anv: Make anv_vma_alloc/free a lot dumber
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175
176 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
177 *
178 * "The surface state model is used when a Binding Table Index (specified
179 * in the message descriptor) of less than 240 is specified. In this model,
180 * the Binding Table Index is used to index into the binding table, and the
181 * binding table entry contains a pointer to the SURFACE_STATE."
182 *
183 * Binding table values above 240 are used for various things in the hardware
184 * such as stateless, stateless with incoherent cache, SLM, and bindless.
185 */
186 #define MAX_BINDING_TABLE_SIZE 240
187
188 /* The kernel relocation API has a limitation of a 32-bit delta value
189 * applied to the address before it is written which, in spite of it being
190 * unsigned, is treated as signed . Because of the way that this maps to
191 * the Vulkan API, we cannot handle an offset into a buffer that does not
192 * fit into a signed 32 bits. The only mechanism we have for dealing with
193 * this at the moment is to limit all VkDeviceMemory objects to a maximum
194 * of 2GB each. The Vulkan spec allows us to do this:
195 *
196 * "Some platforms may have a limit on the maximum size of a single
197 * allocation. For example, certain systems may fail to create
198 * allocations with a size greater than or equal to 4GB. Such a limit is
199 * implementation-dependent, and if such a failure occurs then the error
200 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
201 *
202 * We don't use vk_error here because it's not an error so much as an
203 * indication to the application that the allocation is too large.
204 */
205 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
206
207 #define ANV_SVGS_VB_INDEX MAX_VBS
208 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
209
210 /* We reserve this MI ALU register for the purpose of handling predication.
211 * Other code which uses the MI ALU should leave it alone.
212 */
213 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
214
215 /* For gen12 we set the streamout buffers using 4 separate commands
216 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
217 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
218 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
219 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
220 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
221 * 3DSTATE_SO_BUFFER_INDEX_0.
222 */
223 #define SO_BUFFER_INDEX_0_CMD 0x60
224 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
225
226 static inline uint32_t
227 align_down_npot_u32(uint32_t v, uint32_t a)
228 {
229 return v - (v % a);
230 }
231
232 static inline uint32_t
233 align_u32(uint32_t v, uint32_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline uint64_t
240 align_down_u64(uint64_t v, uint64_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return v & ~(a - 1);
244 }
245
246 static inline uint64_t
247 align_u64(uint64_t v, uint64_t a)
248 {
249 return align_down_u64(v + a - 1, a);
250 }
251
252 static inline int32_t
253 align_i32(int32_t v, int32_t a)
254 {
255 assert(a != 0 && a == (a & -a));
256 return (v + a - 1) & ~(a - 1);
257 }
258
259 /** Alignment must be a power of 2. */
260 static inline bool
261 anv_is_aligned(uintmax_t n, uintmax_t a)
262 {
263 assert(a == (a & -a));
264 return (n & (a - 1)) == 0;
265 }
266
267 static inline uint32_t
268 anv_minify(uint32_t n, uint32_t levels)
269 {
270 if (unlikely(n == 0))
271 return 0;
272 else
273 return MAX2(n >> levels, 1);
274 }
275
276 static inline float
277 anv_clamp_f(float f, float min, float max)
278 {
279 assert(min < max);
280
281 if (f > max)
282 return max;
283 else if (f < min)
284 return min;
285 else
286 return f;
287 }
288
289 static inline bool
290 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
291 {
292 if (*inout_mask & clear_mask) {
293 *inout_mask &= ~clear_mask;
294 return true;
295 } else {
296 return false;
297 }
298 }
299
300 static inline union isl_color_value
301 vk_to_isl_color(VkClearColorValue color)
302 {
303 return (union isl_color_value) {
304 .u32 = {
305 color.uint32[0],
306 color.uint32[1],
307 color.uint32[2],
308 color.uint32[3],
309 },
310 };
311 }
312
313 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
314 {
315 uintptr_t mask = (1ull << bits) - 1;
316 *flags = ptr & mask;
317 return (void *) (ptr & ~mask);
318 }
319
320 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
321 {
322 uintptr_t value = (uintptr_t) ptr;
323 uintptr_t mask = (1ull << bits) - 1;
324 return value | (mask & flags);
325 }
326
327 #define for_each_bit(b, dword) \
328 for (uint32_t __dword = (dword); \
329 (b) = __builtin_ffs(__dword) - 1, __dword; \
330 __dword &= ~(1 << (b)))
331
332 #define typed_memcpy(dest, src, count) ({ \
333 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
334 memcpy((dest), (src), (count) * sizeof(*(src))); \
335 })
336
337 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
338 * to be added here in order to utilize mapping in debug/error/perf macros.
339 */
340 #define REPORT_OBJECT_TYPE(o) \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), void*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
434 /* The void expression results in a compile-time error \
435 when assigning the result to something. */ \
436 (void)0)))))))))))))))))))))))))))))))
437
438 /* Whenever we generate an error, pass it through this function. Useful for
439 * debugging, where we can break on it. Only call at error site, not when
440 * propagating errors. Might be useful to plug in a stack trace here.
441 */
442
443 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
444 VkDebugReportObjectTypeEXT type, VkResult error,
445 const char *file, int line, const char *format,
446 va_list args);
447
448 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
449 VkDebugReportObjectTypeEXT type, VkResult error,
450 const char *file, int line, const char *format, ...)
451 anv_printflike(7, 8);
452
453 #ifdef DEBUG
454 #define vk_error(error) __vk_errorf(NULL, NULL,\
455 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
456 error, __FILE__, __LINE__, NULL)
457 #define vk_errorfi(instance, obj, error, format, ...)\
458 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
459 __FILE__, __LINE__, format, ## __VA_ARGS__)
460 #define vk_errorf(device, obj, error, format, ...)\
461 vk_errorfi(anv_device_instance_or_null(device),\
462 obj, error, format, ## __VA_ARGS__)
463 #else
464 #define vk_error(error) error
465 #define vk_errorfi(instance, obj, error, format, ...) error
466 #define vk_errorf(device, obj, error, format, ...) error
467 #endif
468
469 /**
470 * Warn on ignored extension structs.
471 *
472 * The Vulkan spec requires us to ignore unsupported or unknown structs in
473 * a pNext chain. In debug mode, emitting warnings for ignored structs may
474 * help us discover structs that we should not have ignored.
475 *
476 *
477 * From the Vulkan 1.0.38 spec:
478 *
479 * Any component of the implementation (the loader, any enabled layers,
480 * and drivers) must skip over, without processing (other than reading the
481 * sType and pNext members) any chained structures with sType values not
482 * defined by extensions supported by that component.
483 */
484 #define anv_debug_ignored_stype(sType) \
485 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
486
487 void __anv_perf_warn(struct anv_device *device, const void *object,
488 VkDebugReportObjectTypeEXT type, const char *file,
489 int line, const char *format, ...)
490 anv_printflike(6, 7);
491 void anv_loge(const char *format, ...) anv_printflike(1, 2);
492 void anv_loge_v(const char *format, va_list va);
493
494 /**
495 * Print a FINISHME message, including its source location.
496 */
497 #define anv_finishme(format, ...) \
498 do { \
499 static bool reported = false; \
500 if (!reported) { \
501 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
502 ##__VA_ARGS__); \
503 reported = true; \
504 } \
505 } while (0)
506
507 /**
508 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
509 */
510 #define anv_perf_warn(instance, obj, format, ...) \
511 do { \
512 static bool reported = false; \
513 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
514 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
515 format, ##__VA_ARGS__); \
516 reported = true; \
517 } \
518 } while (0)
519
520 /* A non-fatal assert. Useful for debugging. */
521 #ifdef DEBUG
522 #define anv_assert(x) ({ \
523 if (unlikely(!(x))) \
524 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
525 })
526 #else
527 #define anv_assert(x)
528 #endif
529
530 /* A multi-pointer allocator
531 *
532 * When copying data structures from the user (such as a render pass), it's
533 * common to need to allocate data for a bunch of different things. Instead
534 * of doing several allocations and having to handle all of the error checking
535 * that entails, it can be easier to do a single allocation. This struct
536 * helps facilitate that. The intended usage looks like this:
537 *
538 * ANV_MULTIALLOC(ma)
539 * anv_multialloc_add(&ma, &main_ptr, 1);
540 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
541 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
542 *
543 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
544 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
545 */
546 struct anv_multialloc {
547 size_t size;
548 size_t align;
549
550 uint32_t ptr_count;
551 void **ptrs[8];
552 };
553
554 #define ANV_MULTIALLOC_INIT \
555 ((struct anv_multialloc) { 0, })
556
557 #define ANV_MULTIALLOC(_name) \
558 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
559
560 __attribute__((always_inline))
561 static inline void
562 _anv_multialloc_add(struct anv_multialloc *ma,
563 void **ptr, size_t size, size_t align)
564 {
565 size_t offset = align_u64(ma->size, align);
566 ma->size = offset + size;
567 ma->align = MAX2(ma->align, align);
568
569 /* Store the offset in the pointer. */
570 *ptr = (void *)(uintptr_t)offset;
571
572 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
573 ma->ptrs[ma->ptr_count++] = ptr;
574 }
575
576 #define anv_multialloc_add_size(_ma, _ptr, _size) \
577 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
578
579 #define anv_multialloc_add(_ma, _ptr, _count) \
580 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
581
582 __attribute__((always_inline))
583 static inline void *
584 anv_multialloc_alloc(struct anv_multialloc *ma,
585 const VkAllocationCallbacks *alloc,
586 VkSystemAllocationScope scope)
587 {
588 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
589 if (!ptr)
590 return NULL;
591
592 /* Fill out each of the pointers with their final value.
593 *
594 * for (uint32_t i = 0; i < ma->ptr_count; i++)
595 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
596 *
597 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
598 * constant, GCC is incapable of figuring this out and unrolling the loop
599 * so we have to give it a little help.
600 */
601 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
602 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
603 if ((_i) < ma->ptr_count) \
604 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
605 _ANV_MULTIALLOC_UPDATE_POINTER(0);
606 _ANV_MULTIALLOC_UPDATE_POINTER(1);
607 _ANV_MULTIALLOC_UPDATE_POINTER(2);
608 _ANV_MULTIALLOC_UPDATE_POINTER(3);
609 _ANV_MULTIALLOC_UPDATE_POINTER(4);
610 _ANV_MULTIALLOC_UPDATE_POINTER(5);
611 _ANV_MULTIALLOC_UPDATE_POINTER(6);
612 _ANV_MULTIALLOC_UPDATE_POINTER(7);
613 #undef _ANV_MULTIALLOC_UPDATE_POINTER
614
615 return ptr;
616 }
617
618 __attribute__((always_inline))
619 static inline void *
620 anv_multialloc_alloc2(struct anv_multialloc *ma,
621 const VkAllocationCallbacks *parent_alloc,
622 const VkAllocationCallbacks *alloc,
623 VkSystemAllocationScope scope)
624 {
625 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
626 }
627
628 struct anv_bo {
629 uint32_t gem_handle;
630
631 uint32_t refcount;
632
633 /* Index into the current validation list. This is used by the
634 * validation list building alrogithm to track which buffers are already
635 * in the validation list so that we can ensure uniqueness.
636 */
637 uint32_t index;
638
639 /* Index for use with util_sparse_array_free_list */
640 uint32_t free_index;
641
642 /* Last known offset. This value is provided by the kernel when we
643 * execbuf and is used as the presumed offset for the next bunch of
644 * relocations.
645 */
646 uint64_t offset;
647
648 uint64_t size;
649
650 /* Map for internally mapped BOs.
651 *
652 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
653 */
654 void *map;
655
656 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
657 uint32_t flags;
658
659 /** True if this BO may be shared with other processes */
660 bool is_external:1;
661
662 /** True if this BO is a wrapper
663 *
664 * When set to true, none of the fields in this BO are meaningful except
665 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
666 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
667 * is set in the physical device.
668 */
669 bool is_wrapper:1;
670
671 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
672 bool has_fixed_address:1;
673
674 /** True if this BO wraps a host pointer */
675 bool from_host_ptr:1;
676
677 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
678 bool has_client_visible_address:1;
679 };
680
681 static inline struct anv_bo *
682 anv_bo_ref(struct anv_bo *bo)
683 {
684 p_atomic_inc(&bo->refcount);
685 return bo;
686 }
687
688 static inline struct anv_bo *
689 anv_bo_unwrap(struct anv_bo *bo)
690 {
691 while (bo->is_wrapper)
692 bo = bo->map;
693 return bo;
694 }
695
696 /* Represents a lock-free linked list of "free" things. This is used by
697 * both the block pool and the state pools. Unfortunately, in order to
698 * solve the ABA problem, we can't use a single uint32_t head.
699 */
700 union anv_free_list {
701 struct {
702 uint32_t offset;
703
704 /* A simple count that is incremented every time the head changes. */
705 uint32_t count;
706 };
707 /* Make sure it's aligned to 64 bits. This will make atomic operations
708 * faster on 32 bit platforms.
709 */
710 uint64_t u64 __attribute__ ((aligned (8)));
711 };
712
713 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
714
715 struct anv_block_state {
716 union {
717 struct {
718 uint32_t next;
719 uint32_t end;
720 };
721 /* Make sure it's aligned to 64 bits. This will make atomic operations
722 * faster on 32 bit platforms.
723 */
724 uint64_t u64 __attribute__ ((aligned (8)));
725 };
726 };
727
728 #define anv_block_pool_foreach_bo(bo, pool) \
729 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
730 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
731 _pp_bo++)
732
733 #define ANV_MAX_BLOCK_POOL_BOS 20
734
735 struct anv_block_pool {
736 struct anv_device *device;
737 bool use_softpin;
738
739 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
740 * around the actual BO so that we grow the pool after the wrapper BO has
741 * been put in a relocation list. This is only used in the non-softpin
742 * case.
743 */
744 struct anv_bo wrapper_bo;
745
746 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
747 struct anv_bo *bo;
748 uint32_t nbos;
749
750 uint64_t size;
751
752 /* The address where the start of the pool is pinned. The various bos that
753 * are created as the pool grows will have addresses in the range
754 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
755 */
756 uint64_t start_address;
757
758 /* The offset from the start of the bo to the "center" of the block
759 * pool. Pointers to allocated blocks are given by
760 * bo.map + center_bo_offset + offsets.
761 */
762 uint32_t center_bo_offset;
763
764 /* Current memory map of the block pool. This pointer may or may not
765 * point to the actual beginning of the block pool memory. If
766 * anv_block_pool_alloc_back has ever been called, then this pointer
767 * will point to the "center" position of the buffer and all offsets
768 * (negative or positive) given out by the block pool alloc functions
769 * will be valid relative to this pointer.
770 *
771 * In particular, map == bo.map + center_offset
772 *
773 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
774 * since it will handle the softpin case as well, where this points to NULL.
775 */
776 void *map;
777 int fd;
778
779 /**
780 * Array of mmaps and gem handles owned by the block pool, reclaimed when
781 * the block pool is destroyed.
782 */
783 struct u_vector mmap_cleanups;
784
785 struct anv_block_state state;
786
787 struct anv_block_state back_state;
788 };
789
790 /* Block pools are backed by a fixed-size 1GB memfd */
791 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
792
793 /* The center of the block pool is also the middle of the memfd. This may
794 * change in the future if we decide differently for some reason.
795 */
796 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
797
798 static inline uint32_t
799 anv_block_pool_size(struct anv_block_pool *pool)
800 {
801 return pool->state.end + pool->back_state.end;
802 }
803
804 struct anv_state {
805 int32_t offset;
806 uint32_t alloc_size;
807 void *map;
808 uint32_t idx;
809 };
810
811 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
812
813 struct anv_fixed_size_state_pool {
814 union anv_free_list free_list;
815 struct anv_block_state block;
816 };
817
818 #define ANV_MIN_STATE_SIZE_LOG2 6
819 #define ANV_MAX_STATE_SIZE_LOG2 21
820
821 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
822
823 struct anv_free_entry {
824 uint32_t next;
825 struct anv_state state;
826 };
827
828 struct anv_state_table {
829 struct anv_device *device;
830 int fd;
831 struct anv_free_entry *map;
832 uint32_t size;
833 struct anv_block_state state;
834 struct u_vector cleanups;
835 };
836
837 struct anv_state_pool {
838 struct anv_block_pool block_pool;
839
840 struct anv_state_table table;
841
842 /* The size of blocks which will be allocated from the block pool */
843 uint32_t block_size;
844
845 /** Free list for "back" allocations */
846 union anv_free_list back_alloc_free_list;
847
848 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
849 };
850
851 struct anv_state_stream_block;
852
853 struct anv_state_stream {
854 struct anv_state_pool *state_pool;
855
856 /* The size of blocks to allocate from the state pool */
857 uint32_t block_size;
858
859 /* Current block we're allocating from */
860 struct anv_state block;
861
862 /* Offset into the current block at which to allocate the next state */
863 uint32_t next;
864
865 /* List of all blocks allocated from this pool */
866 struct anv_state_stream_block *block_list;
867 };
868
869 /* The block_pool functions exported for testing only. The block pool should
870 * only be used via a state pool (see below).
871 */
872 VkResult anv_block_pool_init(struct anv_block_pool *pool,
873 struct anv_device *device,
874 uint64_t start_address,
875 uint32_t initial_size);
876 void anv_block_pool_finish(struct anv_block_pool *pool);
877 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
878 uint32_t block_size, uint32_t *padding);
879 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
880 uint32_t block_size);
881 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
882
883 VkResult anv_state_pool_init(struct anv_state_pool *pool,
884 struct anv_device *device,
885 uint64_t start_address,
886 uint32_t block_size);
887 void anv_state_pool_finish(struct anv_state_pool *pool);
888 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
889 uint32_t state_size, uint32_t alignment);
890 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
891 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
892 void anv_state_stream_init(struct anv_state_stream *stream,
893 struct anv_state_pool *state_pool,
894 uint32_t block_size);
895 void anv_state_stream_finish(struct anv_state_stream *stream);
896 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
897 uint32_t size, uint32_t alignment);
898
899 VkResult anv_state_table_init(struct anv_state_table *table,
900 struct anv_device *device,
901 uint32_t initial_entries);
902 void anv_state_table_finish(struct anv_state_table *table);
903 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
904 uint32_t count);
905 void anv_free_list_push(union anv_free_list *list,
906 struct anv_state_table *table,
907 uint32_t idx, uint32_t count);
908 struct anv_state* anv_free_list_pop(union anv_free_list *list,
909 struct anv_state_table *table);
910
911
912 static inline struct anv_state *
913 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
914 {
915 return &table->map[idx].state;
916 }
917 /**
918 * Implements a pool of re-usable BOs. The interface is identical to that
919 * of block_pool except that each block is its own BO.
920 */
921 struct anv_bo_pool {
922 struct anv_device *device;
923
924 struct util_sparse_array_free_list free_list[16];
925 };
926
927 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
928 void anv_bo_pool_finish(struct anv_bo_pool *pool);
929 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
930 struct anv_bo **bo_out);
931 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
932
933 struct anv_scratch_pool {
934 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
935 struct anv_bo *bos[16][MESA_SHADER_STAGES];
936 };
937
938 void anv_scratch_pool_init(struct anv_device *device,
939 struct anv_scratch_pool *pool);
940 void anv_scratch_pool_finish(struct anv_device *device,
941 struct anv_scratch_pool *pool);
942 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
943 struct anv_scratch_pool *pool,
944 gl_shader_stage stage,
945 unsigned per_thread_scratch);
946
947 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
948 struct anv_bo_cache {
949 struct util_sparse_array bo_map;
950 pthread_mutex_t mutex;
951 };
952
953 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
954 void anv_bo_cache_finish(struct anv_bo_cache *cache);
955
956 struct anv_memory_type {
957 /* Standard bits passed on to the client */
958 VkMemoryPropertyFlags propertyFlags;
959 uint32_t heapIndex;
960 };
961
962 struct anv_memory_heap {
963 /* Standard bits passed on to the client */
964 VkDeviceSize size;
965 VkMemoryHeapFlags flags;
966
967 /* Driver-internal book-keeping */
968 VkDeviceSize used;
969 };
970
971 struct anv_physical_device {
972 VK_LOADER_DATA _loader_data;
973
974 /* Link in anv_instance::physical_devices */
975 struct list_head link;
976
977 struct anv_instance * instance;
978 bool no_hw;
979 char path[20];
980 const char * name;
981 struct {
982 uint16_t domain;
983 uint8_t bus;
984 uint8_t device;
985 uint8_t function;
986 } pci_info;
987 struct gen_device_info info;
988 /** Amount of "GPU memory" we want to advertise
989 *
990 * Clearly, this value is bogus since Intel is a UMA architecture. On
991 * gen7 platforms, we are limited by GTT size unless we want to implement
992 * fine-grained tracking and GTT splitting. On Broadwell and above we are
993 * practically unlimited. However, we will never report more than 3/4 of
994 * the total system ram to try and avoid running out of RAM.
995 */
996 bool supports_48bit_addresses;
997 struct brw_compiler * compiler;
998 struct isl_device isl_dev;
999 struct gen_perf_config * perf;
1000 int cmd_parser_version;
1001 bool has_softpin;
1002 bool has_exec_async;
1003 bool has_exec_capture;
1004 bool has_exec_fence;
1005 bool has_syncobj;
1006 bool has_syncobj_wait;
1007 bool has_context_priority;
1008 bool has_context_isolation;
1009 bool has_mem_available;
1010 uint64_t gtt_size;
1011
1012 bool use_softpin;
1013 bool always_use_bindless;
1014
1015 /** True if we can access buffers using A64 messages */
1016 bool has_a64_buffer_access;
1017 /** True if we can use bindless access for images */
1018 bool has_bindless_images;
1019 /** True if we can use bindless access for samplers */
1020 bool has_bindless_samplers;
1021
1022 bool always_flush_cache;
1023
1024 struct anv_device_extension_table supported_extensions;
1025
1026 uint32_t eu_total;
1027 uint32_t subslice_total;
1028
1029 struct {
1030 uint32_t type_count;
1031 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1032 uint32_t heap_count;
1033 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1034 } memory;
1035
1036 uint8_t driver_build_sha1[20];
1037 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1038 uint8_t driver_uuid[VK_UUID_SIZE];
1039 uint8_t device_uuid[VK_UUID_SIZE];
1040
1041 struct disk_cache * disk_cache;
1042
1043 struct wsi_device wsi_device;
1044 int local_fd;
1045 int master_fd;
1046 };
1047
1048 struct anv_app_info {
1049 const char* app_name;
1050 uint32_t app_version;
1051 const char* engine_name;
1052 uint32_t engine_version;
1053 uint32_t api_version;
1054 };
1055
1056 struct anv_instance {
1057 VK_LOADER_DATA _loader_data;
1058
1059 VkAllocationCallbacks alloc;
1060
1061 struct anv_app_info app_info;
1062
1063 struct anv_instance_extension_table enabled_extensions;
1064 struct anv_instance_dispatch_table dispatch;
1065 struct anv_physical_device_dispatch_table physical_device_dispatch;
1066 struct anv_device_dispatch_table device_dispatch;
1067
1068 bool physical_devices_enumerated;
1069 struct list_head physical_devices;
1070
1071 bool pipeline_cache_enabled;
1072
1073 struct vk_debug_report_instance debug_report_callbacks;
1074
1075 struct driOptionCache dri_options;
1076 struct driOptionCache available_dri_options;
1077 };
1078
1079 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1080 void anv_finish_wsi(struct anv_physical_device *physical_device);
1081
1082 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1083 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1084 const char *name);
1085
1086 struct anv_queue_submit {
1087 struct anv_cmd_buffer * cmd_buffer;
1088
1089 uint32_t fence_count;
1090 uint32_t fence_array_length;
1091 struct drm_i915_gem_exec_fence * fences;
1092
1093 uint32_t temporary_semaphore_count;
1094 uint32_t temporary_semaphore_array_length;
1095 struct anv_semaphore_impl * temporary_semaphores;
1096
1097 /* Semaphores to be signaled with a SYNC_FD. */
1098 struct anv_semaphore ** sync_fd_semaphores;
1099 uint32_t sync_fd_semaphore_count;
1100 uint32_t sync_fd_semaphore_array_length;
1101
1102 /* Allocated only with non shareable timelines. */
1103 struct anv_timeline ** wait_timelines;
1104 uint32_t wait_timeline_count;
1105 uint32_t wait_timeline_array_length;
1106 uint64_t * wait_timeline_values;
1107
1108 struct anv_timeline ** signal_timelines;
1109 uint32_t signal_timeline_count;
1110 uint32_t signal_timeline_array_length;
1111 uint64_t * signal_timeline_values;
1112
1113 int in_fence;
1114 bool need_out_fence;
1115 int out_fence;
1116
1117 uint32_t fence_bo_count;
1118 uint32_t fence_bo_array_length;
1119 /* An array of struct anv_bo pointers with lower bit used as a flag to
1120 * signal we will wait on that BO (see anv_(un)pack_ptr).
1121 */
1122 uintptr_t * fence_bos;
1123
1124 const VkAllocationCallbacks * alloc;
1125 VkSystemAllocationScope alloc_scope;
1126
1127 struct anv_bo * simple_bo;
1128 uint32_t simple_bo_size;
1129
1130 struct list_head link;
1131 };
1132
1133 struct anv_queue {
1134 VK_LOADER_DATA _loader_data;
1135
1136 struct anv_device * device;
1137
1138 /*
1139 * A list of struct anv_queue_submit to be submitted to i915.
1140 */
1141 struct list_head queued_submits;
1142
1143 VkDeviceQueueCreateFlags flags;
1144 };
1145
1146 struct anv_pipeline_cache {
1147 struct anv_device * device;
1148 pthread_mutex_t mutex;
1149
1150 struct hash_table * nir_cache;
1151
1152 struct hash_table * cache;
1153 };
1154
1155 struct nir_xfb_info;
1156 struct anv_pipeline_bind_map;
1157
1158 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1159 struct anv_device *device,
1160 bool cache_enabled);
1161 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1162
1163 struct anv_shader_bin *
1164 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1165 const void *key, uint32_t key_size);
1166 struct anv_shader_bin *
1167 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1168 const void *key_data, uint32_t key_size,
1169 const void *kernel_data, uint32_t kernel_size,
1170 const void *constant_data,
1171 uint32_t constant_data_size,
1172 const struct brw_stage_prog_data *prog_data,
1173 uint32_t prog_data_size,
1174 const struct brw_compile_stats *stats,
1175 uint32_t num_stats,
1176 const struct nir_xfb_info *xfb_info,
1177 const struct anv_pipeline_bind_map *bind_map);
1178
1179 struct anv_shader_bin *
1180 anv_device_search_for_kernel(struct anv_device *device,
1181 struct anv_pipeline_cache *cache,
1182 const void *key_data, uint32_t key_size,
1183 bool *user_cache_bit);
1184
1185 struct anv_shader_bin *
1186 anv_device_upload_kernel(struct anv_device *device,
1187 struct anv_pipeline_cache *cache,
1188 const void *key_data, uint32_t key_size,
1189 const void *kernel_data, uint32_t kernel_size,
1190 const void *constant_data,
1191 uint32_t constant_data_size,
1192 const struct brw_stage_prog_data *prog_data,
1193 uint32_t prog_data_size,
1194 const struct brw_compile_stats *stats,
1195 uint32_t num_stats,
1196 const struct nir_xfb_info *xfb_info,
1197 const struct anv_pipeline_bind_map *bind_map);
1198
1199 struct nir_shader;
1200 struct nir_shader_compiler_options;
1201
1202 struct nir_shader *
1203 anv_device_search_for_nir(struct anv_device *device,
1204 struct anv_pipeline_cache *cache,
1205 const struct nir_shader_compiler_options *nir_options,
1206 unsigned char sha1_key[20],
1207 void *mem_ctx);
1208
1209 void
1210 anv_device_upload_nir(struct anv_device *device,
1211 struct anv_pipeline_cache *cache,
1212 const struct nir_shader *nir,
1213 unsigned char sha1_key[20]);
1214
1215 struct anv_device {
1216 VK_LOADER_DATA _loader_data;
1217
1218 VkAllocationCallbacks alloc;
1219
1220 struct anv_physical_device * physical;
1221 bool no_hw;
1222 struct gen_device_info info;
1223 struct isl_device isl_dev;
1224 int context_id;
1225 int fd;
1226 bool can_chain_batches;
1227 bool robust_buffer_access;
1228 struct anv_device_extension_table enabled_extensions;
1229 struct anv_device_dispatch_table dispatch;
1230
1231 pthread_mutex_t vma_mutex;
1232 struct util_vma_heap vma_lo;
1233 struct util_vma_heap vma_cva;
1234 struct util_vma_heap vma_hi;
1235
1236 /** List of all anv_device_memory objects */
1237 struct list_head memory_objects;
1238
1239 struct anv_bo_pool batch_bo_pool;
1240
1241 struct anv_bo_cache bo_cache;
1242
1243 struct anv_state_pool dynamic_state_pool;
1244 struct anv_state_pool instruction_state_pool;
1245 struct anv_state_pool binding_table_pool;
1246 struct anv_state_pool surface_state_pool;
1247
1248 struct anv_bo * workaround_bo;
1249 struct anv_bo * trivial_batch_bo;
1250 struct anv_bo * hiz_clear_bo;
1251
1252 struct anv_pipeline_cache default_pipeline_cache;
1253 struct blorp_context blorp;
1254
1255 struct anv_state border_colors;
1256
1257 struct anv_state slice_hash;
1258
1259 struct anv_queue queue;
1260
1261 struct anv_scratch_pool scratch_pool;
1262
1263 pthread_mutex_t mutex;
1264 pthread_cond_t queue_submit;
1265 int _lost;
1266
1267 struct gen_batch_decode_ctx decoder_ctx;
1268 /*
1269 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1270 * the cmd_buffer's list.
1271 */
1272 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1273
1274 int perf_fd; /* -1 if no opened */
1275 uint64_t perf_metric; /* 0 if unset */
1276
1277 struct gen_aux_map_context *aux_map_ctx;
1278 };
1279
1280 static inline struct anv_instance *
1281 anv_device_instance_or_null(const struct anv_device *device)
1282 {
1283 return device ? device->physical->instance : NULL;
1284 }
1285
1286 static inline struct anv_state_pool *
1287 anv_binding_table_pool(struct anv_device *device)
1288 {
1289 if (device->physical->use_softpin)
1290 return &device->binding_table_pool;
1291 else
1292 return &device->surface_state_pool;
1293 }
1294
1295 static inline struct anv_state
1296 anv_binding_table_pool_alloc(struct anv_device *device) {
1297 if (device->physical->use_softpin)
1298 return anv_state_pool_alloc(&device->binding_table_pool,
1299 device->binding_table_pool.block_size, 0);
1300 else
1301 return anv_state_pool_alloc_back(&device->surface_state_pool);
1302 }
1303
1304 static inline void
1305 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1306 anv_state_pool_free(anv_binding_table_pool(device), state);
1307 }
1308
1309 static inline uint32_t
1310 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1311 {
1312 if (bo->is_external)
1313 return device->isl_dev.mocs.external;
1314 else
1315 return device->isl_dev.mocs.internal;
1316 }
1317
1318 void anv_device_init_blorp(struct anv_device *device);
1319 void anv_device_finish_blorp(struct anv_device *device);
1320
1321 void _anv_device_set_all_queue_lost(struct anv_device *device);
1322 VkResult _anv_device_set_lost(struct anv_device *device,
1323 const char *file, int line,
1324 const char *msg, ...)
1325 anv_printflike(4, 5);
1326 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1327 const char *file, int line,
1328 const char *msg, ...)
1329 anv_printflike(4, 5);
1330 #define anv_device_set_lost(dev, ...) \
1331 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1332 #define anv_queue_set_lost(queue, ...) \
1333 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1334
1335 static inline bool
1336 anv_device_is_lost(struct anv_device *device)
1337 {
1338 return unlikely(p_atomic_read(&device->_lost));
1339 }
1340
1341 VkResult anv_device_query_status(struct anv_device *device);
1342
1343
1344 enum anv_bo_alloc_flags {
1345 /** Specifies that the BO must have a 32-bit address
1346 *
1347 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1348 */
1349 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1350
1351 /** Specifies that the BO may be shared externally */
1352 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1353
1354 /** Specifies that the BO should be mapped */
1355 ANV_BO_ALLOC_MAPPED = (1 << 2),
1356
1357 /** Specifies that the BO should be snooped so we get coherency */
1358 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1359
1360 /** Specifies that the BO should be captured in error states */
1361 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1362
1363 /** Specifies that the BO will have an address assigned by the caller
1364 *
1365 * Such BOs do not exist in any VMA heap.
1366 */
1367 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1368
1369 /** Enables implicit synchronization on the BO
1370 *
1371 * This is the opposite of EXEC_OBJECT_ASYNC.
1372 */
1373 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1374
1375 /** Enables implicit synchronization on the BO
1376 *
1377 * This is equivalent to EXEC_OBJECT_WRITE.
1378 */
1379 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1380
1381 /** Has an address which is visible to the client */
1382 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1383 };
1384
1385 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1386 enum anv_bo_alloc_flags alloc_flags,
1387 uint64_t explicit_address,
1388 struct anv_bo **bo);
1389 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1390 void *host_ptr, uint32_t size,
1391 enum anv_bo_alloc_flags alloc_flags,
1392 uint64_t client_address,
1393 struct anv_bo **bo_out);
1394 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1395 enum anv_bo_alloc_flags alloc_flags,
1396 uint64_t client_address,
1397 struct anv_bo **bo);
1398 VkResult anv_device_export_bo(struct anv_device *device,
1399 struct anv_bo *bo, int *fd_out);
1400 void anv_device_release_bo(struct anv_device *device,
1401 struct anv_bo *bo);
1402
1403 static inline struct anv_bo *
1404 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1405 {
1406 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1407 }
1408
1409 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1410 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1411 int64_t timeout);
1412
1413 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1414 void anv_queue_finish(struct anv_queue *queue);
1415
1416 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1417 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1418 struct anv_batch *batch);
1419
1420 uint64_t anv_gettime_ns(void);
1421 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1422
1423 void* anv_gem_mmap(struct anv_device *device,
1424 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1425 void anv_gem_munmap(void *p, uint64_t size);
1426 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1427 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1428 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1429 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1430 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1431 int anv_gem_execbuffer(struct anv_device *device,
1432 struct drm_i915_gem_execbuffer2 *execbuf);
1433 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1434 uint32_t stride, uint32_t tiling);
1435 int anv_gem_create_context(struct anv_device *device);
1436 bool anv_gem_has_context_priority(int fd);
1437 int anv_gem_destroy_context(struct anv_device *device, int context);
1438 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1439 uint64_t value);
1440 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1441 uint64_t *value);
1442 int anv_gem_get_param(int fd, uint32_t param);
1443 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1444 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1445 int anv_gem_get_aperture(int fd, uint64_t *size);
1446 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1447 uint32_t *active, uint32_t *pending);
1448 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1449 int anv_gem_reg_read(struct anv_device *device,
1450 uint32_t offset, uint64_t *result);
1451 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1452 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1453 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1454 uint32_t read_domains, uint32_t write_domain);
1455 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1456 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1457 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1458 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1459 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1460 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1461 uint32_t handle);
1462 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1463 uint32_t handle, int fd);
1464 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1465 bool anv_gem_supports_syncobj_wait(int fd);
1466 int anv_gem_syncobj_wait(struct anv_device *device,
1467 uint32_t *handles, uint32_t num_handles,
1468 int64_t abs_timeout_ns, bool wait_all);
1469
1470 uint64_t anv_vma_alloc(struct anv_device *device,
1471 uint64_t size, uint64_t align,
1472 enum anv_bo_alloc_flags alloc_flags,
1473 uint64_t client_address);
1474 void anv_vma_free(struct anv_device *device,
1475 uint64_t address, uint64_t size);
1476
1477 struct anv_reloc_list {
1478 uint32_t num_relocs;
1479 uint32_t array_length;
1480 struct drm_i915_gem_relocation_entry * relocs;
1481 struct anv_bo ** reloc_bos;
1482 uint32_t dep_words;
1483 BITSET_WORD * deps;
1484 };
1485
1486 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1487 const VkAllocationCallbacks *alloc);
1488 void anv_reloc_list_finish(struct anv_reloc_list *list,
1489 const VkAllocationCallbacks *alloc);
1490
1491 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1492 const VkAllocationCallbacks *alloc,
1493 uint32_t offset, struct anv_bo *target_bo,
1494 uint32_t delta, uint64_t *address_u64_out);
1495
1496 struct anv_batch_bo {
1497 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1498 struct list_head link;
1499
1500 struct anv_bo * bo;
1501
1502 /* Bytes actually consumed in this batch BO */
1503 uint32_t length;
1504
1505 struct anv_reloc_list relocs;
1506 };
1507
1508 struct anv_batch {
1509 const VkAllocationCallbacks * alloc;
1510
1511 void * start;
1512 void * end;
1513 void * next;
1514
1515 struct anv_reloc_list * relocs;
1516
1517 /* This callback is called (with the associated user data) in the event
1518 * that the batch runs out of space.
1519 */
1520 VkResult (*extend_cb)(struct anv_batch *, void *);
1521 void * user_data;
1522
1523 /**
1524 * Current error status of the command buffer. Used to track inconsistent
1525 * or incomplete command buffer states that are the consequence of run-time
1526 * errors such as out of memory scenarios. We want to track this in the
1527 * batch because the command buffer object is not visible to some parts
1528 * of the driver.
1529 */
1530 VkResult status;
1531 };
1532
1533 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1534 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1535 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1536 void *location, struct anv_bo *bo, uint32_t offset);
1537
1538 static inline VkResult
1539 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1540 {
1541 assert(error != VK_SUCCESS);
1542 if (batch->status == VK_SUCCESS)
1543 batch->status = error;
1544 return batch->status;
1545 }
1546
1547 static inline bool
1548 anv_batch_has_error(struct anv_batch *batch)
1549 {
1550 return batch->status != VK_SUCCESS;
1551 }
1552
1553 struct anv_address {
1554 struct anv_bo *bo;
1555 uint32_t offset;
1556 };
1557
1558 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1559
1560 static inline bool
1561 anv_address_is_null(struct anv_address addr)
1562 {
1563 return addr.bo == NULL && addr.offset == 0;
1564 }
1565
1566 static inline uint64_t
1567 anv_address_physical(struct anv_address addr)
1568 {
1569 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1570 return gen_canonical_address(addr.bo->offset + addr.offset);
1571 else
1572 return gen_canonical_address(addr.offset);
1573 }
1574
1575 static inline struct anv_address
1576 anv_address_add(struct anv_address addr, uint64_t offset)
1577 {
1578 addr.offset += offset;
1579 return addr;
1580 }
1581
1582 static inline void
1583 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1584 {
1585 unsigned reloc_size = 0;
1586 if (device->info.gen >= 8) {
1587 reloc_size = sizeof(uint64_t);
1588 *(uint64_t *)p = gen_canonical_address(v);
1589 } else {
1590 reloc_size = sizeof(uint32_t);
1591 *(uint32_t *)p = v;
1592 }
1593
1594 if (flush && !device->info.has_llc)
1595 gen_flush_range(p, reloc_size);
1596 }
1597
1598 static inline uint64_t
1599 _anv_combine_address(struct anv_batch *batch, void *location,
1600 const struct anv_address address, uint32_t delta)
1601 {
1602 if (address.bo == NULL) {
1603 return address.offset + delta;
1604 } else {
1605 assert(batch->start <= location && location < batch->end);
1606
1607 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1608 }
1609 }
1610
1611 #define __gen_address_type struct anv_address
1612 #define __gen_user_data struct anv_batch
1613 #define __gen_combine_address _anv_combine_address
1614
1615 /* Wrapper macros needed to work around preprocessor argument issues. In
1616 * particular, arguments don't get pre-evaluated if they are concatenated.
1617 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1618 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1619 * We can work around this easily enough with these helpers.
1620 */
1621 #define __anv_cmd_length(cmd) cmd ## _length
1622 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1623 #define __anv_cmd_header(cmd) cmd ## _header
1624 #define __anv_cmd_pack(cmd) cmd ## _pack
1625 #define __anv_reg_num(reg) reg ## _num
1626
1627 #define anv_pack_struct(dst, struc, ...) do { \
1628 struct struc __template = { \
1629 __VA_ARGS__ \
1630 }; \
1631 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1632 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1633 } while (0)
1634
1635 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1636 void *__dst = anv_batch_emit_dwords(batch, n); \
1637 if (__dst) { \
1638 struct cmd __template = { \
1639 __anv_cmd_header(cmd), \
1640 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1641 __VA_ARGS__ \
1642 }; \
1643 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1644 } \
1645 __dst; \
1646 })
1647
1648 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1649 do { \
1650 uint32_t *dw; \
1651 \
1652 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1653 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1654 if (!dw) \
1655 break; \
1656 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1657 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1658 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1659 } while (0)
1660
1661 #define anv_batch_emit(batch, cmd, name) \
1662 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1663 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1664 __builtin_expect(_dst != NULL, 1); \
1665 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1666 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1667 _dst = NULL; \
1668 }))
1669
1670 struct anv_device_memory {
1671 struct list_head link;
1672
1673 struct anv_bo * bo;
1674 struct anv_memory_type * type;
1675 VkDeviceSize map_size;
1676 void * map;
1677
1678 /* If set, we are holding reference to AHardwareBuffer
1679 * which we must release when memory is freed.
1680 */
1681 struct AHardwareBuffer * ahw;
1682
1683 /* If set, this memory comes from a host pointer. */
1684 void * host_ptr;
1685 };
1686
1687 /**
1688 * Header for Vertex URB Entry (VUE)
1689 */
1690 struct anv_vue_header {
1691 uint32_t Reserved;
1692 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1693 uint32_t ViewportIndex;
1694 float PointWidth;
1695 };
1696
1697 /** Struct representing a sampled image descriptor
1698 *
1699 * This descriptor layout is used for sampled images, bare sampler, and
1700 * combined image/sampler descriptors.
1701 */
1702 struct anv_sampled_image_descriptor {
1703 /** Bindless image handle
1704 *
1705 * This is expected to already be shifted such that the 20-bit
1706 * SURFACE_STATE table index is in the top 20 bits.
1707 */
1708 uint32_t image;
1709
1710 /** Bindless sampler handle
1711 *
1712 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1713 * to the dynamic state base address.
1714 */
1715 uint32_t sampler;
1716 };
1717
1718 struct anv_texture_swizzle_descriptor {
1719 /** Texture swizzle
1720 *
1721 * See also nir_intrinsic_channel_select_intel
1722 */
1723 uint8_t swizzle[4];
1724
1725 /** Unused padding to ensure the struct is a multiple of 64 bits */
1726 uint32_t _pad;
1727 };
1728
1729 /** Struct representing a storage image descriptor */
1730 struct anv_storage_image_descriptor {
1731 /** Bindless image handles
1732 *
1733 * These are expected to already be shifted such that the 20-bit
1734 * SURFACE_STATE table index is in the top 20 bits.
1735 */
1736 uint32_t read_write;
1737 uint32_t write_only;
1738 };
1739
1740 /** Struct representing a address/range descriptor
1741 *
1742 * The fields of this struct correspond directly to the data layout of
1743 * nir_address_format_64bit_bounded_global addresses. The last field is the
1744 * offset in the NIR address so it must be zero so that when you load the
1745 * descriptor you get a pointer to the start of the range.
1746 */
1747 struct anv_address_range_descriptor {
1748 uint64_t address;
1749 uint32_t range;
1750 uint32_t zero;
1751 };
1752
1753 enum anv_descriptor_data {
1754 /** The descriptor contains a BTI reference to a surface state */
1755 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1756 /** The descriptor contains a BTI reference to a sampler state */
1757 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1758 /** The descriptor contains an actual buffer view */
1759 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1760 /** The descriptor contains auxiliary image layout data */
1761 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1762 /** The descriptor contains auxiliary image layout data */
1763 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1764 /** anv_address_range_descriptor with a buffer address and range */
1765 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1766 /** Bindless surface handle */
1767 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1768 /** Storage image handles */
1769 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1770 /** Storage image handles */
1771 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1772 };
1773
1774 struct anv_descriptor_set_binding_layout {
1775 #ifndef NDEBUG
1776 /* The type of the descriptors in this binding */
1777 VkDescriptorType type;
1778 #endif
1779
1780 /* Flags provided when this binding was created */
1781 VkDescriptorBindingFlagsEXT flags;
1782
1783 /* Bitfield representing the type of data this descriptor contains */
1784 enum anv_descriptor_data data;
1785
1786 /* Maximum number of YCbCr texture/sampler planes */
1787 uint8_t max_plane_count;
1788
1789 /* Number of array elements in this binding (or size in bytes for inline
1790 * uniform data)
1791 */
1792 uint16_t array_size;
1793
1794 /* Index into the flattend descriptor set */
1795 uint16_t descriptor_index;
1796
1797 /* Index into the dynamic state array for a dynamic buffer */
1798 int16_t dynamic_offset_index;
1799
1800 /* Index into the descriptor set buffer views */
1801 int16_t buffer_view_index;
1802
1803 /* Offset into the descriptor buffer where this descriptor lives */
1804 uint32_t descriptor_offset;
1805
1806 /* Immutable samplers (or NULL if no immutable samplers) */
1807 struct anv_sampler **immutable_samplers;
1808 };
1809
1810 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1811
1812 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1813 VkDescriptorType type);
1814
1815 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1816 const struct anv_descriptor_set_binding_layout *binding,
1817 bool sampler);
1818
1819 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1820 const struct anv_descriptor_set_binding_layout *binding,
1821 bool sampler);
1822
1823 struct anv_descriptor_set_layout {
1824 /* Descriptor set layouts can be destroyed at almost any time */
1825 uint32_t ref_cnt;
1826
1827 /* Number of bindings in this descriptor set */
1828 uint16_t binding_count;
1829
1830 /* Total size of the descriptor set with room for all array entries */
1831 uint16_t size;
1832
1833 /* Shader stages affected by this descriptor set */
1834 uint16_t shader_stages;
1835
1836 /* Number of buffer views in this descriptor set */
1837 uint16_t buffer_view_count;
1838
1839 /* Number of dynamic offsets used by this descriptor set */
1840 uint16_t dynamic_offset_count;
1841
1842 /* For each shader stage, which offsets apply to that stage */
1843 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1844
1845 /* Size of the descriptor buffer for this descriptor set */
1846 uint32_t descriptor_buffer_size;
1847
1848 /* Bindings in this descriptor set */
1849 struct anv_descriptor_set_binding_layout binding[0];
1850 };
1851
1852 static inline void
1853 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1854 {
1855 assert(layout && layout->ref_cnt >= 1);
1856 p_atomic_inc(&layout->ref_cnt);
1857 }
1858
1859 static inline void
1860 anv_descriptor_set_layout_unref(struct anv_device *device,
1861 struct anv_descriptor_set_layout *layout)
1862 {
1863 assert(layout && layout->ref_cnt >= 1);
1864 if (p_atomic_dec_zero(&layout->ref_cnt))
1865 vk_free(&device->alloc, layout);
1866 }
1867
1868 struct anv_descriptor {
1869 VkDescriptorType type;
1870
1871 union {
1872 struct {
1873 VkImageLayout layout;
1874 struct anv_image_view *image_view;
1875 struct anv_sampler *sampler;
1876 };
1877
1878 struct {
1879 struct anv_buffer *buffer;
1880 uint64_t offset;
1881 uint64_t range;
1882 };
1883
1884 struct anv_buffer_view *buffer_view;
1885 };
1886 };
1887
1888 struct anv_descriptor_set {
1889 struct anv_descriptor_pool *pool;
1890 struct anv_descriptor_set_layout *layout;
1891 uint32_t size;
1892
1893 /* State relative to anv_descriptor_pool::bo */
1894 struct anv_state desc_mem;
1895 /* Surface state for the descriptor buffer */
1896 struct anv_state desc_surface_state;
1897
1898 uint32_t buffer_view_count;
1899 struct anv_buffer_view *buffer_views;
1900
1901 /* Link to descriptor pool's desc_sets list . */
1902 struct list_head pool_link;
1903
1904 struct anv_descriptor descriptors[0];
1905 };
1906
1907 struct anv_buffer_view {
1908 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1909 uint64_t range; /**< VkBufferViewCreateInfo::range */
1910
1911 struct anv_address address;
1912
1913 struct anv_state surface_state;
1914 struct anv_state storage_surface_state;
1915 struct anv_state writeonly_storage_surface_state;
1916
1917 struct brw_image_param storage_image_param;
1918 };
1919
1920 struct anv_push_descriptor_set {
1921 struct anv_descriptor_set set;
1922
1923 /* Put this field right behind anv_descriptor_set so it fills up the
1924 * descriptors[0] field. */
1925 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1926
1927 /** True if the descriptor set buffer has been referenced by a draw or
1928 * dispatch command.
1929 */
1930 bool set_used_on_gpu;
1931
1932 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1933 };
1934
1935 struct anv_descriptor_pool {
1936 uint32_t size;
1937 uint32_t next;
1938 uint32_t free_list;
1939
1940 struct anv_bo *bo;
1941 struct util_vma_heap bo_heap;
1942
1943 struct anv_state_stream surface_state_stream;
1944 void *surface_state_free_list;
1945
1946 struct list_head desc_sets;
1947
1948 char data[0];
1949 };
1950
1951 enum anv_descriptor_template_entry_type {
1952 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1953 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1954 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1955 };
1956
1957 struct anv_descriptor_template_entry {
1958 /* The type of descriptor in this entry */
1959 VkDescriptorType type;
1960
1961 /* Binding in the descriptor set */
1962 uint32_t binding;
1963
1964 /* Offset at which to write into the descriptor set binding */
1965 uint32_t array_element;
1966
1967 /* Number of elements to write into the descriptor set binding */
1968 uint32_t array_count;
1969
1970 /* Offset into the user provided data */
1971 size_t offset;
1972
1973 /* Stride between elements into the user provided data */
1974 size_t stride;
1975 };
1976
1977 struct anv_descriptor_update_template {
1978 VkPipelineBindPoint bind_point;
1979
1980 /* The descriptor set this template corresponds to. This value is only
1981 * valid if the template was created with the templateType
1982 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1983 */
1984 uint8_t set;
1985
1986 /* Number of entries in this template */
1987 uint32_t entry_count;
1988
1989 /* Entries of the template */
1990 struct anv_descriptor_template_entry entries[0];
1991 };
1992
1993 size_t
1994 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1995
1996 void
1997 anv_descriptor_set_write_image_view(struct anv_device *device,
1998 struct anv_descriptor_set *set,
1999 const VkDescriptorImageInfo * const info,
2000 VkDescriptorType type,
2001 uint32_t binding,
2002 uint32_t element);
2003
2004 void
2005 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2006 struct anv_descriptor_set *set,
2007 VkDescriptorType type,
2008 struct anv_buffer_view *buffer_view,
2009 uint32_t binding,
2010 uint32_t element);
2011
2012 void
2013 anv_descriptor_set_write_buffer(struct anv_device *device,
2014 struct anv_descriptor_set *set,
2015 struct anv_state_stream *alloc_stream,
2016 VkDescriptorType type,
2017 struct anv_buffer *buffer,
2018 uint32_t binding,
2019 uint32_t element,
2020 VkDeviceSize offset,
2021 VkDeviceSize range);
2022 void
2023 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2024 struct anv_descriptor_set *set,
2025 uint32_t binding,
2026 const void *data,
2027 size_t offset,
2028 size_t size);
2029
2030 void
2031 anv_descriptor_set_write_template(struct anv_device *device,
2032 struct anv_descriptor_set *set,
2033 struct anv_state_stream *alloc_stream,
2034 const struct anv_descriptor_update_template *template,
2035 const void *data);
2036
2037 VkResult
2038 anv_descriptor_set_create(struct anv_device *device,
2039 struct anv_descriptor_pool *pool,
2040 struct anv_descriptor_set_layout *layout,
2041 struct anv_descriptor_set **out_set);
2042
2043 void
2044 anv_descriptor_set_destroy(struct anv_device *device,
2045 struct anv_descriptor_pool *pool,
2046 struct anv_descriptor_set *set);
2047
2048 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2049 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2050 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2051 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2052 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2053 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2054
2055 struct anv_pipeline_binding {
2056 /** Index in the descriptor set
2057 *
2058 * This is a flattened index; the descriptor set layout is already taken
2059 * into account.
2060 */
2061 uint32_t index;
2062
2063 /** The descriptor set this surface corresponds to.
2064 *
2065 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2066 * binding is not a normal descriptor set but something else.
2067 */
2068 uint8_t set;
2069
2070 union {
2071 /** Plane in the binding index for images */
2072 uint8_t plane;
2073
2074 /** Input attachment index (relative to the subpass) */
2075 uint8_t input_attachment_index;
2076
2077 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2078 uint8_t dynamic_offset_index;
2079 };
2080
2081 /** For a storage image, whether it is write-only */
2082 uint8_t write_only;
2083
2084 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2085 * assuming POD zero-initialization.
2086 */
2087 uint8_t pad;
2088 };
2089
2090 struct anv_push_range {
2091 /** Index in the descriptor set */
2092 uint32_t index;
2093
2094 /** Descriptor set index */
2095 uint8_t set;
2096
2097 /** Dynamic offset index (for dynamic UBOs) */
2098 uint8_t dynamic_offset_index;
2099
2100 /** Start offset in units of 32B */
2101 uint8_t start;
2102
2103 /** Range in units of 32B */
2104 uint8_t length;
2105 };
2106
2107 struct anv_pipeline_layout {
2108 struct {
2109 struct anv_descriptor_set_layout *layout;
2110 uint32_t dynamic_offset_start;
2111 } set[MAX_SETS];
2112
2113 uint32_t num_sets;
2114
2115 unsigned char sha1[20];
2116 };
2117
2118 struct anv_buffer {
2119 struct anv_device * device;
2120 VkDeviceSize size;
2121
2122 VkBufferUsageFlags usage;
2123
2124 /* Set when bound */
2125 struct anv_address address;
2126 };
2127
2128 static inline uint64_t
2129 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2130 {
2131 assert(offset <= buffer->size);
2132 if (range == VK_WHOLE_SIZE) {
2133 return buffer->size - offset;
2134 } else {
2135 assert(range + offset >= range);
2136 assert(range + offset <= buffer->size);
2137 return range;
2138 }
2139 }
2140
2141 enum anv_cmd_dirty_bits {
2142 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2143 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2144 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2145 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2146 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2147 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2148 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2149 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2150 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2151 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2152 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2153 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2154 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2155 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2156 };
2157 typedef uint32_t anv_cmd_dirty_mask_t;
2158
2159 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2160 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2161 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2162 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2163 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2164 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2165 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2166 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2167 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2168 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2169 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2170
2171 static inline enum anv_cmd_dirty_bits
2172 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2173 {
2174 switch (vk_state) {
2175 case VK_DYNAMIC_STATE_VIEWPORT:
2176 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2177 case VK_DYNAMIC_STATE_SCISSOR:
2178 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2179 case VK_DYNAMIC_STATE_LINE_WIDTH:
2180 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2181 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2182 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2183 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2184 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2185 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2186 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2187 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2188 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2189 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2190 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2191 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2192 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2193 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2194 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2195 default:
2196 assert(!"Unsupported dynamic state");
2197 return 0;
2198 }
2199 }
2200
2201
2202 enum anv_pipe_bits {
2203 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2204 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2205 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2206 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2207 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2208 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2209 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2210 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2211 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2212 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2213 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2214 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2215
2216 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2217 * a flush has happened but not a CS stall. The next time we do any sort
2218 * of invalidation we need to insert a CS stall at that time. Otherwise,
2219 * we would have to CS stall on every flush which could be bad.
2220 */
2221 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2222
2223 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2224 * target operations related to transfer commands with VkBuffer as
2225 * destination are ongoing. Some operations like copies on the command
2226 * streamer might need to be aware of this to trigger the appropriate stall
2227 * before they can proceed with the copy.
2228 */
2229 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2230
2231 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2232 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2233 * done by writing the AUX-TT register.
2234 */
2235 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 23),
2236 };
2237
2238 #define ANV_PIPE_FLUSH_BITS ( \
2239 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2240 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2241 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2242 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2243
2244 #define ANV_PIPE_STALL_BITS ( \
2245 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2246 ANV_PIPE_DEPTH_STALL_BIT | \
2247 ANV_PIPE_CS_STALL_BIT)
2248
2249 #define ANV_PIPE_INVALIDATE_BITS ( \
2250 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2251 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2252 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2253 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2254 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2255 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2256 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2257
2258 static inline enum anv_pipe_bits
2259 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2260 {
2261 enum anv_pipe_bits pipe_bits = 0;
2262
2263 unsigned b;
2264 for_each_bit(b, flags) {
2265 switch ((VkAccessFlagBits)(1 << b)) {
2266 case VK_ACCESS_SHADER_WRITE_BIT:
2267 /* We're transitioning a buffer that was previously used as write
2268 * destination through the data port. To make its content available
2269 * to future operations, flush the data cache.
2270 */
2271 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2272 break;
2273 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2274 /* We're transitioning a buffer that was previously used as render
2275 * target. To make its content available to future operations, flush
2276 * the render target cache.
2277 */
2278 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2279 break;
2280 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2281 /* We're transitioning a buffer that was previously used as depth
2282 * buffer. To make its content available to future operations, flush
2283 * the depth cache.
2284 */
2285 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2286 break;
2287 case VK_ACCESS_TRANSFER_WRITE_BIT:
2288 /* We're transitioning a buffer that was previously used as a
2289 * transfer write destination. Generic write operations include color
2290 * & depth operations as well as buffer operations like :
2291 * - vkCmdClearColorImage()
2292 * - vkCmdClearDepthStencilImage()
2293 * - vkCmdBlitImage()
2294 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2295 *
2296 * Most of these operations are implemented using Blorp which writes
2297 * through the render target, so flush that cache to make it visible
2298 * to future operations. And for depth related operations we also
2299 * need to flush the depth cache.
2300 */
2301 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2302 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2303 break;
2304 case VK_ACCESS_MEMORY_WRITE_BIT:
2305 /* We're transitioning a buffer for generic write operations. Flush
2306 * all the caches.
2307 */
2308 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2309 break;
2310 default:
2311 break; /* Nothing to do */
2312 }
2313 }
2314
2315 return pipe_bits;
2316 }
2317
2318 static inline enum anv_pipe_bits
2319 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2320 {
2321 enum anv_pipe_bits pipe_bits = 0;
2322
2323 unsigned b;
2324 for_each_bit(b, flags) {
2325 switch ((VkAccessFlagBits)(1 << b)) {
2326 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2327 /* Indirect draw commands take a buffer as input that we're going to
2328 * read from the command streamer to load some of the HW registers
2329 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2330 * command streamer stall so that all the cache flushes have
2331 * completed before the command streamer loads from memory.
2332 */
2333 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2334 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2335 * through a vertex buffer, so invalidate that cache.
2336 */
2337 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2338 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2339 * UBO from the buffer, so we need to invalidate constant cache.
2340 */
2341 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2342 break;
2343 case VK_ACCESS_INDEX_READ_BIT:
2344 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2345 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2346 * commands, so we invalidate the VF cache to make sure there is no
2347 * stale data when we start rendering.
2348 */
2349 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2350 break;
2351 case VK_ACCESS_UNIFORM_READ_BIT:
2352 /* We transitioning a buffer to be used as uniform data. Because
2353 * uniform is accessed through the data port & sampler, we need to
2354 * invalidate the texture cache (sampler) & constant cache (data
2355 * port) to avoid stale data.
2356 */
2357 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2358 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2359 break;
2360 case VK_ACCESS_SHADER_READ_BIT:
2361 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2362 case VK_ACCESS_TRANSFER_READ_BIT:
2363 /* Transitioning a buffer to be read through the sampler, so
2364 * invalidate the texture cache, we don't want any stale data.
2365 */
2366 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2367 break;
2368 case VK_ACCESS_MEMORY_READ_BIT:
2369 /* Transitioning a buffer for generic read, invalidate all the
2370 * caches.
2371 */
2372 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2373 break;
2374 case VK_ACCESS_MEMORY_WRITE_BIT:
2375 /* Generic write, make sure all previously written things land in
2376 * memory.
2377 */
2378 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2379 break;
2380 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2381 /* Transitioning a buffer for conditional rendering. We'll load the
2382 * content of this buffer into HW registers using the command
2383 * streamer, so we need to stall the command streamer to make sure
2384 * any in-flight flush operations have completed.
2385 */
2386 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2387 break;
2388 default:
2389 break; /* Nothing to do */
2390 }
2391 }
2392
2393 return pipe_bits;
2394 }
2395
2396 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2397 VK_IMAGE_ASPECT_COLOR_BIT | \
2398 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2399 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2400 VK_IMAGE_ASPECT_PLANE_2_BIT)
2401 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2402 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2403 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2404 VK_IMAGE_ASPECT_PLANE_2_BIT)
2405
2406 struct anv_vertex_binding {
2407 struct anv_buffer * buffer;
2408 VkDeviceSize offset;
2409 };
2410
2411 struct anv_xfb_binding {
2412 struct anv_buffer * buffer;
2413 VkDeviceSize offset;
2414 VkDeviceSize size;
2415 };
2416
2417 struct anv_push_constants {
2418 /** Push constant data provided by the client through vkPushConstants */
2419 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2420
2421 /** Dynamic offsets for dynamic UBOs and SSBOs */
2422 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2423
2424 struct {
2425 /** Base workgroup ID
2426 *
2427 * Used for vkCmdDispatchBase.
2428 */
2429 uint32_t base_work_group_id[3];
2430
2431 /** Subgroup ID
2432 *
2433 * This is never set by software but is implicitly filled out when
2434 * uploading the push constants for compute shaders.
2435 */
2436 uint32_t subgroup_id;
2437
2438 /** Pad out to a multiple of 32 bytes */
2439 uint32_t pad[4];
2440 } cs;
2441 };
2442
2443 struct anv_dynamic_state {
2444 struct {
2445 uint32_t count;
2446 VkViewport viewports[MAX_VIEWPORTS];
2447 } viewport;
2448
2449 struct {
2450 uint32_t count;
2451 VkRect2D scissors[MAX_SCISSORS];
2452 } scissor;
2453
2454 float line_width;
2455
2456 struct {
2457 float bias;
2458 float clamp;
2459 float slope;
2460 } depth_bias;
2461
2462 float blend_constants[4];
2463
2464 struct {
2465 float min;
2466 float max;
2467 } depth_bounds;
2468
2469 struct {
2470 uint32_t front;
2471 uint32_t back;
2472 } stencil_compare_mask;
2473
2474 struct {
2475 uint32_t front;
2476 uint32_t back;
2477 } stencil_write_mask;
2478
2479 struct {
2480 uint32_t front;
2481 uint32_t back;
2482 } stencil_reference;
2483
2484 struct {
2485 uint32_t factor;
2486 uint16_t pattern;
2487 } line_stipple;
2488 };
2489
2490 extern const struct anv_dynamic_state default_dynamic_state;
2491
2492 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2493 const struct anv_dynamic_state *src,
2494 uint32_t copy_mask);
2495
2496 struct anv_surface_state {
2497 struct anv_state state;
2498 /** Address of the surface referred to by this state
2499 *
2500 * This address is relative to the start of the BO.
2501 */
2502 struct anv_address address;
2503 /* Address of the aux surface, if any
2504 *
2505 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2506 *
2507 * With the exception of gen8, the bottom 12 bits of this address' offset
2508 * include extra aux information.
2509 */
2510 struct anv_address aux_address;
2511 /* Address of the clear color, if any
2512 *
2513 * This address is relative to the start of the BO.
2514 */
2515 struct anv_address clear_address;
2516 };
2517
2518 /**
2519 * Attachment state when recording a renderpass instance.
2520 *
2521 * The clear value is valid only if there exists a pending clear.
2522 */
2523 struct anv_attachment_state {
2524 enum isl_aux_usage aux_usage;
2525 enum isl_aux_usage input_aux_usage;
2526 struct anv_surface_state color;
2527 struct anv_surface_state input;
2528
2529 VkImageLayout current_layout;
2530 VkImageLayout current_stencil_layout;
2531 VkImageAspectFlags pending_clear_aspects;
2532 VkImageAspectFlags pending_load_aspects;
2533 bool fast_clear;
2534 VkClearValue clear_value;
2535 bool clear_color_is_zero_one;
2536 bool clear_color_is_zero;
2537
2538 /* When multiview is active, attachments with a renderpass clear
2539 * operation have their respective layers cleared on the first
2540 * subpass that uses them, and only in that subpass. We keep track
2541 * of this using a bitfield to indicate which layers of an attachment
2542 * have not been cleared yet when multiview is active.
2543 */
2544 uint32_t pending_clear_views;
2545 struct anv_image_view * image_view;
2546 };
2547
2548 /** State tracking for vertex buffer flushes
2549 *
2550 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2551 * addresses. If you happen to have two vertex buffers which get placed
2552 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2553 * collisions. In order to solve this problem, we track vertex address ranges
2554 * which are live in the cache and invalidate the cache if one ever exceeds 32
2555 * bits.
2556 */
2557 struct anv_vb_cache_range {
2558 /* Virtual address at which the live vertex buffer cache range starts for
2559 * this vertex buffer index.
2560 */
2561 uint64_t start;
2562
2563 /* Virtual address of the byte after where vertex buffer cache range ends.
2564 * This is exclusive such that end - start is the size of the range.
2565 */
2566 uint64_t end;
2567 };
2568
2569 /** State tracking for particular pipeline bind point
2570 *
2571 * This struct is the base struct for anv_cmd_graphics_state and
2572 * anv_cmd_compute_state. These are used to track state which is bound to a
2573 * particular type of pipeline. Generic state that applies per-stage such as
2574 * binding table offsets and push constants is tracked generically with a
2575 * per-stage array in anv_cmd_state.
2576 */
2577 struct anv_cmd_pipeline_state {
2578 struct anv_pipeline *pipeline;
2579
2580 struct anv_descriptor_set *descriptors[MAX_SETS];
2581 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2582 };
2583
2584 /** State tracking for graphics pipeline
2585 *
2586 * This has anv_cmd_pipeline_state as a base struct to track things which get
2587 * bound to a graphics pipeline. Along with general pipeline bind point state
2588 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2589 * state which is graphics-specific.
2590 */
2591 struct anv_cmd_graphics_state {
2592 struct anv_cmd_pipeline_state base;
2593
2594 anv_cmd_dirty_mask_t dirty;
2595 uint32_t vb_dirty;
2596
2597 struct anv_vb_cache_range ib_bound_range;
2598 struct anv_vb_cache_range ib_dirty_range;
2599 struct anv_vb_cache_range vb_bound_ranges[33];
2600 struct anv_vb_cache_range vb_dirty_ranges[33];
2601
2602 struct anv_dynamic_state dynamic;
2603
2604 struct {
2605 struct anv_buffer *index_buffer;
2606 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2607 uint32_t index_offset;
2608 } gen7;
2609 };
2610
2611 /** State tracking for compute pipeline
2612 *
2613 * This has anv_cmd_pipeline_state as a base struct to track things which get
2614 * bound to a compute pipeline. Along with general pipeline bind point state
2615 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2616 * state which is compute-specific.
2617 */
2618 struct anv_cmd_compute_state {
2619 struct anv_cmd_pipeline_state base;
2620
2621 bool pipeline_dirty;
2622
2623 struct anv_address num_workgroups;
2624 };
2625
2626 /** State required while building cmd buffer */
2627 struct anv_cmd_state {
2628 /* PIPELINE_SELECT.PipelineSelection */
2629 uint32_t current_pipeline;
2630 const struct gen_l3_config * current_l3_config;
2631 uint32_t last_aux_map_state;
2632
2633 struct anv_cmd_graphics_state gfx;
2634 struct anv_cmd_compute_state compute;
2635
2636 enum anv_pipe_bits pending_pipe_bits;
2637 VkShaderStageFlags descriptors_dirty;
2638 VkShaderStageFlags push_constants_dirty;
2639
2640 struct anv_framebuffer * framebuffer;
2641 struct anv_render_pass * pass;
2642 struct anv_subpass * subpass;
2643 VkRect2D render_area;
2644 uint32_t restart_index;
2645 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2646 bool xfb_enabled;
2647 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2648 VkShaderStageFlags push_constant_stages;
2649 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2650 struct anv_state binding_tables[MESA_SHADER_STAGES];
2651 struct anv_state samplers[MESA_SHADER_STAGES];
2652
2653 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2654 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2655 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2656
2657 /**
2658 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2659 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2660 * and before invoking the secondary in ExecuteCommands.
2661 */
2662 bool pma_fix_enabled;
2663
2664 /**
2665 * Whether or not we know for certain that HiZ is enabled for the current
2666 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2667 * enabled or not, this will be false.
2668 */
2669 bool hiz_enabled;
2670
2671 bool conditional_render_enabled;
2672
2673 /**
2674 * Last rendering scale argument provided to
2675 * genX(cmd_buffer_emit_hashing_mode)().
2676 */
2677 unsigned current_hash_scale;
2678
2679 /**
2680 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2681 * valid only when recording a render pass instance.
2682 */
2683 struct anv_attachment_state * attachments;
2684
2685 /**
2686 * Surface states for color render targets. These are stored in a single
2687 * flat array. For depth-stencil attachments, the surface state is simply
2688 * left blank.
2689 */
2690 struct anv_state render_pass_states;
2691
2692 /**
2693 * A null surface state of the right size to match the framebuffer. This
2694 * is one of the states in render_pass_states.
2695 */
2696 struct anv_state null_surface_state;
2697 };
2698
2699 struct anv_cmd_pool {
2700 VkAllocationCallbacks alloc;
2701 struct list_head cmd_buffers;
2702 };
2703
2704 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2705
2706 enum anv_cmd_buffer_exec_mode {
2707 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2708 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2709 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2710 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2711 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2712 };
2713
2714 struct anv_cmd_buffer {
2715 VK_LOADER_DATA _loader_data;
2716
2717 struct anv_device * device;
2718
2719 struct anv_cmd_pool * pool;
2720 struct list_head pool_link;
2721
2722 struct anv_batch batch;
2723
2724 /* Fields required for the actual chain of anv_batch_bo's.
2725 *
2726 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2727 */
2728 struct list_head batch_bos;
2729 enum anv_cmd_buffer_exec_mode exec_mode;
2730
2731 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2732 * referenced by this command buffer
2733 *
2734 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2735 */
2736 struct u_vector seen_bbos;
2737
2738 /* A vector of int32_t's for every block of binding tables.
2739 *
2740 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2741 */
2742 struct u_vector bt_block_states;
2743 struct anv_state bt_next;
2744
2745 struct anv_reloc_list surface_relocs;
2746 /** Last seen surface state block pool center bo offset */
2747 uint32_t last_ss_pool_center;
2748
2749 /* Serial for tracking buffer completion */
2750 uint32_t serial;
2751
2752 /* Stream objects for storing temporary data */
2753 struct anv_state_stream surface_state_stream;
2754 struct anv_state_stream dynamic_state_stream;
2755
2756 VkCommandBufferUsageFlags usage_flags;
2757 VkCommandBufferLevel level;
2758
2759 struct anv_cmd_state state;
2760
2761 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2762 uint64_t intel_perf_marker;
2763 };
2764
2765 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2766 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2767 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2768 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2769 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2770 struct anv_cmd_buffer *secondary);
2771 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2772 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2773 struct anv_cmd_buffer *cmd_buffer,
2774 const VkSemaphore *in_semaphores,
2775 const uint64_t *in_wait_values,
2776 uint32_t num_in_semaphores,
2777 const VkSemaphore *out_semaphores,
2778 const uint64_t *out_signal_values,
2779 uint32_t num_out_semaphores,
2780 VkFence fence);
2781
2782 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2783
2784 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2785 const void *data, uint32_t size, uint32_t alignment);
2786 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2787 uint32_t *a, uint32_t *b,
2788 uint32_t dwords, uint32_t alignment);
2789
2790 struct anv_address
2791 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2792 struct anv_state
2793 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2794 uint32_t entries, uint32_t *state_offset);
2795 struct anv_state
2796 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2797 struct anv_state
2798 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2799 uint32_t size, uint32_t alignment);
2800
2801 VkResult
2802 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2803
2804 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2805 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2806 bool depth_clamp_enable);
2807 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2808
2809 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2810 struct anv_render_pass *pass,
2811 struct anv_framebuffer *framebuffer,
2812 const VkClearValue *clear_values);
2813
2814 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2815
2816 struct anv_state
2817 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2818 gl_shader_stage stage);
2819 struct anv_state
2820 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2821
2822 const struct anv_image_view *
2823 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2824
2825 VkResult
2826 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2827 uint32_t num_entries,
2828 uint32_t *state_offset,
2829 struct anv_state *bt_state);
2830
2831 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2832
2833 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2834
2835 enum anv_fence_type {
2836 ANV_FENCE_TYPE_NONE = 0,
2837 ANV_FENCE_TYPE_BO,
2838 ANV_FENCE_TYPE_WSI_BO,
2839 ANV_FENCE_TYPE_SYNCOBJ,
2840 ANV_FENCE_TYPE_WSI,
2841 };
2842
2843 enum anv_bo_fence_state {
2844 /** Indicates that this is a new (or newly reset fence) */
2845 ANV_BO_FENCE_STATE_RESET,
2846
2847 /** Indicates that this fence has been submitted to the GPU but is still
2848 * (as far as we know) in use by the GPU.
2849 */
2850 ANV_BO_FENCE_STATE_SUBMITTED,
2851
2852 ANV_BO_FENCE_STATE_SIGNALED,
2853 };
2854
2855 struct anv_fence_impl {
2856 enum anv_fence_type type;
2857
2858 union {
2859 /** Fence implementation for BO fences
2860 *
2861 * These fences use a BO and a set of CPU-tracked state flags. The BO
2862 * is added to the object list of the last execbuf call in a QueueSubmit
2863 * and is marked EXEC_WRITE. The state flags track when the BO has been
2864 * submitted to the kernel. We need to do this because Vulkan lets you
2865 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2866 * will say it's idle in this case.
2867 */
2868 struct {
2869 struct anv_bo *bo;
2870 enum anv_bo_fence_state state;
2871 } bo;
2872
2873 /** DRM syncobj handle for syncobj-based fences */
2874 uint32_t syncobj;
2875
2876 /** WSI fence */
2877 struct wsi_fence *fence_wsi;
2878 };
2879 };
2880
2881 struct anv_fence {
2882 /* Permanent fence state. Every fence has some form of permanent state
2883 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2884 * cross-process fences) or it could just be a dummy for use internally.
2885 */
2886 struct anv_fence_impl permanent;
2887
2888 /* Temporary fence state. A fence *may* have temporary state. That state
2889 * is added to the fence by an import operation and is reset back to
2890 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2891 * state cannot be signaled because the fence must already be signaled
2892 * before the temporary state can be exported from the fence in the other
2893 * process and imported here.
2894 */
2895 struct anv_fence_impl temporary;
2896 };
2897
2898 void anv_fence_reset_temporary(struct anv_device *device,
2899 struct anv_fence *fence);
2900
2901 struct anv_event {
2902 uint64_t semaphore;
2903 struct anv_state state;
2904 };
2905
2906 enum anv_semaphore_type {
2907 ANV_SEMAPHORE_TYPE_NONE = 0,
2908 ANV_SEMAPHORE_TYPE_DUMMY,
2909 ANV_SEMAPHORE_TYPE_BO,
2910 ANV_SEMAPHORE_TYPE_WSI_BO,
2911 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2912 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2913 ANV_SEMAPHORE_TYPE_TIMELINE,
2914 };
2915
2916 struct anv_timeline_point {
2917 struct list_head link;
2918
2919 uint64_t serial;
2920
2921 /* Number of waiter on this point, when > 0 the point should not be garbage
2922 * collected.
2923 */
2924 int waiting;
2925
2926 /* BO used for synchronization. */
2927 struct anv_bo *bo;
2928 };
2929
2930 struct anv_timeline {
2931 pthread_mutex_t mutex;
2932 pthread_cond_t cond;
2933
2934 uint64_t highest_past;
2935 uint64_t highest_pending;
2936
2937 struct list_head points;
2938 struct list_head free_points;
2939 };
2940
2941 struct anv_semaphore_impl {
2942 enum anv_semaphore_type type;
2943
2944 union {
2945 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
2946 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
2947 * object list on any execbuf2 calls for which this semaphore is used as
2948 * a wait or signal fence. When used as a signal fence or when type ==
2949 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
2950 */
2951 struct anv_bo *bo;
2952
2953 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2954 * If the semaphore is in the unsignaled state due to either just being
2955 * created or because it has been used for a wait, fd will be -1.
2956 */
2957 int fd;
2958
2959 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2960 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2961 * import so we don't need to bother with a userspace cache.
2962 */
2963 uint32_t syncobj;
2964
2965 /* Non shareable timeline semaphore
2966 *
2967 * Used when kernel don't have support for timeline semaphores.
2968 */
2969 struct anv_timeline timeline;
2970 };
2971 };
2972
2973 struct anv_semaphore {
2974 uint32_t refcount;
2975
2976 /* Permanent semaphore state. Every semaphore has some form of permanent
2977 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2978 * (for cross-process semaphores0 or it could just be a dummy for use
2979 * internally.
2980 */
2981 struct anv_semaphore_impl permanent;
2982
2983 /* Temporary semaphore state. A semaphore *may* have temporary state.
2984 * That state is added to the semaphore by an import operation and is reset
2985 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2986 * semaphore with temporary state cannot be signaled because the semaphore
2987 * must already be signaled before the temporary state can be exported from
2988 * the semaphore in the other process and imported here.
2989 */
2990 struct anv_semaphore_impl temporary;
2991 };
2992
2993 void anv_semaphore_reset_temporary(struct anv_device *device,
2994 struct anv_semaphore *semaphore);
2995
2996 struct anv_shader_module {
2997 unsigned char sha1[20];
2998 uint32_t size;
2999 char data[0];
3000 };
3001
3002 static inline gl_shader_stage
3003 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3004 {
3005 assert(__builtin_popcount(vk_stage) == 1);
3006 return ffs(vk_stage) - 1;
3007 }
3008
3009 static inline VkShaderStageFlagBits
3010 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3011 {
3012 return (1 << mesa_stage);
3013 }
3014
3015 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3016
3017 #define anv_foreach_stage(stage, stage_bits) \
3018 for (gl_shader_stage stage, \
3019 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3020 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3021 __tmp &= ~(1 << (stage)))
3022
3023 struct anv_pipeline_bind_map {
3024 unsigned char surface_sha1[20];
3025 unsigned char sampler_sha1[20];
3026 unsigned char push_sha1[20];
3027
3028 uint32_t surface_count;
3029 uint32_t sampler_count;
3030
3031 struct anv_pipeline_binding * surface_to_descriptor;
3032 struct anv_pipeline_binding * sampler_to_descriptor;
3033
3034 struct anv_push_range push_ranges[4];
3035 };
3036
3037 struct anv_shader_bin_key {
3038 uint32_t size;
3039 uint8_t data[0];
3040 };
3041
3042 struct anv_shader_bin {
3043 uint32_t ref_cnt;
3044
3045 const struct anv_shader_bin_key *key;
3046
3047 struct anv_state kernel;
3048 uint32_t kernel_size;
3049
3050 struct anv_state constant_data;
3051 uint32_t constant_data_size;
3052
3053 const struct brw_stage_prog_data *prog_data;
3054 uint32_t prog_data_size;
3055
3056 struct brw_compile_stats stats[3];
3057 uint32_t num_stats;
3058
3059 struct nir_xfb_info *xfb_info;
3060
3061 struct anv_pipeline_bind_map bind_map;
3062 };
3063
3064 struct anv_shader_bin *
3065 anv_shader_bin_create(struct anv_device *device,
3066 const void *key, uint32_t key_size,
3067 const void *kernel, uint32_t kernel_size,
3068 const void *constant_data, uint32_t constant_data_size,
3069 const struct brw_stage_prog_data *prog_data,
3070 uint32_t prog_data_size, const void *prog_data_param,
3071 const struct brw_compile_stats *stats, uint32_t num_stats,
3072 const struct nir_xfb_info *xfb_info,
3073 const struct anv_pipeline_bind_map *bind_map);
3074
3075 void
3076 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3077
3078 static inline void
3079 anv_shader_bin_ref(struct anv_shader_bin *shader)
3080 {
3081 assert(shader && shader->ref_cnt >= 1);
3082 p_atomic_inc(&shader->ref_cnt);
3083 }
3084
3085 static inline void
3086 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3087 {
3088 assert(shader && shader->ref_cnt >= 1);
3089 if (p_atomic_dec_zero(&shader->ref_cnt))
3090 anv_shader_bin_destroy(device, shader);
3091 }
3092
3093 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3094 #define MAX_PIPELINE_EXECUTABLES 7
3095
3096 struct anv_pipeline_executable {
3097 gl_shader_stage stage;
3098
3099 struct brw_compile_stats stats;
3100
3101 char *nir;
3102 char *disasm;
3103 };
3104
3105 struct anv_pipeline {
3106 struct anv_device * device;
3107 struct anv_batch batch;
3108 uint32_t batch_data[512];
3109 struct anv_reloc_list batch_relocs;
3110 anv_cmd_dirty_mask_t dynamic_state_mask;
3111 struct anv_dynamic_state dynamic_state;
3112
3113 void * mem_ctx;
3114
3115 VkPipelineCreateFlags flags;
3116 struct anv_subpass * subpass;
3117
3118 bool needs_data_cache;
3119
3120 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3121
3122 uint32_t num_executables;
3123 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3124
3125 struct {
3126 const struct gen_l3_config * l3_config;
3127 uint32_t total_size;
3128 } urb;
3129
3130 VkShaderStageFlags active_stages;
3131 struct anv_state blend_state;
3132
3133 uint32_t vb_used;
3134 struct anv_pipeline_vertex_binding {
3135 uint32_t stride;
3136 bool instanced;
3137 uint32_t instance_divisor;
3138 } vb[MAX_VBS];
3139
3140 uint8_t xfb_used;
3141
3142 bool primitive_restart;
3143 uint32_t topology;
3144
3145 uint32_t cs_right_mask;
3146
3147 bool writes_depth;
3148 bool depth_test_enable;
3149 bool writes_stencil;
3150 bool stencil_test_enable;
3151 bool depth_clamp_enable;
3152 bool depth_clip_enable;
3153 bool sample_shading_enable;
3154 bool kill_pixel;
3155 bool depth_bounds_test_enable;
3156
3157 struct {
3158 uint32_t sf[7];
3159 uint32_t depth_stencil_state[3];
3160 } gen7;
3161
3162 struct {
3163 uint32_t sf[4];
3164 uint32_t raster[5];
3165 uint32_t wm_depth_stencil[3];
3166 } gen8;
3167
3168 struct {
3169 uint32_t wm_depth_stencil[4];
3170 } gen9;
3171
3172 uint32_t interface_descriptor_data[8];
3173 };
3174
3175 static inline bool
3176 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3177 gl_shader_stage stage)
3178 {
3179 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3180 }
3181
3182 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3183 static inline const struct brw_##prefix##_prog_data * \
3184 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3185 { \
3186 if (anv_pipeline_has_stage(pipeline, stage)) { \
3187 return (const struct brw_##prefix##_prog_data *) \
3188 pipeline->shaders[stage]->prog_data; \
3189 } else { \
3190 return NULL; \
3191 } \
3192 }
3193
3194 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3195 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3196 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3197 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3198 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3199 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3200
3201 static inline const struct brw_vue_prog_data *
3202 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3203 {
3204 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3205 return &get_gs_prog_data(pipeline)->base;
3206 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3207 return &get_tes_prog_data(pipeline)->base;
3208 else
3209 return &get_vs_prog_data(pipeline)->base;
3210 }
3211
3212 VkResult
3213 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3214 struct anv_pipeline_cache *cache,
3215 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3216 const VkAllocationCallbacks *alloc);
3217
3218 VkResult
3219 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3220 struct anv_pipeline_cache *cache,
3221 const VkComputePipelineCreateInfo *info,
3222 const struct anv_shader_module *module,
3223 const char *entrypoint,
3224 const VkSpecializationInfo *spec_info);
3225
3226 struct anv_format_plane {
3227 enum isl_format isl_format:16;
3228 struct isl_swizzle swizzle;
3229
3230 /* Whether this plane contains chroma channels */
3231 bool has_chroma;
3232
3233 /* For downscaling of YUV planes */
3234 uint8_t denominator_scales[2];
3235
3236 /* How to map sampled ycbcr planes to a single 4 component element. */
3237 struct isl_swizzle ycbcr_swizzle;
3238
3239 /* What aspect is associated to this plane */
3240 VkImageAspectFlags aspect;
3241 };
3242
3243
3244 struct anv_format {
3245 struct anv_format_plane planes[3];
3246 VkFormat vk_format;
3247 uint8_t n_planes;
3248 bool can_ycbcr;
3249 };
3250
3251 static inline uint32_t
3252 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3253 VkImageAspectFlags aspect_mask)
3254 {
3255 switch (aspect_mask) {
3256 case VK_IMAGE_ASPECT_COLOR_BIT:
3257 case VK_IMAGE_ASPECT_DEPTH_BIT:
3258 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3259 return 0;
3260 case VK_IMAGE_ASPECT_STENCIL_BIT:
3261 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3262 return 0;
3263 /* Fall-through */
3264 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3265 return 1;
3266 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3267 return 2;
3268 default:
3269 /* Purposefully assert with depth/stencil aspects. */
3270 unreachable("invalid image aspect");
3271 }
3272 }
3273
3274 static inline VkImageAspectFlags
3275 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3276 uint32_t plane)
3277 {
3278 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3279 if (util_bitcount(image_aspects) > 1)
3280 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3281 return VK_IMAGE_ASPECT_COLOR_BIT;
3282 }
3283 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3284 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3285 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3286 return VK_IMAGE_ASPECT_STENCIL_BIT;
3287 }
3288
3289 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3290 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3291
3292 const struct anv_format *
3293 anv_get_format(VkFormat format);
3294
3295 static inline uint32_t
3296 anv_get_format_planes(VkFormat vk_format)
3297 {
3298 const struct anv_format *format = anv_get_format(vk_format);
3299
3300 return format != NULL ? format->n_planes : 0;
3301 }
3302
3303 struct anv_format_plane
3304 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3305 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3306
3307 static inline enum isl_format
3308 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3309 VkImageAspectFlags aspect, VkImageTiling tiling)
3310 {
3311 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3312 }
3313
3314 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3315 VkImageCreateFlags create_flags,
3316 VkFormat vk_format,
3317 VkImageTiling vk_tiling,
3318 const VkImageFormatListCreateInfoKHR *fmt_list);
3319
3320 static inline struct isl_swizzle
3321 anv_swizzle_for_render(struct isl_swizzle swizzle)
3322 {
3323 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3324 * RGB as RGBA for texturing
3325 */
3326 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3327 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3328
3329 /* But it doesn't matter what we render to that channel */
3330 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3331
3332 return swizzle;
3333 }
3334
3335 void
3336 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3337
3338 /**
3339 * Subsurface of an anv_image.
3340 */
3341 struct anv_surface {
3342 /** Valid only if isl_surf::size_B > 0. */
3343 struct isl_surf isl;
3344
3345 /**
3346 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3347 */
3348 uint32_t offset;
3349 };
3350
3351 struct anv_image {
3352 VkImageType type; /**< VkImageCreateInfo::imageType */
3353 /* The original VkFormat provided by the client. This may not match any
3354 * of the actual surface formats.
3355 */
3356 VkFormat vk_format;
3357 const struct anv_format *format;
3358
3359 VkImageAspectFlags aspects;
3360 VkExtent3D extent;
3361 uint32_t levels;
3362 uint32_t array_size;
3363 uint32_t samples; /**< VkImageCreateInfo::samples */
3364 uint32_t n_planes;
3365 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3366 VkImageUsageFlags stencil_usage;
3367 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3368 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3369
3370 /** True if this is needs to be bound to an appropriately tiled BO.
3371 *
3372 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3373 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3374 * we require a dedicated allocation so that we can know to allocate a
3375 * tiled buffer.
3376 */
3377 bool needs_set_tiling;
3378
3379 /**
3380 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3381 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3382 */
3383 uint64_t drm_format_mod;
3384
3385 VkDeviceSize size;
3386 uint32_t alignment;
3387
3388 /* Whether the image is made of several underlying buffer objects rather a
3389 * single one with different offsets.
3390 */
3391 bool disjoint;
3392
3393 /* All the formats that can be used when creating views of this image
3394 * are CCS_E compatible.
3395 */
3396 bool ccs_e_compatible;
3397
3398 /* Image was created with external format. */
3399 bool external_format;
3400
3401 /**
3402 * Image subsurfaces
3403 *
3404 * For each foo, anv_image::planes[x].surface is valid if and only if
3405 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3406 * to figure the number associated with a given aspect.
3407 *
3408 * The hardware requires that the depth buffer and stencil buffer be
3409 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3410 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3411 * allocate the depth and stencil buffers as separate surfaces in the same
3412 * bo.
3413 *
3414 * Memory layout :
3415 *
3416 * -----------------------
3417 * | surface0 | /|\
3418 * ----------------------- |
3419 * | shadow surface0 | |
3420 * ----------------------- | Plane 0
3421 * | aux surface0 | |
3422 * ----------------------- |
3423 * | fast clear colors0 | \|/
3424 * -----------------------
3425 * | surface1 | /|\
3426 * ----------------------- |
3427 * | shadow surface1 | |
3428 * ----------------------- | Plane 1
3429 * | aux surface1 | |
3430 * ----------------------- |
3431 * | fast clear colors1 | \|/
3432 * -----------------------
3433 * | ... |
3434 * | |
3435 * -----------------------
3436 */
3437 struct {
3438 /**
3439 * Offset of the entire plane (whenever the image is disjoint this is
3440 * set to 0).
3441 */
3442 uint32_t offset;
3443
3444 VkDeviceSize size;
3445 uint32_t alignment;
3446
3447 struct anv_surface surface;
3448
3449 /**
3450 * A surface which shadows the main surface and may have different
3451 * tiling. This is used for sampling using a tiling that isn't supported
3452 * for other operations.
3453 */
3454 struct anv_surface shadow_surface;
3455
3456 /**
3457 * The base aux usage for this image. For color images, this can be
3458 * either CCS_E or CCS_D depending on whether or not we can reliably
3459 * leave CCS on all the time.
3460 */
3461 enum isl_aux_usage aux_usage;
3462
3463 struct anv_surface aux_surface;
3464
3465 /**
3466 * Offset of the fast clear state (used to compute the
3467 * fast_clear_state_offset of the following planes).
3468 */
3469 uint32_t fast_clear_state_offset;
3470
3471 /**
3472 * BO associated with this plane, set when bound.
3473 */
3474 struct anv_address address;
3475
3476 /**
3477 * Address of the main surface used to fill the aux map table. This is
3478 * used at destruction of the image since the Vulkan spec does not
3479 * guarantee that the address.bo field we still be valid at destruction.
3480 */
3481 uint64_t aux_map_surface_address;
3482
3483 /**
3484 * When destroying the image, also free the bo.
3485 * */
3486 bool bo_is_owned;
3487 } planes[3];
3488 };
3489
3490 /* The ordering of this enum is important */
3491 enum anv_fast_clear_type {
3492 /** Image does not have/support any fast-clear blocks */
3493 ANV_FAST_CLEAR_NONE = 0,
3494 /** Image has/supports fast-clear but only to the default value */
3495 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3496 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3497 ANV_FAST_CLEAR_ANY = 2,
3498 };
3499
3500 /* Returns the number of auxiliary buffer levels attached to an image. */
3501 static inline uint8_t
3502 anv_image_aux_levels(const struct anv_image * const image,
3503 VkImageAspectFlagBits aspect)
3504 {
3505 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3506 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3507 return 0;
3508
3509 /* The Gen12 CCS aux surface is represented with only one level. */
3510 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3511 image->planes[plane].surface.isl.levels :
3512 image->planes[plane].aux_surface.isl.levels;
3513 }
3514
3515 /* Returns the number of auxiliary buffer layers attached to an image. */
3516 static inline uint32_t
3517 anv_image_aux_layers(const struct anv_image * const image,
3518 VkImageAspectFlagBits aspect,
3519 const uint8_t miplevel)
3520 {
3521 assert(image);
3522
3523 /* The miplevel must exist in the main buffer. */
3524 assert(miplevel < image->levels);
3525
3526 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3527 /* There are no layers with auxiliary data because the miplevel has no
3528 * auxiliary data.
3529 */
3530 return 0;
3531 } else {
3532 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3533
3534 /* The Gen12 CCS aux surface is represented with only one layer. */
3535 const struct isl_extent4d *aux_logical_level0_px =
3536 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3537 &image->planes[plane].surface.isl.logical_level0_px :
3538 &image->planes[plane].aux_surface.isl.logical_level0_px;
3539
3540 return MAX2(aux_logical_level0_px->array_len,
3541 aux_logical_level0_px->depth >> miplevel);
3542 }
3543 }
3544
3545 static inline struct anv_address
3546 anv_image_get_clear_color_addr(const struct anv_device *device,
3547 const struct anv_image *image,
3548 VkImageAspectFlagBits aspect)
3549 {
3550 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3551
3552 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3553 return anv_address_add(image->planes[plane].address,
3554 image->planes[plane].fast_clear_state_offset);
3555 }
3556
3557 static inline struct anv_address
3558 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3559 const struct anv_image *image,
3560 VkImageAspectFlagBits aspect)
3561 {
3562 struct anv_address addr =
3563 anv_image_get_clear_color_addr(device, image, aspect);
3564
3565 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3566 device->isl_dev.ss.clear_color_state_size :
3567 device->isl_dev.ss.clear_value_size;
3568 return anv_address_add(addr, clear_color_state_size);
3569 }
3570
3571 static inline struct anv_address
3572 anv_image_get_compression_state_addr(const struct anv_device *device,
3573 const struct anv_image *image,
3574 VkImageAspectFlagBits aspect,
3575 uint32_t level, uint32_t array_layer)
3576 {
3577 assert(level < anv_image_aux_levels(image, aspect));
3578 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3579 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3580 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3581
3582 struct anv_address addr =
3583 anv_image_get_fast_clear_type_addr(device, image, aspect);
3584 addr.offset += 4; /* Go past the fast clear type */
3585
3586 if (image->type == VK_IMAGE_TYPE_3D) {
3587 for (uint32_t l = 0; l < level; l++)
3588 addr.offset += anv_minify(image->extent.depth, l) * 4;
3589 } else {
3590 addr.offset += level * image->array_size * 4;
3591 }
3592 addr.offset += array_layer * 4;
3593
3594 assert(addr.offset <
3595 image->planes[plane].address.offset + image->planes[plane].size);
3596 return addr;
3597 }
3598
3599 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3600 static inline bool
3601 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3602 const struct anv_image *image)
3603 {
3604 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3605 return false;
3606
3607 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3608 * struct. There's documentation which suggests that this feature actually
3609 * reduces performance on BDW, but it has only been observed to help so
3610 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3611 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3612 */
3613 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3614 return false;
3615
3616 return image->samples == 1;
3617 }
3618
3619 static inline bool
3620 anv_image_plane_uses_aux_map(const struct anv_device *device,
3621 const struct anv_image *image,
3622 uint32_t plane)
3623 {
3624 return device->info.has_aux_map &&
3625 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3626 }
3627
3628 void
3629 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3630 const struct anv_image *image,
3631 VkImageAspectFlagBits aspect,
3632 enum isl_aux_usage aux_usage,
3633 uint32_t level,
3634 uint32_t base_layer,
3635 uint32_t layer_count);
3636
3637 void
3638 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3639 const struct anv_image *image,
3640 VkImageAspectFlagBits aspect,
3641 enum isl_aux_usage aux_usage,
3642 enum isl_format format, struct isl_swizzle swizzle,
3643 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3644 VkRect2D area, union isl_color_value clear_color);
3645 void
3646 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3647 const struct anv_image *image,
3648 VkImageAspectFlags aspects,
3649 enum isl_aux_usage depth_aux_usage,
3650 uint32_t level,
3651 uint32_t base_layer, uint32_t layer_count,
3652 VkRect2D area,
3653 float depth_value, uint8_t stencil_value);
3654 void
3655 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3656 const struct anv_image *src_image,
3657 enum isl_aux_usage src_aux_usage,
3658 uint32_t src_level, uint32_t src_base_layer,
3659 const struct anv_image *dst_image,
3660 enum isl_aux_usage dst_aux_usage,
3661 uint32_t dst_level, uint32_t dst_base_layer,
3662 VkImageAspectFlagBits aspect,
3663 uint32_t src_x, uint32_t src_y,
3664 uint32_t dst_x, uint32_t dst_y,
3665 uint32_t width, uint32_t height,
3666 uint32_t layer_count,
3667 enum blorp_filter filter);
3668 void
3669 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3670 const struct anv_image *image,
3671 VkImageAspectFlagBits aspect, uint32_t level,
3672 uint32_t base_layer, uint32_t layer_count,
3673 enum isl_aux_op hiz_op);
3674 void
3675 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3676 const struct anv_image *image,
3677 VkImageAspectFlags aspects,
3678 uint32_t level,
3679 uint32_t base_layer, uint32_t layer_count,
3680 VkRect2D area, uint8_t stencil_value);
3681 void
3682 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3683 const struct anv_image *image,
3684 enum isl_format format,
3685 VkImageAspectFlagBits aspect,
3686 uint32_t base_layer, uint32_t layer_count,
3687 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3688 bool predicate);
3689 void
3690 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3691 const struct anv_image *image,
3692 enum isl_format format,
3693 VkImageAspectFlagBits aspect, uint32_t level,
3694 uint32_t base_layer, uint32_t layer_count,
3695 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3696 bool predicate);
3697
3698 void
3699 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3700 const struct anv_image *image,
3701 VkImageAspectFlagBits aspect,
3702 uint32_t base_level, uint32_t level_count,
3703 uint32_t base_layer, uint32_t layer_count);
3704
3705 enum isl_aux_state
3706 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3707 const struct anv_image *image,
3708 const VkImageAspectFlagBits aspect,
3709 const VkImageLayout layout);
3710
3711 enum isl_aux_usage
3712 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3713 const struct anv_image *image,
3714 const VkImageAspectFlagBits aspect,
3715 const VkImageUsageFlagBits usage,
3716 const VkImageLayout layout);
3717
3718 enum anv_fast_clear_type
3719 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3720 const struct anv_image * const image,
3721 const VkImageAspectFlagBits aspect,
3722 const VkImageLayout layout);
3723
3724 /* This is defined as a macro so that it works for both
3725 * VkImageSubresourceRange and VkImageSubresourceLayers
3726 */
3727 #define anv_get_layerCount(_image, _range) \
3728 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3729 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3730
3731 static inline uint32_t
3732 anv_get_levelCount(const struct anv_image *image,
3733 const VkImageSubresourceRange *range)
3734 {
3735 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3736 image->levels - range->baseMipLevel : range->levelCount;
3737 }
3738
3739 static inline VkImageAspectFlags
3740 anv_image_expand_aspects(const struct anv_image *image,
3741 VkImageAspectFlags aspects)
3742 {
3743 /* If the underlying image has color plane aspects and
3744 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3745 * the underlying image. */
3746 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3747 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3748 return image->aspects;
3749
3750 return aspects;
3751 }
3752
3753 static inline bool
3754 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3755 VkImageAspectFlags aspects2)
3756 {
3757 if (aspects1 == aspects2)
3758 return true;
3759
3760 /* Only 1 color aspects are compatibles. */
3761 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3762 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3763 util_bitcount(aspects1) == util_bitcount(aspects2))
3764 return true;
3765
3766 return false;
3767 }
3768
3769 struct anv_image_view {
3770 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3771
3772 VkImageAspectFlags aspect_mask;
3773 VkFormat vk_format;
3774 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3775
3776 unsigned n_planes;
3777 struct {
3778 uint32_t image_plane;
3779
3780 struct isl_view isl;
3781
3782 /**
3783 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3784 * image layout of SHADER_READ_ONLY_OPTIMAL or
3785 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3786 */
3787 struct anv_surface_state optimal_sampler_surface_state;
3788
3789 /**
3790 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3791 * image layout of GENERAL.
3792 */
3793 struct anv_surface_state general_sampler_surface_state;
3794
3795 /**
3796 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3797 * states for write-only and readable, using the real format for
3798 * write-only and the lowered format for readable.
3799 */
3800 struct anv_surface_state storage_surface_state;
3801 struct anv_surface_state writeonly_storage_surface_state;
3802
3803 struct brw_image_param storage_image_param;
3804 } planes[3];
3805 };
3806
3807 enum anv_image_view_state_flags {
3808 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3809 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3810 };
3811
3812 void anv_image_fill_surface_state(struct anv_device *device,
3813 const struct anv_image *image,
3814 VkImageAspectFlagBits aspect,
3815 const struct isl_view *view,
3816 isl_surf_usage_flags_t view_usage,
3817 enum isl_aux_usage aux_usage,
3818 const union isl_color_value *clear_color,
3819 enum anv_image_view_state_flags flags,
3820 struct anv_surface_state *state_inout,
3821 struct brw_image_param *image_param_out);
3822
3823 struct anv_image_create_info {
3824 const VkImageCreateInfo *vk_info;
3825
3826 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3827 isl_tiling_flags_t isl_tiling_flags;
3828
3829 /** These flags will be added to any derived from VkImageCreateInfo. */
3830 isl_surf_usage_flags_t isl_extra_usage_flags;
3831
3832 uint32_t stride;
3833 bool external_format;
3834 };
3835
3836 VkResult anv_image_create(VkDevice _device,
3837 const struct anv_image_create_info *info,
3838 const VkAllocationCallbacks* alloc,
3839 VkImage *pImage);
3840
3841 const struct anv_surface *
3842 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3843 VkImageAspectFlags aspect_mask);
3844
3845 enum isl_format
3846 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3847
3848 static inline VkExtent3D
3849 anv_sanitize_image_extent(const VkImageType imageType,
3850 const VkExtent3D imageExtent)
3851 {
3852 switch (imageType) {
3853 case VK_IMAGE_TYPE_1D:
3854 return (VkExtent3D) { imageExtent.width, 1, 1 };
3855 case VK_IMAGE_TYPE_2D:
3856 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3857 case VK_IMAGE_TYPE_3D:
3858 return imageExtent;
3859 default:
3860 unreachable("invalid image type");
3861 }
3862 }
3863
3864 static inline VkOffset3D
3865 anv_sanitize_image_offset(const VkImageType imageType,
3866 const VkOffset3D imageOffset)
3867 {
3868 switch (imageType) {
3869 case VK_IMAGE_TYPE_1D:
3870 return (VkOffset3D) { imageOffset.x, 0, 0 };
3871 case VK_IMAGE_TYPE_2D:
3872 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3873 case VK_IMAGE_TYPE_3D:
3874 return imageOffset;
3875 default:
3876 unreachable("invalid image type");
3877 }
3878 }
3879
3880 VkFormatFeatureFlags
3881 anv_get_image_format_features(const struct gen_device_info *devinfo,
3882 VkFormat vk_format,
3883 const struct anv_format *anv_format,
3884 VkImageTiling vk_tiling);
3885
3886 void anv_fill_buffer_surface_state(struct anv_device *device,
3887 struct anv_state state,
3888 enum isl_format format,
3889 struct anv_address address,
3890 uint32_t range, uint32_t stride);
3891
3892 static inline void
3893 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3894 const struct anv_attachment_state *att_state,
3895 const struct anv_image_view *iview)
3896 {
3897 const struct isl_format_layout *view_fmtl =
3898 isl_format_get_layout(iview->planes[0].isl.format);
3899
3900 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3901 if (view_fmtl->channels.c.bits) \
3902 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3903
3904 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3905 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3906 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3907 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3908
3909 #undef COPY_CLEAR_COLOR_CHANNEL
3910 }
3911
3912
3913 struct anv_ycbcr_conversion {
3914 const struct anv_format * format;
3915 VkSamplerYcbcrModelConversion ycbcr_model;
3916 VkSamplerYcbcrRange ycbcr_range;
3917 VkComponentSwizzle mapping[4];
3918 VkChromaLocation chroma_offsets[2];
3919 VkFilter chroma_filter;
3920 bool chroma_reconstruction;
3921 };
3922
3923 struct anv_sampler {
3924 uint32_t state[3][4];
3925 uint32_t n_planes;
3926 struct anv_ycbcr_conversion *conversion;
3927
3928 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3929 * and with a 32-byte stride for use as bindless samplers.
3930 */
3931 struct anv_state bindless_state;
3932 };
3933
3934 struct anv_framebuffer {
3935 uint32_t width;
3936 uint32_t height;
3937 uint32_t layers;
3938
3939 uint32_t attachment_count;
3940 struct anv_image_view * attachments[0];
3941 };
3942
3943 struct anv_subpass_attachment {
3944 VkImageUsageFlagBits usage;
3945 uint32_t attachment;
3946 VkImageLayout layout;
3947
3948 /* Used only with attachment containing stencil data. */
3949 VkImageLayout stencil_layout;
3950 };
3951
3952 struct anv_subpass {
3953 uint32_t attachment_count;
3954
3955 /**
3956 * A pointer to all attachment references used in this subpass.
3957 * Only valid if ::attachment_count > 0.
3958 */
3959 struct anv_subpass_attachment * attachments;
3960 uint32_t input_count;
3961 struct anv_subpass_attachment * input_attachments;
3962 uint32_t color_count;
3963 struct anv_subpass_attachment * color_attachments;
3964 struct anv_subpass_attachment * resolve_attachments;
3965
3966 struct anv_subpass_attachment * depth_stencil_attachment;
3967 struct anv_subpass_attachment * ds_resolve_attachment;
3968 VkResolveModeFlagBitsKHR depth_resolve_mode;
3969 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3970
3971 uint32_t view_mask;
3972
3973 /** Subpass has a depth/stencil self-dependency */
3974 bool has_ds_self_dep;
3975
3976 /** Subpass has at least one color resolve attachment */
3977 bool has_color_resolve;
3978 };
3979
3980 static inline unsigned
3981 anv_subpass_view_count(const struct anv_subpass *subpass)
3982 {
3983 return MAX2(1, util_bitcount(subpass->view_mask));
3984 }
3985
3986 struct anv_render_pass_attachment {
3987 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3988 * its members individually.
3989 */
3990 VkFormat format;
3991 uint32_t samples;
3992 VkImageUsageFlags usage;
3993 VkAttachmentLoadOp load_op;
3994 VkAttachmentStoreOp store_op;
3995 VkAttachmentLoadOp stencil_load_op;
3996 VkImageLayout initial_layout;
3997 VkImageLayout final_layout;
3998 VkImageLayout first_subpass_layout;
3999
4000 VkImageLayout stencil_initial_layout;
4001 VkImageLayout stencil_final_layout;
4002
4003 /* The subpass id in which the attachment will be used last. */
4004 uint32_t last_subpass_idx;
4005 };
4006
4007 struct anv_render_pass {
4008 uint32_t attachment_count;
4009 uint32_t subpass_count;
4010 /* An array of subpass_count+1 flushes, one per subpass boundary */
4011 enum anv_pipe_bits * subpass_flushes;
4012 struct anv_render_pass_attachment * attachments;
4013 struct anv_subpass subpasses[0];
4014 };
4015
4016 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4017
4018 struct anv_query_pool {
4019 VkQueryType type;
4020 VkQueryPipelineStatisticFlags pipeline_statistics;
4021 /** Stride between slots, in bytes */
4022 uint32_t stride;
4023 /** Number of slots in this query pool */
4024 uint32_t slots;
4025 struct anv_bo * bo;
4026 };
4027
4028 int anv_get_instance_entrypoint_index(const char *name);
4029 int anv_get_device_entrypoint_index(const char *name);
4030 int anv_get_physical_device_entrypoint_index(const char *name);
4031
4032 const char *anv_get_instance_entry_name(int index);
4033 const char *anv_get_physical_device_entry_name(int index);
4034 const char *anv_get_device_entry_name(int index);
4035
4036 bool
4037 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4038 const struct anv_instance_extension_table *instance);
4039 bool
4040 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4041 const struct anv_instance_extension_table *instance);
4042 bool
4043 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4044 const struct anv_instance_extension_table *instance,
4045 const struct anv_device_extension_table *device);
4046
4047 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4048 const char *name);
4049
4050 void anv_dump_image_to_ppm(struct anv_device *device,
4051 struct anv_image *image, unsigned miplevel,
4052 unsigned array_layer, VkImageAspectFlagBits aspect,
4053 const char *filename);
4054
4055 enum anv_dump_action {
4056 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4057 };
4058
4059 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4060 void anv_dump_finish(void);
4061
4062 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4063
4064 static inline uint32_t
4065 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4066 {
4067 /* This function must be called from within a subpass. */
4068 assert(cmd_state->pass && cmd_state->subpass);
4069
4070 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4071
4072 /* The id of this subpass shouldn't exceed the number of subpasses in this
4073 * render pass minus 1.
4074 */
4075 assert(subpass_id < cmd_state->pass->subpass_count);
4076 return subpass_id;
4077 }
4078
4079 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4080 void anv_device_perf_init(struct anv_device *device);
4081
4082 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4083 \
4084 static inline struct __anv_type * \
4085 __anv_type ## _from_handle(__VkType _handle) \
4086 { \
4087 return (struct __anv_type *) _handle; \
4088 } \
4089 \
4090 static inline __VkType \
4091 __anv_type ## _to_handle(struct __anv_type *_obj) \
4092 { \
4093 return (__VkType) _obj; \
4094 }
4095
4096 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4097 \
4098 static inline struct __anv_type * \
4099 __anv_type ## _from_handle(__VkType _handle) \
4100 { \
4101 return (struct __anv_type *)(uintptr_t) _handle; \
4102 } \
4103 \
4104 static inline __VkType \
4105 __anv_type ## _to_handle(struct __anv_type *_obj) \
4106 { \
4107 return (__VkType)(uintptr_t) _obj; \
4108 }
4109
4110 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4111 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4112
4113 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4114 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4115 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4116 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4117 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4118
4119 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4120 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4121 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4122 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4123 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4124 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4125 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4126 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4127 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4128 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4129 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4130 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4131 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4132 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4133 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4134 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4135 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4136 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4137 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4138 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4139 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4140 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4141 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4142
4143 /* Gen-specific function declarations */
4144 #ifdef genX
4145 # include "anv_genX.h"
4146 #else
4147 # define genX(x) gen7_##x
4148 # include "anv_genX.h"
4149 # undef genX
4150 # define genX(x) gen75_##x
4151 # include "anv_genX.h"
4152 # undef genX
4153 # define genX(x) gen8_##x
4154 # include "anv_genX.h"
4155 # undef genX
4156 # define genX(x) gen9_##x
4157 # include "anv_genX.h"
4158 # undef genX
4159 # define genX(x) gen10_##x
4160 # include "anv_genX.h"
4161 # undef genX
4162 # define genX(x) gen11_##x
4163 # include "anv_genX.h"
4164 # undef genX
4165 # define genX(x) gen12_##x
4166 # include "anv_genX.h"
4167 # undef genX
4168 #endif
4169
4170 #endif /* ANV_PRIVATE_H */