anv: Use resolve_device_entrypoint for dispatch init
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65 #include "vk_object.h"
66
67 /* Pre-declarations needed for WSI entrypoints */
68 struct wl_surface;
69 struct wl_display;
70 typedef struct xcb_connection_t xcb_connection_t;
71 typedef uint32_t xcb_visualid_t;
72 typedef uint32_t xcb_window_t;
73
74 struct anv_batch;
75 struct anv_buffer;
76 struct anv_buffer_view;
77 struct anv_image_view;
78 struct anv_instance;
79
80 struct gen_aux_map_context;
81 struct gen_perf_config;
82 struct gen_perf_counter_pass;
83 struct gen_perf_query_result;
84
85 #include <vulkan/vulkan.h>
86 #include <vulkan/vulkan_intel.h>
87 #include <vulkan/vk_icd.h>
88
89 #include "anv_android.h"
90 #include "anv_entrypoints.h"
91 #include "anv_extensions.h"
92 #include "isl/isl.h"
93
94 #include "dev/gen_debug.h"
95 #include "common/intel_log.h"
96 #include "wsi_common.h"
97
98 #define NSEC_PER_SEC 1000000000ull
99
100 /* anv Virtual Memory Layout
101 * =========================
102 *
103 * When the anv driver is determining the virtual graphics addresses of memory
104 * objects itself using the softpin mechanism, the following memory ranges
105 * will be used.
106 *
107 * Three special considerations to notice:
108 *
109 * (1) the dynamic state pool is located within the same 4 GiB as the low
110 * heap. This is to work around a VF cache issue described in a comment in
111 * anv_physical_device_init_heaps.
112 *
113 * (2) the binding table pool is located at lower addresses than the surface
114 * state pool, within a 4 GiB range. This allows surface state base addresses
115 * to cover both binding tables (16 bit offsets) and surface states (32 bit
116 * offsets).
117 *
118 * (3) the last 4 GiB of the address space is withheld from the high
119 * heap. Various hardware units will read past the end of an object for
120 * various reasons. This healthy margin prevents reads from wrapping around
121 * 48-bit addresses.
122 */
123 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
124 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
125 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
126 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
127 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
128 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
129 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
130 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
131 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
132 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
133 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
134 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
135 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
136
137 #define LOW_HEAP_SIZE \
138 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
139 #define DYNAMIC_STATE_POOL_SIZE \
140 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
141 #define BINDING_TABLE_POOL_SIZE \
142 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
143 #define SURFACE_STATE_POOL_SIZE \
144 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
145 #define INSTRUCTION_STATE_POOL_SIZE \
146 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
147 #define CLIENT_VISIBLE_HEAP_SIZE \
148 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
149
150 /* Allowing different clear colors requires us to perform a depth resolve at
151 * the end of certain render passes. This is because while slow clears store
152 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
153 * See the PRMs for examples describing when additional resolves would be
154 * necessary. To enable fast clears without requiring extra resolves, we set
155 * the clear value to a globally-defined one. We could allow different values
156 * if the user doesn't expect coherent data during or after a render passes
157 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
158 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
159 * 1.0f seems to be the only value used. The only application that doesn't set
160 * this value does so through the usage of an seemingly uninitialized clear
161 * value.
162 */
163 #define ANV_HZ_FC_VAL 1.0f
164
165 #define MAX_VBS 28
166 #define MAX_XFB_BUFFERS 4
167 #define MAX_XFB_STREAMS 4
168 #define MAX_SETS 8
169 #define MAX_RTS 8
170 #define MAX_VIEWPORTS 16
171 #define MAX_SCISSORS 16
172 #define MAX_PUSH_CONSTANTS_SIZE 128
173 #define MAX_DYNAMIC_BUFFERS 16
174 #define MAX_IMAGES 64
175 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
176 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
177 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
178 /* We need 16 for UBO block reads to work and 32 for push UBOs. However, we
179 * use 64 here to avoid cache issues. This could most likely bring it back to
180 * 32 if we had different virtual addresses for the different views on a given
181 * GEM object.
182 */
183 #define ANV_UBO_ALIGNMENT 64
184 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
185 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
186
187 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
188 *
189 * "The surface state model is used when a Binding Table Index (specified
190 * in the message descriptor) of less than 240 is specified. In this model,
191 * the Binding Table Index is used to index into the binding table, and the
192 * binding table entry contains a pointer to the SURFACE_STATE."
193 *
194 * Binding table values above 240 are used for various things in the hardware
195 * such as stateless, stateless with incoherent cache, SLM, and bindless.
196 */
197 #define MAX_BINDING_TABLE_SIZE 240
198
199 /* The kernel relocation API has a limitation of a 32-bit delta value
200 * applied to the address before it is written which, in spite of it being
201 * unsigned, is treated as signed . Because of the way that this maps to
202 * the Vulkan API, we cannot handle an offset into a buffer that does not
203 * fit into a signed 32 bits. The only mechanism we have for dealing with
204 * this at the moment is to limit all VkDeviceMemory objects to a maximum
205 * of 2GB each. The Vulkan spec allows us to do this:
206 *
207 * "Some platforms may have a limit on the maximum size of a single
208 * allocation. For example, certain systems may fail to create
209 * allocations with a size greater than or equal to 4GB. Such a limit is
210 * implementation-dependent, and if such a failure occurs then the error
211 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
212 *
213 * We don't use vk_error here because it's not an error so much as an
214 * indication to the application that the allocation is too large.
215 */
216 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
217
218 #define ANV_SVGS_VB_INDEX MAX_VBS
219 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
220
221 /* We reserve this MI ALU register for the purpose of handling predication.
222 * Other code which uses the MI ALU should leave it alone.
223 */
224 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
225
226 /* We reserve this MI ALU register to pass around an offset computed from
227 * VkPerformanceQuerySubmitInfoKHR::counterPassIndex VK_KHR_performance_query.
228 * Other code which uses the MI ALU should leave it alone.
229 */
230 #define ANV_PERF_QUERY_OFFSET_REG 0x2670 /* MI_ALU_REG14 */
231
232 /* For gen12 we set the streamout buffers using 4 separate commands
233 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
234 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
235 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
236 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
237 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
238 * 3DSTATE_SO_BUFFER_INDEX_0.
239 */
240 #define SO_BUFFER_INDEX_0_CMD 0x60
241 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
242
243 static inline uint32_t
244 align_down_npot_u32(uint32_t v, uint32_t a)
245 {
246 return v - (v % a);
247 }
248
249 static inline uint32_t
250 align_down_u32(uint32_t v, uint32_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint32_t
257 align_u32(uint32_t v, uint32_t a)
258 {
259 assert(a != 0 && a == (a & -a));
260 return align_down_u32(v + a - 1, a);
261 }
262
263 static inline uint64_t
264 align_down_u64(uint64_t v, uint64_t a)
265 {
266 assert(a != 0 && a == (a & -a));
267 return v & ~(a - 1);
268 }
269
270 static inline uint64_t
271 align_u64(uint64_t v, uint64_t a)
272 {
273 return align_down_u64(v + a - 1, a);
274 }
275
276 static inline int32_t
277 align_i32(int32_t v, int32_t a)
278 {
279 assert(a != 0 && a == (a & -a));
280 return (v + a - 1) & ~(a - 1);
281 }
282
283 /** Alignment must be a power of 2. */
284 static inline bool
285 anv_is_aligned(uintmax_t n, uintmax_t a)
286 {
287 assert(a == (a & -a));
288 return (n & (a - 1)) == 0;
289 }
290
291 static inline uint32_t
292 anv_minify(uint32_t n, uint32_t levels)
293 {
294 if (unlikely(n == 0))
295 return 0;
296 else
297 return MAX2(n >> levels, 1);
298 }
299
300 static inline float
301 anv_clamp_f(float f, float min, float max)
302 {
303 assert(min < max);
304
305 if (f > max)
306 return max;
307 else if (f < min)
308 return min;
309 else
310 return f;
311 }
312
313 static inline bool
314 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
315 {
316 if (*inout_mask & clear_mask) {
317 *inout_mask &= ~clear_mask;
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324 static inline union isl_color_value
325 vk_to_isl_color(VkClearColorValue color)
326 {
327 return (union isl_color_value) {
328 .u32 = {
329 color.uint32[0],
330 color.uint32[1],
331 color.uint32[2],
332 color.uint32[3],
333 },
334 };
335 }
336
337 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
338 {
339 uintptr_t mask = (1ull << bits) - 1;
340 *flags = ptr & mask;
341 return (void *) (ptr & ~mask);
342 }
343
344 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
345 {
346 uintptr_t value = (uintptr_t) ptr;
347 uintptr_t mask = (1ull << bits) - 1;
348 return value | (mask & flags);
349 }
350
351 #define for_each_bit(b, dword) \
352 for (uint32_t __dword = (dword); \
353 (b) = __builtin_ffs(__dword) - 1, __dword; \
354 __dword &= ~(1 << (b)))
355
356 #define typed_memcpy(dest, src, count) ({ \
357 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
358 memcpy((dest), (src), (count) * sizeof(*(src))); \
359 })
360
361 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
362 * to be added here in order to utilize mapping in debug/error/perf macros.
363 */
364 #define REPORT_OBJECT_TYPE(o) \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
434 __builtin_choose_expr ( \
435 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
436 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
437 __builtin_choose_expr ( \
438 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
439 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
440 __builtin_choose_expr ( \
441 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
442 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
443 __builtin_choose_expr ( \
444 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
445 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
446 __builtin_choose_expr ( \
447 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
448 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
449 __builtin_choose_expr ( \
450 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
451 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
452 __builtin_choose_expr ( \
453 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
454 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
455 __builtin_choose_expr ( \
456 __builtin_types_compatible_p (__typeof (o), void*), \
457 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
458 /* The void expression results in a compile-time error \
459 when assigning the result to something. */ \
460 (void)0)))))))))))))))))))))))))))))))
461
462 /* Whenever we generate an error, pass it through this function. Useful for
463 * debugging, where we can break on it. Only call at error site, not when
464 * propagating errors. Might be useful to plug in a stack trace here.
465 */
466
467 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
468 VkDebugReportObjectTypeEXT type, VkResult error,
469 const char *file, int line, const char *format,
470 va_list args);
471
472 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
473 VkDebugReportObjectTypeEXT type, VkResult error,
474 const char *file, int line, const char *format, ...)
475 anv_printflike(7, 8);
476
477 #ifdef DEBUG
478 #define vk_error(error) __vk_errorf(NULL, NULL,\
479 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
480 error, __FILE__, __LINE__, NULL)
481 #define vk_errorfi(instance, obj, error, format, ...)\
482 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
483 __FILE__, __LINE__, format, ## __VA_ARGS__)
484 #define vk_errorf(device, obj, error, format, ...)\
485 vk_errorfi(anv_device_instance_or_null(device),\
486 obj, error, format, ## __VA_ARGS__)
487 #else
488 #define vk_error(error) error
489 #define vk_errorfi(instance, obj, error, format, ...) error
490 #define vk_errorf(device, obj, error, format, ...) error
491 #endif
492
493 /**
494 * Warn on ignored extension structs.
495 *
496 * The Vulkan spec requires us to ignore unsupported or unknown structs in
497 * a pNext chain. In debug mode, emitting warnings for ignored structs may
498 * help us discover structs that we should not have ignored.
499 *
500 *
501 * From the Vulkan 1.0.38 spec:
502 *
503 * Any component of the implementation (the loader, any enabled layers,
504 * and drivers) must skip over, without processing (other than reading the
505 * sType and pNext members) any chained structures with sType values not
506 * defined by extensions supported by that component.
507 */
508 #define anv_debug_ignored_stype(sType) \
509 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
510
511 void __anv_perf_warn(struct anv_device *device, const void *object,
512 VkDebugReportObjectTypeEXT type, const char *file,
513 int line, const char *format, ...)
514 anv_printflike(6, 7);
515 void anv_loge(const char *format, ...) anv_printflike(1, 2);
516 void anv_loge_v(const char *format, va_list va);
517
518 /**
519 * Print a FINISHME message, including its source location.
520 */
521 #define anv_finishme(format, ...) \
522 do { \
523 static bool reported = false; \
524 if (!reported) { \
525 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
526 ##__VA_ARGS__); \
527 reported = true; \
528 } \
529 } while (0)
530
531 /**
532 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
533 */
534 #define anv_perf_warn(instance, obj, format, ...) \
535 do { \
536 static bool reported = false; \
537 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
538 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
539 format, ##__VA_ARGS__); \
540 reported = true; \
541 } \
542 } while (0)
543
544 /* A non-fatal assert. Useful for debugging. */
545 #ifdef DEBUG
546 #define anv_assert(x) ({ \
547 if (unlikely(!(x))) \
548 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
549 })
550 #else
551 #define anv_assert(x)
552 #endif
553
554 /* A multi-pointer allocator
555 *
556 * When copying data structures from the user (such as a render pass), it's
557 * common to need to allocate data for a bunch of different things. Instead
558 * of doing several allocations and having to handle all of the error checking
559 * that entails, it can be easier to do a single allocation. This struct
560 * helps facilitate that. The intended usage looks like this:
561 *
562 * ANV_MULTIALLOC(ma)
563 * anv_multialloc_add(&ma, &main_ptr, 1);
564 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
565 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
566 *
567 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
568 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
569 */
570 struct anv_multialloc {
571 size_t size;
572 size_t align;
573
574 uint32_t ptr_count;
575 void **ptrs[8];
576 };
577
578 #define ANV_MULTIALLOC_INIT \
579 ((struct anv_multialloc) { 0, })
580
581 #define ANV_MULTIALLOC(_name) \
582 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
583
584 __attribute__((always_inline))
585 static inline void
586 _anv_multialloc_add(struct anv_multialloc *ma,
587 void **ptr, size_t size, size_t align)
588 {
589 size_t offset = align_u64(ma->size, align);
590 ma->size = offset + size;
591 ma->align = MAX2(ma->align, align);
592
593 /* Store the offset in the pointer. */
594 *ptr = (void *)(uintptr_t)offset;
595
596 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
597 ma->ptrs[ma->ptr_count++] = ptr;
598 }
599
600 #define anv_multialloc_add_size(_ma, _ptr, _size) \
601 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
602
603 #define anv_multialloc_add(_ma, _ptr, _count) \
604 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
605
606 __attribute__((always_inline))
607 static inline void *
608 anv_multialloc_alloc(struct anv_multialloc *ma,
609 const VkAllocationCallbacks *alloc,
610 VkSystemAllocationScope scope)
611 {
612 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
613 if (!ptr)
614 return NULL;
615
616 /* Fill out each of the pointers with their final value.
617 *
618 * for (uint32_t i = 0; i < ma->ptr_count; i++)
619 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
620 *
621 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
622 * constant, GCC is incapable of figuring this out and unrolling the loop
623 * so we have to give it a little help.
624 */
625 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
626 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
627 if ((_i) < ma->ptr_count) \
628 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
629 _ANV_MULTIALLOC_UPDATE_POINTER(0);
630 _ANV_MULTIALLOC_UPDATE_POINTER(1);
631 _ANV_MULTIALLOC_UPDATE_POINTER(2);
632 _ANV_MULTIALLOC_UPDATE_POINTER(3);
633 _ANV_MULTIALLOC_UPDATE_POINTER(4);
634 _ANV_MULTIALLOC_UPDATE_POINTER(5);
635 _ANV_MULTIALLOC_UPDATE_POINTER(6);
636 _ANV_MULTIALLOC_UPDATE_POINTER(7);
637 #undef _ANV_MULTIALLOC_UPDATE_POINTER
638
639 return ptr;
640 }
641
642 __attribute__((always_inline))
643 static inline void *
644 anv_multialloc_alloc2(struct anv_multialloc *ma,
645 const VkAllocationCallbacks *parent_alloc,
646 const VkAllocationCallbacks *alloc,
647 VkSystemAllocationScope scope)
648 {
649 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
650 }
651
652 struct anv_bo {
653 uint32_t gem_handle;
654
655 uint32_t refcount;
656
657 /* Index into the current validation list. This is used by the
658 * validation list building alrogithm to track which buffers are already
659 * in the validation list so that we can ensure uniqueness.
660 */
661 uint32_t index;
662
663 /* Index for use with util_sparse_array_free_list */
664 uint32_t free_index;
665
666 /* Last known offset. This value is provided by the kernel when we
667 * execbuf and is used as the presumed offset for the next bunch of
668 * relocations.
669 */
670 uint64_t offset;
671
672 /** Size of the buffer not including implicit aux */
673 uint64_t size;
674
675 /* Map for internally mapped BOs.
676 *
677 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
678 */
679 void *map;
680
681 /** Size of the implicit CCS range at the end of the buffer
682 *
683 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
684 * page of main surface data maps to a 256B chunk of CCS data and that
685 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
686 * addresses in the main surface to virtual memory addresses for CCS data.
687 *
688 * Because we can't change these maps around easily and because Vulkan
689 * allows two VkImages to be bound to overlapping memory regions (as long
690 * as the app is careful), it's not feasible to make this mapping part of
691 * the image. (On Gen11 and earlier, the mapping was provided via
692 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
693 * Instead, we attach the CCS data directly to the buffer object and setup
694 * the AUX table mapping at BO creation time.
695 *
696 * This field is for internal tracking use by the BO allocator only and
697 * should not be touched by other parts of the code. If something wants to
698 * know if a BO has implicit CCS data, it should instead look at the
699 * has_implicit_ccs boolean below.
700 *
701 * This data is not included in maps of this buffer.
702 */
703 uint32_t _ccs_size;
704
705 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
706 uint32_t flags;
707
708 /** True if this BO may be shared with other processes */
709 bool is_external:1;
710
711 /** True if this BO is a wrapper
712 *
713 * When set to true, none of the fields in this BO are meaningful except
714 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
715 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
716 * is set in the physical device.
717 */
718 bool is_wrapper:1;
719
720 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
721 bool has_fixed_address:1;
722
723 /** True if this BO wraps a host pointer */
724 bool from_host_ptr:1;
725
726 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
727 bool has_client_visible_address:1;
728
729 /** True if this BO has implicit CCS data attached to it */
730 bool has_implicit_ccs:1;
731 };
732
733 static inline struct anv_bo *
734 anv_bo_ref(struct anv_bo *bo)
735 {
736 p_atomic_inc(&bo->refcount);
737 return bo;
738 }
739
740 static inline struct anv_bo *
741 anv_bo_unwrap(struct anv_bo *bo)
742 {
743 while (bo->is_wrapper)
744 bo = bo->map;
745 return bo;
746 }
747
748 /* Represents a lock-free linked list of "free" things. This is used by
749 * both the block pool and the state pools. Unfortunately, in order to
750 * solve the ABA problem, we can't use a single uint32_t head.
751 */
752 union anv_free_list {
753 struct {
754 uint32_t offset;
755
756 /* A simple count that is incremented every time the head changes. */
757 uint32_t count;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764
765 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
766
767 struct anv_block_state {
768 union {
769 struct {
770 uint32_t next;
771 uint32_t end;
772 };
773 /* Make sure it's aligned to 64 bits. This will make atomic operations
774 * faster on 32 bit platforms.
775 */
776 uint64_t u64 __attribute__ ((aligned (8)));
777 };
778 };
779
780 #define anv_block_pool_foreach_bo(bo, pool) \
781 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
782 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
783 _pp_bo++)
784
785 #define ANV_MAX_BLOCK_POOL_BOS 20
786
787 struct anv_block_pool {
788 struct anv_device *device;
789 bool use_softpin;
790
791 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
792 * around the actual BO so that we grow the pool after the wrapper BO has
793 * been put in a relocation list. This is only used in the non-softpin
794 * case.
795 */
796 struct anv_bo wrapper_bo;
797
798 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
799 struct anv_bo *bo;
800 uint32_t nbos;
801
802 uint64_t size;
803
804 /* The address where the start of the pool is pinned. The various bos that
805 * are created as the pool grows will have addresses in the range
806 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
807 */
808 uint64_t start_address;
809
810 /* The offset from the start of the bo to the "center" of the block
811 * pool. Pointers to allocated blocks are given by
812 * bo.map + center_bo_offset + offsets.
813 */
814 uint32_t center_bo_offset;
815
816 /* Current memory map of the block pool. This pointer may or may not
817 * point to the actual beginning of the block pool memory. If
818 * anv_block_pool_alloc_back has ever been called, then this pointer
819 * will point to the "center" position of the buffer and all offsets
820 * (negative or positive) given out by the block pool alloc functions
821 * will be valid relative to this pointer.
822 *
823 * In particular, map == bo.map + center_offset
824 *
825 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
826 * since it will handle the softpin case as well, where this points to NULL.
827 */
828 void *map;
829 int fd;
830
831 /**
832 * Array of mmaps and gem handles owned by the block pool, reclaimed when
833 * the block pool is destroyed.
834 */
835 struct u_vector mmap_cleanups;
836
837 struct anv_block_state state;
838
839 struct anv_block_state back_state;
840 };
841
842 /* Block pools are backed by a fixed-size 1GB memfd */
843 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
844
845 /* The center of the block pool is also the middle of the memfd. This may
846 * change in the future if we decide differently for some reason.
847 */
848 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
849
850 static inline uint32_t
851 anv_block_pool_size(struct anv_block_pool *pool)
852 {
853 return pool->state.end + pool->back_state.end;
854 }
855
856 struct anv_state {
857 int32_t offset;
858 uint32_t alloc_size;
859 void *map;
860 uint32_t idx;
861 };
862
863 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
864
865 struct anv_fixed_size_state_pool {
866 union anv_free_list free_list;
867 struct anv_block_state block;
868 };
869
870 #define ANV_MIN_STATE_SIZE_LOG2 6
871 #define ANV_MAX_STATE_SIZE_LOG2 21
872
873 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
874
875 struct anv_free_entry {
876 uint32_t next;
877 struct anv_state state;
878 };
879
880 struct anv_state_table {
881 struct anv_device *device;
882 int fd;
883 struct anv_free_entry *map;
884 uint32_t size;
885 struct anv_block_state state;
886 struct u_vector cleanups;
887 };
888
889 struct anv_state_pool {
890 struct anv_block_pool block_pool;
891
892 /* Offset into the relevant state base address where the state pool starts
893 * allocating memory.
894 */
895 int32_t start_offset;
896
897 struct anv_state_table table;
898
899 /* The size of blocks which will be allocated from the block pool */
900 uint32_t block_size;
901
902 /** Free list for "back" allocations */
903 union anv_free_list back_alloc_free_list;
904
905 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
906 };
907
908 struct anv_state_reserved_pool {
909 struct anv_state_pool *pool;
910 union anv_free_list reserved_blocks;
911 uint32_t count;
912 };
913
914 struct anv_state_stream {
915 struct anv_state_pool *state_pool;
916
917 /* The size of blocks to allocate from the state pool */
918 uint32_t block_size;
919
920 /* Current block we're allocating from */
921 struct anv_state block;
922
923 /* Offset into the current block at which to allocate the next state */
924 uint32_t next;
925
926 /* List of all blocks allocated from this pool */
927 struct util_dynarray all_blocks;
928 };
929
930 /* The block_pool functions exported for testing only. The block pool should
931 * only be used via a state pool (see below).
932 */
933 VkResult anv_block_pool_init(struct anv_block_pool *pool,
934 struct anv_device *device,
935 uint64_t start_address,
936 uint32_t initial_size);
937 void anv_block_pool_finish(struct anv_block_pool *pool);
938 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
939 uint32_t block_size, uint32_t *padding);
940 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
941 uint32_t block_size);
942 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
943 size);
944
945 VkResult anv_state_pool_init(struct anv_state_pool *pool,
946 struct anv_device *device,
947 uint64_t base_address,
948 int32_t start_offset,
949 uint32_t block_size);
950 void anv_state_pool_finish(struct anv_state_pool *pool);
951 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
952 uint32_t state_size, uint32_t alignment);
953 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
954 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
955 void anv_state_stream_init(struct anv_state_stream *stream,
956 struct anv_state_pool *state_pool,
957 uint32_t block_size);
958 void anv_state_stream_finish(struct anv_state_stream *stream);
959 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
960 uint32_t size, uint32_t alignment);
961
962 void anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
963 struct anv_state_pool *parent,
964 uint32_t count, uint32_t size,
965 uint32_t alignment);
966 void anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool);
967 struct anv_state anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool);
968 void anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
969 struct anv_state state);
970
971 VkResult anv_state_table_init(struct anv_state_table *table,
972 struct anv_device *device,
973 uint32_t initial_entries);
974 void anv_state_table_finish(struct anv_state_table *table);
975 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
976 uint32_t count);
977 void anv_free_list_push(union anv_free_list *list,
978 struct anv_state_table *table,
979 uint32_t idx, uint32_t count);
980 struct anv_state* anv_free_list_pop(union anv_free_list *list,
981 struct anv_state_table *table);
982
983
984 static inline struct anv_state *
985 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
986 {
987 return &table->map[idx].state;
988 }
989 /**
990 * Implements a pool of re-usable BOs. The interface is identical to that
991 * of block_pool except that each block is its own BO.
992 */
993 struct anv_bo_pool {
994 struct anv_device *device;
995
996 struct util_sparse_array_free_list free_list[16];
997 };
998
999 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
1000 void anv_bo_pool_finish(struct anv_bo_pool *pool);
1001 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1002 struct anv_bo **bo_out);
1003 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
1004
1005 struct anv_scratch_pool {
1006 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
1007 struct anv_bo *bos[16][MESA_SHADER_STAGES];
1008 };
1009
1010 void anv_scratch_pool_init(struct anv_device *device,
1011 struct anv_scratch_pool *pool);
1012 void anv_scratch_pool_finish(struct anv_device *device,
1013 struct anv_scratch_pool *pool);
1014 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
1015 struct anv_scratch_pool *pool,
1016 gl_shader_stage stage,
1017 unsigned per_thread_scratch);
1018
1019 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
1020 struct anv_bo_cache {
1021 struct util_sparse_array bo_map;
1022 pthread_mutex_t mutex;
1023 };
1024
1025 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
1026 void anv_bo_cache_finish(struct anv_bo_cache *cache);
1027
1028 struct anv_memory_type {
1029 /* Standard bits passed on to the client */
1030 VkMemoryPropertyFlags propertyFlags;
1031 uint32_t heapIndex;
1032 };
1033
1034 struct anv_memory_heap {
1035 /* Standard bits passed on to the client */
1036 VkDeviceSize size;
1037 VkMemoryHeapFlags flags;
1038
1039 /* Driver-internal book-keeping */
1040 VkDeviceSize used;
1041 };
1042
1043 struct anv_physical_device {
1044 struct vk_object_base base;
1045
1046 /* Link in anv_instance::physical_devices */
1047 struct list_head link;
1048
1049 struct anv_instance * instance;
1050 bool no_hw;
1051 char path[20];
1052 const char * name;
1053 struct {
1054 uint16_t domain;
1055 uint8_t bus;
1056 uint8_t device;
1057 uint8_t function;
1058 } pci_info;
1059 struct gen_device_info info;
1060 /** Amount of "GPU memory" we want to advertise
1061 *
1062 * Clearly, this value is bogus since Intel is a UMA architecture. On
1063 * gen7 platforms, we are limited by GTT size unless we want to implement
1064 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1065 * practically unlimited. However, we will never report more than 3/4 of
1066 * the total system ram to try and avoid running out of RAM.
1067 */
1068 bool supports_48bit_addresses;
1069 struct brw_compiler * compiler;
1070 struct isl_device isl_dev;
1071 struct gen_perf_config * perf;
1072 int cmd_parser_version;
1073 bool has_softpin;
1074 bool has_exec_async;
1075 bool has_exec_capture;
1076 bool has_exec_fence;
1077 bool has_syncobj;
1078 bool has_syncobj_wait;
1079 bool has_context_priority;
1080 bool has_context_isolation;
1081 bool has_mem_available;
1082 bool has_mmap_offset;
1083 uint64_t gtt_size;
1084
1085 bool use_softpin;
1086 bool always_use_bindless;
1087 bool use_call_secondary;
1088
1089 /** True if we can access buffers using A64 messages */
1090 bool has_a64_buffer_access;
1091 /** True if we can use bindless access for images */
1092 bool has_bindless_images;
1093 /** True if we can use bindless access for samplers */
1094 bool has_bindless_samplers;
1095
1096 /** True if we can read the GPU timestamp register
1097 *
1098 * When running in a virtual context, the timestamp register is unreadable
1099 * on Gen12+.
1100 */
1101 bool has_reg_timestamp;
1102
1103 /** True if this device has implicit AUX
1104 *
1105 * If true, CCS is handled as an implicit attachment to the BO rather than
1106 * as an explicitly bound surface.
1107 */
1108 bool has_implicit_ccs;
1109
1110 bool always_flush_cache;
1111
1112 struct anv_device_extension_table supported_extensions;
1113
1114 uint32_t eu_total;
1115 uint32_t subslice_total;
1116
1117 struct {
1118 uint32_t type_count;
1119 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1120 uint32_t heap_count;
1121 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1122 } memory;
1123
1124 uint8_t driver_build_sha1[20];
1125 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1126 uint8_t driver_uuid[VK_UUID_SIZE];
1127 uint8_t device_uuid[VK_UUID_SIZE];
1128
1129 struct disk_cache * disk_cache;
1130
1131 struct wsi_device wsi_device;
1132 int local_fd;
1133 int master_fd;
1134 };
1135
1136 struct anv_app_info {
1137 const char* app_name;
1138 uint32_t app_version;
1139 const char* engine_name;
1140 uint32_t engine_version;
1141 uint32_t api_version;
1142 };
1143
1144 struct anv_instance {
1145 struct vk_object_base base;
1146
1147 VkAllocationCallbacks alloc;
1148
1149 struct anv_app_info app_info;
1150
1151 struct anv_instance_extension_table enabled_extensions;
1152 struct anv_instance_dispatch_table dispatch;
1153 struct anv_physical_device_dispatch_table physical_device_dispatch;
1154 struct anv_device_dispatch_table device_dispatch;
1155
1156 bool physical_devices_enumerated;
1157 struct list_head physical_devices;
1158
1159 bool pipeline_cache_enabled;
1160
1161 struct vk_debug_report_instance debug_report_callbacks;
1162
1163 struct driOptionCache dri_options;
1164 struct driOptionCache available_dri_options;
1165 };
1166
1167 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1168 void anv_finish_wsi(struct anv_physical_device *physical_device);
1169
1170 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1171 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1172 const char *name);
1173
1174 struct anv_queue_submit {
1175 struct anv_cmd_buffer * cmd_buffer;
1176
1177 uint32_t fence_count;
1178 uint32_t fence_array_length;
1179 struct drm_i915_gem_exec_fence * fences;
1180
1181 uint32_t temporary_semaphore_count;
1182 uint32_t temporary_semaphore_array_length;
1183 struct anv_semaphore_impl * temporary_semaphores;
1184
1185 /* Semaphores to be signaled with a SYNC_FD. */
1186 struct anv_semaphore ** sync_fd_semaphores;
1187 uint32_t sync_fd_semaphore_count;
1188 uint32_t sync_fd_semaphore_array_length;
1189
1190 /* Allocated only with non shareable timelines. */
1191 struct anv_timeline ** wait_timelines;
1192 uint32_t wait_timeline_count;
1193 uint32_t wait_timeline_array_length;
1194 uint64_t * wait_timeline_values;
1195
1196 struct anv_timeline ** signal_timelines;
1197 uint32_t signal_timeline_count;
1198 uint32_t signal_timeline_array_length;
1199 uint64_t * signal_timeline_values;
1200
1201 int in_fence;
1202 bool need_out_fence;
1203 int out_fence;
1204
1205 uint32_t fence_bo_count;
1206 uint32_t fence_bo_array_length;
1207 /* An array of struct anv_bo pointers with lower bit used as a flag to
1208 * signal we will wait on that BO (see anv_(un)pack_ptr).
1209 */
1210 uintptr_t * fence_bos;
1211
1212 int perf_query_pass;
1213
1214 const VkAllocationCallbacks * alloc;
1215 VkSystemAllocationScope alloc_scope;
1216
1217 struct anv_bo * simple_bo;
1218 uint32_t simple_bo_size;
1219
1220 struct list_head link;
1221 };
1222
1223 struct anv_queue {
1224 struct vk_object_base base;
1225
1226 struct anv_device * device;
1227
1228 /*
1229 * A list of struct anv_queue_submit to be submitted to i915.
1230 */
1231 struct list_head queued_submits;
1232
1233 VkDeviceQueueCreateFlags flags;
1234 };
1235
1236 struct anv_pipeline_cache {
1237 struct vk_object_base base;
1238 struct anv_device * device;
1239 pthread_mutex_t mutex;
1240
1241 struct hash_table * nir_cache;
1242
1243 struct hash_table * cache;
1244
1245 bool external_sync;
1246 };
1247
1248 struct nir_xfb_info;
1249 struct anv_pipeline_bind_map;
1250
1251 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1252 struct anv_device *device,
1253 bool cache_enabled);
1254 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1255
1256 struct anv_shader_bin *
1257 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1258 const void *key, uint32_t key_size);
1259 struct anv_shader_bin *
1260 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1261 gl_shader_stage stage,
1262 const void *key_data, uint32_t key_size,
1263 const void *kernel_data, uint32_t kernel_size,
1264 const void *constant_data,
1265 uint32_t constant_data_size,
1266 const struct brw_stage_prog_data *prog_data,
1267 uint32_t prog_data_size,
1268 const struct brw_compile_stats *stats,
1269 uint32_t num_stats,
1270 const struct nir_xfb_info *xfb_info,
1271 const struct anv_pipeline_bind_map *bind_map);
1272
1273 struct anv_shader_bin *
1274 anv_device_search_for_kernel(struct anv_device *device,
1275 struct anv_pipeline_cache *cache,
1276 const void *key_data, uint32_t key_size,
1277 bool *user_cache_bit);
1278
1279 struct anv_shader_bin *
1280 anv_device_upload_kernel(struct anv_device *device,
1281 struct anv_pipeline_cache *cache,
1282 gl_shader_stage stage,
1283 const void *key_data, uint32_t key_size,
1284 const void *kernel_data, uint32_t kernel_size,
1285 const void *constant_data,
1286 uint32_t constant_data_size,
1287 const struct brw_stage_prog_data *prog_data,
1288 uint32_t prog_data_size,
1289 const struct brw_compile_stats *stats,
1290 uint32_t num_stats,
1291 const struct nir_xfb_info *xfb_info,
1292 const struct anv_pipeline_bind_map *bind_map);
1293
1294 struct nir_shader;
1295 struct nir_shader_compiler_options;
1296
1297 struct nir_shader *
1298 anv_device_search_for_nir(struct anv_device *device,
1299 struct anv_pipeline_cache *cache,
1300 const struct nir_shader_compiler_options *nir_options,
1301 unsigned char sha1_key[20],
1302 void *mem_ctx);
1303
1304 void
1305 anv_device_upload_nir(struct anv_device *device,
1306 struct anv_pipeline_cache *cache,
1307 const struct nir_shader *nir,
1308 unsigned char sha1_key[20]);
1309
1310 struct anv_address {
1311 struct anv_bo *bo;
1312 uint32_t offset;
1313 };
1314
1315 struct anv_device {
1316 struct vk_device vk;
1317
1318 struct anv_physical_device * physical;
1319 bool no_hw;
1320 struct gen_device_info info;
1321 struct isl_device isl_dev;
1322 int context_id;
1323 int fd;
1324 bool can_chain_batches;
1325 bool robust_buffer_access;
1326 struct anv_device_extension_table enabled_extensions;
1327 struct anv_device_dispatch_table dispatch;
1328
1329 pthread_mutex_t vma_mutex;
1330 struct util_vma_heap vma_lo;
1331 struct util_vma_heap vma_cva;
1332 struct util_vma_heap vma_hi;
1333
1334 /** List of all anv_device_memory objects */
1335 struct list_head memory_objects;
1336
1337 struct anv_bo_pool batch_bo_pool;
1338
1339 struct anv_bo_cache bo_cache;
1340
1341 struct anv_state_pool dynamic_state_pool;
1342 struct anv_state_pool instruction_state_pool;
1343 struct anv_state_pool binding_table_pool;
1344 struct anv_state_pool surface_state_pool;
1345
1346 struct anv_state_reserved_pool custom_border_colors;
1347
1348 /** BO used for various workarounds
1349 *
1350 * There are a number of workarounds on our hardware which require writing
1351 * data somewhere and it doesn't really matter where. For that, we use
1352 * this BO and just write to the first dword or so.
1353 *
1354 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1355 * For that, we use the high bytes (>= 1024) of the workaround BO.
1356 */
1357 struct anv_bo * workaround_bo;
1358 struct anv_address workaround_address;
1359
1360 struct anv_bo * trivial_batch_bo;
1361 struct anv_bo * hiz_clear_bo;
1362 struct anv_state null_surface_state;
1363
1364 struct anv_pipeline_cache default_pipeline_cache;
1365 struct blorp_context blorp;
1366
1367 struct anv_state border_colors;
1368
1369 struct anv_state slice_hash;
1370
1371 struct anv_queue queue;
1372
1373 struct anv_scratch_pool scratch_pool;
1374
1375 pthread_mutex_t mutex;
1376 pthread_cond_t queue_submit;
1377 int _lost;
1378
1379 struct gen_batch_decode_ctx decoder_ctx;
1380 /*
1381 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1382 * the cmd_buffer's list.
1383 */
1384 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1385
1386 int perf_fd; /* -1 if no opened */
1387 uint64_t perf_metric; /* 0 if unset */
1388
1389 struct gen_aux_map_context *aux_map_ctx;
1390 };
1391
1392 static inline struct anv_instance *
1393 anv_device_instance_or_null(const struct anv_device *device)
1394 {
1395 return device ? device->physical->instance : NULL;
1396 }
1397
1398 static inline struct anv_state_pool *
1399 anv_binding_table_pool(struct anv_device *device)
1400 {
1401 if (device->physical->use_softpin)
1402 return &device->binding_table_pool;
1403 else
1404 return &device->surface_state_pool;
1405 }
1406
1407 static inline struct anv_state
1408 anv_binding_table_pool_alloc(struct anv_device *device) {
1409 if (device->physical->use_softpin)
1410 return anv_state_pool_alloc(&device->binding_table_pool,
1411 device->binding_table_pool.block_size, 0);
1412 else
1413 return anv_state_pool_alloc_back(&device->surface_state_pool);
1414 }
1415
1416 static inline void
1417 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1418 anv_state_pool_free(anv_binding_table_pool(device), state);
1419 }
1420
1421 static inline uint32_t
1422 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1423 {
1424 if (bo->is_external)
1425 return device->isl_dev.mocs.external;
1426 else
1427 return device->isl_dev.mocs.internal;
1428 }
1429
1430 void anv_device_init_blorp(struct anv_device *device);
1431 void anv_device_finish_blorp(struct anv_device *device);
1432
1433 void _anv_device_set_all_queue_lost(struct anv_device *device);
1434 VkResult _anv_device_set_lost(struct anv_device *device,
1435 const char *file, int line,
1436 const char *msg, ...)
1437 anv_printflike(4, 5);
1438 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1439 const char *file, int line,
1440 const char *msg, ...)
1441 anv_printflike(4, 5);
1442 #define anv_device_set_lost(dev, ...) \
1443 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1444 #define anv_queue_set_lost(queue, ...) \
1445 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1446
1447 static inline bool
1448 anv_device_is_lost(struct anv_device *device)
1449 {
1450 return unlikely(p_atomic_read(&device->_lost));
1451 }
1452
1453 VkResult anv_device_query_status(struct anv_device *device);
1454
1455
1456 enum anv_bo_alloc_flags {
1457 /** Specifies that the BO must have a 32-bit address
1458 *
1459 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1460 */
1461 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1462
1463 /** Specifies that the BO may be shared externally */
1464 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1465
1466 /** Specifies that the BO should be mapped */
1467 ANV_BO_ALLOC_MAPPED = (1 << 2),
1468
1469 /** Specifies that the BO should be snooped so we get coherency */
1470 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1471
1472 /** Specifies that the BO should be captured in error states */
1473 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1474
1475 /** Specifies that the BO will have an address assigned by the caller
1476 *
1477 * Such BOs do not exist in any VMA heap.
1478 */
1479 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1480
1481 /** Enables implicit synchronization on the BO
1482 *
1483 * This is the opposite of EXEC_OBJECT_ASYNC.
1484 */
1485 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1486
1487 /** Enables implicit synchronization on the BO
1488 *
1489 * This is equivalent to EXEC_OBJECT_WRITE.
1490 */
1491 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1492
1493 /** Has an address which is visible to the client */
1494 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1495
1496 /** This buffer has implicit CCS data attached to it */
1497 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1498 };
1499
1500 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1501 enum anv_bo_alloc_flags alloc_flags,
1502 uint64_t explicit_address,
1503 struct anv_bo **bo);
1504 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1505 void *host_ptr, uint32_t size,
1506 enum anv_bo_alloc_flags alloc_flags,
1507 uint64_t client_address,
1508 struct anv_bo **bo_out);
1509 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1510 enum anv_bo_alloc_flags alloc_flags,
1511 uint64_t client_address,
1512 struct anv_bo **bo);
1513 VkResult anv_device_export_bo(struct anv_device *device,
1514 struct anv_bo *bo, int *fd_out);
1515 void anv_device_release_bo(struct anv_device *device,
1516 struct anv_bo *bo);
1517
1518 static inline struct anv_bo *
1519 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1520 {
1521 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1522 }
1523
1524 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1525 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1526 int64_t timeout);
1527
1528 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1529 void anv_queue_finish(struct anv_queue *queue);
1530
1531 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1532 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1533 struct anv_batch *batch);
1534
1535 uint64_t anv_gettime_ns(void);
1536 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1537
1538 void* anv_gem_mmap(struct anv_device *device,
1539 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1540 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1541 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1542 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1543 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1544 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1545 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1546 int anv_gem_execbuffer(struct anv_device *device,
1547 struct drm_i915_gem_execbuffer2 *execbuf);
1548 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1549 uint32_t stride, uint32_t tiling);
1550 int anv_gem_create_context(struct anv_device *device);
1551 bool anv_gem_has_context_priority(int fd);
1552 int anv_gem_destroy_context(struct anv_device *device, int context);
1553 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1554 uint64_t value);
1555 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1556 uint64_t *value);
1557 int anv_gem_get_param(int fd, uint32_t param);
1558 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1559 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1560 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1561 uint32_t *active, uint32_t *pending);
1562 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1563 int anv_gem_reg_read(int fd, uint32_t offset, uint64_t *result);
1564 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1565 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1566 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1567 uint32_t read_domains, uint32_t write_domain);
1568 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1569 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1570 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1571 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1572 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1573 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1574 uint32_t handle);
1575 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1576 uint32_t handle, int fd);
1577 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1578 bool anv_gem_supports_syncobj_wait(int fd);
1579 int anv_gem_syncobj_wait(struct anv_device *device,
1580 uint32_t *handles, uint32_t num_handles,
1581 int64_t abs_timeout_ns, bool wait_all);
1582
1583 uint64_t anv_vma_alloc(struct anv_device *device,
1584 uint64_t size, uint64_t align,
1585 enum anv_bo_alloc_flags alloc_flags,
1586 uint64_t client_address);
1587 void anv_vma_free(struct anv_device *device,
1588 uint64_t address, uint64_t size);
1589
1590 struct anv_reloc_list {
1591 uint32_t num_relocs;
1592 uint32_t array_length;
1593 struct drm_i915_gem_relocation_entry * relocs;
1594 struct anv_bo ** reloc_bos;
1595 uint32_t dep_words;
1596 BITSET_WORD * deps;
1597 };
1598
1599 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1600 const VkAllocationCallbacks *alloc);
1601 void anv_reloc_list_finish(struct anv_reloc_list *list,
1602 const VkAllocationCallbacks *alloc);
1603
1604 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1605 const VkAllocationCallbacks *alloc,
1606 uint32_t offset, struct anv_bo *target_bo,
1607 uint32_t delta, uint64_t *address_u64_out);
1608
1609 struct anv_batch_bo {
1610 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1611 struct list_head link;
1612
1613 struct anv_bo * bo;
1614
1615 /* Bytes actually consumed in this batch BO */
1616 uint32_t length;
1617
1618 struct anv_reloc_list relocs;
1619 };
1620
1621 struct anv_batch {
1622 const VkAllocationCallbacks * alloc;
1623
1624 struct anv_address start_addr;
1625
1626 void * start;
1627 void * end;
1628 void * next;
1629
1630 struct anv_reloc_list * relocs;
1631
1632 /* This callback is called (with the associated user data) in the event
1633 * that the batch runs out of space.
1634 */
1635 VkResult (*extend_cb)(struct anv_batch *, void *);
1636 void * user_data;
1637
1638 /**
1639 * Current error status of the command buffer. Used to track inconsistent
1640 * or incomplete command buffer states that are the consequence of run-time
1641 * errors such as out of memory scenarios. We want to track this in the
1642 * batch because the command buffer object is not visible to some parts
1643 * of the driver.
1644 */
1645 VkResult status;
1646 };
1647
1648 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1649 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1650 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1651 void *location, struct anv_bo *bo, uint32_t offset);
1652 struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location);
1653
1654 static inline void
1655 anv_batch_set_storage(struct anv_batch *batch, struct anv_address addr,
1656 void *map, size_t size)
1657 {
1658 batch->start_addr = addr;
1659 batch->next = batch->start = map;
1660 batch->end = map + size;
1661 }
1662
1663 static inline VkResult
1664 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1665 {
1666 assert(error != VK_SUCCESS);
1667 if (batch->status == VK_SUCCESS)
1668 batch->status = error;
1669 return batch->status;
1670 }
1671
1672 static inline bool
1673 anv_batch_has_error(struct anv_batch *batch)
1674 {
1675 return batch->status != VK_SUCCESS;
1676 }
1677
1678 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1679
1680 static inline bool
1681 anv_address_is_null(struct anv_address addr)
1682 {
1683 return addr.bo == NULL && addr.offset == 0;
1684 }
1685
1686 static inline uint64_t
1687 anv_address_physical(struct anv_address addr)
1688 {
1689 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1690 return gen_canonical_address(addr.bo->offset + addr.offset);
1691 else
1692 return gen_canonical_address(addr.offset);
1693 }
1694
1695 static inline struct anv_address
1696 anv_address_add(struct anv_address addr, uint64_t offset)
1697 {
1698 addr.offset += offset;
1699 return addr;
1700 }
1701
1702 static inline void
1703 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1704 {
1705 unsigned reloc_size = 0;
1706 if (device->info.gen >= 8) {
1707 reloc_size = sizeof(uint64_t);
1708 *(uint64_t *)p = gen_canonical_address(v);
1709 } else {
1710 reloc_size = sizeof(uint32_t);
1711 *(uint32_t *)p = v;
1712 }
1713
1714 if (flush && !device->info.has_llc)
1715 gen_flush_range(p, reloc_size);
1716 }
1717
1718 static inline uint64_t
1719 _anv_combine_address(struct anv_batch *batch, void *location,
1720 const struct anv_address address, uint32_t delta)
1721 {
1722 if (address.bo == NULL) {
1723 return address.offset + delta;
1724 } else {
1725 assert(batch->start <= location && location < batch->end);
1726
1727 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1728 }
1729 }
1730
1731 #define __gen_address_type struct anv_address
1732 #define __gen_user_data struct anv_batch
1733 #define __gen_combine_address _anv_combine_address
1734
1735 /* Wrapper macros needed to work around preprocessor argument issues. In
1736 * particular, arguments don't get pre-evaluated if they are concatenated.
1737 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1738 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1739 * We can work around this easily enough with these helpers.
1740 */
1741 #define __anv_cmd_length(cmd) cmd ## _length
1742 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1743 #define __anv_cmd_header(cmd) cmd ## _header
1744 #define __anv_cmd_pack(cmd) cmd ## _pack
1745 #define __anv_reg_num(reg) reg ## _num
1746
1747 #define anv_pack_struct(dst, struc, ...) do { \
1748 struct struc __template = { \
1749 __VA_ARGS__ \
1750 }; \
1751 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1752 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1753 } while (0)
1754
1755 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1756 void *__dst = anv_batch_emit_dwords(batch, n); \
1757 if (__dst) { \
1758 struct cmd __template = { \
1759 __anv_cmd_header(cmd), \
1760 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1761 __VA_ARGS__ \
1762 }; \
1763 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1764 } \
1765 __dst; \
1766 })
1767
1768 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1769 do { \
1770 uint32_t *dw; \
1771 \
1772 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1773 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1774 if (!dw) \
1775 break; \
1776 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1777 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1778 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1779 } while (0)
1780
1781 #define anv_batch_emit(batch, cmd, name) \
1782 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1783 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1784 __builtin_expect(_dst != NULL, 1); \
1785 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1786 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1787 _dst = NULL; \
1788 }))
1789
1790 /* #define __gen_get_batch_dwords anv_batch_emit_dwords */
1791 /* #define __gen_get_batch_address anv_batch_address */
1792 /* #define __gen_address_value anv_address_physical */
1793 /* #define __gen_address_offset anv_address_add */
1794
1795 struct anv_device_memory {
1796 struct vk_object_base base;
1797
1798 struct list_head link;
1799
1800 struct anv_bo * bo;
1801 struct anv_memory_type * type;
1802 VkDeviceSize map_size;
1803 void * map;
1804
1805 /* If set, we are holding reference to AHardwareBuffer
1806 * which we must release when memory is freed.
1807 */
1808 struct AHardwareBuffer * ahw;
1809
1810 /* If set, this memory comes from a host pointer. */
1811 void * host_ptr;
1812 };
1813
1814 /**
1815 * Header for Vertex URB Entry (VUE)
1816 */
1817 struct anv_vue_header {
1818 uint32_t Reserved;
1819 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1820 uint32_t ViewportIndex;
1821 float PointWidth;
1822 };
1823
1824 /** Struct representing a sampled image descriptor
1825 *
1826 * This descriptor layout is used for sampled images, bare sampler, and
1827 * combined image/sampler descriptors.
1828 */
1829 struct anv_sampled_image_descriptor {
1830 /** Bindless image handle
1831 *
1832 * This is expected to already be shifted such that the 20-bit
1833 * SURFACE_STATE table index is in the top 20 bits.
1834 */
1835 uint32_t image;
1836
1837 /** Bindless sampler handle
1838 *
1839 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1840 * to the dynamic state base address.
1841 */
1842 uint32_t sampler;
1843 };
1844
1845 struct anv_texture_swizzle_descriptor {
1846 /** Texture swizzle
1847 *
1848 * See also nir_intrinsic_channel_select_intel
1849 */
1850 uint8_t swizzle[4];
1851
1852 /** Unused padding to ensure the struct is a multiple of 64 bits */
1853 uint32_t _pad;
1854 };
1855
1856 /** Struct representing a storage image descriptor */
1857 struct anv_storage_image_descriptor {
1858 /** Bindless image handles
1859 *
1860 * These are expected to already be shifted such that the 20-bit
1861 * SURFACE_STATE table index is in the top 20 bits.
1862 */
1863 uint32_t read_write;
1864 uint32_t write_only;
1865 };
1866
1867 /** Struct representing a address/range descriptor
1868 *
1869 * The fields of this struct correspond directly to the data layout of
1870 * nir_address_format_64bit_bounded_global addresses. The last field is the
1871 * offset in the NIR address so it must be zero so that when you load the
1872 * descriptor you get a pointer to the start of the range.
1873 */
1874 struct anv_address_range_descriptor {
1875 uint64_t address;
1876 uint32_t range;
1877 uint32_t zero;
1878 };
1879
1880 enum anv_descriptor_data {
1881 /** The descriptor contains a BTI reference to a surface state */
1882 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1883 /** The descriptor contains a BTI reference to a sampler state */
1884 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1885 /** The descriptor contains an actual buffer view */
1886 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1887 /** The descriptor contains auxiliary image layout data */
1888 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1889 /** The descriptor contains auxiliary image layout data */
1890 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1891 /** anv_address_range_descriptor with a buffer address and range */
1892 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1893 /** Bindless surface handle */
1894 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1895 /** Storage image handles */
1896 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1897 /** Storage image handles */
1898 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1899 };
1900
1901 struct anv_descriptor_set_binding_layout {
1902 #ifndef NDEBUG
1903 /* The type of the descriptors in this binding */
1904 VkDescriptorType type;
1905 #endif
1906
1907 /* Flags provided when this binding was created */
1908 VkDescriptorBindingFlagsEXT flags;
1909
1910 /* Bitfield representing the type of data this descriptor contains */
1911 enum anv_descriptor_data data;
1912
1913 /* Maximum number of YCbCr texture/sampler planes */
1914 uint8_t max_plane_count;
1915
1916 /* Number of array elements in this binding (or size in bytes for inline
1917 * uniform data)
1918 */
1919 uint16_t array_size;
1920
1921 /* Index into the flattend descriptor set */
1922 uint16_t descriptor_index;
1923
1924 /* Index into the dynamic state array for a dynamic buffer */
1925 int16_t dynamic_offset_index;
1926
1927 /* Index into the descriptor set buffer views */
1928 int16_t buffer_view_index;
1929
1930 /* Offset into the descriptor buffer where this descriptor lives */
1931 uint32_t descriptor_offset;
1932
1933 /* Immutable samplers (or NULL if no immutable samplers) */
1934 struct anv_sampler **immutable_samplers;
1935 };
1936
1937 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1938
1939 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1940 VkDescriptorType type);
1941
1942 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1943 const struct anv_descriptor_set_binding_layout *binding,
1944 bool sampler);
1945
1946 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1947 const struct anv_descriptor_set_binding_layout *binding,
1948 bool sampler);
1949
1950 struct anv_descriptor_set_layout {
1951 struct vk_object_base base;
1952
1953 /* Descriptor set layouts can be destroyed at almost any time */
1954 uint32_t ref_cnt;
1955
1956 /* Number of bindings in this descriptor set */
1957 uint16_t binding_count;
1958
1959 /* Total size of the descriptor set with room for all array entries */
1960 uint16_t size;
1961
1962 /* Shader stages affected by this descriptor set */
1963 uint16_t shader_stages;
1964
1965 /* Number of buffer views in this descriptor set */
1966 uint16_t buffer_view_count;
1967
1968 /* Number of dynamic offsets used by this descriptor set */
1969 uint16_t dynamic_offset_count;
1970
1971 /* For each shader stage, which offsets apply to that stage */
1972 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1973
1974 /* Size of the descriptor buffer for this descriptor set */
1975 uint32_t descriptor_buffer_size;
1976
1977 /* Bindings in this descriptor set */
1978 struct anv_descriptor_set_binding_layout binding[0];
1979 };
1980
1981 void anv_descriptor_set_layout_destroy(struct anv_device *device,
1982 struct anv_descriptor_set_layout *layout);
1983
1984 static inline void
1985 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1986 {
1987 assert(layout && layout->ref_cnt >= 1);
1988 p_atomic_inc(&layout->ref_cnt);
1989 }
1990
1991 static inline void
1992 anv_descriptor_set_layout_unref(struct anv_device *device,
1993 struct anv_descriptor_set_layout *layout)
1994 {
1995 assert(layout && layout->ref_cnt >= 1);
1996 if (p_atomic_dec_zero(&layout->ref_cnt))
1997 anv_descriptor_set_layout_destroy(device, layout);
1998 }
1999
2000 struct anv_descriptor {
2001 VkDescriptorType type;
2002
2003 union {
2004 struct {
2005 VkImageLayout layout;
2006 struct anv_image_view *image_view;
2007 struct anv_sampler *sampler;
2008 };
2009
2010 struct {
2011 struct anv_buffer *buffer;
2012 uint64_t offset;
2013 uint64_t range;
2014 };
2015
2016 struct anv_buffer_view *buffer_view;
2017 };
2018 };
2019
2020 struct anv_descriptor_set {
2021 struct vk_object_base base;
2022
2023 struct anv_descriptor_pool *pool;
2024 struct anv_descriptor_set_layout *layout;
2025 uint32_t size;
2026
2027 /* State relative to anv_descriptor_pool::bo */
2028 struct anv_state desc_mem;
2029 /* Surface state for the descriptor buffer */
2030 struct anv_state desc_surface_state;
2031
2032 uint32_t buffer_view_count;
2033 struct anv_buffer_view *buffer_views;
2034
2035 /* Link to descriptor pool's desc_sets list . */
2036 struct list_head pool_link;
2037
2038 struct anv_descriptor descriptors[0];
2039 };
2040
2041 struct anv_buffer_view {
2042 struct vk_object_base base;
2043
2044 enum isl_format format; /**< VkBufferViewCreateInfo::format */
2045 uint64_t range; /**< VkBufferViewCreateInfo::range */
2046
2047 struct anv_address address;
2048
2049 struct anv_state surface_state;
2050 struct anv_state storage_surface_state;
2051 struct anv_state writeonly_storage_surface_state;
2052
2053 struct brw_image_param storage_image_param;
2054 };
2055
2056 struct anv_push_descriptor_set {
2057 struct anv_descriptor_set set;
2058
2059 /* Put this field right behind anv_descriptor_set so it fills up the
2060 * descriptors[0] field. */
2061 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
2062
2063 /** True if the descriptor set buffer has been referenced by a draw or
2064 * dispatch command.
2065 */
2066 bool set_used_on_gpu;
2067
2068 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
2069 };
2070
2071 struct anv_descriptor_pool {
2072 struct vk_object_base base;
2073
2074 uint32_t size;
2075 uint32_t next;
2076 uint32_t free_list;
2077
2078 struct anv_bo *bo;
2079 struct util_vma_heap bo_heap;
2080
2081 struct anv_state_stream surface_state_stream;
2082 void *surface_state_free_list;
2083
2084 struct list_head desc_sets;
2085
2086 char data[0];
2087 };
2088
2089 enum anv_descriptor_template_entry_type {
2090 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2091 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2092 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2093 };
2094
2095 struct anv_descriptor_template_entry {
2096 /* The type of descriptor in this entry */
2097 VkDescriptorType type;
2098
2099 /* Binding in the descriptor set */
2100 uint32_t binding;
2101
2102 /* Offset at which to write into the descriptor set binding */
2103 uint32_t array_element;
2104
2105 /* Number of elements to write into the descriptor set binding */
2106 uint32_t array_count;
2107
2108 /* Offset into the user provided data */
2109 size_t offset;
2110
2111 /* Stride between elements into the user provided data */
2112 size_t stride;
2113 };
2114
2115 struct anv_descriptor_update_template {
2116 struct vk_object_base base;
2117
2118 VkPipelineBindPoint bind_point;
2119
2120 /* The descriptor set this template corresponds to. This value is only
2121 * valid if the template was created with the templateType
2122 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2123 */
2124 uint8_t set;
2125
2126 /* Number of entries in this template */
2127 uint32_t entry_count;
2128
2129 /* Entries of the template */
2130 struct anv_descriptor_template_entry entries[0];
2131 };
2132
2133 size_t
2134 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2135
2136 void
2137 anv_descriptor_set_write_image_view(struct anv_device *device,
2138 struct anv_descriptor_set *set,
2139 const VkDescriptorImageInfo * const info,
2140 VkDescriptorType type,
2141 uint32_t binding,
2142 uint32_t element);
2143
2144 void
2145 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2146 struct anv_descriptor_set *set,
2147 VkDescriptorType type,
2148 struct anv_buffer_view *buffer_view,
2149 uint32_t binding,
2150 uint32_t element);
2151
2152 void
2153 anv_descriptor_set_write_buffer(struct anv_device *device,
2154 struct anv_descriptor_set *set,
2155 struct anv_state_stream *alloc_stream,
2156 VkDescriptorType type,
2157 struct anv_buffer *buffer,
2158 uint32_t binding,
2159 uint32_t element,
2160 VkDeviceSize offset,
2161 VkDeviceSize range);
2162 void
2163 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2164 struct anv_descriptor_set *set,
2165 uint32_t binding,
2166 const void *data,
2167 size_t offset,
2168 size_t size);
2169
2170 void
2171 anv_descriptor_set_write_template(struct anv_device *device,
2172 struct anv_descriptor_set *set,
2173 struct anv_state_stream *alloc_stream,
2174 const struct anv_descriptor_update_template *template,
2175 const void *data);
2176
2177 VkResult
2178 anv_descriptor_set_create(struct anv_device *device,
2179 struct anv_descriptor_pool *pool,
2180 struct anv_descriptor_set_layout *layout,
2181 struct anv_descriptor_set **out_set);
2182
2183 void
2184 anv_descriptor_set_destroy(struct anv_device *device,
2185 struct anv_descriptor_pool *pool,
2186 struct anv_descriptor_set *set);
2187
2188 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2189 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2190 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2191 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2192 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2193 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2194
2195 struct anv_pipeline_binding {
2196 /** Index in the descriptor set
2197 *
2198 * This is a flattened index; the descriptor set layout is already taken
2199 * into account.
2200 */
2201 uint32_t index;
2202
2203 /** The descriptor set this surface corresponds to.
2204 *
2205 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2206 * binding is not a normal descriptor set but something else.
2207 */
2208 uint8_t set;
2209
2210 union {
2211 /** Plane in the binding index for images */
2212 uint8_t plane;
2213
2214 /** Input attachment index (relative to the subpass) */
2215 uint8_t input_attachment_index;
2216
2217 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2218 uint8_t dynamic_offset_index;
2219 };
2220
2221 /** For a storage image, whether it is write-only */
2222 uint8_t write_only;
2223
2224 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2225 * assuming POD zero-initialization.
2226 */
2227 uint8_t pad;
2228 };
2229
2230 struct anv_push_range {
2231 /** Index in the descriptor set */
2232 uint32_t index;
2233
2234 /** Descriptor set index */
2235 uint8_t set;
2236
2237 /** Dynamic offset index (for dynamic UBOs) */
2238 uint8_t dynamic_offset_index;
2239
2240 /** Start offset in units of 32B */
2241 uint8_t start;
2242
2243 /** Range in units of 32B */
2244 uint8_t length;
2245 };
2246
2247 struct anv_pipeline_layout {
2248 struct vk_object_base base;
2249
2250 struct {
2251 struct anv_descriptor_set_layout *layout;
2252 uint32_t dynamic_offset_start;
2253 } set[MAX_SETS];
2254
2255 uint32_t num_sets;
2256
2257 unsigned char sha1[20];
2258 };
2259
2260 struct anv_buffer {
2261 struct vk_object_base base;
2262
2263 struct anv_device * device;
2264 VkDeviceSize size;
2265
2266 VkBufferUsageFlags usage;
2267
2268 /* Set when bound */
2269 struct anv_address address;
2270 };
2271
2272 static inline uint64_t
2273 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2274 {
2275 assert(offset <= buffer->size);
2276 if (range == VK_WHOLE_SIZE) {
2277 return buffer->size - offset;
2278 } else {
2279 assert(range + offset >= range);
2280 assert(range + offset <= buffer->size);
2281 return range;
2282 }
2283 }
2284
2285 enum anv_cmd_dirty_bits {
2286 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2287 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2288 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2289 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2290 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2291 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2292 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2293 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2294 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2295 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2296 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2297 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2298 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2299 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2300 };
2301 typedef uint32_t anv_cmd_dirty_mask_t;
2302
2303 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2304 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2305 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2306 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2307 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2308 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2309 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2310 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2311 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2312 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2313 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2314
2315 static inline enum anv_cmd_dirty_bits
2316 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2317 {
2318 switch (vk_state) {
2319 case VK_DYNAMIC_STATE_VIEWPORT:
2320 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2321 case VK_DYNAMIC_STATE_SCISSOR:
2322 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2323 case VK_DYNAMIC_STATE_LINE_WIDTH:
2324 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2325 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2326 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2327 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2328 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2329 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2330 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2331 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2332 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2333 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2334 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2335 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2336 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2337 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2338 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2339 default:
2340 assert(!"Unsupported dynamic state");
2341 return 0;
2342 }
2343 }
2344
2345
2346 enum anv_pipe_bits {
2347 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2348 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2349 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2350 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2351 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2352 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2353 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2354 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2355 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2356 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2357 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2358 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2359 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2360
2361 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2362 * a flush has happened but not a CS stall. The next time we do any sort
2363 * of invalidation we need to insert a CS stall at that time. Otherwise,
2364 * we would have to CS stall on every flush which could be bad.
2365 */
2366 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2367
2368 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2369 * target operations related to transfer commands with VkBuffer as
2370 * destination are ongoing. Some operations like copies on the command
2371 * streamer might need to be aware of this to trigger the appropriate stall
2372 * before they can proceed with the copy.
2373 */
2374 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2375
2376 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2377 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2378 * done by writing the AUX-TT register.
2379 */
2380 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2381
2382 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2383 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2384 * implement a workaround for Gen9.
2385 */
2386 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2387 };
2388
2389 #define ANV_PIPE_FLUSH_BITS ( \
2390 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2391 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2392 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2393 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2394
2395 #define ANV_PIPE_STALL_BITS ( \
2396 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2397 ANV_PIPE_DEPTH_STALL_BIT | \
2398 ANV_PIPE_CS_STALL_BIT)
2399
2400 #define ANV_PIPE_INVALIDATE_BITS ( \
2401 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2402 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2403 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2404 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2405 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2406 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2407 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2408
2409 static inline enum anv_pipe_bits
2410 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2411 {
2412 enum anv_pipe_bits pipe_bits = 0;
2413
2414 unsigned b;
2415 for_each_bit(b, flags) {
2416 switch ((VkAccessFlagBits)(1 << b)) {
2417 case VK_ACCESS_SHADER_WRITE_BIT:
2418 /* We're transitioning a buffer that was previously used as write
2419 * destination through the data port. To make its content available
2420 * to future operations, flush the data cache.
2421 */
2422 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2423 break;
2424 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2425 /* We're transitioning a buffer that was previously used as render
2426 * target. To make its content available to future operations, flush
2427 * the render target cache.
2428 */
2429 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2430 break;
2431 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2432 /* We're transitioning a buffer that was previously used as depth
2433 * buffer. To make its content available to future operations, flush
2434 * the depth cache.
2435 */
2436 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2437 break;
2438 case VK_ACCESS_TRANSFER_WRITE_BIT:
2439 /* We're transitioning a buffer that was previously used as a
2440 * transfer write destination. Generic write operations include color
2441 * & depth operations as well as buffer operations like :
2442 * - vkCmdClearColorImage()
2443 * - vkCmdClearDepthStencilImage()
2444 * - vkCmdBlitImage()
2445 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2446 *
2447 * Most of these operations are implemented using Blorp which writes
2448 * through the render target, so flush that cache to make it visible
2449 * to future operations. And for depth related operations we also
2450 * need to flush the depth cache.
2451 */
2452 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2453 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2454 break;
2455 case VK_ACCESS_MEMORY_WRITE_BIT:
2456 /* We're transitioning a buffer for generic write operations. Flush
2457 * all the caches.
2458 */
2459 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2460 break;
2461 default:
2462 break; /* Nothing to do */
2463 }
2464 }
2465
2466 return pipe_bits;
2467 }
2468
2469 static inline enum anv_pipe_bits
2470 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2471 {
2472 enum anv_pipe_bits pipe_bits = 0;
2473
2474 unsigned b;
2475 for_each_bit(b, flags) {
2476 switch ((VkAccessFlagBits)(1 << b)) {
2477 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2478 /* Indirect draw commands take a buffer as input that we're going to
2479 * read from the command streamer to load some of the HW registers
2480 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2481 * command streamer stall so that all the cache flushes have
2482 * completed before the command streamer loads from memory.
2483 */
2484 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2485 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2486 * through a vertex buffer, so invalidate that cache.
2487 */
2488 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2489 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2490 * UBO from the buffer, so we need to invalidate constant cache.
2491 */
2492 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2493 break;
2494 case VK_ACCESS_INDEX_READ_BIT:
2495 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2496 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2497 * commands, so we invalidate the VF cache to make sure there is no
2498 * stale data when we start rendering.
2499 */
2500 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2501 break;
2502 case VK_ACCESS_UNIFORM_READ_BIT:
2503 /* We transitioning a buffer to be used as uniform data. Because
2504 * uniform is accessed through the data port & sampler, we need to
2505 * invalidate the texture cache (sampler) & constant cache (data
2506 * port) to avoid stale data.
2507 */
2508 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2509 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2510 break;
2511 case VK_ACCESS_SHADER_READ_BIT:
2512 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2513 case VK_ACCESS_TRANSFER_READ_BIT:
2514 /* Transitioning a buffer to be read through the sampler, so
2515 * invalidate the texture cache, we don't want any stale data.
2516 */
2517 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2518 break;
2519 case VK_ACCESS_MEMORY_READ_BIT:
2520 /* Transitioning a buffer for generic read, invalidate all the
2521 * caches.
2522 */
2523 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2524 break;
2525 case VK_ACCESS_MEMORY_WRITE_BIT:
2526 /* Generic write, make sure all previously written things land in
2527 * memory.
2528 */
2529 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2530 break;
2531 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2532 /* Transitioning a buffer for conditional rendering. We'll load the
2533 * content of this buffer into HW registers using the command
2534 * streamer, so we need to stall the command streamer to make sure
2535 * any in-flight flush operations have completed.
2536 */
2537 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2538 break;
2539 default:
2540 break; /* Nothing to do */
2541 }
2542 }
2543
2544 return pipe_bits;
2545 }
2546
2547 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2548 VK_IMAGE_ASPECT_COLOR_BIT | \
2549 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2550 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2551 VK_IMAGE_ASPECT_PLANE_2_BIT)
2552 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2553 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2554 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2555 VK_IMAGE_ASPECT_PLANE_2_BIT)
2556
2557 struct anv_vertex_binding {
2558 struct anv_buffer * buffer;
2559 VkDeviceSize offset;
2560 };
2561
2562 struct anv_xfb_binding {
2563 struct anv_buffer * buffer;
2564 VkDeviceSize offset;
2565 VkDeviceSize size;
2566 };
2567
2568 struct anv_push_constants {
2569 /** Push constant data provided by the client through vkPushConstants */
2570 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2571
2572 /** Dynamic offsets for dynamic UBOs and SSBOs */
2573 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2574
2575 uint64_t push_reg_mask;
2576
2577 /** Pad out to a multiple of 32 bytes */
2578 uint32_t pad[2];
2579
2580 struct {
2581 /** Base workgroup ID
2582 *
2583 * Used for vkCmdDispatchBase.
2584 */
2585 uint32_t base_work_group_id[3];
2586
2587 /** Subgroup ID
2588 *
2589 * This is never set by software but is implicitly filled out when
2590 * uploading the push constants for compute shaders.
2591 */
2592 uint32_t subgroup_id;
2593 } cs;
2594 };
2595
2596 struct anv_dynamic_state {
2597 struct {
2598 uint32_t count;
2599 VkViewport viewports[MAX_VIEWPORTS];
2600 } viewport;
2601
2602 struct {
2603 uint32_t count;
2604 VkRect2D scissors[MAX_SCISSORS];
2605 } scissor;
2606
2607 float line_width;
2608
2609 struct {
2610 float bias;
2611 float clamp;
2612 float slope;
2613 } depth_bias;
2614
2615 float blend_constants[4];
2616
2617 struct {
2618 float min;
2619 float max;
2620 } depth_bounds;
2621
2622 struct {
2623 uint32_t front;
2624 uint32_t back;
2625 } stencil_compare_mask;
2626
2627 struct {
2628 uint32_t front;
2629 uint32_t back;
2630 } stencil_write_mask;
2631
2632 struct {
2633 uint32_t front;
2634 uint32_t back;
2635 } stencil_reference;
2636
2637 struct {
2638 uint32_t factor;
2639 uint16_t pattern;
2640 } line_stipple;
2641 };
2642
2643 extern const struct anv_dynamic_state default_dynamic_state;
2644
2645 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2646 const struct anv_dynamic_state *src,
2647 uint32_t copy_mask);
2648
2649 struct anv_surface_state {
2650 struct anv_state state;
2651 /** Address of the surface referred to by this state
2652 *
2653 * This address is relative to the start of the BO.
2654 */
2655 struct anv_address address;
2656 /* Address of the aux surface, if any
2657 *
2658 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2659 *
2660 * With the exception of gen8, the bottom 12 bits of this address' offset
2661 * include extra aux information.
2662 */
2663 struct anv_address aux_address;
2664 /* Address of the clear color, if any
2665 *
2666 * This address is relative to the start of the BO.
2667 */
2668 struct anv_address clear_address;
2669 };
2670
2671 /**
2672 * Attachment state when recording a renderpass instance.
2673 *
2674 * The clear value is valid only if there exists a pending clear.
2675 */
2676 struct anv_attachment_state {
2677 enum isl_aux_usage aux_usage;
2678 struct anv_surface_state color;
2679 struct anv_surface_state input;
2680
2681 VkImageLayout current_layout;
2682 VkImageLayout current_stencil_layout;
2683 VkImageAspectFlags pending_clear_aspects;
2684 VkImageAspectFlags pending_load_aspects;
2685 bool fast_clear;
2686 VkClearValue clear_value;
2687
2688 /* When multiview is active, attachments with a renderpass clear
2689 * operation have their respective layers cleared on the first
2690 * subpass that uses them, and only in that subpass. We keep track
2691 * of this using a bitfield to indicate which layers of an attachment
2692 * have not been cleared yet when multiview is active.
2693 */
2694 uint32_t pending_clear_views;
2695 struct anv_image_view * image_view;
2696 };
2697
2698 /** State tracking for vertex buffer flushes
2699 *
2700 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2701 * addresses. If you happen to have two vertex buffers which get placed
2702 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2703 * collisions. In order to solve this problem, we track vertex address ranges
2704 * which are live in the cache and invalidate the cache if one ever exceeds 32
2705 * bits.
2706 */
2707 struct anv_vb_cache_range {
2708 /* Virtual address at which the live vertex buffer cache range starts for
2709 * this vertex buffer index.
2710 */
2711 uint64_t start;
2712
2713 /* Virtual address of the byte after where vertex buffer cache range ends.
2714 * This is exclusive such that end - start is the size of the range.
2715 */
2716 uint64_t end;
2717 };
2718
2719 /** State tracking for particular pipeline bind point
2720 *
2721 * This struct is the base struct for anv_cmd_graphics_state and
2722 * anv_cmd_compute_state. These are used to track state which is bound to a
2723 * particular type of pipeline. Generic state that applies per-stage such as
2724 * binding table offsets and push constants is tracked generically with a
2725 * per-stage array in anv_cmd_state.
2726 */
2727 struct anv_cmd_pipeline_state {
2728 struct anv_descriptor_set *descriptors[MAX_SETS];
2729 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2730 };
2731
2732 /** State tracking for graphics pipeline
2733 *
2734 * This has anv_cmd_pipeline_state as a base struct to track things which get
2735 * bound to a graphics pipeline. Along with general pipeline bind point state
2736 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2737 * state which is graphics-specific.
2738 */
2739 struct anv_cmd_graphics_state {
2740 struct anv_cmd_pipeline_state base;
2741
2742 struct anv_graphics_pipeline *pipeline;
2743
2744 anv_cmd_dirty_mask_t dirty;
2745 uint32_t vb_dirty;
2746
2747 struct anv_vb_cache_range ib_bound_range;
2748 struct anv_vb_cache_range ib_dirty_range;
2749 struct anv_vb_cache_range vb_bound_ranges[33];
2750 struct anv_vb_cache_range vb_dirty_ranges[33];
2751
2752 struct anv_dynamic_state dynamic;
2753
2754 struct {
2755 struct anv_buffer *index_buffer;
2756 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2757 uint32_t index_offset;
2758 } gen7;
2759 };
2760
2761 /** State tracking for compute pipeline
2762 *
2763 * This has anv_cmd_pipeline_state as a base struct to track things which get
2764 * bound to a compute pipeline. Along with general pipeline bind point state
2765 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2766 * state which is compute-specific.
2767 */
2768 struct anv_cmd_compute_state {
2769 struct anv_cmd_pipeline_state base;
2770
2771 struct anv_compute_pipeline *pipeline;
2772
2773 bool pipeline_dirty;
2774
2775 struct anv_address num_workgroups;
2776 };
2777
2778 /** State required while building cmd buffer */
2779 struct anv_cmd_state {
2780 /* PIPELINE_SELECT.PipelineSelection */
2781 uint32_t current_pipeline;
2782 const struct gen_l3_config * current_l3_config;
2783 uint32_t last_aux_map_state;
2784
2785 struct anv_cmd_graphics_state gfx;
2786 struct anv_cmd_compute_state compute;
2787
2788 enum anv_pipe_bits pending_pipe_bits;
2789 VkShaderStageFlags descriptors_dirty;
2790 VkShaderStageFlags push_constants_dirty;
2791
2792 struct anv_framebuffer * framebuffer;
2793 struct anv_render_pass * pass;
2794 struct anv_subpass * subpass;
2795 VkRect2D render_area;
2796 uint32_t restart_index;
2797 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2798 bool xfb_enabled;
2799 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2800 VkShaderStageFlags push_constant_stages;
2801 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2802 struct anv_state binding_tables[MESA_SHADER_STAGES];
2803 struct anv_state samplers[MESA_SHADER_STAGES];
2804
2805 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2806 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2807 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2808
2809 /**
2810 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2811 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2812 * and before invoking the secondary in ExecuteCommands.
2813 */
2814 bool pma_fix_enabled;
2815
2816 /**
2817 * Whether or not we know for certain that HiZ is enabled for the current
2818 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2819 * enabled or not, this will be false.
2820 */
2821 bool hiz_enabled;
2822
2823 bool conditional_render_enabled;
2824
2825 /**
2826 * Last rendering scale argument provided to
2827 * genX(cmd_buffer_emit_hashing_mode)().
2828 */
2829 unsigned current_hash_scale;
2830
2831 /**
2832 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2833 * valid only when recording a render pass instance.
2834 */
2835 struct anv_attachment_state * attachments;
2836
2837 /**
2838 * Surface states for color render targets. These are stored in a single
2839 * flat array. For depth-stencil attachments, the surface state is simply
2840 * left blank.
2841 */
2842 struct anv_state attachment_states;
2843
2844 /**
2845 * A null surface state of the right size to match the framebuffer. This
2846 * is one of the states in attachment_states.
2847 */
2848 struct anv_state null_surface_state;
2849 };
2850
2851 struct anv_cmd_pool {
2852 struct vk_object_base base;
2853 VkAllocationCallbacks alloc;
2854 struct list_head cmd_buffers;
2855 };
2856
2857 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2858
2859 enum anv_cmd_buffer_exec_mode {
2860 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2861 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2862 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2863 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2864 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2865 ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN,
2866 };
2867
2868 struct anv_cmd_buffer {
2869 struct vk_object_base base;
2870
2871 struct anv_device * device;
2872
2873 struct anv_cmd_pool * pool;
2874 struct list_head pool_link;
2875
2876 struct anv_batch batch;
2877
2878 /* Fields required for the actual chain of anv_batch_bo's.
2879 *
2880 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2881 */
2882 struct list_head batch_bos;
2883 enum anv_cmd_buffer_exec_mode exec_mode;
2884
2885 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2886 * referenced by this command buffer
2887 *
2888 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2889 */
2890 struct u_vector seen_bbos;
2891
2892 /* A vector of int32_t's for every block of binding tables.
2893 *
2894 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2895 */
2896 struct u_vector bt_block_states;
2897 struct anv_state bt_next;
2898
2899 struct anv_reloc_list surface_relocs;
2900 /** Last seen surface state block pool center bo offset */
2901 uint32_t last_ss_pool_center;
2902
2903 /* Serial for tracking buffer completion */
2904 uint32_t serial;
2905
2906 /* Stream objects for storing temporary data */
2907 struct anv_state_stream surface_state_stream;
2908 struct anv_state_stream dynamic_state_stream;
2909
2910 VkCommandBufferUsageFlags usage_flags;
2911 VkCommandBufferLevel level;
2912
2913 struct anv_query_pool *perf_query_pool;
2914
2915 struct anv_cmd_state state;
2916
2917 struct anv_address return_addr;
2918
2919 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2920 uint64_t intel_perf_marker;
2921 };
2922
2923 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2924 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2925 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2926 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2927 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2928 struct anv_cmd_buffer *secondary);
2929 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2930 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2931 struct anv_cmd_buffer *cmd_buffer,
2932 const VkSemaphore *in_semaphores,
2933 const uint64_t *in_wait_values,
2934 uint32_t num_in_semaphores,
2935 const VkSemaphore *out_semaphores,
2936 const uint64_t *out_signal_values,
2937 uint32_t num_out_semaphores,
2938 VkFence fence,
2939 int perf_query_pass);
2940
2941 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2942
2943 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2944 const void *data, uint32_t size, uint32_t alignment);
2945 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2946 uint32_t *a, uint32_t *b,
2947 uint32_t dwords, uint32_t alignment);
2948
2949 struct anv_address
2950 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2951 struct anv_state
2952 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2953 uint32_t entries, uint32_t *state_offset);
2954 struct anv_state
2955 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2956 struct anv_state
2957 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2958 uint32_t size, uint32_t alignment);
2959
2960 VkResult
2961 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2962
2963 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2964 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2965 bool depth_clamp_enable);
2966 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2967
2968 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2969 struct anv_render_pass *pass,
2970 struct anv_framebuffer *framebuffer,
2971 const VkClearValue *clear_values);
2972
2973 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2974
2975 struct anv_state
2976 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2977 gl_shader_stage stage);
2978 struct anv_state
2979 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2980
2981 const struct anv_image_view *
2982 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2983
2984 VkResult
2985 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2986 uint32_t num_entries,
2987 uint32_t *state_offset,
2988 struct anv_state *bt_state);
2989
2990 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2991
2992 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2993
2994 enum anv_fence_type {
2995 ANV_FENCE_TYPE_NONE = 0,
2996 ANV_FENCE_TYPE_BO,
2997 ANV_FENCE_TYPE_WSI_BO,
2998 ANV_FENCE_TYPE_SYNCOBJ,
2999 ANV_FENCE_TYPE_WSI,
3000 };
3001
3002 enum anv_bo_fence_state {
3003 /** Indicates that this is a new (or newly reset fence) */
3004 ANV_BO_FENCE_STATE_RESET,
3005
3006 /** Indicates that this fence has been submitted to the GPU but is still
3007 * (as far as we know) in use by the GPU.
3008 */
3009 ANV_BO_FENCE_STATE_SUBMITTED,
3010
3011 ANV_BO_FENCE_STATE_SIGNALED,
3012 };
3013
3014 struct anv_fence_impl {
3015 enum anv_fence_type type;
3016
3017 union {
3018 /** Fence implementation for BO fences
3019 *
3020 * These fences use a BO and a set of CPU-tracked state flags. The BO
3021 * is added to the object list of the last execbuf call in a QueueSubmit
3022 * and is marked EXEC_WRITE. The state flags track when the BO has been
3023 * submitted to the kernel. We need to do this because Vulkan lets you
3024 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
3025 * will say it's idle in this case.
3026 */
3027 struct {
3028 struct anv_bo *bo;
3029 enum anv_bo_fence_state state;
3030 } bo;
3031
3032 /** DRM syncobj handle for syncobj-based fences */
3033 uint32_t syncobj;
3034
3035 /** WSI fence */
3036 struct wsi_fence *fence_wsi;
3037 };
3038 };
3039
3040 struct anv_fence {
3041 struct vk_object_base base;
3042
3043 /* Permanent fence state. Every fence has some form of permanent state
3044 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
3045 * cross-process fences) or it could just be a dummy for use internally.
3046 */
3047 struct anv_fence_impl permanent;
3048
3049 /* Temporary fence state. A fence *may* have temporary state. That state
3050 * is added to the fence by an import operation and is reset back to
3051 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
3052 * state cannot be signaled because the fence must already be signaled
3053 * before the temporary state can be exported from the fence in the other
3054 * process and imported here.
3055 */
3056 struct anv_fence_impl temporary;
3057 };
3058
3059 void anv_fence_reset_temporary(struct anv_device *device,
3060 struct anv_fence *fence);
3061
3062 struct anv_event {
3063 struct vk_object_base base;
3064 uint64_t semaphore;
3065 struct anv_state state;
3066 };
3067
3068 enum anv_semaphore_type {
3069 ANV_SEMAPHORE_TYPE_NONE = 0,
3070 ANV_SEMAPHORE_TYPE_DUMMY,
3071 ANV_SEMAPHORE_TYPE_BO,
3072 ANV_SEMAPHORE_TYPE_WSI_BO,
3073 ANV_SEMAPHORE_TYPE_SYNC_FILE,
3074 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
3075 ANV_SEMAPHORE_TYPE_TIMELINE,
3076 };
3077
3078 struct anv_timeline_point {
3079 struct list_head link;
3080
3081 uint64_t serial;
3082
3083 /* Number of waiter on this point, when > 0 the point should not be garbage
3084 * collected.
3085 */
3086 int waiting;
3087
3088 /* BO used for synchronization. */
3089 struct anv_bo *bo;
3090 };
3091
3092 struct anv_timeline {
3093 pthread_mutex_t mutex;
3094 pthread_cond_t cond;
3095
3096 uint64_t highest_past;
3097 uint64_t highest_pending;
3098
3099 struct list_head points;
3100 struct list_head free_points;
3101 };
3102
3103 struct anv_semaphore_impl {
3104 enum anv_semaphore_type type;
3105
3106 union {
3107 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3108 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3109 * object list on any execbuf2 calls for which this semaphore is used as
3110 * a wait or signal fence. When used as a signal fence or when type ==
3111 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3112 */
3113 struct anv_bo *bo;
3114
3115 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3116 * If the semaphore is in the unsignaled state due to either just being
3117 * created or because it has been used for a wait, fd will be -1.
3118 */
3119 int fd;
3120
3121 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3122 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3123 * import so we don't need to bother with a userspace cache.
3124 */
3125 uint32_t syncobj;
3126
3127 /* Non shareable timeline semaphore
3128 *
3129 * Used when kernel don't have support for timeline semaphores.
3130 */
3131 struct anv_timeline timeline;
3132 };
3133 };
3134
3135 struct anv_semaphore {
3136 struct vk_object_base base;
3137
3138 uint32_t refcount;
3139
3140 /* Permanent semaphore state. Every semaphore has some form of permanent
3141 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3142 * (for cross-process semaphores0 or it could just be a dummy for use
3143 * internally.
3144 */
3145 struct anv_semaphore_impl permanent;
3146
3147 /* Temporary semaphore state. A semaphore *may* have temporary state.
3148 * That state is added to the semaphore by an import operation and is reset
3149 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3150 * semaphore with temporary state cannot be signaled because the semaphore
3151 * must already be signaled before the temporary state can be exported from
3152 * the semaphore in the other process and imported here.
3153 */
3154 struct anv_semaphore_impl temporary;
3155 };
3156
3157 void anv_semaphore_reset_temporary(struct anv_device *device,
3158 struct anv_semaphore *semaphore);
3159
3160 struct anv_shader_module {
3161 struct vk_object_base base;
3162
3163 unsigned char sha1[20];
3164 uint32_t size;
3165 char data[0];
3166 };
3167
3168 static inline gl_shader_stage
3169 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3170 {
3171 assert(__builtin_popcount(vk_stage) == 1);
3172 return ffs(vk_stage) - 1;
3173 }
3174
3175 static inline VkShaderStageFlagBits
3176 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3177 {
3178 return (1 << mesa_stage);
3179 }
3180
3181 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3182
3183 #define anv_foreach_stage(stage, stage_bits) \
3184 for (gl_shader_stage stage, \
3185 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3186 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3187 __tmp &= ~(1 << (stage)))
3188
3189 struct anv_pipeline_bind_map {
3190 unsigned char surface_sha1[20];
3191 unsigned char sampler_sha1[20];
3192 unsigned char push_sha1[20];
3193
3194 uint32_t surface_count;
3195 uint32_t sampler_count;
3196
3197 struct anv_pipeline_binding * surface_to_descriptor;
3198 struct anv_pipeline_binding * sampler_to_descriptor;
3199
3200 struct anv_push_range push_ranges[4];
3201 };
3202
3203 struct anv_shader_bin_key {
3204 uint32_t size;
3205 uint8_t data[0];
3206 };
3207
3208 struct anv_shader_bin {
3209 uint32_t ref_cnt;
3210
3211 gl_shader_stage stage;
3212
3213 const struct anv_shader_bin_key *key;
3214
3215 struct anv_state kernel;
3216 uint32_t kernel_size;
3217
3218 struct anv_state constant_data;
3219 uint32_t constant_data_size;
3220
3221 const struct brw_stage_prog_data *prog_data;
3222 uint32_t prog_data_size;
3223
3224 struct brw_compile_stats stats[3];
3225 uint32_t num_stats;
3226
3227 struct nir_xfb_info *xfb_info;
3228
3229 struct anv_pipeline_bind_map bind_map;
3230 };
3231
3232 struct anv_shader_bin *
3233 anv_shader_bin_create(struct anv_device *device,
3234 gl_shader_stage stage,
3235 const void *key, uint32_t key_size,
3236 const void *kernel, uint32_t kernel_size,
3237 const void *constant_data, uint32_t constant_data_size,
3238 const struct brw_stage_prog_data *prog_data,
3239 uint32_t prog_data_size,
3240 const struct brw_compile_stats *stats, uint32_t num_stats,
3241 const struct nir_xfb_info *xfb_info,
3242 const struct anv_pipeline_bind_map *bind_map);
3243
3244 void
3245 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3246
3247 static inline void
3248 anv_shader_bin_ref(struct anv_shader_bin *shader)
3249 {
3250 assert(shader && shader->ref_cnt >= 1);
3251 p_atomic_inc(&shader->ref_cnt);
3252 }
3253
3254 static inline void
3255 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3256 {
3257 assert(shader && shader->ref_cnt >= 1);
3258 if (p_atomic_dec_zero(&shader->ref_cnt))
3259 anv_shader_bin_destroy(device, shader);
3260 }
3261
3262 struct anv_pipeline_executable {
3263 gl_shader_stage stage;
3264
3265 struct brw_compile_stats stats;
3266
3267 char *nir;
3268 char *disasm;
3269 };
3270
3271 enum anv_pipeline_type {
3272 ANV_PIPELINE_GRAPHICS,
3273 ANV_PIPELINE_COMPUTE,
3274 };
3275
3276 struct anv_pipeline {
3277 struct vk_object_base base;
3278
3279 struct anv_device * device;
3280
3281 struct anv_batch batch;
3282 struct anv_reloc_list batch_relocs;
3283
3284 void * mem_ctx;
3285
3286 enum anv_pipeline_type type;
3287 VkPipelineCreateFlags flags;
3288
3289 struct util_dynarray executables;
3290
3291 const struct gen_l3_config * l3_config;
3292 };
3293
3294 struct anv_graphics_pipeline {
3295 struct anv_pipeline base;
3296
3297 uint32_t batch_data[512];
3298
3299 anv_cmd_dirty_mask_t dynamic_state_mask;
3300 struct anv_dynamic_state dynamic_state;
3301
3302 uint32_t topology;
3303
3304 struct anv_subpass * subpass;
3305
3306 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3307
3308 VkShaderStageFlags active_stages;
3309
3310 bool primitive_restart;
3311 bool writes_depth;
3312 bool depth_test_enable;
3313 bool writes_stencil;
3314 bool stencil_test_enable;
3315 bool depth_clamp_enable;
3316 bool depth_clip_enable;
3317 bool sample_shading_enable;
3318 bool kill_pixel;
3319 bool depth_bounds_test_enable;
3320
3321 /* When primitive replication is used, subpass->view_mask will describe what
3322 * views to replicate.
3323 */
3324 bool use_primitive_replication;
3325
3326 struct anv_state blend_state;
3327
3328 uint32_t vb_used;
3329 struct anv_pipeline_vertex_binding {
3330 uint32_t stride;
3331 bool instanced;
3332 uint32_t instance_divisor;
3333 } vb[MAX_VBS];
3334
3335 struct {
3336 uint32_t sf[7];
3337 uint32_t depth_stencil_state[3];
3338 } gen7;
3339
3340 struct {
3341 uint32_t sf[4];
3342 uint32_t raster[5];
3343 uint32_t wm_depth_stencil[3];
3344 } gen8;
3345
3346 struct {
3347 uint32_t wm_depth_stencil[4];
3348 } gen9;
3349 };
3350
3351 struct anv_compute_pipeline {
3352 struct anv_pipeline base;
3353
3354 struct anv_shader_bin * cs;
3355 uint32_t cs_right_mask;
3356 uint32_t batch_data[9];
3357 uint32_t interface_descriptor_data[8];
3358 };
3359
3360 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3361 static inline struct anv_##pipe_type##_pipeline * \
3362 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3363 { \
3364 assert(pipeline->type == pipe_enum); \
3365 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3366 }
3367
3368 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3369 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3370
3371 static inline bool
3372 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3373 gl_shader_stage stage)
3374 {
3375 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3376 }
3377
3378 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3379 static inline const struct brw_##prefix##_prog_data * \
3380 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3381 { \
3382 if (anv_pipeline_has_stage(pipeline, stage)) { \
3383 return (const struct brw_##prefix##_prog_data *) \
3384 pipeline->shaders[stage]->prog_data; \
3385 } else { \
3386 return NULL; \
3387 } \
3388 }
3389
3390 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3391 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3392 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3393 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3394 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3395
3396 static inline const struct brw_cs_prog_data *
3397 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3398 {
3399 assert(pipeline->cs);
3400 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3401 }
3402
3403 static inline const struct brw_vue_prog_data *
3404 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3405 {
3406 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3407 return &get_gs_prog_data(pipeline)->base;
3408 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3409 return &get_tes_prog_data(pipeline)->base;
3410 else
3411 return &get_vs_prog_data(pipeline)->base;
3412 }
3413
3414 VkResult
3415 anv_pipeline_init(struct anv_pipeline *pipeline,
3416 struct anv_device *device,
3417 enum anv_pipeline_type type,
3418 VkPipelineCreateFlags flags,
3419 const VkAllocationCallbacks *pAllocator);
3420
3421 void
3422 anv_pipeline_finish(struct anv_pipeline *pipeline,
3423 struct anv_device *device,
3424 const VkAllocationCallbacks *pAllocator);
3425
3426 VkResult
3427 anv_graphics_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3428 struct anv_pipeline_cache *cache,
3429 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3430 const VkAllocationCallbacks *alloc);
3431
3432 VkResult
3433 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3434 struct anv_pipeline_cache *cache,
3435 const VkComputePipelineCreateInfo *info,
3436 const struct anv_shader_module *module,
3437 const char *entrypoint,
3438 const VkSpecializationInfo *spec_info);
3439
3440 struct anv_cs_parameters {
3441 uint32_t group_size;
3442 uint32_t simd_size;
3443 uint32_t threads;
3444 };
3445
3446 struct anv_cs_parameters
3447 anv_cs_parameters(const struct anv_compute_pipeline *pipeline);
3448
3449 struct anv_format_plane {
3450 enum isl_format isl_format:16;
3451 struct isl_swizzle swizzle;
3452
3453 /* Whether this plane contains chroma channels */
3454 bool has_chroma;
3455
3456 /* For downscaling of YUV planes */
3457 uint8_t denominator_scales[2];
3458
3459 /* How to map sampled ycbcr planes to a single 4 component element. */
3460 struct isl_swizzle ycbcr_swizzle;
3461
3462 /* What aspect is associated to this plane */
3463 VkImageAspectFlags aspect;
3464 };
3465
3466
3467 struct anv_format {
3468 struct anv_format_plane planes[3];
3469 VkFormat vk_format;
3470 uint8_t n_planes;
3471 bool can_ycbcr;
3472 };
3473
3474 /**
3475 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3476 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3477 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3478 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3479 */
3480 static inline uint32_t
3481 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3482 VkImageAspectFlags aspect_mask)
3483 {
3484 switch (aspect_mask) {
3485 case VK_IMAGE_ASPECT_COLOR_BIT:
3486 case VK_IMAGE_ASPECT_DEPTH_BIT:
3487 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3488 return 0;
3489 case VK_IMAGE_ASPECT_STENCIL_BIT:
3490 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3491 return 0;
3492 /* Fall-through */
3493 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3494 return 1;
3495 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3496 return 2;
3497 default:
3498 /* Purposefully assert with depth/stencil aspects. */
3499 unreachable("invalid image aspect");
3500 }
3501 }
3502
3503 static inline VkImageAspectFlags
3504 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3505 uint32_t plane)
3506 {
3507 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3508 if (util_bitcount(image_aspects) > 1)
3509 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3510 return VK_IMAGE_ASPECT_COLOR_BIT;
3511 }
3512 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3513 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3514 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3515 return VK_IMAGE_ASPECT_STENCIL_BIT;
3516 }
3517
3518 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3519 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3520
3521 const struct anv_format *
3522 anv_get_format(VkFormat format);
3523
3524 static inline uint32_t
3525 anv_get_format_planes(VkFormat vk_format)
3526 {
3527 const struct anv_format *format = anv_get_format(vk_format);
3528
3529 return format != NULL ? format->n_planes : 0;
3530 }
3531
3532 struct anv_format_plane
3533 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3534 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3535
3536 static inline enum isl_format
3537 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3538 VkImageAspectFlags aspect, VkImageTiling tiling)
3539 {
3540 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3541 }
3542
3543 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3544 VkImageCreateFlags create_flags,
3545 VkFormat vk_format,
3546 VkImageTiling vk_tiling,
3547 const VkImageFormatListCreateInfoKHR *fmt_list);
3548
3549 static inline struct isl_swizzle
3550 anv_swizzle_for_render(struct isl_swizzle swizzle)
3551 {
3552 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3553 * RGB as RGBA for texturing
3554 */
3555 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3556 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3557
3558 /* But it doesn't matter what we render to that channel */
3559 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3560
3561 return swizzle;
3562 }
3563
3564 void
3565 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3566
3567 /**
3568 * Subsurface of an anv_image.
3569 */
3570 struct anv_surface {
3571 /** Valid only if isl_surf::size_B > 0. */
3572 struct isl_surf isl;
3573
3574 /**
3575 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3576 */
3577 uint32_t offset;
3578 };
3579
3580 struct anv_image {
3581 struct vk_object_base base;
3582
3583 VkImageType type; /**< VkImageCreateInfo::imageType */
3584 /* The original VkFormat provided by the client. This may not match any
3585 * of the actual surface formats.
3586 */
3587 VkFormat vk_format;
3588 const struct anv_format *format;
3589
3590 VkImageAspectFlags aspects;
3591 VkExtent3D extent;
3592 uint32_t levels;
3593 uint32_t array_size;
3594 uint32_t samples; /**< VkImageCreateInfo::samples */
3595 uint32_t n_planes;
3596 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3597 VkImageUsageFlags stencil_usage;
3598 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3599 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3600
3601 /** True if this is needs to be bound to an appropriately tiled BO.
3602 *
3603 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3604 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3605 * we require a dedicated allocation so that we can know to allocate a
3606 * tiled buffer.
3607 */
3608 bool needs_set_tiling;
3609
3610 /**
3611 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3612 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3613 */
3614 uint64_t drm_format_mod;
3615
3616 VkDeviceSize size;
3617 uint32_t alignment;
3618
3619 /* Whether the image is made of several underlying buffer objects rather a
3620 * single one with different offsets.
3621 */
3622 bool disjoint;
3623
3624 /* Image was created with external format. */
3625 bool external_format;
3626
3627 /**
3628 * Image subsurfaces
3629 *
3630 * For each foo, anv_image::planes[x].surface is valid if and only if
3631 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3632 * to figure the number associated with a given aspect.
3633 *
3634 * The hardware requires that the depth buffer and stencil buffer be
3635 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3636 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3637 * allocate the depth and stencil buffers as separate surfaces in the same
3638 * bo.
3639 *
3640 * Memory layout :
3641 *
3642 * -----------------------
3643 * | surface0 | /|\
3644 * ----------------------- |
3645 * | shadow surface0 | |
3646 * ----------------------- | Plane 0
3647 * | aux surface0 | |
3648 * ----------------------- |
3649 * | fast clear colors0 | \|/
3650 * -----------------------
3651 * | surface1 | /|\
3652 * ----------------------- |
3653 * | shadow surface1 | |
3654 * ----------------------- | Plane 1
3655 * | aux surface1 | |
3656 * ----------------------- |
3657 * | fast clear colors1 | \|/
3658 * -----------------------
3659 * | ... |
3660 * | |
3661 * -----------------------
3662 */
3663 struct {
3664 /**
3665 * Offset of the entire plane (whenever the image is disjoint this is
3666 * set to 0).
3667 */
3668 uint32_t offset;
3669
3670 VkDeviceSize size;
3671 uint32_t alignment;
3672
3673 struct anv_surface surface;
3674
3675 /**
3676 * A surface which shadows the main surface and may have different
3677 * tiling. This is used for sampling using a tiling that isn't supported
3678 * for other operations.
3679 */
3680 struct anv_surface shadow_surface;
3681
3682 /**
3683 * The base aux usage for this image. For color images, this can be
3684 * either CCS_E or CCS_D depending on whether or not we can reliably
3685 * leave CCS on all the time.
3686 */
3687 enum isl_aux_usage aux_usage;
3688
3689 struct anv_surface aux_surface;
3690
3691 /**
3692 * Offset of the fast clear state (used to compute the
3693 * fast_clear_state_offset of the following planes).
3694 */
3695 uint32_t fast_clear_state_offset;
3696
3697 /**
3698 * BO associated with this plane, set when bound.
3699 */
3700 struct anv_address address;
3701
3702 /**
3703 * When destroying the image, also free the bo.
3704 * */
3705 bool bo_is_owned;
3706 } planes[3];
3707 };
3708
3709 /* The ordering of this enum is important */
3710 enum anv_fast_clear_type {
3711 /** Image does not have/support any fast-clear blocks */
3712 ANV_FAST_CLEAR_NONE = 0,
3713 /** Image has/supports fast-clear but only to the default value */
3714 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3715 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3716 ANV_FAST_CLEAR_ANY = 2,
3717 };
3718
3719 /* Returns the number of auxiliary buffer levels attached to an image. */
3720 static inline uint8_t
3721 anv_image_aux_levels(const struct anv_image * const image,
3722 VkImageAspectFlagBits aspect)
3723 {
3724 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3725 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3726 return 0;
3727
3728 /* The Gen12 CCS aux surface is represented with only one level. */
3729 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3730 image->planes[plane].surface.isl.levels :
3731 image->planes[plane].aux_surface.isl.levels;
3732 }
3733
3734 /* Returns the number of auxiliary buffer layers attached to an image. */
3735 static inline uint32_t
3736 anv_image_aux_layers(const struct anv_image * const image,
3737 VkImageAspectFlagBits aspect,
3738 const uint8_t miplevel)
3739 {
3740 assert(image);
3741
3742 /* The miplevel must exist in the main buffer. */
3743 assert(miplevel < image->levels);
3744
3745 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3746 /* There are no layers with auxiliary data because the miplevel has no
3747 * auxiliary data.
3748 */
3749 return 0;
3750 } else {
3751 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3752
3753 /* The Gen12 CCS aux surface is represented with only one layer. */
3754 const struct isl_extent4d *aux_logical_level0_px =
3755 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3756 &image->planes[plane].surface.isl.logical_level0_px :
3757 &image->planes[plane].aux_surface.isl.logical_level0_px;
3758
3759 return MAX2(aux_logical_level0_px->array_len,
3760 aux_logical_level0_px->depth >> miplevel);
3761 }
3762 }
3763
3764 static inline struct anv_address
3765 anv_image_get_clear_color_addr(UNUSED const struct anv_device *device,
3766 const struct anv_image *image,
3767 VkImageAspectFlagBits aspect)
3768 {
3769 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3770
3771 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3772 return anv_address_add(image->planes[plane].address,
3773 image->planes[plane].fast_clear_state_offset);
3774 }
3775
3776 static inline struct anv_address
3777 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3778 const struct anv_image *image,
3779 VkImageAspectFlagBits aspect)
3780 {
3781 struct anv_address addr =
3782 anv_image_get_clear_color_addr(device, image, aspect);
3783
3784 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3785 device->isl_dev.ss.clear_color_state_size :
3786 device->isl_dev.ss.clear_value_size;
3787 return anv_address_add(addr, clear_color_state_size);
3788 }
3789
3790 static inline struct anv_address
3791 anv_image_get_compression_state_addr(const struct anv_device *device,
3792 const struct anv_image *image,
3793 VkImageAspectFlagBits aspect,
3794 uint32_t level, uint32_t array_layer)
3795 {
3796 assert(level < anv_image_aux_levels(image, aspect));
3797 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3798 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3799 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3800
3801 struct anv_address addr =
3802 anv_image_get_fast_clear_type_addr(device, image, aspect);
3803 addr.offset += 4; /* Go past the fast clear type */
3804
3805 if (image->type == VK_IMAGE_TYPE_3D) {
3806 for (uint32_t l = 0; l < level; l++)
3807 addr.offset += anv_minify(image->extent.depth, l) * 4;
3808 } else {
3809 addr.offset += level * image->array_size * 4;
3810 }
3811 addr.offset += array_layer * 4;
3812
3813 assert(addr.offset <
3814 image->planes[plane].address.offset + image->planes[plane].size);
3815 return addr;
3816 }
3817
3818 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3819 static inline bool
3820 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3821 const struct anv_image *image)
3822 {
3823 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3824 return false;
3825
3826 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3827 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3828 * say:
3829 *
3830 * "If this field is set to AUX_HIZ, Number of Multisamples must
3831 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3832 */
3833 if (image->type == VK_IMAGE_TYPE_3D)
3834 return false;
3835
3836 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3837 * struct. There's documentation which suggests that this feature actually
3838 * reduces performance on BDW, but it has only been observed to help so
3839 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3840 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3841 */
3842 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3843 return false;
3844
3845 return image->samples == 1;
3846 }
3847
3848 static inline bool
3849 anv_image_plane_uses_aux_map(const struct anv_device *device,
3850 const struct anv_image *image,
3851 uint32_t plane)
3852 {
3853 return device->info.has_aux_map &&
3854 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3855 }
3856
3857 void
3858 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3859 const struct anv_image *image,
3860 VkImageAspectFlagBits aspect,
3861 enum isl_aux_usage aux_usage,
3862 uint32_t level,
3863 uint32_t base_layer,
3864 uint32_t layer_count);
3865
3866 void
3867 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3868 const struct anv_image *image,
3869 VkImageAspectFlagBits aspect,
3870 enum isl_aux_usage aux_usage,
3871 enum isl_format format, struct isl_swizzle swizzle,
3872 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3873 VkRect2D area, union isl_color_value clear_color);
3874 void
3875 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3876 const struct anv_image *image,
3877 VkImageAspectFlags aspects,
3878 enum isl_aux_usage depth_aux_usage,
3879 uint32_t level,
3880 uint32_t base_layer, uint32_t layer_count,
3881 VkRect2D area,
3882 float depth_value, uint8_t stencil_value);
3883 void
3884 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3885 const struct anv_image *src_image,
3886 enum isl_aux_usage src_aux_usage,
3887 uint32_t src_level, uint32_t src_base_layer,
3888 const struct anv_image *dst_image,
3889 enum isl_aux_usage dst_aux_usage,
3890 uint32_t dst_level, uint32_t dst_base_layer,
3891 VkImageAspectFlagBits aspect,
3892 uint32_t src_x, uint32_t src_y,
3893 uint32_t dst_x, uint32_t dst_y,
3894 uint32_t width, uint32_t height,
3895 uint32_t layer_count,
3896 enum blorp_filter filter);
3897 void
3898 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3899 const struct anv_image *image,
3900 VkImageAspectFlagBits aspect, uint32_t level,
3901 uint32_t base_layer, uint32_t layer_count,
3902 enum isl_aux_op hiz_op);
3903 void
3904 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3905 const struct anv_image *image,
3906 VkImageAspectFlags aspects,
3907 uint32_t level,
3908 uint32_t base_layer, uint32_t layer_count,
3909 VkRect2D area, uint8_t stencil_value);
3910 void
3911 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3912 const struct anv_image *image,
3913 enum isl_format format, struct isl_swizzle swizzle,
3914 VkImageAspectFlagBits aspect,
3915 uint32_t base_layer, uint32_t layer_count,
3916 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3917 bool predicate);
3918 void
3919 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3920 const struct anv_image *image,
3921 enum isl_format format, struct isl_swizzle swizzle,
3922 VkImageAspectFlagBits aspect, uint32_t level,
3923 uint32_t base_layer, uint32_t layer_count,
3924 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3925 bool predicate);
3926
3927 void
3928 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3929 const struct anv_image *image,
3930 VkImageAspectFlagBits aspect,
3931 uint32_t base_level, uint32_t level_count,
3932 uint32_t base_layer, uint32_t layer_count);
3933
3934 enum isl_aux_state
3935 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3936 const struct anv_image *image,
3937 const VkImageAspectFlagBits aspect,
3938 const VkImageLayout layout);
3939
3940 enum isl_aux_usage
3941 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3942 const struct anv_image *image,
3943 const VkImageAspectFlagBits aspect,
3944 const VkImageUsageFlagBits usage,
3945 const VkImageLayout layout);
3946
3947 enum anv_fast_clear_type
3948 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3949 const struct anv_image * const image,
3950 const VkImageAspectFlagBits aspect,
3951 const VkImageLayout layout);
3952
3953 /* This is defined as a macro so that it works for both
3954 * VkImageSubresourceRange and VkImageSubresourceLayers
3955 */
3956 #define anv_get_layerCount(_image, _range) \
3957 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3958 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3959
3960 static inline uint32_t
3961 anv_get_levelCount(const struct anv_image *image,
3962 const VkImageSubresourceRange *range)
3963 {
3964 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3965 image->levels - range->baseMipLevel : range->levelCount;
3966 }
3967
3968 static inline VkImageAspectFlags
3969 anv_image_expand_aspects(const struct anv_image *image,
3970 VkImageAspectFlags aspects)
3971 {
3972 /* If the underlying image has color plane aspects and
3973 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3974 * the underlying image. */
3975 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3976 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3977 return image->aspects;
3978
3979 return aspects;
3980 }
3981
3982 static inline bool
3983 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3984 VkImageAspectFlags aspects2)
3985 {
3986 if (aspects1 == aspects2)
3987 return true;
3988
3989 /* Only 1 color aspects are compatibles. */
3990 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3991 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3992 util_bitcount(aspects1) == util_bitcount(aspects2))
3993 return true;
3994
3995 return false;
3996 }
3997
3998 struct anv_image_view {
3999 struct vk_object_base base;
4000
4001 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
4002
4003 VkImageAspectFlags aspect_mask;
4004 VkFormat vk_format;
4005 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
4006
4007 unsigned n_planes;
4008 struct {
4009 uint32_t image_plane;
4010
4011 struct isl_view isl;
4012
4013 /**
4014 * RENDER_SURFACE_STATE when using image as a sampler surface with an
4015 * image layout of SHADER_READ_ONLY_OPTIMAL or
4016 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
4017 */
4018 struct anv_surface_state optimal_sampler_surface_state;
4019
4020 /**
4021 * RENDER_SURFACE_STATE when using image as a sampler surface with an
4022 * image layout of GENERAL.
4023 */
4024 struct anv_surface_state general_sampler_surface_state;
4025
4026 /**
4027 * RENDER_SURFACE_STATE when using image as a storage image. Separate
4028 * states for write-only and readable, using the real format for
4029 * write-only and the lowered format for readable.
4030 */
4031 struct anv_surface_state storage_surface_state;
4032 struct anv_surface_state writeonly_storage_surface_state;
4033
4034 struct brw_image_param storage_image_param;
4035 } planes[3];
4036 };
4037
4038 enum anv_image_view_state_flags {
4039 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
4040 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
4041 };
4042
4043 void anv_image_fill_surface_state(struct anv_device *device,
4044 const struct anv_image *image,
4045 VkImageAspectFlagBits aspect,
4046 const struct isl_view *view,
4047 isl_surf_usage_flags_t view_usage,
4048 enum isl_aux_usage aux_usage,
4049 const union isl_color_value *clear_color,
4050 enum anv_image_view_state_flags flags,
4051 struct anv_surface_state *state_inout,
4052 struct brw_image_param *image_param_out);
4053
4054 struct anv_image_create_info {
4055 const VkImageCreateInfo *vk_info;
4056
4057 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
4058 isl_tiling_flags_t isl_tiling_flags;
4059
4060 /** These flags will be added to any derived from VkImageCreateInfo. */
4061 isl_surf_usage_flags_t isl_extra_usage_flags;
4062
4063 uint32_t stride;
4064 bool external_format;
4065 };
4066
4067 VkResult anv_image_create(VkDevice _device,
4068 const struct anv_image_create_info *info,
4069 const VkAllocationCallbacks* alloc,
4070 VkImage *pImage);
4071
4072 enum isl_format
4073 anv_isl_format_for_descriptor_type(VkDescriptorType type);
4074
4075 static inline VkExtent3D
4076 anv_sanitize_image_extent(const VkImageType imageType,
4077 const VkExtent3D imageExtent)
4078 {
4079 switch (imageType) {
4080 case VK_IMAGE_TYPE_1D:
4081 return (VkExtent3D) { imageExtent.width, 1, 1 };
4082 case VK_IMAGE_TYPE_2D:
4083 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
4084 case VK_IMAGE_TYPE_3D:
4085 return imageExtent;
4086 default:
4087 unreachable("invalid image type");
4088 }
4089 }
4090
4091 static inline VkOffset3D
4092 anv_sanitize_image_offset(const VkImageType imageType,
4093 const VkOffset3D imageOffset)
4094 {
4095 switch (imageType) {
4096 case VK_IMAGE_TYPE_1D:
4097 return (VkOffset3D) { imageOffset.x, 0, 0 };
4098 case VK_IMAGE_TYPE_2D:
4099 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
4100 case VK_IMAGE_TYPE_3D:
4101 return imageOffset;
4102 default:
4103 unreachable("invalid image type");
4104 }
4105 }
4106
4107 VkFormatFeatureFlags
4108 anv_get_image_format_features(const struct gen_device_info *devinfo,
4109 VkFormat vk_format,
4110 const struct anv_format *anv_format,
4111 VkImageTiling vk_tiling);
4112
4113 void anv_fill_buffer_surface_state(struct anv_device *device,
4114 struct anv_state state,
4115 enum isl_format format,
4116 struct anv_address address,
4117 uint32_t range, uint32_t stride);
4118
4119 static inline void
4120 anv_clear_color_from_att_state(union isl_color_value *clear_color,
4121 const struct anv_attachment_state *att_state,
4122 const struct anv_image_view *iview)
4123 {
4124 const struct isl_format_layout *view_fmtl =
4125 isl_format_get_layout(iview->planes[0].isl.format);
4126
4127 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
4128 if (view_fmtl->channels.c.bits) \
4129 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4130
4131 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4132 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4133 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4134 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4135
4136 #undef COPY_CLEAR_COLOR_CHANNEL
4137 }
4138
4139
4140 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
4141 * straightforward 32-bit float color in the first 64 bytes. Instead of using
4142 * a nice float/integer union like Gen8+, Haswell specifies the integer border
4143 * color as a separate entry /after/ the float color. The layout of this entry
4144 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
4145 *
4146 * Since we don't know the format/bpp, we can't make any of the border colors
4147 * containing '1' work for all formats, as it would be in the wrong place for
4148 * some of them. We opt to make 32-bit integers work as this seems like the
4149 * most common option. Fortunately, transparent black works regardless, as
4150 * all zeroes is the same in every bit-size.
4151 */
4152 struct hsw_border_color {
4153 float float32[4];
4154 uint32_t _pad0[12];
4155 uint32_t uint32[4];
4156 uint32_t _pad1[108];
4157 };
4158
4159 struct gen8_border_color {
4160 union {
4161 float float32[4];
4162 uint32_t uint32[4];
4163 };
4164 /* Pad out to 64 bytes */
4165 uint32_t _pad[12];
4166 };
4167
4168 struct anv_ycbcr_conversion {
4169 struct vk_object_base base;
4170
4171 const struct anv_format * format;
4172 VkSamplerYcbcrModelConversion ycbcr_model;
4173 VkSamplerYcbcrRange ycbcr_range;
4174 VkComponentSwizzle mapping[4];
4175 VkChromaLocation chroma_offsets[2];
4176 VkFilter chroma_filter;
4177 bool chroma_reconstruction;
4178 };
4179
4180 struct anv_sampler {
4181 struct vk_object_base base;
4182
4183 uint32_t state[3][4];
4184 uint32_t n_planes;
4185 struct anv_ycbcr_conversion *conversion;
4186
4187 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4188 * and with a 32-byte stride for use as bindless samplers.
4189 */
4190 struct anv_state bindless_state;
4191
4192 struct anv_state custom_border_color;
4193 };
4194
4195 struct anv_framebuffer {
4196 struct vk_object_base base;
4197
4198 uint32_t width;
4199 uint32_t height;
4200 uint32_t layers;
4201
4202 uint32_t attachment_count;
4203 struct anv_image_view * attachments[0];
4204 };
4205
4206 struct anv_subpass_attachment {
4207 VkImageUsageFlagBits usage;
4208 uint32_t attachment;
4209 VkImageLayout layout;
4210
4211 /* Used only with attachment containing stencil data. */
4212 VkImageLayout stencil_layout;
4213 };
4214
4215 struct anv_subpass {
4216 uint32_t attachment_count;
4217
4218 /**
4219 * A pointer to all attachment references used in this subpass.
4220 * Only valid if ::attachment_count > 0.
4221 */
4222 struct anv_subpass_attachment * attachments;
4223 uint32_t input_count;
4224 struct anv_subpass_attachment * input_attachments;
4225 uint32_t color_count;
4226 struct anv_subpass_attachment * color_attachments;
4227 struct anv_subpass_attachment * resolve_attachments;
4228
4229 struct anv_subpass_attachment * depth_stencil_attachment;
4230 struct anv_subpass_attachment * ds_resolve_attachment;
4231 VkResolveModeFlagBitsKHR depth_resolve_mode;
4232 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4233
4234 uint32_t view_mask;
4235
4236 /** Subpass has a depth/stencil self-dependency */
4237 bool has_ds_self_dep;
4238
4239 /** Subpass has at least one color resolve attachment */
4240 bool has_color_resolve;
4241 };
4242
4243 static inline unsigned
4244 anv_subpass_view_count(const struct anv_subpass *subpass)
4245 {
4246 return MAX2(1, util_bitcount(subpass->view_mask));
4247 }
4248
4249 struct anv_render_pass_attachment {
4250 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4251 * its members individually.
4252 */
4253 VkFormat format;
4254 uint32_t samples;
4255 VkImageUsageFlags usage;
4256 VkAttachmentLoadOp load_op;
4257 VkAttachmentStoreOp store_op;
4258 VkAttachmentLoadOp stencil_load_op;
4259 VkImageLayout initial_layout;
4260 VkImageLayout final_layout;
4261 VkImageLayout first_subpass_layout;
4262
4263 VkImageLayout stencil_initial_layout;
4264 VkImageLayout stencil_final_layout;
4265
4266 /* The subpass id in which the attachment will be used last. */
4267 uint32_t last_subpass_idx;
4268 };
4269
4270 struct anv_render_pass {
4271 struct vk_object_base base;
4272
4273 uint32_t attachment_count;
4274 uint32_t subpass_count;
4275 /* An array of subpass_count+1 flushes, one per subpass boundary */
4276 enum anv_pipe_bits * subpass_flushes;
4277 struct anv_render_pass_attachment * attachments;
4278 struct anv_subpass subpasses[0];
4279 };
4280
4281 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4282
4283 #define OA_SNAPSHOT_SIZE (256)
4284 #define ANV_KHR_PERF_QUERY_SIZE (ALIGN(sizeof(uint64_t), 64) + 2 * OA_SNAPSHOT_SIZE)
4285
4286 struct anv_query_pool {
4287 struct vk_object_base base;
4288
4289 VkQueryType type;
4290 VkQueryPipelineStatisticFlags pipeline_statistics;
4291 /** Stride between slots, in bytes */
4292 uint32_t stride;
4293 /** Number of slots in this query pool */
4294 uint32_t slots;
4295 struct anv_bo * bo;
4296
4297 /* Perf queries : */
4298 struct anv_bo reset_bo;
4299 uint32_t n_counters;
4300 struct gen_perf_counter_pass *counter_pass;
4301 uint32_t n_passes;
4302 struct gen_perf_query_info **pass_query;
4303 };
4304
4305 static inline uint32_t khr_perf_query_preamble_offset(struct anv_query_pool *pool,
4306 uint32_t pass)
4307 {
4308 return pass * ANV_KHR_PERF_QUERY_SIZE + 8;
4309 }
4310
4311 int anv_get_instance_entrypoint_index(const char *name);
4312 int anv_get_device_entrypoint_index(const char *name);
4313 int anv_get_physical_device_entrypoint_index(const char *name);
4314
4315 const char *anv_get_instance_entry_name(int index);
4316 const char *anv_get_physical_device_entry_name(int index);
4317 const char *anv_get_device_entry_name(int index);
4318
4319 bool
4320 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4321 const struct anv_instance_extension_table *instance);
4322 bool
4323 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4324 const struct anv_instance_extension_table *instance);
4325 bool
4326 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4327 const struct anv_instance_extension_table *instance,
4328 const struct anv_device_extension_table *device);
4329
4330 void *anv_resolve_device_entrypoint(const struct gen_device_info *devinfo,
4331 uint32_t index);
4332 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4333 const char *name);
4334
4335 void anv_dump_image_to_ppm(struct anv_device *device,
4336 struct anv_image *image, unsigned miplevel,
4337 unsigned array_layer, VkImageAspectFlagBits aspect,
4338 const char *filename);
4339
4340 enum anv_dump_action {
4341 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4342 };
4343
4344 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4345 void anv_dump_finish(void);
4346
4347 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4348
4349 static inline uint32_t
4350 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4351 {
4352 /* This function must be called from within a subpass. */
4353 assert(cmd_state->pass && cmd_state->subpass);
4354
4355 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4356
4357 /* The id of this subpass shouldn't exceed the number of subpasses in this
4358 * render pass minus 1.
4359 */
4360 assert(subpass_id < cmd_state->pass->subpass_count);
4361 return subpass_id;
4362 }
4363
4364 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4365 void anv_device_perf_init(struct anv_device *device);
4366 void anv_perf_write_pass_results(struct gen_perf_config *perf,
4367 struct anv_query_pool *pool, uint32_t pass,
4368 const struct gen_perf_query_result *accumulated_results,
4369 union VkPerformanceCounterResultKHR *results);
4370
4371 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4372 VK_FROM_HANDLE(__anv_type, __name, __handle)
4373
4374 VK_DEFINE_HANDLE_CASTS(anv_cmd_buffer, base, VkCommandBuffer,
4375 VK_OBJECT_TYPE_COMMAND_BUFFER)
4376 VK_DEFINE_HANDLE_CASTS(anv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
4377 VK_DEFINE_HANDLE_CASTS(anv_instance, base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
4378 VK_DEFINE_HANDLE_CASTS(anv_physical_device, base, VkPhysicalDevice,
4379 VK_OBJECT_TYPE_PHYSICAL_DEVICE)
4380 VK_DEFINE_HANDLE_CASTS(anv_queue, base, VkQueue, VK_OBJECT_TYPE_QUEUE)
4381
4382 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, base, VkCommandPool,
4383 VK_OBJECT_TYPE_COMMAND_POOL)
4384 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, base, VkBuffer,
4385 VK_OBJECT_TYPE_BUFFER)
4386 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, base, VkBufferView,
4387 VK_OBJECT_TYPE_BUFFER_VIEW)
4388 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, base, VkDescriptorPool,
4389 VK_OBJECT_TYPE_DESCRIPTOR_POOL)
4390 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, base, VkDescriptorSet,
4391 VK_OBJECT_TYPE_DESCRIPTOR_SET)
4392 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, base,
4393 VkDescriptorSetLayout,
4394 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
4395 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, base,
4396 VkDescriptorUpdateTemplate,
4397 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
4398 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, base, VkDeviceMemory,
4399 VK_OBJECT_TYPE_DEVICE_MEMORY)
4400 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, base, VkFence, VK_OBJECT_TYPE_FENCE)
4401 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
4402 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, base, VkFramebuffer,
4403 VK_OBJECT_TYPE_FRAMEBUFFER)
4404 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image, base, VkImage, VK_OBJECT_TYPE_IMAGE)
4405 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, base, VkImageView,
4406 VK_OBJECT_TYPE_IMAGE_VIEW);
4407 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, base, VkPipelineCache,
4408 VK_OBJECT_TYPE_PIPELINE_CACHE)
4409 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, base, VkPipeline,
4410 VK_OBJECT_TYPE_PIPELINE)
4411 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, base, VkPipelineLayout,
4412 VK_OBJECT_TYPE_PIPELINE_LAYOUT)
4413 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, base, VkQueryPool,
4414 VK_OBJECT_TYPE_QUERY_POOL)
4415 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, base, VkRenderPass,
4416 VK_OBJECT_TYPE_RENDER_PASS)
4417 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, base, VkSampler,
4418 VK_OBJECT_TYPE_SAMPLER)
4419 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, base, VkSemaphore,
4420 VK_OBJECT_TYPE_SEMAPHORE)
4421 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, base, VkShaderModule,
4422 VK_OBJECT_TYPE_SHADER_MODULE)
4423 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, base,
4424 VkSamplerYcbcrConversion,
4425 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION)
4426
4427 /* Gen-specific function declarations */
4428 #ifdef genX
4429 # include "anv_genX.h"
4430 #else
4431 # define genX(x) gen7_##x
4432 # include "anv_genX.h"
4433 # undef genX
4434 # define genX(x) gen75_##x
4435 # include "anv_genX.h"
4436 # undef genX
4437 # define genX(x) gen8_##x
4438 # include "anv_genX.h"
4439 # undef genX
4440 # define genX(x) gen9_##x
4441 # include "anv_genX.h"
4442 # undef genX
4443 # define genX(x) gen10_##x
4444 # include "anv_genX.h"
4445 # undef genX
4446 # define genX(x) gen11_##x
4447 # include "anv_genX.h"
4448 # undef genX
4449 # define genX(x) gen12_##x
4450 # include "anv_genX.h"
4451 # undef genX
4452 #endif
4453
4454 #endif /* ANV_PRIVATE_H */