anv/gen12: Lower VK_KHR_multiview using Primitive Replication
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65
66 /* Pre-declarations needed for WSI entrypoints */
67 struct wl_surface;
68 struct wl_display;
69 typedef struct xcb_connection_t xcb_connection_t;
70 typedef uint32_t xcb_visualid_t;
71 typedef uint32_t xcb_window_t;
72
73 struct anv_batch;
74 struct anv_buffer;
75 struct anv_buffer_view;
76 struct anv_image_view;
77 struct anv_instance;
78
79 struct gen_aux_map_context;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175 #define ANV_UBO_BOUNDS_CHECK_ALIGNMENT 32
176 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
177 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
178
179 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
180 *
181 * "The surface state model is used when a Binding Table Index (specified
182 * in the message descriptor) of less than 240 is specified. In this model,
183 * the Binding Table Index is used to index into the binding table, and the
184 * binding table entry contains a pointer to the SURFACE_STATE."
185 *
186 * Binding table values above 240 are used for various things in the hardware
187 * such as stateless, stateless with incoherent cache, SLM, and bindless.
188 */
189 #define MAX_BINDING_TABLE_SIZE 240
190
191 /* The kernel relocation API has a limitation of a 32-bit delta value
192 * applied to the address before it is written which, in spite of it being
193 * unsigned, is treated as signed . Because of the way that this maps to
194 * the Vulkan API, we cannot handle an offset into a buffer that does not
195 * fit into a signed 32 bits. The only mechanism we have for dealing with
196 * this at the moment is to limit all VkDeviceMemory objects to a maximum
197 * of 2GB each. The Vulkan spec allows us to do this:
198 *
199 * "Some platforms may have a limit on the maximum size of a single
200 * allocation. For example, certain systems may fail to create
201 * allocations with a size greater than or equal to 4GB. Such a limit is
202 * implementation-dependent, and if such a failure occurs then the error
203 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
204 *
205 * We don't use vk_error here because it's not an error so much as an
206 * indication to the application that the allocation is too large.
207 */
208 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
209
210 #define ANV_SVGS_VB_INDEX MAX_VBS
211 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
212
213 /* We reserve this MI ALU register for the purpose of handling predication.
214 * Other code which uses the MI ALU should leave it alone.
215 */
216 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
217
218 /* For gen12 we set the streamout buffers using 4 separate commands
219 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
220 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
221 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
222 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
223 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
224 * 3DSTATE_SO_BUFFER_INDEX_0.
225 */
226 #define SO_BUFFER_INDEX_0_CMD 0x60
227 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
228
229 static inline uint32_t
230 align_down_npot_u32(uint32_t v, uint32_t a)
231 {
232 return v - (v % a);
233 }
234
235 static inline uint32_t
236 align_down_u32(uint32_t v, uint32_t a)
237 {
238 assert(a != 0 && a == (a & -a));
239 return v & ~(a - 1);
240 }
241
242 static inline uint32_t
243 align_u32(uint32_t v, uint32_t a)
244 {
245 assert(a != 0 && a == (a & -a));
246 return align_down_u32(v + a - 1, a);
247 }
248
249 static inline uint64_t
250 align_down_u64(uint64_t v, uint64_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint64_t
257 align_u64(uint64_t v, uint64_t a)
258 {
259 return align_down_u64(v + a - 1, a);
260 }
261
262 static inline int32_t
263 align_i32(int32_t v, int32_t a)
264 {
265 assert(a != 0 && a == (a & -a));
266 return (v + a - 1) & ~(a - 1);
267 }
268
269 /** Alignment must be a power of 2. */
270 static inline bool
271 anv_is_aligned(uintmax_t n, uintmax_t a)
272 {
273 assert(a == (a & -a));
274 return (n & (a - 1)) == 0;
275 }
276
277 static inline uint32_t
278 anv_minify(uint32_t n, uint32_t levels)
279 {
280 if (unlikely(n == 0))
281 return 0;
282 else
283 return MAX2(n >> levels, 1);
284 }
285
286 static inline float
287 anv_clamp_f(float f, float min, float max)
288 {
289 assert(min < max);
290
291 if (f > max)
292 return max;
293 else if (f < min)
294 return min;
295 else
296 return f;
297 }
298
299 static inline bool
300 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
301 {
302 if (*inout_mask & clear_mask) {
303 *inout_mask &= ~clear_mask;
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310 static inline union isl_color_value
311 vk_to_isl_color(VkClearColorValue color)
312 {
313 return (union isl_color_value) {
314 .u32 = {
315 color.uint32[0],
316 color.uint32[1],
317 color.uint32[2],
318 color.uint32[3],
319 },
320 };
321 }
322
323 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
324 {
325 uintptr_t mask = (1ull << bits) - 1;
326 *flags = ptr & mask;
327 return (void *) (ptr & ~mask);
328 }
329
330 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
331 {
332 uintptr_t value = (uintptr_t) ptr;
333 uintptr_t mask = (1ull << bits) - 1;
334 return value | (mask & flags);
335 }
336
337 #define for_each_bit(b, dword) \
338 for (uint32_t __dword = (dword); \
339 (b) = __builtin_ffs(__dword) - 1, __dword; \
340 __dword &= ~(1 << (b)))
341
342 #define typed_memcpy(dest, src, count) ({ \
343 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
344 memcpy((dest), (src), (count) * sizeof(*(src))); \
345 })
346
347 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
348 * to be added here in order to utilize mapping in debug/error/perf macros.
349 */
350 #define REPORT_OBJECT_TYPE(o) \
351 __builtin_choose_expr ( \
352 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
353 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
354 __builtin_choose_expr ( \
355 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
356 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
357 __builtin_choose_expr ( \
358 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
359 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
360 __builtin_choose_expr ( \
361 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
362 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
363 __builtin_choose_expr ( \
364 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
365 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
366 __builtin_choose_expr ( \
367 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
368 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
369 __builtin_choose_expr ( \
370 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
371 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
372 __builtin_choose_expr ( \
373 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
374 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
375 __builtin_choose_expr ( \
376 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
377 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
378 __builtin_choose_expr ( \
379 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
380 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
381 __builtin_choose_expr ( \
382 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
383 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
384 __builtin_choose_expr ( \
385 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
386 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
387 __builtin_choose_expr ( \
388 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
389 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
390 __builtin_choose_expr ( \
391 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
392 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
393 __builtin_choose_expr ( \
394 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
395 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
396 __builtin_choose_expr ( \
397 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
398 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
399 __builtin_choose_expr ( \
400 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
401 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
402 __builtin_choose_expr ( \
403 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
404 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
405 __builtin_choose_expr ( \
406 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
407 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
408 __builtin_choose_expr ( \
409 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
410 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
411 __builtin_choose_expr ( \
412 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
413 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
414 __builtin_choose_expr ( \
415 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
416 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
417 __builtin_choose_expr ( \
418 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
419 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
420 __builtin_choose_expr ( \
421 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
422 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
423 __builtin_choose_expr ( \
424 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
425 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
426 __builtin_choose_expr ( \
427 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
428 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
429 __builtin_choose_expr ( \
430 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
431 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
432 __builtin_choose_expr ( \
433 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
434 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
435 __builtin_choose_expr ( \
436 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
437 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
438 __builtin_choose_expr ( \
439 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
440 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
441 __builtin_choose_expr ( \
442 __builtin_types_compatible_p (__typeof (o), void*), \
443 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
444 /* The void expression results in a compile-time error \
445 when assigning the result to something. */ \
446 (void)0)))))))))))))))))))))))))))))))
447
448 /* Whenever we generate an error, pass it through this function. Useful for
449 * debugging, where we can break on it. Only call at error site, not when
450 * propagating errors. Might be useful to plug in a stack trace here.
451 */
452
453 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
454 VkDebugReportObjectTypeEXT type, VkResult error,
455 const char *file, int line, const char *format,
456 va_list args);
457
458 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
459 VkDebugReportObjectTypeEXT type, VkResult error,
460 const char *file, int line, const char *format, ...)
461 anv_printflike(7, 8);
462
463 #ifdef DEBUG
464 #define vk_error(error) __vk_errorf(NULL, NULL,\
465 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
466 error, __FILE__, __LINE__, NULL)
467 #define vk_errorfi(instance, obj, error, format, ...)\
468 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
469 __FILE__, __LINE__, format, ## __VA_ARGS__)
470 #define vk_errorf(device, obj, error, format, ...)\
471 vk_errorfi(anv_device_instance_or_null(device),\
472 obj, error, format, ## __VA_ARGS__)
473 #else
474 #define vk_error(error) error
475 #define vk_errorfi(instance, obj, error, format, ...) error
476 #define vk_errorf(device, obj, error, format, ...) error
477 #endif
478
479 /**
480 * Warn on ignored extension structs.
481 *
482 * The Vulkan spec requires us to ignore unsupported or unknown structs in
483 * a pNext chain. In debug mode, emitting warnings for ignored structs may
484 * help us discover structs that we should not have ignored.
485 *
486 *
487 * From the Vulkan 1.0.38 spec:
488 *
489 * Any component of the implementation (the loader, any enabled layers,
490 * and drivers) must skip over, without processing (other than reading the
491 * sType and pNext members) any chained structures with sType values not
492 * defined by extensions supported by that component.
493 */
494 #define anv_debug_ignored_stype(sType) \
495 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
496
497 void __anv_perf_warn(struct anv_device *device, const void *object,
498 VkDebugReportObjectTypeEXT type, const char *file,
499 int line, const char *format, ...)
500 anv_printflike(6, 7);
501 void anv_loge(const char *format, ...) anv_printflike(1, 2);
502 void anv_loge_v(const char *format, va_list va);
503
504 /**
505 * Print a FINISHME message, including its source location.
506 */
507 #define anv_finishme(format, ...) \
508 do { \
509 static bool reported = false; \
510 if (!reported) { \
511 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
512 ##__VA_ARGS__); \
513 reported = true; \
514 } \
515 } while (0)
516
517 /**
518 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
519 */
520 #define anv_perf_warn(instance, obj, format, ...) \
521 do { \
522 static bool reported = false; \
523 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
524 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
525 format, ##__VA_ARGS__); \
526 reported = true; \
527 } \
528 } while (0)
529
530 /* A non-fatal assert. Useful for debugging. */
531 #ifdef DEBUG
532 #define anv_assert(x) ({ \
533 if (unlikely(!(x))) \
534 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
535 })
536 #else
537 #define anv_assert(x)
538 #endif
539
540 /* A multi-pointer allocator
541 *
542 * When copying data structures from the user (such as a render pass), it's
543 * common to need to allocate data for a bunch of different things. Instead
544 * of doing several allocations and having to handle all of the error checking
545 * that entails, it can be easier to do a single allocation. This struct
546 * helps facilitate that. The intended usage looks like this:
547 *
548 * ANV_MULTIALLOC(ma)
549 * anv_multialloc_add(&ma, &main_ptr, 1);
550 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
551 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
552 *
553 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
554 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
555 */
556 struct anv_multialloc {
557 size_t size;
558 size_t align;
559
560 uint32_t ptr_count;
561 void **ptrs[8];
562 };
563
564 #define ANV_MULTIALLOC_INIT \
565 ((struct anv_multialloc) { 0, })
566
567 #define ANV_MULTIALLOC(_name) \
568 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
569
570 __attribute__((always_inline))
571 static inline void
572 _anv_multialloc_add(struct anv_multialloc *ma,
573 void **ptr, size_t size, size_t align)
574 {
575 size_t offset = align_u64(ma->size, align);
576 ma->size = offset + size;
577 ma->align = MAX2(ma->align, align);
578
579 /* Store the offset in the pointer. */
580 *ptr = (void *)(uintptr_t)offset;
581
582 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
583 ma->ptrs[ma->ptr_count++] = ptr;
584 }
585
586 #define anv_multialloc_add_size(_ma, _ptr, _size) \
587 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
588
589 #define anv_multialloc_add(_ma, _ptr, _count) \
590 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
591
592 __attribute__((always_inline))
593 static inline void *
594 anv_multialloc_alloc(struct anv_multialloc *ma,
595 const VkAllocationCallbacks *alloc,
596 VkSystemAllocationScope scope)
597 {
598 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
599 if (!ptr)
600 return NULL;
601
602 /* Fill out each of the pointers with their final value.
603 *
604 * for (uint32_t i = 0; i < ma->ptr_count; i++)
605 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
606 *
607 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
608 * constant, GCC is incapable of figuring this out and unrolling the loop
609 * so we have to give it a little help.
610 */
611 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
612 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
613 if ((_i) < ma->ptr_count) \
614 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
615 _ANV_MULTIALLOC_UPDATE_POINTER(0);
616 _ANV_MULTIALLOC_UPDATE_POINTER(1);
617 _ANV_MULTIALLOC_UPDATE_POINTER(2);
618 _ANV_MULTIALLOC_UPDATE_POINTER(3);
619 _ANV_MULTIALLOC_UPDATE_POINTER(4);
620 _ANV_MULTIALLOC_UPDATE_POINTER(5);
621 _ANV_MULTIALLOC_UPDATE_POINTER(6);
622 _ANV_MULTIALLOC_UPDATE_POINTER(7);
623 #undef _ANV_MULTIALLOC_UPDATE_POINTER
624
625 return ptr;
626 }
627
628 __attribute__((always_inline))
629 static inline void *
630 anv_multialloc_alloc2(struct anv_multialloc *ma,
631 const VkAllocationCallbacks *parent_alloc,
632 const VkAllocationCallbacks *alloc,
633 VkSystemAllocationScope scope)
634 {
635 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
636 }
637
638 struct anv_bo {
639 uint32_t gem_handle;
640
641 uint32_t refcount;
642
643 /* Index into the current validation list. This is used by the
644 * validation list building alrogithm to track which buffers are already
645 * in the validation list so that we can ensure uniqueness.
646 */
647 uint32_t index;
648
649 /* Index for use with util_sparse_array_free_list */
650 uint32_t free_index;
651
652 /* Last known offset. This value is provided by the kernel when we
653 * execbuf and is used as the presumed offset for the next bunch of
654 * relocations.
655 */
656 uint64_t offset;
657
658 /** Size of the buffer not including implicit aux */
659 uint64_t size;
660
661 /* Map for internally mapped BOs.
662 *
663 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
664 */
665 void *map;
666
667 /** Size of the implicit CCS range at the end of the buffer
668 *
669 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
670 * page of main surface data maps to a 256B chunk of CCS data and that
671 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
672 * addresses in the main surface to virtual memory addresses for CCS data.
673 *
674 * Because we can't change these maps around easily and because Vulkan
675 * allows two VkImages to be bound to overlapping memory regions (as long
676 * as the app is careful), it's not feasible to make this mapping part of
677 * the image. (On Gen11 and earlier, the mapping was provided via
678 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
679 * Instead, we attach the CCS data directly to the buffer object and setup
680 * the AUX table mapping at BO creation time.
681 *
682 * This field is for internal tracking use by the BO allocator only and
683 * should not be touched by other parts of the code. If something wants to
684 * know if a BO has implicit CCS data, it should instead look at the
685 * has_implicit_ccs boolean below.
686 *
687 * This data is not included in maps of this buffer.
688 */
689 uint32_t _ccs_size;
690
691 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
692 uint32_t flags;
693
694 /** True if this BO may be shared with other processes */
695 bool is_external:1;
696
697 /** True if this BO is a wrapper
698 *
699 * When set to true, none of the fields in this BO are meaningful except
700 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
701 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
702 * is set in the physical device.
703 */
704 bool is_wrapper:1;
705
706 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
707 bool has_fixed_address:1;
708
709 /** True if this BO wraps a host pointer */
710 bool from_host_ptr:1;
711
712 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
713 bool has_client_visible_address:1;
714
715 /** True if this BO has implicit CCS data attached to it */
716 bool has_implicit_ccs:1;
717 };
718
719 static inline struct anv_bo *
720 anv_bo_ref(struct anv_bo *bo)
721 {
722 p_atomic_inc(&bo->refcount);
723 return bo;
724 }
725
726 static inline struct anv_bo *
727 anv_bo_unwrap(struct anv_bo *bo)
728 {
729 while (bo->is_wrapper)
730 bo = bo->map;
731 return bo;
732 }
733
734 /* Represents a lock-free linked list of "free" things. This is used by
735 * both the block pool and the state pools. Unfortunately, in order to
736 * solve the ABA problem, we can't use a single uint32_t head.
737 */
738 union anv_free_list {
739 struct {
740 uint32_t offset;
741
742 /* A simple count that is incremented every time the head changes. */
743 uint32_t count;
744 };
745 /* Make sure it's aligned to 64 bits. This will make atomic operations
746 * faster on 32 bit platforms.
747 */
748 uint64_t u64 __attribute__ ((aligned (8)));
749 };
750
751 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
752
753 struct anv_block_state {
754 union {
755 struct {
756 uint32_t next;
757 uint32_t end;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764 };
765
766 #define anv_block_pool_foreach_bo(bo, pool) \
767 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
768 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
769 _pp_bo++)
770
771 #define ANV_MAX_BLOCK_POOL_BOS 20
772
773 struct anv_block_pool {
774 struct anv_device *device;
775 bool use_softpin;
776
777 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
778 * around the actual BO so that we grow the pool after the wrapper BO has
779 * been put in a relocation list. This is only used in the non-softpin
780 * case.
781 */
782 struct anv_bo wrapper_bo;
783
784 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
785 struct anv_bo *bo;
786 uint32_t nbos;
787
788 uint64_t size;
789
790 /* The address where the start of the pool is pinned. The various bos that
791 * are created as the pool grows will have addresses in the range
792 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
793 */
794 uint64_t start_address;
795
796 /* The offset from the start of the bo to the "center" of the block
797 * pool. Pointers to allocated blocks are given by
798 * bo.map + center_bo_offset + offsets.
799 */
800 uint32_t center_bo_offset;
801
802 /* Current memory map of the block pool. This pointer may or may not
803 * point to the actual beginning of the block pool memory. If
804 * anv_block_pool_alloc_back has ever been called, then this pointer
805 * will point to the "center" position of the buffer and all offsets
806 * (negative or positive) given out by the block pool alloc functions
807 * will be valid relative to this pointer.
808 *
809 * In particular, map == bo.map + center_offset
810 *
811 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
812 * since it will handle the softpin case as well, where this points to NULL.
813 */
814 void *map;
815 int fd;
816
817 /**
818 * Array of mmaps and gem handles owned by the block pool, reclaimed when
819 * the block pool is destroyed.
820 */
821 struct u_vector mmap_cleanups;
822
823 struct anv_block_state state;
824
825 struct anv_block_state back_state;
826 };
827
828 /* Block pools are backed by a fixed-size 1GB memfd */
829 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
830
831 /* The center of the block pool is also the middle of the memfd. This may
832 * change in the future if we decide differently for some reason.
833 */
834 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
835
836 static inline uint32_t
837 anv_block_pool_size(struct anv_block_pool *pool)
838 {
839 return pool->state.end + pool->back_state.end;
840 }
841
842 struct anv_state {
843 int32_t offset;
844 uint32_t alloc_size;
845 void *map;
846 uint32_t idx;
847 };
848
849 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
850
851 struct anv_fixed_size_state_pool {
852 union anv_free_list free_list;
853 struct anv_block_state block;
854 };
855
856 #define ANV_MIN_STATE_SIZE_LOG2 6
857 #define ANV_MAX_STATE_SIZE_LOG2 21
858
859 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
860
861 struct anv_free_entry {
862 uint32_t next;
863 struct anv_state state;
864 };
865
866 struct anv_state_table {
867 struct anv_device *device;
868 int fd;
869 struct anv_free_entry *map;
870 uint32_t size;
871 struct anv_block_state state;
872 struct u_vector cleanups;
873 };
874
875 struct anv_state_pool {
876 struct anv_block_pool block_pool;
877
878 struct anv_state_table table;
879
880 /* The size of blocks which will be allocated from the block pool */
881 uint32_t block_size;
882
883 /** Free list for "back" allocations */
884 union anv_free_list back_alloc_free_list;
885
886 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
887 };
888
889 struct anv_state_stream {
890 struct anv_state_pool *state_pool;
891
892 /* The size of blocks to allocate from the state pool */
893 uint32_t block_size;
894
895 /* Current block we're allocating from */
896 struct anv_state block;
897
898 /* Offset into the current block at which to allocate the next state */
899 uint32_t next;
900
901 /* List of all blocks allocated from this pool */
902 struct util_dynarray all_blocks;
903 };
904
905 /* The block_pool functions exported for testing only. The block pool should
906 * only be used via a state pool (see below).
907 */
908 VkResult anv_block_pool_init(struct anv_block_pool *pool,
909 struct anv_device *device,
910 uint64_t start_address,
911 uint32_t initial_size);
912 void anv_block_pool_finish(struct anv_block_pool *pool);
913 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
914 uint32_t block_size, uint32_t *padding);
915 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
916 uint32_t block_size);
917 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
918 size);
919
920 VkResult anv_state_pool_init(struct anv_state_pool *pool,
921 struct anv_device *device,
922 uint64_t start_address,
923 uint32_t block_size);
924 void anv_state_pool_finish(struct anv_state_pool *pool);
925 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
926 uint32_t state_size, uint32_t alignment);
927 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
928 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
929 void anv_state_stream_init(struct anv_state_stream *stream,
930 struct anv_state_pool *state_pool,
931 uint32_t block_size);
932 void anv_state_stream_finish(struct anv_state_stream *stream);
933 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
934 uint32_t size, uint32_t alignment);
935
936 VkResult anv_state_table_init(struct anv_state_table *table,
937 struct anv_device *device,
938 uint32_t initial_entries);
939 void anv_state_table_finish(struct anv_state_table *table);
940 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
941 uint32_t count);
942 void anv_free_list_push(union anv_free_list *list,
943 struct anv_state_table *table,
944 uint32_t idx, uint32_t count);
945 struct anv_state* anv_free_list_pop(union anv_free_list *list,
946 struct anv_state_table *table);
947
948
949 static inline struct anv_state *
950 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
951 {
952 return &table->map[idx].state;
953 }
954 /**
955 * Implements a pool of re-usable BOs. The interface is identical to that
956 * of block_pool except that each block is its own BO.
957 */
958 struct anv_bo_pool {
959 struct anv_device *device;
960
961 struct util_sparse_array_free_list free_list[16];
962 };
963
964 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
965 void anv_bo_pool_finish(struct anv_bo_pool *pool);
966 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
967 struct anv_bo **bo_out);
968 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
969
970 struct anv_scratch_pool {
971 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
972 struct anv_bo *bos[16][MESA_SHADER_STAGES];
973 };
974
975 void anv_scratch_pool_init(struct anv_device *device,
976 struct anv_scratch_pool *pool);
977 void anv_scratch_pool_finish(struct anv_device *device,
978 struct anv_scratch_pool *pool);
979 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
980 struct anv_scratch_pool *pool,
981 gl_shader_stage stage,
982 unsigned per_thread_scratch);
983
984 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
985 struct anv_bo_cache {
986 struct util_sparse_array bo_map;
987 pthread_mutex_t mutex;
988 };
989
990 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
991 void anv_bo_cache_finish(struct anv_bo_cache *cache);
992
993 struct anv_memory_type {
994 /* Standard bits passed on to the client */
995 VkMemoryPropertyFlags propertyFlags;
996 uint32_t heapIndex;
997 };
998
999 struct anv_memory_heap {
1000 /* Standard bits passed on to the client */
1001 VkDeviceSize size;
1002 VkMemoryHeapFlags flags;
1003
1004 /* Driver-internal book-keeping */
1005 VkDeviceSize used;
1006 };
1007
1008 struct anv_physical_device {
1009 VK_LOADER_DATA _loader_data;
1010
1011 /* Link in anv_instance::physical_devices */
1012 struct list_head link;
1013
1014 struct anv_instance * instance;
1015 bool no_hw;
1016 char path[20];
1017 const char * name;
1018 struct {
1019 uint16_t domain;
1020 uint8_t bus;
1021 uint8_t device;
1022 uint8_t function;
1023 } pci_info;
1024 struct gen_device_info info;
1025 /** Amount of "GPU memory" we want to advertise
1026 *
1027 * Clearly, this value is bogus since Intel is a UMA architecture. On
1028 * gen7 platforms, we are limited by GTT size unless we want to implement
1029 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1030 * practically unlimited. However, we will never report more than 3/4 of
1031 * the total system ram to try and avoid running out of RAM.
1032 */
1033 bool supports_48bit_addresses;
1034 struct brw_compiler * compiler;
1035 struct isl_device isl_dev;
1036 struct gen_perf_config * perf;
1037 int cmd_parser_version;
1038 bool has_softpin;
1039 bool has_exec_async;
1040 bool has_exec_capture;
1041 bool has_exec_fence;
1042 bool has_syncobj;
1043 bool has_syncobj_wait;
1044 bool has_context_priority;
1045 bool has_context_isolation;
1046 bool has_mem_available;
1047 uint64_t gtt_size;
1048
1049 bool use_softpin;
1050 bool always_use_bindless;
1051
1052 /** True if we can access buffers using A64 messages */
1053 bool has_a64_buffer_access;
1054 /** True if we can use bindless access for images */
1055 bool has_bindless_images;
1056 /** True if we can use bindless access for samplers */
1057 bool has_bindless_samplers;
1058
1059 /** True if this device has implicit AUX
1060 *
1061 * If true, CCS is handled as an implicit attachment to the BO rather than
1062 * as an explicitly bound surface.
1063 */
1064 bool has_implicit_ccs;
1065
1066 bool always_flush_cache;
1067
1068 struct anv_device_extension_table supported_extensions;
1069
1070 uint32_t eu_total;
1071 uint32_t subslice_total;
1072
1073 struct {
1074 uint32_t type_count;
1075 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1076 uint32_t heap_count;
1077 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1078 } memory;
1079
1080 uint8_t driver_build_sha1[20];
1081 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1082 uint8_t driver_uuid[VK_UUID_SIZE];
1083 uint8_t device_uuid[VK_UUID_SIZE];
1084
1085 struct disk_cache * disk_cache;
1086
1087 struct wsi_device wsi_device;
1088 int local_fd;
1089 int master_fd;
1090 };
1091
1092 struct anv_app_info {
1093 const char* app_name;
1094 uint32_t app_version;
1095 const char* engine_name;
1096 uint32_t engine_version;
1097 uint32_t api_version;
1098 };
1099
1100 struct anv_instance {
1101 VK_LOADER_DATA _loader_data;
1102
1103 VkAllocationCallbacks alloc;
1104
1105 struct anv_app_info app_info;
1106
1107 struct anv_instance_extension_table enabled_extensions;
1108 struct anv_instance_dispatch_table dispatch;
1109 struct anv_physical_device_dispatch_table physical_device_dispatch;
1110 struct anv_device_dispatch_table device_dispatch;
1111
1112 bool physical_devices_enumerated;
1113 struct list_head physical_devices;
1114
1115 bool pipeline_cache_enabled;
1116
1117 struct vk_debug_report_instance debug_report_callbacks;
1118
1119 struct driOptionCache dri_options;
1120 struct driOptionCache available_dri_options;
1121 };
1122
1123 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1124 void anv_finish_wsi(struct anv_physical_device *physical_device);
1125
1126 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1127 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1128 const char *name);
1129
1130 struct anv_queue_submit {
1131 struct anv_cmd_buffer * cmd_buffer;
1132
1133 uint32_t fence_count;
1134 uint32_t fence_array_length;
1135 struct drm_i915_gem_exec_fence * fences;
1136
1137 uint32_t temporary_semaphore_count;
1138 uint32_t temporary_semaphore_array_length;
1139 struct anv_semaphore_impl * temporary_semaphores;
1140
1141 /* Semaphores to be signaled with a SYNC_FD. */
1142 struct anv_semaphore ** sync_fd_semaphores;
1143 uint32_t sync_fd_semaphore_count;
1144 uint32_t sync_fd_semaphore_array_length;
1145
1146 /* Allocated only with non shareable timelines. */
1147 struct anv_timeline ** wait_timelines;
1148 uint32_t wait_timeline_count;
1149 uint32_t wait_timeline_array_length;
1150 uint64_t * wait_timeline_values;
1151
1152 struct anv_timeline ** signal_timelines;
1153 uint32_t signal_timeline_count;
1154 uint32_t signal_timeline_array_length;
1155 uint64_t * signal_timeline_values;
1156
1157 int in_fence;
1158 bool need_out_fence;
1159 int out_fence;
1160
1161 uint32_t fence_bo_count;
1162 uint32_t fence_bo_array_length;
1163 /* An array of struct anv_bo pointers with lower bit used as a flag to
1164 * signal we will wait on that BO (see anv_(un)pack_ptr).
1165 */
1166 uintptr_t * fence_bos;
1167
1168 const VkAllocationCallbacks * alloc;
1169 VkSystemAllocationScope alloc_scope;
1170
1171 struct anv_bo * simple_bo;
1172 uint32_t simple_bo_size;
1173
1174 struct list_head link;
1175 };
1176
1177 struct anv_queue {
1178 VK_LOADER_DATA _loader_data;
1179
1180 struct anv_device * device;
1181
1182 /*
1183 * A list of struct anv_queue_submit to be submitted to i915.
1184 */
1185 struct list_head queued_submits;
1186
1187 VkDeviceQueueCreateFlags flags;
1188 };
1189
1190 struct anv_pipeline_cache {
1191 struct anv_device * device;
1192 pthread_mutex_t mutex;
1193
1194 struct hash_table * nir_cache;
1195
1196 struct hash_table * cache;
1197 };
1198
1199 struct nir_xfb_info;
1200 struct anv_pipeline_bind_map;
1201
1202 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1203 struct anv_device *device,
1204 bool cache_enabled);
1205 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1206
1207 struct anv_shader_bin *
1208 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1209 const void *key, uint32_t key_size);
1210 struct anv_shader_bin *
1211 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1212 gl_shader_stage stage,
1213 const void *key_data, uint32_t key_size,
1214 const void *kernel_data, uint32_t kernel_size,
1215 const void *constant_data,
1216 uint32_t constant_data_size,
1217 const struct brw_stage_prog_data *prog_data,
1218 uint32_t prog_data_size,
1219 const struct brw_compile_stats *stats,
1220 uint32_t num_stats,
1221 const struct nir_xfb_info *xfb_info,
1222 const struct anv_pipeline_bind_map *bind_map);
1223
1224 struct anv_shader_bin *
1225 anv_device_search_for_kernel(struct anv_device *device,
1226 struct anv_pipeline_cache *cache,
1227 const void *key_data, uint32_t key_size,
1228 bool *user_cache_bit);
1229
1230 struct anv_shader_bin *
1231 anv_device_upload_kernel(struct anv_device *device,
1232 struct anv_pipeline_cache *cache,
1233 gl_shader_stage stage,
1234 const void *key_data, uint32_t key_size,
1235 const void *kernel_data, uint32_t kernel_size,
1236 const void *constant_data,
1237 uint32_t constant_data_size,
1238 const struct brw_stage_prog_data *prog_data,
1239 uint32_t prog_data_size,
1240 const struct brw_compile_stats *stats,
1241 uint32_t num_stats,
1242 const struct nir_xfb_info *xfb_info,
1243 const struct anv_pipeline_bind_map *bind_map);
1244
1245 struct nir_shader;
1246 struct nir_shader_compiler_options;
1247
1248 struct nir_shader *
1249 anv_device_search_for_nir(struct anv_device *device,
1250 struct anv_pipeline_cache *cache,
1251 const struct nir_shader_compiler_options *nir_options,
1252 unsigned char sha1_key[20],
1253 void *mem_ctx);
1254
1255 void
1256 anv_device_upload_nir(struct anv_device *device,
1257 struct anv_pipeline_cache *cache,
1258 const struct nir_shader *nir,
1259 unsigned char sha1_key[20]);
1260
1261 struct anv_device {
1262 VK_LOADER_DATA _loader_data;
1263
1264 VkAllocationCallbacks alloc;
1265
1266 struct anv_physical_device * physical;
1267 bool no_hw;
1268 struct gen_device_info info;
1269 struct isl_device isl_dev;
1270 int context_id;
1271 int fd;
1272 bool can_chain_batches;
1273 bool robust_buffer_access;
1274 struct anv_device_extension_table enabled_extensions;
1275 struct anv_device_dispatch_table dispatch;
1276
1277 pthread_mutex_t vma_mutex;
1278 struct util_vma_heap vma_lo;
1279 struct util_vma_heap vma_cva;
1280 struct util_vma_heap vma_hi;
1281
1282 /** List of all anv_device_memory objects */
1283 struct list_head memory_objects;
1284
1285 struct anv_bo_pool batch_bo_pool;
1286
1287 struct anv_bo_cache bo_cache;
1288
1289 struct anv_state_pool dynamic_state_pool;
1290 struct anv_state_pool instruction_state_pool;
1291 struct anv_state_pool binding_table_pool;
1292 struct anv_state_pool surface_state_pool;
1293
1294 struct anv_bo * workaround_bo;
1295 struct anv_bo * trivial_batch_bo;
1296 struct anv_bo * hiz_clear_bo;
1297
1298 struct anv_pipeline_cache default_pipeline_cache;
1299 struct blorp_context blorp;
1300
1301 struct anv_state border_colors;
1302
1303 struct anv_state slice_hash;
1304
1305 struct anv_queue queue;
1306
1307 struct anv_scratch_pool scratch_pool;
1308
1309 pthread_mutex_t mutex;
1310 pthread_cond_t queue_submit;
1311 int _lost;
1312
1313 struct gen_batch_decode_ctx decoder_ctx;
1314 /*
1315 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1316 * the cmd_buffer's list.
1317 */
1318 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1319
1320 int perf_fd; /* -1 if no opened */
1321 uint64_t perf_metric; /* 0 if unset */
1322
1323 struct gen_aux_map_context *aux_map_ctx;
1324 };
1325
1326 static inline struct anv_instance *
1327 anv_device_instance_or_null(const struct anv_device *device)
1328 {
1329 return device ? device->physical->instance : NULL;
1330 }
1331
1332 static inline struct anv_state_pool *
1333 anv_binding_table_pool(struct anv_device *device)
1334 {
1335 if (device->physical->use_softpin)
1336 return &device->binding_table_pool;
1337 else
1338 return &device->surface_state_pool;
1339 }
1340
1341 static inline struct anv_state
1342 anv_binding_table_pool_alloc(struct anv_device *device) {
1343 if (device->physical->use_softpin)
1344 return anv_state_pool_alloc(&device->binding_table_pool,
1345 device->binding_table_pool.block_size, 0);
1346 else
1347 return anv_state_pool_alloc_back(&device->surface_state_pool);
1348 }
1349
1350 static inline void
1351 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1352 anv_state_pool_free(anv_binding_table_pool(device), state);
1353 }
1354
1355 static inline uint32_t
1356 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1357 {
1358 if (bo->is_external)
1359 return device->isl_dev.mocs.external;
1360 else
1361 return device->isl_dev.mocs.internal;
1362 }
1363
1364 void anv_device_init_blorp(struct anv_device *device);
1365 void anv_device_finish_blorp(struct anv_device *device);
1366
1367 void _anv_device_set_all_queue_lost(struct anv_device *device);
1368 VkResult _anv_device_set_lost(struct anv_device *device,
1369 const char *file, int line,
1370 const char *msg, ...)
1371 anv_printflike(4, 5);
1372 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1373 const char *file, int line,
1374 const char *msg, ...)
1375 anv_printflike(4, 5);
1376 #define anv_device_set_lost(dev, ...) \
1377 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1378 #define anv_queue_set_lost(queue, ...) \
1379 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1380
1381 static inline bool
1382 anv_device_is_lost(struct anv_device *device)
1383 {
1384 return unlikely(p_atomic_read(&device->_lost));
1385 }
1386
1387 VkResult anv_device_query_status(struct anv_device *device);
1388
1389
1390 enum anv_bo_alloc_flags {
1391 /** Specifies that the BO must have a 32-bit address
1392 *
1393 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1394 */
1395 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1396
1397 /** Specifies that the BO may be shared externally */
1398 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1399
1400 /** Specifies that the BO should be mapped */
1401 ANV_BO_ALLOC_MAPPED = (1 << 2),
1402
1403 /** Specifies that the BO should be snooped so we get coherency */
1404 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1405
1406 /** Specifies that the BO should be captured in error states */
1407 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1408
1409 /** Specifies that the BO will have an address assigned by the caller
1410 *
1411 * Such BOs do not exist in any VMA heap.
1412 */
1413 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1414
1415 /** Enables implicit synchronization on the BO
1416 *
1417 * This is the opposite of EXEC_OBJECT_ASYNC.
1418 */
1419 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1420
1421 /** Enables implicit synchronization on the BO
1422 *
1423 * This is equivalent to EXEC_OBJECT_WRITE.
1424 */
1425 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1426
1427 /** Has an address which is visible to the client */
1428 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1429
1430 /** This buffer has implicit CCS data attached to it */
1431 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1432 };
1433
1434 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1435 enum anv_bo_alloc_flags alloc_flags,
1436 uint64_t explicit_address,
1437 struct anv_bo **bo);
1438 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1439 void *host_ptr, uint32_t size,
1440 enum anv_bo_alloc_flags alloc_flags,
1441 uint64_t client_address,
1442 struct anv_bo **bo_out);
1443 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1444 enum anv_bo_alloc_flags alloc_flags,
1445 uint64_t client_address,
1446 struct anv_bo **bo);
1447 VkResult anv_device_export_bo(struct anv_device *device,
1448 struct anv_bo *bo, int *fd_out);
1449 void anv_device_release_bo(struct anv_device *device,
1450 struct anv_bo *bo);
1451
1452 static inline struct anv_bo *
1453 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1454 {
1455 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1456 }
1457
1458 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1459 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1460 int64_t timeout);
1461
1462 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1463 void anv_queue_finish(struct anv_queue *queue);
1464
1465 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1466 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1467 struct anv_batch *batch);
1468
1469 uint64_t anv_gettime_ns(void);
1470 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1471
1472 void* anv_gem_mmap(struct anv_device *device,
1473 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1474 void anv_gem_munmap(void *p, uint64_t size);
1475 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1476 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1477 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1478 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1479 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1480 int anv_gem_execbuffer(struct anv_device *device,
1481 struct drm_i915_gem_execbuffer2 *execbuf);
1482 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1483 uint32_t stride, uint32_t tiling);
1484 int anv_gem_create_context(struct anv_device *device);
1485 bool anv_gem_has_context_priority(int fd);
1486 int anv_gem_destroy_context(struct anv_device *device, int context);
1487 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1488 uint64_t value);
1489 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1490 uint64_t *value);
1491 int anv_gem_get_param(int fd, uint32_t param);
1492 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1493 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1494 int anv_gem_get_aperture(int fd, uint64_t *size);
1495 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1496 uint32_t *active, uint32_t *pending);
1497 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1498 int anv_gem_reg_read(struct anv_device *device,
1499 uint32_t offset, uint64_t *result);
1500 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1501 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1502 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1503 uint32_t read_domains, uint32_t write_domain);
1504 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1505 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1506 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1507 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1508 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1509 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1510 uint32_t handle);
1511 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1512 uint32_t handle, int fd);
1513 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1514 bool anv_gem_supports_syncobj_wait(int fd);
1515 int anv_gem_syncobj_wait(struct anv_device *device,
1516 uint32_t *handles, uint32_t num_handles,
1517 int64_t abs_timeout_ns, bool wait_all);
1518
1519 uint64_t anv_vma_alloc(struct anv_device *device,
1520 uint64_t size, uint64_t align,
1521 enum anv_bo_alloc_flags alloc_flags,
1522 uint64_t client_address);
1523 void anv_vma_free(struct anv_device *device,
1524 uint64_t address, uint64_t size);
1525
1526 struct anv_reloc_list {
1527 uint32_t num_relocs;
1528 uint32_t array_length;
1529 struct drm_i915_gem_relocation_entry * relocs;
1530 struct anv_bo ** reloc_bos;
1531 uint32_t dep_words;
1532 BITSET_WORD * deps;
1533 };
1534
1535 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1536 const VkAllocationCallbacks *alloc);
1537 void anv_reloc_list_finish(struct anv_reloc_list *list,
1538 const VkAllocationCallbacks *alloc);
1539
1540 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1541 const VkAllocationCallbacks *alloc,
1542 uint32_t offset, struct anv_bo *target_bo,
1543 uint32_t delta, uint64_t *address_u64_out);
1544
1545 struct anv_batch_bo {
1546 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1547 struct list_head link;
1548
1549 struct anv_bo * bo;
1550
1551 /* Bytes actually consumed in this batch BO */
1552 uint32_t length;
1553
1554 struct anv_reloc_list relocs;
1555 };
1556
1557 struct anv_batch {
1558 const VkAllocationCallbacks * alloc;
1559
1560 void * start;
1561 void * end;
1562 void * next;
1563
1564 struct anv_reloc_list * relocs;
1565
1566 /* This callback is called (with the associated user data) in the event
1567 * that the batch runs out of space.
1568 */
1569 VkResult (*extend_cb)(struct anv_batch *, void *);
1570 void * user_data;
1571
1572 /**
1573 * Current error status of the command buffer. Used to track inconsistent
1574 * or incomplete command buffer states that are the consequence of run-time
1575 * errors such as out of memory scenarios. We want to track this in the
1576 * batch because the command buffer object is not visible to some parts
1577 * of the driver.
1578 */
1579 VkResult status;
1580 };
1581
1582 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1583 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1584 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1585 void *location, struct anv_bo *bo, uint32_t offset);
1586
1587 static inline VkResult
1588 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1589 {
1590 assert(error != VK_SUCCESS);
1591 if (batch->status == VK_SUCCESS)
1592 batch->status = error;
1593 return batch->status;
1594 }
1595
1596 static inline bool
1597 anv_batch_has_error(struct anv_batch *batch)
1598 {
1599 return batch->status != VK_SUCCESS;
1600 }
1601
1602 struct anv_address {
1603 struct anv_bo *bo;
1604 uint32_t offset;
1605 };
1606
1607 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1608
1609 static inline bool
1610 anv_address_is_null(struct anv_address addr)
1611 {
1612 return addr.bo == NULL && addr.offset == 0;
1613 }
1614
1615 static inline uint64_t
1616 anv_address_physical(struct anv_address addr)
1617 {
1618 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1619 return gen_canonical_address(addr.bo->offset + addr.offset);
1620 else
1621 return gen_canonical_address(addr.offset);
1622 }
1623
1624 static inline struct anv_address
1625 anv_address_add(struct anv_address addr, uint64_t offset)
1626 {
1627 addr.offset += offset;
1628 return addr;
1629 }
1630
1631 static inline void
1632 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1633 {
1634 unsigned reloc_size = 0;
1635 if (device->info.gen >= 8) {
1636 reloc_size = sizeof(uint64_t);
1637 *(uint64_t *)p = gen_canonical_address(v);
1638 } else {
1639 reloc_size = sizeof(uint32_t);
1640 *(uint32_t *)p = v;
1641 }
1642
1643 if (flush && !device->info.has_llc)
1644 gen_flush_range(p, reloc_size);
1645 }
1646
1647 static inline uint64_t
1648 _anv_combine_address(struct anv_batch *batch, void *location,
1649 const struct anv_address address, uint32_t delta)
1650 {
1651 if (address.bo == NULL) {
1652 return address.offset + delta;
1653 } else {
1654 assert(batch->start <= location && location < batch->end);
1655
1656 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1657 }
1658 }
1659
1660 #define __gen_address_type struct anv_address
1661 #define __gen_user_data struct anv_batch
1662 #define __gen_combine_address _anv_combine_address
1663
1664 /* Wrapper macros needed to work around preprocessor argument issues. In
1665 * particular, arguments don't get pre-evaluated if they are concatenated.
1666 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1667 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1668 * We can work around this easily enough with these helpers.
1669 */
1670 #define __anv_cmd_length(cmd) cmd ## _length
1671 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1672 #define __anv_cmd_header(cmd) cmd ## _header
1673 #define __anv_cmd_pack(cmd) cmd ## _pack
1674 #define __anv_reg_num(reg) reg ## _num
1675
1676 #define anv_pack_struct(dst, struc, ...) do { \
1677 struct struc __template = { \
1678 __VA_ARGS__ \
1679 }; \
1680 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1681 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1682 } while (0)
1683
1684 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1685 void *__dst = anv_batch_emit_dwords(batch, n); \
1686 if (__dst) { \
1687 struct cmd __template = { \
1688 __anv_cmd_header(cmd), \
1689 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1690 __VA_ARGS__ \
1691 }; \
1692 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1693 } \
1694 __dst; \
1695 })
1696
1697 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1698 do { \
1699 uint32_t *dw; \
1700 \
1701 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1702 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1703 if (!dw) \
1704 break; \
1705 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1706 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1707 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1708 } while (0)
1709
1710 #define anv_batch_emit(batch, cmd, name) \
1711 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1712 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1713 __builtin_expect(_dst != NULL, 1); \
1714 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1715 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1716 _dst = NULL; \
1717 }))
1718
1719 struct anv_device_memory {
1720 struct list_head link;
1721
1722 struct anv_bo * bo;
1723 struct anv_memory_type * type;
1724 VkDeviceSize map_size;
1725 void * map;
1726
1727 /* If set, we are holding reference to AHardwareBuffer
1728 * which we must release when memory is freed.
1729 */
1730 struct AHardwareBuffer * ahw;
1731
1732 /* If set, this memory comes from a host pointer. */
1733 void * host_ptr;
1734 };
1735
1736 /**
1737 * Header for Vertex URB Entry (VUE)
1738 */
1739 struct anv_vue_header {
1740 uint32_t Reserved;
1741 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1742 uint32_t ViewportIndex;
1743 float PointWidth;
1744 };
1745
1746 /** Struct representing a sampled image descriptor
1747 *
1748 * This descriptor layout is used for sampled images, bare sampler, and
1749 * combined image/sampler descriptors.
1750 */
1751 struct anv_sampled_image_descriptor {
1752 /** Bindless image handle
1753 *
1754 * This is expected to already be shifted such that the 20-bit
1755 * SURFACE_STATE table index is in the top 20 bits.
1756 */
1757 uint32_t image;
1758
1759 /** Bindless sampler handle
1760 *
1761 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1762 * to the dynamic state base address.
1763 */
1764 uint32_t sampler;
1765 };
1766
1767 struct anv_texture_swizzle_descriptor {
1768 /** Texture swizzle
1769 *
1770 * See also nir_intrinsic_channel_select_intel
1771 */
1772 uint8_t swizzle[4];
1773
1774 /** Unused padding to ensure the struct is a multiple of 64 bits */
1775 uint32_t _pad;
1776 };
1777
1778 /** Struct representing a storage image descriptor */
1779 struct anv_storage_image_descriptor {
1780 /** Bindless image handles
1781 *
1782 * These are expected to already be shifted such that the 20-bit
1783 * SURFACE_STATE table index is in the top 20 bits.
1784 */
1785 uint32_t read_write;
1786 uint32_t write_only;
1787 };
1788
1789 /** Struct representing a address/range descriptor
1790 *
1791 * The fields of this struct correspond directly to the data layout of
1792 * nir_address_format_64bit_bounded_global addresses. The last field is the
1793 * offset in the NIR address so it must be zero so that when you load the
1794 * descriptor you get a pointer to the start of the range.
1795 */
1796 struct anv_address_range_descriptor {
1797 uint64_t address;
1798 uint32_t range;
1799 uint32_t zero;
1800 };
1801
1802 enum anv_descriptor_data {
1803 /** The descriptor contains a BTI reference to a surface state */
1804 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1805 /** The descriptor contains a BTI reference to a sampler state */
1806 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1807 /** The descriptor contains an actual buffer view */
1808 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1809 /** The descriptor contains auxiliary image layout data */
1810 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1811 /** The descriptor contains auxiliary image layout data */
1812 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1813 /** anv_address_range_descriptor with a buffer address and range */
1814 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1815 /** Bindless surface handle */
1816 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1817 /** Storage image handles */
1818 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1819 /** Storage image handles */
1820 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1821 };
1822
1823 struct anv_descriptor_set_binding_layout {
1824 #ifndef NDEBUG
1825 /* The type of the descriptors in this binding */
1826 VkDescriptorType type;
1827 #endif
1828
1829 /* Flags provided when this binding was created */
1830 VkDescriptorBindingFlagsEXT flags;
1831
1832 /* Bitfield representing the type of data this descriptor contains */
1833 enum anv_descriptor_data data;
1834
1835 /* Maximum number of YCbCr texture/sampler planes */
1836 uint8_t max_plane_count;
1837
1838 /* Number of array elements in this binding (or size in bytes for inline
1839 * uniform data)
1840 */
1841 uint16_t array_size;
1842
1843 /* Index into the flattend descriptor set */
1844 uint16_t descriptor_index;
1845
1846 /* Index into the dynamic state array for a dynamic buffer */
1847 int16_t dynamic_offset_index;
1848
1849 /* Index into the descriptor set buffer views */
1850 int16_t buffer_view_index;
1851
1852 /* Offset into the descriptor buffer where this descriptor lives */
1853 uint32_t descriptor_offset;
1854
1855 /* Immutable samplers (or NULL if no immutable samplers) */
1856 struct anv_sampler **immutable_samplers;
1857 };
1858
1859 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1860
1861 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1862 VkDescriptorType type);
1863
1864 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1865 const struct anv_descriptor_set_binding_layout *binding,
1866 bool sampler);
1867
1868 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1869 const struct anv_descriptor_set_binding_layout *binding,
1870 bool sampler);
1871
1872 struct anv_descriptor_set_layout {
1873 /* Descriptor set layouts can be destroyed at almost any time */
1874 uint32_t ref_cnt;
1875
1876 /* Number of bindings in this descriptor set */
1877 uint16_t binding_count;
1878
1879 /* Total size of the descriptor set with room for all array entries */
1880 uint16_t size;
1881
1882 /* Shader stages affected by this descriptor set */
1883 uint16_t shader_stages;
1884
1885 /* Number of buffer views in this descriptor set */
1886 uint16_t buffer_view_count;
1887
1888 /* Number of dynamic offsets used by this descriptor set */
1889 uint16_t dynamic_offset_count;
1890
1891 /* For each shader stage, which offsets apply to that stage */
1892 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1893
1894 /* Size of the descriptor buffer for this descriptor set */
1895 uint32_t descriptor_buffer_size;
1896
1897 /* Bindings in this descriptor set */
1898 struct anv_descriptor_set_binding_layout binding[0];
1899 };
1900
1901 static inline void
1902 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1903 {
1904 assert(layout && layout->ref_cnt >= 1);
1905 p_atomic_inc(&layout->ref_cnt);
1906 }
1907
1908 static inline void
1909 anv_descriptor_set_layout_unref(struct anv_device *device,
1910 struct anv_descriptor_set_layout *layout)
1911 {
1912 assert(layout && layout->ref_cnt >= 1);
1913 if (p_atomic_dec_zero(&layout->ref_cnt))
1914 vk_free(&device->alloc, layout);
1915 }
1916
1917 struct anv_descriptor {
1918 VkDescriptorType type;
1919
1920 union {
1921 struct {
1922 VkImageLayout layout;
1923 struct anv_image_view *image_view;
1924 struct anv_sampler *sampler;
1925 };
1926
1927 struct {
1928 struct anv_buffer *buffer;
1929 uint64_t offset;
1930 uint64_t range;
1931 };
1932
1933 struct anv_buffer_view *buffer_view;
1934 };
1935 };
1936
1937 struct anv_descriptor_set {
1938 struct anv_descriptor_pool *pool;
1939 struct anv_descriptor_set_layout *layout;
1940 uint32_t size;
1941
1942 /* State relative to anv_descriptor_pool::bo */
1943 struct anv_state desc_mem;
1944 /* Surface state for the descriptor buffer */
1945 struct anv_state desc_surface_state;
1946
1947 uint32_t buffer_view_count;
1948 struct anv_buffer_view *buffer_views;
1949
1950 /* Link to descriptor pool's desc_sets list . */
1951 struct list_head pool_link;
1952
1953 struct anv_descriptor descriptors[0];
1954 };
1955
1956 struct anv_buffer_view {
1957 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1958 uint64_t range; /**< VkBufferViewCreateInfo::range */
1959
1960 struct anv_address address;
1961
1962 struct anv_state surface_state;
1963 struct anv_state storage_surface_state;
1964 struct anv_state writeonly_storage_surface_state;
1965
1966 struct brw_image_param storage_image_param;
1967 };
1968
1969 struct anv_push_descriptor_set {
1970 struct anv_descriptor_set set;
1971
1972 /* Put this field right behind anv_descriptor_set so it fills up the
1973 * descriptors[0] field. */
1974 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1975
1976 /** True if the descriptor set buffer has been referenced by a draw or
1977 * dispatch command.
1978 */
1979 bool set_used_on_gpu;
1980
1981 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1982 };
1983
1984 struct anv_descriptor_pool {
1985 uint32_t size;
1986 uint32_t next;
1987 uint32_t free_list;
1988
1989 struct anv_bo *bo;
1990 struct util_vma_heap bo_heap;
1991
1992 struct anv_state_stream surface_state_stream;
1993 void *surface_state_free_list;
1994
1995 struct list_head desc_sets;
1996
1997 char data[0];
1998 };
1999
2000 enum anv_descriptor_template_entry_type {
2001 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2002 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2003 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2004 };
2005
2006 struct anv_descriptor_template_entry {
2007 /* The type of descriptor in this entry */
2008 VkDescriptorType type;
2009
2010 /* Binding in the descriptor set */
2011 uint32_t binding;
2012
2013 /* Offset at which to write into the descriptor set binding */
2014 uint32_t array_element;
2015
2016 /* Number of elements to write into the descriptor set binding */
2017 uint32_t array_count;
2018
2019 /* Offset into the user provided data */
2020 size_t offset;
2021
2022 /* Stride between elements into the user provided data */
2023 size_t stride;
2024 };
2025
2026 struct anv_descriptor_update_template {
2027 VkPipelineBindPoint bind_point;
2028
2029 /* The descriptor set this template corresponds to. This value is only
2030 * valid if the template was created with the templateType
2031 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2032 */
2033 uint8_t set;
2034
2035 /* Number of entries in this template */
2036 uint32_t entry_count;
2037
2038 /* Entries of the template */
2039 struct anv_descriptor_template_entry entries[0];
2040 };
2041
2042 size_t
2043 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2044
2045 void
2046 anv_descriptor_set_write_image_view(struct anv_device *device,
2047 struct anv_descriptor_set *set,
2048 const VkDescriptorImageInfo * const info,
2049 VkDescriptorType type,
2050 uint32_t binding,
2051 uint32_t element);
2052
2053 void
2054 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2055 struct anv_descriptor_set *set,
2056 VkDescriptorType type,
2057 struct anv_buffer_view *buffer_view,
2058 uint32_t binding,
2059 uint32_t element);
2060
2061 void
2062 anv_descriptor_set_write_buffer(struct anv_device *device,
2063 struct anv_descriptor_set *set,
2064 struct anv_state_stream *alloc_stream,
2065 VkDescriptorType type,
2066 struct anv_buffer *buffer,
2067 uint32_t binding,
2068 uint32_t element,
2069 VkDeviceSize offset,
2070 VkDeviceSize range);
2071 void
2072 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2073 struct anv_descriptor_set *set,
2074 uint32_t binding,
2075 const void *data,
2076 size_t offset,
2077 size_t size);
2078
2079 void
2080 anv_descriptor_set_write_template(struct anv_device *device,
2081 struct anv_descriptor_set *set,
2082 struct anv_state_stream *alloc_stream,
2083 const struct anv_descriptor_update_template *template,
2084 const void *data);
2085
2086 VkResult
2087 anv_descriptor_set_create(struct anv_device *device,
2088 struct anv_descriptor_pool *pool,
2089 struct anv_descriptor_set_layout *layout,
2090 struct anv_descriptor_set **out_set);
2091
2092 void
2093 anv_descriptor_set_destroy(struct anv_device *device,
2094 struct anv_descriptor_pool *pool,
2095 struct anv_descriptor_set *set);
2096
2097 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2098 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2099 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2100 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2101 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2102 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2103
2104 struct anv_pipeline_binding {
2105 /** Index in the descriptor set
2106 *
2107 * This is a flattened index; the descriptor set layout is already taken
2108 * into account.
2109 */
2110 uint32_t index;
2111
2112 /** The descriptor set this surface corresponds to.
2113 *
2114 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2115 * binding is not a normal descriptor set but something else.
2116 */
2117 uint8_t set;
2118
2119 union {
2120 /** Plane in the binding index for images */
2121 uint8_t plane;
2122
2123 /** Input attachment index (relative to the subpass) */
2124 uint8_t input_attachment_index;
2125
2126 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2127 uint8_t dynamic_offset_index;
2128 };
2129
2130 /** For a storage image, whether it is write-only */
2131 uint8_t write_only;
2132
2133 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2134 * assuming POD zero-initialization.
2135 */
2136 uint8_t pad;
2137 };
2138
2139 struct anv_push_range {
2140 /** Index in the descriptor set */
2141 uint32_t index;
2142
2143 /** Descriptor set index */
2144 uint8_t set;
2145
2146 /** Dynamic offset index (for dynamic UBOs) */
2147 uint8_t dynamic_offset_index;
2148
2149 /** Start offset in units of 32B */
2150 uint8_t start;
2151
2152 /** Range in units of 32B */
2153 uint8_t length;
2154 };
2155
2156 struct anv_pipeline_layout {
2157 struct {
2158 struct anv_descriptor_set_layout *layout;
2159 uint32_t dynamic_offset_start;
2160 } set[MAX_SETS];
2161
2162 uint32_t num_sets;
2163
2164 unsigned char sha1[20];
2165 };
2166
2167 struct anv_buffer {
2168 struct anv_device * device;
2169 VkDeviceSize size;
2170
2171 VkBufferUsageFlags usage;
2172
2173 /* Set when bound */
2174 struct anv_address address;
2175 };
2176
2177 static inline uint64_t
2178 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2179 {
2180 assert(offset <= buffer->size);
2181 if (range == VK_WHOLE_SIZE) {
2182 return buffer->size - offset;
2183 } else {
2184 assert(range + offset >= range);
2185 assert(range + offset <= buffer->size);
2186 return range;
2187 }
2188 }
2189
2190 enum anv_cmd_dirty_bits {
2191 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2192 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2193 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2194 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2195 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2196 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2197 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2198 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2199 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2200 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2201 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2202 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2203 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2204 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2205 };
2206 typedef uint32_t anv_cmd_dirty_mask_t;
2207
2208 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2209 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2210 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2211 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2212 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2213 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2214 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2215 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2216 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2217 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2218 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2219
2220 static inline enum anv_cmd_dirty_bits
2221 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2222 {
2223 switch (vk_state) {
2224 case VK_DYNAMIC_STATE_VIEWPORT:
2225 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2226 case VK_DYNAMIC_STATE_SCISSOR:
2227 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2228 case VK_DYNAMIC_STATE_LINE_WIDTH:
2229 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2230 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2231 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2232 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2233 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2234 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2235 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2236 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2237 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2238 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2239 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2240 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2241 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2242 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2243 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2244 default:
2245 assert(!"Unsupported dynamic state");
2246 return 0;
2247 }
2248 }
2249
2250
2251 enum anv_pipe_bits {
2252 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2253 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2254 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2255 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2256 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2257 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2258 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2259 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2260 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2261 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2262 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2263 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2264 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2265
2266 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2267 * a flush has happened but not a CS stall. The next time we do any sort
2268 * of invalidation we need to insert a CS stall at that time. Otherwise,
2269 * we would have to CS stall on every flush which could be bad.
2270 */
2271 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2272
2273 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2274 * target operations related to transfer commands with VkBuffer as
2275 * destination are ongoing. Some operations like copies on the command
2276 * streamer might need to be aware of this to trigger the appropriate stall
2277 * before they can proceed with the copy.
2278 */
2279 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2280
2281 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2282 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2283 * done by writing the AUX-TT register.
2284 */
2285 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2286
2287 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2288 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2289 * implement a workaround for Gen9.
2290 */
2291 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2292 };
2293
2294 #define ANV_PIPE_FLUSH_BITS ( \
2295 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2296 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2297 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2298 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2299
2300 #define ANV_PIPE_STALL_BITS ( \
2301 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2302 ANV_PIPE_DEPTH_STALL_BIT | \
2303 ANV_PIPE_CS_STALL_BIT)
2304
2305 #define ANV_PIPE_INVALIDATE_BITS ( \
2306 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2307 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2308 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2309 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2310 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2311 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2312 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2313
2314 static inline enum anv_pipe_bits
2315 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2316 {
2317 enum anv_pipe_bits pipe_bits = 0;
2318
2319 unsigned b;
2320 for_each_bit(b, flags) {
2321 switch ((VkAccessFlagBits)(1 << b)) {
2322 case VK_ACCESS_SHADER_WRITE_BIT:
2323 /* We're transitioning a buffer that was previously used as write
2324 * destination through the data port. To make its content available
2325 * to future operations, flush the data cache.
2326 */
2327 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2328 break;
2329 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2330 /* We're transitioning a buffer that was previously used as render
2331 * target. To make its content available to future operations, flush
2332 * the render target cache.
2333 */
2334 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2335 break;
2336 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2337 /* We're transitioning a buffer that was previously used as depth
2338 * buffer. To make its content available to future operations, flush
2339 * the depth cache.
2340 */
2341 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2342 break;
2343 case VK_ACCESS_TRANSFER_WRITE_BIT:
2344 /* We're transitioning a buffer that was previously used as a
2345 * transfer write destination. Generic write operations include color
2346 * & depth operations as well as buffer operations like :
2347 * - vkCmdClearColorImage()
2348 * - vkCmdClearDepthStencilImage()
2349 * - vkCmdBlitImage()
2350 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2351 *
2352 * Most of these operations are implemented using Blorp which writes
2353 * through the render target, so flush that cache to make it visible
2354 * to future operations. And for depth related operations we also
2355 * need to flush the depth cache.
2356 */
2357 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2358 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2359 break;
2360 case VK_ACCESS_MEMORY_WRITE_BIT:
2361 /* We're transitioning a buffer for generic write operations. Flush
2362 * all the caches.
2363 */
2364 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2365 break;
2366 default:
2367 break; /* Nothing to do */
2368 }
2369 }
2370
2371 return pipe_bits;
2372 }
2373
2374 static inline enum anv_pipe_bits
2375 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2376 {
2377 enum anv_pipe_bits pipe_bits = 0;
2378
2379 unsigned b;
2380 for_each_bit(b, flags) {
2381 switch ((VkAccessFlagBits)(1 << b)) {
2382 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2383 /* Indirect draw commands take a buffer as input that we're going to
2384 * read from the command streamer to load some of the HW registers
2385 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2386 * command streamer stall so that all the cache flushes have
2387 * completed before the command streamer loads from memory.
2388 */
2389 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2390 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2391 * through a vertex buffer, so invalidate that cache.
2392 */
2393 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2394 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2395 * UBO from the buffer, so we need to invalidate constant cache.
2396 */
2397 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2398 break;
2399 case VK_ACCESS_INDEX_READ_BIT:
2400 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2401 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2402 * commands, so we invalidate the VF cache to make sure there is no
2403 * stale data when we start rendering.
2404 */
2405 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2406 break;
2407 case VK_ACCESS_UNIFORM_READ_BIT:
2408 /* We transitioning a buffer to be used as uniform data. Because
2409 * uniform is accessed through the data port & sampler, we need to
2410 * invalidate the texture cache (sampler) & constant cache (data
2411 * port) to avoid stale data.
2412 */
2413 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2414 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2415 break;
2416 case VK_ACCESS_SHADER_READ_BIT:
2417 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2418 case VK_ACCESS_TRANSFER_READ_BIT:
2419 /* Transitioning a buffer to be read through the sampler, so
2420 * invalidate the texture cache, we don't want any stale data.
2421 */
2422 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2423 break;
2424 case VK_ACCESS_MEMORY_READ_BIT:
2425 /* Transitioning a buffer for generic read, invalidate all the
2426 * caches.
2427 */
2428 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2429 break;
2430 case VK_ACCESS_MEMORY_WRITE_BIT:
2431 /* Generic write, make sure all previously written things land in
2432 * memory.
2433 */
2434 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2435 break;
2436 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2437 /* Transitioning a buffer for conditional rendering. We'll load the
2438 * content of this buffer into HW registers using the command
2439 * streamer, so we need to stall the command streamer to make sure
2440 * any in-flight flush operations have completed.
2441 */
2442 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2443 break;
2444 default:
2445 break; /* Nothing to do */
2446 }
2447 }
2448
2449 return pipe_bits;
2450 }
2451
2452 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2453 VK_IMAGE_ASPECT_COLOR_BIT | \
2454 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2455 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2456 VK_IMAGE_ASPECT_PLANE_2_BIT)
2457 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2458 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2459 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2460 VK_IMAGE_ASPECT_PLANE_2_BIT)
2461
2462 struct anv_vertex_binding {
2463 struct anv_buffer * buffer;
2464 VkDeviceSize offset;
2465 };
2466
2467 struct anv_xfb_binding {
2468 struct anv_buffer * buffer;
2469 VkDeviceSize offset;
2470 VkDeviceSize size;
2471 };
2472
2473 struct anv_push_constants {
2474 /** Push constant data provided by the client through vkPushConstants */
2475 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2476
2477 /** Dynamic offsets for dynamic UBOs and SSBOs */
2478 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2479
2480 /** Pad out to a multiple of 32 bytes */
2481 uint32_t push_ubo_sizes[4];
2482
2483 struct {
2484 /** Base workgroup ID
2485 *
2486 * Used for vkCmdDispatchBase.
2487 */
2488 uint32_t base_work_group_id[3];
2489
2490 /** Subgroup ID
2491 *
2492 * This is never set by software but is implicitly filled out when
2493 * uploading the push constants for compute shaders.
2494 */
2495 uint32_t subgroup_id;
2496 } cs;
2497 };
2498
2499 struct anv_dynamic_state {
2500 struct {
2501 uint32_t count;
2502 VkViewport viewports[MAX_VIEWPORTS];
2503 } viewport;
2504
2505 struct {
2506 uint32_t count;
2507 VkRect2D scissors[MAX_SCISSORS];
2508 } scissor;
2509
2510 float line_width;
2511
2512 struct {
2513 float bias;
2514 float clamp;
2515 float slope;
2516 } depth_bias;
2517
2518 float blend_constants[4];
2519
2520 struct {
2521 float min;
2522 float max;
2523 } depth_bounds;
2524
2525 struct {
2526 uint32_t front;
2527 uint32_t back;
2528 } stencil_compare_mask;
2529
2530 struct {
2531 uint32_t front;
2532 uint32_t back;
2533 } stencil_write_mask;
2534
2535 struct {
2536 uint32_t front;
2537 uint32_t back;
2538 } stencil_reference;
2539
2540 struct {
2541 uint32_t factor;
2542 uint16_t pattern;
2543 } line_stipple;
2544 };
2545
2546 extern const struct anv_dynamic_state default_dynamic_state;
2547
2548 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2549 const struct anv_dynamic_state *src,
2550 uint32_t copy_mask);
2551
2552 struct anv_surface_state {
2553 struct anv_state state;
2554 /** Address of the surface referred to by this state
2555 *
2556 * This address is relative to the start of the BO.
2557 */
2558 struct anv_address address;
2559 /* Address of the aux surface, if any
2560 *
2561 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2562 *
2563 * With the exception of gen8, the bottom 12 bits of this address' offset
2564 * include extra aux information.
2565 */
2566 struct anv_address aux_address;
2567 /* Address of the clear color, if any
2568 *
2569 * This address is relative to the start of the BO.
2570 */
2571 struct anv_address clear_address;
2572 };
2573
2574 /**
2575 * Attachment state when recording a renderpass instance.
2576 *
2577 * The clear value is valid only if there exists a pending clear.
2578 */
2579 struct anv_attachment_state {
2580 enum isl_aux_usage aux_usage;
2581 enum isl_aux_usage input_aux_usage;
2582 struct anv_surface_state color;
2583 struct anv_surface_state input;
2584
2585 VkImageLayout current_layout;
2586 VkImageLayout current_stencil_layout;
2587 VkImageAspectFlags pending_clear_aspects;
2588 VkImageAspectFlags pending_load_aspects;
2589 bool fast_clear;
2590 VkClearValue clear_value;
2591 bool clear_color_is_zero_one;
2592 bool clear_color_is_zero;
2593
2594 /* When multiview is active, attachments with a renderpass clear
2595 * operation have their respective layers cleared on the first
2596 * subpass that uses them, and only in that subpass. We keep track
2597 * of this using a bitfield to indicate which layers of an attachment
2598 * have not been cleared yet when multiview is active.
2599 */
2600 uint32_t pending_clear_views;
2601 struct anv_image_view * image_view;
2602 };
2603
2604 /** State tracking for vertex buffer flushes
2605 *
2606 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2607 * addresses. If you happen to have two vertex buffers which get placed
2608 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2609 * collisions. In order to solve this problem, we track vertex address ranges
2610 * which are live in the cache and invalidate the cache if one ever exceeds 32
2611 * bits.
2612 */
2613 struct anv_vb_cache_range {
2614 /* Virtual address at which the live vertex buffer cache range starts for
2615 * this vertex buffer index.
2616 */
2617 uint64_t start;
2618
2619 /* Virtual address of the byte after where vertex buffer cache range ends.
2620 * This is exclusive such that end - start is the size of the range.
2621 */
2622 uint64_t end;
2623 };
2624
2625 /** State tracking for particular pipeline bind point
2626 *
2627 * This struct is the base struct for anv_cmd_graphics_state and
2628 * anv_cmd_compute_state. These are used to track state which is bound to a
2629 * particular type of pipeline. Generic state that applies per-stage such as
2630 * binding table offsets and push constants is tracked generically with a
2631 * per-stage array in anv_cmd_state.
2632 */
2633 struct anv_cmd_pipeline_state {
2634 struct anv_descriptor_set *descriptors[MAX_SETS];
2635 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2636 };
2637
2638 /** State tracking for graphics pipeline
2639 *
2640 * This has anv_cmd_pipeline_state as a base struct to track things which get
2641 * bound to a graphics pipeline. Along with general pipeline bind point state
2642 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2643 * state which is graphics-specific.
2644 */
2645 struct anv_cmd_graphics_state {
2646 struct anv_cmd_pipeline_state base;
2647
2648 struct anv_graphics_pipeline *pipeline;
2649
2650 anv_cmd_dirty_mask_t dirty;
2651 uint32_t vb_dirty;
2652
2653 struct anv_vb_cache_range ib_bound_range;
2654 struct anv_vb_cache_range ib_dirty_range;
2655 struct anv_vb_cache_range vb_bound_ranges[33];
2656 struct anv_vb_cache_range vb_dirty_ranges[33];
2657
2658 struct anv_dynamic_state dynamic;
2659
2660 struct {
2661 struct anv_buffer *index_buffer;
2662 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2663 uint32_t index_offset;
2664 } gen7;
2665 };
2666
2667 /** State tracking for compute pipeline
2668 *
2669 * This has anv_cmd_pipeline_state as a base struct to track things which get
2670 * bound to a compute pipeline. Along with general pipeline bind point state
2671 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2672 * state which is compute-specific.
2673 */
2674 struct anv_cmd_compute_state {
2675 struct anv_cmd_pipeline_state base;
2676
2677 struct anv_compute_pipeline *pipeline;
2678
2679 bool pipeline_dirty;
2680
2681 struct anv_address num_workgroups;
2682 };
2683
2684 /** State required while building cmd buffer */
2685 struct anv_cmd_state {
2686 /* PIPELINE_SELECT.PipelineSelection */
2687 uint32_t current_pipeline;
2688 const struct gen_l3_config * current_l3_config;
2689 uint32_t last_aux_map_state;
2690
2691 struct anv_cmd_graphics_state gfx;
2692 struct anv_cmd_compute_state compute;
2693
2694 enum anv_pipe_bits pending_pipe_bits;
2695 VkShaderStageFlags descriptors_dirty;
2696 VkShaderStageFlags push_constants_dirty;
2697
2698 struct anv_framebuffer * framebuffer;
2699 struct anv_render_pass * pass;
2700 struct anv_subpass * subpass;
2701 VkRect2D render_area;
2702 uint32_t restart_index;
2703 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2704 bool xfb_enabled;
2705 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2706 VkShaderStageFlags push_constant_stages;
2707 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2708 struct anv_state binding_tables[MESA_SHADER_STAGES];
2709 struct anv_state samplers[MESA_SHADER_STAGES];
2710
2711 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2712 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2713 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2714
2715 /**
2716 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2717 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2718 * and before invoking the secondary in ExecuteCommands.
2719 */
2720 bool pma_fix_enabled;
2721
2722 /**
2723 * Whether or not we know for certain that HiZ is enabled for the current
2724 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2725 * enabled or not, this will be false.
2726 */
2727 bool hiz_enabled;
2728
2729 bool conditional_render_enabled;
2730
2731 /**
2732 * Last rendering scale argument provided to
2733 * genX(cmd_buffer_emit_hashing_mode)().
2734 */
2735 unsigned current_hash_scale;
2736
2737 /**
2738 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2739 * valid only when recording a render pass instance.
2740 */
2741 struct anv_attachment_state * attachments;
2742
2743 /**
2744 * Surface states for color render targets. These are stored in a single
2745 * flat array. For depth-stencil attachments, the surface state is simply
2746 * left blank.
2747 */
2748 struct anv_state render_pass_states;
2749
2750 /**
2751 * A null surface state of the right size to match the framebuffer. This
2752 * is one of the states in render_pass_states.
2753 */
2754 struct anv_state null_surface_state;
2755 };
2756
2757 struct anv_cmd_pool {
2758 VkAllocationCallbacks alloc;
2759 struct list_head cmd_buffers;
2760 };
2761
2762 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2763
2764 enum anv_cmd_buffer_exec_mode {
2765 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2766 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2767 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2768 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2769 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2770 };
2771
2772 struct anv_cmd_buffer {
2773 VK_LOADER_DATA _loader_data;
2774
2775 struct anv_device * device;
2776
2777 struct anv_cmd_pool * pool;
2778 struct list_head pool_link;
2779
2780 struct anv_batch batch;
2781
2782 /* Fields required for the actual chain of anv_batch_bo's.
2783 *
2784 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2785 */
2786 struct list_head batch_bos;
2787 enum anv_cmd_buffer_exec_mode exec_mode;
2788
2789 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2790 * referenced by this command buffer
2791 *
2792 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2793 */
2794 struct u_vector seen_bbos;
2795
2796 /* A vector of int32_t's for every block of binding tables.
2797 *
2798 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2799 */
2800 struct u_vector bt_block_states;
2801 struct anv_state bt_next;
2802
2803 struct anv_reloc_list surface_relocs;
2804 /** Last seen surface state block pool center bo offset */
2805 uint32_t last_ss_pool_center;
2806
2807 /* Serial for tracking buffer completion */
2808 uint32_t serial;
2809
2810 /* Stream objects for storing temporary data */
2811 struct anv_state_stream surface_state_stream;
2812 struct anv_state_stream dynamic_state_stream;
2813
2814 VkCommandBufferUsageFlags usage_flags;
2815 VkCommandBufferLevel level;
2816
2817 struct anv_cmd_state state;
2818
2819 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2820 uint64_t intel_perf_marker;
2821 };
2822
2823 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2824 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2825 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2826 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2827 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2828 struct anv_cmd_buffer *secondary);
2829 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2830 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2831 struct anv_cmd_buffer *cmd_buffer,
2832 const VkSemaphore *in_semaphores,
2833 const uint64_t *in_wait_values,
2834 uint32_t num_in_semaphores,
2835 const VkSemaphore *out_semaphores,
2836 const uint64_t *out_signal_values,
2837 uint32_t num_out_semaphores,
2838 VkFence fence);
2839
2840 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2841
2842 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2843 const void *data, uint32_t size, uint32_t alignment);
2844 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2845 uint32_t *a, uint32_t *b,
2846 uint32_t dwords, uint32_t alignment);
2847
2848 struct anv_address
2849 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2850 struct anv_state
2851 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2852 uint32_t entries, uint32_t *state_offset);
2853 struct anv_state
2854 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2855 struct anv_state
2856 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2857 uint32_t size, uint32_t alignment);
2858
2859 VkResult
2860 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2861
2862 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2863 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2864 bool depth_clamp_enable);
2865 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2866
2867 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2868 struct anv_render_pass *pass,
2869 struct anv_framebuffer *framebuffer,
2870 const VkClearValue *clear_values);
2871
2872 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2873
2874 struct anv_state
2875 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2876 gl_shader_stage stage);
2877 struct anv_state
2878 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2879
2880 const struct anv_image_view *
2881 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2882
2883 VkResult
2884 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2885 uint32_t num_entries,
2886 uint32_t *state_offset,
2887 struct anv_state *bt_state);
2888
2889 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2890
2891 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2892
2893 enum anv_fence_type {
2894 ANV_FENCE_TYPE_NONE = 0,
2895 ANV_FENCE_TYPE_BO,
2896 ANV_FENCE_TYPE_WSI_BO,
2897 ANV_FENCE_TYPE_SYNCOBJ,
2898 ANV_FENCE_TYPE_WSI,
2899 };
2900
2901 enum anv_bo_fence_state {
2902 /** Indicates that this is a new (or newly reset fence) */
2903 ANV_BO_FENCE_STATE_RESET,
2904
2905 /** Indicates that this fence has been submitted to the GPU but is still
2906 * (as far as we know) in use by the GPU.
2907 */
2908 ANV_BO_FENCE_STATE_SUBMITTED,
2909
2910 ANV_BO_FENCE_STATE_SIGNALED,
2911 };
2912
2913 struct anv_fence_impl {
2914 enum anv_fence_type type;
2915
2916 union {
2917 /** Fence implementation for BO fences
2918 *
2919 * These fences use a BO and a set of CPU-tracked state flags. The BO
2920 * is added to the object list of the last execbuf call in a QueueSubmit
2921 * and is marked EXEC_WRITE. The state flags track when the BO has been
2922 * submitted to the kernel. We need to do this because Vulkan lets you
2923 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2924 * will say it's idle in this case.
2925 */
2926 struct {
2927 struct anv_bo *bo;
2928 enum anv_bo_fence_state state;
2929 } bo;
2930
2931 /** DRM syncobj handle for syncobj-based fences */
2932 uint32_t syncobj;
2933
2934 /** WSI fence */
2935 struct wsi_fence *fence_wsi;
2936 };
2937 };
2938
2939 struct anv_fence {
2940 /* Permanent fence state. Every fence has some form of permanent state
2941 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2942 * cross-process fences) or it could just be a dummy for use internally.
2943 */
2944 struct anv_fence_impl permanent;
2945
2946 /* Temporary fence state. A fence *may* have temporary state. That state
2947 * is added to the fence by an import operation and is reset back to
2948 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2949 * state cannot be signaled because the fence must already be signaled
2950 * before the temporary state can be exported from the fence in the other
2951 * process and imported here.
2952 */
2953 struct anv_fence_impl temporary;
2954 };
2955
2956 void anv_fence_reset_temporary(struct anv_device *device,
2957 struct anv_fence *fence);
2958
2959 struct anv_event {
2960 uint64_t semaphore;
2961 struct anv_state state;
2962 };
2963
2964 enum anv_semaphore_type {
2965 ANV_SEMAPHORE_TYPE_NONE = 0,
2966 ANV_SEMAPHORE_TYPE_DUMMY,
2967 ANV_SEMAPHORE_TYPE_BO,
2968 ANV_SEMAPHORE_TYPE_WSI_BO,
2969 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2970 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2971 ANV_SEMAPHORE_TYPE_TIMELINE,
2972 };
2973
2974 struct anv_timeline_point {
2975 struct list_head link;
2976
2977 uint64_t serial;
2978
2979 /* Number of waiter on this point, when > 0 the point should not be garbage
2980 * collected.
2981 */
2982 int waiting;
2983
2984 /* BO used for synchronization. */
2985 struct anv_bo *bo;
2986 };
2987
2988 struct anv_timeline {
2989 pthread_mutex_t mutex;
2990 pthread_cond_t cond;
2991
2992 uint64_t highest_past;
2993 uint64_t highest_pending;
2994
2995 struct list_head points;
2996 struct list_head free_points;
2997 };
2998
2999 struct anv_semaphore_impl {
3000 enum anv_semaphore_type type;
3001
3002 union {
3003 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3004 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3005 * object list on any execbuf2 calls for which this semaphore is used as
3006 * a wait or signal fence. When used as a signal fence or when type ==
3007 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3008 */
3009 struct anv_bo *bo;
3010
3011 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3012 * If the semaphore is in the unsignaled state due to either just being
3013 * created or because it has been used for a wait, fd will be -1.
3014 */
3015 int fd;
3016
3017 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3018 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3019 * import so we don't need to bother with a userspace cache.
3020 */
3021 uint32_t syncobj;
3022
3023 /* Non shareable timeline semaphore
3024 *
3025 * Used when kernel don't have support for timeline semaphores.
3026 */
3027 struct anv_timeline timeline;
3028 };
3029 };
3030
3031 struct anv_semaphore {
3032 uint32_t refcount;
3033
3034 /* Permanent semaphore state. Every semaphore has some form of permanent
3035 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3036 * (for cross-process semaphores0 or it could just be a dummy for use
3037 * internally.
3038 */
3039 struct anv_semaphore_impl permanent;
3040
3041 /* Temporary semaphore state. A semaphore *may* have temporary state.
3042 * That state is added to the semaphore by an import operation and is reset
3043 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3044 * semaphore with temporary state cannot be signaled because the semaphore
3045 * must already be signaled before the temporary state can be exported from
3046 * the semaphore in the other process and imported here.
3047 */
3048 struct anv_semaphore_impl temporary;
3049 };
3050
3051 void anv_semaphore_reset_temporary(struct anv_device *device,
3052 struct anv_semaphore *semaphore);
3053
3054 struct anv_shader_module {
3055 unsigned char sha1[20];
3056 uint32_t size;
3057 char data[0];
3058 };
3059
3060 static inline gl_shader_stage
3061 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3062 {
3063 assert(__builtin_popcount(vk_stage) == 1);
3064 return ffs(vk_stage) - 1;
3065 }
3066
3067 static inline VkShaderStageFlagBits
3068 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3069 {
3070 return (1 << mesa_stage);
3071 }
3072
3073 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3074
3075 #define anv_foreach_stage(stage, stage_bits) \
3076 for (gl_shader_stage stage, \
3077 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3078 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3079 __tmp &= ~(1 << (stage)))
3080
3081 struct anv_pipeline_bind_map {
3082 unsigned char surface_sha1[20];
3083 unsigned char sampler_sha1[20];
3084 unsigned char push_sha1[20];
3085
3086 uint32_t surface_count;
3087 uint32_t sampler_count;
3088
3089 struct anv_pipeline_binding * surface_to_descriptor;
3090 struct anv_pipeline_binding * sampler_to_descriptor;
3091
3092 struct anv_push_range push_ranges[4];
3093 };
3094
3095 struct anv_shader_bin_key {
3096 uint32_t size;
3097 uint8_t data[0];
3098 };
3099
3100 struct anv_shader_bin {
3101 uint32_t ref_cnt;
3102
3103 gl_shader_stage stage;
3104
3105 const struct anv_shader_bin_key *key;
3106
3107 struct anv_state kernel;
3108 uint32_t kernel_size;
3109
3110 struct anv_state constant_data;
3111 uint32_t constant_data_size;
3112
3113 const struct brw_stage_prog_data *prog_data;
3114 uint32_t prog_data_size;
3115
3116 struct brw_compile_stats stats[3];
3117 uint32_t num_stats;
3118
3119 struct nir_xfb_info *xfb_info;
3120
3121 struct anv_pipeline_bind_map bind_map;
3122 };
3123
3124 struct anv_shader_bin *
3125 anv_shader_bin_create(struct anv_device *device,
3126 gl_shader_stage stage,
3127 const void *key, uint32_t key_size,
3128 const void *kernel, uint32_t kernel_size,
3129 const void *constant_data, uint32_t constant_data_size,
3130 const struct brw_stage_prog_data *prog_data,
3131 uint32_t prog_data_size,
3132 const struct brw_compile_stats *stats, uint32_t num_stats,
3133 const struct nir_xfb_info *xfb_info,
3134 const struct anv_pipeline_bind_map *bind_map);
3135
3136 void
3137 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3138
3139 static inline void
3140 anv_shader_bin_ref(struct anv_shader_bin *shader)
3141 {
3142 assert(shader && shader->ref_cnt >= 1);
3143 p_atomic_inc(&shader->ref_cnt);
3144 }
3145
3146 static inline void
3147 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3148 {
3149 assert(shader && shader->ref_cnt >= 1);
3150 if (p_atomic_dec_zero(&shader->ref_cnt))
3151 anv_shader_bin_destroy(device, shader);
3152 }
3153
3154 struct anv_pipeline_executable {
3155 gl_shader_stage stage;
3156
3157 struct brw_compile_stats stats;
3158
3159 char *nir;
3160 char *disasm;
3161 };
3162
3163 enum anv_pipeline_type {
3164 ANV_PIPELINE_GRAPHICS,
3165 ANV_PIPELINE_COMPUTE,
3166 };
3167
3168 struct anv_pipeline {
3169 struct anv_device * device;
3170
3171 struct anv_batch batch;
3172 struct anv_reloc_list batch_relocs;
3173
3174 void * mem_ctx;
3175
3176 enum anv_pipeline_type type;
3177 VkPipelineCreateFlags flags;
3178
3179 struct util_dynarray executables;
3180
3181 const struct gen_l3_config * l3_config;
3182 };
3183
3184 struct anv_graphics_pipeline {
3185 struct anv_pipeline base;
3186
3187 uint32_t batch_data[512];
3188
3189 anv_cmd_dirty_mask_t dynamic_state_mask;
3190 struct anv_dynamic_state dynamic_state;
3191
3192 uint32_t topology;
3193
3194 struct anv_subpass * subpass;
3195
3196 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3197
3198 VkShaderStageFlags active_stages;
3199
3200 bool primitive_restart;
3201 bool writes_depth;
3202 bool depth_test_enable;
3203 bool writes_stencil;
3204 bool stencil_test_enable;
3205 bool depth_clamp_enable;
3206 bool depth_clip_enable;
3207 bool sample_shading_enable;
3208 bool kill_pixel;
3209 bool depth_bounds_test_enable;
3210
3211 /* When primitive replication is used, subpass->view_mask will describe what
3212 * views to replicate.
3213 */
3214 bool use_primitive_replication;
3215
3216 struct anv_state blend_state;
3217
3218 uint32_t vb_used;
3219 struct anv_pipeline_vertex_binding {
3220 uint32_t stride;
3221 bool instanced;
3222 uint32_t instance_divisor;
3223 } vb[MAX_VBS];
3224
3225 struct {
3226 uint32_t sf[7];
3227 uint32_t depth_stencil_state[3];
3228 } gen7;
3229
3230 struct {
3231 uint32_t sf[4];
3232 uint32_t raster[5];
3233 uint32_t wm_depth_stencil[3];
3234 } gen8;
3235
3236 struct {
3237 uint32_t wm_depth_stencil[4];
3238 } gen9;
3239 };
3240
3241 struct anv_compute_pipeline {
3242 struct anv_pipeline base;
3243
3244 struct anv_shader_bin * cs;
3245 uint32_t cs_right_mask;
3246 uint32_t batch_data[9];
3247 uint32_t interface_descriptor_data[8];
3248 };
3249
3250 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3251 static inline struct anv_##pipe_type##_pipeline * \
3252 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3253 { \
3254 assert(pipeline->type == pipe_enum); \
3255 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3256 }
3257
3258 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3259 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3260
3261 static inline bool
3262 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3263 gl_shader_stage stage)
3264 {
3265 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3266 }
3267
3268 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3269 static inline const struct brw_##prefix##_prog_data * \
3270 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3271 { \
3272 if (anv_pipeline_has_stage(pipeline, stage)) { \
3273 return (const struct brw_##prefix##_prog_data *) \
3274 pipeline->shaders[stage]->prog_data; \
3275 } else { \
3276 return NULL; \
3277 } \
3278 }
3279
3280 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3281 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3282 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3283 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3284 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3285
3286 static inline const struct brw_cs_prog_data *
3287 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3288 {
3289 assert(pipeline->cs);
3290 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3291 }
3292
3293 static inline const struct brw_vue_prog_data *
3294 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3295 {
3296 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3297 return &get_gs_prog_data(pipeline)->base;
3298 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3299 return &get_tes_prog_data(pipeline)->base;
3300 else
3301 return &get_vs_prog_data(pipeline)->base;
3302 }
3303
3304 VkResult
3305 anv_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3306 struct anv_pipeline_cache *cache,
3307 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3308 const VkAllocationCallbacks *alloc);
3309
3310 VkResult
3311 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3312 struct anv_pipeline_cache *cache,
3313 const VkComputePipelineCreateInfo *info,
3314 const struct anv_shader_module *module,
3315 const char *entrypoint,
3316 const VkSpecializationInfo *spec_info);
3317
3318 struct anv_format_plane {
3319 enum isl_format isl_format:16;
3320 struct isl_swizzle swizzle;
3321
3322 /* Whether this plane contains chroma channels */
3323 bool has_chroma;
3324
3325 /* For downscaling of YUV planes */
3326 uint8_t denominator_scales[2];
3327
3328 /* How to map sampled ycbcr planes to a single 4 component element. */
3329 struct isl_swizzle ycbcr_swizzle;
3330
3331 /* What aspect is associated to this plane */
3332 VkImageAspectFlags aspect;
3333 };
3334
3335
3336 struct anv_format {
3337 struct anv_format_plane planes[3];
3338 VkFormat vk_format;
3339 uint8_t n_planes;
3340 bool can_ycbcr;
3341 };
3342
3343 /**
3344 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3345 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3346 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3347 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3348 */
3349 static inline uint32_t
3350 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3351 VkImageAspectFlags aspect_mask)
3352 {
3353 switch (aspect_mask) {
3354 case VK_IMAGE_ASPECT_COLOR_BIT:
3355 case VK_IMAGE_ASPECT_DEPTH_BIT:
3356 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3357 return 0;
3358 case VK_IMAGE_ASPECT_STENCIL_BIT:
3359 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3360 return 0;
3361 /* Fall-through */
3362 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3363 return 1;
3364 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3365 return 2;
3366 default:
3367 /* Purposefully assert with depth/stencil aspects. */
3368 unreachable("invalid image aspect");
3369 }
3370 }
3371
3372 static inline VkImageAspectFlags
3373 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3374 uint32_t plane)
3375 {
3376 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3377 if (util_bitcount(image_aspects) > 1)
3378 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3379 return VK_IMAGE_ASPECT_COLOR_BIT;
3380 }
3381 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3382 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3383 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3384 return VK_IMAGE_ASPECT_STENCIL_BIT;
3385 }
3386
3387 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3388 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3389
3390 const struct anv_format *
3391 anv_get_format(VkFormat format);
3392
3393 static inline uint32_t
3394 anv_get_format_planes(VkFormat vk_format)
3395 {
3396 const struct anv_format *format = anv_get_format(vk_format);
3397
3398 return format != NULL ? format->n_planes : 0;
3399 }
3400
3401 struct anv_format_plane
3402 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3403 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3404
3405 static inline enum isl_format
3406 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3407 VkImageAspectFlags aspect, VkImageTiling tiling)
3408 {
3409 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3410 }
3411
3412 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3413 VkImageCreateFlags create_flags,
3414 VkFormat vk_format,
3415 VkImageTiling vk_tiling,
3416 const VkImageFormatListCreateInfoKHR *fmt_list);
3417
3418 static inline struct isl_swizzle
3419 anv_swizzle_for_render(struct isl_swizzle swizzle)
3420 {
3421 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3422 * RGB as RGBA for texturing
3423 */
3424 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3425 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3426
3427 /* But it doesn't matter what we render to that channel */
3428 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3429
3430 return swizzle;
3431 }
3432
3433 void
3434 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3435
3436 /**
3437 * Subsurface of an anv_image.
3438 */
3439 struct anv_surface {
3440 /** Valid only if isl_surf::size_B > 0. */
3441 struct isl_surf isl;
3442
3443 /**
3444 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3445 */
3446 uint32_t offset;
3447 };
3448
3449 struct anv_image {
3450 VkImageType type; /**< VkImageCreateInfo::imageType */
3451 /* The original VkFormat provided by the client. This may not match any
3452 * of the actual surface formats.
3453 */
3454 VkFormat vk_format;
3455 const struct anv_format *format;
3456
3457 VkImageAspectFlags aspects;
3458 VkExtent3D extent;
3459 uint32_t levels;
3460 uint32_t array_size;
3461 uint32_t samples; /**< VkImageCreateInfo::samples */
3462 uint32_t n_planes;
3463 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3464 VkImageUsageFlags stencil_usage;
3465 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3466 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3467
3468 /** True if this is needs to be bound to an appropriately tiled BO.
3469 *
3470 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3471 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3472 * we require a dedicated allocation so that we can know to allocate a
3473 * tiled buffer.
3474 */
3475 bool needs_set_tiling;
3476
3477 /**
3478 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3479 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3480 */
3481 uint64_t drm_format_mod;
3482
3483 VkDeviceSize size;
3484 uint32_t alignment;
3485
3486 /* Whether the image is made of several underlying buffer objects rather a
3487 * single one with different offsets.
3488 */
3489 bool disjoint;
3490
3491 /* Image was created with external format. */
3492 bool external_format;
3493
3494 /**
3495 * Image subsurfaces
3496 *
3497 * For each foo, anv_image::planes[x].surface is valid if and only if
3498 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3499 * to figure the number associated with a given aspect.
3500 *
3501 * The hardware requires that the depth buffer and stencil buffer be
3502 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3503 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3504 * allocate the depth and stencil buffers as separate surfaces in the same
3505 * bo.
3506 *
3507 * Memory layout :
3508 *
3509 * -----------------------
3510 * | surface0 | /|\
3511 * ----------------------- |
3512 * | shadow surface0 | |
3513 * ----------------------- | Plane 0
3514 * | aux surface0 | |
3515 * ----------------------- |
3516 * | fast clear colors0 | \|/
3517 * -----------------------
3518 * | surface1 | /|\
3519 * ----------------------- |
3520 * | shadow surface1 | |
3521 * ----------------------- | Plane 1
3522 * | aux surface1 | |
3523 * ----------------------- |
3524 * | fast clear colors1 | \|/
3525 * -----------------------
3526 * | ... |
3527 * | |
3528 * -----------------------
3529 */
3530 struct {
3531 /**
3532 * Offset of the entire plane (whenever the image is disjoint this is
3533 * set to 0).
3534 */
3535 uint32_t offset;
3536
3537 VkDeviceSize size;
3538 uint32_t alignment;
3539
3540 struct anv_surface surface;
3541
3542 /**
3543 * A surface which shadows the main surface and may have different
3544 * tiling. This is used for sampling using a tiling that isn't supported
3545 * for other operations.
3546 */
3547 struct anv_surface shadow_surface;
3548
3549 /**
3550 * The base aux usage for this image. For color images, this can be
3551 * either CCS_E or CCS_D depending on whether or not we can reliably
3552 * leave CCS on all the time.
3553 */
3554 enum isl_aux_usage aux_usage;
3555
3556 struct anv_surface aux_surface;
3557
3558 /**
3559 * Offset of the fast clear state (used to compute the
3560 * fast_clear_state_offset of the following planes).
3561 */
3562 uint32_t fast_clear_state_offset;
3563
3564 /**
3565 * BO associated with this plane, set when bound.
3566 */
3567 struct anv_address address;
3568
3569 /**
3570 * When destroying the image, also free the bo.
3571 * */
3572 bool bo_is_owned;
3573 } planes[3];
3574 };
3575
3576 /* The ordering of this enum is important */
3577 enum anv_fast_clear_type {
3578 /** Image does not have/support any fast-clear blocks */
3579 ANV_FAST_CLEAR_NONE = 0,
3580 /** Image has/supports fast-clear but only to the default value */
3581 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3582 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3583 ANV_FAST_CLEAR_ANY = 2,
3584 };
3585
3586 /* Returns the number of auxiliary buffer levels attached to an image. */
3587 static inline uint8_t
3588 anv_image_aux_levels(const struct anv_image * const image,
3589 VkImageAspectFlagBits aspect)
3590 {
3591 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3592 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3593 return 0;
3594
3595 /* The Gen12 CCS aux surface is represented with only one level. */
3596 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3597 image->planes[plane].surface.isl.levels :
3598 image->planes[plane].aux_surface.isl.levels;
3599 }
3600
3601 /* Returns the number of auxiliary buffer layers attached to an image. */
3602 static inline uint32_t
3603 anv_image_aux_layers(const struct anv_image * const image,
3604 VkImageAspectFlagBits aspect,
3605 const uint8_t miplevel)
3606 {
3607 assert(image);
3608
3609 /* The miplevel must exist in the main buffer. */
3610 assert(miplevel < image->levels);
3611
3612 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3613 /* There are no layers with auxiliary data because the miplevel has no
3614 * auxiliary data.
3615 */
3616 return 0;
3617 } else {
3618 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3619
3620 /* The Gen12 CCS aux surface is represented with only one layer. */
3621 const struct isl_extent4d *aux_logical_level0_px =
3622 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3623 &image->planes[plane].surface.isl.logical_level0_px :
3624 &image->planes[plane].aux_surface.isl.logical_level0_px;
3625
3626 return MAX2(aux_logical_level0_px->array_len,
3627 aux_logical_level0_px->depth >> miplevel);
3628 }
3629 }
3630
3631 static inline struct anv_address
3632 anv_image_get_clear_color_addr(const struct anv_device *device,
3633 const struct anv_image *image,
3634 VkImageAspectFlagBits aspect)
3635 {
3636 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3637
3638 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3639 return anv_address_add(image->planes[plane].address,
3640 image->planes[plane].fast_clear_state_offset);
3641 }
3642
3643 static inline struct anv_address
3644 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3645 const struct anv_image *image,
3646 VkImageAspectFlagBits aspect)
3647 {
3648 struct anv_address addr =
3649 anv_image_get_clear_color_addr(device, image, aspect);
3650
3651 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3652 device->isl_dev.ss.clear_color_state_size :
3653 device->isl_dev.ss.clear_value_size;
3654 return anv_address_add(addr, clear_color_state_size);
3655 }
3656
3657 static inline struct anv_address
3658 anv_image_get_compression_state_addr(const struct anv_device *device,
3659 const struct anv_image *image,
3660 VkImageAspectFlagBits aspect,
3661 uint32_t level, uint32_t array_layer)
3662 {
3663 assert(level < anv_image_aux_levels(image, aspect));
3664 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3665 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3666 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3667
3668 struct anv_address addr =
3669 anv_image_get_fast_clear_type_addr(device, image, aspect);
3670 addr.offset += 4; /* Go past the fast clear type */
3671
3672 if (image->type == VK_IMAGE_TYPE_3D) {
3673 for (uint32_t l = 0; l < level; l++)
3674 addr.offset += anv_minify(image->extent.depth, l) * 4;
3675 } else {
3676 addr.offset += level * image->array_size * 4;
3677 }
3678 addr.offset += array_layer * 4;
3679
3680 assert(addr.offset <
3681 image->planes[plane].address.offset + image->planes[plane].size);
3682 return addr;
3683 }
3684
3685 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3686 static inline bool
3687 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3688 const struct anv_image *image)
3689 {
3690 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3691 return false;
3692
3693 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3694 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3695 * say:
3696 *
3697 * "If this field is set to AUX_HIZ, Number of Multisamples must
3698 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3699 */
3700 if (image->type == VK_IMAGE_TYPE_3D)
3701 return false;
3702
3703 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3704 * struct. There's documentation which suggests that this feature actually
3705 * reduces performance on BDW, but it has only been observed to help so
3706 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3707 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3708 */
3709 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3710 return false;
3711
3712 return image->samples == 1;
3713 }
3714
3715 static inline bool
3716 anv_image_plane_uses_aux_map(const struct anv_device *device,
3717 const struct anv_image *image,
3718 uint32_t plane)
3719 {
3720 return device->info.has_aux_map &&
3721 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3722 }
3723
3724 void
3725 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3726 const struct anv_image *image,
3727 VkImageAspectFlagBits aspect,
3728 enum isl_aux_usage aux_usage,
3729 uint32_t level,
3730 uint32_t base_layer,
3731 uint32_t layer_count);
3732
3733 void
3734 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3735 const struct anv_image *image,
3736 VkImageAspectFlagBits aspect,
3737 enum isl_aux_usage aux_usage,
3738 enum isl_format format, struct isl_swizzle swizzle,
3739 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3740 VkRect2D area, union isl_color_value clear_color);
3741 void
3742 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3743 const struct anv_image *image,
3744 VkImageAspectFlags aspects,
3745 enum isl_aux_usage depth_aux_usage,
3746 uint32_t level,
3747 uint32_t base_layer, uint32_t layer_count,
3748 VkRect2D area,
3749 float depth_value, uint8_t stencil_value);
3750 void
3751 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3752 const struct anv_image *src_image,
3753 enum isl_aux_usage src_aux_usage,
3754 uint32_t src_level, uint32_t src_base_layer,
3755 const struct anv_image *dst_image,
3756 enum isl_aux_usage dst_aux_usage,
3757 uint32_t dst_level, uint32_t dst_base_layer,
3758 VkImageAspectFlagBits aspect,
3759 uint32_t src_x, uint32_t src_y,
3760 uint32_t dst_x, uint32_t dst_y,
3761 uint32_t width, uint32_t height,
3762 uint32_t layer_count,
3763 enum blorp_filter filter);
3764 void
3765 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3766 const struct anv_image *image,
3767 VkImageAspectFlagBits aspect, uint32_t level,
3768 uint32_t base_layer, uint32_t layer_count,
3769 enum isl_aux_op hiz_op);
3770 void
3771 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3772 const struct anv_image *image,
3773 VkImageAspectFlags aspects,
3774 uint32_t level,
3775 uint32_t base_layer, uint32_t layer_count,
3776 VkRect2D area, uint8_t stencil_value);
3777 void
3778 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3779 const struct anv_image *image,
3780 enum isl_format format, struct isl_swizzle swizzle,
3781 VkImageAspectFlagBits aspect,
3782 uint32_t base_layer, uint32_t layer_count,
3783 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3784 bool predicate);
3785 void
3786 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3787 const struct anv_image *image,
3788 enum isl_format format, struct isl_swizzle swizzle,
3789 VkImageAspectFlagBits aspect, uint32_t level,
3790 uint32_t base_layer, uint32_t layer_count,
3791 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3792 bool predicate);
3793
3794 void
3795 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3796 const struct anv_image *image,
3797 VkImageAspectFlagBits aspect,
3798 uint32_t base_level, uint32_t level_count,
3799 uint32_t base_layer, uint32_t layer_count);
3800
3801 enum isl_aux_state
3802 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3803 const struct anv_image *image,
3804 const VkImageAspectFlagBits aspect,
3805 const VkImageLayout layout);
3806
3807 enum isl_aux_usage
3808 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3809 const struct anv_image *image,
3810 const VkImageAspectFlagBits aspect,
3811 const VkImageUsageFlagBits usage,
3812 const VkImageLayout layout);
3813
3814 enum anv_fast_clear_type
3815 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3816 const struct anv_image * const image,
3817 const VkImageAspectFlagBits aspect,
3818 const VkImageLayout layout);
3819
3820 /* This is defined as a macro so that it works for both
3821 * VkImageSubresourceRange and VkImageSubresourceLayers
3822 */
3823 #define anv_get_layerCount(_image, _range) \
3824 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3825 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3826
3827 static inline uint32_t
3828 anv_get_levelCount(const struct anv_image *image,
3829 const VkImageSubresourceRange *range)
3830 {
3831 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3832 image->levels - range->baseMipLevel : range->levelCount;
3833 }
3834
3835 static inline VkImageAspectFlags
3836 anv_image_expand_aspects(const struct anv_image *image,
3837 VkImageAspectFlags aspects)
3838 {
3839 /* If the underlying image has color plane aspects and
3840 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3841 * the underlying image. */
3842 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3843 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3844 return image->aspects;
3845
3846 return aspects;
3847 }
3848
3849 static inline bool
3850 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3851 VkImageAspectFlags aspects2)
3852 {
3853 if (aspects1 == aspects2)
3854 return true;
3855
3856 /* Only 1 color aspects are compatibles. */
3857 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3858 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3859 util_bitcount(aspects1) == util_bitcount(aspects2))
3860 return true;
3861
3862 return false;
3863 }
3864
3865 struct anv_image_view {
3866 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3867
3868 VkImageAspectFlags aspect_mask;
3869 VkFormat vk_format;
3870 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3871
3872 unsigned n_planes;
3873 struct {
3874 uint32_t image_plane;
3875
3876 struct isl_view isl;
3877
3878 /**
3879 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3880 * image layout of SHADER_READ_ONLY_OPTIMAL or
3881 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3882 */
3883 struct anv_surface_state optimal_sampler_surface_state;
3884
3885 /**
3886 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3887 * image layout of GENERAL.
3888 */
3889 struct anv_surface_state general_sampler_surface_state;
3890
3891 /**
3892 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3893 * states for write-only and readable, using the real format for
3894 * write-only and the lowered format for readable.
3895 */
3896 struct anv_surface_state storage_surface_state;
3897 struct anv_surface_state writeonly_storage_surface_state;
3898
3899 struct brw_image_param storage_image_param;
3900 } planes[3];
3901 };
3902
3903 enum anv_image_view_state_flags {
3904 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3905 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3906 };
3907
3908 void anv_image_fill_surface_state(struct anv_device *device,
3909 const struct anv_image *image,
3910 VkImageAspectFlagBits aspect,
3911 const struct isl_view *view,
3912 isl_surf_usage_flags_t view_usage,
3913 enum isl_aux_usage aux_usage,
3914 const union isl_color_value *clear_color,
3915 enum anv_image_view_state_flags flags,
3916 struct anv_surface_state *state_inout,
3917 struct brw_image_param *image_param_out);
3918
3919 struct anv_image_create_info {
3920 const VkImageCreateInfo *vk_info;
3921
3922 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3923 isl_tiling_flags_t isl_tiling_flags;
3924
3925 /** These flags will be added to any derived from VkImageCreateInfo. */
3926 isl_surf_usage_flags_t isl_extra_usage_flags;
3927
3928 uint32_t stride;
3929 bool external_format;
3930 };
3931
3932 VkResult anv_image_create(VkDevice _device,
3933 const struct anv_image_create_info *info,
3934 const VkAllocationCallbacks* alloc,
3935 VkImage *pImage);
3936
3937 enum isl_format
3938 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3939
3940 static inline VkExtent3D
3941 anv_sanitize_image_extent(const VkImageType imageType,
3942 const VkExtent3D imageExtent)
3943 {
3944 switch (imageType) {
3945 case VK_IMAGE_TYPE_1D:
3946 return (VkExtent3D) { imageExtent.width, 1, 1 };
3947 case VK_IMAGE_TYPE_2D:
3948 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3949 case VK_IMAGE_TYPE_3D:
3950 return imageExtent;
3951 default:
3952 unreachable("invalid image type");
3953 }
3954 }
3955
3956 static inline VkOffset3D
3957 anv_sanitize_image_offset(const VkImageType imageType,
3958 const VkOffset3D imageOffset)
3959 {
3960 switch (imageType) {
3961 case VK_IMAGE_TYPE_1D:
3962 return (VkOffset3D) { imageOffset.x, 0, 0 };
3963 case VK_IMAGE_TYPE_2D:
3964 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3965 case VK_IMAGE_TYPE_3D:
3966 return imageOffset;
3967 default:
3968 unreachable("invalid image type");
3969 }
3970 }
3971
3972 VkFormatFeatureFlags
3973 anv_get_image_format_features(const struct gen_device_info *devinfo,
3974 VkFormat vk_format,
3975 const struct anv_format *anv_format,
3976 VkImageTiling vk_tiling);
3977
3978 void anv_fill_buffer_surface_state(struct anv_device *device,
3979 struct anv_state state,
3980 enum isl_format format,
3981 struct anv_address address,
3982 uint32_t range, uint32_t stride);
3983
3984 static inline void
3985 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3986 const struct anv_attachment_state *att_state,
3987 const struct anv_image_view *iview)
3988 {
3989 const struct isl_format_layout *view_fmtl =
3990 isl_format_get_layout(iview->planes[0].isl.format);
3991
3992 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3993 if (view_fmtl->channels.c.bits) \
3994 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
3995
3996 COPY_CLEAR_COLOR_CHANNEL(r, 0);
3997 COPY_CLEAR_COLOR_CHANNEL(g, 1);
3998 COPY_CLEAR_COLOR_CHANNEL(b, 2);
3999 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4000
4001 #undef COPY_CLEAR_COLOR_CHANNEL
4002 }
4003
4004
4005 struct anv_ycbcr_conversion {
4006 const struct anv_format * format;
4007 VkSamplerYcbcrModelConversion ycbcr_model;
4008 VkSamplerYcbcrRange ycbcr_range;
4009 VkComponentSwizzle mapping[4];
4010 VkChromaLocation chroma_offsets[2];
4011 VkFilter chroma_filter;
4012 bool chroma_reconstruction;
4013 };
4014
4015 struct anv_sampler {
4016 uint32_t state[3][4];
4017 uint32_t n_planes;
4018 struct anv_ycbcr_conversion *conversion;
4019
4020 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4021 * and with a 32-byte stride for use as bindless samplers.
4022 */
4023 struct anv_state bindless_state;
4024 };
4025
4026 struct anv_framebuffer {
4027 uint32_t width;
4028 uint32_t height;
4029 uint32_t layers;
4030
4031 uint32_t attachment_count;
4032 struct anv_image_view * attachments[0];
4033 };
4034
4035 struct anv_subpass_attachment {
4036 VkImageUsageFlagBits usage;
4037 uint32_t attachment;
4038 VkImageLayout layout;
4039
4040 /* Used only with attachment containing stencil data. */
4041 VkImageLayout stencil_layout;
4042 };
4043
4044 struct anv_subpass {
4045 uint32_t attachment_count;
4046
4047 /**
4048 * A pointer to all attachment references used in this subpass.
4049 * Only valid if ::attachment_count > 0.
4050 */
4051 struct anv_subpass_attachment * attachments;
4052 uint32_t input_count;
4053 struct anv_subpass_attachment * input_attachments;
4054 uint32_t color_count;
4055 struct anv_subpass_attachment * color_attachments;
4056 struct anv_subpass_attachment * resolve_attachments;
4057
4058 struct anv_subpass_attachment * depth_stencil_attachment;
4059 struct anv_subpass_attachment * ds_resolve_attachment;
4060 VkResolveModeFlagBitsKHR depth_resolve_mode;
4061 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4062
4063 uint32_t view_mask;
4064
4065 /** Subpass has a depth/stencil self-dependency */
4066 bool has_ds_self_dep;
4067
4068 /** Subpass has at least one color resolve attachment */
4069 bool has_color_resolve;
4070 };
4071
4072 static inline unsigned
4073 anv_subpass_view_count(const struct anv_subpass *subpass)
4074 {
4075 return MAX2(1, util_bitcount(subpass->view_mask));
4076 }
4077
4078 struct anv_render_pass_attachment {
4079 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4080 * its members individually.
4081 */
4082 VkFormat format;
4083 uint32_t samples;
4084 VkImageUsageFlags usage;
4085 VkAttachmentLoadOp load_op;
4086 VkAttachmentStoreOp store_op;
4087 VkAttachmentLoadOp stencil_load_op;
4088 VkImageLayout initial_layout;
4089 VkImageLayout final_layout;
4090 VkImageLayout first_subpass_layout;
4091
4092 VkImageLayout stencil_initial_layout;
4093 VkImageLayout stencil_final_layout;
4094
4095 /* The subpass id in which the attachment will be used last. */
4096 uint32_t last_subpass_idx;
4097 };
4098
4099 struct anv_render_pass {
4100 uint32_t attachment_count;
4101 uint32_t subpass_count;
4102 /* An array of subpass_count+1 flushes, one per subpass boundary */
4103 enum anv_pipe_bits * subpass_flushes;
4104 struct anv_render_pass_attachment * attachments;
4105 struct anv_subpass subpasses[0];
4106 };
4107
4108 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4109
4110 struct anv_query_pool {
4111 VkQueryType type;
4112 VkQueryPipelineStatisticFlags pipeline_statistics;
4113 /** Stride between slots, in bytes */
4114 uint32_t stride;
4115 /** Number of slots in this query pool */
4116 uint32_t slots;
4117 struct anv_bo * bo;
4118 };
4119
4120 int anv_get_instance_entrypoint_index(const char *name);
4121 int anv_get_device_entrypoint_index(const char *name);
4122 int anv_get_physical_device_entrypoint_index(const char *name);
4123
4124 const char *anv_get_instance_entry_name(int index);
4125 const char *anv_get_physical_device_entry_name(int index);
4126 const char *anv_get_device_entry_name(int index);
4127
4128 bool
4129 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4130 const struct anv_instance_extension_table *instance);
4131 bool
4132 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4133 const struct anv_instance_extension_table *instance);
4134 bool
4135 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4136 const struct anv_instance_extension_table *instance,
4137 const struct anv_device_extension_table *device);
4138
4139 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4140 const char *name);
4141
4142 void anv_dump_image_to_ppm(struct anv_device *device,
4143 struct anv_image *image, unsigned miplevel,
4144 unsigned array_layer, VkImageAspectFlagBits aspect,
4145 const char *filename);
4146
4147 enum anv_dump_action {
4148 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4149 };
4150
4151 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4152 void anv_dump_finish(void);
4153
4154 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4155
4156 static inline uint32_t
4157 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4158 {
4159 /* This function must be called from within a subpass. */
4160 assert(cmd_state->pass && cmd_state->subpass);
4161
4162 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4163
4164 /* The id of this subpass shouldn't exceed the number of subpasses in this
4165 * render pass minus 1.
4166 */
4167 assert(subpass_id < cmd_state->pass->subpass_count);
4168 return subpass_id;
4169 }
4170
4171 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4172 void anv_device_perf_init(struct anv_device *device);
4173
4174 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4175 \
4176 static inline struct __anv_type * \
4177 __anv_type ## _from_handle(__VkType _handle) \
4178 { \
4179 return (struct __anv_type *) _handle; \
4180 } \
4181 \
4182 static inline __VkType \
4183 __anv_type ## _to_handle(struct __anv_type *_obj) \
4184 { \
4185 return (__VkType) _obj; \
4186 }
4187
4188 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4189 \
4190 static inline struct __anv_type * \
4191 __anv_type ## _from_handle(__VkType _handle) \
4192 { \
4193 return (struct __anv_type *)(uintptr_t) _handle; \
4194 } \
4195 \
4196 static inline __VkType \
4197 __anv_type ## _to_handle(struct __anv_type *_obj) \
4198 { \
4199 return (__VkType)(uintptr_t) _obj; \
4200 }
4201
4202 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4203 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4204
4205 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4206 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4207 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4208 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4209 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4210
4211 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4212 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4213 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4214 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4215 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4216 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4217 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4218 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4219 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4220 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4221 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4222 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4223 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4224 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4225 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4226 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4227 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4228 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4229 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4230 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4231 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4232 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4233 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4234
4235 /* Gen-specific function declarations */
4236 #ifdef genX
4237 # include "anv_genX.h"
4238 #else
4239 # define genX(x) gen7_##x
4240 # include "anv_genX.h"
4241 # undef genX
4242 # define genX(x) gen75_##x
4243 # include "anv_genX.h"
4244 # undef genX
4245 # define genX(x) gen8_##x
4246 # include "anv_genX.h"
4247 # undef genX
4248 # define genX(x) gen9_##x
4249 # include "anv_genX.h"
4250 # undef genX
4251 # define genX(x) gen10_##x
4252 # include "anv_genX.h"
4253 # undef genX
4254 # define genX(x) gen11_##x
4255 # include "anv_genX.h"
4256 # undef genX
4257 # define genX(x) gen12_##x
4258 # include "anv_genX.h"
4259 # undef genX
4260 #endif
4261
4262 #endif /* ANV_PRIVATE_H */