anv: Add a usage parameter to anv_layout_to_aux_usage
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "dev/gen_device_info.h"
50 #include "blorp/blorp.h"
51 #include "compiler/brw_compiler.h"
52 #include "util/bitset.h"
53 #include "util/macros.h"
54 #include "util/hash_table.h"
55 #include "util/list.h"
56 #include "util/sparse_array.h"
57 #include "util/u_atomic.h"
58 #include "util/u_vector.h"
59 #include "util/u_math.h"
60 #include "util/vma.h"
61 #include "util/xmlconfig.h"
62 #include "vk_alloc.h"
63 #include "vk_debug_report.h"
64
65 /* Pre-declarations needed for WSI entrypoints */
66 struct wl_surface;
67 struct wl_display;
68 typedef struct xcb_connection_t xcb_connection_t;
69 typedef uint32_t xcb_visualid_t;
70 typedef uint32_t xcb_window_t;
71
72 struct anv_batch;
73 struct anv_buffer;
74 struct anv_buffer_view;
75 struct anv_image_view;
76 struct anv_instance;
77
78 struct gen_aux_map_context;
79 struct gen_l3_config;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175
176 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
177 *
178 * "The surface state model is used when a Binding Table Index (specified
179 * in the message descriptor) of less than 240 is specified. In this model,
180 * the Binding Table Index is used to index into the binding table, and the
181 * binding table entry contains a pointer to the SURFACE_STATE."
182 *
183 * Binding table values above 240 are used for various things in the hardware
184 * such as stateless, stateless with incoherent cache, SLM, and bindless.
185 */
186 #define MAX_BINDING_TABLE_SIZE 240
187
188 /* The kernel relocation API has a limitation of a 32-bit delta value
189 * applied to the address before it is written which, in spite of it being
190 * unsigned, is treated as signed . Because of the way that this maps to
191 * the Vulkan API, we cannot handle an offset into a buffer that does not
192 * fit into a signed 32 bits. The only mechanism we have for dealing with
193 * this at the moment is to limit all VkDeviceMemory objects to a maximum
194 * of 2GB each. The Vulkan spec allows us to do this:
195 *
196 * "Some platforms may have a limit on the maximum size of a single
197 * allocation. For example, certain systems may fail to create
198 * allocations with a size greater than or equal to 4GB. Such a limit is
199 * implementation-dependent, and if such a failure occurs then the error
200 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
201 *
202 * We don't use vk_error here because it's not an error so much as an
203 * indication to the application that the allocation is too large.
204 */
205 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
206
207 #define ANV_SVGS_VB_INDEX MAX_VBS
208 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
209
210 /* We reserve this MI ALU register for the purpose of handling predication.
211 * Other code which uses the MI ALU should leave it alone.
212 */
213 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
214
215 /* For gen12 we set the streamout buffers using 4 separate commands
216 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
217 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
218 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
219 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
220 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
221 * 3DSTATE_SO_BUFFER_INDEX_0.
222 */
223 #define SO_BUFFER_INDEX_0_CMD 0x60
224 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
225
226 static inline uint32_t
227 align_down_npot_u32(uint32_t v, uint32_t a)
228 {
229 return v - (v % a);
230 }
231
232 static inline uint32_t
233 align_u32(uint32_t v, uint32_t a)
234 {
235 assert(a != 0 && a == (a & -a));
236 return (v + a - 1) & ~(a - 1);
237 }
238
239 static inline uint64_t
240 align_u64(uint64_t v, uint64_t a)
241 {
242 assert(a != 0 && a == (a & -a));
243 return (v + a - 1) & ~(a - 1);
244 }
245
246 static inline int32_t
247 align_i32(int32_t v, int32_t a)
248 {
249 assert(a != 0 && a == (a & -a));
250 return (v + a - 1) & ~(a - 1);
251 }
252
253 /** Alignment must be a power of 2. */
254 static inline bool
255 anv_is_aligned(uintmax_t n, uintmax_t a)
256 {
257 assert(a == (a & -a));
258 return (n & (a - 1)) == 0;
259 }
260
261 static inline uint32_t
262 anv_minify(uint32_t n, uint32_t levels)
263 {
264 if (unlikely(n == 0))
265 return 0;
266 else
267 return MAX2(n >> levels, 1);
268 }
269
270 static inline float
271 anv_clamp_f(float f, float min, float max)
272 {
273 assert(min < max);
274
275 if (f > max)
276 return max;
277 else if (f < min)
278 return min;
279 else
280 return f;
281 }
282
283 static inline bool
284 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
285 {
286 if (*inout_mask & clear_mask) {
287 *inout_mask &= ~clear_mask;
288 return true;
289 } else {
290 return false;
291 }
292 }
293
294 static inline union isl_color_value
295 vk_to_isl_color(VkClearColorValue color)
296 {
297 return (union isl_color_value) {
298 .u32 = {
299 color.uint32[0],
300 color.uint32[1],
301 color.uint32[2],
302 color.uint32[3],
303 },
304 };
305 }
306
307 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
308 {
309 uintptr_t mask = (1ull << bits) - 1;
310 *flags = ptr & mask;
311 return (void *) (ptr & ~mask);
312 }
313
314 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
315 {
316 uintptr_t value = (uintptr_t) ptr;
317 uintptr_t mask = (1ull << bits) - 1;
318 return value | (mask & flags);
319 }
320
321 #define for_each_bit(b, dword) \
322 for (uint32_t __dword = (dword); \
323 (b) = __builtin_ffs(__dword) - 1, __dword; \
324 __dword &= ~(1 << (b)))
325
326 #define typed_memcpy(dest, src, count) ({ \
327 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
328 memcpy((dest), (src), (count) * sizeof(*(src))); \
329 })
330
331 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
332 * to be added here in order to utilize mapping in debug/error/perf macros.
333 */
334 #define REPORT_OBJECT_TYPE(o) \
335 __builtin_choose_expr ( \
336 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
337 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
338 __builtin_choose_expr ( \
339 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
340 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
341 __builtin_choose_expr ( \
342 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
343 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
344 __builtin_choose_expr ( \
345 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
346 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
347 __builtin_choose_expr ( \
348 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
349 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
350 __builtin_choose_expr ( \
351 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
352 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
353 __builtin_choose_expr ( \
354 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
355 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
356 __builtin_choose_expr ( \
357 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
358 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
359 __builtin_choose_expr ( \
360 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
361 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
362 __builtin_choose_expr ( \
363 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
364 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), void*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
428 /* The void expression results in a compile-time error \
429 when assigning the result to something. */ \
430 (void)0)))))))))))))))))))))))))))))))
431
432 /* Whenever we generate an error, pass it through this function. Useful for
433 * debugging, where we can break on it. Only call at error site, not when
434 * propagating errors. Might be useful to plug in a stack trace here.
435 */
436
437 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
438 VkDebugReportObjectTypeEXT type, VkResult error,
439 const char *file, int line, const char *format,
440 va_list args);
441
442 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
443 VkDebugReportObjectTypeEXT type, VkResult error,
444 const char *file, int line, const char *format, ...)
445 anv_printflike(7, 8);
446
447 #ifdef DEBUG
448 #define vk_error(error) __vk_errorf(NULL, NULL,\
449 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
450 error, __FILE__, __LINE__, NULL)
451 #define vk_errorfi(instance, obj, error, format, ...)\
452 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
453 __FILE__, __LINE__, format, ## __VA_ARGS__)
454 #define vk_errorf(device, obj, error, format, ...)\
455 vk_errorfi(anv_device_instance_or_null(device),\
456 obj, error, format, ## __VA_ARGS__)
457 #else
458 #define vk_error(error) error
459 #define vk_errorfi(instance, obj, error, format, ...) error
460 #define vk_errorf(device, obj, error, format, ...) error
461 #endif
462
463 /**
464 * Warn on ignored extension structs.
465 *
466 * The Vulkan spec requires us to ignore unsupported or unknown structs in
467 * a pNext chain. In debug mode, emitting warnings for ignored structs may
468 * help us discover structs that we should not have ignored.
469 *
470 *
471 * From the Vulkan 1.0.38 spec:
472 *
473 * Any component of the implementation (the loader, any enabled layers,
474 * and drivers) must skip over, without processing (other than reading the
475 * sType and pNext members) any chained structures with sType values not
476 * defined by extensions supported by that component.
477 */
478 #define anv_debug_ignored_stype(sType) \
479 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
480
481 void __anv_perf_warn(struct anv_device *device, const void *object,
482 VkDebugReportObjectTypeEXT type, const char *file,
483 int line, const char *format, ...)
484 anv_printflike(6, 7);
485 void anv_loge(const char *format, ...) anv_printflike(1, 2);
486 void anv_loge_v(const char *format, va_list va);
487
488 /**
489 * Print a FINISHME message, including its source location.
490 */
491 #define anv_finishme(format, ...) \
492 do { \
493 static bool reported = false; \
494 if (!reported) { \
495 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
496 ##__VA_ARGS__); \
497 reported = true; \
498 } \
499 } while (0)
500
501 /**
502 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
503 */
504 #define anv_perf_warn(instance, obj, format, ...) \
505 do { \
506 static bool reported = false; \
507 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
508 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
509 format, ##__VA_ARGS__); \
510 reported = true; \
511 } \
512 } while (0)
513
514 /* A non-fatal assert. Useful for debugging. */
515 #ifdef DEBUG
516 #define anv_assert(x) ({ \
517 if (unlikely(!(x))) \
518 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
519 })
520 #else
521 #define anv_assert(x)
522 #endif
523
524 /* A multi-pointer allocator
525 *
526 * When copying data structures from the user (such as a render pass), it's
527 * common to need to allocate data for a bunch of different things. Instead
528 * of doing several allocations and having to handle all of the error checking
529 * that entails, it can be easier to do a single allocation. This struct
530 * helps facilitate that. The intended usage looks like this:
531 *
532 * ANV_MULTIALLOC(ma)
533 * anv_multialloc_add(&ma, &main_ptr, 1);
534 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
535 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
536 *
537 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
538 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
539 */
540 struct anv_multialloc {
541 size_t size;
542 size_t align;
543
544 uint32_t ptr_count;
545 void **ptrs[8];
546 };
547
548 #define ANV_MULTIALLOC_INIT \
549 ((struct anv_multialloc) { 0, })
550
551 #define ANV_MULTIALLOC(_name) \
552 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
553
554 __attribute__((always_inline))
555 static inline void
556 _anv_multialloc_add(struct anv_multialloc *ma,
557 void **ptr, size_t size, size_t align)
558 {
559 size_t offset = align_u64(ma->size, align);
560 ma->size = offset + size;
561 ma->align = MAX2(ma->align, align);
562
563 /* Store the offset in the pointer. */
564 *ptr = (void *)(uintptr_t)offset;
565
566 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
567 ma->ptrs[ma->ptr_count++] = ptr;
568 }
569
570 #define anv_multialloc_add_size(_ma, _ptr, _size) \
571 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
572
573 #define anv_multialloc_add(_ma, _ptr, _count) \
574 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
575
576 __attribute__((always_inline))
577 static inline void *
578 anv_multialloc_alloc(struct anv_multialloc *ma,
579 const VkAllocationCallbacks *alloc,
580 VkSystemAllocationScope scope)
581 {
582 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
583 if (!ptr)
584 return NULL;
585
586 /* Fill out each of the pointers with their final value.
587 *
588 * for (uint32_t i = 0; i < ma->ptr_count; i++)
589 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
590 *
591 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
592 * constant, GCC is incapable of figuring this out and unrolling the loop
593 * so we have to give it a little help.
594 */
595 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
596 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
597 if ((_i) < ma->ptr_count) \
598 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
599 _ANV_MULTIALLOC_UPDATE_POINTER(0);
600 _ANV_MULTIALLOC_UPDATE_POINTER(1);
601 _ANV_MULTIALLOC_UPDATE_POINTER(2);
602 _ANV_MULTIALLOC_UPDATE_POINTER(3);
603 _ANV_MULTIALLOC_UPDATE_POINTER(4);
604 _ANV_MULTIALLOC_UPDATE_POINTER(5);
605 _ANV_MULTIALLOC_UPDATE_POINTER(6);
606 _ANV_MULTIALLOC_UPDATE_POINTER(7);
607 #undef _ANV_MULTIALLOC_UPDATE_POINTER
608
609 return ptr;
610 }
611
612 __attribute__((always_inline))
613 static inline void *
614 anv_multialloc_alloc2(struct anv_multialloc *ma,
615 const VkAllocationCallbacks *parent_alloc,
616 const VkAllocationCallbacks *alloc,
617 VkSystemAllocationScope scope)
618 {
619 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
620 }
621
622 struct anv_bo {
623 uint32_t gem_handle;
624
625 uint32_t refcount;
626
627 /* Index into the current validation list. This is used by the
628 * validation list building alrogithm to track which buffers are already
629 * in the validation list so that we can ensure uniqueness.
630 */
631 uint32_t index;
632
633 /* Index for use with util_sparse_array_free_list */
634 uint32_t free_index;
635
636 /* Last known offset. This value is provided by the kernel when we
637 * execbuf and is used as the presumed offset for the next bunch of
638 * relocations.
639 */
640 uint64_t offset;
641
642 uint64_t size;
643
644 /* Map for internally mapped BOs.
645 *
646 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
647 */
648 void *map;
649
650 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
651 uint32_t flags;
652
653 /** True if this BO may be shared with other processes */
654 bool is_external:1;
655
656 /** True if this BO is a wrapper
657 *
658 * When set to true, none of the fields in this BO are meaningful except
659 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
660 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
661 * is set in the physical device.
662 */
663 bool is_wrapper:1;
664
665 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
666 bool has_fixed_address:1;
667
668 /** True if this BO wraps a host pointer */
669 bool from_host_ptr:1;
670
671 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
672 bool has_client_visible_address:1;
673 };
674
675 static inline struct anv_bo *
676 anv_bo_ref(struct anv_bo *bo)
677 {
678 p_atomic_inc(&bo->refcount);
679 return bo;
680 }
681
682 static inline struct anv_bo *
683 anv_bo_unwrap(struct anv_bo *bo)
684 {
685 while (bo->is_wrapper)
686 bo = bo->map;
687 return bo;
688 }
689
690 /* Represents a lock-free linked list of "free" things. This is used by
691 * both the block pool and the state pools. Unfortunately, in order to
692 * solve the ABA problem, we can't use a single uint32_t head.
693 */
694 union anv_free_list {
695 struct {
696 uint32_t offset;
697
698 /* A simple count that is incremented every time the head changes. */
699 uint32_t count;
700 };
701 /* Make sure it's aligned to 64 bits. This will make atomic operations
702 * faster on 32 bit platforms.
703 */
704 uint64_t u64 __attribute__ ((aligned (8)));
705 };
706
707 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
708
709 struct anv_block_state {
710 union {
711 struct {
712 uint32_t next;
713 uint32_t end;
714 };
715 /* Make sure it's aligned to 64 bits. This will make atomic operations
716 * faster on 32 bit platforms.
717 */
718 uint64_t u64 __attribute__ ((aligned (8)));
719 };
720 };
721
722 #define anv_block_pool_foreach_bo(bo, pool) \
723 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
724 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
725 _pp_bo++)
726
727 #define ANV_MAX_BLOCK_POOL_BOS 20
728
729 struct anv_block_pool {
730 struct anv_device *device;
731 bool use_softpin;
732
733 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
734 * around the actual BO so that we grow the pool after the wrapper BO has
735 * been put in a relocation list. This is only used in the non-softpin
736 * case.
737 */
738 struct anv_bo wrapper_bo;
739
740 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
741 struct anv_bo *bo;
742 uint32_t nbos;
743
744 uint64_t size;
745
746 /* The address where the start of the pool is pinned. The various bos that
747 * are created as the pool grows will have addresses in the range
748 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
749 */
750 uint64_t start_address;
751
752 /* The offset from the start of the bo to the "center" of the block
753 * pool. Pointers to allocated blocks are given by
754 * bo.map + center_bo_offset + offsets.
755 */
756 uint32_t center_bo_offset;
757
758 /* Current memory map of the block pool. This pointer may or may not
759 * point to the actual beginning of the block pool memory. If
760 * anv_block_pool_alloc_back has ever been called, then this pointer
761 * will point to the "center" position of the buffer and all offsets
762 * (negative or positive) given out by the block pool alloc functions
763 * will be valid relative to this pointer.
764 *
765 * In particular, map == bo.map + center_offset
766 *
767 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
768 * since it will handle the softpin case as well, where this points to NULL.
769 */
770 void *map;
771 int fd;
772
773 /**
774 * Array of mmaps and gem handles owned by the block pool, reclaimed when
775 * the block pool is destroyed.
776 */
777 struct u_vector mmap_cleanups;
778
779 struct anv_block_state state;
780
781 struct anv_block_state back_state;
782 };
783
784 /* Block pools are backed by a fixed-size 1GB memfd */
785 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
786
787 /* The center of the block pool is also the middle of the memfd. This may
788 * change in the future if we decide differently for some reason.
789 */
790 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
791
792 static inline uint32_t
793 anv_block_pool_size(struct anv_block_pool *pool)
794 {
795 return pool->state.end + pool->back_state.end;
796 }
797
798 struct anv_state {
799 int32_t offset;
800 uint32_t alloc_size;
801 void *map;
802 uint32_t idx;
803 };
804
805 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
806
807 struct anv_fixed_size_state_pool {
808 union anv_free_list free_list;
809 struct anv_block_state block;
810 };
811
812 #define ANV_MIN_STATE_SIZE_LOG2 6
813 #define ANV_MAX_STATE_SIZE_LOG2 21
814
815 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
816
817 struct anv_free_entry {
818 uint32_t next;
819 struct anv_state state;
820 };
821
822 struct anv_state_table {
823 struct anv_device *device;
824 int fd;
825 struct anv_free_entry *map;
826 uint32_t size;
827 struct anv_block_state state;
828 struct u_vector cleanups;
829 };
830
831 struct anv_state_pool {
832 struct anv_block_pool block_pool;
833
834 struct anv_state_table table;
835
836 /* The size of blocks which will be allocated from the block pool */
837 uint32_t block_size;
838
839 /** Free list for "back" allocations */
840 union anv_free_list back_alloc_free_list;
841
842 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
843 };
844
845 struct anv_state_stream_block;
846
847 struct anv_state_stream {
848 struct anv_state_pool *state_pool;
849
850 /* The size of blocks to allocate from the state pool */
851 uint32_t block_size;
852
853 /* Current block we're allocating from */
854 struct anv_state block;
855
856 /* Offset into the current block at which to allocate the next state */
857 uint32_t next;
858
859 /* List of all blocks allocated from this pool */
860 struct anv_state_stream_block *block_list;
861 };
862
863 /* The block_pool functions exported for testing only. The block pool should
864 * only be used via a state pool (see below).
865 */
866 VkResult anv_block_pool_init(struct anv_block_pool *pool,
867 struct anv_device *device,
868 uint64_t start_address,
869 uint32_t initial_size);
870 void anv_block_pool_finish(struct anv_block_pool *pool);
871 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
872 uint32_t block_size, uint32_t *padding);
873 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
874 uint32_t block_size);
875 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset);
876
877 VkResult anv_state_pool_init(struct anv_state_pool *pool,
878 struct anv_device *device,
879 uint64_t start_address,
880 uint32_t block_size);
881 void anv_state_pool_finish(struct anv_state_pool *pool);
882 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
883 uint32_t state_size, uint32_t alignment);
884 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
885 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
886 void anv_state_stream_init(struct anv_state_stream *stream,
887 struct anv_state_pool *state_pool,
888 uint32_t block_size);
889 void anv_state_stream_finish(struct anv_state_stream *stream);
890 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
891 uint32_t size, uint32_t alignment);
892
893 VkResult anv_state_table_init(struct anv_state_table *table,
894 struct anv_device *device,
895 uint32_t initial_entries);
896 void anv_state_table_finish(struct anv_state_table *table);
897 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
898 uint32_t count);
899 void anv_free_list_push(union anv_free_list *list,
900 struct anv_state_table *table,
901 uint32_t idx, uint32_t count);
902 struct anv_state* anv_free_list_pop(union anv_free_list *list,
903 struct anv_state_table *table);
904
905
906 static inline struct anv_state *
907 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
908 {
909 return &table->map[idx].state;
910 }
911 /**
912 * Implements a pool of re-usable BOs. The interface is identical to that
913 * of block_pool except that each block is its own BO.
914 */
915 struct anv_bo_pool {
916 struct anv_device *device;
917
918 struct util_sparse_array_free_list free_list[16];
919 };
920
921 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
922 void anv_bo_pool_finish(struct anv_bo_pool *pool);
923 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
924 struct anv_bo **bo_out);
925 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
926
927 struct anv_scratch_pool {
928 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
929 struct anv_bo *bos[16][MESA_SHADER_STAGES];
930 };
931
932 void anv_scratch_pool_init(struct anv_device *device,
933 struct anv_scratch_pool *pool);
934 void anv_scratch_pool_finish(struct anv_device *device,
935 struct anv_scratch_pool *pool);
936 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
937 struct anv_scratch_pool *pool,
938 gl_shader_stage stage,
939 unsigned per_thread_scratch);
940
941 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
942 struct anv_bo_cache {
943 struct util_sparse_array bo_map;
944 pthread_mutex_t mutex;
945 };
946
947 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
948 void anv_bo_cache_finish(struct anv_bo_cache *cache);
949
950 struct anv_memory_type {
951 /* Standard bits passed on to the client */
952 VkMemoryPropertyFlags propertyFlags;
953 uint32_t heapIndex;
954 };
955
956 struct anv_memory_heap {
957 /* Standard bits passed on to the client */
958 VkDeviceSize size;
959 VkMemoryHeapFlags flags;
960
961 /* Driver-internal book-keeping */
962 VkDeviceSize used;
963 };
964
965 struct anv_physical_device {
966 VK_LOADER_DATA _loader_data;
967
968 /* Link in anv_instance::physical_devices */
969 struct list_head link;
970
971 struct anv_instance * instance;
972 bool no_hw;
973 char path[20];
974 const char * name;
975 struct {
976 uint16_t domain;
977 uint8_t bus;
978 uint8_t device;
979 uint8_t function;
980 } pci_info;
981 struct gen_device_info info;
982 /** Amount of "GPU memory" we want to advertise
983 *
984 * Clearly, this value is bogus since Intel is a UMA architecture. On
985 * gen7 platforms, we are limited by GTT size unless we want to implement
986 * fine-grained tracking and GTT splitting. On Broadwell and above we are
987 * practically unlimited. However, we will never report more than 3/4 of
988 * the total system ram to try and avoid running out of RAM.
989 */
990 bool supports_48bit_addresses;
991 struct brw_compiler * compiler;
992 struct isl_device isl_dev;
993 struct gen_perf_config * perf;
994 int cmd_parser_version;
995 bool has_softpin;
996 bool has_exec_async;
997 bool has_exec_capture;
998 bool has_exec_fence;
999 bool has_syncobj;
1000 bool has_syncobj_wait;
1001 bool has_context_priority;
1002 bool has_context_isolation;
1003 bool has_mem_available;
1004 uint64_t gtt_size;
1005
1006 bool use_softpin;
1007 bool always_use_bindless;
1008
1009 /** True if we can access buffers using A64 messages */
1010 bool has_a64_buffer_access;
1011 /** True if we can use bindless access for images */
1012 bool has_bindless_images;
1013 /** True if we can use bindless access for samplers */
1014 bool has_bindless_samplers;
1015
1016 bool always_flush_cache;
1017
1018 struct anv_device_extension_table supported_extensions;
1019
1020 uint32_t eu_total;
1021 uint32_t subslice_total;
1022
1023 struct {
1024 uint32_t type_count;
1025 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1026 uint32_t heap_count;
1027 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1028 } memory;
1029
1030 uint8_t driver_build_sha1[20];
1031 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1032 uint8_t driver_uuid[VK_UUID_SIZE];
1033 uint8_t device_uuid[VK_UUID_SIZE];
1034
1035 struct disk_cache * disk_cache;
1036
1037 struct wsi_device wsi_device;
1038 int local_fd;
1039 int master_fd;
1040 };
1041
1042 struct anv_app_info {
1043 const char* app_name;
1044 uint32_t app_version;
1045 const char* engine_name;
1046 uint32_t engine_version;
1047 uint32_t api_version;
1048 };
1049
1050 struct anv_instance {
1051 VK_LOADER_DATA _loader_data;
1052
1053 VkAllocationCallbacks alloc;
1054
1055 struct anv_app_info app_info;
1056
1057 struct anv_instance_extension_table enabled_extensions;
1058 struct anv_instance_dispatch_table dispatch;
1059 struct anv_physical_device_dispatch_table physical_device_dispatch;
1060 struct anv_device_dispatch_table device_dispatch;
1061
1062 bool physical_devices_enumerated;
1063 struct list_head physical_devices;
1064
1065 bool pipeline_cache_enabled;
1066
1067 struct vk_debug_report_instance debug_report_callbacks;
1068
1069 struct driOptionCache dri_options;
1070 struct driOptionCache available_dri_options;
1071 };
1072
1073 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1074 void anv_finish_wsi(struct anv_physical_device *physical_device);
1075
1076 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1077 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1078 const char *name);
1079
1080 struct anv_queue_submit {
1081 struct anv_cmd_buffer * cmd_buffer;
1082
1083 uint32_t fence_count;
1084 uint32_t fence_array_length;
1085 struct drm_i915_gem_exec_fence * fences;
1086
1087 uint32_t temporary_semaphore_count;
1088 uint32_t temporary_semaphore_array_length;
1089 struct anv_semaphore_impl * temporary_semaphores;
1090
1091 /* Semaphores to be signaled with a SYNC_FD. */
1092 struct anv_semaphore ** sync_fd_semaphores;
1093 uint32_t sync_fd_semaphore_count;
1094 uint32_t sync_fd_semaphore_array_length;
1095
1096 /* Allocated only with non shareable timelines. */
1097 struct anv_timeline ** wait_timelines;
1098 uint32_t wait_timeline_count;
1099 uint32_t wait_timeline_array_length;
1100 uint64_t * wait_timeline_values;
1101
1102 struct anv_timeline ** signal_timelines;
1103 uint32_t signal_timeline_count;
1104 uint32_t signal_timeline_array_length;
1105 uint64_t * signal_timeline_values;
1106
1107 int in_fence;
1108 bool need_out_fence;
1109 int out_fence;
1110
1111 uint32_t fence_bo_count;
1112 uint32_t fence_bo_array_length;
1113 /* An array of struct anv_bo pointers with lower bit used as a flag to
1114 * signal we will wait on that BO (see anv_(un)pack_ptr).
1115 */
1116 uintptr_t * fence_bos;
1117
1118 const VkAllocationCallbacks * alloc;
1119 VkSystemAllocationScope alloc_scope;
1120
1121 struct anv_bo * simple_bo;
1122 uint32_t simple_bo_size;
1123
1124 struct list_head link;
1125 };
1126
1127 struct anv_queue {
1128 VK_LOADER_DATA _loader_data;
1129
1130 struct anv_device * device;
1131
1132 /*
1133 * A list of struct anv_queue_submit to be submitted to i915.
1134 */
1135 struct list_head queued_submits;
1136
1137 VkDeviceQueueCreateFlags flags;
1138 };
1139
1140 struct anv_pipeline_cache {
1141 struct anv_device * device;
1142 pthread_mutex_t mutex;
1143
1144 struct hash_table * nir_cache;
1145
1146 struct hash_table * cache;
1147 };
1148
1149 struct nir_xfb_info;
1150 struct anv_pipeline_bind_map;
1151
1152 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1153 struct anv_device *device,
1154 bool cache_enabled);
1155 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1156
1157 struct anv_shader_bin *
1158 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1159 const void *key, uint32_t key_size);
1160 struct anv_shader_bin *
1161 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1162 const void *key_data, uint32_t key_size,
1163 const void *kernel_data, uint32_t kernel_size,
1164 const void *constant_data,
1165 uint32_t constant_data_size,
1166 const struct brw_stage_prog_data *prog_data,
1167 uint32_t prog_data_size,
1168 const struct brw_compile_stats *stats,
1169 uint32_t num_stats,
1170 const struct nir_xfb_info *xfb_info,
1171 const struct anv_pipeline_bind_map *bind_map);
1172
1173 struct anv_shader_bin *
1174 anv_device_search_for_kernel(struct anv_device *device,
1175 struct anv_pipeline_cache *cache,
1176 const void *key_data, uint32_t key_size,
1177 bool *user_cache_bit);
1178
1179 struct anv_shader_bin *
1180 anv_device_upload_kernel(struct anv_device *device,
1181 struct anv_pipeline_cache *cache,
1182 const void *key_data, uint32_t key_size,
1183 const void *kernel_data, uint32_t kernel_size,
1184 const void *constant_data,
1185 uint32_t constant_data_size,
1186 const struct brw_stage_prog_data *prog_data,
1187 uint32_t prog_data_size,
1188 const struct brw_compile_stats *stats,
1189 uint32_t num_stats,
1190 const struct nir_xfb_info *xfb_info,
1191 const struct anv_pipeline_bind_map *bind_map);
1192
1193 struct nir_shader;
1194 struct nir_shader_compiler_options;
1195
1196 struct nir_shader *
1197 anv_device_search_for_nir(struct anv_device *device,
1198 struct anv_pipeline_cache *cache,
1199 const struct nir_shader_compiler_options *nir_options,
1200 unsigned char sha1_key[20],
1201 void *mem_ctx);
1202
1203 void
1204 anv_device_upload_nir(struct anv_device *device,
1205 struct anv_pipeline_cache *cache,
1206 const struct nir_shader *nir,
1207 unsigned char sha1_key[20]);
1208
1209 struct anv_device {
1210 VK_LOADER_DATA _loader_data;
1211
1212 VkAllocationCallbacks alloc;
1213
1214 struct anv_physical_device * physical;
1215 bool no_hw;
1216 struct gen_device_info info;
1217 struct isl_device isl_dev;
1218 int context_id;
1219 int fd;
1220 bool can_chain_batches;
1221 bool robust_buffer_access;
1222 struct anv_device_extension_table enabled_extensions;
1223 struct anv_device_dispatch_table dispatch;
1224
1225 pthread_mutex_t vma_mutex;
1226 struct util_vma_heap vma_lo;
1227 struct util_vma_heap vma_cva;
1228 struct util_vma_heap vma_hi;
1229
1230 /** List of all anv_device_memory objects */
1231 struct list_head memory_objects;
1232
1233 struct anv_bo_pool batch_bo_pool;
1234
1235 struct anv_bo_cache bo_cache;
1236
1237 struct anv_state_pool dynamic_state_pool;
1238 struct anv_state_pool instruction_state_pool;
1239 struct anv_state_pool binding_table_pool;
1240 struct anv_state_pool surface_state_pool;
1241
1242 struct anv_bo * workaround_bo;
1243 struct anv_bo * trivial_batch_bo;
1244 struct anv_bo * hiz_clear_bo;
1245
1246 struct anv_pipeline_cache default_pipeline_cache;
1247 struct blorp_context blorp;
1248
1249 struct anv_state border_colors;
1250
1251 struct anv_state slice_hash;
1252
1253 struct anv_queue queue;
1254
1255 struct anv_scratch_pool scratch_pool;
1256
1257 pthread_mutex_t mutex;
1258 pthread_cond_t queue_submit;
1259 int _lost;
1260
1261 struct gen_batch_decode_ctx decoder_ctx;
1262 /*
1263 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1264 * the cmd_buffer's list.
1265 */
1266 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1267
1268 int perf_fd; /* -1 if no opened */
1269 uint64_t perf_metric; /* 0 if unset */
1270
1271 struct gen_aux_map_context *aux_map_ctx;
1272 };
1273
1274 static inline struct anv_instance *
1275 anv_device_instance_or_null(const struct anv_device *device)
1276 {
1277 return device ? device->physical->instance : NULL;
1278 }
1279
1280 static inline struct anv_state_pool *
1281 anv_binding_table_pool(struct anv_device *device)
1282 {
1283 if (device->physical->use_softpin)
1284 return &device->binding_table_pool;
1285 else
1286 return &device->surface_state_pool;
1287 }
1288
1289 static inline struct anv_state
1290 anv_binding_table_pool_alloc(struct anv_device *device) {
1291 if (device->physical->use_softpin)
1292 return anv_state_pool_alloc(&device->binding_table_pool,
1293 device->binding_table_pool.block_size, 0);
1294 else
1295 return anv_state_pool_alloc_back(&device->surface_state_pool);
1296 }
1297
1298 static inline void
1299 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1300 anv_state_pool_free(anv_binding_table_pool(device), state);
1301 }
1302
1303 static inline uint32_t
1304 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1305 {
1306 if (bo->is_external)
1307 return device->isl_dev.mocs.external;
1308 else
1309 return device->isl_dev.mocs.internal;
1310 }
1311
1312 void anv_device_init_blorp(struct anv_device *device);
1313 void anv_device_finish_blorp(struct anv_device *device);
1314
1315 void _anv_device_set_all_queue_lost(struct anv_device *device);
1316 VkResult _anv_device_set_lost(struct anv_device *device,
1317 const char *file, int line,
1318 const char *msg, ...)
1319 anv_printflike(4, 5);
1320 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1321 const char *file, int line,
1322 const char *msg, ...)
1323 anv_printflike(4, 5);
1324 #define anv_device_set_lost(dev, ...) \
1325 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1326 #define anv_queue_set_lost(queue, ...) \
1327 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1328
1329 static inline bool
1330 anv_device_is_lost(struct anv_device *device)
1331 {
1332 return unlikely(p_atomic_read(&device->_lost));
1333 }
1334
1335 VkResult anv_device_query_status(struct anv_device *device);
1336
1337
1338 enum anv_bo_alloc_flags {
1339 /** Specifies that the BO must have a 32-bit address
1340 *
1341 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1342 */
1343 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1344
1345 /** Specifies that the BO may be shared externally */
1346 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1347
1348 /** Specifies that the BO should be mapped */
1349 ANV_BO_ALLOC_MAPPED = (1 << 2),
1350
1351 /** Specifies that the BO should be snooped so we get coherency */
1352 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1353
1354 /** Specifies that the BO should be captured in error states */
1355 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1356
1357 /** Specifies that the BO will have an address assigned by the caller
1358 *
1359 * Such BOs do not exist in any VMA heap.
1360 */
1361 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1362
1363 /** Enables implicit synchronization on the BO
1364 *
1365 * This is the opposite of EXEC_OBJECT_ASYNC.
1366 */
1367 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1368
1369 /** Enables implicit synchronization on the BO
1370 *
1371 * This is equivalent to EXEC_OBJECT_WRITE.
1372 */
1373 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1374
1375 /** Has an address which is visible to the client */
1376 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1377 };
1378
1379 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1380 enum anv_bo_alloc_flags alloc_flags,
1381 uint64_t explicit_address,
1382 struct anv_bo **bo);
1383 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1384 void *host_ptr, uint32_t size,
1385 enum anv_bo_alloc_flags alloc_flags,
1386 uint64_t client_address,
1387 struct anv_bo **bo_out);
1388 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1389 enum anv_bo_alloc_flags alloc_flags,
1390 uint64_t client_address,
1391 struct anv_bo **bo);
1392 VkResult anv_device_export_bo(struct anv_device *device,
1393 struct anv_bo *bo, int *fd_out);
1394 void anv_device_release_bo(struct anv_device *device,
1395 struct anv_bo *bo);
1396
1397 static inline struct anv_bo *
1398 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1399 {
1400 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1401 }
1402
1403 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1404 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1405 int64_t timeout);
1406
1407 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1408 void anv_queue_finish(struct anv_queue *queue);
1409
1410 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1411 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1412 struct anv_batch *batch);
1413
1414 uint64_t anv_gettime_ns(void);
1415 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1416
1417 void* anv_gem_mmap(struct anv_device *device,
1418 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1419 void anv_gem_munmap(void *p, uint64_t size);
1420 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1421 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1422 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1423 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1424 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1425 int anv_gem_execbuffer(struct anv_device *device,
1426 struct drm_i915_gem_execbuffer2 *execbuf);
1427 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1428 uint32_t stride, uint32_t tiling);
1429 int anv_gem_create_context(struct anv_device *device);
1430 bool anv_gem_has_context_priority(int fd);
1431 int anv_gem_destroy_context(struct anv_device *device, int context);
1432 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1433 uint64_t value);
1434 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1435 uint64_t *value);
1436 int anv_gem_get_param(int fd, uint32_t param);
1437 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1438 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1439 int anv_gem_get_aperture(int fd, uint64_t *size);
1440 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1441 uint32_t *active, uint32_t *pending);
1442 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1443 int anv_gem_reg_read(struct anv_device *device,
1444 uint32_t offset, uint64_t *result);
1445 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1446 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1447 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1448 uint32_t read_domains, uint32_t write_domain);
1449 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1450 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1451 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1452 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1453 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1454 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1455 uint32_t handle);
1456 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1457 uint32_t handle, int fd);
1458 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1459 bool anv_gem_supports_syncobj_wait(int fd);
1460 int anv_gem_syncobj_wait(struct anv_device *device,
1461 uint32_t *handles, uint32_t num_handles,
1462 int64_t abs_timeout_ns, bool wait_all);
1463
1464 bool anv_vma_alloc(struct anv_device *device, struct anv_bo *bo,
1465 uint64_t client_address);
1466 void anv_vma_free(struct anv_device *device, struct anv_bo *bo);
1467
1468 struct anv_reloc_list {
1469 uint32_t num_relocs;
1470 uint32_t array_length;
1471 struct drm_i915_gem_relocation_entry * relocs;
1472 struct anv_bo ** reloc_bos;
1473 uint32_t dep_words;
1474 BITSET_WORD * deps;
1475 };
1476
1477 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1478 const VkAllocationCallbacks *alloc);
1479 void anv_reloc_list_finish(struct anv_reloc_list *list,
1480 const VkAllocationCallbacks *alloc);
1481
1482 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1483 const VkAllocationCallbacks *alloc,
1484 uint32_t offset, struct anv_bo *target_bo,
1485 uint32_t delta, uint64_t *address_u64_out);
1486
1487 struct anv_batch_bo {
1488 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1489 struct list_head link;
1490
1491 struct anv_bo * bo;
1492
1493 /* Bytes actually consumed in this batch BO */
1494 uint32_t length;
1495
1496 struct anv_reloc_list relocs;
1497 };
1498
1499 struct anv_batch {
1500 const VkAllocationCallbacks * alloc;
1501
1502 void * start;
1503 void * end;
1504 void * next;
1505
1506 struct anv_reloc_list * relocs;
1507
1508 /* This callback is called (with the associated user data) in the event
1509 * that the batch runs out of space.
1510 */
1511 VkResult (*extend_cb)(struct anv_batch *, void *);
1512 void * user_data;
1513
1514 /**
1515 * Current error status of the command buffer. Used to track inconsistent
1516 * or incomplete command buffer states that are the consequence of run-time
1517 * errors such as out of memory scenarios. We want to track this in the
1518 * batch because the command buffer object is not visible to some parts
1519 * of the driver.
1520 */
1521 VkResult status;
1522 };
1523
1524 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1525 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1526 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1527 void *location, struct anv_bo *bo, uint32_t offset);
1528
1529 static inline VkResult
1530 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1531 {
1532 assert(error != VK_SUCCESS);
1533 if (batch->status == VK_SUCCESS)
1534 batch->status = error;
1535 return batch->status;
1536 }
1537
1538 static inline bool
1539 anv_batch_has_error(struct anv_batch *batch)
1540 {
1541 return batch->status != VK_SUCCESS;
1542 }
1543
1544 struct anv_address {
1545 struct anv_bo *bo;
1546 uint32_t offset;
1547 };
1548
1549 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1550
1551 static inline bool
1552 anv_address_is_null(struct anv_address addr)
1553 {
1554 return addr.bo == NULL && addr.offset == 0;
1555 }
1556
1557 static inline uint64_t
1558 anv_address_physical(struct anv_address addr)
1559 {
1560 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1561 return gen_canonical_address(addr.bo->offset + addr.offset);
1562 else
1563 return gen_canonical_address(addr.offset);
1564 }
1565
1566 static inline struct anv_address
1567 anv_address_add(struct anv_address addr, uint64_t offset)
1568 {
1569 addr.offset += offset;
1570 return addr;
1571 }
1572
1573 static inline void
1574 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1575 {
1576 unsigned reloc_size = 0;
1577 if (device->info.gen >= 8) {
1578 reloc_size = sizeof(uint64_t);
1579 *(uint64_t *)p = gen_canonical_address(v);
1580 } else {
1581 reloc_size = sizeof(uint32_t);
1582 *(uint32_t *)p = v;
1583 }
1584
1585 if (flush && !device->info.has_llc)
1586 gen_flush_range(p, reloc_size);
1587 }
1588
1589 static inline uint64_t
1590 _anv_combine_address(struct anv_batch *batch, void *location,
1591 const struct anv_address address, uint32_t delta)
1592 {
1593 if (address.bo == NULL) {
1594 return address.offset + delta;
1595 } else {
1596 assert(batch->start <= location && location < batch->end);
1597
1598 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1599 }
1600 }
1601
1602 #define __gen_address_type struct anv_address
1603 #define __gen_user_data struct anv_batch
1604 #define __gen_combine_address _anv_combine_address
1605
1606 /* Wrapper macros needed to work around preprocessor argument issues. In
1607 * particular, arguments don't get pre-evaluated if they are concatenated.
1608 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1609 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1610 * We can work around this easily enough with these helpers.
1611 */
1612 #define __anv_cmd_length(cmd) cmd ## _length
1613 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1614 #define __anv_cmd_header(cmd) cmd ## _header
1615 #define __anv_cmd_pack(cmd) cmd ## _pack
1616 #define __anv_reg_num(reg) reg ## _num
1617
1618 #define anv_pack_struct(dst, struc, ...) do { \
1619 struct struc __template = { \
1620 __VA_ARGS__ \
1621 }; \
1622 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1623 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1624 } while (0)
1625
1626 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1627 void *__dst = anv_batch_emit_dwords(batch, n); \
1628 if (__dst) { \
1629 struct cmd __template = { \
1630 __anv_cmd_header(cmd), \
1631 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1632 __VA_ARGS__ \
1633 }; \
1634 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1635 } \
1636 __dst; \
1637 })
1638
1639 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1640 do { \
1641 uint32_t *dw; \
1642 \
1643 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1644 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1645 if (!dw) \
1646 break; \
1647 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1648 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1649 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1650 } while (0)
1651
1652 #define anv_batch_emit(batch, cmd, name) \
1653 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1654 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1655 __builtin_expect(_dst != NULL, 1); \
1656 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1657 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1658 _dst = NULL; \
1659 }))
1660
1661 struct anv_device_memory {
1662 struct list_head link;
1663
1664 struct anv_bo * bo;
1665 struct anv_memory_type * type;
1666 VkDeviceSize map_size;
1667 void * map;
1668
1669 /* If set, we are holding reference to AHardwareBuffer
1670 * which we must release when memory is freed.
1671 */
1672 struct AHardwareBuffer * ahw;
1673
1674 /* If set, this memory comes from a host pointer. */
1675 void * host_ptr;
1676 };
1677
1678 /**
1679 * Header for Vertex URB Entry (VUE)
1680 */
1681 struct anv_vue_header {
1682 uint32_t Reserved;
1683 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1684 uint32_t ViewportIndex;
1685 float PointWidth;
1686 };
1687
1688 /** Struct representing a sampled image descriptor
1689 *
1690 * This descriptor layout is used for sampled images, bare sampler, and
1691 * combined image/sampler descriptors.
1692 */
1693 struct anv_sampled_image_descriptor {
1694 /** Bindless image handle
1695 *
1696 * This is expected to already be shifted such that the 20-bit
1697 * SURFACE_STATE table index is in the top 20 bits.
1698 */
1699 uint32_t image;
1700
1701 /** Bindless sampler handle
1702 *
1703 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1704 * to the dynamic state base address.
1705 */
1706 uint32_t sampler;
1707 };
1708
1709 struct anv_texture_swizzle_descriptor {
1710 /** Texture swizzle
1711 *
1712 * See also nir_intrinsic_channel_select_intel
1713 */
1714 uint8_t swizzle[4];
1715
1716 /** Unused padding to ensure the struct is a multiple of 64 bits */
1717 uint32_t _pad;
1718 };
1719
1720 /** Struct representing a storage image descriptor */
1721 struct anv_storage_image_descriptor {
1722 /** Bindless image handles
1723 *
1724 * These are expected to already be shifted such that the 20-bit
1725 * SURFACE_STATE table index is in the top 20 bits.
1726 */
1727 uint32_t read_write;
1728 uint32_t write_only;
1729 };
1730
1731 /** Struct representing a address/range descriptor
1732 *
1733 * The fields of this struct correspond directly to the data layout of
1734 * nir_address_format_64bit_bounded_global addresses. The last field is the
1735 * offset in the NIR address so it must be zero so that when you load the
1736 * descriptor you get a pointer to the start of the range.
1737 */
1738 struct anv_address_range_descriptor {
1739 uint64_t address;
1740 uint32_t range;
1741 uint32_t zero;
1742 };
1743
1744 enum anv_descriptor_data {
1745 /** The descriptor contains a BTI reference to a surface state */
1746 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1747 /** The descriptor contains a BTI reference to a sampler state */
1748 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1749 /** The descriptor contains an actual buffer view */
1750 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1751 /** The descriptor contains auxiliary image layout data */
1752 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1753 /** The descriptor contains auxiliary image layout data */
1754 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1755 /** anv_address_range_descriptor with a buffer address and range */
1756 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1757 /** Bindless surface handle */
1758 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1759 /** Storage image handles */
1760 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1761 /** Storage image handles */
1762 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1763 };
1764
1765 struct anv_descriptor_set_binding_layout {
1766 #ifndef NDEBUG
1767 /* The type of the descriptors in this binding */
1768 VkDescriptorType type;
1769 #endif
1770
1771 /* Flags provided when this binding was created */
1772 VkDescriptorBindingFlagsEXT flags;
1773
1774 /* Bitfield representing the type of data this descriptor contains */
1775 enum anv_descriptor_data data;
1776
1777 /* Maximum number of YCbCr texture/sampler planes */
1778 uint8_t max_plane_count;
1779
1780 /* Number of array elements in this binding (or size in bytes for inline
1781 * uniform data)
1782 */
1783 uint16_t array_size;
1784
1785 /* Index into the flattend descriptor set */
1786 uint16_t descriptor_index;
1787
1788 /* Index into the dynamic state array for a dynamic buffer */
1789 int16_t dynamic_offset_index;
1790
1791 /* Index into the descriptor set buffer views */
1792 int16_t buffer_view_index;
1793
1794 /* Offset into the descriptor buffer where this descriptor lives */
1795 uint32_t descriptor_offset;
1796
1797 /* Immutable samplers (or NULL if no immutable samplers) */
1798 struct anv_sampler **immutable_samplers;
1799 };
1800
1801 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1802
1803 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1804 VkDescriptorType type);
1805
1806 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1807 const struct anv_descriptor_set_binding_layout *binding,
1808 bool sampler);
1809
1810 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1811 const struct anv_descriptor_set_binding_layout *binding,
1812 bool sampler);
1813
1814 struct anv_descriptor_set_layout {
1815 /* Descriptor set layouts can be destroyed at almost any time */
1816 uint32_t ref_cnt;
1817
1818 /* Number of bindings in this descriptor set */
1819 uint16_t binding_count;
1820
1821 /* Total size of the descriptor set with room for all array entries */
1822 uint16_t size;
1823
1824 /* Shader stages affected by this descriptor set */
1825 uint16_t shader_stages;
1826
1827 /* Number of buffer views in this descriptor set */
1828 uint16_t buffer_view_count;
1829
1830 /* Number of dynamic offsets used by this descriptor set */
1831 uint16_t dynamic_offset_count;
1832
1833 /* For each shader stage, which offsets apply to that stage */
1834 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1835
1836 /* Size of the descriptor buffer for this descriptor set */
1837 uint32_t descriptor_buffer_size;
1838
1839 /* Bindings in this descriptor set */
1840 struct anv_descriptor_set_binding_layout binding[0];
1841 };
1842
1843 static inline void
1844 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1845 {
1846 assert(layout && layout->ref_cnt >= 1);
1847 p_atomic_inc(&layout->ref_cnt);
1848 }
1849
1850 static inline void
1851 anv_descriptor_set_layout_unref(struct anv_device *device,
1852 struct anv_descriptor_set_layout *layout)
1853 {
1854 assert(layout && layout->ref_cnt >= 1);
1855 if (p_atomic_dec_zero(&layout->ref_cnt))
1856 vk_free(&device->alloc, layout);
1857 }
1858
1859 struct anv_descriptor {
1860 VkDescriptorType type;
1861
1862 union {
1863 struct {
1864 VkImageLayout layout;
1865 struct anv_image_view *image_view;
1866 struct anv_sampler *sampler;
1867 };
1868
1869 struct {
1870 struct anv_buffer *buffer;
1871 uint64_t offset;
1872 uint64_t range;
1873 };
1874
1875 struct anv_buffer_view *buffer_view;
1876 };
1877 };
1878
1879 struct anv_descriptor_set {
1880 struct anv_descriptor_pool *pool;
1881 struct anv_descriptor_set_layout *layout;
1882 uint32_t size;
1883
1884 /* State relative to anv_descriptor_pool::bo */
1885 struct anv_state desc_mem;
1886 /* Surface state for the descriptor buffer */
1887 struct anv_state desc_surface_state;
1888
1889 uint32_t buffer_view_count;
1890 struct anv_buffer_view *buffer_views;
1891
1892 /* Link to descriptor pool's desc_sets list . */
1893 struct list_head pool_link;
1894
1895 struct anv_descriptor descriptors[0];
1896 };
1897
1898 struct anv_buffer_view {
1899 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1900 uint64_t range; /**< VkBufferViewCreateInfo::range */
1901
1902 struct anv_address address;
1903
1904 struct anv_state surface_state;
1905 struct anv_state storage_surface_state;
1906 struct anv_state writeonly_storage_surface_state;
1907
1908 struct brw_image_param storage_image_param;
1909 };
1910
1911 struct anv_push_descriptor_set {
1912 struct anv_descriptor_set set;
1913
1914 /* Put this field right behind anv_descriptor_set so it fills up the
1915 * descriptors[0] field. */
1916 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1917
1918 /** True if the descriptor set buffer has been referenced by a draw or
1919 * dispatch command.
1920 */
1921 bool set_used_on_gpu;
1922
1923 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1924 };
1925
1926 struct anv_descriptor_pool {
1927 uint32_t size;
1928 uint32_t next;
1929 uint32_t free_list;
1930
1931 struct anv_bo *bo;
1932 struct util_vma_heap bo_heap;
1933
1934 struct anv_state_stream surface_state_stream;
1935 void *surface_state_free_list;
1936
1937 struct list_head desc_sets;
1938
1939 char data[0];
1940 };
1941
1942 enum anv_descriptor_template_entry_type {
1943 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
1944 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
1945 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
1946 };
1947
1948 struct anv_descriptor_template_entry {
1949 /* The type of descriptor in this entry */
1950 VkDescriptorType type;
1951
1952 /* Binding in the descriptor set */
1953 uint32_t binding;
1954
1955 /* Offset at which to write into the descriptor set binding */
1956 uint32_t array_element;
1957
1958 /* Number of elements to write into the descriptor set binding */
1959 uint32_t array_count;
1960
1961 /* Offset into the user provided data */
1962 size_t offset;
1963
1964 /* Stride between elements into the user provided data */
1965 size_t stride;
1966 };
1967
1968 struct anv_descriptor_update_template {
1969 VkPipelineBindPoint bind_point;
1970
1971 /* The descriptor set this template corresponds to. This value is only
1972 * valid if the template was created with the templateType
1973 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
1974 */
1975 uint8_t set;
1976
1977 /* Number of entries in this template */
1978 uint32_t entry_count;
1979
1980 /* Entries of the template */
1981 struct anv_descriptor_template_entry entries[0];
1982 };
1983
1984 size_t
1985 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
1986
1987 void
1988 anv_descriptor_set_write_image_view(struct anv_device *device,
1989 struct anv_descriptor_set *set,
1990 const VkDescriptorImageInfo * const info,
1991 VkDescriptorType type,
1992 uint32_t binding,
1993 uint32_t element);
1994
1995 void
1996 anv_descriptor_set_write_buffer_view(struct anv_device *device,
1997 struct anv_descriptor_set *set,
1998 VkDescriptorType type,
1999 struct anv_buffer_view *buffer_view,
2000 uint32_t binding,
2001 uint32_t element);
2002
2003 void
2004 anv_descriptor_set_write_buffer(struct anv_device *device,
2005 struct anv_descriptor_set *set,
2006 struct anv_state_stream *alloc_stream,
2007 VkDescriptorType type,
2008 struct anv_buffer *buffer,
2009 uint32_t binding,
2010 uint32_t element,
2011 VkDeviceSize offset,
2012 VkDeviceSize range);
2013 void
2014 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2015 struct anv_descriptor_set *set,
2016 uint32_t binding,
2017 const void *data,
2018 size_t offset,
2019 size_t size);
2020
2021 void
2022 anv_descriptor_set_write_template(struct anv_device *device,
2023 struct anv_descriptor_set *set,
2024 struct anv_state_stream *alloc_stream,
2025 const struct anv_descriptor_update_template *template,
2026 const void *data);
2027
2028 VkResult
2029 anv_descriptor_set_create(struct anv_device *device,
2030 struct anv_descriptor_pool *pool,
2031 struct anv_descriptor_set_layout *layout,
2032 struct anv_descriptor_set **out_set);
2033
2034 void
2035 anv_descriptor_set_destroy(struct anv_device *device,
2036 struct anv_descriptor_pool *pool,
2037 struct anv_descriptor_set *set);
2038
2039 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2040 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2041 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2042 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2043 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2044 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2045
2046 struct anv_pipeline_binding {
2047 /** Index in the descriptor set
2048 *
2049 * This is a flattened index; the descriptor set layout is already taken
2050 * into account.
2051 */
2052 uint32_t index;
2053
2054 /** The descriptor set this surface corresponds to.
2055 *
2056 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2057 * binding is not a normal descriptor set but something else.
2058 */
2059 uint8_t set;
2060
2061 union {
2062 /** Plane in the binding index for images */
2063 uint8_t plane;
2064
2065 /** Input attachment index (relative to the subpass) */
2066 uint8_t input_attachment_index;
2067
2068 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2069 uint8_t dynamic_offset_index;
2070 };
2071
2072 /** For a storage image, whether it is write-only */
2073 uint8_t write_only;
2074
2075 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2076 * assuming POD zero-initialization.
2077 */
2078 uint8_t pad;
2079 };
2080
2081 struct anv_push_range {
2082 /** Index in the descriptor set */
2083 uint32_t index;
2084
2085 /** Descriptor set index */
2086 uint8_t set;
2087
2088 /** Dynamic offset index (for dynamic UBOs) */
2089 uint8_t dynamic_offset_index;
2090
2091 /** Start offset in units of 32B */
2092 uint8_t start;
2093
2094 /** Range in units of 32B */
2095 uint8_t length;
2096 };
2097
2098 struct anv_pipeline_layout {
2099 struct {
2100 struct anv_descriptor_set_layout *layout;
2101 uint32_t dynamic_offset_start;
2102 } set[MAX_SETS];
2103
2104 uint32_t num_sets;
2105
2106 unsigned char sha1[20];
2107 };
2108
2109 struct anv_buffer {
2110 struct anv_device * device;
2111 VkDeviceSize size;
2112
2113 VkBufferUsageFlags usage;
2114
2115 /* Set when bound */
2116 struct anv_address address;
2117 };
2118
2119 static inline uint64_t
2120 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2121 {
2122 assert(offset <= buffer->size);
2123 if (range == VK_WHOLE_SIZE) {
2124 return buffer->size - offset;
2125 } else {
2126 assert(range + offset >= range);
2127 assert(range + offset <= buffer->size);
2128 return range;
2129 }
2130 }
2131
2132 enum anv_cmd_dirty_bits {
2133 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2134 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2135 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2136 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2137 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2138 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2139 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2140 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2141 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2142 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2143 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2144 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2145 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2146 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2147 };
2148 typedef uint32_t anv_cmd_dirty_mask_t;
2149
2150 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2151 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2152 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2153 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2154 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2155 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2156 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2157 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2158 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2159 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2160 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2161
2162 static inline enum anv_cmd_dirty_bits
2163 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2164 {
2165 switch (vk_state) {
2166 case VK_DYNAMIC_STATE_VIEWPORT:
2167 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2168 case VK_DYNAMIC_STATE_SCISSOR:
2169 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2170 case VK_DYNAMIC_STATE_LINE_WIDTH:
2171 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2172 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2173 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2174 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2175 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2176 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2177 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2178 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2179 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2180 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2181 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2182 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2183 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2184 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2185 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2186 default:
2187 assert(!"Unsupported dynamic state");
2188 return 0;
2189 }
2190 }
2191
2192
2193 enum anv_pipe_bits {
2194 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2195 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2196 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2197 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2198 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2199 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2200 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2201 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2202 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2203 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2204 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2205 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2206
2207 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2208 * a flush has happened but not a CS stall. The next time we do any sort
2209 * of invalidation we need to insert a CS stall at that time. Otherwise,
2210 * we would have to CS stall on every flush which could be bad.
2211 */
2212 ANV_PIPE_NEEDS_CS_STALL_BIT = (1 << 21),
2213
2214 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2215 * target operations related to transfer commands with VkBuffer as
2216 * destination are ongoing. Some operations like copies on the command
2217 * streamer might need to be aware of this to trigger the appropriate stall
2218 * before they can proceed with the copy.
2219 */
2220 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 22),
2221 };
2222
2223 #define ANV_PIPE_FLUSH_BITS ( \
2224 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2225 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2226 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2227 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2228
2229 #define ANV_PIPE_STALL_BITS ( \
2230 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2231 ANV_PIPE_DEPTH_STALL_BIT | \
2232 ANV_PIPE_CS_STALL_BIT)
2233
2234 #define ANV_PIPE_INVALIDATE_BITS ( \
2235 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2236 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2237 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2238 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2239 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2240 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT)
2241
2242 static inline enum anv_pipe_bits
2243 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2244 {
2245 enum anv_pipe_bits pipe_bits = 0;
2246
2247 unsigned b;
2248 for_each_bit(b, flags) {
2249 switch ((VkAccessFlagBits)(1 << b)) {
2250 case VK_ACCESS_SHADER_WRITE_BIT:
2251 /* We're transitioning a buffer that was previously used as write
2252 * destination through the data port. To make its content available
2253 * to future operations, flush the data cache.
2254 */
2255 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2256 break;
2257 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2258 /* We're transitioning a buffer that was previously used as render
2259 * target. To make its content available to future operations, flush
2260 * the render target cache.
2261 */
2262 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2263 break;
2264 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2265 /* We're transitioning a buffer that was previously used as depth
2266 * buffer. To make its content available to future operations, flush
2267 * the depth cache.
2268 */
2269 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2270 break;
2271 case VK_ACCESS_TRANSFER_WRITE_BIT:
2272 /* We're transitioning a buffer that was previously used as a
2273 * transfer write destination. Generic write operations include color
2274 * & depth operations as well as buffer operations like :
2275 * - vkCmdClearColorImage()
2276 * - vkCmdClearDepthStencilImage()
2277 * - vkCmdBlitImage()
2278 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2279 *
2280 * Most of these operations are implemented using Blorp which writes
2281 * through the render target, so flush that cache to make it visible
2282 * to future operations. And for depth related operations we also
2283 * need to flush the depth cache.
2284 */
2285 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2286 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2287 break;
2288 case VK_ACCESS_MEMORY_WRITE_BIT:
2289 /* We're transitioning a buffer for generic write operations. Flush
2290 * all the caches.
2291 */
2292 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2293 break;
2294 default:
2295 break; /* Nothing to do */
2296 }
2297 }
2298
2299 return pipe_bits;
2300 }
2301
2302 static inline enum anv_pipe_bits
2303 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2304 {
2305 enum anv_pipe_bits pipe_bits = 0;
2306
2307 unsigned b;
2308 for_each_bit(b, flags) {
2309 switch ((VkAccessFlagBits)(1 << b)) {
2310 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2311 /* Indirect draw commands take a buffer as input that we're going to
2312 * read from the command streamer to load some of the HW registers
2313 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2314 * command streamer stall so that all the cache flushes have
2315 * completed before the command streamer loads from memory.
2316 */
2317 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2318 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2319 * through a vertex buffer, so invalidate that cache.
2320 */
2321 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2322 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2323 * UBO from the buffer, so we need to invalidate constant cache.
2324 */
2325 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2326 break;
2327 case VK_ACCESS_INDEX_READ_BIT:
2328 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2329 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2330 * commands, so we invalidate the VF cache to make sure there is no
2331 * stale data when we start rendering.
2332 */
2333 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2334 break;
2335 case VK_ACCESS_UNIFORM_READ_BIT:
2336 /* We transitioning a buffer to be used as uniform data. Because
2337 * uniform is accessed through the data port & sampler, we need to
2338 * invalidate the texture cache (sampler) & constant cache (data
2339 * port) to avoid stale data.
2340 */
2341 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2342 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2343 break;
2344 case VK_ACCESS_SHADER_READ_BIT:
2345 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2346 case VK_ACCESS_TRANSFER_READ_BIT:
2347 /* Transitioning a buffer to be read through the sampler, so
2348 * invalidate the texture cache, we don't want any stale data.
2349 */
2350 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2351 break;
2352 case VK_ACCESS_MEMORY_READ_BIT:
2353 /* Transitioning a buffer for generic read, invalidate all the
2354 * caches.
2355 */
2356 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2357 break;
2358 case VK_ACCESS_MEMORY_WRITE_BIT:
2359 /* Generic write, make sure all previously written things land in
2360 * memory.
2361 */
2362 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2363 break;
2364 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2365 /* Transitioning a buffer for conditional rendering. We'll load the
2366 * content of this buffer into HW registers using the command
2367 * streamer, so we need to stall the command streamer to make sure
2368 * any in-flight flush operations have completed.
2369 */
2370 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2371 break;
2372 default:
2373 break; /* Nothing to do */
2374 }
2375 }
2376
2377 return pipe_bits;
2378 }
2379
2380 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2381 VK_IMAGE_ASPECT_COLOR_BIT | \
2382 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2383 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2384 VK_IMAGE_ASPECT_PLANE_2_BIT)
2385 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2386 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2387 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2388 VK_IMAGE_ASPECT_PLANE_2_BIT)
2389
2390 struct anv_vertex_binding {
2391 struct anv_buffer * buffer;
2392 VkDeviceSize offset;
2393 };
2394
2395 struct anv_xfb_binding {
2396 struct anv_buffer * buffer;
2397 VkDeviceSize offset;
2398 VkDeviceSize size;
2399 };
2400
2401 struct anv_push_constants {
2402 /** Push constant data provided by the client through vkPushConstants */
2403 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2404
2405 /** Dynamic offsets for dynamic UBOs and SSBOs */
2406 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2407
2408 struct {
2409 /** Base workgroup ID
2410 *
2411 * Used for vkCmdDispatchBase.
2412 */
2413 uint32_t base_work_group_id[3];
2414
2415 /** Subgroup ID
2416 *
2417 * This is never set by software but is implicitly filled out when
2418 * uploading the push constants for compute shaders.
2419 */
2420 uint32_t subgroup_id;
2421
2422 /** Pad out to a multiple of 32 bytes */
2423 uint32_t pad[4];
2424 } cs;
2425 };
2426
2427 struct anv_dynamic_state {
2428 struct {
2429 uint32_t count;
2430 VkViewport viewports[MAX_VIEWPORTS];
2431 } viewport;
2432
2433 struct {
2434 uint32_t count;
2435 VkRect2D scissors[MAX_SCISSORS];
2436 } scissor;
2437
2438 float line_width;
2439
2440 struct {
2441 float bias;
2442 float clamp;
2443 float slope;
2444 } depth_bias;
2445
2446 float blend_constants[4];
2447
2448 struct {
2449 float min;
2450 float max;
2451 } depth_bounds;
2452
2453 struct {
2454 uint32_t front;
2455 uint32_t back;
2456 } stencil_compare_mask;
2457
2458 struct {
2459 uint32_t front;
2460 uint32_t back;
2461 } stencil_write_mask;
2462
2463 struct {
2464 uint32_t front;
2465 uint32_t back;
2466 } stencil_reference;
2467
2468 struct {
2469 uint32_t factor;
2470 uint16_t pattern;
2471 } line_stipple;
2472 };
2473
2474 extern const struct anv_dynamic_state default_dynamic_state;
2475
2476 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2477 const struct anv_dynamic_state *src,
2478 uint32_t copy_mask);
2479
2480 struct anv_surface_state {
2481 struct anv_state state;
2482 /** Address of the surface referred to by this state
2483 *
2484 * This address is relative to the start of the BO.
2485 */
2486 struct anv_address address;
2487 /* Address of the aux surface, if any
2488 *
2489 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2490 *
2491 * With the exception of gen8, the bottom 12 bits of this address' offset
2492 * include extra aux information.
2493 */
2494 struct anv_address aux_address;
2495 /* Address of the clear color, if any
2496 *
2497 * This address is relative to the start of the BO.
2498 */
2499 struct anv_address clear_address;
2500 };
2501
2502 /**
2503 * Attachment state when recording a renderpass instance.
2504 *
2505 * The clear value is valid only if there exists a pending clear.
2506 */
2507 struct anv_attachment_state {
2508 enum isl_aux_usage aux_usage;
2509 enum isl_aux_usage input_aux_usage;
2510 struct anv_surface_state color;
2511 struct anv_surface_state input;
2512
2513 VkImageLayout current_layout;
2514 VkImageLayout current_stencil_layout;
2515 VkImageAspectFlags pending_clear_aspects;
2516 VkImageAspectFlags pending_load_aspects;
2517 bool fast_clear;
2518 VkClearValue clear_value;
2519 bool clear_color_is_zero_one;
2520 bool clear_color_is_zero;
2521
2522 /* When multiview is active, attachments with a renderpass clear
2523 * operation have their respective layers cleared on the first
2524 * subpass that uses them, and only in that subpass. We keep track
2525 * of this using a bitfield to indicate which layers of an attachment
2526 * have not been cleared yet when multiview is active.
2527 */
2528 uint32_t pending_clear_views;
2529 struct anv_image_view * image_view;
2530 };
2531
2532 /** State tracking for vertex buffer flushes
2533 *
2534 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2535 * addresses. If you happen to have two vertex buffers which get placed
2536 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2537 * collisions. In order to solve this problem, we track vertex address ranges
2538 * which are live in the cache and invalidate the cache if one ever exceeds 32
2539 * bits.
2540 */
2541 struct anv_vb_cache_range {
2542 /* Virtual address at which the live vertex buffer cache range starts for
2543 * this vertex buffer index.
2544 */
2545 uint64_t start;
2546
2547 /* Virtual address of the byte after where vertex buffer cache range ends.
2548 * This is exclusive such that end - start is the size of the range.
2549 */
2550 uint64_t end;
2551 };
2552
2553 /** State tracking for particular pipeline bind point
2554 *
2555 * This struct is the base struct for anv_cmd_graphics_state and
2556 * anv_cmd_compute_state. These are used to track state which is bound to a
2557 * particular type of pipeline. Generic state that applies per-stage such as
2558 * binding table offsets and push constants is tracked generically with a
2559 * per-stage array in anv_cmd_state.
2560 */
2561 struct anv_cmd_pipeline_state {
2562 struct anv_pipeline *pipeline;
2563
2564 struct anv_descriptor_set *descriptors[MAX_SETS];
2565 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2566 };
2567
2568 /** State tracking for graphics pipeline
2569 *
2570 * This has anv_cmd_pipeline_state as a base struct to track things which get
2571 * bound to a graphics pipeline. Along with general pipeline bind point state
2572 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2573 * state which is graphics-specific.
2574 */
2575 struct anv_cmd_graphics_state {
2576 struct anv_cmd_pipeline_state base;
2577
2578 anv_cmd_dirty_mask_t dirty;
2579 uint32_t vb_dirty;
2580
2581 struct anv_vb_cache_range ib_bound_range;
2582 struct anv_vb_cache_range ib_dirty_range;
2583 struct anv_vb_cache_range vb_bound_ranges[33];
2584 struct anv_vb_cache_range vb_dirty_ranges[33];
2585
2586 struct anv_dynamic_state dynamic;
2587
2588 struct {
2589 struct anv_buffer *index_buffer;
2590 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2591 uint32_t index_offset;
2592 } gen7;
2593 };
2594
2595 /** State tracking for compute pipeline
2596 *
2597 * This has anv_cmd_pipeline_state as a base struct to track things which get
2598 * bound to a compute pipeline. Along with general pipeline bind point state
2599 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2600 * state which is compute-specific.
2601 */
2602 struct anv_cmd_compute_state {
2603 struct anv_cmd_pipeline_state base;
2604
2605 bool pipeline_dirty;
2606
2607 struct anv_address num_workgroups;
2608 };
2609
2610 /** State required while building cmd buffer */
2611 struct anv_cmd_state {
2612 /* PIPELINE_SELECT.PipelineSelection */
2613 uint32_t current_pipeline;
2614 const struct gen_l3_config * current_l3_config;
2615 uint32_t last_aux_map_state;
2616
2617 struct anv_cmd_graphics_state gfx;
2618 struct anv_cmd_compute_state compute;
2619
2620 enum anv_pipe_bits pending_pipe_bits;
2621 VkShaderStageFlags descriptors_dirty;
2622 VkShaderStageFlags push_constants_dirty;
2623
2624 struct anv_framebuffer * framebuffer;
2625 struct anv_render_pass * pass;
2626 struct anv_subpass * subpass;
2627 VkRect2D render_area;
2628 uint32_t restart_index;
2629 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2630 bool xfb_enabled;
2631 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2632 VkShaderStageFlags push_constant_stages;
2633 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2634 struct anv_state binding_tables[MESA_SHADER_STAGES];
2635 struct anv_state samplers[MESA_SHADER_STAGES];
2636
2637 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2638 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2639 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2640
2641 /**
2642 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2643 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2644 * and before invoking the secondary in ExecuteCommands.
2645 */
2646 bool pma_fix_enabled;
2647
2648 /**
2649 * Whether or not we know for certain that HiZ is enabled for the current
2650 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2651 * enabled or not, this will be false.
2652 */
2653 bool hiz_enabled;
2654
2655 bool conditional_render_enabled;
2656
2657 /**
2658 * Last rendering scale argument provided to
2659 * genX(cmd_buffer_emit_hashing_mode)().
2660 */
2661 unsigned current_hash_scale;
2662
2663 /**
2664 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2665 * valid only when recording a render pass instance.
2666 */
2667 struct anv_attachment_state * attachments;
2668
2669 /**
2670 * Surface states for color render targets. These are stored in a single
2671 * flat array. For depth-stencil attachments, the surface state is simply
2672 * left blank.
2673 */
2674 struct anv_state render_pass_states;
2675
2676 /**
2677 * A null surface state of the right size to match the framebuffer. This
2678 * is one of the states in render_pass_states.
2679 */
2680 struct anv_state null_surface_state;
2681 };
2682
2683 struct anv_cmd_pool {
2684 VkAllocationCallbacks alloc;
2685 struct list_head cmd_buffers;
2686 };
2687
2688 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2689
2690 enum anv_cmd_buffer_exec_mode {
2691 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2692 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2693 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2694 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2695 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2696 };
2697
2698 struct anv_cmd_buffer {
2699 VK_LOADER_DATA _loader_data;
2700
2701 struct anv_device * device;
2702
2703 struct anv_cmd_pool * pool;
2704 struct list_head pool_link;
2705
2706 struct anv_batch batch;
2707
2708 /* Fields required for the actual chain of anv_batch_bo's.
2709 *
2710 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2711 */
2712 struct list_head batch_bos;
2713 enum anv_cmd_buffer_exec_mode exec_mode;
2714
2715 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2716 * referenced by this command buffer
2717 *
2718 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2719 */
2720 struct u_vector seen_bbos;
2721
2722 /* A vector of int32_t's for every block of binding tables.
2723 *
2724 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2725 */
2726 struct u_vector bt_block_states;
2727 struct anv_state bt_next;
2728
2729 struct anv_reloc_list surface_relocs;
2730 /** Last seen surface state block pool center bo offset */
2731 uint32_t last_ss_pool_center;
2732
2733 /* Serial for tracking buffer completion */
2734 uint32_t serial;
2735
2736 /* Stream objects for storing temporary data */
2737 struct anv_state_stream surface_state_stream;
2738 struct anv_state_stream dynamic_state_stream;
2739
2740 VkCommandBufferUsageFlags usage_flags;
2741 VkCommandBufferLevel level;
2742
2743 struct anv_cmd_state state;
2744
2745 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2746 uint64_t intel_perf_marker;
2747 };
2748
2749 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2750 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2751 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2752 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2753 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2754 struct anv_cmd_buffer *secondary);
2755 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2756 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2757 struct anv_cmd_buffer *cmd_buffer,
2758 const VkSemaphore *in_semaphores,
2759 const uint64_t *in_wait_values,
2760 uint32_t num_in_semaphores,
2761 const VkSemaphore *out_semaphores,
2762 const uint64_t *out_signal_values,
2763 uint32_t num_out_semaphores,
2764 VkFence fence);
2765
2766 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2767
2768 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2769 const void *data, uint32_t size, uint32_t alignment);
2770 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2771 uint32_t *a, uint32_t *b,
2772 uint32_t dwords, uint32_t alignment);
2773
2774 struct anv_address
2775 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2776 struct anv_state
2777 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2778 uint32_t entries, uint32_t *state_offset);
2779 struct anv_state
2780 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2781 struct anv_state
2782 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2783 uint32_t size, uint32_t alignment);
2784
2785 VkResult
2786 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2787
2788 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2789 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2790 bool depth_clamp_enable);
2791 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2792
2793 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2794 struct anv_render_pass *pass,
2795 struct anv_framebuffer *framebuffer,
2796 const VkClearValue *clear_values);
2797
2798 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2799
2800 struct anv_state
2801 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2802 gl_shader_stage stage);
2803 struct anv_state
2804 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2805
2806 const struct anv_image_view *
2807 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2808
2809 VkResult
2810 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2811 uint32_t num_entries,
2812 uint32_t *state_offset,
2813 struct anv_state *bt_state);
2814
2815 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2816
2817 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2818
2819 enum anv_fence_type {
2820 ANV_FENCE_TYPE_NONE = 0,
2821 ANV_FENCE_TYPE_BO,
2822 ANV_FENCE_TYPE_WSI_BO,
2823 ANV_FENCE_TYPE_SYNCOBJ,
2824 ANV_FENCE_TYPE_WSI,
2825 };
2826
2827 enum anv_bo_fence_state {
2828 /** Indicates that this is a new (or newly reset fence) */
2829 ANV_BO_FENCE_STATE_RESET,
2830
2831 /** Indicates that this fence has been submitted to the GPU but is still
2832 * (as far as we know) in use by the GPU.
2833 */
2834 ANV_BO_FENCE_STATE_SUBMITTED,
2835
2836 ANV_BO_FENCE_STATE_SIGNALED,
2837 };
2838
2839 struct anv_fence_impl {
2840 enum anv_fence_type type;
2841
2842 union {
2843 /** Fence implementation for BO fences
2844 *
2845 * These fences use a BO and a set of CPU-tracked state flags. The BO
2846 * is added to the object list of the last execbuf call in a QueueSubmit
2847 * and is marked EXEC_WRITE. The state flags track when the BO has been
2848 * submitted to the kernel. We need to do this because Vulkan lets you
2849 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2850 * will say it's idle in this case.
2851 */
2852 struct {
2853 struct anv_bo *bo;
2854 enum anv_bo_fence_state state;
2855 } bo;
2856
2857 /** DRM syncobj handle for syncobj-based fences */
2858 uint32_t syncobj;
2859
2860 /** WSI fence */
2861 struct wsi_fence *fence_wsi;
2862 };
2863 };
2864
2865 struct anv_fence {
2866 /* Permanent fence state. Every fence has some form of permanent state
2867 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2868 * cross-process fences) or it could just be a dummy for use internally.
2869 */
2870 struct anv_fence_impl permanent;
2871
2872 /* Temporary fence state. A fence *may* have temporary state. That state
2873 * is added to the fence by an import operation and is reset back to
2874 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2875 * state cannot be signaled because the fence must already be signaled
2876 * before the temporary state can be exported from the fence in the other
2877 * process and imported here.
2878 */
2879 struct anv_fence_impl temporary;
2880 };
2881
2882 void anv_fence_reset_temporary(struct anv_device *device,
2883 struct anv_fence *fence);
2884
2885 struct anv_event {
2886 uint64_t semaphore;
2887 struct anv_state state;
2888 };
2889
2890 enum anv_semaphore_type {
2891 ANV_SEMAPHORE_TYPE_NONE = 0,
2892 ANV_SEMAPHORE_TYPE_DUMMY,
2893 ANV_SEMAPHORE_TYPE_BO,
2894 ANV_SEMAPHORE_TYPE_WSI_BO,
2895 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2896 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2897 ANV_SEMAPHORE_TYPE_TIMELINE,
2898 };
2899
2900 struct anv_timeline_point {
2901 struct list_head link;
2902
2903 uint64_t serial;
2904
2905 /* Number of waiter on this point, when > 0 the point should not be garbage
2906 * collected.
2907 */
2908 int waiting;
2909
2910 /* BO used for synchronization. */
2911 struct anv_bo *bo;
2912 };
2913
2914 struct anv_timeline {
2915 pthread_mutex_t mutex;
2916 pthread_cond_t cond;
2917
2918 uint64_t highest_past;
2919 uint64_t highest_pending;
2920
2921 struct list_head points;
2922 struct list_head free_points;
2923 };
2924
2925 struct anv_semaphore_impl {
2926 enum anv_semaphore_type type;
2927
2928 union {
2929 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
2930 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
2931 * object list on any execbuf2 calls for which this semaphore is used as
2932 * a wait or signal fence. When used as a signal fence or when type ==
2933 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
2934 */
2935 struct anv_bo *bo;
2936
2937 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
2938 * If the semaphore is in the unsignaled state due to either just being
2939 * created or because it has been used for a wait, fd will be -1.
2940 */
2941 int fd;
2942
2943 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
2944 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
2945 * import so we don't need to bother with a userspace cache.
2946 */
2947 uint32_t syncobj;
2948
2949 /* Non shareable timeline semaphore
2950 *
2951 * Used when kernel don't have support for timeline semaphores.
2952 */
2953 struct anv_timeline timeline;
2954 };
2955 };
2956
2957 struct anv_semaphore {
2958 uint32_t refcount;
2959
2960 /* Permanent semaphore state. Every semaphore has some form of permanent
2961 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
2962 * (for cross-process semaphores0 or it could just be a dummy for use
2963 * internally.
2964 */
2965 struct anv_semaphore_impl permanent;
2966
2967 /* Temporary semaphore state. A semaphore *may* have temporary state.
2968 * That state is added to the semaphore by an import operation and is reset
2969 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
2970 * semaphore with temporary state cannot be signaled because the semaphore
2971 * must already be signaled before the temporary state can be exported from
2972 * the semaphore in the other process and imported here.
2973 */
2974 struct anv_semaphore_impl temporary;
2975 };
2976
2977 void anv_semaphore_reset_temporary(struct anv_device *device,
2978 struct anv_semaphore *semaphore);
2979
2980 struct anv_shader_module {
2981 unsigned char sha1[20];
2982 uint32_t size;
2983 char data[0];
2984 };
2985
2986 static inline gl_shader_stage
2987 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
2988 {
2989 assert(__builtin_popcount(vk_stage) == 1);
2990 return ffs(vk_stage) - 1;
2991 }
2992
2993 static inline VkShaderStageFlagBits
2994 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
2995 {
2996 return (1 << mesa_stage);
2997 }
2998
2999 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3000
3001 #define anv_foreach_stage(stage, stage_bits) \
3002 for (gl_shader_stage stage, \
3003 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3004 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3005 __tmp &= ~(1 << (stage)))
3006
3007 struct anv_pipeline_bind_map {
3008 unsigned char surface_sha1[20];
3009 unsigned char sampler_sha1[20];
3010 unsigned char push_sha1[20];
3011
3012 uint32_t surface_count;
3013 uint32_t sampler_count;
3014
3015 struct anv_pipeline_binding * surface_to_descriptor;
3016 struct anv_pipeline_binding * sampler_to_descriptor;
3017
3018 struct anv_push_range push_ranges[4];
3019 };
3020
3021 struct anv_shader_bin_key {
3022 uint32_t size;
3023 uint8_t data[0];
3024 };
3025
3026 struct anv_shader_bin {
3027 uint32_t ref_cnt;
3028
3029 const struct anv_shader_bin_key *key;
3030
3031 struct anv_state kernel;
3032 uint32_t kernel_size;
3033
3034 struct anv_state constant_data;
3035 uint32_t constant_data_size;
3036
3037 const struct brw_stage_prog_data *prog_data;
3038 uint32_t prog_data_size;
3039
3040 struct brw_compile_stats stats[3];
3041 uint32_t num_stats;
3042
3043 struct nir_xfb_info *xfb_info;
3044
3045 struct anv_pipeline_bind_map bind_map;
3046 };
3047
3048 struct anv_shader_bin *
3049 anv_shader_bin_create(struct anv_device *device,
3050 const void *key, uint32_t key_size,
3051 const void *kernel, uint32_t kernel_size,
3052 const void *constant_data, uint32_t constant_data_size,
3053 const struct brw_stage_prog_data *prog_data,
3054 uint32_t prog_data_size, const void *prog_data_param,
3055 const struct brw_compile_stats *stats, uint32_t num_stats,
3056 const struct nir_xfb_info *xfb_info,
3057 const struct anv_pipeline_bind_map *bind_map);
3058
3059 void
3060 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3061
3062 static inline void
3063 anv_shader_bin_ref(struct anv_shader_bin *shader)
3064 {
3065 assert(shader && shader->ref_cnt >= 1);
3066 p_atomic_inc(&shader->ref_cnt);
3067 }
3068
3069 static inline void
3070 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3071 {
3072 assert(shader && shader->ref_cnt >= 1);
3073 if (p_atomic_dec_zero(&shader->ref_cnt))
3074 anv_shader_bin_destroy(device, shader);
3075 }
3076
3077 /* 5 possible simultaneous shader stages and FS may have up to 3 binaries */
3078 #define MAX_PIPELINE_EXECUTABLES 7
3079
3080 struct anv_pipeline_executable {
3081 gl_shader_stage stage;
3082
3083 struct brw_compile_stats stats;
3084
3085 char *nir;
3086 char *disasm;
3087 };
3088
3089 struct anv_pipeline {
3090 struct anv_device * device;
3091 struct anv_batch batch;
3092 uint32_t batch_data[512];
3093 struct anv_reloc_list batch_relocs;
3094 anv_cmd_dirty_mask_t dynamic_state_mask;
3095 struct anv_dynamic_state dynamic_state;
3096
3097 void * mem_ctx;
3098
3099 VkPipelineCreateFlags flags;
3100 struct anv_subpass * subpass;
3101
3102 bool needs_data_cache;
3103
3104 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3105
3106 uint32_t num_executables;
3107 struct anv_pipeline_executable executables[MAX_PIPELINE_EXECUTABLES];
3108
3109 struct {
3110 const struct gen_l3_config * l3_config;
3111 uint32_t total_size;
3112 } urb;
3113
3114 VkShaderStageFlags active_stages;
3115 struct anv_state blend_state;
3116
3117 uint32_t vb_used;
3118 struct anv_pipeline_vertex_binding {
3119 uint32_t stride;
3120 bool instanced;
3121 uint32_t instance_divisor;
3122 } vb[MAX_VBS];
3123
3124 uint8_t xfb_used;
3125
3126 bool primitive_restart;
3127 uint32_t topology;
3128
3129 uint32_t cs_right_mask;
3130
3131 bool writes_depth;
3132 bool depth_test_enable;
3133 bool writes_stencil;
3134 bool stencil_test_enable;
3135 bool depth_clamp_enable;
3136 bool depth_clip_enable;
3137 bool sample_shading_enable;
3138 bool kill_pixel;
3139 bool depth_bounds_test_enable;
3140
3141 struct {
3142 uint32_t sf[7];
3143 uint32_t depth_stencil_state[3];
3144 } gen7;
3145
3146 struct {
3147 uint32_t sf[4];
3148 uint32_t raster[5];
3149 uint32_t wm_depth_stencil[3];
3150 } gen8;
3151
3152 struct {
3153 uint32_t wm_depth_stencil[4];
3154 } gen9;
3155
3156 uint32_t interface_descriptor_data[8];
3157 };
3158
3159 static inline bool
3160 anv_pipeline_has_stage(const struct anv_pipeline *pipeline,
3161 gl_shader_stage stage)
3162 {
3163 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3164 }
3165
3166 #define ANV_DECL_GET_PROG_DATA_FUNC(prefix, stage) \
3167 static inline const struct brw_##prefix##_prog_data * \
3168 get_##prefix##_prog_data(const struct anv_pipeline *pipeline) \
3169 { \
3170 if (anv_pipeline_has_stage(pipeline, stage)) { \
3171 return (const struct brw_##prefix##_prog_data *) \
3172 pipeline->shaders[stage]->prog_data; \
3173 } else { \
3174 return NULL; \
3175 } \
3176 }
3177
3178 ANV_DECL_GET_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3179 ANV_DECL_GET_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3180 ANV_DECL_GET_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3181 ANV_DECL_GET_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3182 ANV_DECL_GET_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3183 ANV_DECL_GET_PROG_DATA_FUNC(cs, MESA_SHADER_COMPUTE)
3184
3185 static inline const struct brw_vue_prog_data *
3186 anv_pipeline_get_last_vue_prog_data(const struct anv_pipeline *pipeline)
3187 {
3188 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3189 return &get_gs_prog_data(pipeline)->base;
3190 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3191 return &get_tes_prog_data(pipeline)->base;
3192 else
3193 return &get_vs_prog_data(pipeline)->base;
3194 }
3195
3196 VkResult
3197 anv_pipeline_init(struct anv_pipeline *pipeline, struct anv_device *device,
3198 struct anv_pipeline_cache *cache,
3199 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3200 const VkAllocationCallbacks *alloc);
3201
3202 VkResult
3203 anv_pipeline_compile_cs(struct anv_pipeline *pipeline,
3204 struct anv_pipeline_cache *cache,
3205 const VkComputePipelineCreateInfo *info,
3206 const struct anv_shader_module *module,
3207 const char *entrypoint,
3208 const VkSpecializationInfo *spec_info);
3209
3210 struct anv_format_plane {
3211 enum isl_format isl_format:16;
3212 struct isl_swizzle swizzle;
3213
3214 /* Whether this plane contains chroma channels */
3215 bool has_chroma;
3216
3217 /* For downscaling of YUV planes */
3218 uint8_t denominator_scales[2];
3219
3220 /* How to map sampled ycbcr planes to a single 4 component element. */
3221 struct isl_swizzle ycbcr_swizzle;
3222
3223 /* What aspect is associated to this plane */
3224 VkImageAspectFlags aspect;
3225 };
3226
3227
3228 struct anv_format {
3229 struct anv_format_plane planes[3];
3230 VkFormat vk_format;
3231 uint8_t n_planes;
3232 bool can_ycbcr;
3233 };
3234
3235 static inline uint32_t
3236 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3237 VkImageAspectFlags aspect_mask)
3238 {
3239 switch (aspect_mask) {
3240 case VK_IMAGE_ASPECT_COLOR_BIT:
3241 case VK_IMAGE_ASPECT_DEPTH_BIT:
3242 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3243 return 0;
3244 case VK_IMAGE_ASPECT_STENCIL_BIT:
3245 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3246 return 0;
3247 /* Fall-through */
3248 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3249 return 1;
3250 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3251 return 2;
3252 default:
3253 /* Purposefully assert with depth/stencil aspects. */
3254 unreachable("invalid image aspect");
3255 }
3256 }
3257
3258 static inline VkImageAspectFlags
3259 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3260 uint32_t plane)
3261 {
3262 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3263 if (util_bitcount(image_aspects) > 1)
3264 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3265 return VK_IMAGE_ASPECT_COLOR_BIT;
3266 }
3267 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3268 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3269 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3270 return VK_IMAGE_ASPECT_STENCIL_BIT;
3271 }
3272
3273 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3274 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3275
3276 const struct anv_format *
3277 anv_get_format(VkFormat format);
3278
3279 static inline uint32_t
3280 anv_get_format_planes(VkFormat vk_format)
3281 {
3282 const struct anv_format *format = anv_get_format(vk_format);
3283
3284 return format != NULL ? format->n_planes : 0;
3285 }
3286
3287 struct anv_format_plane
3288 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3289 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3290
3291 static inline enum isl_format
3292 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3293 VkImageAspectFlags aspect, VkImageTiling tiling)
3294 {
3295 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3296 }
3297
3298 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3299 VkImageCreateFlags create_flags,
3300 VkFormat vk_format,
3301 VkImageTiling vk_tiling,
3302 const VkImageFormatListCreateInfoKHR *fmt_list);
3303
3304 static inline struct isl_swizzle
3305 anv_swizzle_for_render(struct isl_swizzle swizzle)
3306 {
3307 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3308 * RGB as RGBA for texturing
3309 */
3310 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3311 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3312
3313 /* But it doesn't matter what we render to that channel */
3314 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3315
3316 return swizzle;
3317 }
3318
3319 void
3320 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3321
3322 /**
3323 * Subsurface of an anv_image.
3324 */
3325 struct anv_surface {
3326 /** Valid only if isl_surf::size_B > 0. */
3327 struct isl_surf isl;
3328
3329 /**
3330 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3331 */
3332 uint32_t offset;
3333 };
3334
3335 struct anv_image {
3336 VkImageType type; /**< VkImageCreateInfo::imageType */
3337 /* The original VkFormat provided by the client. This may not match any
3338 * of the actual surface formats.
3339 */
3340 VkFormat vk_format;
3341 const struct anv_format *format;
3342
3343 VkImageAspectFlags aspects;
3344 VkExtent3D extent;
3345 uint32_t levels;
3346 uint32_t array_size;
3347 uint32_t samples; /**< VkImageCreateInfo::samples */
3348 uint32_t n_planes;
3349 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3350 VkImageUsageFlags stencil_usage;
3351 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3352 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3353
3354 /** True if this is needs to be bound to an appropriately tiled BO.
3355 *
3356 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3357 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3358 * we require a dedicated allocation so that we can know to allocate a
3359 * tiled buffer.
3360 */
3361 bool needs_set_tiling;
3362
3363 /**
3364 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3365 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3366 */
3367 uint64_t drm_format_mod;
3368
3369 VkDeviceSize size;
3370 uint32_t alignment;
3371
3372 /* Whether the image is made of several underlying buffer objects rather a
3373 * single one with different offsets.
3374 */
3375 bool disjoint;
3376
3377 /* All the formats that can be used when creating views of this image
3378 * are CCS_E compatible.
3379 */
3380 bool ccs_e_compatible;
3381
3382 /* Image was created with external format. */
3383 bool external_format;
3384
3385 /**
3386 * Image subsurfaces
3387 *
3388 * For each foo, anv_image::planes[x].surface is valid if and only if
3389 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3390 * to figure the number associated with a given aspect.
3391 *
3392 * The hardware requires that the depth buffer and stencil buffer be
3393 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3394 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3395 * allocate the depth and stencil buffers as separate surfaces in the same
3396 * bo.
3397 *
3398 * Memory layout :
3399 *
3400 * -----------------------
3401 * | surface0 | /|\
3402 * ----------------------- |
3403 * | shadow surface0 | |
3404 * ----------------------- | Plane 0
3405 * | aux surface0 | |
3406 * ----------------------- |
3407 * | fast clear colors0 | \|/
3408 * -----------------------
3409 * | surface1 | /|\
3410 * ----------------------- |
3411 * | shadow surface1 | |
3412 * ----------------------- | Plane 1
3413 * | aux surface1 | |
3414 * ----------------------- |
3415 * | fast clear colors1 | \|/
3416 * -----------------------
3417 * | ... |
3418 * | |
3419 * -----------------------
3420 */
3421 struct {
3422 /**
3423 * Offset of the entire plane (whenever the image is disjoint this is
3424 * set to 0).
3425 */
3426 uint32_t offset;
3427
3428 VkDeviceSize size;
3429 uint32_t alignment;
3430
3431 struct anv_surface surface;
3432
3433 /**
3434 * A surface which shadows the main surface and may have different
3435 * tiling. This is used for sampling using a tiling that isn't supported
3436 * for other operations.
3437 */
3438 struct anv_surface shadow_surface;
3439
3440 /**
3441 * For color images, this is the aux usage for this image when not used
3442 * as a color attachment.
3443 *
3444 * For depth/stencil images, this is set to ISL_AUX_USAGE_HIZ if the
3445 * image has a HiZ buffer.
3446 */
3447 enum isl_aux_usage aux_usage;
3448
3449 struct anv_surface aux_surface;
3450
3451 /**
3452 * Offset of the fast clear state (used to compute the
3453 * fast_clear_state_offset of the following planes).
3454 */
3455 uint32_t fast_clear_state_offset;
3456
3457 /**
3458 * BO associated with this plane, set when bound.
3459 */
3460 struct anv_address address;
3461
3462 /**
3463 * Address of the main surface used to fill the aux map table. This is
3464 * used at destruction of the image since the Vulkan spec does not
3465 * guarantee that the address.bo field we still be valid at destruction.
3466 */
3467 uint64_t aux_map_surface_address;
3468
3469 /**
3470 * When destroying the image, also free the bo.
3471 * */
3472 bool bo_is_owned;
3473 } planes[3];
3474 };
3475
3476 /* The ordering of this enum is important */
3477 enum anv_fast_clear_type {
3478 /** Image does not have/support any fast-clear blocks */
3479 ANV_FAST_CLEAR_NONE = 0,
3480 /** Image has/supports fast-clear but only to the default value */
3481 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3482 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3483 ANV_FAST_CLEAR_ANY = 2,
3484 };
3485
3486 /* Returns the number of auxiliary buffer levels attached to an image. */
3487 static inline uint8_t
3488 anv_image_aux_levels(const struct anv_image * const image,
3489 VkImageAspectFlagBits aspect)
3490 {
3491 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3492
3493 /* The Gen12 CCS aux surface is represented with only one level. */
3494 const uint8_t aux_logical_levels =
3495 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3496 image->planes[plane].surface.isl.levels :
3497 image->planes[plane].aux_surface.isl.levels;
3498
3499 return image->planes[plane].aux_surface.isl.size_B > 0 ?
3500 aux_logical_levels : 0;
3501 }
3502
3503 /* Returns the number of auxiliary buffer layers attached to an image. */
3504 static inline uint32_t
3505 anv_image_aux_layers(const struct anv_image * const image,
3506 VkImageAspectFlagBits aspect,
3507 const uint8_t miplevel)
3508 {
3509 assert(image);
3510
3511 /* The miplevel must exist in the main buffer. */
3512 assert(miplevel < image->levels);
3513
3514 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3515 /* There are no layers with auxiliary data because the miplevel has no
3516 * auxiliary data.
3517 */
3518 return 0;
3519 } else {
3520 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3521
3522 /* The Gen12 CCS aux surface is represented with only one layer. */
3523 const struct isl_extent4d *aux_logical_level0_px =
3524 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3525 &image->planes[plane].surface.isl.logical_level0_px :
3526 &image->planes[plane].aux_surface.isl.logical_level0_px;
3527
3528 return MAX2(aux_logical_level0_px->array_len,
3529 aux_logical_level0_px->depth >> miplevel);
3530 }
3531 }
3532
3533 static inline struct anv_address
3534 anv_image_get_clear_color_addr(const struct anv_device *device,
3535 const struct anv_image *image,
3536 VkImageAspectFlagBits aspect)
3537 {
3538 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3539
3540 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3541 return anv_address_add(image->planes[plane].address,
3542 image->planes[plane].fast_clear_state_offset);
3543 }
3544
3545 static inline struct anv_address
3546 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3547 const struct anv_image *image,
3548 VkImageAspectFlagBits aspect)
3549 {
3550 struct anv_address addr =
3551 anv_image_get_clear_color_addr(device, image, aspect);
3552
3553 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3554 device->isl_dev.ss.clear_color_state_size :
3555 device->isl_dev.ss.clear_value_size;
3556 return anv_address_add(addr, clear_color_state_size);
3557 }
3558
3559 static inline struct anv_address
3560 anv_image_get_compression_state_addr(const struct anv_device *device,
3561 const struct anv_image *image,
3562 VkImageAspectFlagBits aspect,
3563 uint32_t level, uint32_t array_layer)
3564 {
3565 assert(level < anv_image_aux_levels(image, aspect));
3566 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3567 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3568 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3569
3570 struct anv_address addr =
3571 anv_image_get_fast_clear_type_addr(device, image, aspect);
3572 addr.offset += 4; /* Go past the fast clear type */
3573
3574 if (image->type == VK_IMAGE_TYPE_3D) {
3575 for (uint32_t l = 0; l < level; l++)
3576 addr.offset += anv_minify(image->extent.depth, l) * 4;
3577 } else {
3578 addr.offset += level * image->array_size * 4;
3579 }
3580 addr.offset += array_layer * 4;
3581
3582 assert(addr.offset <
3583 image->planes[plane].address.offset + image->planes[plane].size);
3584 return addr;
3585 }
3586
3587 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3588 static inline bool
3589 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3590 const struct anv_image *image)
3591 {
3592 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3593 return false;
3594
3595 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3596 * struct. There's documentation which suggests that this feature actually
3597 * reduces performance on BDW, but it has only been observed to help so
3598 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3599 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3600 */
3601 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3602 return false;
3603
3604 return image->samples == 1;
3605 }
3606
3607 static inline bool
3608 anv_image_plane_uses_aux_map(const struct anv_device *device,
3609 const struct anv_image *image,
3610 uint32_t plane)
3611 {
3612 return device->info.has_aux_map &&
3613 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3614 }
3615
3616 void
3617 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3618 const struct anv_image *image,
3619 VkImageAspectFlagBits aspect,
3620 enum isl_aux_usage aux_usage,
3621 uint32_t level,
3622 uint32_t base_layer,
3623 uint32_t layer_count);
3624
3625 void
3626 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3627 const struct anv_image *image,
3628 VkImageAspectFlagBits aspect,
3629 enum isl_aux_usage aux_usage,
3630 enum isl_format format, struct isl_swizzle swizzle,
3631 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3632 VkRect2D area, union isl_color_value clear_color);
3633 void
3634 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3635 const struct anv_image *image,
3636 VkImageAspectFlags aspects,
3637 enum isl_aux_usage depth_aux_usage,
3638 uint32_t level,
3639 uint32_t base_layer, uint32_t layer_count,
3640 VkRect2D area,
3641 float depth_value, uint8_t stencil_value);
3642 void
3643 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3644 const struct anv_image *src_image,
3645 enum isl_aux_usage src_aux_usage,
3646 uint32_t src_level, uint32_t src_base_layer,
3647 const struct anv_image *dst_image,
3648 enum isl_aux_usage dst_aux_usage,
3649 uint32_t dst_level, uint32_t dst_base_layer,
3650 VkImageAspectFlagBits aspect,
3651 uint32_t src_x, uint32_t src_y,
3652 uint32_t dst_x, uint32_t dst_y,
3653 uint32_t width, uint32_t height,
3654 uint32_t layer_count,
3655 enum blorp_filter filter);
3656 void
3657 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3658 const struct anv_image *image,
3659 VkImageAspectFlagBits aspect, uint32_t level,
3660 uint32_t base_layer, uint32_t layer_count,
3661 enum isl_aux_op hiz_op);
3662 void
3663 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3664 const struct anv_image *image,
3665 VkImageAspectFlags aspects,
3666 uint32_t level,
3667 uint32_t base_layer, uint32_t layer_count,
3668 VkRect2D area, uint8_t stencil_value);
3669 void
3670 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3671 const struct anv_image *image,
3672 enum isl_format format,
3673 VkImageAspectFlagBits aspect,
3674 uint32_t base_layer, uint32_t layer_count,
3675 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3676 bool predicate);
3677 void
3678 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3679 const struct anv_image *image,
3680 enum isl_format format,
3681 VkImageAspectFlagBits aspect, uint32_t level,
3682 uint32_t base_layer, uint32_t layer_count,
3683 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3684 bool predicate);
3685
3686 void
3687 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3688 const struct anv_image *image,
3689 VkImageAspectFlagBits aspect,
3690 uint32_t base_level, uint32_t level_count,
3691 uint32_t base_layer, uint32_t layer_count);
3692
3693 enum isl_aux_state
3694 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3695 const struct anv_image *image,
3696 const VkImageAspectFlagBits aspect,
3697 const VkImageLayout layout);
3698
3699 enum isl_aux_usage
3700 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3701 const struct anv_image *image,
3702 const VkImageAspectFlagBits aspect,
3703 const VkImageUsageFlagBits usage,
3704 const VkImageLayout layout);
3705
3706 enum anv_fast_clear_type
3707 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3708 const struct anv_image * const image,
3709 const VkImageAspectFlagBits aspect,
3710 const VkImageLayout layout);
3711
3712 /* This is defined as a macro so that it works for both
3713 * VkImageSubresourceRange and VkImageSubresourceLayers
3714 */
3715 #define anv_get_layerCount(_image, _range) \
3716 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3717 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3718
3719 static inline uint32_t
3720 anv_get_levelCount(const struct anv_image *image,
3721 const VkImageSubresourceRange *range)
3722 {
3723 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3724 image->levels - range->baseMipLevel : range->levelCount;
3725 }
3726
3727 static inline VkImageAspectFlags
3728 anv_image_expand_aspects(const struct anv_image *image,
3729 VkImageAspectFlags aspects)
3730 {
3731 /* If the underlying image has color plane aspects and
3732 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3733 * the underlying image. */
3734 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3735 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3736 return image->aspects;
3737
3738 return aspects;
3739 }
3740
3741 static inline bool
3742 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3743 VkImageAspectFlags aspects2)
3744 {
3745 if (aspects1 == aspects2)
3746 return true;
3747
3748 /* Only 1 color aspects are compatibles. */
3749 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3750 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3751 util_bitcount(aspects1) == util_bitcount(aspects2))
3752 return true;
3753
3754 return false;
3755 }
3756
3757 struct anv_image_view {
3758 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3759
3760 VkImageAspectFlags aspect_mask;
3761 VkFormat vk_format;
3762 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3763
3764 unsigned n_planes;
3765 struct {
3766 uint32_t image_plane;
3767
3768 struct isl_view isl;
3769
3770 /**
3771 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3772 * image layout of SHADER_READ_ONLY_OPTIMAL or
3773 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3774 */
3775 struct anv_surface_state optimal_sampler_surface_state;
3776
3777 /**
3778 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3779 * image layout of GENERAL.
3780 */
3781 struct anv_surface_state general_sampler_surface_state;
3782
3783 /**
3784 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3785 * states for write-only and readable, using the real format for
3786 * write-only and the lowered format for readable.
3787 */
3788 struct anv_surface_state storage_surface_state;
3789 struct anv_surface_state writeonly_storage_surface_state;
3790
3791 struct brw_image_param storage_image_param;
3792 } planes[3];
3793 };
3794
3795 enum anv_image_view_state_flags {
3796 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3797 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3798 };
3799
3800 void anv_image_fill_surface_state(struct anv_device *device,
3801 const struct anv_image *image,
3802 VkImageAspectFlagBits aspect,
3803 const struct isl_view *view,
3804 isl_surf_usage_flags_t view_usage,
3805 enum isl_aux_usage aux_usage,
3806 const union isl_color_value *clear_color,
3807 enum anv_image_view_state_flags flags,
3808 struct anv_surface_state *state_inout,
3809 struct brw_image_param *image_param_out);
3810
3811 struct anv_image_create_info {
3812 const VkImageCreateInfo *vk_info;
3813
3814 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3815 isl_tiling_flags_t isl_tiling_flags;
3816
3817 /** These flags will be added to any derived from VkImageCreateInfo. */
3818 isl_surf_usage_flags_t isl_extra_usage_flags;
3819
3820 uint32_t stride;
3821 bool external_format;
3822 };
3823
3824 VkResult anv_image_create(VkDevice _device,
3825 const struct anv_image_create_info *info,
3826 const VkAllocationCallbacks* alloc,
3827 VkImage *pImage);
3828
3829 const struct anv_surface *
3830 anv_image_get_surface_for_aspect_mask(const struct anv_image *image,
3831 VkImageAspectFlags aspect_mask);
3832
3833 enum isl_format
3834 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3835
3836 static inline VkExtent3D
3837 anv_sanitize_image_extent(const VkImageType imageType,
3838 const VkExtent3D imageExtent)
3839 {
3840 switch (imageType) {
3841 case VK_IMAGE_TYPE_1D:
3842 return (VkExtent3D) { imageExtent.width, 1, 1 };
3843 case VK_IMAGE_TYPE_2D:
3844 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3845 case VK_IMAGE_TYPE_3D:
3846 return imageExtent;
3847 default:
3848 unreachable("invalid image type");
3849 }
3850 }
3851
3852 static inline VkOffset3D
3853 anv_sanitize_image_offset(const VkImageType imageType,
3854 const VkOffset3D imageOffset)
3855 {
3856 switch (imageType) {
3857 case VK_IMAGE_TYPE_1D:
3858 return (VkOffset3D) { imageOffset.x, 0, 0 };
3859 case VK_IMAGE_TYPE_2D:
3860 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3861 case VK_IMAGE_TYPE_3D:
3862 return imageOffset;
3863 default:
3864 unreachable("invalid image type");
3865 }
3866 }
3867
3868 VkFormatFeatureFlags
3869 anv_get_image_format_features(const struct gen_device_info *devinfo,
3870 VkFormat vk_format,
3871 const struct anv_format *anv_format,
3872 VkImageTiling vk_tiling);
3873
3874 void anv_fill_buffer_surface_state(struct anv_device *device,
3875 struct anv_state state,
3876 enum isl_format format,
3877 struct anv_address address,
3878 uint32_t range, uint32_t stride);
3879
3880 static inline void
3881 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3882 const struct anv_attachment_state *att_state,
3883 const struct anv_image_view *iview)
3884 {
3885 const struct isl_format_layout *view_fmtl =
3886 isl_format_get_layout(iview->planes[0].isl.format);
3887
3888 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3889 if (view_fmtl->channels.c.bits) \
3890 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3891
3892 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3893 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3894 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3895 COPY_CLEAR_COLOR_CHANNEL(a, 3);
3896
3897 #undef COPY_CLEAR_COLOR_CHANNEL
3898 }
3899
3900
3901 struct anv_ycbcr_conversion {
3902 const struct anv_format * format;
3903 VkSamplerYcbcrModelConversion ycbcr_model;
3904 VkSamplerYcbcrRange ycbcr_range;
3905 VkComponentSwizzle mapping[4];
3906 VkChromaLocation chroma_offsets[2];
3907 VkFilter chroma_filter;
3908 bool chroma_reconstruction;
3909 };
3910
3911 struct anv_sampler {
3912 uint32_t state[3][4];
3913 uint32_t n_planes;
3914 struct anv_ycbcr_conversion *conversion;
3915
3916 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
3917 * and with a 32-byte stride for use as bindless samplers.
3918 */
3919 struct anv_state bindless_state;
3920 };
3921
3922 struct anv_framebuffer {
3923 uint32_t width;
3924 uint32_t height;
3925 uint32_t layers;
3926
3927 uint32_t attachment_count;
3928 struct anv_image_view * attachments[0];
3929 };
3930
3931 struct anv_subpass_attachment {
3932 VkImageUsageFlagBits usage;
3933 uint32_t attachment;
3934 VkImageLayout layout;
3935
3936 /* Used only with attachment containing stencil data. */
3937 VkImageLayout stencil_layout;
3938 };
3939
3940 struct anv_subpass {
3941 uint32_t attachment_count;
3942
3943 /**
3944 * A pointer to all attachment references used in this subpass.
3945 * Only valid if ::attachment_count > 0.
3946 */
3947 struct anv_subpass_attachment * attachments;
3948 uint32_t input_count;
3949 struct anv_subpass_attachment * input_attachments;
3950 uint32_t color_count;
3951 struct anv_subpass_attachment * color_attachments;
3952 struct anv_subpass_attachment * resolve_attachments;
3953
3954 struct anv_subpass_attachment * depth_stencil_attachment;
3955 struct anv_subpass_attachment * ds_resolve_attachment;
3956 VkResolveModeFlagBitsKHR depth_resolve_mode;
3957 VkResolveModeFlagBitsKHR stencil_resolve_mode;
3958
3959 uint32_t view_mask;
3960
3961 /** Subpass has a depth/stencil self-dependency */
3962 bool has_ds_self_dep;
3963
3964 /** Subpass has at least one color resolve attachment */
3965 bool has_color_resolve;
3966 };
3967
3968 static inline unsigned
3969 anv_subpass_view_count(const struct anv_subpass *subpass)
3970 {
3971 return MAX2(1, util_bitcount(subpass->view_mask));
3972 }
3973
3974 struct anv_render_pass_attachment {
3975 /* TODO: Consider using VkAttachmentDescription instead of storing each of
3976 * its members individually.
3977 */
3978 VkFormat format;
3979 uint32_t samples;
3980 VkImageUsageFlags usage;
3981 VkAttachmentLoadOp load_op;
3982 VkAttachmentStoreOp store_op;
3983 VkAttachmentLoadOp stencil_load_op;
3984 VkImageLayout initial_layout;
3985 VkImageLayout final_layout;
3986 VkImageLayout first_subpass_layout;
3987
3988 VkImageLayout stencil_initial_layout;
3989 VkImageLayout stencil_final_layout;
3990
3991 /* The subpass id in which the attachment will be used last. */
3992 uint32_t last_subpass_idx;
3993 };
3994
3995 struct anv_render_pass {
3996 uint32_t attachment_count;
3997 uint32_t subpass_count;
3998 /* An array of subpass_count+1 flushes, one per subpass boundary */
3999 enum anv_pipe_bits * subpass_flushes;
4000 struct anv_render_pass_attachment * attachments;
4001 struct anv_subpass subpasses[0];
4002 };
4003
4004 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4005
4006 struct anv_query_pool {
4007 VkQueryType type;
4008 VkQueryPipelineStatisticFlags pipeline_statistics;
4009 /** Stride between slots, in bytes */
4010 uint32_t stride;
4011 /** Number of slots in this query pool */
4012 uint32_t slots;
4013 struct anv_bo * bo;
4014 };
4015
4016 int anv_get_instance_entrypoint_index(const char *name);
4017 int anv_get_device_entrypoint_index(const char *name);
4018 int anv_get_physical_device_entrypoint_index(const char *name);
4019
4020 const char *anv_get_instance_entry_name(int index);
4021 const char *anv_get_physical_device_entry_name(int index);
4022 const char *anv_get_device_entry_name(int index);
4023
4024 bool
4025 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4026 const struct anv_instance_extension_table *instance);
4027 bool
4028 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4029 const struct anv_instance_extension_table *instance);
4030 bool
4031 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4032 const struct anv_instance_extension_table *instance,
4033 const struct anv_device_extension_table *device);
4034
4035 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4036 const char *name);
4037
4038 void anv_dump_image_to_ppm(struct anv_device *device,
4039 struct anv_image *image, unsigned miplevel,
4040 unsigned array_layer, VkImageAspectFlagBits aspect,
4041 const char *filename);
4042
4043 enum anv_dump_action {
4044 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4045 };
4046
4047 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4048 void anv_dump_finish(void);
4049
4050 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4051
4052 static inline uint32_t
4053 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4054 {
4055 /* This function must be called from within a subpass. */
4056 assert(cmd_state->pass && cmd_state->subpass);
4057
4058 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4059
4060 /* The id of this subpass shouldn't exceed the number of subpasses in this
4061 * render pass minus 1.
4062 */
4063 assert(subpass_id < cmd_state->pass->subpass_count);
4064 return subpass_id;
4065 }
4066
4067 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4068 void anv_device_perf_init(struct anv_device *device);
4069
4070 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4071 \
4072 static inline struct __anv_type * \
4073 __anv_type ## _from_handle(__VkType _handle) \
4074 { \
4075 return (struct __anv_type *) _handle; \
4076 } \
4077 \
4078 static inline __VkType \
4079 __anv_type ## _to_handle(struct __anv_type *_obj) \
4080 { \
4081 return (__VkType) _obj; \
4082 }
4083
4084 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4085 \
4086 static inline struct __anv_type * \
4087 __anv_type ## _from_handle(__VkType _handle) \
4088 { \
4089 return (struct __anv_type *)(uintptr_t) _handle; \
4090 } \
4091 \
4092 static inline __VkType \
4093 __anv_type ## _to_handle(struct __anv_type *_obj) \
4094 { \
4095 return (__VkType)(uintptr_t) _obj; \
4096 }
4097
4098 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4099 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4100
4101 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4102 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4103 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4104 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4105 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4106
4107 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4108 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4109 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4110 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4111 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4112 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4113 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4114 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4115 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4116 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4117 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4118 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4119 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4120 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4121 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4122 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4123 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4124 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4125 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4126 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4127 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4128 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4129 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4130
4131 /* Gen-specific function declarations */
4132 #ifdef genX
4133 # include "anv_genX.h"
4134 #else
4135 # define genX(x) gen7_##x
4136 # include "anv_genX.h"
4137 # undef genX
4138 # define genX(x) gen75_##x
4139 # include "anv_genX.h"
4140 # undef genX
4141 # define genX(x) gen8_##x
4142 # include "anv_genX.h"
4143 # undef genX
4144 # define genX(x) gen9_##x
4145 # include "anv_genX.h"
4146 # undef genX
4147 # define genX(x) gen10_##x
4148 # include "anv_genX.h"
4149 # undef genX
4150 # define genX(x) gen11_##x
4151 # include "anv_genX.h"
4152 # undef genX
4153 # define genX(x) gen12_##x
4154 # include "anv_genX.h"
4155 # undef genX
4156 #endif
4157
4158 #endif /* ANV_PRIVATE_H */