MIN_STATE_SIZE_LOG2 6
819 #define ANV_MAX_STATE_SIZE_LOG2 21
820
821 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
822
823 struct anv_free_entry {
824 uint32_t next;
825 struct anv_state state;
826 };
827
828 struct anv_state_table {
829 struct anv_device *device;
830 int fd;
831 struct anv_free_entry *map;
832 uint32_t size;
833 struct anv_block_state state;
834 struct u_vector cleanups;
835 };
836
837 struct anv_state_pool {
838 struct anv_block_pool block_pool;
839
840 struct anv_state_table table;
841
842 /* The size of blocks which will be allocated from the block pool */
843 uint32_t block_size;
844
845 /** Free list for "back" allocations */
846 union anv_free_list back_alloc_free_list;
847
848 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
849 };
850
851 struct anv_state_stream_block;
852
853 struct anv_state_stream {
854 struct anv_state_pool *state_pool;
855
856 /* The size of blocks to allocate from the state pool */
857 uint32_t block_size;
858
859 /* Current block we're allocating from */
860 struct anv_state block;
861
862 /* Offset into the current block at which to allocate the next state */
863 uint32_t next;
864
865 /* List of all blocks allocated from this pool */
866 struct anv_state_stream_block *block_list;
867 };
868
869 /* The block_pool functions exported for testing only. The block pool should
870 * only be used via a state pool (see below).
871 */
872 VkResult anv_block_pool_init(struct anv_block_pool *pool,
873 struct anv_device *device,
874 uint64_t start_address,
875 uint32_t initial_size);
876 void anv_block_pool_finish(struct anv_block_pool *pool);
877 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
878 uint32_t block_size, uint32_t *padding);
879 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
880 uint32_t block_size);
881 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
882
883 VkResult anv_state_pool_init(struct anv_state_pool *pool,
884 struct anv_device *device,
885 uint64_t start_address,
886 uint32_t block_size);
887 void anv_state_pool_finish(struct anv_state_pool *pool);
888 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
889 uint32_t state_size, uint32_t alignment);
890 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
891 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
892 void anv_state_stream_init(struct anv_state_stream *stream,
893 struct anv_state_pool *state_pool,
894 uint32_t block_size);
895 void anv_state_stream_finish(struct anv_state_stream *stream);
896 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
897 uint32_t size, uint32_t alignment);
898
899 VkResult anv_state_table_init(struct anv_state_table *table,
900 struct anv_device *device,
901 uint32_t initial_entries);
902 void anv_state_table_finish(struct anv_state_table *table);
903 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
904 uint32_t count);
905 void anv_free_list_push(union anv_free_list *list,
906 struct anv_state_table *table,
907 uint32_t idx, uint32_t count);
908 struct anv_state* anv_free_list_pop(union anv_free_list *list,
909 struct anv_state_table *table);
910
911
912 static inline struct anv_state *
913 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
914 {
915 return &table->map[idx].state;
916 }
917 /**
918 * Implements a pool of re-usable BOs. The interface is identical to that
919 * of block_pool except that each block is its own BO.
920 */
921 struct anv_bo_pool {
922 struct anv_device *device;
923
924 struct util_sparse_array_free_list free_list[16];
925 };
926
927 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
928 void anv_bo_pool_finish(struct anv_bo_pool *pool);
929 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
930 struct anv_bo **bo_out);
931 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
932
933 struct anv_scratch_pool {
934 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
935 struct anv_bo *bos[16][MESA_SHADER_STAGES];
936 };
937
938 void anv_scratch_pool_init(struct anv_device *device,
939 struct anv_scratch_pool *pool);
940 void anv_scratch_pool_finish(struct anv_device *device,
941 struct anv_scratch_pool *pool);
942 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
943 struct anv_scratch_pool *pool,
944 gl_shader_stage stage,
945 unsigned per_thread_scratch);
946
947 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
948 struct anv_bo_cache {
949 struct util_sparse_array bo_map;
950 pthread_mutex_t mutex;
951 };
952
953 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
954 void anv_bo_cache_finish(struct anv_bo_cache *cache);
955
956 struct anv_memory_type {
957 /* Standard bits passed on to the client */
958 VkMemoryPropertyFlags propertyFlags;
959 uint32_t heapIndex;
960 };
961
962 struct anv_memory_heap {
963 /* Standard bits passed on to the client */
964 VkDeviceSize size;
965 VkMemoryHeapFlags flags;
966
967 /* Driver-internal book-keeping */
968 VkDeviceSize used;
969 };
970
971 struct anv_physical_device {
972 VK_LOADER_DATA _loader_data;
973
974 /* Link in anv_instance::physical_devices */
975 struct list_head link;
976
977 struct anv_instance * instance;
978 bool no_hw;
979 char path[20];
980 const char * name;
981 struct {
982 uint16_t domain;
983 uint8_t bus;
984 uint8_t device;
985 uint8_t function;
986 } pci_info;
987 struct gen_device_info info;
988 /** Amount of "GPU memory" we want to advertise
989 *
990 * Clearly, this value is bogus since Intel is a UMA architecture. On
991 * gen7 platforms, we are limited by GTT size unless we want to implement
992 * fine-grained tracking and GTT splitting. On Broadwell and above we are
993 * practically unlimited. However, we will never report more than 3/4 of
994 * the total system ram to try and avoid running out of RAM.
995 */
996 bool supports_48bit_addresses;
997 struct brw_compiler * compiler;
998 struct isl_device isl_dev;
999 struct gen_perf_config * perf;
1000 int cmd_parser_version;
1001 bool has_softpin;
1002 bool has_exec_async;
1003 bool has_exec_capture;
1004 bool has_exec_fence;
1005 bool has_syncobj;
1006 bool has_syncobj_wait;
1007 bool has_context_priority;
1008 bool has_context_isolation;
1009 bool has_mem_available;
1010 uint64_t gtt_size;
1011
1012 bool use_softpin;
1013 bool always_use_bindless;
1014
1015 /** True if we can access buffers using A64 messages */
1016 bool has_a64_buffer_access;
1017 /** True if we can use bindless access for images */
1018 bool has_bindless_images;
1019 /** True if we can use bindless access for samplers */
1020 bool has_bindless_samplers;
1021
1022 bool always_flush_cache;
1023
1024 struct anv_device_extension_table supported_extensions;
1025
1026 uint32_t eu_total;
1027 uint32_t subslice_total;
1028
1029 struct {
1030 uint32_t type_count;
1031 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1032 uint32_t heap_count;
1033 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1034 } memory;
1035
1036 uint8_t driver_build_sha1[20];
1037 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1038 uint8_t driver_uuid[VK_UUID_SIZE];
1039 uint8_t device_uuid[VK_UUID_SIZE];
1040
1041 struct disk_cache * disk_cache;
1042
1043 struct wsi_device wsi_device;
1044 int local_fd;
1045 int master_fd;
1046 };
1047
1048 struct anv_app_info {
1049 const char* app_name;
1050 uint32_t app_version;
1051 const char* engine_name;
1052 uint32_t engine_version;
1053 uint32_t api_version;
1054 };
1055
1056 struct anv_instance {
1057 VK_LOADER_DATA _loader_data;
1058
1059 VkAllocationCallbacks alloc;
1060
1061 struct anv_app_info app_info;
1062
1063 struct anv_instance_extension_table enabled_extensions;
1064 struct anv_instance_dispatch_table dispatch;
1065 struct anv_physical_device_dispatch_table physical_device_dispatch;
1066 struct anv_device_dispatch_table device_dispatch;
1067
1068 bool physical_devices_enumerated;
1069 struct list_head physical_devices;
1070
1071 bool pipeline_cache_enabled;
1072
1073 struct vk_debug_report_instance debug_report_callbacks;
1074
1075 struct driOptionCache dri_options;
1076 struct driOptionCache available_dri_options;
1077 };
1078
1079 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1080 void anv_finish_wsi(struct anv_physical_device *physical_device);
1081
1082 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1083 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1084 const char *name);
1085
1086 struct anv_queue_submit {
1087 struct anv_cmd_buffer * cmd_buffer;
1088
1089 uint32_t fence_count;
1090 uint32_t fence_array_length;
1091 struct drm_i915_gem_exec_fence * fences;
1092
1093 uint32_t temporary_semaphore_count;
1094 uint32_t temporary_semaphore_array_length;
1095 struct anv_semaphore_impl * temporary_semaphores;
1096
1097 /* Semaphores to be signaled with a SYNC_FD. */
1098 struct anv_semaphore ** sync_fd_semaphores;
1099 uint32_t sync_fd_semaphore_count;
1100 uint32_t sync_fd_semaphore_array_length;
1101
1102 /* Allocated only with non shareable timelines. */
1103 struct anv_timeline ** wait_timelines;
1104 uint32_t wait_timeline_count;
1105 uint32_t wait_timeline_array_length;
1106 uint64_t * wait_timeline_values;
1107
1108 struct anv_timeline ** signal_timelines;
1109 uint32_t signal_timeline_count;
1110 uint32_t signal_timeline_array_length;
1111 uint64_t * signal_timeline_values;
1112
1113 int in_fence;
1114 bool need_out_fence;
1115 int out_fence;
1116
1117 uint32_t fence_bo_count;
1118 uint32_t fence_bo_array_length;
1119 /* An array of struct anv_bo pointers with lower bit used as a flag to
1120 * signal we will wait on that BO (see anv_(un)pack_ptr).
1121 */
1122 uintptr_t * fence_bos;
1123
1124 const VkAllocationCallbacks * alloc;
1125 VkSystemAllocationScope alloc_scope;
1126
1127 struct anv_bo * simple_bo;
1128 uint32_t simple_bo_size;
1129
1130 struct list_head link;
1131 };
1132
1133 struct anv_queue {
1134 VK_LOADER_DATA _loader_data;
1135
1136 struct anv_device * device;
1137
1138 /*
1139 * A list of struct anv_queue_submit to be submitted to i915.
1140 */
1141 struct list_head queued_submits;
1142
1143 VkDeviceQueueCreateFlags flags;
1144 };
1145
1146 struct anv_pipeline_cache {
1147 struct anv_device * device;
1148 pthread_mutex_t mutex;
1149
1150 struct hash_table * nir_cache;
1151
1152 struct hash_table * cache;
1153 };
1154
1155 struct nir_xfb_info;
1156 struct anv_pipeline_bind_map;
1157
1158 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1159 struct anv_device *device,
1160 bool cache_enabled);
1161 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1162
1163 struct anv_shader_bin *
1164 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1165 const void *key, uint32_t key_size);
1166 struct anv_shader_bin *
1167 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1168 const void *key_data, uint32_t key_size,
1169 const void *kernel_data, uint32_t kernel_size,
1170 const void *constant_data,
1171 uint32_t constant_data_size,
1172 const struct brw_stage_prog_data *prog_data,
1173 uint32_t prog_data_size,
1174 const struct brw_compile_stats *stats,
1175 uint32_t num_stats,
1176 const struct nir_xfb_info *xfb_info,
1177 const struct anv_pipeline_bind_map *bind_map);
1178
1179 struct anv_shader_bin *
1180 anv_device_search_for_kernel(struct anv_device *device,
1181 struct anv_pipeline_cache *cache,
1182 const void *key_data, uint32_t key_size,
1183 bool *user_cache_bit);
1184
1185 struct anv_shader_bin *
1186 anv_device_upload_kernel(struct anv_device *device,
1187 struct anv_pipeline_cache *cache,
1188 const void *key_data, uint32_t key_size,
1189 const void *kernel_data, uint32_t kernel_size,
1190 const void *constant_data,
1191 uint32_t constant_data_size,
1192 const struct brw_stage_prog_data *prog_data,
1193 uint32_t prog_data_size,
1194 const struct brw_compile_stats *stats,
1195 uint32_t num_stats,
1196 const struct nir_xfb_info *xfb_info,
1197 const struct anv_pipeline_bind_map *bind_map);
1198
1199 struct nir_shader;
1200 struct nir_shader_compiler_options;
1201
1202 struct nir_shader *
1203 anv_device_search_for_nir(struct anv_device *device,
1204 struct anv_pipeline_cache *cache,
1205 const struct nir_shader_compiler_options *nir_options,
1206 unsigned char sha1_key[20],
1207 void *mem_ctx);
1208
1209 void
1210 anv_device_upload_nir(struct anv_device *device,
1211 struct anv_pipeline_cache *cache,
1212 const struct nir_shader *nir,
1213 unsigned char sha1_key[20]);
1214
1215 struct anv_device {
1216 VK_LOADER_DATA _loader_data;
1217
1218 VkAllocationCallbacks alloc;
1219
1220 struct anv_physical_device * physical;
1221 bool no_hw;
1222 struct gen_device_info info;
1223 struct isl_device isl_dev;
1224 int context_id;
1225 int fd;
1226 bool can_chain_batches;
1227 bool robust_buffer_access;
1228 struct anv_device_extension_table enabled_extensions;
1229 struct anv_device_dispatch_table dispatch;
1230
1231 pthread_mutex_t vma_mutex;
1232 struct util_vma_heap vma_lo;
1233 struct util_vma_heap vma_cva;
1234 struct util_vma_heap vma_hi;
1235
1236 /** List of all anv_device_memory objects */
1237 struct list_head memory_objects;
1238
1239 struct anv_bo_pool batch_bo_pool;
1240
1241 struct anv_bo_cache bo_cache;
1242
1243 struct anv_state_pool dynamic_state_pool;
1244 struct anv_state_pool instruction_state_pool;
1245 struct anv_state_pool binding_table_pool;
1246 struct anv_state_pool surface_state_pool;
1247
1248 struct anv_bo * workaround_bo;
1249 struct anv_bo * trivial_batch_bo;
1250 struct anv_bo * hiz_clear_bo;
1251
1252 struct anv_pipeline_cache default_pipeline_cache;
1253 struct blorp_context blorp;
1254
1255 struct anv_state border_colors;
1256
1257 struct anv_state slice_hash;
1258
1259 struct anv_queue queue;
1260
1261 struct anv_scratch_pool scratch_pool;
1262
1263 pthread_mutex_t mutex;
1264 pthread_cond_t queue_submit;
1265 int _lost;
1266
1267 struct gen_batch_decode_ctx decoder_ctx;
1268 /*
1269 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1270 * the cmd_buffer's list.
1271 */
1272 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1273
1274 int perf_fd; /* -1 if no opened */
1275 uint64_t perf_metric; /* 0 if unset */
1276
1277 struct gen_aux_map_context *aux_map_ctx;
1278 };
1279
1280 static inline struct anv_instance *
1281 anv_device_instance_or_null(const struct anv_device *device)
1282 {
1283 return device ? device->physical->instance : NULL;
1284 }
1285
1286 static inline struct anv_state_pool *
1287 anv_binding_table_pool(struct anv_device *device)
1288 {
1289 if (device->physical->use_softpin)
1290 return &device->binding_table_pool;
1291 else
1292 return &device->surface_state_pool;
1293 }
1294
1295 static inline struct anv_state
1296 anv_binding_table_pool_alloc(struct anv_device *device) {
1297 if (device->physical->use_softpin)
1298 return anv_state_pool_alloc(&device->binding_table_pool,
1299 device->binding_table_pool.block_size, 0);
1300 else
1301 return anv_state_pool_alloc_back(&device->surface_state_pool);
1302 }
1303
1304 static inline void
1305 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1306 anv_state_pool_free(anv_binding_table_pool(device), state);
1307 }
1308
1309 static inline uint32_t
1310 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1311 {
1312 if (bo->is_external)
1313 return device->isl_dev.mocs.external;
1314 else
1315 return device->isl_dev.mocs.internal;
1316 }
1317
1318 void anv_device_init_blorp(struct anv_device *device);
1319 void anv_device_finish_blorp(struct anv_device *device);
1320
1321 void _anv_device_set_all_queue_lost(struct anv_device *device);
1322 VkResult _anv_device_set_lost(struct anv_device *device,
1323 const char *file, int line,
1324 const char *msg, ...)
1325 anv_printflike(4, 5);
1326 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1327 const char *file, int line,
1328 const char *msg, ...)
1329 anv_printflike(4, 5);
1330 #define anv_device_set_lost(dev, ...) \
1331 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1332 #define anv_queue_set_lost(queue, ...) \
1333 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1334
1335 static inline bool
1336 anv_device_is_lost(struct anv_device *device)
1337 {
1338 return unlikely(p_atomic_read(&device->_lost));
1339 }
1340
1341 VkResult anv_device_query_status(struct anv_device *device);
1342
1343
1344 enum anv_bo_alloc_flags {
1345 /** Specifies that the BO must have a 32-bit address
1346 *
1347 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1348 */
1349 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1350
1351 /** Specifies that the BO may be shared externally */
1352 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1353
1354 /** Specifies that the BO should be mapped */
1355 ANV_BO_ALLOC_MAPPED = (1 << 2),
1356
1357 /** Specifies that the BO should be snooped so we get coherency */
1358 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1359
1360 /** Specifies that the BO should be captured in error states */
1361 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1362
1363 /** Specifies that the BO will have an address assigned by the caller
1364 *
1365 * Such BOs do not exist in any VMA heap.
1366 */
1367 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1368
1369 /** Enables implicit synchronization on the BO
1370 *
1371 * This is the opposite of EXEC_OBJECT_ASYNC.
1372 */
1373 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1374
1375 /** Enables implicit synchronization on the BO
1376 *
1377 * This is equivalent to EXEC_OBJECT_WRITE.
1378 */
1379 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1380
1381 /** Has an address which is visible to the client */
1382 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1383 };
1384
1385 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1386 enum anv_bo_alloc_flags alloc_flags,
1387 uint64_t explicit_address,
1388 struct anv_bo **bo);
1389 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1390 void *host_ptr, uint32_t size,
1391 enum anv_bo_alloc_flags alloc_flags,
1392 uint64_t client_address,
1393 struct anv_bo **bo_out);
1394 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1395 enum anv_bo_alloc_flags alloc_flags,
1396 uint64_t client_address,
1397 struct anv_bo **bo);
1398 VkResult anv_device_export_bo(struct anv_device *device,
1399 struct anv_bo *bo, int *fd_out);
1400 void anv_device_release_bo(struct anv_device *device,
1401 struct anv_bo *bo);
1402
1403 static inline struct anv_bo *
1404 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1405 {
1406 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1407 }
1408
1409 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1410 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1411 int64_t timeout);
1412
1413 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1414 void anv_queue_finish(struct anv_queue *queue);
1415
1416 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1417 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1418 struct anv_batch *batch);
1419
1420 uint64_t anv_gettime_ns(void);
1421 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1422
1423 void* anv_gem_mmap(struct anv_device *device,
1424 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1425 void anv_gem_munmap(void *p, uint64_t size);
1426 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1427 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1428 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1429 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1430 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1431 int anv_gem_execbuffer(struct anv_device *device,
1432 struct drm_i915_gem_execbuffer2 *execbuf);
1433 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1434 uint32_t stride, uint32_t tiling);
1435 int anv_gem_create_context(struct anv_device *device);
1436 bool anv_gem_has_context_priority(int fd);
1437 int anv_gem_destroy_context(struct anv_device *device, int context);
1438 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1439 uint64_t value);
1440 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1441 uint64_t *value);
1442 int anv_gem_get_param(int fd, uint32_t param);
1443 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1444 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1445 int anv_gem_get_aperture(int fd, uint64_t *size);
1446 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1447 uint32_t *active, uint32_t *pending);
1448 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1449 int anv_gem_reg_read(struct anv_device *device,
1450 uint32_t offset, uint64_t *result);
1451 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1452 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1453 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1454 uint32_t read_domains, uint32_t write_domain);
1455 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1456 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1457 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1458 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1459 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1460 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1461 uint32_t handle);
1462 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1463 uint32_t handle, int fd);
1464 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1465 bool anv_gem_supports_syncobj_wait(int fd);
1466 int anv_gem_syncobj_wait(struct anv_device *device,
1467 uint32_t *handles, uint32_t num_handles,
1468 int64_t abs_timeout_ns, bool wait_all);
1469
1470 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo,
1471 uint64_t client_address);
1472 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1473
1474 struct anv_reloc_list {
1475 uint32_t num_relocs;
1476 uint32_t array_length;
1477 struct drm_i915_gem_relocation_entry * relocs;
1478 struct anv_bo ** reloc_bos;
1479 uint32_t dep_words;
1480 BITSET_WORD * deps;
1481 };
1482
1483 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1484 const VkAllocationCallbacks *alloc);
1485 void anv_reloc_list_finish(struct anv_reloc_list *list,
1486 const VkAllocationCallbacks *alloc);
1487
1488 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1489 const VkAllocationCallbacks *alloc,
1490 uint32_t offset, struct anv_bo *target_bo,
1491 uint32_t delta, uint64_t *address_u64_out);
1492
1493 struct anv_batch_bo {
1494 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1495 struct list_head link;
1496
1497 struct anv_bo * bo;
1498
1499 /* Bytes actually consumed in this batch BO */
1500 uint32_t length;
1501
1502 struct anv_reloc_list relocs;
1503 };
1504
1505 struct anv_batch {
1506 const VkAllocationCallbacks * alloc;
1507
1508 void * start;
1509 void * end;
1510 void * next;
1511
1512 struct anv_reloc_list * relocs;
1513
1514 /* This callback is called (with the associated user data) in the event
1515 * that the batch runs out of space.
1516 */
1517 VkResult (*extend_cb)(struct anv_batch *, void *);
1518 void * user_data;
1519
1520 /**
1521 * Current error status of the command buffer. Used to track inconsistent
1522 * or incomplete command buffer states that are the consequence of run-time
1523 * errors such as out of memory scenarios. We want to track this in the
1524 * batch because the command buffer object is not visible to some parts
1525 * of the driver.
1526 */
1527 VkResult status;
1528 };
1529
1530 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1531 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1532 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1533 void *location, struct anv_bo *bo, uint32_t offset);
1534
1535 static inline VkResult
1536 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1537 {
1538 assert(error != VK_SUCCESS);
1539 if (batch->status == VK_SUCCESS)
1540 batch->status = error;
1541 return batch->status;
1542 }
1543
1544 static inline bool
1545 anv_batch_has_error(struct anv_batch *batch)
1546 {
1547 return batch->status != VK_SUCCESS;
1548 }
1549
1550 struct anv_address {
1551 struct anv_bo *bo;
1552 uint32_t offset;
1553 };
1554
1555 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1556
1557 static inline bool
1558 anv_address_is_null(struct anv_address addr)
1559 {
1560 return addr.bo == NULL && addr.offset == 0;
1561 }
1562
1563 static inline uint64_t
1564 anv_address_physical(struct anv_address addr)
1565 {
1566 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1567 return gen_canonical_address(addr.bo->offset + addr.offset);
1568 else
1569 return gen_canonical_address(addr.offset);
1570 }
1571
1572 static inline struct anv_address
1573 anv_address_add(struct anv_address addr, uint64_t offset)
1574 {
1575 addr.offset += offset;
1576 return addr;
1577 }
1578
1579 static inline void
1580 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1581 {
1582 unsigned reloc_size = 0;
1583 if (device->info.gen >= 8) {
1584 reloc_size = sizeof(uint64_t);
1585 *(uint64_t *)p = gen_canonical_address(v);
1586 } else {
1587 reloc_size = sizeof(uint32_t);
1588 *(uint32_t *)p = v;
1589 }
1590
1591 if (flush && !device->info.has_llc)
1592 gen_flush_range(p, reloc_size);
1593 }
1594
1595 static inline uint64_t
1596 _anv_combine_address(struct anv_batch *batch, void *location,
1597 const struct anv_address address, uint32_t delta)
1598 {
1599 if (address.bo == NULL) {
1600 return address.offset + delta;
1601 } else {
1602 assert(batch->start <= location && location < batch->end);
1603
1604 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1605 }
1606 }
1607
1608 #define __gen_address_type struct anv_address
1609 #define __gen_user_data struct anv_batch
1610 #define __gen_combine_address _anv_combine_address
1611
1612 /* Wrapper macros needed to work around preprocessor argument issues. In
1613 * particular, arguments don't get pre-evaluated if they are concatenated.
1614 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1615 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1616 * We can work around this easily enough with these helpers.
1617 */
1618 #define __anv_cmd_length(cmd) cmd ## _length
1619 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1620 #define __anv_cmd_header(cmd) cmd ## _header
1621 #define __anv_cmd_pack(cmd) cmd ## _pack
1622 #define __anv_reg_num(reg) reg ## _num
1623
1624 #define anv_pack_struct(dst, struc, ...) do { \
1625 struct struc __template = { \
1626 __VA_ARGS__ \
1627 }; \
1628 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1629 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1630 } while (0)
1631
1632 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1633 void *__dst = anv_batch_emit_dwords(batch, n); \
1634 if (__dst) { \
1635 struct cmd __template = { \
1636 __anv_cmd_header(cmd), \
1637 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1638 __VA_ARGS__ \
1639 }; \
1640 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1641 } \
1642 __dst; \
1643 })
1644
1645 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1646 do { \
1647 uint32_t *dw; \
1648 \
1649 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1650 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1651 if (!dw) \
1652 break; \
1653 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1654 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1655 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1656 } while (0)
1657
1658 #define anv_batch_emit(batch, cmd, name) \
1659 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1660 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1661 __builtin_expect(_dst != NULL, 1); \
1662 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1663 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1664 _dst = NULL; \
1665 }))
1666
1667 struct anv_device_memory {
1668 struct list_head link;
1669
1670 struct anv_bo * bo;
1671 struct anv_memory_type * type;
1672 VkDeviceSize map_size;
1673 void * map;
1674
1675 /* If set, we are holding reference to AHardwareBuffer
1676 * which we must release when memory is freed.
1677 */
1678 struct AHardwareBuffer * ahw;
1679
1680 /* If set, this memory comes from a host pointer. */
1681 void * host_ptr;
1682 };
1683
1684 /**
1685 * Header for Vertex URB Entry (VUE)
1686 */
1687 struct anv_vue_header {
1688 uint32_t Reserved;
1689 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1690 uint32_t ViewportIndex;
1691 float PointWidth;
1692 };
1693
1694 /** Struct representing a sampled image descriptor
1695 *
1696 * This descriptor layout is used for sampled images, bare sampler, and
1697 * combined image/sampler descriptors.
1698 */
1699 struct anv_sampled_image_descriptor {
1700 /** Bindless image handle
1701 *
1702 * This is expected to already be shifted such that the 20-bit
1703 * SURFACE_STATE table index is in the top 20 bits.
1704 */
1705 uint32_t image;
1706
1707 /** Bindless sampler handle
1708 *
1709 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1710 * to the dynamic state base address.
1711 */
1712 uint32_t sampler;
1713 };
1714
1715 struct anv_texture_swizzle_descriptor {
1716 /** Texture swizzle
1717 *
1718 * See also nir_intrinsic_channel_select_intel
1719 */
1720 uint8_t swizzle[4];
1721
1722 /** Unused padding to ensure the struct is a multiple of 64 bits */
1723 uint32_t _pad;
1724 };
1725
1726 /** Struct representing a storage image descriptor */
1727 struct anv_storage_image_descriptor {
1728 /** Bindless image handles
1729 *
1730 * These are expected to already be shifted such that the 20-bit
1731 * SURFACE_STATE table index is in the top 20 bits.
1732 */
1733 uint32_t read_write;
1734 uint32_t write_only;
1735 };
1736
1737 /** Struct representing a address/range descriptor
1738 *
1739 * The fields of this struct correspond directly to the data layout of
1740 * nir_address_format_64bit_bounded_global addresses. The last field is the
1741 * offset in the NIR address so it must be zero so that when you load the
1742 * descriptor you get a pointer to the start of the range.
1743 */
1744 struct anv_address_range_descriptor {
1745 uint64_t address;
1746 uint32_t range;
1747 uint32_t zero;
1748 };
1749
1750 enum anv_descriptor_data {
1751 /** The descriptor contains a BTI reference to a surface state */
1752 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1753 /** The descriptor contains a BTI reference to a sampler state */
1754 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1755 /** The descriptor contains an actual buffer view */
1756 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1757 /** The descriptor contains auxiliary image layout data */
1758 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1759 /** The descriptor contains auxiliary image layout data */
1760 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1761 /** anv_address_range_descriptor with a buffer address and range */
1762 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1763 /** Bindless surface handle */
1764 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1765 /** Storage image handles */
1766 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1767 /** Storage image handles */
1768 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1769 };
1770
1771 struct anv_descriptor_set_binding_layout {
1772 #ifndef NDEBUG
1773 /* The type of the descriptors in this binding */
1774 VkDescriptorType type;
1775 #endif
1776
1777 /* Flags provided when this binding was created */
1778 VkDescriptorBindingFlagsEXT flags;
1779
1780 /* Bitfield representing the type of data this descriptor contains */
1781 enum anv_descriptor_data data;
1782
1783 /* Maximum number of YCbCr texture/sampler planes */
1784 uint8_t max_plane_count;
1785
1786 /* Number of array elements in this binding (or size in bytes for inline
1787 * uniform data)
1788 */
1789 uint16_t array_size;
1790
1791 /* Index into the flattend descriptor set */
1792 uint16_t descriptor_index;
1793
1794 /* Index into the dynamic state array for a dynamic buffer */
1795 int16_t dynamic_offset_index;
1796
1797 /* Index into the descriptor set buffer views */
1798 int16_t buffer_view_index;
1799
1800 /* Offset into the descriptor buffer where this descriptor lives */
1801 uint32_t descriptor_offset;
1802
1803 /* Immutable samplers (or NULL if no immutable samplers) */
1804 struct anv_sampler **immutable_samplers;
1805 };
1806
1807 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1808
1809 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1810 VkDescriptorType type);
1811
1812 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1813 const struct anv_descriptor_set_binding_layout *binding,
1814 bool sampler);
1815
1816 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1817 const struct anv_descriptor_set_binding_layout *binding,
1818 bool sampler);
1819
1820 struct anv_descriptor_set_layout {
1821 /* Descriptor set layouts can be destroyed at almost any time */
1822 uint32_t ref_cnt;
1823
1824 /* Number of bindings in this descriptor set */
1825 uint16_t binding_count;
1826
1827 /* Total size of the descriptor set with room for all array entries */
1828 uint16_t size;
1829
1830 /* Shader stages affected by this descriptor set */
1831 uint16_t shader_stages;
1832
1833 /* Number of buffer views in this descriptor set */
1834 uint16_t buffer_view_count;
1835
1836 /* Number of dynamic offsets used by this descriptor set */
1837 uint16_t dynamic_offset_count;
1838
1839 /* For each shader stage, which offsets apply to that stage */
1840 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1841
1842 /* Size of the descriptor buffer for this descriptor set */
1843 uint32_t descriptor_buffer_size;
1844
1845 /* Bindings in this descriptor set */
1846 struct anv_descriptor_set_binding_layout binding[0];
1847 };
1848
1849 static inline void
1850 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1851 {
1852 assert(layout && layout->ref_cnt >= 1);
1853 p_atomic_inc(&layout->ref_cnt);
1854 }
1855
1856 static inline void
1857 anv_descriptor_set_layout_unref(struct anv_device *device,
1858 struct anv_descriptor_set_layout *layout)
1859 {
1860 assert(layout && layout->ref_cnt >= 1);
1861 if (p_atomic_dec_zero(&layout->ref_cnt))
1862 vk_free(&device->alloc, layout);
1863 }
1864
1865 struct anv_descriptor {
1866 VkDescriptorType type;
1867
1868 union {
1869 struct {
1870 VkImageLayout layout;
1871 struct anv_image_view *image_view;
1872 struct anv_sampler *sampler;
1873 };
1874
1875 struct {
1876 struct anv_buffer *buffer;
1877 uint64_t offset;
1878 uint64_t range;
1879 };
1880
1881 struct anv_buffer_view *buffer_view;
1882 };
1883 };
1884
1885 struct anv_descriptor_set {
1886 struct anv_descriptor_pool *pool;
1887 struct anv_descriptor_set_layout *layout;
1888 uint32_t size;
1889
1890 /* State relative to anv_descriptor_pool::bo */
1891 struct anv_state desc_mem;
1892 /* Surface state for the descriptor buffer */
1893 struct anv_state desc_surface_state;
1894
1895 uint32_t buffer_view_count;
1896 struct anv_buffer_view *buffer_views;
1897
1898 /* Link to descriptor pool's desc_sets list . */
1899 struct list_head pool_link;
1900
1901 struct anv_descriptor descriptors[0];
1902 };
1903
1904 struct anv_buffer_view {
1905 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1906 uint64_t range; /**< VkBufferViewCreateInfo::range */
1907
1908 struct anv_address address;
1909
1910 struct anv_state surface_state;
1911 struct anv_state storage_surface_state;
1912 struct anv_state writeonly_storage_surface_state;
1913
1914 struct brw_image_param storage_image_param;
1915 };
1916
1917 struct anv_push_descriptor_set {
1918 struct anv_descriptor_set set;
1919
1920 /* Put this field right behind anv_descriptor_set so it fills up the
1921 * descriptors[0] field. */
1922 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1923
1924 /** True if the descriptor set buffer has been referenced by a draw or
1925 * dispatch command.
1926 */
1927 bool set_used_on_gpu;
1928
1929 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1930 };
1931
1932 struct anv_descriptor_pool {
1933 uint32_t size;
1934 uint32_t next;
1935 uint32_t free_list;
1936
1937 struct anv_bo *bo;
1938 struct util_vma_heap bo_heap;
1939
1940 struct anv_state_stream surface_state_stream;
1941 void *surface_state_free_list;
1942
1943 struct list_head desc_sets;
1944
1945 char data[0];
1946 };
1947
1948 enum anv_descriptor_template_entry_type {
1949 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1950 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1951 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1952 };
1953
1954 struct anv_descriptor_template_entry {
1955 /* The type of descriptor in this entry */
1956 VkDescriptorType type;
1957
1958 /* Binding in the descriptor set */
1959 uint32_t binding;
1960
1961 /* Offset at which to write into the descriptor set binding */
1962 uint32_t array_element;
1963
1964 /* Number of elements to write into the descriptor set binding */
1965 uint32_t array_count;
1966
1967 /* Offset into the user provided data */
1968 size_t offset;
1969
1970 /* Stride between elements into the user provided data */
1971 size_t stride;
1972 };
1973
1974 struct anv_descriptor_update_template {
1975 VkPipelineBindPoint bind_point;
1976
1977 /* The descriptor set this template corresponds to. This value is only
1978 * valid if the template was created with the templateType
1979 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1980 */
1981 uint8_t set;
1982
1983 /* Number of entries in this template */
1984 uint32_t entry_count;
1985
1986 /* Entries of the template */
1987 struct anv_descriptor_template_entry entries[0];
1988 };
1989
1990 size_t
1991 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1992
1993 void
1994 anv_descriptor_set_write_image_view(struct anv_device *device,
1995 struct anv_descriptor_set *set,
1996 const VkDescriptorImageInfo * const info,
1997 VkDescriptorType type,
1998 uint32_t binding,
1999 uint32_t element);
2000
2001 void
2002 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2003 struct anv_descriptor_set *set,
2004 VkDescriptorType type,
2005 struct anv_buffer_view *buffer_view,
2006 uint32_t binding,
2007 uint32_t element);
2008
2009 void
2010 anv_descriptor_set_write_buffer(struct anv_device *device,
2011 struct anv_descriptor_set *set,
2012 struct anv_state_stream *alloc_stream,
2013 VkDescriptorType type,
2014 struct anv_buffer *buffer,
2015 uint32_t binding,
2016 uint32_t element,
2017 VkDeviceSize offset,
2018 VkDeviceSize range);
2019 void
2020 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2021 struct anv_descriptor_set *set,
2022 uint32_t binding,
2023 const void *data,
2024 size_t offset,
2025 size_t size);
2026
2027 void
2028 anv_descriptor_set_write_template(struct anv_device *device,
2029 struct anv_descriptor_set *set,
2030 struct anv_state_stream *alloc_stream,
2031 const struct anv_descriptor_update_template *template,
2032 const void *data);
2033
2034 VkResult
2035 anv_descriptor_set_create(struct anv_device *device,
2036 struct anv_descriptor_pool *pool,
2037 struct anv_descriptor_set_layout *layout,
2038 struct anv_descriptor_set **out_set);
2039
2040 void
2041 anv_descriptor_set_destroy(struct anv_device *device,
2042 struct anv_descriptor_pool *pool,
2043 struct anv_descriptor_set *set);
2044
2045 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2046 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2047 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2048 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2049 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2050 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2051
2052 struct anv_pipeline_binding {
2053 /** Index in the descriptor set
2054 *
2055 * This is a flattened index; the descriptor set layout is already taken
2056 * into account.
2057 */
2058 uint32_t index;
2059
2060 /** The descriptor set this surface corresponds to.
2061 *
2062 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2063 * binding is not a normal descriptor set but something else.
2064 */
2065 uint8_t set;
2066
2067 union {
2068 /** Plane in the binding index for images */
2069 uint8_t plane;
2070
2071 /** Input attachment index (relative to the subpass) */
2072 uint8_t input_attachment_index;
2073
2074 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2075 uint8_t dynamic_offset_index;
2076 };
2077
2078 /** For a storage image, whether it is write-only */
2079 uint8_t write_only;
2080
2081 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2082 * assuming POD zero-initialization.
2083 */
2084 uint8_t pad;
2085 };
2086
2087 struct anv_push_range {
2088 /** Index in the descriptor set */
2089 uint32_t index;
2090
2091 /** Descriptor set index */
2092 uint8_t set;
2093
2094 /** Dynamic offset index (for dynamic UBOs) */
2095 uint8_t dynamic_offset_index;
2096
2097 /** Start offset in units of 32B */
2098 uint8_t start;
2099
2100 /** Range in units of 32B */
2101 uint8_t length;
2102 };
2103
2104 struct anv_pipeline_layout {
2105 struct {
2106 struct anv_descriptor_set_layout *layout;
2107 uint32_t dynamic_offset_start;
2108 } set[MAX_SETS];
2109
2110 uint32_t num_sets;
2111
2112 unsigned char sha1[20];
2113 };
2114
2115 struct anv_buffer {
2116 struct anv_device * device;
2117 VkDeviceSize size;
2118
2119 VkBufferUsageFlags usage;
2120
2121 /* Set when bound */
2122 struct anv_address address;
2123 };
2124
2125 static inline uint64_t
2126 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2127 {
2128 assert(offset <= buffer->size);
2129 if (range == VK_WHOLE_SIZE) {
2130 return buffer->size - offset;
2131 } else {
2132 assert(range + offset >= range);
2133 assert(range + offset <= buffer->size);
2134 return range;
2135 }
2136 }
2137
2138 enum anv_cmd_dirty_bits {
2139 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2140 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2141 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2142 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2143 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2144 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2145 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2146 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2147 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2148 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2149 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2150 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2151 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2152 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2153 };
2154 typedef uint32_t anv_cmd_dirty_mask_t;
2155
2156 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2157 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2158 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2159 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2160 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2161 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2162 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2163 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2164 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2165 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2166 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2167
2168 static inline enum anv_cmd_dirty_bits
2169 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2170 {
2171 switch (vk_state) {
2172 case VK_DYNAMIC_STATE_VIEWPORT:
2173 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2174 case VK_DYNAMIC_STATE_SCISSOR:
2175 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2176 case VK_DYNAMIC_STATE_LINE_WIDTH:
2177 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2178 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2179 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2180 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2181 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2182 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2183 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2184 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2185 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2186 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2187 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2188 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2189 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2190 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2191 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2192 default:
2193 assert(!"Unsupported dynamic state");
2194 return 0;
2195 }
2196 }
2197
2198
2199 enum anv_pipe_bits {
2200 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2201 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2202 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2203 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2204 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2205 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2206 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2207 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2208 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2209 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2210 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2211 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2212
2213 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2214 * a flush has happened but not a CS stall. The next time we do any sort
2215 * of invalidation we need to insert a CS stall at that time. Otherwise,
2216 * we would have to CS stall on every flush which could be bad.
2217 */
2218 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2219
2220 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2221 * target operations related to transfer commands with VkBuffer as
2222 * destination are ongoing. Some operations like copies on the command
2223 * streamer might need to be aware of this to trigger the appropriate stall
2224 * before they can proceed with the copy.
2225 */
2226 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2227 };
2228
2229 #define ANV_PIPE_FLUSH_BITS ( \
2230 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2231 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2232 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2233 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2234
2235 #define ANV_PIPE_STALL_BITS ( \
2236 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2237 ANV_PIPE_DEPTH_STALL_BIT | \
2238 ANV_PIPE_CS_STALL_BIT)
2239
2240 #define ANV_PIPE_INVALIDATE_BITS ( \
2241 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2242 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2243 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2244 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2245 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2246 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2247
2248 static inline enum anv_pipe_bits
2249 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2250 {
2251 enum anv_pipe_bits pipe_bits = 0;
2252
2253 unsigned b;
2254 for_each_bit(b, flags) {
2255 switch ((VkAccessFlagBits)(1 << b)) {
2256 case VK_ACCESS_SHADER_WRITE_BIT:
2257 /* We're transitioning a buffer that was previously used as write
2258 * destination through the data port. To make its content available
2259 * to future operations, flush the data cache.
2260 */
2261 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2262 break;
2263 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2264 /* We're transitioning a buffer that was previously used as render
2265 * target. To make its content available to future operations, flush
2266 * the render target cache.
2267 */
2268 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2269 break;
2270 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2271 /* We're transitioning a buffer that was previously used as depth
2272 * buffer. To make its content available to future operations, flush
2273 * the depth cache.
2274 */
2275 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2276 break;
2277 case VK_ACCESS_TRANSFER_WRITE_BIT:
2278 /* We're transitioning a buffer that was previously used as a
2279 * transfer write destination. Generic write operations include color
2280 * & depth operations as well as buffer operations like :
2281 * - vkCmdClearColorImage()
2282 * - vkCmdClearDepthStencilImage()
2283 * - vkCmdBlitImage()
2284 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2285 *
2286 * Most of these operations are implemented using Blorp which writes
2287 * through the render target, so flush that cache to make it visible
2288 * to future operations. And for depth related operations we also
2289 * need to flush the depth cache.
2290 */
2291 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2292 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2293 break;
2294 case VK_ACCESS_MEMORY_WRITE_BIT:
2295 /* We're transitioning a buffer for generic write operations. Flush
2296 * all the caches.
2297 */
2298 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2299 break;
2300 default:
2301 break; /* Nothing to do */
2302 }
2303 }
2304
2305 return pipe_bits;
2306 }
2307
2308 static inline enum anv_pipe_bits
2309 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2310 {
2311 enum anv_pipe_bits pipe_bits = 0;
2312
2313 unsigned b;
2314 for_each_bit(b, flags) {
2315 switch ((VkAccessFlagBits)(1 << b)) {
2316 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2317 /* Indirect draw commands take a buffer as input that we're going to
2318 * read from the command streamer to load some of the HW registers
2319 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2320 * command streamer stall so that all the cache flushes have
2321 * completed before the command streamer loads from memory.
2322 */
2323 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2324 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2325 * through a vertex buffer, so invalidate that cache.
2326 */
2327 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2328 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2329 * UBO from the buffer, so we need to invalidate constant cache.
2330 */
2331 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2332 break;
2333 case VK_ACCESS_INDEX_READ_BIT:
2334 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2335 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2336 * commands, so we invalidate the VF cache to make sure there is no
2337 * stale data when we start rendering.
2338 */
2339 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2340 break;
2341 case VK_ACCESS_UNIFORM_READ_BIT:
2342 /* We transitioning a buffer to be used as uniform data. Because
2343 * uniform is accessed through the data port & sampler, we need to
2344 * invalidate the texture cache (sampler) & constant cache (data
2345 * port) to avoid stale data.
2346 */
2347 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2348 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2349 break;
2350 case VK_ACCESS_SHADER_READ_BIT:
2351 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2352 case VK_ACCESS_TRANSFER_READ_BIT:
2353 /* Transitioning a buffer to be read through the sampler, so
2354 * invalidate the texture cache, we don't want any stale data.
2355 */
2356 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2357 break;
2358 case VK_ACCESS_MEMORY_READ_BIT:
2359 /* Transitioning a buffer for generic read, invalidate all the
2360 * caches.
2361 */
2362 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2363 break;
2364 case VK_ACCESS_MEMORY_WRITE_BIT:
2365 /* Generic write, make sure all previously written things land in
2366 * memory.
2367 */
2368 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2369 break;
2370 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2371 /* Transitioning a buffer for conditional rendering. We'll load the
2372 * content of this buffer into HW registers using the command
2373 * streamer, so we need to stall the command streamer to make sure
2374 * any in-flight flush operations have completed.
2375 */
2376 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2377 break;
2378 default:
2379 break; /* Nothing to do */
2380 }
2381 }
2382
2383 return pipe_bits;
2384 }
2385
2386 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2387 VK_IMAGE_ASPECT_COLOR_BIT | \
2388 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2389 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2390 VK_IMAGE_ASPECT_PLANE_2_BIT)
2391 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2392 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2393 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2394 VK_IMAGE_ASPECT_PLANE_2_BIT)
2395
2396 struct anv_vertex_binding {
2397 struct anv_buffer * buffer;
2398 VkDeviceSize offset;
2399 };
2400
2401 struct anv_xfb_binding {
2402 struct anv_buffer * buffer;
2403 VkDeviceSize offset;
2404 VkDeviceSize size;
2405 };
2406
2407 struct anv_push_constants {
2408 /** Push constant data provided by the client through vkPushConstants */
2409 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2410
2411 /** Dynamic offsets for dynamic UBOs and SSBOs */
2412 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2413
2414 struct {
2415 /** Base workgroup ID
2416 *
2417 * Used for vkCmdDispatchBase.
2418 */
2419 uint32_t base_work_group_id[3];
2420
2421 /** Subgroup ID
2422 *
2423 * This is never set by software but is implicitly filled out when
2424 * uploading the push constants for compute shaders.
2425 */
2426 uint32_t subgroup_id;
2427
2428 /** Pad out to a multiple of 32 bytes */
2429 uint32_t pad[4];
2430 } cs;
2431 };
2432
2433 struct anv_dynamic_state {
2434 struct {
2435 uint32_t count;
2436 VkViewport viewports[MAX_VIEWPORTS];
2437 } viewport;
2438
2439 struct {
2440 uint32_t count;
2441 VkRect2D scissors[MAX_SCISSORS];
2442 } scissor;
2443
2444 float line_width;
2445
2446 struct {
2447 float bias;
2448 float clamp;
2449 float slope;
2450 } depth_bias;
2451
2452 float blend_constants[4];
2453
2454 struct {
2455 float min;
2456 float max;
2457 } depth_bounds;
2458
2459 struct {
2460 uint32_t front;
2461 uint32_t back;
2462 } stencil_compare_mask;
2463
2464 struct {
2465 uint32_t front;
2466 uint32_t back;
2467 } stencil_write_mask;
2468
2469 struct {
2470 uint32_t front;
2471 uint32_t back;
2472 } stencil_reference;
2473
2474 struct {
2475 uint32_t factor;
2476 uint16_t pattern;
2477 } line_stipple;
2478 };
2479
2480 extern const struct anv_dynamic_state default_dynamic_state;
2481
2482 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2483 const struct anv_dynamic_state *src,
2484 uint32_t copy_mask);
2485
2486 struct anv_surface_state {
2487 struct anv_state state;
2488 /** Address of the surface referred to by this state
2489 *
2490 * This address is relative to the start of the BO.
2491 */
2492 struct anv_address address;
2493 /* Address of the aux surface, if any
2494 *
2495 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2496 *
2497 * With the exception of gen8, the bottom 12 bits of this address' offset
2498 * include extra aux information.
2499 */
2500 struct anv_address aux_address;
2501 /* Address of the clear color, if any
2502 *
2503 * This address is relative to the start of the BO.
2504 */
2505 struct anv_address clear_address;
2506 };
2507
2508 /**
2509 * Attachment state when recording a renderpass instance.
2510 *
2511 * The clear value is valid only if there exists a pending clear.
2512 */
2513 struct anv_attachment_state {
2514 enum isl_aux_usage aux_usage;
2515 enum isl_aux_usage input_aux_usage;
2516 struct anv_surface_state color;
2517 struct anv_surface_state input;
2518
2519 VkImageLayout current_layout;
2520 VkImageLayout current_stencil_layout;
2521 VkImageAspectFlags pending_clear_aspects;
2522 VkImageAspectFlags pending_load_aspects;
2523 bool fast_clear;
2524 VkClearValue clear_value;
2525 bool clear_color_is_zero_one;
2526 bool clear_color_is_zero;
2527
2528 /* When multiview is active, attachments with a renderpass clear
2529 * operation have their respective layers cleared on the first
2530 * subpass that uses them, and only in that subpass. We keep track
2531 * of this using a bitfield to indicate which layers of an attachment
2532 * have not been cleared yet when multiview is active.
2533 */
2534 uint32_t pending_clear_views;
2535 struct anv_image_view * image_view;
2536 };
2537
2538 /** State tracking for vertex buffer flushes
2539 *
2540 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2541 * addresses. If you happen to have two vertex buffers which get placed
2542 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2543 * collisions. In order to solve this problem, we track vertex address ranges
2544 * which are live in the cache and invalidate the cache if one ever exceeds 32
2545 * bits.
2546 */
2547 struct anv_vb_cache_range {
2548 /* Virtual address at which the live vertex buffer cache range starts for
2549 * this vertex buffer index.
2550 */
2551 uint64_t start;
2552
2553 /* Virtual address of the byte after where vertex buffer cache range ends.
2554 * This is exclusive such that end - start is the size of the range.
2555 */
2556 uint64_t end;
2557 };
2558
2559 /** State tracking for particular pipeline bind point
2560 *
2561 * This struct is the base struct for anv_cmd_graphics_state and
2562 * anv_cmd_compute_state. These are used to track state which is bound to a
2563 * particular type of pipeline. Generic state that applies per-stage such as
2564 * binding table offsets and push constants is tracked generically with a
2565 * per-stage array in anv_cmd_state.
2566 */
2567 struct anv_cmd_pipeline_state {
2568 struct anv_pipeline *pipeline;
2569
2570 struct anv_descriptor_set *descriptors[MAX_SETS];
2571 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2572 };
2573
2574 /** State tracking for graphics pipeline
2575 *
2576 * This has anv_cmd_pipeline_state as a base struct to track things which get
2577 * bound to a graphics pipeline. Along with general pipeline bind point state
2578 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2579 * state which is graphics-specific.
2580 */
2581 struct anv_cmd_graphics_state {
2582 struct anv_cmd_pipeline_state base;
2583
2584 anv_cmd_dirty_mask_t dirty;
2585 uint32_t vb_dirty;
2586
2587 struct anv_vb_cache_range ib_bound_range;
2588 struct anv_vb_cache_range ib_dirty_range;
2589 struct anv_vb_cache_range vb_bound_ranges[33];
2590 struct anv_vb_cache_range vb_dirty_ranges[33];
2591
2592 struct anv_dynamic_state dynamic;
2593
2594 struct {
2595 struct anv_buffer *index_buffer;
2596 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2597 uint32_t index_offset;
2598 } gen7;
2599 };
2600
2601 /** State tracking for compute pipeline
2602 *
2603 * This has anv_cmd_pipeline_state as a base struct to track things which get
2604 * bound to a compute pipeline. Along with general pipeline bind point state
2605 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2606 * state which is compute-specific.
2607 */
2608 struct anv_cmd_compute_state {
2609 struct anv_cmd_pipeline_state base;
2610
2611 bool pipeline_dirty;
2612
2613 struct anv_address num_workgroups;
2614 };
2615
2616 /** State required while building cmd buffer */
2617 struct anv_cmd_state {
2618 /* PIPELINE_SELECT.PipelineSelection */
2619 uint32_t current_pipeline;
2620 const struct gen_l3_config * current_l3_config;
2621 uint32_t last_aux_map_state;
2622
2623 struct anv_cmd_graphics_state gfx;
2624 struct anv_cmd_compute_state compute;
2625
2626 enum anv_pipe_bits pending_pipe_bits;
2627 VkShaderStageFlags descriptors_dirty;
2628 VkShaderStageFlags push_constants_dirty;
2629
2630 struct anv_framebuffer * framebuffer;
2631 struct anv_render_pass * pass;
2632 struct anv_subpass * subpass;
2633 VkRect2D render_area;
2634 uint32_t restart_index;
2635 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2636 bool xfb_enabled;
2637 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2638 VkShaderStageFlags push_constant_stages;
2639 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2640 struct anv_state binding_tables[MESA_SHADER_STAGES];
2641 struct anv_state samplers[MESA_SHADER_STAGES];
2642
2643 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2644 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2645 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2646
2647 /**
2648 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2649 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2650 * and before invoking the secondary in ExecuteCommands.
2651 */
2652 bool pma_fix_enabled;
2653
2654 /**
2655 * Whether or not we know for certain that HiZ is enabled for the current
2656 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2657 * enabled or not, this will be false.
2658 */
2659 bool hiz_enabled;
2660
2661 bool conditional_render_enabled;
2662
2663 /**
2664 * Last rendering scale argument provided to
2665 * genX(cmd_buffer_emit_hashing_mode)().
2666 */
2667 unsigned current_hash_scale;
2668
2669 /**
2670 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2671 * valid only when recording a render pass instance.
2672 */
2673 struct anv_attachment_state * attachments;
2674
2675 /**
2676 * Surface states for color render targets. These are stored in a single
2677 * flat array. For depth-stencil attachments, the surface state is simply
2678 * left blank.
2679 */
2680 struct anv_state render_pass_states;
2681
2682 /**
2683 * A null surface state of the right size to match the framebuffer. This
2684 * is one of the states in render_pass_states.
2685 */
2686 struct anv_state null_surface_state;
2687 };
2688
2689 struct anv_cmd_pool {
2690 VkAllocationCallbacks alloc;
2691 struct list_head cmd_buffers;
2692 };
2693
2694 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2695
2696 enum anv_cmd_buffer_exec_mode {
2697 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2698 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2699 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2700 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2701 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2702 };
2703
2704 struct anv_cmd_buffer {
2705 VK_LOADER_DATA _loader_data;
2706
2707 struct anv_device * device;
2708
2709 struct anv_cmd_pool * pool;
2710 struct list_head pool_link;
2711
2712 struct anv_batch batch;
2713
2714 /* Fields required for the actual chain of anv_batch_bo's.
2715 *
2716 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2717 */
2718 struct list_head batch_bos;
2719 enum anv_cmd_buffer_exec_mode exec_mode;
2720
2721 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2722 * referenced by this command buffer
2723 *
2724 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2725 */
2726 struct u_vector seen_bbos;
2727
2728 /* A vector of int32_t's for every block of binding tables.
2729 *
2730 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2731 */
2732 struct u_vector bt_block_states;
2733 struct anv_state bt_next;
2734
2735 struct anv_reloc_list surface_relocs;
2736 /** Last seen surface state block pool center bo offset */
2737 uint32_t last_ss_pool_center;
2738
2739 /* Serial for tracking buffer completion */
2740 uint32_t serial;
2741
2742 /* Stream objects for storing temporary data */
2743 struct anv_state_stream surface_state_stream;
2744 struct anv_state_stream dynamic_state_stream;
2745
2746 VkCommandBufferUsageFlags usage_flags;
2747 VkCommandBufferLevel level;
2748
2749 struct anv_cmd_state state;
2750
2751 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2752 uint64_t intel_perf_marker;
2753 };
2754
2755 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2756 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2757 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2758 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2759 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2760 struct anv_cmd_buffer *secondary);
2761 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2762 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2763 struct anv_cmd_buffer *cmd_buffer,
2764 const VkSemaphore *in_semaphores,
2765 const uint64_t *in_wait_values,
2766 uint32_t num_in_semaphores,
2767 const VkSemaphore *out_semaphores,
2768 const uint64_t *out_signal_values,
2769 uint32_t num_out_semaphores,
2770 VkFence fence);
2771
2772 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2773
2774 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2775 const void *data, uint32_t size, uint32_t alignment);
2776 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2777 uint32_t *a, uint32_t *b,
2778 uint32_t dwords, uint32_t alignment);
2779
2780 struct anv_address
2781 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2782 struct anv_state
2783 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2784 uint32_t entries, uint32_t *state_offset);
2785 struct anv_state
2786 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2787 struct anv_state
2788 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2789 uint32_t size, uint32_t alignment);
2790
2791 VkResult
2792 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2793
2794 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2795 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2796 bool depth_clamp_enable);
2797 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2798
2799 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2800 struct anv_render_pass *pass,
2801 struct anv_framebuffer *framebuffer,
2802 const VkClearValue *clear_values);
2803
2804 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2805
2806 struct anv_state
2807 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2808 gl_shader_stage stage);
2809 struct anv_state
2810 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2811
2812 const struct anv_image_view *
2813 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2814
2815 VkResult
2816 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2817 uint32_t num_entries,
2818 uint32_t *state_offset,
2819 struct anv_state *bt_state);
2820
2821 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2822
2823 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2824
2825 enum anv_fence_type {
2826 ANV_FENCE_TYPE_NONE = 0,
2827 ANV_FENCE_TYPE_BO,
2828 ANV_FENCE_TYPE_WSI_BO,
2829 ANV_FENCE_TYPE_SYNCOBJ,
2830 ANV_FENCE_TYPE_WSI,
2831 };
2832
2833 enum anv_bo_fence_state {
2834 /** Indicates that this is a new (or newly reset fence) */
2835 ANV_BO_FENCE_STATE_RESET,
2836
2837 /** Indicates that this fence has been submitted to the GPU but is still
2838 * (as far as we know) in use by the GPU.
2839 */
2840 ANV_BO_FENCE_STATE_SUBMITTED,
2841
2842 ANV_BO_FENCE_STATE_SIGNALED,
2843 };
2844
2845 struct anv_fence_impl {
2846 enum anv_fence_type type;
2847
2848 union {
2849 /** Fence implementation for BO fences
2850 *
2851 * These fences use a BO and a set of CPU-tracked state flags. The BO
2852 * is added to the object list of the last execbuf call in a QueueSubmit
2853 * and is marked EXEC_WRITE. The state flags track when the BO has been
2854 * submitted to the kernel. We need to do this because Vulkan lets you
2855 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2856 * will say it's idle in this case.
2857 */
2858 struct {
2859 struct anv_bo *bo;
2860 enum anv_bo_fence_state state;
2861 } bo;
2862
2863 /** DRM syncobj handle for syncobj-based fences */
2864 uint32_t syncobj;
2865
2866 /** WSI fence */
2867 struct wsi_fence *fence_wsi;
2868 };
2869 };
2870
2871 struct anv_fence {
2872 /* Permanent fence state. Every fence has some form of permanent state
2873 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2874 * cross-process fences) or it could just be a dummy for use internally.
2875 */
2876 struct anv_fence_impl permanent;
2877
2878 /* Temporary fence state. A fence *may* have temporary state. That state
2879 * is added to the fence by an import operation and is reset back to
2880 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2881 * state cannot be signaled because the fence must already be signaled
2882 * before the temporary state can be exported from the fence in the other
2883 * process and imported here.
2884 */
2885 struct anv_fence_impl temporary;
2886 };
2887
2888 void anv_fence_reset_temporary(struct anv_device *device,
2889 struct anv_fence *fence);
2890
2891 struct anv_event {
2892 uint64_t semaphore;
2893 struct anv_state state;
2894 };
2895
2896 enum anv_semaphore_type {
2897 ANV_SEMAPHORE_TYPE_NONE = 0,
2898 ANV_SEMAPHORE_TYPE_DUMMY,
2899 ANV_SEMAPHORE_TYPE_BO,
2900 ANV_SEMAPHORE_TYPE_WSI_BO,
2901 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2902 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2903 ANV_SEMAPHORE_TYPE_TIMELINE,
2904 };
2905
2906 struct anv_timeline_point {
2907 struct list_head link;
2908
2909 uint64_t serial;
2910
2911 /* Number of waiter on this point, when > 0 the point should not be garbage
2912 * collected.
2913 */
2914 int waiting;
2915
2916 /* BO used for synchronization. */
2917 struct anv_bo *bo;
2918 };
2919
2920 struct anv_timeline {
2921 pthread_mutex_t mutex;
2922 pthread_cond_t cond;
2923
2924 uint64_t highest_past;
2925 uint64_t highest_pending;
2926
2927 struct list_head points;
2928 struct list_head free_points;
2929 };
2930
2931 struct anv_semaphore_impl {
2932 enum anv_semaphore_type type;
2933
2934 union {
2935 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
2936 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
2937 * object list on any execbuf2 calls for which this semaphore is used as
2938 * a wait or signal fence. When used as a signal fence or when type ==
2939 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
2940 */
2941 struct anv_bo *bo;
2942
2943 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2944 * If the semaphore is in the unsignaled state due to either just being
2945 * created or because it has been used for a wait, fd will be -1.
2946 */
2947 int fd;
2948
2949 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2950 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2951 * import so we don't need to bother with a userspace cache.
2952 */
2953 uint32_t syncobj;
2954
2955 /* Non shareable timeline semaphore
2956 *
2957 * Used when kernel don't have support for timeline semaphores.
2958 */
2959 struct anv_timeline timeline;
2960 };
2961 };
2962
2963 struct anv_semaphore {
2964 uint32_t refcount;
2965
2966 /* Permanent semaphore state. Every semaphore has some form of permanent
2967 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2968 * (for cross-process semaphores0 or it could just be a dummy for use
2969 * internally.
2970 */
2971 struct anv_semaphore_impl permanent;
2972
2973 /* Temporary semaphore state. A semaphore *may* have temporary state.
2974 * That state is added to the semaphore by an import operation and is reset
2975 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2976 * semaphore with temporary state cannot be signaled because the semaphore
2977 * must already be signaled before the temporary state can be exported from
2978 * the semaphore in the other process and imported here.
2979 */
2980 struct anv_semaphore_impl temporary;
2981 };
2982
2983 void anv_semaphore_reset_temporary(struct anv_device *device,
2984 struct anv_semaphore *semaphore);
2985
2986 struct anv_shader_module {
2987 unsigned char sha1[20];
2988 uint32_t size;
2989 char data[0];
2990 };
2991
2992 static inline gl_shader_stage
2993 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2994 {
2995 assert(__builtin_popcount(vk_stage) == 1);
2996 return ffs(vk_stage) - 1;
2997 }
2998
2999 static inline VkShaderStageFlagBits
3000 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3001 {
3002 return (1 << mesa_stage);
3003 }
3004
3005 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3006
3007 #define anv_foreach_stage(stage, stage_bits) \
3008 for (gl_shader_stage stage, \
3009 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3010 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3011 __tmp &= ~(1 << (stage)))
3012
3013 struct anv_pipeline_bind_map {
3014 unsigned char surface_sha1[20];
3015 unsigned char sampler_sha1[20];
3016 unsigned char push_sha1[20];
3017
3018 uint32_t surface_count;
3019 uint32_t sampler_count;
3020
3021 struct anv_pipeline_binding * surface_to_descriptor;
3022 struct anv_pipeline_binding * sampler_to_descriptor;
3023
3024 struct anv_push_range push_ranges[4];
3025 };
3026
3027 struct anv_shader_bin_key {
3028 uint32_t size;
3029 uint8_t data[0];
3030 };
3031
3032 struct anv_shader_bin {
3033 uint32_t ref_cnt;
3034
3035 const struct anv_shader_bin_key *key;
3036
3037 struct anv_state kernel;
3038 uint32_t kernel_size;
3039
3040 struct anv_state constant_data;
3041 uint32_t constant_data_size;
3042
3043 const struct brw_stage_prog_data *prog_data;
3044 uint32_t prog_data_size;
3045
3046 struct brw_compile_stats stats[3];
3047 uint32_t num_stats;
3048
3049 struct nir_xfb_info *xfb_info;
3050
3051 struct anv_pipeline_bind_map bind_map;
3052 };
3053
3054 struct anv_shader_bin *
3055 anv_shader_bin_create(struct anv_device *device,
3056 const void *key, uint32_t key_size,
3057 const void *kernel, uint32_t kernel_size,
3058 const void *constant_data, uint32_t constant_data_size,
3059 const struct brw_stage_prog_data *prog_data,
3060 uint32_t prog_data_size, const void *prog_data_param,
3061 const struct brw_compile_stats *stats, uint32_t num_stats,
3062 const struct nir_xfb_info *xfb_info,
3063 const struct anv_pipeline_bind_map *bind_map);
3064
3065 void
3066 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3067
3068 static inline void
3069 anv_shader_bin_ref(struct anv_shader_bin *shader)
3070 {
3071 assert(shader && shader->ref_cnt >= 1);
3072 p_atomic_inc(&shader->ref_cnt);
3073 }
3074
3075 static inline void
3076 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3077 {
3078 assert(shader && shader->ref_cnt >= 1);
3079 if (p_atomic_dec_zero(&shader->ref_cnt))
3080 anv_shader_bin_destroy(device, shader);
3081 }
3082
3083 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3084 #define MAX_PIPELINE_EXECUTABLES 7
3085
3086 struct anv_pipeline_executable {
3087 gl_shader_stage stage;
3088
3089 struct brw_compile_stats stats;
3090
3091 char *nir;
3092 char *disasm;
3093 };
3094
3095 struct anv_pipeline {
3096 struct anv_device * device;
3097 struct anv_batch batch;
3098 uint32_t batch_data[512];
3099 struct anv_reloc_list batch_relocs;
3100 anv_cmd_dirty_mask_t dynamic_state_mask;
3101 struct anv_dynamic_state dynamic_state;
3102
3103 void * mem_ctx;
3104
3105 VkPipelineCreateFlags flags;
3106 struct anv_subpass * subpass;
3107
3108 bool needs_data_cache;
3109
3110 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3111
3112 uint32_t num_executables;
3113 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3114
3115 struct {
3116 const struct gen_l3_config * l3_config;
3117 uint32_t total_size;
3118 } urb;
3119
3120 VkShaderStageFlags active_stages;
3121 struct anv_state blend_state;
3122
3123 uint32_t vb_used;
3124 struct anv_pipeline_vertex_binding {
3125 uint32_t stride;
3126 bool instanced;
3127 uint32_t instance_divisor;
3128 } vb[MAX_VBS];
3129
3130 uint8_t xfb_used;
3131
3132 bool primitive_restart;
3133 uint32_t topology;
3134
3135 uint32_t cs_right_mask;
3136
3137 bool writes_depth;
3138 bool depth_test_enable;
3139 bool writes_stencil;
3140 bool stencil_test_enable;
3141 bool depth_clamp_enable;
3142 bool depth_clip_enable;
3143 bool sample_shading_enable;
3144 bool kill_pixel;
3145 bool depth_bounds_test_enable;
3146
3147 struct {
3148 uint32_t sf[7];
3149 uint32_t depth_stencil_state[3];
3150 } gen7;
3151
3152 struct {
3153 uint32_t sf[4];
3154 uint32_t raster[5];
3155 uint32_t wm_depth_stencil[3];
3156 } gen8;
3157
3158 struct {
3159 uint32_t wm_depth_stencil[4];
3160 } gen9;
3161
3162 uint32_t interface_descriptor_data[8];
3163 };
3164
3165 static inline bool
3166 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3167 gl_shader_stage stage)
3168 {
3169 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3170 }
3171
3172 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3173 static inline const struct brw_##prefix##_prog_data * \
3174 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3175 { \
3176 if (anv_pipeline_has_stage(pipeline, stage)) { \
3177 return (const struct brw_##prefix##_prog_data *) \
3178 pipeline->shaders[stage]->prog_data; \
3179 } else { \
3180 return NULL; \
3181 } \
3182 }
3183
3184 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3185 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3186 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3187 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3188 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3189 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3190
3191 static inline const struct brw_vue_prog_data *
3192 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3193 {
3194 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3195 return &get_gs_prog_data(pipeline)->base;
3196 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3197 return &get_tes_prog_data(pipeline)->base;
3198 else
3199 return &get_vs_prog_data(pipeline)->base;
3200 }
3201
3202 VkResult
3203 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3204 struct anv_pipeline_cache *cache,
3205 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3206 const VkAllocationCallbacks *alloc);
3207
3208 VkResult
3209 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3210 struct anv_pipeline_cache *cache,
3211 const VkComputePipelineCreateInfo *info,
3212 const struct anv_shader_module *module,
3213 const char *entrypoint,
3214 const VkSpecializationInfo *spec_info);
3215
3216 struct anv_format_plane {
3217 enum isl_format isl_format:16;
3218 struct isl_swizzle swizzle;
3219
3220 /* Whether this plane contains chroma channels */
3221 bool has_chroma;
3222
3223 /* For downscaling of YUV planes */
3224 uint8_t denominator_scales[2];
3225
3226 /* How to map sampled ycbcr planes to a single 4 component element. */
3227 struct isl_swizzle ycbcr_swizzle;
3228
3229 /* What aspect is associated to this plane */
3230 VkImageAspectFlags aspect;
3231 };
3232
3233
3234 struct anv_format {
3235 struct anv_format_plane planes[3];
3236 VkFormat vk_format;
3237 uint8_t n_planes;
3238 bool can_ycbcr;
3239 };
3240
3241 static inline uint32_t
3242 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3243 VkImageAspectFlags aspect_mask)
3244 {
3245 switch (aspect_mask) {
3246 case VK_IMAGE_ASPECT_COLOR_BIT:
3247 case VK_IMAGE_ASPECT_DEPTH_BIT:
3248 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3249 return 0;
3250 case VK_IMAGE_ASPECT_STENCIL_BIT:
3251 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3252 return 0;
3253 /* Fall-through */
3254 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3255 return 1;
3256 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3257 return 2;
3258 default:
3259 /* Purposefully assert with depth/stencil aspects. */
3260 unreachable("invalid image aspect");
3261 }
3262 }
3263
3264 static inline VkImageAspectFlags
3265 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3266 uint32_t plane)
3267 {
3268 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3269 if (util_bitcount(image_aspects) > 1)
3270 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3271 return VK_IMAGE_ASPECT_COLOR_BIT;
3272 }
3273 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3274 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3275 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3276 return VK_IMAGE_ASPECT_STENCIL_BIT;
3277 }
3278
3279 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3280 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3281
3282 const struct anv_format *
3283 anv_get_format(VkFormat format);
3284
3285 static inline uint32_t
3286 anv_get_format_planes(VkFormat vk_format)
3287 {
3288 const struct anv_format *format = anv_get_format(vk_format);
3289
3290 return format != NULL ? format->n_planes : 0;
3291 }
3292
3293 struct anv_format_plane
3294 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3295 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3296
3297 static inline enum isl_format
3298 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3299 VkImageAspectFlags aspect, VkImageTiling tiling)
3300 {
3301 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3302 }
3303
3304 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3305 VkImageCreateFlags create_flags,
3306 VkFormat vk_format,
3307 VkImageTiling vk_tiling,
3308 const VkImageFormatListCreateInfoKHR *fmt_list);
3309
3310 static inline struct isl_swizzle
3311 anv_swizzle_for_render(struct isl_swizzle swizzle)
3312 {
3313 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3314 * RGB as RGBA for texturing
3315 */
3316 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3317 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3318
3319 /* But it doesn't matter what we render to that channel */
3320 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3321
3322 return swizzle;
3323 }
3324
3325 void
3326 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3327
3328 /**
3329 * Subsurface of an anv_image.
3330 */
3331 struct anv_surface {
3332 /** Valid only if isl_surf::size_B > 0. */
3333 struct isl_surf isl;
3334
3335 /**
3336 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3337 */
3338 uint32_t offset;
3339 };
3340
3341 struct anv_image {
3342 VkImageType type; /**< VkImageCreateInfo::imageType */
3343 /* The original VkFormat provided by the client. This may not match any
3344 * of the actual surface formats.
3345 */
3346 VkFormat vk_format;
3347 const struct anv_format *format;
3348
3349 VkImageAspectFlags aspects;
3350 VkExtent3D extent;
3351 uint32_t levels;
3352 uint32_t array_size;
3353 uint32_t samples; /**< VkImageCreateInfo::samples */
3354 uint32_t n_planes;
3355 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3356 VkImageUsageFlags stencil_usage;
3357 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3358 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3359
3360 /** True if this is needs to be bound to an appropriately tiled BO.
3361 *
3362 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3363 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3364 * we require a dedicated allocation so that we can know to allocate a
3365 * tiled buffer.
3366 */
3367 bool needs_set_tiling;
3368
3369 /**
3370 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3371 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3372 */
3373 uint64_t drm_format_mod;
3374
3375 VkDeviceSize size;
3376 uint32_t alignment;
3377
3378 /* Whether the image is made of several underlying buffer objects rather a
3379 * single one with different offsets.
3380 */
3381 bool disjoint;
3382
3383 /* All the formats that can be used when creating views of this image
3384 * are CCS_E compatible.
3385 */
3386 bool ccs_e_compatible;
3387
3388 /* Image was created with external format. */
3389 bool external_format;
3390
3391 /**
3392 * Image subsurfaces
3393 *
3394 * For each foo, anv_image::planes[x].surface is valid if and only if
3395 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3396 * to figure the number associated with a given aspect.
3397 *
3398 * The hardware requires that the depth buffer and stencil buffer be
3399 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3400 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3401 * allocate the depth and stencil buffers as separate surfaces in the same
3402 * bo.
3403 *
3404 * Memory layout :
3405 *
3406 * -----------------------
3407 * | surface0 | /|\
3408 * ----------------------- |
3409 * | shadow surface0 | |
3410 * ----------------------- | Plane 0
3411 * | aux surface0 | |
3412 * ----------------------- |
3413 * | fast clear colors0 | \|/
3414 * -----------------------
3415 * | surface1 | /|\
3416 * ----------------------- |
3417 * | shadow surface1 | |
3418 * ----------------------- | Plane 1
3419 * | aux surface1 | |
3420 * ----------------------- |
3421 * | fast clear colors1 | \|/
3422 * -----------------------
3423 * | ... |
3424 * | |
3425 * -----------------------
3426 */
3427 struct {
3428 /**
3429 * Offset of the entire plane (whenever the image is disjoint this is
3430 * set to 0).
3431 */
3432 uint32_t offset;
3433
3434 VkDeviceSize size;
3435 uint32_t alignment;
3436
3437 struct anv_surface surface;
3438
3439 /**
3440 * A surface which shadows the main surface and may have different
3441 * tiling. This is used for sampling using a tiling that isn't supported
3442 * for other operations.
3443 */
3444 struct anv_surface shadow_surface;
3445
3446 /**
3447 * The base aux usage for this image. For color images, this can be
3448 * either CCS_E or CCS_D depending on whether or not we can reliably
3449 * leave CCS on all the time.
3450 */
3451 enum isl_aux_usage aux_usage;
3452
3453 struct anv_surface aux_surface;
3454
3455 /**
3456 * Offset of the fast clear state (used to compute the
3457 * fast_clear_state_offset of the following planes).
3458 */
3459 uint32_t fast_clear_state_offset;
3460
3461 /**
3462 * BO associated with this plane, set when bound.
3463 */
3464 struct anv_address address;
3465
3466 /**
3467 * Address of the main surface used to fill the aux map table. This is
3468 * used at destruction of the image since the Vulkan spec does not
3469 * guarantee that the address.bo field we still be valid at destruction.
3470 */
3471 uint64_t aux_map_surface_address;
3472
3473 /**
3474 * When destroying the image, also free the bo.
3475 * */
3476 bool bo_is_owned;
3477 } planes[3];
3478 };
3479
3480 /* The ordering of this enum is important */
3481 enum anv_fast_clear_type {
3482 /** Image does not have/support any fast-clear blocks */
3483 ANV_FAST_CLEAR_NONE = 0,
3484 /** Image has/supports fast-clear but only to the default value */
3485 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3486 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3487 ANV_FAST_CLEAR_ANY = 2,
3488 };
3489
3490 /* Returns the number of auxiliary buffer levels attached to an image. */
3491 static inline uint8_t
3492 anv_image_aux_levels(const struct anv_image * const image,
3493 VkImageAspectFlagBits aspect)
3494 {
3495 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3496 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3497 return 0;
3498
3499 /* The Gen12 CCS aux surface is represented with only one level. */
3500 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3501 image->planes[plane].surface.isl.levels :
3502 image->planes[plane].aux_surface.isl.levels;
3503 }
3504
3505 /* Returns the number of auxiliary buffer layers attached to an image. */
3506 static inline uint32_t
3507 anv_image_aux_layers(const struct anv_image * const image,
3508 VkImageAspectFlagBits aspect,
3509 const uint8_t miplevel)
3510 {
3511 assert(image);
3512
3513 /* The miplevel must exist in the main buffer. */
3514 assert(miplevel < image->levels);
3515
3516 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3517 /* There are no layers with auxiliary data because the miplevel has no
3518 * auxiliary data.
3519 */
3520 return 0;
3521 } else {
3522 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3523
3524 /* The Gen12 CCS aux surface is represented with only one layer. */
3525 const struct isl_extent4d *aux_logical_level0_px =
3526 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3527 &image->planes[plane].surface.isl.logical_level0_px :
3528 &image->planes[plane].aux_surface.isl.logical_level0_px;
3529
3530 return MAX2(aux_logical_level0_px->array_len,
3531 aux_logical_level0_px->depth >> miplevel);
3532 }
3533 }
3534
3535 static inline struct anv_address
3536 anv_image_get_clear_color_addr(const struct anv_device *device,
3537 const struct anv_image *image,
3538 VkImageAspectFlagBits aspect)
3539 {
3540 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3541
3542 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3543 return anv_address_add(image->planes[plane].address,
3544 image->planes[plane].fast_clear_state_offset);
3545 }
3546
3547 static inline struct anv_address
3548 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3549 const struct anv_image *image,
3550 VkImageAspectFlagBits aspect)
3551 {
3552 struct anv_address addr =
3553 anv_image_get_clear_color_addr(device, image, aspect);
3554
3555 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3556 device->isl_dev.ss.clear_color_state_size :
3557 device->isl_dev.ss.clear_value_size;
3558 return anv_address_add(addr, clear_color_state_size);
3559 }
3560
3561 static inline struct anv_address
3562 anv_image_get_compression_state_addr(const struct anv_device *device,
3563 const struct anv_image *image,
3564 VkImageAspectFlagBits aspect,
3565 uint32_t level, uint32_t array_layer)
3566 {
3567 assert(level < anv_image_aux_levels(image, aspect));
3568 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3569 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3570 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3571
3572 struct anv_address addr =
3573 anv_image_get_fast_clear_type_addr(device, image, aspect);
3574 addr.offset += 4; /* Go past the fast clear type */
3575
3576 if (image->type == VK_IMAGE_TYPE_3D) {
3577 for (uint32_t l = 0; l < level; l++)
3578 addr.offset += anv_minify(image->extent.depth, l) * 4;
3579 } else {
3580 addr.offset += level * image->array_size * 4;
3581 }
3582 addr.offset += array_layer * 4;
3583
3584 assert(addr.offset <
3585 image->planes[plane].address.offset + image->planes[plane].size);
3586 return addr;
3587 }
3588
3589 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3590 static inline bool
3591 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3592 const struct anv_image *image)
3593 {
3594 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3595 return false;
3596
3597 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3598 * struct. There's documentation which suggests that this feature actually
3599 * reduces performance on BDW, but it has only been observed to help so
3600 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3601 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3602 */
3603 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3604 return false;
3605
3606 return image->samples == 1;
3607 }
3608
3609 static inline bool
3610 anv_image_plane_uses_aux_map(const struct anv_device *device,
3611 const struct anv_image *image,
3612 uint32_t plane)
3613 {
3614 return device->info.has_aux_map &&
3615 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3616 }
3617
3618 void
3619 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3620 const struct anv_image *image,
3621 VkImageAspectFlagBits aspect,
3622 enum isl_aux_usage aux_usage,
3623 uint32_t level,
3624 uint32_t base_layer,
3625 uint32_t layer_count);
3626
3627 void
3628 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3629 const struct anv_image *image,
3630 VkImageAspectFlagBits aspect,
3631 enum isl_aux_usage aux_usage,
3632 enum isl_format format, struct isl_swizzle swizzle,
3633 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3634 VkRect2D area, union isl_color_value clear_color);
3635 void
3636 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3637 const struct anv_image *image,
3638 VkImageAspectFlags aspects,
3639 enum isl_aux_usage depth_aux_usage,
3640 uint32_t level,
3641 uint32_t base_layer, uint32_t layer_count,
3642 VkRect2D area,
3643 float depth_value, uint8_t stencil_value);
3644 void
3645 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3646 const struct anv_image *src_image,
3647 enum isl_aux_usage src_aux_usage,
3648 uint32_t src_level, uint32_t src_base_layer,
3649 const struct anv_image *dst_image,
3650 enum isl_aux_usage dst_aux_usage,
3651 uint32_t dst_level, uint32_t dst_base_layer,
3652 VkImageAspectFlagBits aspect,
3653 uint32_t src_x, uint32_t src_y,
3654 uint32_t dst_x, uint32_t dst_y,
3655 uint32_t width, uint32_t height,
3656 uint32_t layer_count,
3657 enum blorp_filter filter);
3658 void
3659 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3660 const struct anv_image *image,
3661 VkImageAspectFlagBits aspect, uint32_t level,
3662 uint32_t base_layer, uint32_t layer_count,
3663 enum isl_aux_op hiz_op);
3664 void
3665 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3666 const struct anv_image *image,
3667 VkImageAspectFlags aspects,
3668 uint32_t level,
3669 uint32_t base_layer, uint32_t layer_count,
3670 VkRect2D area, uint8_t stencil_value);
3671 void
3672 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3673 const struct anv_image *image,
3674 enum isl_format format,
3675 VkImageAspectFlagBits aspect,
3676 uint32_t base_layer, uint32_t layer_count,
3677 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3678 bool predicate);
3679 void
3680 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3681 const struct anv_image *image,
3682 enum isl_format format,
3683 VkImageAspectFlagBits aspect, uint32_t level,
3684 uint32_t base_layer, uint32_t layer_count,
3685 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3686 bool predicate);
3687
3688 void
3689 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3690 const struct anv_image *image,
3691 VkImageAspectFlagBits aspect,
3692 uint32_t base_level, uint32_t level_count,
3693 uint32_t base_layer, uint32_t layer_count);
3694
3695 enum isl_aux_state
3696 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3697 const struct anv_image *image,
3698 const VkImageAspectFlagBits aspect,
3699 const VkImageLayout layout);
3700
3701 enum isl_aux_usage
3702 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3703 const struct anv_image *image,
3704 const VkImageAspectFlagBits aspect,
3705 const VkImageUsageFlagBits usage,
3706 const VkImageLayout layout);
3707
3708 enum anv_fast_clear_type
3709 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3710 const struct anv_image * const image,
3711 const VkImageAspectFlagBits aspect,
3712 const VkImageLayout layout);
3713
3714 /* This is defined as a macro so that it works for both
3715 * VkImageSubresourceRange and VkImageSubresourceLayers
3716 */
3717 #define anv_get_layerCount(_image, _range) \
3718 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3719 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3720
3721 static inline uint32_t
3722 anv_get_levelCount(const struct anv_image *image,
3723 const VkImageSubresourceRange *range)
3724 {
3725 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3726 image->levels - range->baseMipLevel : range->levelCount;
3727 }
3728
3729 static inline VkImageAspectFlags
3730 anv_image_expand_aspects(const struct anv_image *image,
3731 VkImageAspectFlags aspects)
3732 {
3733 /* If the underlying image has color plane aspects and
3734 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3735 * the underlying image. */
3736 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3737 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3738 return image->aspects;
3739
3740 return aspects;
3741 }
3742
3743 static inline bool
3744 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3745 VkImageAspectFlags aspects2)
3746 {
3747 if (aspects1 == aspects2)
3748 return true;
3749
3750 /* Only 1 color aspects are compatibles. */
3751 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3752 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3753 util_bitcount(aspects1) == util_bitcount(aspects2))
3754 return true;
3755
3756 return false;
3757 }
3758
3759 struct anv_image_view {
3760 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3761
3762 VkImageAspectFlags aspect_mask;
3763 VkFormat vk_format;
3764 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3765
3766 unsigned n_planes;
3767 struct {
3768 uint32_t image_plane;
3769
3770 struct isl_view isl;
3771
3772 /**
3773 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3774 * image layout of SHADER_READ_ONLY_OPTIMAL or
3775 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3776 */
3777 struct anv_surface_state optimal_sampler_surface_state;
3778
3779 /**
3780 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3781 * image layout of GENERAL.
3782 */
3783 struct anv_surface_state general_sampler_surface_state;
3784
3785 /**
3786 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3787 * states for write-only and readable, using the real format for
3788 * write-only and the lowered format for readable.
3789 */
3790 struct anv_surface_state storage_surface_state;
3791 struct anv_surface_state writeonly_storage_surface_state;
3792
3793 struct brw_image_param storage_image_param;
3794 } planes[3];
3795 };
3796
3797 enum anv_image_view_state_flags {
3798 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3799 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3800 };
3801
3802 void anv_image_fill_surface_state(struct anv_device *device,
3803 const struct anv_image *image,
3804 VkImageAspectFlagBits aspect,
3805 const struct isl_view *view,
3806 isl_surf_usage_flags_t view_usage,
3807 enum isl_aux_usage aux_usage,
3808 const union isl_color_value *clear_color,
3809 enum anv_image_view_state_flags flags,
3810 struct anv_surface_state *state_inout,
3811 struct brw_image_param *image_param_out);
3812
3813 struct anv_image_create_info {
3814 const VkImageCreateInfo *vk_info;
3815
3816 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3817 isl_tiling_flags_t isl_tiling_flags;
3818
3819 /** These flags will be added to any derived from VkImageCreateInfo. */
3820 isl_surf_usage_flags_t isl_extra_usage_flags;
3821
3822 uint32_t stride;
3823 bool external_format;
3824 };
3825
3826 VkResult anv_image_create(VkDevice _device,
3827 const struct anv_image_create_info *info,
3828 const VkAllocationCallbacks* alloc,
3829 VkImage *pImage);
3830
3831 const struct anv_surface *
3832 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3833 VkImageAspectFlags aspect_mask);
3834
3835 enum isl_format
3836 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3837
3838 static inline VkExtent3D
3839 anv_sanitize_image_extent(const VkImageType imageType,
3840 const VkExtent3D imageExtent)
3841 {
3842 switch (imageType) {
3843 case VK_IMAGE_TYPE_1D:
3844 return (VkExtent3D) { imageExtent.width, 1, 1 };
3845 case VK_IMAGE_TYPE_2D:
3846 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3847 case VK_IMAGE_TYPE_3D:
3848 return imageExtent;
3849 default:
3850 unreachable("invalid image type");
3851 }
3852 }
3853
3854 static inline VkOffset3D
3855 anv_sanitize_image_offset(const VkImageType imageType,
3856 const VkOffset3D imageOffset)
3857 {
3858 switch (imageType) {
3859 case VK_IMAGE_TYPE_1D:
3860 return (VkOffset3D) { imageOffset.x, 0, 0 };
3861 case VK_IMAGE_TYPE_2D:
3862 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3863 case VK_IMAGE_TYPE_3D:
3864 return imageOffset;
3865 default:
3866 unreachable("invalid image type");
3867 }
3868 }
3869
3870 VkFormatFeatureFlags
3871 anv_get_image_format_features(const struct gen_device_info *devinfo,
3872 VkFormat vk_format,
3873 const struct anv_format *anv_format,
3874 VkImageTiling vk_tiling);
3875
3876 void anv_fill_buffer_surface_state(struct anv_device *device,
3877 struct anv_state state,
3878 enum isl_format format,
3879 struct anv_address address,
3880 uint32_t range, uint32_t stride);
3881
3882 static inline void
3883 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3884 const struct anv_attachment_state *att_state,
3885 const struct anv_image_view *iview)
3886 {
3887 const struct isl_format_layout *view_fmtl =
3888 isl_format_get_layout(iview->planes[0].isl.format);
3889
3890 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3891 if (view_fmtl->channels.c.bits) \
3892 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3893
3894 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3895 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3896 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3897 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3898
3899 #undef COPY_CLEAR_COLOR_CHANNEL
3900 }
3901
3902
3903 struct anv_ycbcr_conversion {
3904 const struct anv_format * format;
3905 VkSamplerYcbcrModelConversion ycbcr_model;
3906 VkSamplerYcbcrRange ycbcr_range;
3907 VkComponentSwizzle mapping[4];
3908 VkChromaLocation chroma_offsets[2];
3909 VkFilter chroma_filter;
3910 bool chroma_reconstruction;
3911 };
3912
3913 struct anv_sampler {
3914 uint32_t state[3][4];
3915 uint32_t n_planes;
3916 struct anv_ycbcr_conversion *conversion;
3917
3918 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3919 * and with a 32-byte stride for use as bindless samplers.
3920 */
3921 struct anv_state bindless_state;
3922 };
3923
3924 struct anv_framebuffer {
3925 uint32_t width;
3926 uint32_t height;
3927 uint32_t layers;
3928
3929 uint32_t attachment_count;
3930 struct anv_image_view * attachments[0];
3931 };
3932
3933 struct anv_subpass_attachment {
3934 VkImageUsageFlagBits usage;
3935 uint32_t attachment;
3936 VkImageLayout layout;
3937
3938 /* Used only with attachment containing stencil data. */
3939 VkImageLayout stencil_layout;
3940 };
3941
3942 struct anv_subpass {
3943 uint32_t attachment_count;
3944
3945 /**
3946 * A pointer to all attachment references used in this subpass.
3947 * Only valid if ::attachment_count > 0.
3948 */
3949 struct anv_subpass_attachment * attachments;
3950 uint32_t input_count;
3951 struct anv_subpass_attachment * input_attachments;
3952 uint32_t color_count;
3953 struct anv_subpass_attachment * color_attachments;
3954 struct anv_subpass_attachment * resolve_attachments;
3955
3956 struct anv_subpass_attachment * depth_stencil_attachment;
3957 struct anv_subpass_attachment * ds_resolve_attachment;
3958 VkResolveModeFlagBitsKHR depth_resolve_mode;
3959 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3960
3961 uint32_t view_mask;
3962
3963 /** Subpass has a depth/stencil self-dependency */
3964 bool has_ds_self_dep;
3965
3966 /** Subpass has at least one color resolve attachment */
3967 bool has_color_resolve;
3968 };
3969
3970 static inline unsigned
3971 anv_subpass_view_count(const struct anv_subpass *subpass)
3972 {
3973 return MAX2(1, util_bitcount(subpass->view_mask));
3974 }
3975
3976 struct anv_render_pass_attachment {
3977 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3978 * its members individually.
3979 */
3980 VkFormat format;
3981 uint32_t samples;
3982 VkImageUsageFlags usage;
3983 VkAttachmentLoadOp load_op;
3984 VkAttachmentStoreOp store_op;
3985 VkAttachmentLoadOp stencil_load_op;
3986 VkImageLayout initial_layout;
3987 VkImageLayout final_layout;
3988 VkImageLayout first_subpass_layout;
3989
3990 VkImageLayout stencil_initial_layout;
3991 VkImageLayout stencil_final_layout;
3992
3993 /* The subpass id in which the attachment will be used last. */
3994 uint32_t last_subpass_idx;
3995 };
3996
3997 struct anv_render_pass {
3998 uint32_t attachment_count;
3999 uint32_t subpass_count;
4000 /* An array of subpass_count+1 flushes, one per subpass boundary */
4001 enum anv_pipe_bits * subpass_flushes;
4002 struct anv_render_pass_attachment * attachments;
4003 struct anv_subpass subpasses[0];
4004 };
4005
4006 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4007
4008 struct anv_query_pool {
4009 VkQueryType type;
4010 VkQueryPipelineStatisticFlags pipeline_statistics;
4011 /** Stride between slots, in bytes */
4012 uint32_t stride;
4013 /** Number of slots in this query pool */
4014 uint32_t slots;
4015 struct anv_bo * bo;
4016 };
4017
4018 int anv_get_instance_entrypoint_index(const char *name);
4019 int anv_get_device_entrypoint_index(const char *name);
4020 int anv_get_physical_device_entrypoint_index(const char *name);
4021
4022 const char *anv_get_instance_entry_name(int index);
4023 const char *anv_get_physical_device_entry_name(int index);
4024 const char *anv_get_device_entry_name(int index);
4025
4026 bool
4027 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4028 const struct anv_instance_extension_table *instance);
4029 bool
4030 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4031 const struct anv_instance_extension_table *instance);
4032 bool
4033 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4034 const struct anv_instance_extension_table *instance,
4035 const struct anv_device_extension_table *device);
4036
4037 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4038 const char *name);
4039
4040 void anv_dump_image_to_ppm(struct anv_device *device,
4041 struct anv_image *image, unsigned miplevel,
4042 unsigned array_layer, VkImageAspectFlagBits aspect,
4043 const char *filename);
4044
4045 enum anv_dump_action {
4046 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4047 };
4048
4049 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4050 void anv_dump_finish(void);
4051
4052 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4053
4054 static inline uint32_t
4055 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4056 {
4057 /* This function must be called from within a subpass. */
4058 assert(cmd_state->pass && cmd_state->subpass);
4059
4060 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4061
4062 /* The id of this subpass shouldn't exceed the number of subpasses in this
4063 * render pass minus 1.
4064 */
4065 assert(subpass_id < cmd_state->pass->subpass_count);
4066 return subpass_id;
4067 }
4068
4069 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4070 void anv_device_perf_init(struct anv_device *device);
4071
4072 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4073 \
4074 static inline struct __anv_type * \
4075 __anv_type ## _from_handle(__VkType _handle) \
4076 { \
4077 return (struct __anv_type *) _handle; \
4078 } \
4079 \
4080 static inline __VkType \
4081 __anv_type ## _to_handle(struct __anv_type *_obj) \
4082 { \
4083 return (__VkType) _obj; \
4084 }
4085
4086 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4087 \
4088 static inline struct __anv_type * \
4089 __anv_type ## _from_handle(__VkType _handle) \
4090 { \
4091 return (struct __anv_type *)(uintptr_t) _handle; \
4092 } \
4093 \
4094 static inline __VkType \
4095 __anv_type ## _to_handle(struct __anv_type *_obj) \
4096 { \
4097 return (__VkType)(uintptr_t) _obj; \
4098 }
4099
4100 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4101 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4102
4103 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4104 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4105 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4106 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4107 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4108
4109 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4110 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4111 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4112 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4113 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4114 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4115 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4116 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4117 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4118 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4119 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4120 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4121 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4122 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4123 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4124 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4125 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4126 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4127 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4128 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4129 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4130 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4131 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4132
4133 /* Gen-specific function declarations */
4134 #ifdef genX
4135 # include "anv_genX.h"
4136 #else
4137 # define genX(x) gen7_##x
4138 # include "anv_genX.h"
4139 # undef genX
4140 # define genX(x) gen75_##x
4141 # include "anv_genX.h"
4142 # undef genX
4143 # define genX(x) gen8_##x
4144 # include "anv_genX.h"
4145 # undef genX
4146 # define genX(x) gen9_##x
4147 # include "anv_genX.h"
4148 # undef genX
4149 # define genX(x) gen10_##x
4150 # include "anv_genX.h"
4151 # undef genX
4152 # define genX(x) gen11_##x
4153 # include "anv_genX.h"
4154 # undef genX
4155 # define genX(x) gen12_##x
4156 # include "anv_genX.h"
4157 # undef genX
4158 #endif
4159
4160 #endif /* ANV_PRIVATE_H */