anv: pass the fd directly to anv_gem_reg_read()
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65 #include "vk_object.h"
66
67 /* Pre-declarations needed for WSI entrypoints */
68 struct wl_surface;
69 struct wl_display;
70 typedef struct xcb_connection_t xcb_connection_t;
71 typedef uint32_t xcb_visualid_t;
72 typedef uint32_t xcb_window_t;
73
74 struct anv_batch;
75 struct anv_buffer;
76 struct anv_buffer_view;
77 struct anv_image_view;
78 struct anv_instance;
79
80 struct gen_aux_map_context;
81 struct gen_perf_config;
82 struct gen_perf_counter_pass;
83 struct gen_perf_query_result;
84
85 #include <vulkan/vulkan.h>
86 #include <vulkan/vulkan_intel.h>
87 #include <vulkan/vk_icd.h>
88
89 #include "anv_android.h"
90 #include "anv_entrypoints.h"
91 #include "anv_extensions.h"
92 #include "isl/isl.h"
93
94 #include "dev/gen_debug.h"
95 #include "common/intel_log.h"
96 #include "wsi_common.h"
97
98 #define NSEC_PER_SEC 1000000000ull
99
100 /* anv Virtual Memory Layout
101 * =========================
102 *
103 * When the anv driver is determining the virtual graphics addresses of memory
104 * objects itself using the softpin mechanism, the following memory ranges
105 * will be used.
106 *
107 * Three special considerations to notice:
108 *
109 * (1) the dynamic state pool is located within the same 4 GiB as the low
110 * heap. This is to work around a VF cache issue described in a comment in
111 * anv_physical_device_init_heaps.
112 *
113 * (2) the binding table pool is located at lower addresses than the surface
114 * state pool, within a 4 GiB range. This allows surface state base addresses
115 * to cover both binding tables (16 bit offsets) and surface states (32 bit
116 * offsets).
117 *
118 * (3) the last 4 GiB of the address space is withheld from the high
119 * heap. Various hardware units will read past the end of an object for
120 * various reasons. This healthy margin prevents reads from wrapping around
121 * 48-bit addresses.
122 */
123 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
124 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
125 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
126 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
127 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
128 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
129 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
130 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
131 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
132 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
133 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
134 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
135 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
136
137 #define LOW_HEAP_SIZE \
138 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
139 #define DYNAMIC_STATE_POOL_SIZE \
140 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
141 #define BINDING_TABLE_POOL_SIZE \
142 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
143 #define SURFACE_STATE_POOL_SIZE \
144 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
145 #define INSTRUCTION_STATE_POOL_SIZE \
146 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
147 #define CLIENT_VISIBLE_HEAP_SIZE \
148 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
149
150 /* Allowing different clear colors requires us to perform a depth resolve at
151 * the end of certain render passes. This is because while slow clears store
152 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
153 * See the PRMs for examples describing when additional resolves would be
154 * necessary. To enable fast clears without requiring extra resolves, we set
155 * the clear value to a globally-defined one. We could allow different values
156 * if the user doesn't expect coherent data during or after a render passes
157 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
158 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
159 * 1.0f seems to be the only value used. The only application that doesn't set
160 * this value does so through the usage of an seemingly uninitialized clear
161 * value.
162 */
163 #define ANV_HZ_FC_VAL 1.0f
164
165 #define MAX_VBS 28
166 #define MAX_XFB_BUFFERS 4
167 #define MAX_XFB_STREAMS 4
168 #define MAX_SETS 8
169 #define MAX_RTS 8
170 #define MAX_VIEWPORTS 16
171 #define MAX_SCISSORS 16
172 #define MAX_PUSH_CONSTANTS_SIZE 128
173 #define MAX_DYNAMIC_BUFFERS 16
174 #define MAX_IMAGES 64
175 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
176 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
177 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
178 /* We need 16 for UBO block reads to work and 32 for push UBOs. However, we
179 * use 64 here to avoid cache issues. This could most likely bring it back to
180 * 32 if we had different virtual addresses for the different views on a given
181 * GEM object.
182 */
183 #define ANV_UBO_ALIGNMENT 64
184 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
185 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
186
187 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
188 *
189 * "The surface state model is used when a Binding Table Index (specified
190 * in the message descriptor) of less than 240 is specified. In this model,
191 * the Binding Table Index is used to index into the binding table, and the
192 * binding table entry contains a pointer to the SURFACE_STATE."
193 *
194 * Binding table values above 240 are used for various things in the hardware
195 * such as stateless, stateless with incoherent cache, SLM, and bindless.
196 */
197 #define MAX_BINDING_TABLE_SIZE 240
198
199 /* The kernel relocation API has a limitation of a 32-bit delta value
200 * applied to the address before it is written which, in spite of it being
201 * unsigned, is treated as signed . Because of the way that this maps to
202 * the Vulkan API, we cannot handle an offset into a buffer that does not
203 * fit into a signed 32 bits. The only mechanism we have for dealing with
204 * this at the moment is to limit all VkDeviceMemory objects to a maximum
205 * of 2GB each. The Vulkan spec allows us to do this:
206 *
207 * "Some platforms may have a limit on the maximum size of a single
208 * allocation. For example, certain systems may fail to create
209 * allocations with a size greater than or equal to 4GB. Such a limit is
210 * implementation-dependent, and if such a failure occurs then the error
211 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
212 *
213 * We don't use vk_error here because it's not an error so much as an
214 * indication to the application that the allocation is too large.
215 */
216 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
217
218 #define ANV_SVGS_VB_INDEX MAX_VBS
219 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
220
221 /* We reserve this MI ALU register for the purpose of handling predication.
222 * Other code which uses the MI ALU should leave it alone.
223 */
224 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
225
226 /* We reserve this MI ALU register to pass around an offset computed from
227 * VkPerformanceQuerySubmitInfoKHR::counterPassIndex VK_KHR_performance_query.
228 * Other code which uses the MI ALU should leave it alone.
229 */
230 #define ANV_PERF_QUERY_OFFSET_REG 0x2670 /* MI_ALU_REG14 */
231
232 /* For gen12 we set the streamout buffers using 4 separate commands
233 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
234 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
235 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
236 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
237 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
238 * 3DSTATE_SO_BUFFER_INDEX_0.
239 */
240 #define SO_BUFFER_INDEX_0_CMD 0x60
241 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
242
243 static inline uint32_t
244 align_down_npot_u32(uint32_t v, uint32_t a)
245 {
246 return v - (v % a);
247 }
248
249 static inline uint32_t
250 align_down_u32(uint32_t v, uint32_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint32_t
257 align_u32(uint32_t v, uint32_t a)
258 {
259 assert(a != 0 && a == (a & -a));
260 return align_down_u32(v + a - 1, a);
261 }
262
263 static inline uint64_t
264 align_down_u64(uint64_t v, uint64_t a)
265 {
266 assert(a != 0 && a == (a & -a));
267 return v & ~(a - 1);
268 }
269
270 static inline uint64_t
271 align_u64(uint64_t v, uint64_t a)
272 {
273 return align_down_u64(v + a - 1, a);
274 }
275
276 static inline int32_t
277 align_i32(int32_t v, int32_t a)
278 {
279 assert(a != 0 && a == (a & -a));
280 return (v + a - 1) & ~(a - 1);
281 }
282
283 /** Alignment must be a power of 2. */
284 static inline bool
285 anv_is_aligned(uintmax_t n, uintmax_t a)
286 {
287 assert(a == (a & -a));
288 return (n & (a - 1)) == 0;
289 }
290
291 static inline uint32_t
292 anv_minify(uint32_t n, uint32_t levels)
293 {
294 if (unlikely(n == 0))
295 return 0;
296 else
297 return MAX2(n >> levels, 1);
298 }
299
300 static inline float
301 anv_clamp_f(float f, float min, float max)
302 {
303 assert(min < max);
304
305 if (f > max)
306 return max;
307 else if (f < min)
308 return min;
309 else
310 return f;
311 }
312
313 static inline bool
314 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
315 {
316 if (*inout_mask & clear_mask) {
317 *inout_mask &= ~clear_mask;
318 return true;
319 } else {
320 return false;
321 }
322 }
323
324 static inline union isl_color_value
325 vk_to_isl_color(VkClearColorValue color)
326 {
327 return (union isl_color_value) {
328 .u32 = {
329 color.uint32[0],
330 color.uint32[1],
331 color.uint32[2],
332 color.uint32[3],
333 },
334 };
335 }
336
337 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
338 {
339 uintptr_t mask = (1ull << bits) - 1;
340 *flags = ptr & mask;
341 return (void *) (ptr & ~mask);
342 }
343
344 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
345 {
346 uintptr_t value = (uintptr_t) ptr;
347 uintptr_t mask = (1ull << bits) - 1;
348 return value | (mask & flags);
349 }
350
351 #define for_each_bit(b, dword) \
352 for (uint32_t __dword = (dword); \
353 (b) = __builtin_ffs(__dword) - 1, __dword; \
354 __dword &= ~(1 << (b)))
355
356 #define typed_memcpy(dest, src, count) ({ \
357 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
358 memcpy((dest), (src), (count) * sizeof(*(src))); \
359 })
360
361 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
362 * to be added here in order to utilize mapping in debug/error/perf macros.
363 */
364 #define REPORT_OBJECT_TYPE(o) \
365 __builtin_choose_expr ( \
366 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
367 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
368 __builtin_choose_expr ( \
369 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
370 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
371 __builtin_choose_expr ( \
372 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
373 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
374 __builtin_choose_expr ( \
375 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
376 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
377 __builtin_choose_expr ( \
378 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
379 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
380 __builtin_choose_expr ( \
381 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
382 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
383 __builtin_choose_expr ( \
384 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
385 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
386 __builtin_choose_expr ( \
387 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
388 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
389 __builtin_choose_expr ( \
390 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
391 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
392 __builtin_choose_expr ( \
393 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
394 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
395 __builtin_choose_expr ( \
396 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
397 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
398 __builtin_choose_expr ( \
399 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
400 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
401 __builtin_choose_expr ( \
402 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
403 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
404 __builtin_choose_expr ( \
405 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
406 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
407 __builtin_choose_expr ( \
408 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
409 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
410 __builtin_choose_expr ( \
411 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
412 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
413 __builtin_choose_expr ( \
414 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
415 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
416 __builtin_choose_expr ( \
417 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
418 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
419 __builtin_choose_expr ( \
420 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
421 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
422 __builtin_choose_expr ( \
423 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
424 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
425 __builtin_choose_expr ( \
426 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
427 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
428 __builtin_choose_expr ( \
429 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
430 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
431 __builtin_choose_expr ( \
432 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
433 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
434 __builtin_choose_expr ( \
435 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
436 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
437 __builtin_choose_expr ( \
438 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
439 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
440 __builtin_choose_expr ( \
441 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
442 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
443 __builtin_choose_expr ( \
444 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
445 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
446 __builtin_choose_expr ( \
447 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
448 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
449 __builtin_choose_expr ( \
450 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
451 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
452 __builtin_choose_expr ( \
453 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
454 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
455 __builtin_choose_expr ( \
456 __builtin_types_compatible_p (__typeof (o), void*), \
457 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
458 /* The void expression results in a compile-time error \
459 when assigning the result to something. */ \
460 (void)0)))))))))))))))))))))))))))))))
461
462 /* Whenever we generate an error, pass it through this function. Useful for
463 * debugging, where we can break on it. Only call at error site, not when
464 * propagating errors. Might be useful to plug in a stack trace here.
465 */
466
467 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
468 VkDebugReportObjectTypeEXT type, VkResult error,
469 const char *file, int line, const char *format,
470 va_list args);
471
472 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
473 VkDebugReportObjectTypeEXT type, VkResult error,
474 const char *file, int line, const char *format, ...)
475 anv_printflike(7, 8);
476
477 #ifdef DEBUG
478 #define vk_error(error) __vk_errorf(NULL, NULL,\
479 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
480 error, __FILE__, __LINE__, NULL)
481 #define vk_errorfi(instance, obj, error, format, ...)\
482 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
483 __FILE__, __LINE__, format, ## __VA_ARGS__)
484 #define vk_errorf(device, obj, error, format, ...)\
485 vk_errorfi(anv_device_instance_or_null(device),\
486 obj, error, format, ## __VA_ARGS__)
487 #else
488 #define vk_error(error) error
489 #define vk_errorfi(instance, obj, error, format, ...) error
490 #define vk_errorf(device, obj, error, format, ...) error
491 #endif
492
493 /**
494 * Warn on ignored extension structs.
495 *
496 * The Vulkan spec requires us to ignore unsupported or unknown structs in
497 * a pNext chain. In debug mode, emitting warnings for ignored structs may
498 * help us discover structs that we should not have ignored.
499 *
500 *
501 * From the Vulkan 1.0.38 spec:
502 *
503 * Any component of the implementation (the loader, any enabled layers,
504 * and drivers) must skip over, without processing (other than reading the
505 * sType and pNext members) any chained structures with sType values not
506 * defined by extensions supported by that component.
507 */
508 #define anv_debug_ignored_stype(sType) \
509 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
510
511 void __anv_perf_warn(struct anv_device *device, const void *object,
512 VkDebugReportObjectTypeEXT type, const char *file,
513 int line, const char *format, ...)
514 anv_printflike(6, 7);
515 void anv_loge(const char *format, ...) anv_printflike(1, 2);
516 void anv_loge_v(const char *format, va_list va);
517
518 /**
519 * Print a FINISHME message, including its source location.
520 */
521 #define anv_finishme(format, ...) \
522 do { \
523 static bool reported = false; \
524 if (!reported) { \
525 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
526 ##__VA_ARGS__); \
527 reported = true; \
528 } \
529 } while (0)
530
531 /**
532 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
533 */
534 #define anv_perf_warn(instance, obj, format, ...) \
535 do { \
536 static bool reported = false; \
537 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
538 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
539 format, ##__VA_ARGS__); \
540 reported = true; \
541 } \
542 } while (0)
543
544 /* A non-fatal assert. Useful for debugging. */
545 #ifdef DEBUG
546 #define anv_assert(x) ({ \
547 if (unlikely(!(x))) \
548 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
549 })
550 #else
551 #define anv_assert(x)
552 #endif
553
554 /* A multi-pointer allocator
555 *
556 * When copying data structures from the user (such as a render pass), it's
557 * common to need to allocate data for a bunch of different things. Instead
558 * of doing several allocations and having to handle all of the error checking
559 * that entails, it can be easier to do a single allocation. This struct
560 * helps facilitate that. The intended usage looks like this:
561 *
562 * ANV_MULTIALLOC(ma)
563 * anv_multialloc_add(&ma, &main_ptr, 1);
564 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
565 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
566 *
567 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
568 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
569 */
570 struct anv_multialloc {
571 size_t size;
572 size_t align;
573
574 uint32_t ptr_count;
575 void **ptrs[8];
576 };
577
578 #define ANV_MULTIALLOC_INIT \
579 ((struct anv_multialloc) { 0, })
580
581 #define ANV_MULTIALLOC(_name) \
582 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
583
584 __attribute__((always_inline))
585 static inline void
586 _anv_multialloc_add(struct anv_multialloc *ma,
587 void **ptr, size_t size, size_t align)
588 {
589 size_t offset = align_u64(ma->size, align);
590 ma->size = offset + size;
591 ma->align = MAX2(ma->align, align);
592
593 /* Store the offset in the pointer. */
594 *ptr = (void *)(uintptr_t)offset;
595
596 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
597 ma->ptrs[ma->ptr_count++] = ptr;
598 }
599
600 #define anv_multialloc_add_size(_ma, _ptr, _size) \
601 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
602
603 #define anv_multialloc_add(_ma, _ptr, _count) \
604 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
605
606 __attribute__((always_inline))
607 static inline void *
608 anv_multialloc_alloc(struct anv_multialloc *ma,
609 const VkAllocationCallbacks *alloc,
610 VkSystemAllocationScope scope)
611 {
612 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
613 if (!ptr)
614 return NULL;
615
616 /* Fill out each of the pointers with their final value.
617 *
618 * for (uint32_t i = 0; i < ma->ptr_count; i++)
619 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
620 *
621 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
622 * constant, GCC is incapable of figuring this out and unrolling the loop
623 * so we have to give it a little help.
624 */
625 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
626 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
627 if ((_i) < ma->ptr_count) \
628 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
629 _ANV_MULTIALLOC_UPDATE_POINTER(0);
630 _ANV_MULTIALLOC_UPDATE_POINTER(1);
631 _ANV_MULTIALLOC_UPDATE_POINTER(2);
632 _ANV_MULTIALLOC_UPDATE_POINTER(3);
633 _ANV_MULTIALLOC_UPDATE_POINTER(4);
634 _ANV_MULTIALLOC_UPDATE_POINTER(5);
635 _ANV_MULTIALLOC_UPDATE_POINTER(6);
636 _ANV_MULTIALLOC_UPDATE_POINTER(7);
637 #undef _ANV_MULTIALLOC_UPDATE_POINTER
638
639 return ptr;
640 }
641
642 __attribute__((always_inline))
643 static inline void *
644 anv_multialloc_alloc2(struct anv_multialloc *ma,
645 const VkAllocationCallbacks *parent_alloc,
646 const VkAllocationCallbacks *alloc,
647 VkSystemAllocationScope scope)
648 {
649 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
650 }
651
652 struct anv_bo {
653 uint32_t gem_handle;
654
655 uint32_t refcount;
656
657 /* Index into the current validation list. This is used by the
658 * validation list building alrogithm to track which buffers are already
659 * in the validation list so that we can ensure uniqueness.
660 */
661 uint32_t index;
662
663 /* Index for use with util_sparse_array_free_list */
664 uint32_t free_index;
665
666 /* Last known offset. This value is provided by the kernel when we
667 * execbuf and is used as the presumed offset for the next bunch of
668 * relocations.
669 */
670 uint64_t offset;
671
672 /** Size of the buffer not including implicit aux */
673 uint64_t size;
674
675 /* Map for internally mapped BOs.
676 *
677 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
678 */
679 void *map;
680
681 /** Size of the implicit CCS range at the end of the buffer
682 *
683 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
684 * page of main surface data maps to a 256B chunk of CCS data and that
685 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
686 * addresses in the main surface to virtual memory addresses for CCS data.
687 *
688 * Because we can't change these maps around easily and because Vulkan
689 * allows two VkImages to be bound to overlapping memory regions (as long
690 * as the app is careful), it's not feasible to make this mapping part of
691 * the image. (On Gen11 and earlier, the mapping was provided via
692 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
693 * Instead, we attach the CCS data directly to the buffer object and setup
694 * the AUX table mapping at BO creation time.
695 *
696 * This field is for internal tracking use by the BO allocator only and
697 * should not be touched by other parts of the code. If something wants to
698 * know if a BO has implicit CCS data, it should instead look at the
699 * has_implicit_ccs boolean below.
700 *
701 * This data is not included in maps of this buffer.
702 */
703 uint32_t _ccs_size;
704
705 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
706 uint32_t flags;
707
708 /** True if this BO may be shared with other processes */
709 bool is_external:1;
710
711 /** True if this BO is a wrapper
712 *
713 * When set to true, none of the fields in this BO are meaningful except
714 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
715 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
716 * is set in the physical device.
717 */
718 bool is_wrapper:1;
719
720 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
721 bool has_fixed_address:1;
722
723 /** True if this BO wraps a host pointer */
724 bool from_host_ptr:1;
725
726 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
727 bool has_client_visible_address:1;
728
729 /** True if this BO has implicit CCS data attached to it */
730 bool has_implicit_ccs:1;
731 };
732
733 static inline struct anv_bo *
734 anv_bo_ref(struct anv_bo *bo)
735 {
736 p_atomic_inc(&bo->refcount);
737 return bo;
738 }
739
740 static inline struct anv_bo *
741 anv_bo_unwrap(struct anv_bo *bo)
742 {
743 while (bo->is_wrapper)
744 bo = bo->map;
745 return bo;
746 }
747
748 /* Represents a lock-free linked list of "free" things. This is used by
749 * both the block pool and the state pools. Unfortunately, in order to
750 * solve the ABA problem, we can't use a single uint32_t head.
751 */
752 union anv_free_list {
753 struct {
754 uint32_t offset;
755
756 /* A simple count that is incremented every time the head changes. */
757 uint32_t count;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764
765 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
766
767 struct anv_block_state {
768 union {
769 struct {
770 uint32_t next;
771 uint32_t end;
772 };
773 /* Make sure it's aligned to 64 bits. This will make atomic operations
774 * faster on 32 bit platforms.
775 */
776 uint64_t u64 __attribute__ ((aligned (8)));
777 };
778 };
779
780 #define anv_block_pool_foreach_bo(bo, pool) \
781 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
782 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
783 _pp_bo++)
784
785 #define ANV_MAX_BLOCK_POOL_BOS 20
786
787 struct anv_block_pool {
788 struct anv_device *device;
789 bool use_softpin;
790
791 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
792 * around the actual BO so that we grow the pool after the wrapper BO has
793 * been put in a relocation list. This is only used in the non-softpin
794 * case.
795 */
796 struct anv_bo wrapper_bo;
797
798 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
799 struct anv_bo *bo;
800 uint32_t nbos;
801
802 uint64_t size;
803
804 /* The address where the start of the pool is pinned. The various bos that
805 * are created as the pool grows will have addresses in the range
806 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
807 */
808 uint64_t start_address;
809
810 /* The offset from the start of the bo to the "center" of the block
811 * pool. Pointers to allocated blocks are given by
812 * bo.map + center_bo_offset + offsets.
813 */
814 uint32_t center_bo_offset;
815
816 /* Current memory map of the block pool. This pointer may or may not
817 * point to the actual beginning of the block pool memory. If
818 * anv_block_pool_alloc_back has ever been called, then this pointer
819 * will point to the "center" position of the buffer and all offsets
820 * (negative or positive) given out by the block pool alloc functions
821 * will be valid relative to this pointer.
822 *
823 * In particular, map == bo.map + center_offset
824 *
825 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
826 * since it will handle the softpin case as well, where this points to NULL.
827 */
828 void *map;
829 int fd;
830
831 /**
832 * Array of mmaps and gem handles owned by the block pool, reclaimed when
833 * the block pool is destroyed.
834 */
835 struct u_vector mmap_cleanups;
836
837 struct anv_block_state state;
838
839 struct anv_block_state back_state;
840 };
841
842 /* Block pools are backed by a fixed-size 1GB memfd */
843 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
844
845 /* The center of the block pool is also the middle of the memfd. This may
846 * change in the future if we decide differently for some reason.
847 */
848 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
849
850 static inline uint32_t
851 anv_block_pool_size(struct anv_block_pool *pool)
852 {
853 return pool->state.end + pool->back_state.end;
854 }
855
856 struct anv_state {
857 int32_t offset;
858 uint32_t alloc_size;
859 void *map;
860 uint32_t idx;
861 };
862
863 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
864
865 struct anv_fixed_size_state_pool {
866 union anv_free_list free_list;
867 struct anv_block_state block;
868 };
869
870 #define ANV_MIN_STATE_SIZE_LOG2 6
871 #define ANV_MAX_STATE_SIZE_LOG2 21
872
873 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
874
875 struct anv_free_entry {
876 uint32_t next;
877 struct anv_state state;
878 };
879
880 struct anv_state_table {
881 struct anv_device *device;
882 int fd;
883 struct anv_free_entry *map;
884 uint32_t size;
885 struct anv_block_state state;
886 struct u_vector cleanups;
887 };
888
889 struct anv_state_pool {
890 struct anv_block_pool block_pool;
891
892 /* Offset into the relevant state base address where the state pool starts
893 * allocating memory.
894 */
895 int32_t start_offset;
896
897 struct anv_state_table table;
898
899 /* The size of blocks which will be allocated from the block pool */
900 uint32_t block_size;
901
902 /** Free list for "back" allocations */
903 union anv_free_list back_alloc_free_list;
904
905 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
906 };
907
908 struct anv_state_reserved_pool {
909 struct anv_state_pool *pool;
910 union anv_free_list reserved_blocks;
911 uint32_t count;
912 };
913
914 struct anv_state_stream {
915 struct anv_state_pool *state_pool;
916
917 /* The size of blocks to allocate from the state pool */
918 uint32_t block_size;
919
920 /* Current block we're allocating from */
921 struct anv_state block;
922
923 /* Offset into the current block at which to allocate the next state */
924 uint32_t next;
925
926 /* List of all blocks allocated from this pool */
927 struct util_dynarray all_blocks;
928 };
929
930 /* The block_pool functions exported for testing only. The block pool should
931 * only be used via a state pool (see below).
932 */
933 VkResult anv_block_pool_init(struct anv_block_pool *pool,
934 struct anv_device *device,
935 uint64_t start_address,
936 uint32_t initial_size);
937 void anv_block_pool_finish(struct anv_block_pool *pool);
938 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
939 uint32_t block_size, uint32_t *padding);
940 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
941 uint32_t block_size);
942 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
943 size);
944
945 VkResult anv_state_pool_init(struct anv_state_pool *pool,
946 struct anv_device *device,
947 uint64_t base_address,
948 int32_t start_offset,
949 uint32_t block_size);
950 void anv_state_pool_finish(struct anv_state_pool *pool);
951 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
952 uint32_t state_size, uint32_t alignment);
953 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
954 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
955 void anv_state_stream_init(struct anv_state_stream *stream,
956 struct anv_state_pool *state_pool,
957 uint32_t block_size);
958 void anv_state_stream_finish(struct anv_state_stream *stream);
959 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
960 uint32_t size, uint32_t alignment);
961
962 void anv_state_reserved_pool_init(struct anv_state_reserved_pool *pool,
963 struct anv_state_pool *parent,
964 uint32_t count, uint32_t size,
965 uint32_t alignment);
966 void anv_state_reserved_pool_finish(struct anv_state_reserved_pool *pool);
967 struct anv_state anv_state_reserved_pool_alloc(struct anv_state_reserved_pool *pool);
968 void anv_state_reserved_pool_free(struct anv_state_reserved_pool *pool,
969 struct anv_state state);
970
971 VkResult anv_state_table_init(struct anv_state_table *table,
972 struct anv_device *device,
973 uint32_t initial_entries);
974 void anv_state_table_finish(struct anv_state_table *table);
975 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
976 uint32_t count);
977 void anv_free_list_push(union anv_free_list *list,
978 struct anv_state_table *table,
979 uint32_t idx, uint32_t count);
980 struct anv_state* anv_free_list_pop(union anv_free_list *list,
981 struct anv_state_table *table);
982
983
984 static inline struct anv_state *
985 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
986 {
987 return &table->map[idx].state;
988 }
989 /**
990 * Implements a pool of re-usable BOs. The interface is identical to that
991 * of block_pool except that each block is its own BO.
992 */
993 struct anv_bo_pool {
994 struct anv_device *device;
995
996 struct util_sparse_array_free_list free_list[16];
997 };
998
999 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
1000 void anv_bo_pool_finish(struct anv_bo_pool *pool);
1001 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
1002 struct anv_bo **bo_out);
1003 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
1004
1005 struct anv_scratch_pool {
1006 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
1007 struct anv_bo *bos[16][MESA_SHADER_STAGES];
1008 };
1009
1010 void anv_scratch_pool_init(struct anv_device *device,
1011 struct anv_scratch_pool *pool);
1012 void anv_scratch_pool_finish(struct anv_device *device,
1013 struct anv_scratch_pool *pool);
1014 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
1015 struct anv_scratch_pool *pool,
1016 gl_shader_stage stage,
1017 unsigned per_thread_scratch);
1018
1019 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
1020 struct anv_bo_cache {
1021 struct util_sparse_array bo_map;
1022 pthread_mutex_t mutex;
1023 };
1024
1025 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
1026 void anv_bo_cache_finish(struct anv_bo_cache *cache);
1027
1028 struct anv_memory_type {
1029 /* Standard bits passed on to the client */
1030 VkMemoryPropertyFlags propertyFlags;
1031 uint32_t heapIndex;
1032 };
1033
1034 struct anv_memory_heap {
1035 /* Standard bits passed on to the client */
1036 VkDeviceSize size;
1037 VkMemoryHeapFlags flags;
1038
1039 /* Driver-internal book-keeping */
1040 VkDeviceSize used;
1041 };
1042
1043 struct anv_physical_device {
1044 struct vk_object_base base;
1045
1046 /* Link in anv_instance::physical_devices */
1047 struct list_head link;
1048
1049 struct anv_instance * instance;
1050 bool no_hw;
1051 char path[20];
1052 const char * name;
1053 struct {
1054 uint16_t domain;
1055 uint8_t bus;
1056 uint8_t device;
1057 uint8_t function;
1058 } pci_info;
1059 struct gen_device_info info;
1060 /** Amount of "GPU memory" we want to advertise
1061 *
1062 * Clearly, this value is bogus since Intel is a UMA architecture. On
1063 * gen7 platforms, we are limited by GTT size unless we want to implement
1064 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1065 * practically unlimited. However, we will never report more than 3/4 of
1066 * the total system ram to try and avoid running out of RAM.
1067 */
1068 bool supports_48bit_addresses;
1069 struct brw_compiler * compiler;
1070 struct isl_device isl_dev;
1071 struct gen_perf_config * perf;
1072 int cmd_parser_version;
1073 bool has_softpin;
1074 bool has_exec_async;
1075 bool has_exec_capture;
1076 bool has_exec_fence;
1077 bool has_syncobj;
1078 bool has_syncobj_wait;
1079 bool has_context_priority;
1080 bool has_context_isolation;
1081 bool has_mem_available;
1082 bool has_mmap_offset;
1083 uint64_t gtt_size;
1084
1085 bool use_softpin;
1086 bool always_use_bindless;
1087
1088 /** True if we can access buffers using A64 messages */
1089 bool has_a64_buffer_access;
1090 /** True if we can use bindless access for images */
1091 bool has_bindless_images;
1092 /** True if we can use bindless access for samplers */
1093 bool has_bindless_samplers;
1094
1095 /** True if this device has implicit AUX
1096 *
1097 * If true, CCS is handled as an implicit attachment to the BO rather than
1098 * as an explicitly bound surface.
1099 */
1100 bool has_implicit_ccs;
1101
1102 bool always_flush_cache;
1103
1104 struct anv_device_extension_table supported_extensions;
1105
1106 uint32_t eu_total;
1107 uint32_t subslice_total;
1108
1109 struct {
1110 uint32_t type_count;
1111 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1112 uint32_t heap_count;
1113 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1114 } memory;
1115
1116 uint8_t driver_build_sha1[20];
1117 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1118 uint8_t driver_uuid[VK_UUID_SIZE];
1119 uint8_t device_uuid[VK_UUID_SIZE];
1120
1121 struct disk_cache * disk_cache;
1122
1123 struct wsi_device wsi_device;
1124 int local_fd;
1125 int master_fd;
1126 };
1127
1128 struct anv_app_info {
1129 const char* app_name;
1130 uint32_t app_version;
1131 const char* engine_name;
1132 uint32_t engine_version;
1133 uint32_t api_version;
1134 };
1135
1136 struct anv_instance {
1137 struct vk_object_base base;
1138
1139 VkAllocationCallbacks alloc;
1140
1141 struct anv_app_info app_info;
1142
1143 struct anv_instance_extension_table enabled_extensions;
1144 struct anv_instance_dispatch_table dispatch;
1145 struct anv_physical_device_dispatch_table physical_device_dispatch;
1146 struct anv_device_dispatch_table device_dispatch;
1147
1148 bool physical_devices_enumerated;
1149 struct list_head physical_devices;
1150
1151 bool pipeline_cache_enabled;
1152
1153 struct vk_debug_report_instance debug_report_callbacks;
1154
1155 struct driOptionCache dri_options;
1156 struct driOptionCache available_dri_options;
1157 };
1158
1159 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1160 void anv_finish_wsi(struct anv_physical_device *physical_device);
1161
1162 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1163 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1164 const char *name);
1165
1166 struct anv_queue_submit {
1167 struct anv_cmd_buffer * cmd_buffer;
1168
1169 uint32_t fence_count;
1170 uint32_t fence_array_length;
1171 struct drm_i915_gem_exec_fence * fences;
1172
1173 uint32_t temporary_semaphore_count;
1174 uint32_t temporary_semaphore_array_length;
1175 struct anv_semaphore_impl * temporary_semaphores;
1176
1177 /* Semaphores to be signaled with a SYNC_FD. */
1178 struct anv_semaphore ** sync_fd_semaphores;
1179 uint32_t sync_fd_semaphore_count;
1180 uint32_t sync_fd_semaphore_array_length;
1181
1182 /* Allocated only with non shareable timelines. */
1183 struct anv_timeline ** wait_timelines;
1184 uint32_t wait_timeline_count;
1185 uint32_t wait_timeline_array_length;
1186 uint64_t * wait_timeline_values;
1187
1188 struct anv_timeline ** signal_timelines;
1189 uint32_t signal_timeline_count;
1190 uint32_t signal_timeline_array_length;
1191 uint64_t * signal_timeline_values;
1192
1193 int in_fence;
1194 bool need_out_fence;
1195 int out_fence;
1196
1197 uint32_t fence_bo_count;
1198 uint32_t fence_bo_array_length;
1199 /* An array of struct anv_bo pointers with lower bit used as a flag to
1200 * signal we will wait on that BO (see anv_(un)pack_ptr).
1201 */
1202 uintptr_t * fence_bos;
1203
1204 int perf_query_pass;
1205
1206 const VkAllocationCallbacks * alloc;
1207 VkSystemAllocationScope alloc_scope;
1208
1209 struct anv_bo * simple_bo;
1210 uint32_t simple_bo_size;
1211
1212 struct list_head link;
1213 };
1214
1215 struct anv_queue {
1216 struct vk_object_base base;
1217
1218 struct anv_device * device;
1219
1220 /*
1221 * A list of struct anv_queue_submit to be submitted to i915.
1222 */
1223 struct list_head queued_submits;
1224
1225 VkDeviceQueueCreateFlags flags;
1226 };
1227
1228 struct anv_pipeline_cache {
1229 struct vk_object_base base;
1230 struct anv_device * device;
1231 pthread_mutex_t mutex;
1232
1233 struct hash_table * nir_cache;
1234
1235 struct hash_table * cache;
1236 };
1237
1238 struct nir_xfb_info;
1239 struct anv_pipeline_bind_map;
1240
1241 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1242 struct anv_device *device,
1243 bool cache_enabled);
1244 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1245
1246 struct anv_shader_bin *
1247 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1248 const void *key, uint32_t key_size);
1249 struct anv_shader_bin *
1250 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1251 gl_shader_stage stage,
1252 const void *key_data, uint32_t key_size,
1253 const void *kernel_data, uint32_t kernel_size,
1254 const void *constant_data,
1255 uint32_t constant_data_size,
1256 const struct brw_stage_prog_data *prog_data,
1257 uint32_t prog_data_size,
1258 const struct brw_compile_stats *stats,
1259 uint32_t num_stats,
1260 const struct nir_xfb_info *xfb_info,
1261 const struct anv_pipeline_bind_map *bind_map);
1262
1263 struct anv_shader_bin *
1264 anv_device_search_for_kernel(struct anv_device *device,
1265 struct anv_pipeline_cache *cache,
1266 const void *key_data, uint32_t key_size,
1267 bool *user_cache_bit);
1268
1269 struct anv_shader_bin *
1270 anv_device_upload_kernel(struct anv_device *device,
1271 struct anv_pipeline_cache *cache,
1272 gl_shader_stage stage,
1273 const void *key_data, uint32_t key_size,
1274 const void *kernel_data, uint32_t kernel_size,
1275 const void *constant_data,
1276 uint32_t constant_data_size,
1277 const struct brw_stage_prog_data *prog_data,
1278 uint32_t prog_data_size,
1279 const struct brw_compile_stats *stats,
1280 uint32_t num_stats,
1281 const struct nir_xfb_info *xfb_info,
1282 const struct anv_pipeline_bind_map *bind_map);
1283
1284 struct nir_shader;
1285 struct nir_shader_compiler_options;
1286
1287 struct nir_shader *
1288 anv_device_search_for_nir(struct anv_device *device,
1289 struct anv_pipeline_cache *cache,
1290 const struct nir_shader_compiler_options *nir_options,
1291 unsigned char sha1_key[20],
1292 void *mem_ctx);
1293
1294 void
1295 anv_device_upload_nir(struct anv_device *device,
1296 struct anv_pipeline_cache *cache,
1297 const struct nir_shader *nir,
1298 unsigned char sha1_key[20]);
1299
1300 struct anv_address {
1301 struct anv_bo *bo;
1302 uint32_t offset;
1303 };
1304
1305 struct anv_device {
1306 struct vk_device vk;
1307
1308 struct anv_physical_device * physical;
1309 bool no_hw;
1310 struct gen_device_info info;
1311 struct isl_device isl_dev;
1312 int context_id;
1313 int fd;
1314 bool can_chain_batches;
1315 bool robust_buffer_access;
1316 struct anv_device_extension_table enabled_extensions;
1317 struct anv_device_dispatch_table dispatch;
1318
1319 pthread_mutex_t vma_mutex;
1320 struct util_vma_heap vma_lo;
1321 struct util_vma_heap vma_cva;
1322 struct util_vma_heap vma_hi;
1323
1324 /** List of all anv_device_memory objects */
1325 struct list_head memory_objects;
1326
1327 struct anv_bo_pool batch_bo_pool;
1328
1329 struct anv_bo_cache bo_cache;
1330
1331 struct anv_state_pool dynamic_state_pool;
1332 struct anv_state_pool instruction_state_pool;
1333 struct anv_state_pool binding_table_pool;
1334 struct anv_state_pool surface_state_pool;
1335
1336 struct anv_state_reserved_pool custom_border_colors;
1337
1338 /** BO used for various workarounds
1339 *
1340 * There are a number of workarounds on our hardware which require writing
1341 * data somewhere and it doesn't really matter where. For that, we use
1342 * this BO and just write to the first dword or so.
1343 *
1344 * We also need to be able to handle NULL buffers bound as pushed UBOs.
1345 * For that, we use the high bytes (>= 1024) of the workaround BO.
1346 */
1347 struct anv_bo * workaround_bo;
1348 struct anv_address workaround_address;
1349
1350 struct anv_bo * trivial_batch_bo;
1351 struct anv_bo * hiz_clear_bo;
1352 struct anv_state null_surface_state;
1353
1354 struct anv_pipeline_cache default_pipeline_cache;
1355 struct blorp_context blorp;
1356
1357 struct anv_state border_colors;
1358
1359 struct anv_state slice_hash;
1360
1361 struct anv_queue queue;
1362
1363 struct anv_scratch_pool scratch_pool;
1364
1365 pthread_mutex_t mutex;
1366 pthread_cond_t queue_submit;
1367 int _lost;
1368
1369 struct gen_batch_decode_ctx decoder_ctx;
1370 /*
1371 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1372 * the cmd_buffer's list.
1373 */
1374 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1375
1376 int perf_fd; /* -1 if no opened */
1377 uint64_t perf_metric; /* 0 if unset */
1378
1379 struct gen_aux_map_context *aux_map_ctx;
1380 };
1381
1382 static inline struct anv_instance *
1383 anv_device_instance_or_null(const struct anv_device *device)
1384 {
1385 return device ? device->physical->instance : NULL;
1386 }
1387
1388 static inline struct anv_state_pool *
1389 anv_binding_table_pool(struct anv_device *device)
1390 {
1391 if (device->physical->use_softpin)
1392 return &device->binding_table_pool;
1393 else
1394 return &device->surface_state_pool;
1395 }
1396
1397 static inline struct anv_state
1398 anv_binding_table_pool_alloc(struct anv_device *device) {
1399 if (device->physical->use_softpin)
1400 return anv_state_pool_alloc(&device->binding_table_pool,
1401 device->binding_table_pool.block_size, 0);
1402 else
1403 return anv_state_pool_alloc_back(&device->surface_state_pool);
1404 }
1405
1406 static inline void
1407 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1408 anv_state_pool_free(anv_binding_table_pool(device), state);
1409 }
1410
1411 static inline uint32_t
1412 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1413 {
1414 if (bo->is_external)
1415 return device->isl_dev.mocs.external;
1416 else
1417 return device->isl_dev.mocs.internal;
1418 }
1419
1420 void anv_device_init_blorp(struct anv_device *device);
1421 void anv_device_finish_blorp(struct anv_device *device);
1422
1423 void _anv_device_set_all_queue_lost(struct anv_device *device);
1424 VkResult _anv_device_set_lost(struct anv_device *device,
1425 const char *file, int line,
1426 const char *msg, ...)
1427 anv_printflike(4, 5);
1428 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1429 const char *file, int line,
1430 const char *msg, ...)
1431 anv_printflike(4, 5);
1432 #define anv_device_set_lost(dev, ...) \
1433 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1434 #define anv_queue_set_lost(queue, ...) \
1435 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1436
1437 static inline bool
1438 anv_device_is_lost(struct anv_device *device)
1439 {
1440 return unlikely(p_atomic_read(&device->_lost));
1441 }
1442
1443 VkResult anv_device_query_status(struct anv_device *device);
1444
1445
1446 enum anv_bo_alloc_flags {
1447 /** Specifies that the BO must have a 32-bit address
1448 *
1449 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1450 */
1451 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1452
1453 /** Specifies that the BO may be shared externally */
1454 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1455
1456 /** Specifies that the BO should be mapped */
1457 ANV_BO_ALLOC_MAPPED = (1 << 2),
1458
1459 /** Specifies that the BO should be snooped so we get coherency */
1460 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1461
1462 /** Specifies that the BO should be captured in error states */
1463 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1464
1465 /** Specifies that the BO will have an address assigned by the caller
1466 *
1467 * Such BOs do not exist in any VMA heap.
1468 */
1469 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1470
1471 /** Enables implicit synchronization on the BO
1472 *
1473 * This is the opposite of EXEC_OBJECT_ASYNC.
1474 */
1475 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1476
1477 /** Enables implicit synchronization on the BO
1478 *
1479 * This is equivalent to EXEC_OBJECT_WRITE.
1480 */
1481 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1482
1483 /** Has an address which is visible to the client */
1484 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1485
1486 /** This buffer has implicit CCS data attached to it */
1487 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1488 };
1489
1490 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1491 enum anv_bo_alloc_flags alloc_flags,
1492 uint64_t explicit_address,
1493 struct anv_bo **bo);
1494 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1495 void *host_ptr, uint32_t size,
1496 enum anv_bo_alloc_flags alloc_flags,
1497 uint64_t client_address,
1498 struct anv_bo **bo_out);
1499 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1500 enum anv_bo_alloc_flags alloc_flags,
1501 uint64_t client_address,
1502 struct anv_bo **bo);
1503 VkResult anv_device_export_bo(struct anv_device *device,
1504 struct anv_bo *bo, int *fd_out);
1505 void anv_device_release_bo(struct anv_device *device,
1506 struct anv_bo *bo);
1507
1508 static inline struct anv_bo *
1509 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1510 {
1511 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1512 }
1513
1514 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1515 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1516 int64_t timeout);
1517
1518 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1519 void anv_queue_finish(struct anv_queue *queue);
1520
1521 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1522 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1523 struct anv_batch *batch);
1524
1525 uint64_t anv_gettime_ns(void);
1526 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1527
1528 void* anv_gem_mmap(struct anv_device *device,
1529 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1530 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1531 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1532 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1533 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1534 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1535 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1536 int anv_gem_execbuffer(struct anv_device *device,
1537 struct drm_i915_gem_execbuffer2 *execbuf);
1538 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1539 uint32_t stride, uint32_t tiling);
1540 int anv_gem_create_context(struct anv_device *device);
1541 bool anv_gem_has_context_priority(int fd);
1542 int anv_gem_destroy_context(struct anv_device *device, int context);
1543 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1544 uint64_t value);
1545 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1546 uint64_t *value);
1547 int anv_gem_get_param(int fd, uint32_t param);
1548 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1549 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1550 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1551 uint32_t *active, uint32_t *pending);
1552 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1553 int anv_gem_reg_read(int fd, uint32_t offset, uint64_t *result);
1554 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1555 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1556 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1557 uint32_t read_domains, uint32_t write_domain);
1558 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1559 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1560 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1561 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1562 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1563 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1564 uint32_t handle);
1565 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1566 uint32_t handle, int fd);
1567 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1568 bool anv_gem_supports_syncobj_wait(int fd);
1569 int anv_gem_syncobj_wait(struct anv_device *device,
1570 uint32_t *handles, uint32_t num_handles,
1571 int64_t abs_timeout_ns, bool wait_all);
1572
1573 uint64_t anv_vma_alloc(struct anv_device *device,
1574 uint64_t size, uint64_t align,
1575 enum anv_bo_alloc_flags alloc_flags,
1576 uint64_t client_address);
1577 void anv_vma_free(struct anv_device *device,
1578 uint64_t address, uint64_t size);
1579
1580 struct anv_reloc_list {
1581 uint32_t num_relocs;
1582 uint32_t array_length;
1583 struct drm_i915_gem_relocation_entry * relocs;
1584 struct anv_bo ** reloc_bos;
1585 uint32_t dep_words;
1586 BITSET_WORD * deps;
1587 };
1588
1589 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1590 const VkAllocationCallbacks *alloc);
1591 void anv_reloc_list_finish(struct anv_reloc_list *list,
1592 const VkAllocationCallbacks *alloc);
1593
1594 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1595 const VkAllocationCallbacks *alloc,
1596 uint32_t offset, struct anv_bo *target_bo,
1597 uint32_t delta, uint64_t *address_u64_out);
1598
1599 struct anv_batch_bo {
1600 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1601 struct list_head link;
1602
1603 struct anv_bo * bo;
1604
1605 /* Bytes actually consumed in this batch BO */
1606 uint32_t length;
1607
1608 struct anv_reloc_list relocs;
1609 };
1610
1611 struct anv_batch {
1612 const VkAllocationCallbacks * alloc;
1613
1614 struct anv_address start_addr;
1615
1616 void * start;
1617 void * end;
1618 void * next;
1619
1620 struct anv_reloc_list * relocs;
1621
1622 /* This callback is called (with the associated user data) in the event
1623 * that the batch runs out of space.
1624 */
1625 VkResult (*extend_cb)(struct anv_batch *, void *);
1626 void * user_data;
1627
1628 /**
1629 * Current error status of the command buffer. Used to track inconsistent
1630 * or incomplete command buffer states that are the consequence of run-time
1631 * errors such as out of memory scenarios. We want to track this in the
1632 * batch because the command buffer object is not visible to some parts
1633 * of the driver.
1634 */
1635 VkResult status;
1636 };
1637
1638 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1639 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1640 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1641 void *location, struct anv_bo *bo, uint32_t offset);
1642 struct anv_address anv_batch_address(struct anv_batch *batch, void *batch_location);
1643
1644 static inline VkResult
1645 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1646 {
1647 assert(error != VK_SUCCESS);
1648 if (batch->status == VK_SUCCESS)
1649 batch->status = error;
1650 return batch->status;
1651 }
1652
1653 static inline bool
1654 anv_batch_has_error(struct anv_batch *batch)
1655 {
1656 return batch->status != VK_SUCCESS;
1657 }
1658
1659 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1660
1661 static inline bool
1662 anv_address_is_null(struct anv_address addr)
1663 {
1664 return addr.bo == NULL && addr.offset == 0;
1665 }
1666
1667 static inline uint64_t
1668 anv_address_physical(struct anv_address addr)
1669 {
1670 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1671 return gen_canonical_address(addr.bo->offset + addr.offset);
1672 else
1673 return gen_canonical_address(addr.offset);
1674 }
1675
1676 static inline struct anv_address
1677 anv_address_add(struct anv_address addr, uint64_t offset)
1678 {
1679 addr.offset += offset;
1680 return addr;
1681 }
1682
1683 static inline void
1684 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1685 {
1686 unsigned reloc_size = 0;
1687 if (device->info.gen >= 8) {
1688 reloc_size = sizeof(uint64_t);
1689 *(uint64_t *)p = gen_canonical_address(v);
1690 } else {
1691 reloc_size = sizeof(uint32_t);
1692 *(uint32_t *)p = v;
1693 }
1694
1695 if (flush && !device->info.has_llc)
1696 gen_flush_range(p, reloc_size);
1697 }
1698
1699 static inline uint64_t
1700 _anv_combine_address(struct anv_batch *batch, void *location,
1701 const struct anv_address address, uint32_t delta)
1702 {
1703 if (address.bo == NULL) {
1704 return address.offset + delta;
1705 } else {
1706 assert(batch->start <= location && location < batch->end);
1707
1708 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1709 }
1710 }
1711
1712 #define __gen_address_type struct anv_address
1713 #define __gen_user_data struct anv_batch
1714 #define __gen_combine_address _anv_combine_address
1715
1716 /* Wrapper macros needed to work around preprocessor argument issues. In
1717 * particular, arguments don't get pre-evaluated if they are concatenated.
1718 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1719 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1720 * We can work around this easily enough with these helpers.
1721 */
1722 #define __anv_cmd_length(cmd) cmd ## _length
1723 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1724 #define __anv_cmd_header(cmd) cmd ## _header
1725 #define __anv_cmd_pack(cmd) cmd ## _pack
1726 #define __anv_reg_num(reg) reg ## _num
1727
1728 #define anv_pack_struct(dst, struc, ...) do { \
1729 struct struc __template = { \
1730 __VA_ARGS__ \
1731 }; \
1732 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1733 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1734 } while (0)
1735
1736 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1737 void *__dst = anv_batch_emit_dwords(batch, n); \
1738 if (__dst) { \
1739 struct cmd __template = { \
1740 __anv_cmd_header(cmd), \
1741 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1742 __VA_ARGS__ \
1743 }; \
1744 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1745 } \
1746 __dst; \
1747 })
1748
1749 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1750 do { \
1751 uint32_t *dw; \
1752 \
1753 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1754 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1755 if (!dw) \
1756 break; \
1757 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1758 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1759 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1760 } while (0)
1761
1762 #define anv_batch_emit(batch, cmd, name) \
1763 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1764 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1765 __builtin_expect(_dst != NULL, 1); \
1766 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1767 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1768 _dst = NULL; \
1769 }))
1770
1771 /* #define __gen_get_batch_dwords anv_batch_emit_dwords */
1772 /* #define __gen_get_batch_address anv_batch_address */
1773 /* #define __gen_address_value anv_address_physical */
1774 /* #define __gen_address_offset anv_address_add */
1775
1776 struct anv_device_memory {
1777 struct vk_object_base base;
1778
1779 struct list_head link;
1780
1781 struct anv_bo * bo;
1782 struct anv_memory_type * type;
1783 VkDeviceSize map_size;
1784 void * map;
1785
1786 /* If set, we are holding reference to AHardwareBuffer
1787 * which we must release when memory is freed.
1788 */
1789 struct AHardwareBuffer * ahw;
1790
1791 /* If set, this memory comes from a host pointer. */
1792 void * host_ptr;
1793 };
1794
1795 /**
1796 * Header for Vertex URB Entry (VUE)
1797 */
1798 struct anv_vue_header {
1799 uint32_t Reserved;
1800 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1801 uint32_t ViewportIndex;
1802 float PointWidth;
1803 };
1804
1805 /** Struct representing a sampled image descriptor
1806 *
1807 * This descriptor layout is used for sampled images, bare sampler, and
1808 * combined image/sampler descriptors.
1809 */
1810 struct anv_sampled_image_descriptor {
1811 /** Bindless image handle
1812 *
1813 * This is expected to already be shifted such that the 20-bit
1814 * SURFACE_STATE table index is in the top 20 bits.
1815 */
1816 uint32_t image;
1817
1818 /** Bindless sampler handle
1819 *
1820 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1821 * to the dynamic state base address.
1822 */
1823 uint32_t sampler;
1824 };
1825
1826 struct anv_texture_swizzle_descriptor {
1827 /** Texture swizzle
1828 *
1829 * See also nir_intrinsic_channel_select_intel
1830 */
1831 uint8_t swizzle[4];
1832
1833 /** Unused padding to ensure the struct is a multiple of 64 bits */
1834 uint32_t _pad;
1835 };
1836
1837 /** Struct representing a storage image descriptor */
1838 struct anv_storage_image_descriptor {
1839 /** Bindless image handles
1840 *
1841 * These are expected to already be shifted such that the 20-bit
1842 * SURFACE_STATE table index is in the top 20 bits.
1843 */
1844 uint32_t read_write;
1845 uint32_t write_only;
1846 };
1847
1848 /** Struct representing a address/range descriptor
1849 *
1850 * The fields of this struct correspond directly to the data layout of
1851 * nir_address_format_64bit_bounded_global addresses. The last field is the
1852 * offset in the NIR address so it must be zero so that when you load the
1853 * descriptor you get a pointer to the start of the range.
1854 */
1855 struct anv_address_range_descriptor {
1856 uint64_t address;
1857 uint32_t range;
1858 uint32_t zero;
1859 };
1860
1861 enum anv_descriptor_data {
1862 /** The descriptor contains a BTI reference to a surface state */
1863 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1864 /** The descriptor contains a BTI reference to a sampler state */
1865 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1866 /** The descriptor contains an actual buffer view */
1867 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1868 /** The descriptor contains auxiliary image layout data */
1869 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1870 /** The descriptor contains auxiliary image layout data */
1871 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1872 /** anv_address_range_descriptor with a buffer address and range */
1873 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1874 /** Bindless surface handle */
1875 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1876 /** Storage image handles */
1877 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1878 /** Storage image handles */
1879 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1880 };
1881
1882 struct anv_descriptor_set_binding_layout {
1883 #ifndef NDEBUG
1884 /* The type of the descriptors in this binding */
1885 VkDescriptorType type;
1886 #endif
1887
1888 /* Flags provided when this binding was created */
1889 VkDescriptorBindingFlagsEXT flags;
1890
1891 /* Bitfield representing the type of data this descriptor contains */
1892 enum anv_descriptor_data data;
1893
1894 /* Maximum number of YCbCr texture/sampler planes */
1895 uint8_t max_plane_count;
1896
1897 /* Number of array elements in this binding (or size in bytes for inline
1898 * uniform data)
1899 */
1900 uint16_t array_size;
1901
1902 /* Index into the flattend descriptor set */
1903 uint16_t descriptor_index;
1904
1905 /* Index into the dynamic state array for a dynamic buffer */
1906 int16_t dynamic_offset_index;
1907
1908 /* Index into the descriptor set buffer views */
1909 int16_t buffer_view_index;
1910
1911 /* Offset into the descriptor buffer where this descriptor lives */
1912 uint32_t descriptor_offset;
1913
1914 /* Immutable samplers (or NULL if no immutable samplers) */
1915 struct anv_sampler **immutable_samplers;
1916 };
1917
1918 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1919
1920 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1921 VkDescriptorType type);
1922
1923 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1924 const struct anv_descriptor_set_binding_layout *binding,
1925 bool sampler);
1926
1927 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1928 const struct anv_descriptor_set_binding_layout *binding,
1929 bool sampler);
1930
1931 struct anv_descriptor_set_layout {
1932 struct vk_object_base base;
1933
1934 /* Descriptor set layouts can be destroyed at almost any time */
1935 uint32_t ref_cnt;
1936
1937 /* Number of bindings in this descriptor set */
1938 uint16_t binding_count;
1939
1940 /* Total size of the descriptor set with room for all array entries */
1941 uint16_t size;
1942
1943 /* Shader stages affected by this descriptor set */
1944 uint16_t shader_stages;
1945
1946 /* Number of buffer views in this descriptor set */
1947 uint16_t buffer_view_count;
1948
1949 /* Number of dynamic offsets used by this descriptor set */
1950 uint16_t dynamic_offset_count;
1951
1952 /* For each shader stage, which offsets apply to that stage */
1953 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1954
1955 /* Size of the descriptor buffer for this descriptor set */
1956 uint32_t descriptor_buffer_size;
1957
1958 /* Bindings in this descriptor set */
1959 struct anv_descriptor_set_binding_layout binding[0];
1960 };
1961
1962 void anv_descriptor_set_layout_destroy(struct anv_device *device,
1963 struct anv_descriptor_set_layout *layout);
1964
1965 static inline void
1966 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1967 {
1968 assert(layout && layout->ref_cnt >= 1);
1969 p_atomic_inc(&layout->ref_cnt);
1970 }
1971
1972 static inline void
1973 anv_descriptor_set_layout_unref(struct anv_device *device,
1974 struct anv_descriptor_set_layout *layout)
1975 {
1976 assert(layout && layout->ref_cnt >= 1);
1977 if (p_atomic_dec_zero(&layout->ref_cnt))
1978 anv_descriptor_set_layout_destroy(device, layout);
1979 }
1980
1981 struct anv_descriptor {
1982 VkDescriptorType type;
1983
1984 union {
1985 struct {
1986 VkImageLayout layout;
1987 struct anv_image_view *image_view;
1988 struct anv_sampler *sampler;
1989 };
1990
1991 struct {
1992 struct anv_buffer *buffer;
1993 uint64_t offset;
1994 uint64_t range;
1995 };
1996
1997 struct anv_buffer_view *buffer_view;
1998 };
1999 };
2000
2001 struct anv_descriptor_set {
2002 struct vk_object_base base;
2003
2004 struct anv_descriptor_pool *pool;
2005 struct anv_descriptor_set_layout *layout;
2006 uint32_t size;
2007
2008 /* State relative to anv_descriptor_pool::bo */
2009 struct anv_state desc_mem;
2010 /* Surface state for the descriptor buffer */
2011 struct anv_state desc_surface_state;
2012
2013 uint32_t buffer_view_count;
2014 struct anv_buffer_view *buffer_views;
2015
2016 /* Link to descriptor pool's desc_sets list . */
2017 struct list_head pool_link;
2018
2019 struct anv_descriptor descriptors[0];
2020 };
2021
2022 struct anv_buffer_view {
2023 struct vk_object_base base;
2024
2025 enum isl_format format; /**< VkBufferViewCreateInfo::format */
2026 uint64_t range; /**< VkBufferViewCreateInfo::range */
2027
2028 struct anv_address address;
2029
2030 struct anv_state surface_state;
2031 struct anv_state storage_surface_state;
2032 struct anv_state writeonly_storage_surface_state;
2033
2034 struct brw_image_param storage_image_param;
2035 };
2036
2037 struct anv_push_descriptor_set {
2038 struct anv_descriptor_set set;
2039
2040 /* Put this field right behind anv_descriptor_set so it fills up the
2041 * descriptors[0] field. */
2042 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
2043
2044 /** True if the descriptor set buffer has been referenced by a draw or
2045 * dispatch command.
2046 */
2047 bool set_used_on_gpu;
2048
2049 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
2050 };
2051
2052 struct anv_descriptor_pool {
2053 struct vk_object_base base;
2054
2055 uint32_t size;
2056 uint32_t next;
2057 uint32_t free_list;
2058
2059 struct anv_bo *bo;
2060 struct util_vma_heap bo_heap;
2061
2062 struct anv_state_stream surface_state_stream;
2063 void *surface_state_free_list;
2064
2065 struct list_head desc_sets;
2066
2067 char data[0];
2068 };
2069
2070 enum anv_descriptor_template_entry_type {
2071 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2072 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2073 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2074 };
2075
2076 struct anv_descriptor_template_entry {
2077 /* The type of descriptor in this entry */
2078 VkDescriptorType type;
2079
2080 /* Binding in the descriptor set */
2081 uint32_t binding;
2082
2083 /* Offset at which to write into the descriptor set binding */
2084 uint32_t array_element;
2085
2086 /* Number of elements to write into the descriptor set binding */
2087 uint32_t array_count;
2088
2089 /* Offset into the user provided data */
2090 size_t offset;
2091
2092 /* Stride between elements into the user provided data */
2093 size_t stride;
2094 };
2095
2096 struct anv_descriptor_update_template {
2097 struct vk_object_base base;
2098
2099 VkPipelineBindPoint bind_point;
2100
2101 /* The descriptor set this template corresponds to. This value is only
2102 * valid if the template was created with the templateType
2103 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2104 */
2105 uint8_t set;
2106
2107 /* Number of entries in this template */
2108 uint32_t entry_count;
2109
2110 /* Entries of the template */
2111 struct anv_descriptor_template_entry entries[0];
2112 };
2113
2114 size_t
2115 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2116
2117 void
2118 anv_descriptor_set_write_image_view(struct anv_device *device,
2119 struct anv_descriptor_set *set,
2120 const VkDescriptorImageInfo * const info,
2121 VkDescriptorType type,
2122 uint32_t binding,
2123 uint32_t element);
2124
2125 void
2126 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2127 struct anv_descriptor_set *set,
2128 VkDescriptorType type,
2129 struct anv_buffer_view *buffer_view,
2130 uint32_t binding,
2131 uint32_t element);
2132
2133 void
2134 anv_descriptor_set_write_buffer(struct anv_device *device,
2135 struct anv_descriptor_set *set,
2136 struct anv_state_stream *alloc_stream,
2137 VkDescriptorType type,
2138 struct anv_buffer *buffer,
2139 uint32_t binding,
2140 uint32_t element,
2141 VkDeviceSize offset,
2142 VkDeviceSize range);
2143 void
2144 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2145 struct anv_descriptor_set *set,
2146 uint32_t binding,
2147 const void *data,
2148 size_t offset,
2149 size_t size);
2150
2151 void
2152 anv_descriptor_set_write_template(struct anv_device *device,
2153 struct anv_descriptor_set *set,
2154 struct anv_state_stream *alloc_stream,
2155 const struct anv_descriptor_update_template *template,
2156 const void *data);
2157
2158 VkResult
2159 anv_descriptor_set_create(struct anv_device *device,
2160 struct anv_descriptor_pool *pool,
2161 struct anv_descriptor_set_layout *layout,
2162 struct anv_descriptor_set **out_set);
2163
2164 void
2165 anv_descriptor_set_destroy(struct anv_device *device,
2166 struct anv_descriptor_pool *pool,
2167 struct anv_descriptor_set *set);
2168
2169 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2170 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2171 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2172 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2173 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2174 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2175
2176 struct anv_pipeline_binding {
2177 /** Index in the descriptor set
2178 *
2179 * This is a flattened index; the descriptor set layout is already taken
2180 * into account.
2181 */
2182 uint32_t index;
2183
2184 /** The descriptor set this surface corresponds to.
2185 *
2186 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2187 * binding is not a normal descriptor set but something else.
2188 */
2189 uint8_t set;
2190
2191 union {
2192 /** Plane in the binding index for images */
2193 uint8_t plane;
2194
2195 /** Input attachment index (relative to the subpass) */
2196 uint8_t input_attachment_index;
2197
2198 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2199 uint8_t dynamic_offset_index;
2200 };
2201
2202 /** For a storage image, whether it is write-only */
2203 uint8_t write_only;
2204
2205 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2206 * assuming POD zero-initialization.
2207 */
2208 uint8_t pad;
2209 };
2210
2211 struct anv_push_range {
2212 /** Index in the descriptor set */
2213 uint32_t index;
2214
2215 /** Descriptor set index */
2216 uint8_t set;
2217
2218 /** Dynamic offset index (for dynamic UBOs) */
2219 uint8_t dynamic_offset_index;
2220
2221 /** Start offset in units of 32B */
2222 uint8_t start;
2223
2224 /** Range in units of 32B */
2225 uint8_t length;
2226 };
2227
2228 struct anv_pipeline_layout {
2229 struct vk_object_base base;
2230
2231 struct {
2232 struct anv_descriptor_set_layout *layout;
2233 uint32_t dynamic_offset_start;
2234 } set[MAX_SETS];
2235
2236 uint32_t num_sets;
2237
2238 unsigned char sha1[20];
2239 };
2240
2241 struct anv_buffer {
2242 struct vk_object_base base;
2243
2244 struct anv_device * device;
2245 VkDeviceSize size;
2246
2247 VkBufferUsageFlags usage;
2248
2249 /* Set when bound */
2250 struct anv_address address;
2251 };
2252
2253 static inline uint64_t
2254 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2255 {
2256 assert(offset <= buffer->size);
2257 if (range == VK_WHOLE_SIZE) {
2258 return buffer->size - offset;
2259 } else {
2260 assert(range + offset >= range);
2261 assert(range + offset <= buffer->size);
2262 return range;
2263 }
2264 }
2265
2266 enum anv_cmd_dirty_bits {
2267 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2268 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2269 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2270 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2271 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2272 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2273 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2274 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2275 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2276 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2277 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2278 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2279 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2280 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2281 };
2282 typedef uint32_t anv_cmd_dirty_mask_t;
2283
2284 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2285 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2286 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2287 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2288 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2289 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2290 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2291 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2292 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2293 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2294 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2295
2296 static inline enum anv_cmd_dirty_bits
2297 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2298 {
2299 switch (vk_state) {
2300 case VK_DYNAMIC_STATE_VIEWPORT:
2301 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2302 case VK_DYNAMIC_STATE_SCISSOR:
2303 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2304 case VK_DYNAMIC_STATE_LINE_WIDTH:
2305 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2306 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2307 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2308 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2309 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2310 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2311 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2312 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2313 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2314 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2315 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2316 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2317 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2318 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2319 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2320 default:
2321 assert(!"Unsupported dynamic state");
2322 return 0;
2323 }
2324 }
2325
2326
2327 enum anv_pipe_bits {
2328 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2329 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2330 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2331 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2332 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2333 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2334 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2335 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2336 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2337 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2338 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2339 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2340 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2341
2342 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2343 * a flush has happened but not a CS stall. The next time we do any sort
2344 * of invalidation we need to insert a CS stall at that time. Otherwise,
2345 * we would have to CS stall on every flush which could be bad.
2346 */
2347 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2348
2349 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2350 * target operations related to transfer commands with VkBuffer as
2351 * destination are ongoing. Some operations like copies on the command
2352 * streamer might need to be aware of this to trigger the appropriate stall
2353 * before they can proceed with the copy.
2354 */
2355 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2356
2357 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2358 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2359 * done by writing the AUX-TT register.
2360 */
2361 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2362
2363 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2364 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2365 * implement a workaround for Gen9.
2366 */
2367 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2368 };
2369
2370 #define ANV_PIPE_FLUSH_BITS ( \
2371 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2372 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2373 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2374 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2375
2376 #define ANV_PIPE_STALL_BITS ( \
2377 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2378 ANV_PIPE_DEPTH_STALL_BIT | \
2379 ANV_PIPE_CS_STALL_BIT)
2380
2381 #define ANV_PIPE_INVALIDATE_BITS ( \
2382 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2383 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2384 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2385 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2386 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2387 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2388 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2389
2390 static inline enum anv_pipe_bits
2391 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2392 {
2393 enum anv_pipe_bits pipe_bits = 0;
2394
2395 unsigned b;
2396 for_each_bit(b, flags) {
2397 switch ((VkAccessFlagBits)(1 << b)) {
2398 case VK_ACCESS_SHADER_WRITE_BIT:
2399 /* We're transitioning a buffer that was previously used as write
2400 * destination through the data port. To make its content available
2401 * to future operations, flush the data cache.
2402 */
2403 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2404 break;
2405 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2406 /* We're transitioning a buffer that was previously used as render
2407 * target. To make its content available to future operations, flush
2408 * the render target cache.
2409 */
2410 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2411 break;
2412 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2413 /* We're transitioning a buffer that was previously used as depth
2414 * buffer. To make its content available to future operations, flush
2415 * the depth cache.
2416 */
2417 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2418 break;
2419 case VK_ACCESS_TRANSFER_WRITE_BIT:
2420 /* We're transitioning a buffer that was previously used as a
2421 * transfer write destination. Generic write operations include color
2422 * & depth operations as well as buffer operations like :
2423 * - vkCmdClearColorImage()
2424 * - vkCmdClearDepthStencilImage()
2425 * - vkCmdBlitImage()
2426 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2427 *
2428 * Most of these operations are implemented using Blorp which writes
2429 * through the render target, so flush that cache to make it visible
2430 * to future operations. And for depth related operations we also
2431 * need to flush the depth cache.
2432 */
2433 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2434 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2435 break;
2436 case VK_ACCESS_MEMORY_WRITE_BIT:
2437 /* We're transitioning a buffer for generic write operations. Flush
2438 * all the caches.
2439 */
2440 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2441 break;
2442 default:
2443 break; /* Nothing to do */
2444 }
2445 }
2446
2447 return pipe_bits;
2448 }
2449
2450 static inline enum anv_pipe_bits
2451 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2452 {
2453 enum anv_pipe_bits pipe_bits = 0;
2454
2455 unsigned b;
2456 for_each_bit(b, flags) {
2457 switch ((VkAccessFlagBits)(1 << b)) {
2458 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2459 /* Indirect draw commands take a buffer as input that we're going to
2460 * read from the command streamer to load some of the HW registers
2461 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2462 * command streamer stall so that all the cache flushes have
2463 * completed before the command streamer loads from memory.
2464 */
2465 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2466 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2467 * through a vertex buffer, so invalidate that cache.
2468 */
2469 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2470 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2471 * UBO from the buffer, so we need to invalidate constant cache.
2472 */
2473 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2474 break;
2475 case VK_ACCESS_INDEX_READ_BIT:
2476 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2477 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2478 * commands, so we invalidate the VF cache to make sure there is no
2479 * stale data when we start rendering.
2480 */
2481 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2482 break;
2483 case VK_ACCESS_UNIFORM_READ_BIT:
2484 /* We transitioning a buffer to be used as uniform data. Because
2485 * uniform is accessed through the data port & sampler, we need to
2486 * invalidate the texture cache (sampler) & constant cache (data
2487 * port) to avoid stale data.
2488 */
2489 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2490 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2491 break;
2492 case VK_ACCESS_SHADER_READ_BIT:
2493 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2494 case VK_ACCESS_TRANSFER_READ_BIT:
2495 /* Transitioning a buffer to be read through the sampler, so
2496 * invalidate the texture cache, we don't want any stale data.
2497 */
2498 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2499 break;
2500 case VK_ACCESS_MEMORY_READ_BIT:
2501 /* Transitioning a buffer for generic read, invalidate all the
2502 * caches.
2503 */
2504 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2505 break;
2506 case VK_ACCESS_MEMORY_WRITE_BIT:
2507 /* Generic write, make sure all previously written things land in
2508 * memory.
2509 */
2510 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2511 break;
2512 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2513 /* Transitioning a buffer for conditional rendering. We'll load the
2514 * content of this buffer into HW registers using the command
2515 * streamer, so we need to stall the command streamer to make sure
2516 * any in-flight flush operations have completed.
2517 */
2518 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2519 break;
2520 default:
2521 break; /* Nothing to do */
2522 }
2523 }
2524
2525 return pipe_bits;
2526 }
2527
2528 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2529 VK_IMAGE_ASPECT_COLOR_BIT | \
2530 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2531 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2532 VK_IMAGE_ASPECT_PLANE_2_BIT)
2533 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2534 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2535 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2536 VK_IMAGE_ASPECT_PLANE_2_BIT)
2537
2538 struct anv_vertex_binding {
2539 struct anv_buffer * buffer;
2540 VkDeviceSize offset;
2541 };
2542
2543 struct anv_xfb_binding {
2544 struct anv_buffer * buffer;
2545 VkDeviceSize offset;
2546 VkDeviceSize size;
2547 };
2548
2549 struct anv_push_constants {
2550 /** Push constant data provided by the client through vkPushConstants */
2551 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2552
2553 /** Dynamic offsets for dynamic UBOs and SSBOs */
2554 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2555
2556 uint64_t push_reg_mask;
2557
2558 /** Pad out to a multiple of 32 bytes */
2559 uint32_t pad[2];
2560
2561 struct {
2562 /** Base workgroup ID
2563 *
2564 * Used for vkCmdDispatchBase.
2565 */
2566 uint32_t base_work_group_id[3];
2567
2568 /** Subgroup ID
2569 *
2570 * This is never set by software but is implicitly filled out when
2571 * uploading the push constants for compute shaders.
2572 */
2573 uint32_t subgroup_id;
2574 } cs;
2575 };
2576
2577 struct anv_dynamic_state {
2578 struct {
2579 uint32_t count;
2580 VkViewport viewports[MAX_VIEWPORTS];
2581 } viewport;
2582
2583 struct {
2584 uint32_t count;
2585 VkRect2D scissors[MAX_SCISSORS];
2586 } scissor;
2587
2588 float line_width;
2589
2590 struct {
2591 float bias;
2592 float clamp;
2593 float slope;
2594 } depth_bias;
2595
2596 float blend_constants[4];
2597
2598 struct {
2599 float min;
2600 float max;
2601 } depth_bounds;
2602
2603 struct {
2604 uint32_t front;
2605 uint32_t back;
2606 } stencil_compare_mask;
2607
2608 struct {
2609 uint32_t front;
2610 uint32_t back;
2611 } stencil_write_mask;
2612
2613 struct {
2614 uint32_t front;
2615 uint32_t back;
2616 } stencil_reference;
2617
2618 struct {
2619 uint32_t factor;
2620 uint16_t pattern;
2621 } line_stipple;
2622 };
2623
2624 extern const struct anv_dynamic_state default_dynamic_state;
2625
2626 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2627 const struct anv_dynamic_state *src,
2628 uint32_t copy_mask);
2629
2630 struct anv_surface_state {
2631 struct anv_state state;
2632 /** Address of the surface referred to by this state
2633 *
2634 * This address is relative to the start of the BO.
2635 */
2636 struct anv_address address;
2637 /* Address of the aux surface, if any
2638 *
2639 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2640 *
2641 * With the exception of gen8, the bottom 12 bits of this address' offset
2642 * include extra aux information.
2643 */
2644 struct anv_address aux_address;
2645 /* Address of the clear color, if any
2646 *
2647 * This address is relative to the start of the BO.
2648 */
2649 struct anv_address clear_address;
2650 };
2651
2652 /**
2653 * Attachment state when recording a renderpass instance.
2654 *
2655 * The clear value is valid only if there exists a pending clear.
2656 */
2657 struct anv_attachment_state {
2658 enum isl_aux_usage aux_usage;
2659 struct anv_surface_state color;
2660 struct anv_surface_state input;
2661
2662 VkImageLayout current_layout;
2663 VkImageLayout current_stencil_layout;
2664 VkImageAspectFlags pending_clear_aspects;
2665 VkImageAspectFlags pending_load_aspects;
2666 bool fast_clear;
2667 VkClearValue clear_value;
2668
2669 /* When multiview is active, attachments with a renderpass clear
2670 * operation have their respective layers cleared on the first
2671 * subpass that uses them, and only in that subpass. We keep track
2672 * of this using a bitfield to indicate which layers of an attachment
2673 * have not been cleared yet when multiview is active.
2674 */
2675 uint32_t pending_clear_views;
2676 struct anv_image_view * image_view;
2677 };
2678
2679 /** State tracking for vertex buffer flushes
2680 *
2681 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2682 * addresses. If you happen to have two vertex buffers which get placed
2683 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2684 * collisions. In order to solve this problem, we track vertex address ranges
2685 * which are live in the cache and invalidate the cache if one ever exceeds 32
2686 * bits.
2687 */
2688 struct anv_vb_cache_range {
2689 /* Virtual address at which the live vertex buffer cache range starts for
2690 * this vertex buffer index.
2691 */
2692 uint64_t start;
2693
2694 /* Virtual address of the byte after where vertex buffer cache range ends.
2695 * This is exclusive such that end - start is the size of the range.
2696 */
2697 uint64_t end;
2698 };
2699
2700 /** State tracking for particular pipeline bind point
2701 *
2702 * This struct is the base struct for anv_cmd_graphics_state and
2703 * anv_cmd_compute_state. These are used to track state which is bound to a
2704 * particular type of pipeline. Generic state that applies per-stage such as
2705 * binding table offsets and push constants is tracked generically with a
2706 * per-stage array in anv_cmd_state.
2707 */
2708 struct anv_cmd_pipeline_state {
2709 struct anv_descriptor_set *descriptors[MAX_SETS];
2710 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2711 };
2712
2713 /** State tracking for graphics pipeline
2714 *
2715 * This has anv_cmd_pipeline_state as a base struct to track things which get
2716 * bound to a graphics pipeline. Along with general pipeline bind point state
2717 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2718 * state which is graphics-specific.
2719 */
2720 struct anv_cmd_graphics_state {
2721 struct anv_cmd_pipeline_state base;
2722
2723 struct anv_graphics_pipeline *pipeline;
2724
2725 anv_cmd_dirty_mask_t dirty;
2726 uint32_t vb_dirty;
2727
2728 struct anv_vb_cache_range ib_bound_range;
2729 struct anv_vb_cache_range ib_dirty_range;
2730 struct anv_vb_cache_range vb_bound_ranges[33];
2731 struct anv_vb_cache_range vb_dirty_ranges[33];
2732
2733 struct anv_dynamic_state dynamic;
2734
2735 struct {
2736 struct anv_buffer *index_buffer;
2737 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2738 uint32_t index_offset;
2739 } gen7;
2740 };
2741
2742 /** State tracking for compute pipeline
2743 *
2744 * This has anv_cmd_pipeline_state as a base struct to track things which get
2745 * bound to a compute pipeline. Along with general pipeline bind point state
2746 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2747 * state which is compute-specific.
2748 */
2749 struct anv_cmd_compute_state {
2750 struct anv_cmd_pipeline_state base;
2751
2752 struct anv_compute_pipeline *pipeline;
2753
2754 bool pipeline_dirty;
2755
2756 struct anv_address num_workgroups;
2757 };
2758
2759 /** State required while building cmd buffer */
2760 struct anv_cmd_state {
2761 /* PIPELINE_SELECT.PipelineSelection */
2762 uint32_t current_pipeline;
2763 const struct gen_l3_config * current_l3_config;
2764 uint32_t last_aux_map_state;
2765
2766 struct anv_cmd_graphics_state gfx;
2767 struct anv_cmd_compute_state compute;
2768
2769 enum anv_pipe_bits pending_pipe_bits;
2770 VkShaderStageFlags descriptors_dirty;
2771 VkShaderStageFlags push_constants_dirty;
2772
2773 struct anv_framebuffer * framebuffer;
2774 struct anv_render_pass * pass;
2775 struct anv_subpass * subpass;
2776 VkRect2D render_area;
2777 uint32_t restart_index;
2778 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2779 bool xfb_enabled;
2780 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2781 VkShaderStageFlags push_constant_stages;
2782 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2783 struct anv_state binding_tables[MESA_SHADER_STAGES];
2784 struct anv_state samplers[MESA_SHADER_STAGES];
2785
2786 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2787 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2788 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2789
2790 /**
2791 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2792 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2793 * and before invoking the secondary in ExecuteCommands.
2794 */
2795 bool pma_fix_enabled;
2796
2797 /**
2798 * Whether or not we know for certain that HiZ is enabled for the current
2799 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2800 * enabled or not, this will be false.
2801 */
2802 bool hiz_enabled;
2803
2804 bool conditional_render_enabled;
2805
2806 /**
2807 * Last rendering scale argument provided to
2808 * genX(cmd_buffer_emit_hashing_mode)().
2809 */
2810 unsigned current_hash_scale;
2811
2812 /**
2813 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2814 * valid only when recording a render pass instance.
2815 */
2816 struct anv_attachment_state * attachments;
2817
2818 /**
2819 * Surface states for color render targets. These are stored in a single
2820 * flat array. For depth-stencil attachments, the surface state is simply
2821 * left blank.
2822 */
2823 struct anv_state attachment_states;
2824
2825 /**
2826 * A null surface state of the right size to match the framebuffer. This
2827 * is one of the states in attachment_states.
2828 */
2829 struct anv_state null_surface_state;
2830 };
2831
2832 struct anv_cmd_pool {
2833 struct vk_object_base base;
2834 VkAllocationCallbacks alloc;
2835 struct list_head cmd_buffers;
2836 };
2837
2838 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2839
2840 enum anv_cmd_buffer_exec_mode {
2841 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2842 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2843 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2844 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2845 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2846 ANV_CMD_BUFFER_EXEC_MODE_CALL_AND_RETURN,
2847 };
2848
2849 struct anv_cmd_buffer {
2850 struct vk_object_base base;
2851
2852 struct anv_device * device;
2853
2854 struct anv_cmd_pool * pool;
2855 struct list_head pool_link;
2856
2857 struct anv_batch batch;
2858
2859 /* Fields required for the actual chain of anv_batch_bo's.
2860 *
2861 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2862 */
2863 struct list_head batch_bos;
2864 enum anv_cmd_buffer_exec_mode exec_mode;
2865
2866 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2867 * referenced by this command buffer
2868 *
2869 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2870 */
2871 struct u_vector seen_bbos;
2872
2873 /* A vector of int32_t's for every block of binding tables.
2874 *
2875 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2876 */
2877 struct u_vector bt_block_states;
2878 struct anv_state bt_next;
2879
2880 struct anv_reloc_list surface_relocs;
2881 /** Last seen surface state block pool center bo offset */
2882 uint32_t last_ss_pool_center;
2883
2884 /* Serial for tracking buffer completion */
2885 uint32_t serial;
2886
2887 /* Stream objects for storing temporary data */
2888 struct anv_state_stream surface_state_stream;
2889 struct anv_state_stream dynamic_state_stream;
2890
2891 VkCommandBufferUsageFlags usage_flags;
2892 VkCommandBufferLevel level;
2893
2894 struct anv_query_pool *perf_query_pool;
2895
2896 struct anv_cmd_state state;
2897
2898 struct anv_address return_addr;
2899
2900 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2901 uint64_t intel_perf_marker;
2902 };
2903
2904 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2905 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2906 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2907 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2908 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2909 struct anv_cmd_buffer *secondary);
2910 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2911 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2912 struct anv_cmd_buffer *cmd_buffer,
2913 const VkSemaphore *in_semaphores,
2914 const uint64_t *in_wait_values,
2915 uint32_t num_in_semaphores,
2916 const VkSemaphore *out_semaphores,
2917 const uint64_t *out_signal_values,
2918 uint32_t num_out_semaphores,
2919 VkFence fence,
2920 int perf_query_pass);
2921
2922 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2923
2924 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2925 const void *data, uint32_t size, uint32_t alignment);
2926 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2927 uint32_t *a, uint32_t *b,
2928 uint32_t dwords, uint32_t alignment);
2929
2930 struct anv_address
2931 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2932 struct anv_state
2933 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2934 uint32_t entries, uint32_t *state_offset);
2935 struct anv_state
2936 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2937 struct anv_state
2938 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2939 uint32_t size, uint32_t alignment);
2940
2941 VkResult
2942 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2943
2944 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2945 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2946 bool depth_clamp_enable);
2947 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2948
2949 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2950 struct anv_render_pass *pass,
2951 struct anv_framebuffer *framebuffer,
2952 const VkClearValue *clear_values);
2953
2954 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2955
2956 struct anv_state
2957 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2958 gl_shader_stage stage);
2959 struct anv_state
2960 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2961
2962 const struct anv_image_view *
2963 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2964
2965 VkResult
2966 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2967 uint32_t num_entries,
2968 uint32_t *state_offset,
2969 struct anv_state *bt_state);
2970
2971 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2972
2973 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2974
2975 enum anv_fence_type {
2976 ANV_FENCE_TYPE_NONE = 0,
2977 ANV_FENCE_TYPE_BO,
2978 ANV_FENCE_TYPE_WSI_BO,
2979 ANV_FENCE_TYPE_SYNCOBJ,
2980 ANV_FENCE_TYPE_WSI,
2981 };
2982
2983 enum anv_bo_fence_state {
2984 /** Indicates that this is a new (or newly reset fence) */
2985 ANV_BO_FENCE_STATE_RESET,
2986
2987 /** Indicates that this fence has been submitted to the GPU but is still
2988 * (as far as we know) in use by the GPU.
2989 */
2990 ANV_BO_FENCE_STATE_SUBMITTED,
2991
2992 ANV_BO_FENCE_STATE_SIGNALED,
2993 };
2994
2995 struct anv_fence_impl {
2996 enum anv_fence_type type;
2997
2998 union {
2999 /** Fence implementation for BO fences
3000 *
3001 * These fences use a BO and a set of CPU-tracked state flags. The BO
3002 * is added to the object list of the last execbuf call in a QueueSubmit
3003 * and is marked EXEC_WRITE. The state flags track when the BO has been
3004 * submitted to the kernel. We need to do this because Vulkan lets you
3005 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
3006 * will say it's idle in this case.
3007 */
3008 struct {
3009 struct anv_bo *bo;
3010 enum anv_bo_fence_state state;
3011 } bo;
3012
3013 /** DRM syncobj handle for syncobj-based fences */
3014 uint32_t syncobj;
3015
3016 /** WSI fence */
3017 struct wsi_fence *fence_wsi;
3018 };
3019 };
3020
3021 struct anv_fence {
3022 struct vk_object_base base;
3023
3024 /* Permanent fence state. Every fence has some form of permanent state
3025 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
3026 * cross-process fences) or it could just be a dummy for use internally.
3027 */
3028 struct anv_fence_impl permanent;
3029
3030 /* Temporary fence state. A fence *may* have temporary state. That state
3031 * is added to the fence by an import operation and is reset back to
3032 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
3033 * state cannot be signaled because the fence must already be signaled
3034 * before the temporary state can be exported from the fence in the other
3035 * process and imported here.
3036 */
3037 struct anv_fence_impl temporary;
3038 };
3039
3040 void anv_fence_reset_temporary(struct anv_device *device,
3041 struct anv_fence *fence);
3042
3043 struct anv_event {
3044 struct vk_object_base base;
3045 uint64_t semaphore;
3046 struct anv_state state;
3047 };
3048
3049 enum anv_semaphore_type {
3050 ANV_SEMAPHORE_TYPE_NONE = 0,
3051 ANV_SEMAPHORE_TYPE_DUMMY,
3052 ANV_SEMAPHORE_TYPE_BO,
3053 ANV_SEMAPHORE_TYPE_WSI_BO,
3054 ANV_SEMAPHORE_TYPE_SYNC_FILE,
3055 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
3056 ANV_SEMAPHORE_TYPE_TIMELINE,
3057 };
3058
3059 struct anv_timeline_point {
3060 struct list_head link;
3061
3062 uint64_t serial;
3063
3064 /* Number of waiter on this point, when > 0 the point should not be garbage
3065 * collected.
3066 */
3067 int waiting;
3068
3069 /* BO used for synchronization. */
3070 struct anv_bo *bo;
3071 };
3072
3073 struct anv_timeline {
3074 pthread_mutex_t mutex;
3075 pthread_cond_t cond;
3076
3077 uint64_t highest_past;
3078 uint64_t highest_pending;
3079
3080 struct list_head points;
3081 struct list_head free_points;
3082 };
3083
3084 struct anv_semaphore_impl {
3085 enum anv_semaphore_type type;
3086
3087 union {
3088 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3089 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3090 * object list on any execbuf2 calls for which this semaphore is used as
3091 * a wait or signal fence. When used as a signal fence or when type ==
3092 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3093 */
3094 struct anv_bo *bo;
3095
3096 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3097 * If the semaphore is in the unsignaled state due to either just being
3098 * created or because it has been used for a wait, fd will be -1.
3099 */
3100 int fd;
3101
3102 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3103 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3104 * import so we don't need to bother with a userspace cache.
3105 */
3106 uint32_t syncobj;
3107
3108 /* Non shareable timeline semaphore
3109 *
3110 * Used when kernel don't have support for timeline semaphores.
3111 */
3112 struct anv_timeline timeline;
3113 };
3114 };
3115
3116 struct anv_semaphore {
3117 struct vk_object_base base;
3118
3119 uint32_t refcount;
3120
3121 /* Permanent semaphore state. Every semaphore has some form of permanent
3122 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3123 * (for cross-process semaphores0 or it could just be a dummy for use
3124 * internally.
3125 */
3126 struct anv_semaphore_impl permanent;
3127
3128 /* Temporary semaphore state. A semaphore *may* have temporary state.
3129 * That state is added to the semaphore by an import operation and is reset
3130 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3131 * semaphore with temporary state cannot be signaled because the semaphore
3132 * must already be signaled before the temporary state can be exported from
3133 * the semaphore in the other process and imported here.
3134 */
3135 struct anv_semaphore_impl temporary;
3136 };
3137
3138 void anv_semaphore_reset_temporary(struct anv_device *device,
3139 struct anv_semaphore *semaphore);
3140
3141 struct anv_shader_module {
3142 struct vk_object_base base;
3143
3144 unsigned char sha1[20];
3145 uint32_t size;
3146 char data[0];
3147 };
3148
3149 static inline gl_shader_stage
3150 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3151 {
3152 assert(__builtin_popcount(vk_stage) == 1);
3153 return ffs(vk_stage) - 1;
3154 }
3155
3156 static inline VkShaderStageFlagBits
3157 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3158 {
3159 return (1 << mesa_stage);
3160 }
3161
3162 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3163
3164 #define anv_foreach_stage(stage, stage_bits) \
3165 for (gl_shader_stage stage, \
3166 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3167 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3168 __tmp &= ~(1 << (stage)))
3169
3170 struct anv_pipeline_bind_map {
3171 unsigned char surface_sha1[20];
3172 unsigned char sampler_sha1[20];
3173 unsigned char push_sha1[20];
3174
3175 uint32_t surface_count;
3176 uint32_t sampler_count;
3177
3178 struct anv_pipeline_binding * surface_to_descriptor;
3179 struct anv_pipeline_binding * sampler_to_descriptor;
3180
3181 struct anv_push_range push_ranges[4];
3182 };
3183
3184 struct anv_shader_bin_key {
3185 uint32_t size;
3186 uint8_t data[0];
3187 };
3188
3189 struct anv_shader_bin {
3190 uint32_t ref_cnt;
3191
3192 gl_shader_stage stage;
3193
3194 const struct anv_shader_bin_key *key;
3195
3196 struct anv_state kernel;
3197 uint32_t kernel_size;
3198
3199 struct anv_state constant_data;
3200 uint32_t constant_data_size;
3201
3202 const struct brw_stage_prog_data *prog_data;
3203 uint32_t prog_data_size;
3204
3205 struct brw_compile_stats stats[3];
3206 uint32_t num_stats;
3207
3208 struct nir_xfb_info *xfb_info;
3209
3210 struct anv_pipeline_bind_map bind_map;
3211 };
3212
3213 struct anv_shader_bin *
3214 anv_shader_bin_create(struct anv_device *device,
3215 gl_shader_stage stage,
3216 const void *key, uint32_t key_size,
3217 const void *kernel, uint32_t kernel_size,
3218 const void *constant_data, uint32_t constant_data_size,
3219 const struct brw_stage_prog_data *prog_data,
3220 uint32_t prog_data_size,
3221 const struct brw_compile_stats *stats, uint32_t num_stats,
3222 const struct nir_xfb_info *xfb_info,
3223 const struct anv_pipeline_bind_map *bind_map);
3224
3225 void
3226 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3227
3228 static inline void
3229 anv_shader_bin_ref(struct anv_shader_bin *shader)
3230 {
3231 assert(shader && shader->ref_cnt >= 1);
3232 p_atomic_inc(&shader->ref_cnt);
3233 }
3234
3235 static inline void
3236 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3237 {
3238 assert(shader && shader->ref_cnt >= 1);
3239 if (p_atomic_dec_zero(&shader->ref_cnt))
3240 anv_shader_bin_destroy(device, shader);
3241 }
3242
3243 struct anv_pipeline_executable {
3244 gl_shader_stage stage;
3245
3246 struct brw_compile_stats stats;
3247
3248 char *nir;
3249 char *disasm;
3250 };
3251
3252 enum anv_pipeline_type {
3253 ANV_PIPELINE_GRAPHICS,
3254 ANV_PIPELINE_COMPUTE,
3255 };
3256
3257 struct anv_pipeline {
3258 struct vk_object_base base;
3259
3260 struct anv_device * device;
3261
3262 struct anv_batch batch;
3263 struct anv_reloc_list batch_relocs;
3264
3265 void * mem_ctx;
3266
3267 enum anv_pipeline_type type;
3268 VkPipelineCreateFlags flags;
3269
3270 struct util_dynarray executables;
3271
3272 const struct gen_l3_config * l3_config;
3273 };
3274
3275 struct anv_graphics_pipeline {
3276 struct anv_pipeline base;
3277
3278 uint32_t batch_data[512];
3279
3280 anv_cmd_dirty_mask_t dynamic_state_mask;
3281 struct anv_dynamic_state dynamic_state;
3282
3283 uint32_t topology;
3284
3285 struct anv_subpass * subpass;
3286
3287 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3288
3289 VkShaderStageFlags active_stages;
3290
3291 bool primitive_restart;
3292 bool writes_depth;
3293 bool depth_test_enable;
3294 bool writes_stencil;
3295 bool stencil_test_enable;
3296 bool depth_clamp_enable;
3297 bool depth_clip_enable;
3298 bool sample_shading_enable;
3299 bool kill_pixel;
3300 bool depth_bounds_test_enable;
3301
3302 /* When primitive replication is used, subpass->view_mask will describe what
3303 * views to replicate.
3304 */
3305 bool use_primitive_replication;
3306
3307 struct anv_state blend_state;
3308
3309 uint32_t vb_used;
3310 struct anv_pipeline_vertex_binding {
3311 uint32_t stride;
3312 bool instanced;
3313 uint32_t instance_divisor;
3314 } vb[MAX_VBS];
3315
3316 struct {
3317 uint32_t sf[7];
3318 uint32_t depth_stencil_state[3];
3319 } gen7;
3320
3321 struct {
3322 uint32_t sf[4];
3323 uint32_t raster[5];
3324 uint32_t wm_depth_stencil[3];
3325 } gen8;
3326
3327 struct {
3328 uint32_t wm_depth_stencil[4];
3329 } gen9;
3330 };
3331
3332 struct anv_compute_pipeline {
3333 struct anv_pipeline base;
3334
3335 struct anv_shader_bin * cs;
3336 uint32_t cs_right_mask;
3337 uint32_t batch_data[9];
3338 uint32_t interface_descriptor_data[8];
3339 };
3340
3341 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3342 static inline struct anv_##pipe_type##_pipeline * \
3343 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3344 { \
3345 assert(pipeline->type == pipe_enum); \
3346 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3347 }
3348
3349 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3350 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3351
3352 static inline bool
3353 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3354 gl_shader_stage stage)
3355 {
3356 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3357 }
3358
3359 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3360 static inline const struct brw_##prefix##_prog_data * \
3361 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3362 { \
3363 if (anv_pipeline_has_stage(pipeline, stage)) { \
3364 return (const struct brw_##prefix##_prog_data *) \
3365 pipeline->shaders[stage]->prog_data; \
3366 } else { \
3367 return NULL; \
3368 } \
3369 }
3370
3371 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3372 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3373 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3374 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3375 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3376
3377 static inline const struct brw_cs_prog_data *
3378 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3379 {
3380 assert(pipeline->cs);
3381 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3382 }
3383
3384 static inline const struct brw_vue_prog_data *
3385 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3386 {
3387 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3388 return &get_gs_prog_data(pipeline)->base;
3389 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3390 return &get_tes_prog_data(pipeline)->base;
3391 else
3392 return &get_vs_prog_data(pipeline)->base;
3393 }
3394
3395 VkResult
3396 anv_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3397 struct anv_pipeline_cache *cache,
3398 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3399 const VkAllocationCallbacks *alloc);
3400
3401 VkResult
3402 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3403 struct anv_pipeline_cache *cache,
3404 const VkComputePipelineCreateInfo *info,
3405 const struct anv_shader_module *module,
3406 const char *entrypoint,
3407 const VkSpecializationInfo *spec_info);
3408
3409 uint32_t
3410 anv_cs_workgroup_size(const struct anv_compute_pipeline *pipeline);
3411
3412 uint32_t
3413 anv_cs_threads(const struct anv_compute_pipeline *pipeline);
3414
3415 struct anv_format_plane {
3416 enum isl_format isl_format:16;
3417 struct isl_swizzle swizzle;
3418
3419 /* Whether this plane contains chroma channels */
3420 bool has_chroma;
3421
3422 /* For downscaling of YUV planes */
3423 uint8_t denominator_scales[2];
3424
3425 /* How to map sampled ycbcr planes to a single 4 component element. */
3426 struct isl_swizzle ycbcr_swizzle;
3427
3428 /* What aspect is associated to this plane */
3429 VkImageAspectFlags aspect;
3430 };
3431
3432
3433 struct anv_format {
3434 struct anv_format_plane planes[3];
3435 VkFormat vk_format;
3436 uint8_t n_planes;
3437 bool can_ycbcr;
3438 };
3439
3440 /**
3441 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3442 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3443 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3444 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3445 */
3446 static inline uint32_t
3447 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3448 VkImageAspectFlags aspect_mask)
3449 {
3450 switch (aspect_mask) {
3451 case VK_IMAGE_ASPECT_COLOR_BIT:
3452 case VK_IMAGE_ASPECT_DEPTH_BIT:
3453 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3454 return 0;
3455 case VK_IMAGE_ASPECT_STENCIL_BIT:
3456 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3457 return 0;
3458 /* Fall-through */
3459 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3460 return 1;
3461 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3462 return 2;
3463 default:
3464 /* Purposefully assert with depth/stencil aspects. */
3465 unreachable("invalid image aspect");
3466 }
3467 }
3468
3469 static inline VkImageAspectFlags
3470 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3471 uint32_t plane)
3472 {
3473 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3474 if (util_bitcount(image_aspects) > 1)
3475 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3476 return VK_IMAGE_ASPECT_COLOR_BIT;
3477 }
3478 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3479 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3480 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3481 return VK_IMAGE_ASPECT_STENCIL_BIT;
3482 }
3483
3484 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3485 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3486
3487 const struct anv_format *
3488 anv_get_format(VkFormat format);
3489
3490 static inline uint32_t
3491 anv_get_format_planes(VkFormat vk_format)
3492 {
3493 const struct anv_format *format = anv_get_format(vk_format);
3494
3495 return format != NULL ? format->n_planes : 0;
3496 }
3497
3498 struct anv_format_plane
3499 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3500 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3501
3502 static inline enum isl_format
3503 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3504 VkImageAspectFlags aspect, VkImageTiling tiling)
3505 {
3506 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3507 }
3508
3509 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3510 VkImageCreateFlags create_flags,
3511 VkFormat vk_format,
3512 VkImageTiling vk_tiling,
3513 const VkImageFormatListCreateInfoKHR *fmt_list);
3514
3515 static inline struct isl_swizzle
3516 anv_swizzle_for_render(struct isl_swizzle swizzle)
3517 {
3518 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3519 * RGB as RGBA for texturing
3520 */
3521 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3522 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3523
3524 /* But it doesn't matter what we render to that channel */
3525 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3526
3527 return swizzle;
3528 }
3529
3530 void
3531 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3532
3533 /**
3534 * Subsurface of an anv_image.
3535 */
3536 struct anv_surface {
3537 /** Valid only if isl_surf::size_B > 0. */
3538 struct isl_surf isl;
3539
3540 /**
3541 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3542 */
3543 uint32_t offset;
3544 };
3545
3546 struct anv_image {
3547 struct vk_object_base base;
3548
3549 VkImageType type; /**< VkImageCreateInfo::imageType */
3550 /* The original VkFormat provided by the client. This may not match any
3551 * of the actual surface formats.
3552 */
3553 VkFormat vk_format;
3554 const struct anv_format *format;
3555
3556 VkImageAspectFlags aspects;
3557 VkExtent3D extent;
3558 uint32_t levels;
3559 uint32_t array_size;
3560 uint32_t samples; /**< VkImageCreateInfo::samples */
3561 uint32_t n_planes;
3562 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3563 VkImageUsageFlags stencil_usage;
3564 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3565 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3566
3567 /** True if this is needs to be bound to an appropriately tiled BO.
3568 *
3569 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3570 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3571 * we require a dedicated allocation so that we can know to allocate a
3572 * tiled buffer.
3573 */
3574 bool needs_set_tiling;
3575
3576 /**
3577 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3578 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3579 */
3580 uint64_t drm_format_mod;
3581
3582 VkDeviceSize size;
3583 uint32_t alignment;
3584
3585 /* Whether the image is made of several underlying buffer objects rather a
3586 * single one with different offsets.
3587 */
3588 bool disjoint;
3589
3590 /* Image was created with external format. */
3591 bool external_format;
3592
3593 /**
3594 * Image subsurfaces
3595 *
3596 * For each foo, anv_image::planes[x].surface is valid if and only if
3597 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3598 * to figure the number associated with a given aspect.
3599 *
3600 * The hardware requires that the depth buffer and stencil buffer be
3601 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3602 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3603 * allocate the depth and stencil buffers as separate surfaces in the same
3604 * bo.
3605 *
3606 * Memory layout :
3607 *
3608 * -----------------------
3609 * | surface0 | /|\
3610 * ----------------------- |
3611 * | shadow surface0 | |
3612 * ----------------------- | Plane 0
3613 * | aux surface0 | |
3614 * ----------------------- |
3615 * | fast clear colors0 | \|/
3616 * -----------------------
3617 * | surface1 | /|\
3618 * ----------------------- |
3619 * | shadow surface1 | |
3620 * ----------------------- | Plane 1
3621 * | aux surface1 | |
3622 * ----------------------- |
3623 * | fast clear colors1 | \|/
3624 * -----------------------
3625 * | ... |
3626 * | |
3627 * -----------------------
3628 */
3629 struct {
3630 /**
3631 * Offset of the entire plane (whenever the image is disjoint this is
3632 * set to 0).
3633 */
3634 uint32_t offset;
3635
3636 VkDeviceSize size;
3637 uint32_t alignment;
3638
3639 struct anv_surface surface;
3640
3641 /**
3642 * A surface which shadows the main surface and may have different
3643 * tiling. This is used for sampling using a tiling that isn't supported
3644 * for other operations.
3645 */
3646 struct anv_surface shadow_surface;
3647
3648 /**
3649 * The base aux usage for this image. For color images, this can be
3650 * either CCS_E or CCS_D depending on whether or not we can reliably
3651 * leave CCS on all the time.
3652 */
3653 enum isl_aux_usage aux_usage;
3654
3655 struct anv_surface aux_surface;
3656
3657 /**
3658 * Offset of the fast clear state (used to compute the
3659 * fast_clear_state_offset of the following planes).
3660 */
3661 uint32_t fast_clear_state_offset;
3662
3663 /**
3664 * BO associated with this plane, set when bound.
3665 */
3666 struct anv_address address;
3667
3668 /**
3669 * When destroying the image, also free the bo.
3670 * */
3671 bool bo_is_owned;
3672 } planes[3];
3673 };
3674
3675 /* The ordering of this enum is important */
3676 enum anv_fast_clear_type {
3677 /** Image does not have/support any fast-clear blocks */
3678 ANV_FAST_CLEAR_NONE = 0,
3679 /** Image has/supports fast-clear but only to the default value */
3680 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3681 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3682 ANV_FAST_CLEAR_ANY = 2,
3683 };
3684
3685 /* Returns the number of auxiliary buffer levels attached to an image. */
3686 static inline uint8_t
3687 anv_image_aux_levels(const struct anv_image * const image,
3688 VkImageAspectFlagBits aspect)
3689 {
3690 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3691 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3692 return 0;
3693
3694 /* The Gen12 CCS aux surface is represented with only one level. */
3695 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3696 image->planes[plane].surface.isl.levels :
3697 image->planes[plane].aux_surface.isl.levels;
3698 }
3699
3700 /* Returns the number of auxiliary buffer layers attached to an image. */
3701 static inline uint32_t
3702 anv_image_aux_layers(const struct anv_image * const image,
3703 VkImageAspectFlagBits aspect,
3704 const uint8_t miplevel)
3705 {
3706 assert(image);
3707
3708 /* The miplevel must exist in the main buffer. */
3709 assert(miplevel < image->levels);
3710
3711 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3712 /* There are no layers with auxiliary data because the miplevel has no
3713 * auxiliary data.
3714 */
3715 return 0;
3716 } else {
3717 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3718
3719 /* The Gen12 CCS aux surface is represented with only one layer. */
3720 const struct isl_extent4d *aux_logical_level0_px =
3721 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3722 &image->planes[plane].surface.isl.logical_level0_px :
3723 &image->planes[plane].aux_surface.isl.logical_level0_px;
3724
3725 return MAX2(aux_logical_level0_px->array_len,
3726 aux_logical_level0_px->depth >> miplevel);
3727 }
3728 }
3729
3730 static inline struct anv_address
3731 anv_image_get_clear_color_addr(UNUSED const struct anv_device *device,
3732 const struct anv_image *image,
3733 VkImageAspectFlagBits aspect)
3734 {
3735 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3736
3737 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3738 return anv_address_add(image->planes[plane].address,
3739 image->planes[plane].fast_clear_state_offset);
3740 }
3741
3742 static inline struct anv_address
3743 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3744 const struct anv_image *image,
3745 VkImageAspectFlagBits aspect)
3746 {
3747 struct anv_address addr =
3748 anv_image_get_clear_color_addr(device, image, aspect);
3749
3750 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3751 device->isl_dev.ss.clear_color_state_size :
3752 device->isl_dev.ss.clear_value_size;
3753 return anv_address_add(addr, clear_color_state_size);
3754 }
3755
3756 static inline struct anv_address
3757 anv_image_get_compression_state_addr(const struct anv_device *device,
3758 const struct anv_image *image,
3759 VkImageAspectFlagBits aspect,
3760 uint32_t level, uint32_t array_layer)
3761 {
3762 assert(level < anv_image_aux_levels(image, aspect));
3763 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3764 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3765 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3766
3767 struct anv_address addr =
3768 anv_image_get_fast_clear_type_addr(device, image, aspect);
3769 addr.offset += 4; /* Go past the fast clear type */
3770
3771 if (image->type == VK_IMAGE_TYPE_3D) {
3772 for (uint32_t l = 0; l < level; l++)
3773 addr.offset += anv_minify(image->extent.depth, l) * 4;
3774 } else {
3775 addr.offset += level * image->array_size * 4;
3776 }
3777 addr.offset += array_layer * 4;
3778
3779 assert(addr.offset <
3780 image->planes[plane].address.offset + image->planes[plane].size);
3781 return addr;
3782 }
3783
3784 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3785 static inline bool
3786 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3787 const struct anv_image *image)
3788 {
3789 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3790 return false;
3791
3792 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3793 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3794 * say:
3795 *
3796 * "If this field is set to AUX_HIZ, Number of Multisamples must
3797 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3798 */
3799 if (image->type == VK_IMAGE_TYPE_3D)
3800 return false;
3801
3802 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3803 * struct. There's documentation which suggests that this feature actually
3804 * reduces performance on BDW, but it has only been observed to help so
3805 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3806 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3807 */
3808 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3809 return false;
3810
3811 return image->samples == 1;
3812 }
3813
3814 static inline bool
3815 anv_image_plane_uses_aux_map(const struct anv_device *device,
3816 const struct anv_image *image,
3817 uint32_t plane)
3818 {
3819 return device->info.has_aux_map &&
3820 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3821 }
3822
3823 void
3824 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3825 const struct anv_image *image,
3826 VkImageAspectFlagBits aspect,
3827 enum isl_aux_usage aux_usage,
3828 uint32_t level,
3829 uint32_t base_layer,
3830 uint32_t layer_count);
3831
3832 void
3833 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3834 const struct anv_image *image,
3835 VkImageAspectFlagBits aspect,
3836 enum isl_aux_usage aux_usage,
3837 enum isl_format format, struct isl_swizzle swizzle,
3838 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3839 VkRect2D area, union isl_color_value clear_color);
3840 void
3841 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3842 const struct anv_image *image,
3843 VkImageAspectFlags aspects,
3844 enum isl_aux_usage depth_aux_usage,
3845 uint32_t level,
3846 uint32_t base_layer, uint32_t layer_count,
3847 VkRect2D area,
3848 float depth_value, uint8_t stencil_value);
3849 void
3850 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3851 const struct anv_image *src_image,
3852 enum isl_aux_usage src_aux_usage,
3853 uint32_t src_level, uint32_t src_base_layer,
3854 const struct anv_image *dst_image,
3855 enum isl_aux_usage dst_aux_usage,
3856 uint32_t dst_level, uint32_t dst_base_layer,
3857 VkImageAspectFlagBits aspect,
3858 uint32_t src_x, uint32_t src_y,
3859 uint32_t dst_x, uint32_t dst_y,
3860 uint32_t width, uint32_t height,
3861 uint32_t layer_count,
3862 enum blorp_filter filter);
3863 void
3864 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3865 const struct anv_image *image,
3866 VkImageAspectFlagBits aspect, uint32_t level,
3867 uint32_t base_layer, uint32_t layer_count,
3868 enum isl_aux_op hiz_op);
3869 void
3870 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3871 const struct anv_image *image,
3872 VkImageAspectFlags aspects,
3873 uint32_t level,
3874 uint32_t base_layer, uint32_t layer_count,
3875 VkRect2D area, uint8_t stencil_value);
3876 void
3877 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3878 const struct anv_image *image,
3879 enum isl_format format, struct isl_swizzle swizzle,
3880 VkImageAspectFlagBits aspect,
3881 uint32_t base_layer, uint32_t layer_count,
3882 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3883 bool predicate);
3884 void
3885 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3886 const struct anv_image *image,
3887 enum isl_format format, struct isl_swizzle swizzle,
3888 VkImageAspectFlagBits aspect, uint32_t level,
3889 uint32_t base_layer, uint32_t layer_count,
3890 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3891 bool predicate);
3892
3893 void
3894 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3895 const struct anv_image *image,
3896 VkImageAspectFlagBits aspect,
3897 uint32_t base_level, uint32_t level_count,
3898 uint32_t base_layer, uint32_t layer_count);
3899
3900 enum isl_aux_state
3901 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3902 const struct anv_image *image,
3903 const VkImageAspectFlagBits aspect,
3904 const VkImageLayout layout);
3905
3906 enum isl_aux_usage
3907 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3908 const struct anv_image *image,
3909 const VkImageAspectFlagBits aspect,
3910 const VkImageUsageFlagBits usage,
3911 const VkImageLayout layout);
3912
3913 enum anv_fast_clear_type
3914 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3915 const struct anv_image * const image,
3916 const VkImageAspectFlagBits aspect,
3917 const VkImageLayout layout);
3918
3919 /* This is defined as a macro so that it works for both
3920 * VkImageSubresourceRange and VkImageSubresourceLayers
3921 */
3922 #define anv_get_layerCount(_image, _range) \
3923 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3924 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3925
3926 static inline uint32_t
3927 anv_get_levelCount(const struct anv_image *image,
3928 const VkImageSubresourceRange *range)
3929 {
3930 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3931 image->levels - range->baseMipLevel : range->levelCount;
3932 }
3933
3934 static inline VkImageAspectFlags
3935 anv_image_expand_aspects(const struct anv_image *image,
3936 VkImageAspectFlags aspects)
3937 {
3938 /* If the underlying image has color plane aspects and
3939 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3940 * the underlying image. */
3941 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3942 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3943 return image->aspects;
3944
3945 return aspects;
3946 }
3947
3948 static inline bool
3949 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3950 VkImageAspectFlags aspects2)
3951 {
3952 if (aspects1 == aspects2)
3953 return true;
3954
3955 /* Only 1 color aspects are compatibles. */
3956 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3957 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3958 util_bitcount(aspects1) == util_bitcount(aspects2))
3959 return true;
3960
3961 return false;
3962 }
3963
3964 struct anv_image_view {
3965 struct vk_object_base base;
3966
3967 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3968
3969 VkImageAspectFlags aspect_mask;
3970 VkFormat vk_format;
3971 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3972
3973 unsigned n_planes;
3974 struct {
3975 uint32_t image_plane;
3976
3977 struct isl_view isl;
3978
3979 /**
3980 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3981 * image layout of SHADER_READ_ONLY_OPTIMAL or
3982 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3983 */
3984 struct anv_surface_state optimal_sampler_surface_state;
3985
3986 /**
3987 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3988 * image layout of GENERAL.
3989 */
3990 struct anv_surface_state general_sampler_surface_state;
3991
3992 /**
3993 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3994 * states for write-only and readable, using the real format for
3995 * write-only and the lowered format for readable.
3996 */
3997 struct anv_surface_state storage_surface_state;
3998 struct anv_surface_state writeonly_storage_surface_state;
3999
4000 struct brw_image_param storage_image_param;
4001 } planes[3];
4002 };
4003
4004 enum anv_image_view_state_flags {
4005 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
4006 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
4007 };
4008
4009 void anv_image_fill_surface_state(struct anv_device *device,
4010 const struct anv_image *image,
4011 VkImageAspectFlagBits aspect,
4012 const struct isl_view *view,
4013 isl_surf_usage_flags_t view_usage,
4014 enum isl_aux_usage aux_usage,
4015 const union isl_color_value *clear_color,
4016 enum anv_image_view_state_flags flags,
4017 struct anv_surface_state *state_inout,
4018 struct brw_image_param *image_param_out);
4019
4020 struct anv_image_create_info {
4021 const VkImageCreateInfo *vk_info;
4022
4023 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
4024 isl_tiling_flags_t isl_tiling_flags;
4025
4026 /** These flags will be added to any derived from VkImageCreateInfo. */
4027 isl_surf_usage_flags_t isl_extra_usage_flags;
4028
4029 uint32_t stride;
4030 bool external_format;
4031 };
4032
4033 VkResult anv_image_create(VkDevice _device,
4034 const struct anv_image_create_info *info,
4035 const VkAllocationCallbacks* alloc,
4036 VkImage *pImage);
4037
4038 enum isl_format
4039 anv_isl_format_for_descriptor_type(VkDescriptorType type);
4040
4041 static inline VkExtent3D
4042 anv_sanitize_image_extent(const VkImageType imageType,
4043 const VkExtent3D imageExtent)
4044 {
4045 switch (imageType) {
4046 case VK_IMAGE_TYPE_1D:
4047 return (VkExtent3D) { imageExtent.width, 1, 1 };
4048 case VK_IMAGE_TYPE_2D:
4049 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
4050 case VK_IMAGE_TYPE_3D:
4051 return imageExtent;
4052 default:
4053 unreachable("invalid image type");
4054 }
4055 }
4056
4057 static inline VkOffset3D
4058 anv_sanitize_image_offset(const VkImageType imageType,
4059 const VkOffset3D imageOffset)
4060 {
4061 switch (imageType) {
4062 case VK_IMAGE_TYPE_1D:
4063 return (VkOffset3D) { imageOffset.x, 0, 0 };
4064 case VK_IMAGE_TYPE_2D:
4065 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
4066 case VK_IMAGE_TYPE_3D:
4067 return imageOffset;
4068 default:
4069 unreachable("invalid image type");
4070 }
4071 }
4072
4073 VkFormatFeatureFlags
4074 anv_get_image_format_features(const struct gen_device_info *devinfo,
4075 VkFormat vk_format,
4076 const struct anv_format *anv_format,
4077 VkImageTiling vk_tiling);
4078
4079 void anv_fill_buffer_surface_state(struct anv_device *device,
4080 struct anv_state state,
4081 enum isl_format format,
4082 struct anv_address address,
4083 uint32_t range, uint32_t stride);
4084
4085 static inline void
4086 anv_clear_color_from_att_state(union isl_color_value *clear_color,
4087 const struct anv_attachment_state *att_state,
4088 const struct anv_image_view *iview)
4089 {
4090 const struct isl_format_layout *view_fmtl =
4091 isl_format_get_layout(iview->planes[0].isl.format);
4092
4093 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
4094 if (view_fmtl->channels.c.bits) \
4095 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4096
4097 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4098 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4099 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4100 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4101
4102 #undef COPY_CLEAR_COLOR_CHANNEL
4103 }
4104
4105
4106 /* Haswell border color is a bit of a disaster. Float and unorm formats use a
4107 * straightforward 32-bit float color in the first 64 bytes. Instead of using
4108 * a nice float/integer union like Gen8+, Haswell specifies the integer border
4109 * color as a separate entry /after/ the float color. The layout of this entry
4110 * also depends on the format's bpp (with extra hacks for RG32), and overlaps.
4111 *
4112 * Since we don't know the format/bpp, we can't make any of the border colors
4113 * containing '1' work for all formats, as it would be in the wrong place for
4114 * some of them. We opt to make 32-bit integers work as this seems like the
4115 * most common option. Fortunately, transparent black works regardless, as
4116 * all zeroes is the same in every bit-size.
4117 */
4118 struct hsw_border_color {
4119 float float32[4];
4120 uint32_t _pad0[12];
4121 uint32_t uint32[4];
4122 uint32_t _pad1[108];
4123 };
4124
4125 struct gen8_border_color {
4126 union {
4127 float float32[4];
4128 uint32_t uint32[4];
4129 };
4130 /* Pad out to 64 bytes */
4131 uint32_t _pad[12];
4132 };
4133
4134 struct anv_ycbcr_conversion {
4135 struct vk_object_base base;
4136
4137 const struct anv_format * format;
4138 VkSamplerYcbcrModelConversion ycbcr_model;
4139 VkSamplerYcbcrRange ycbcr_range;
4140 VkComponentSwizzle mapping[4];
4141 VkChromaLocation chroma_offsets[2];
4142 VkFilter chroma_filter;
4143 bool chroma_reconstruction;
4144 };
4145
4146 struct anv_sampler {
4147 struct vk_object_base base;
4148
4149 uint32_t state[3][4];
4150 uint32_t n_planes;
4151 struct anv_ycbcr_conversion *conversion;
4152
4153 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4154 * and with a 32-byte stride for use as bindless samplers.
4155 */
4156 struct anv_state bindless_state;
4157
4158 struct anv_state custom_border_color;
4159 };
4160
4161 struct anv_framebuffer {
4162 struct vk_object_base base;
4163
4164 uint32_t width;
4165 uint32_t height;
4166 uint32_t layers;
4167
4168 uint32_t attachment_count;
4169 struct anv_image_view * attachments[0];
4170 };
4171
4172 struct anv_subpass_attachment {
4173 VkImageUsageFlagBits usage;
4174 uint32_t attachment;
4175 VkImageLayout layout;
4176
4177 /* Used only with attachment containing stencil data. */
4178 VkImageLayout stencil_layout;
4179 };
4180
4181 struct anv_subpass {
4182 uint32_t attachment_count;
4183
4184 /**
4185 * A pointer to all attachment references used in this subpass.
4186 * Only valid if ::attachment_count > 0.
4187 */
4188 struct anv_subpass_attachment * attachments;
4189 uint32_t input_count;
4190 struct anv_subpass_attachment * input_attachments;
4191 uint32_t color_count;
4192 struct anv_subpass_attachment * color_attachments;
4193 struct anv_subpass_attachment * resolve_attachments;
4194
4195 struct anv_subpass_attachment * depth_stencil_attachment;
4196 struct anv_subpass_attachment * ds_resolve_attachment;
4197 VkResolveModeFlagBitsKHR depth_resolve_mode;
4198 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4199
4200 uint32_t view_mask;
4201
4202 /** Subpass has a depth/stencil self-dependency */
4203 bool has_ds_self_dep;
4204
4205 /** Subpass has at least one color resolve attachment */
4206 bool has_color_resolve;
4207 };
4208
4209 static inline unsigned
4210 anv_subpass_view_count(const struct anv_subpass *subpass)
4211 {
4212 return MAX2(1, util_bitcount(subpass->view_mask));
4213 }
4214
4215 struct anv_render_pass_attachment {
4216 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4217 * its members individually.
4218 */
4219 VkFormat format;
4220 uint32_t samples;
4221 VkImageUsageFlags usage;
4222 VkAttachmentLoadOp load_op;
4223 VkAttachmentStoreOp store_op;
4224 VkAttachmentLoadOp stencil_load_op;
4225 VkImageLayout initial_layout;
4226 VkImageLayout final_layout;
4227 VkImageLayout first_subpass_layout;
4228
4229 VkImageLayout stencil_initial_layout;
4230 VkImageLayout stencil_final_layout;
4231
4232 /* The subpass id in which the attachment will be used last. */
4233 uint32_t last_subpass_idx;
4234 };
4235
4236 struct anv_render_pass {
4237 struct vk_object_base base;
4238
4239 uint32_t attachment_count;
4240 uint32_t subpass_count;
4241 /* An array of subpass_count+1 flushes, one per subpass boundary */
4242 enum anv_pipe_bits * subpass_flushes;
4243 struct anv_render_pass_attachment * attachments;
4244 struct anv_subpass subpasses[0];
4245 };
4246
4247 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4248
4249 #define OA_SNAPSHOT_SIZE (256)
4250 #define ANV_KHR_PERF_QUERY_SIZE (ALIGN(sizeof(uint64_t), 64) + 2 * OA_SNAPSHOT_SIZE)
4251
4252 struct anv_query_pool {
4253 struct vk_object_base base;
4254
4255 VkQueryType type;
4256 VkQueryPipelineStatisticFlags pipeline_statistics;
4257 /** Stride between slots, in bytes */
4258 uint32_t stride;
4259 /** Number of slots in this query pool */
4260 uint32_t slots;
4261 struct anv_bo * bo;
4262
4263 /* Perf queries : */
4264 struct anv_bo reset_bo;
4265 uint32_t n_counters;
4266 struct gen_perf_counter_pass *counter_pass;
4267 uint32_t n_passes;
4268 struct gen_perf_query_info **pass_query;
4269 };
4270
4271 static inline uint32_t khr_perf_query_preamble_offset(struct anv_query_pool *pool,
4272 uint32_t pass)
4273 {
4274 return pass * ANV_KHR_PERF_QUERY_SIZE + 8;
4275 }
4276
4277 int anv_get_instance_entrypoint_index(const char *name);
4278 int anv_get_device_entrypoint_index(const char *name);
4279 int anv_get_physical_device_entrypoint_index(const char *name);
4280
4281 const char *anv_get_instance_entry_name(int index);
4282 const char *anv_get_physical_device_entry_name(int index);
4283 const char *anv_get_device_entry_name(int index);
4284
4285 bool
4286 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4287 const struct anv_instance_extension_table *instance);
4288 bool
4289 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4290 const struct anv_instance_extension_table *instance);
4291 bool
4292 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4293 const struct anv_instance_extension_table *instance,
4294 const struct anv_device_extension_table *device);
4295
4296 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4297 const char *name);
4298
4299 void anv_dump_image_to_ppm(struct anv_device *device,
4300 struct anv_image *image, unsigned miplevel,
4301 unsigned array_layer, VkImageAspectFlagBits aspect,
4302 const char *filename);
4303
4304 enum anv_dump_action {
4305 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4306 };
4307
4308 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4309 void anv_dump_finish(void);
4310
4311 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4312
4313 static inline uint32_t
4314 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4315 {
4316 /* This function must be called from within a subpass. */
4317 assert(cmd_state->pass && cmd_state->subpass);
4318
4319 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4320
4321 /* The id of this subpass shouldn't exceed the number of subpasses in this
4322 * render pass minus 1.
4323 */
4324 assert(subpass_id < cmd_state->pass->subpass_count);
4325 return subpass_id;
4326 }
4327
4328 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4329 void anv_device_perf_init(struct anv_device *device);
4330 void anv_perf_write_pass_results(struct gen_perf_config *perf,
4331 struct anv_query_pool *pool, uint32_t pass,
4332 const struct gen_perf_query_result *accumulated_results,
4333 union VkPerformanceCounterResultKHR *results);
4334
4335 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4336 VK_FROM_HANDLE(__anv_type, __name, __handle)
4337
4338 VK_DEFINE_HANDLE_CASTS(anv_cmd_buffer, base, VkCommandBuffer,
4339 VK_OBJECT_TYPE_COMMAND_BUFFER)
4340 VK_DEFINE_HANDLE_CASTS(anv_device, vk.base, VkDevice, VK_OBJECT_TYPE_DEVICE)
4341 VK_DEFINE_HANDLE_CASTS(anv_instance, base, VkInstance, VK_OBJECT_TYPE_INSTANCE)
4342 VK_DEFINE_HANDLE_CASTS(anv_physical_device, base, VkPhysicalDevice,
4343 VK_OBJECT_TYPE_PHYSICAL_DEVICE)
4344 VK_DEFINE_HANDLE_CASTS(anv_queue, base, VkQueue, VK_OBJECT_TYPE_QUEUE)
4345
4346 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, base, VkCommandPool,
4347 VK_OBJECT_TYPE_COMMAND_POOL)
4348 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, base, VkBuffer,
4349 VK_OBJECT_TYPE_BUFFER)
4350 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, base, VkBufferView,
4351 VK_OBJECT_TYPE_BUFFER_VIEW)
4352 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, base, VkDescriptorPool,
4353 VK_OBJECT_TYPE_DESCRIPTOR_POOL)
4354 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, base, VkDescriptorSet,
4355 VK_OBJECT_TYPE_DESCRIPTOR_SET)
4356 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, base,
4357 VkDescriptorSetLayout,
4358 VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT)
4359 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, base,
4360 VkDescriptorUpdateTemplate,
4361 VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE)
4362 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, base, VkDeviceMemory,
4363 VK_OBJECT_TYPE_DEVICE_MEMORY)
4364 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, base, VkFence, VK_OBJECT_TYPE_FENCE)
4365 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_event, base, VkEvent, VK_OBJECT_TYPE_EVENT)
4366 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, base, VkFramebuffer,
4367 VK_OBJECT_TYPE_FRAMEBUFFER)
4368 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image, base, VkImage, VK_OBJECT_TYPE_IMAGE)
4369 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, base, VkImageView,
4370 VK_OBJECT_TYPE_IMAGE_VIEW);
4371 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, base, VkPipelineCache,
4372 VK_OBJECT_TYPE_PIPELINE_CACHE)
4373 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, base, VkPipeline,
4374 VK_OBJECT_TYPE_PIPELINE)
4375 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, base, VkPipelineLayout,
4376 VK_OBJECT_TYPE_PIPELINE_LAYOUT)
4377 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, base, VkQueryPool,
4378 VK_OBJECT_TYPE_QUERY_POOL)
4379 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, base, VkRenderPass,
4380 VK_OBJECT_TYPE_RENDER_PASS)
4381 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, base, VkSampler,
4382 VK_OBJECT_TYPE_SAMPLER)
4383 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, base, VkSemaphore,
4384 VK_OBJECT_TYPE_SEMAPHORE)
4385 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, base, VkShaderModule,
4386 VK_OBJECT_TYPE_SHADER_MODULE)
4387 VK_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, base,
4388 VkSamplerYcbcrConversion,
4389 VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION)
4390
4391 /* Gen-specific function declarations */
4392 #ifdef genX
4393 # include "anv_genX.h"
4394 #else
4395 # define genX(x) gen7_##x
4396 # include "anv_genX.h"
4397 # undef genX
4398 # define genX(x) gen75_##x
4399 # include "anv_genX.h"
4400 # undef genX
4401 # define genX(x) gen8_##x
4402 # include "anv_genX.h"
4403 # undef genX
4404 # define genX(x) gen9_##x
4405 # include "anv_genX.h"
4406 # undef genX
4407 # define genX(x) gen10_##x
4408 # include "anv_genX.h"
4409 # undef genX
4410 # define genX(x) gen11_##x
4411 # include "anv_genX.h"
4412 # undef genX
4413 # define genX(x) gen12_##x
4414 # include "anv_genX.h"
4415 # undef genX
4416 #endif
4417
4418 #endif /* ANV_PRIVATE_H */