anv: Use anv_layout_to_aux_usage for color during render passes
[mesa.git] / src / intel / vulkan / anv_private.h
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #ifndef ANV_PRIVATE_H
25 #define ANV_PRIVATE_H
26
27 #include <stdlib.h>
28 #include <stdio.h>
29 #include <stdbool.h>
30 #include <pthread.h>
31 #include <assert.h>
32 #include <stdint.h>
33 #include "drm-uapi/i915_drm.h"
34
35 #ifdef HAVE_VALGRIND
36 #include <valgrind.h>
37 #include <memcheck.h>
38 #define VG(x) x
39 #ifndef NDEBUG
40 #define __gen_validate_value(x) VALGRIND_CHECK_MEM_IS_DEFINED(&(x), sizeof(x))
41 #endif
42 #else
43 #define VG(x) ((void)0)
44 #endif
45
46 #include "common/gen_clflush.h"
47 #include "common/gen_decoder.h"
48 #include "common/gen_gem.h"
49 #include "common/gen_l3_config.h"
50 #include "dev/gen_device_info.h"
51 #include "blorp/blorp.h"
52 #include "compiler/brw_compiler.h"
53 #include "util/bitset.h"
54 #include "util/macros.h"
55 #include "util/hash_table.h"
56 #include "util/list.h"
57 #include "util/sparse_array.h"
58 #include "util/u_atomic.h"
59 #include "util/u_vector.h"
60 #include "util/u_math.h"
61 #include "util/vma.h"
62 #include "util/xmlconfig.h"
63 #include "vk_alloc.h"
64 #include "vk_debug_report.h"
65
66 /* Pre-declarations needed for WSI entrypoints */
67 struct wl_surface;
68 struct wl_display;
69 typedef struct xcb_connection_t xcb_connection_t;
70 typedef uint32_t xcb_visualid_t;
71 typedef uint32_t xcb_window_t;
72
73 struct anv_batch;
74 struct anv_buffer;
75 struct anv_buffer_view;
76 struct anv_image_view;
77 struct anv_instance;
78
79 struct gen_aux_map_context;
80 struct gen_perf_config;
81
82 #include <vulkan/vulkan.h>
83 #include <vulkan/vulkan_intel.h>
84 #include <vulkan/vk_icd.h>
85
86 #include "anv_android.h"
87 #include "anv_entrypoints.h"
88 #include "anv_extensions.h"
89 #include "isl/isl.h"
90
91 #include "dev/gen_debug.h"
92 #include "common/intel_log.h"
93 #include "wsi_common.h"
94
95 #define NSEC_PER_SEC 1000000000ull
96
97 /* anv Virtual Memory Layout
98 * =========================
99 *
100 * When the anv driver is determining the virtual graphics addresses of memory
101 * objects itself using the softpin mechanism, the following memory ranges
102 * will be used.
103 *
104 * Three special considerations to notice:
105 *
106 * (1) the dynamic state pool is located within the same 4 GiB as the low
107 * heap. This is to work around a VF cache issue described in a comment in
108 * anv_physical_device_init_heaps.
109 *
110 * (2) the binding table pool is located at lower addresses than the surface
111 * state pool, within a 4 GiB range. This allows surface state base addresses
112 * to cover both binding tables (16 bit offsets) and surface states (32 bit
113 * offsets).
114 *
115 * (3) the last 4 GiB of the address space is withheld from the high
116 * heap. Various hardware units will read past the end of an object for
117 * various reasons. This healthy margin prevents reads from wrapping around
118 * 48-bit addresses.
119 */
120 #define LOW_HEAP_MIN_ADDRESS 0x000000001000ULL /* 4 KiB */
121 #define LOW_HEAP_MAX_ADDRESS 0x0000bfffffffULL
122 #define DYNAMIC_STATE_POOL_MIN_ADDRESS 0x0000c0000000ULL /* 3 GiB */
123 #define DYNAMIC_STATE_POOL_MAX_ADDRESS 0x0000ffffffffULL
124 #define BINDING_TABLE_POOL_MIN_ADDRESS 0x000100000000ULL /* 4 GiB */
125 #define BINDING_TABLE_POOL_MAX_ADDRESS 0x00013fffffffULL
126 #define SURFACE_STATE_POOL_MIN_ADDRESS 0x000140000000ULL /* 5 GiB */
127 #define SURFACE_STATE_POOL_MAX_ADDRESS 0x00017fffffffULL
128 #define INSTRUCTION_STATE_POOL_MIN_ADDRESS 0x000180000000ULL /* 6 GiB */
129 #define INSTRUCTION_STATE_POOL_MAX_ADDRESS 0x0001bfffffffULL
130 #define CLIENT_VISIBLE_HEAP_MIN_ADDRESS 0x0001c0000000ULL /* 7 GiB */
131 #define CLIENT_VISIBLE_HEAP_MAX_ADDRESS 0x0002bfffffffULL
132 #define HIGH_HEAP_MIN_ADDRESS 0x0002c0000000ULL /* 11 GiB */
133
134 #define LOW_HEAP_SIZE \
135 (LOW_HEAP_MAX_ADDRESS - LOW_HEAP_MIN_ADDRESS + 1)
136 #define DYNAMIC_STATE_POOL_SIZE \
137 (DYNAMIC_STATE_POOL_MAX_ADDRESS - DYNAMIC_STATE_POOL_MIN_ADDRESS + 1)
138 #define BINDING_TABLE_POOL_SIZE \
139 (BINDING_TABLE_POOL_MAX_ADDRESS - BINDING_TABLE_POOL_MIN_ADDRESS + 1)
140 #define SURFACE_STATE_POOL_SIZE \
141 (SURFACE_STATE_POOL_MAX_ADDRESS - SURFACE_STATE_POOL_MIN_ADDRESS + 1)
142 #define INSTRUCTION_STATE_POOL_SIZE \
143 (INSTRUCTION_STATE_POOL_MAX_ADDRESS - INSTRUCTION_STATE_POOL_MIN_ADDRESS + 1)
144 #define CLIENT_VISIBLE_HEAP_SIZE \
145 (CLIENT_VISIBLE_HEAP_MAX_ADDRESS - CLIENT_VISIBLE_HEAP_MIN_ADDRESS + 1)
146
147 /* Allowing different clear colors requires us to perform a depth resolve at
148 * the end of certain render passes. This is because while slow clears store
149 * the clear color in the HiZ buffer, fast clears (without a resolve) don't.
150 * See the PRMs for examples describing when additional resolves would be
151 * necessary. To enable fast clears without requiring extra resolves, we set
152 * the clear value to a globally-defined one. We could allow different values
153 * if the user doesn't expect coherent data during or after a render passes
154 * (VK_ATTACHMENT_STORE_OP_DONT_CARE), but such users (aside from the CTS)
155 * don't seem to exist yet. In almost all Vulkan applications tested thus far,
156 * 1.0f seems to be the only value used. The only application that doesn't set
157 * this value does so through the usage of an seemingly uninitialized clear
158 * value.
159 */
160 #define ANV_HZ_FC_VAL 1.0f
161
162 #define MAX_VBS 28
163 #define MAX_XFB_BUFFERS 4
164 #define MAX_XFB_STREAMS 4
165 #define MAX_SETS 8
166 #define MAX_RTS 8
167 #define MAX_VIEWPORTS 16
168 #define MAX_SCISSORS 16
169 #define MAX_PUSH_CONSTANTS_SIZE 128
170 #define MAX_DYNAMIC_BUFFERS 16
171 #define MAX_IMAGES 64
172 #define MAX_PUSH_DESCRIPTORS 32 /* Minimum requirement */
173 #define MAX_INLINE_UNIFORM_BLOCK_SIZE 4096
174 #define MAX_INLINE_UNIFORM_BLOCK_DESCRIPTORS 32
175 #define ANV_UBO_BOUNDS_CHECK_ALIGNMENT 32
176 #define ANV_SSBO_BOUNDS_CHECK_ALIGNMENT 4
177 #define MAX_VIEWS_FOR_PRIMITIVE_REPLICATION 16
178
179 /* From the Skylake PRM Vol. 7 "Binding Table Surface State Model":
180 *
181 * "The surface state model is used when a Binding Table Index (specified
182 * in the message descriptor) of less than 240 is specified. In this model,
183 * the Binding Table Index is used to index into the binding table, and the
184 * binding table entry contains a pointer to the SURFACE_STATE."
185 *
186 * Binding table values above 240 are used for various things in the hardware
187 * such as stateless, stateless with incoherent cache, SLM, and bindless.
188 */
189 #define MAX_BINDING_TABLE_SIZE 240
190
191 /* The kernel relocation API has a limitation of a 32-bit delta value
192 * applied to the address before it is written which, in spite of it being
193 * unsigned, is treated as signed . Because of the way that this maps to
194 * the Vulkan API, we cannot handle an offset into a buffer that does not
195 * fit into a signed 32 bits. The only mechanism we have for dealing with
196 * this at the moment is to limit all VkDeviceMemory objects to a maximum
197 * of 2GB each. The Vulkan spec allows us to do this:
198 *
199 * "Some platforms may have a limit on the maximum size of a single
200 * allocation. For example, certain systems may fail to create
201 * allocations with a size greater than or equal to 4GB. Such a limit is
202 * implementation-dependent, and if such a failure occurs then the error
203 * VK_ERROR_OUT_OF_DEVICE_MEMORY should be returned."
204 *
205 * We don't use vk_error here because it's not an error so much as an
206 * indication to the application that the allocation is too large.
207 */
208 #define MAX_MEMORY_ALLOCATION_SIZE (1ull << 31)
209
210 #define ANV_SVGS_VB_INDEX MAX_VBS
211 #define ANV_DRAWID_VB_INDEX (MAX_VBS + 1)
212
213 /* We reserve this MI ALU register for the purpose of handling predication.
214 * Other code which uses the MI ALU should leave it alone.
215 */
216 #define ANV_PREDICATE_RESULT_REG 0x2678 /* MI_ALU_REG15 */
217
218 /* For gen12 we set the streamout buffers using 4 separate commands
219 * (3DSTATE_SO_BUFFER_INDEX_*) instead of 3DSTATE_SO_BUFFER. However the layout
220 * of the 3DSTATE_SO_BUFFER_INDEX_* commands is identical to that of
221 * 3DSTATE_SO_BUFFER apart from the SOBufferIndex field, so for now we use the
222 * 3DSTATE_SO_BUFFER command, but change the 3DCommandSubOpcode.
223 * SO_BUFFER_INDEX_0_CMD is actually the 3DCommandSubOpcode for
224 * 3DSTATE_SO_BUFFER_INDEX_0.
225 */
226 #define SO_BUFFER_INDEX_0_CMD 0x60
227 #define anv_printflike(a, b) __attribute__((__format__(__printf__, a, b)))
228
229 static inline uint32_t
230 align_down_npot_u32(uint32_t v, uint32_t a)
231 {
232 return v - (v % a);
233 }
234
235 static inline uint32_t
236 align_down_u32(uint32_t v, uint32_t a)
237 {
238 assert(a != 0 && a == (a & -a));
239 return v & ~(a - 1);
240 }
241
242 static inline uint32_t
243 align_u32(uint32_t v, uint32_t a)
244 {
245 assert(a != 0 && a == (a & -a));
246 return align_down_u32(v + a - 1, a);
247 }
248
249 static inline uint64_t
250 align_down_u64(uint64_t v, uint64_t a)
251 {
252 assert(a != 0 && a == (a & -a));
253 return v & ~(a - 1);
254 }
255
256 static inline uint64_t
257 align_u64(uint64_t v, uint64_t a)
258 {
259 return align_down_u64(v + a - 1, a);
260 }
261
262 static inline int32_t
263 align_i32(int32_t v, int32_t a)
264 {
265 assert(a != 0 && a == (a & -a));
266 return (v + a - 1) & ~(a - 1);
267 }
268
269 /** Alignment must be a power of 2. */
270 static inline bool
271 anv_is_aligned(uintmax_t n, uintmax_t a)
272 {
273 assert(a == (a & -a));
274 return (n & (a - 1)) == 0;
275 }
276
277 static inline uint32_t
278 anv_minify(uint32_t n, uint32_t levels)
279 {
280 if (unlikely(n == 0))
281 return 0;
282 else
283 return MAX2(n >> levels, 1);
284 }
285
286 static inline float
287 anv_clamp_f(float f, float min, float max)
288 {
289 assert(min < max);
290
291 if (f > max)
292 return max;
293 else if (f < min)
294 return min;
295 else
296 return f;
297 }
298
299 static inline bool
300 anv_clear_mask(uint32_t *inout_mask, uint32_t clear_mask)
301 {
302 if (*inout_mask & clear_mask) {
303 *inout_mask &= ~clear_mask;
304 return true;
305 } else {
306 return false;
307 }
308 }
309
310 static inline union isl_color_value
311 vk_to_isl_color(VkClearColorValue color)
312 {
313 return (union isl_color_value) {
314 .u32 = {
315 color.uint32[0],
316 color.uint32[1],
317 color.uint32[2],
318 color.uint32[3],
319 },
320 };
321 }
322
323 static inline void *anv_unpack_ptr(uintptr_t ptr, int bits, int *flags)
324 {
325 uintptr_t mask = (1ull << bits) - 1;
326 *flags = ptr & mask;
327 return (void *) (ptr & ~mask);
328 }
329
330 static inline uintptr_t anv_pack_ptr(void *ptr, int bits, int flags)
331 {
332 uintptr_t value = (uintptr_t) ptr;
333 uintptr_t mask = (1ull << bits) - 1;
334 return value | (mask & flags);
335 }
336
337 #define for_each_bit(b, dword) \
338 for (uint32_t __dword = (dword); \
339 (b) = __builtin_ffs(__dword) - 1, __dword; \
340 __dword &= ~(1 << (b)))
341
342 #define typed_memcpy(dest, src, count) ({ \
343 STATIC_ASSERT(sizeof(*src) == sizeof(*dest)); \
344 memcpy((dest), (src), (count) * sizeof(*(src))); \
345 })
346
347 /* Mapping from anv object to VkDebugReportObjectTypeEXT. New types need
348 * to be added here in order to utilize mapping in debug/error/perf macros.
349 */
350 #define REPORT_OBJECT_TYPE(o) \
351 __builtin_choose_expr ( \
352 __builtin_types_compatible_p (__typeof (o), struct anv_instance*), \
353 VK_DEBUG_REPORT_OBJECT_TYPE_INSTANCE_EXT, \
354 __builtin_choose_expr ( \
355 __builtin_types_compatible_p (__typeof (o), struct anv_physical_device*), \
356 VK_DEBUG_REPORT_OBJECT_TYPE_PHYSICAL_DEVICE_EXT, \
357 __builtin_choose_expr ( \
358 __builtin_types_compatible_p (__typeof (o), struct anv_device*), \
359 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
360 __builtin_choose_expr ( \
361 __builtin_types_compatible_p (__typeof (o), const struct anv_device*), \
362 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, \
363 __builtin_choose_expr ( \
364 __builtin_types_compatible_p (__typeof (o), struct anv_queue*), \
365 VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, \
366 __builtin_choose_expr ( \
367 __builtin_types_compatible_p (__typeof (o), struct anv_semaphore*), \
368 VK_DEBUG_REPORT_OBJECT_TYPE_SEMAPHORE_EXT, \
369 __builtin_choose_expr ( \
370 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_buffer*), \
371 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_BUFFER_EXT, \
372 __builtin_choose_expr ( \
373 __builtin_types_compatible_p (__typeof (o), struct anv_fence*), \
374 VK_DEBUG_REPORT_OBJECT_TYPE_FENCE_EXT, \
375 __builtin_choose_expr ( \
376 __builtin_types_compatible_p (__typeof (o), struct anv_device_memory*), \
377 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_MEMORY_EXT, \
378 __builtin_choose_expr ( \
379 __builtin_types_compatible_p (__typeof (o), struct anv_buffer*), \
380 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_EXT, \
381 __builtin_choose_expr ( \
382 __builtin_types_compatible_p (__typeof (o), struct anv_image*), \
383 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
384 __builtin_choose_expr ( \
385 __builtin_types_compatible_p (__typeof (o), const struct anv_image*), \
386 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_EXT, \
387 __builtin_choose_expr ( \
388 __builtin_types_compatible_p (__typeof (o), struct anv_event*), \
389 VK_DEBUG_REPORT_OBJECT_TYPE_EVENT_EXT, \
390 __builtin_choose_expr ( \
391 __builtin_types_compatible_p (__typeof (o), struct anv_query_pool*), \
392 VK_DEBUG_REPORT_OBJECT_TYPE_QUERY_POOL_EXT, \
393 __builtin_choose_expr ( \
394 __builtin_types_compatible_p (__typeof (o), struct anv_buffer_view*), \
395 VK_DEBUG_REPORT_OBJECT_TYPE_BUFFER_VIEW_EXT, \
396 __builtin_choose_expr ( \
397 __builtin_types_compatible_p (__typeof (o), struct anv_image_view*), \
398 VK_DEBUG_REPORT_OBJECT_TYPE_IMAGE_VIEW_EXT, \
399 __builtin_choose_expr ( \
400 __builtin_types_compatible_p (__typeof (o), struct anv_shader_module*), \
401 VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, \
402 __builtin_choose_expr ( \
403 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_cache*), \
404 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_CACHE_EXT, \
405 __builtin_choose_expr ( \
406 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline_layout*), \
407 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_LAYOUT_EXT, \
408 __builtin_choose_expr ( \
409 __builtin_types_compatible_p (__typeof (o), struct anv_render_pass*), \
410 VK_DEBUG_REPORT_OBJECT_TYPE_RENDER_PASS_EXT, \
411 __builtin_choose_expr ( \
412 __builtin_types_compatible_p (__typeof (o), struct anv_pipeline*), \
413 VK_DEBUG_REPORT_OBJECT_TYPE_PIPELINE_EXT, \
414 __builtin_choose_expr ( \
415 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set_layout*), \
416 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT_EXT, \
417 __builtin_choose_expr ( \
418 __builtin_types_compatible_p (__typeof (o), struct anv_sampler*), \
419 VK_DEBUG_REPORT_OBJECT_TYPE_SAMPLER_EXT, \
420 __builtin_choose_expr ( \
421 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_pool*), \
422 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_POOL_EXT, \
423 __builtin_choose_expr ( \
424 __builtin_types_compatible_p (__typeof (o), struct anv_descriptor_set*), \
425 VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT, \
426 __builtin_choose_expr ( \
427 __builtin_types_compatible_p (__typeof (o), struct anv_framebuffer*), \
428 VK_DEBUG_REPORT_OBJECT_TYPE_FRAMEBUFFER_EXT, \
429 __builtin_choose_expr ( \
430 __builtin_types_compatible_p (__typeof (o), struct anv_cmd_pool*), \
431 VK_DEBUG_REPORT_OBJECT_TYPE_COMMAND_POOL_EXT, \
432 __builtin_choose_expr ( \
433 __builtin_types_compatible_p (__typeof (o), struct anv_surface*), \
434 VK_DEBUG_REPORT_OBJECT_TYPE_SURFACE_KHR_EXT, \
435 __builtin_choose_expr ( \
436 __builtin_types_compatible_p (__typeof (o), struct wsi_swapchain*), \
437 VK_DEBUG_REPORT_OBJECT_TYPE_SWAPCHAIN_KHR_EXT, \
438 __builtin_choose_expr ( \
439 __builtin_types_compatible_p (__typeof (o), struct vk_debug_callback*), \
440 VK_DEBUG_REPORT_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT_EXT, \
441 __builtin_choose_expr ( \
442 __builtin_types_compatible_p (__typeof (o), void*), \
443 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT, \
444 /* The void expression results in a compile-time error \
445 when assigning the result to something. */ \
446 (void)0)))))))))))))))))))))))))))))))
447
448 /* Whenever we generate an error, pass it through this function. Useful for
449 * debugging, where we can break on it. Only call at error site, not when
450 * propagating errors. Might be useful to plug in a stack trace here.
451 */
452
453 VkResult __vk_errorv(struct anv_instance *instance, const void *object,
454 VkDebugReportObjectTypeEXT type, VkResult error,
455 const char *file, int line, const char *format,
456 va_list args);
457
458 VkResult __vk_errorf(struct anv_instance *instance, const void *object,
459 VkDebugReportObjectTypeEXT type, VkResult error,
460 const char *file, int line, const char *format, ...)
461 anv_printflike(7, 8);
462
463 #ifdef DEBUG
464 #define vk_error(error) __vk_errorf(NULL, NULL,\
465 VK_DEBUG_REPORT_OBJECT_TYPE_UNKNOWN_EXT,\
466 error, __FILE__, __LINE__, NULL)
467 #define vk_errorfi(instance, obj, error, format, ...)\
468 __vk_errorf(instance, obj, REPORT_OBJECT_TYPE(obj), error,\
469 __FILE__, __LINE__, format, ## __VA_ARGS__)
470 #define vk_errorf(device, obj, error, format, ...)\
471 vk_errorfi(anv_device_instance_or_null(device),\
472 obj, error, format, ## __VA_ARGS__)
473 #else
474 #define vk_error(error) error
475 #define vk_errorfi(instance, obj, error, format, ...) error
476 #define vk_errorf(device, obj, error, format, ...) error
477 #endif
478
479 /**
480 * Warn on ignored extension structs.
481 *
482 * The Vulkan spec requires us to ignore unsupported or unknown structs in
483 * a pNext chain. In debug mode, emitting warnings for ignored structs may
484 * help us discover structs that we should not have ignored.
485 *
486 *
487 * From the Vulkan 1.0.38 spec:
488 *
489 * Any component of the implementation (the loader, any enabled layers,
490 * and drivers) must skip over, without processing (other than reading the
491 * sType and pNext members) any chained structures with sType values not
492 * defined by extensions supported by that component.
493 */
494 #define anv_debug_ignored_stype(sType) \
495 intel_logd("%s: ignored VkStructureType %u\n", __func__, (sType))
496
497 void __anv_perf_warn(struct anv_device *device, const void *object,
498 VkDebugReportObjectTypeEXT type, const char *file,
499 int line, const char *format, ...)
500 anv_printflike(6, 7);
501 void anv_loge(const char *format, ...) anv_printflike(1, 2);
502 void anv_loge_v(const char *format, va_list va);
503
504 /**
505 * Print a FINISHME message, including its source location.
506 */
507 #define anv_finishme(format, ...) \
508 do { \
509 static bool reported = false; \
510 if (!reported) { \
511 intel_logw("%s:%d: FINISHME: " format, __FILE__, __LINE__, \
512 ##__VA_ARGS__); \
513 reported = true; \
514 } \
515 } while (0)
516
517 /**
518 * Print a perf warning message. Set INTEL_DEBUG=perf to see these.
519 */
520 #define anv_perf_warn(instance, obj, format, ...) \
521 do { \
522 static bool reported = false; \
523 if (!reported && unlikely(INTEL_DEBUG & DEBUG_PERF)) { \
524 __anv_perf_warn(instance, obj, REPORT_OBJECT_TYPE(obj), __FILE__, __LINE__,\
525 format, ##__VA_ARGS__); \
526 reported = true; \
527 } \
528 } while (0)
529
530 /* A non-fatal assert. Useful for debugging. */
531 #ifdef DEBUG
532 #define anv_assert(x) ({ \
533 if (unlikely(!(x))) \
534 intel_loge("%s:%d ASSERT: %s", __FILE__, __LINE__, #x); \
535 })
536 #else
537 #define anv_assert(x)
538 #endif
539
540 /* A multi-pointer allocator
541 *
542 * When copying data structures from the user (such as a render pass), it's
543 * common to need to allocate data for a bunch of different things. Instead
544 * of doing several allocations and having to handle all of the error checking
545 * that entails, it can be easier to do a single allocation. This struct
546 * helps facilitate that. The intended usage looks like this:
547 *
548 * ANV_MULTIALLOC(ma)
549 * anv_multialloc_add(&ma, &main_ptr, 1);
550 * anv_multialloc_add(&ma, &substruct1, substruct1Count);
551 * anv_multialloc_add(&ma, &substruct2, substruct2Count);
552 *
553 * if (!anv_multialloc_alloc(&ma, pAllocator, VK_ALLOCATION_SCOPE_FOO))
554 * return vk_error(VK_ERROR_OUT_OF_HOST_MEORY);
555 */
556 struct anv_multialloc {
557 size_t size;
558 size_t align;
559
560 uint32_t ptr_count;
561 void **ptrs[8];
562 };
563
564 #define ANV_MULTIALLOC_INIT \
565 ((struct anv_multialloc) { 0, })
566
567 #define ANV_MULTIALLOC(_name) \
568 struct anv_multialloc _name = ANV_MULTIALLOC_INIT
569
570 __attribute__((always_inline))
571 static inline void
572 _anv_multialloc_add(struct anv_multialloc *ma,
573 void **ptr, size_t size, size_t align)
574 {
575 size_t offset = align_u64(ma->size, align);
576 ma->size = offset + size;
577 ma->align = MAX2(ma->align, align);
578
579 /* Store the offset in the pointer. */
580 *ptr = (void *)(uintptr_t)offset;
581
582 assert(ma->ptr_count < ARRAY_SIZE(ma->ptrs));
583 ma->ptrs[ma->ptr_count++] = ptr;
584 }
585
586 #define anv_multialloc_add_size(_ma, _ptr, _size) \
587 _anv_multialloc_add((_ma), (void **)(_ptr), (_size), __alignof__(**(_ptr)))
588
589 #define anv_multialloc_add(_ma, _ptr, _count) \
590 anv_multialloc_add_size(_ma, _ptr, (_count) * sizeof(**(_ptr)));
591
592 __attribute__((always_inline))
593 static inline void *
594 anv_multialloc_alloc(struct anv_multialloc *ma,
595 const VkAllocationCallbacks *alloc,
596 VkSystemAllocationScope scope)
597 {
598 void *ptr = vk_alloc(alloc, ma->size, ma->align, scope);
599 if (!ptr)
600 return NULL;
601
602 /* Fill out each of the pointers with their final value.
603 *
604 * for (uint32_t i = 0; i < ma->ptr_count; i++)
605 * *ma->ptrs[i] = ptr + (uintptr_t)*ma->ptrs[i];
606 *
607 * Unfortunately, even though ma->ptr_count is basically guaranteed to be a
608 * constant, GCC is incapable of figuring this out and unrolling the loop
609 * so we have to give it a little help.
610 */
611 STATIC_ASSERT(ARRAY_SIZE(ma->ptrs) == 8);
612 #define _ANV_MULTIALLOC_UPDATE_POINTER(_i) \
613 if ((_i) < ma->ptr_count) \
614 *ma->ptrs[_i] = ptr + (uintptr_t)*ma->ptrs[_i]
615 _ANV_MULTIALLOC_UPDATE_POINTER(0);
616 _ANV_MULTIALLOC_UPDATE_POINTER(1);
617 _ANV_MULTIALLOC_UPDATE_POINTER(2);
618 _ANV_MULTIALLOC_UPDATE_POINTER(3);
619 _ANV_MULTIALLOC_UPDATE_POINTER(4);
620 _ANV_MULTIALLOC_UPDATE_POINTER(5);
621 _ANV_MULTIALLOC_UPDATE_POINTER(6);
622 _ANV_MULTIALLOC_UPDATE_POINTER(7);
623 #undef _ANV_MULTIALLOC_UPDATE_POINTER
624
625 return ptr;
626 }
627
628 __attribute__((always_inline))
629 static inline void *
630 anv_multialloc_alloc2(struct anv_multialloc *ma,
631 const VkAllocationCallbacks *parent_alloc,
632 const VkAllocationCallbacks *alloc,
633 VkSystemAllocationScope scope)
634 {
635 return anv_multialloc_alloc(ma, alloc ? alloc : parent_alloc, scope);
636 }
637
638 struct anv_bo {
639 uint32_t gem_handle;
640
641 uint32_t refcount;
642
643 /* Index into the current validation list. This is used by the
644 * validation list building alrogithm to track which buffers are already
645 * in the validation list so that we can ensure uniqueness.
646 */
647 uint32_t index;
648
649 /* Index for use with util_sparse_array_free_list */
650 uint32_t free_index;
651
652 /* Last known offset. This value is provided by the kernel when we
653 * execbuf and is used as the presumed offset for the next bunch of
654 * relocations.
655 */
656 uint64_t offset;
657
658 /** Size of the buffer not including implicit aux */
659 uint64_t size;
660
661 /* Map for internally mapped BOs.
662 *
663 * If ANV_BO_WRAPPER is set in flags, map points to the wrapped BO.
664 */
665 void *map;
666
667 /** Size of the implicit CCS range at the end of the buffer
668 *
669 * On Gen12, CCS data is always a direct 1/256 scale-down. A single 64K
670 * page of main surface data maps to a 256B chunk of CCS data and that
671 * mapping is provided on TGL-LP by the AUX table which maps virtual memory
672 * addresses in the main surface to virtual memory addresses for CCS data.
673 *
674 * Because we can't change these maps around easily and because Vulkan
675 * allows two VkImages to be bound to overlapping memory regions (as long
676 * as the app is careful), it's not feasible to make this mapping part of
677 * the image. (On Gen11 and earlier, the mapping was provided via
678 * RENDER_SURFACE_STATE so each image had its own main -> CCS mapping.)
679 * Instead, we attach the CCS data directly to the buffer object and setup
680 * the AUX table mapping at BO creation time.
681 *
682 * This field is for internal tracking use by the BO allocator only and
683 * should not be touched by other parts of the code. If something wants to
684 * know if a BO has implicit CCS data, it should instead look at the
685 * has_implicit_ccs boolean below.
686 *
687 * This data is not included in maps of this buffer.
688 */
689 uint32_t _ccs_size;
690
691 /** Flags to pass to the kernel through drm_i915_exec_object2::flags */
692 uint32_t flags;
693
694 /** True if this BO may be shared with other processes */
695 bool is_external:1;
696
697 /** True if this BO is a wrapper
698 *
699 * When set to true, none of the fields in this BO are meaningful except
700 * for anv_bo::is_wrapper and anv_bo::map which points to the actual BO.
701 * See also anv_bo_unwrap(). Wrapper BOs are not allowed when use_softpin
702 * is set in the physical device.
703 */
704 bool is_wrapper:1;
705
706 /** See also ANV_BO_ALLOC_FIXED_ADDRESS */
707 bool has_fixed_address:1;
708
709 /** True if this BO wraps a host pointer */
710 bool from_host_ptr:1;
711
712 /** See also ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS */
713 bool has_client_visible_address:1;
714
715 /** True if this BO has implicit CCS data attached to it */
716 bool has_implicit_ccs:1;
717 };
718
719 static inline struct anv_bo *
720 anv_bo_ref(struct anv_bo *bo)
721 {
722 p_atomic_inc(&bo->refcount);
723 return bo;
724 }
725
726 static inline struct anv_bo *
727 anv_bo_unwrap(struct anv_bo *bo)
728 {
729 while (bo->is_wrapper)
730 bo = bo->map;
731 return bo;
732 }
733
734 /* Represents a lock-free linked list of "free" things. This is used by
735 * both the block pool and the state pools. Unfortunately, in order to
736 * solve the ABA problem, we can't use a single uint32_t head.
737 */
738 union anv_free_list {
739 struct {
740 uint32_t offset;
741
742 /* A simple count that is incremented every time the head changes. */
743 uint32_t count;
744 };
745 /* Make sure it's aligned to 64 bits. This will make atomic operations
746 * faster on 32 bit platforms.
747 */
748 uint64_t u64 __attribute__ ((aligned (8)));
749 };
750
751 #define ANV_FREE_LIST_EMPTY ((union anv_free_list) { { UINT32_MAX, 0 } })
752
753 struct anv_block_state {
754 union {
755 struct {
756 uint32_t next;
757 uint32_t end;
758 };
759 /* Make sure it's aligned to 64 bits. This will make atomic operations
760 * faster on 32 bit platforms.
761 */
762 uint64_t u64 __attribute__ ((aligned (8)));
763 };
764 };
765
766 #define anv_block_pool_foreach_bo(bo, pool) \
767 for (struct anv_bo **_pp_bo = (pool)->bos, *bo; \
768 _pp_bo != &(pool)->bos[(pool)->nbos] && (bo = *_pp_bo, true); \
769 _pp_bo++)
770
771 #define ANV_MAX_BLOCK_POOL_BOS 20
772
773 struct anv_block_pool {
774 struct anv_device *device;
775 bool use_softpin;
776
777 /* Wrapper BO for use in relocation lists. This BO is simply a wrapper
778 * around the actual BO so that we grow the pool after the wrapper BO has
779 * been put in a relocation list. This is only used in the non-softpin
780 * case.
781 */
782 struct anv_bo wrapper_bo;
783
784 struct anv_bo *bos[ANV_MAX_BLOCK_POOL_BOS];
785 struct anv_bo *bo;
786 uint32_t nbos;
787
788 uint64_t size;
789
790 /* The address where the start of the pool is pinned. The various bos that
791 * are created as the pool grows will have addresses in the range
792 * [start_address, start_address + BLOCK_POOL_MEMFD_SIZE).
793 */
794 uint64_t start_address;
795
796 /* The offset from the start of the bo to the "center" of the block
797 * pool. Pointers to allocated blocks are given by
798 * bo.map + center_bo_offset + offsets.
799 */
800 uint32_t center_bo_offset;
801
802 /* Current memory map of the block pool. This pointer may or may not
803 * point to the actual beginning of the block pool memory. If
804 * anv_block_pool_alloc_back has ever been called, then this pointer
805 * will point to the "center" position of the buffer and all offsets
806 * (negative or positive) given out by the block pool alloc functions
807 * will be valid relative to this pointer.
808 *
809 * In particular, map == bo.map + center_offset
810 *
811 * DO NOT access this pointer directly. Use anv_block_pool_map() instead,
812 * since it will handle the softpin case as well, where this points to NULL.
813 */
814 void *map;
815 int fd;
816
817 /**
818 * Array of mmaps and gem handles owned by the block pool, reclaimed when
819 * the block pool is destroyed.
820 */
821 struct u_vector mmap_cleanups;
822
823 struct anv_block_state state;
824
825 struct anv_block_state back_state;
826 };
827
828 /* Block pools are backed by a fixed-size 1GB memfd */
829 #define BLOCK_POOL_MEMFD_SIZE (1ul << 30)
830
831 /* The center of the block pool is also the middle of the memfd. This may
832 * change in the future if we decide differently for some reason.
833 */
834 #define BLOCK_POOL_MEMFD_CENTER (BLOCK_POOL_MEMFD_SIZE / 2)
835
836 static inline uint32_t
837 anv_block_pool_size(struct anv_block_pool *pool)
838 {
839 return pool->state.end + pool->back_state.end;
840 }
841
842 struct anv_state {
843 int32_t offset;
844 uint32_t alloc_size;
845 void *map;
846 uint32_t idx;
847 };
848
849 #define ANV_STATE_NULL ((struct anv_state) { .alloc_size = 0 })
850
851 struct anv_fixed_size_state_pool {
852 union anv_free_list free_list;
853 struct anv_block_state block;
854 };
855
856 #define ANV_MIN_STATE_SIZE_LOG2 6
857 #define ANV_MAX_STATE_SIZE_LOG2 21
858
859 #define ANV_STATE_BUCKETS (ANV_MAX_STATE_SIZE_LOG2 - ANV_MIN_STATE_SIZE_LOG2 + 1)
860
861 struct anv_free_entry {
862 uint32_t next;
863 struct anv_state state;
864 };
865
866 struct anv_state_table {
867 struct anv_device *device;
868 int fd;
869 struct anv_free_entry *map;
870 uint32_t size;
871 struct anv_block_state state;
872 struct u_vector cleanups;
873 };
874
875 struct anv_state_pool {
876 struct anv_block_pool block_pool;
877
878 struct anv_state_table table;
879
880 /* The size of blocks which will be allocated from the block pool */
881 uint32_t block_size;
882
883 /** Free list for "back" allocations */
884 union anv_free_list back_alloc_free_list;
885
886 struct anv_fixed_size_state_pool buckets[ANV_STATE_BUCKETS];
887 };
888
889 struct anv_state_stream {
890 struct anv_state_pool *state_pool;
891
892 /* The size of blocks to allocate from the state pool */
893 uint32_t block_size;
894
895 /* Current block we're allocating from */
896 struct anv_state block;
897
898 /* Offset into the current block at which to allocate the next state */
899 uint32_t next;
900
901 /* List of all blocks allocated from this pool */
902 struct util_dynarray all_blocks;
903 };
904
905 /* The block_pool functions exported for testing only. The block pool should
906 * only be used via a state pool (see below).
907 */
908 VkResult anv_block_pool_init(struct anv_block_pool *pool,
909 struct anv_device *device,
910 uint64_t start_address,
911 uint32_t initial_size);
912 void anv_block_pool_finish(struct anv_block_pool *pool);
913 int32_t anv_block_pool_alloc(struct anv_block_pool *pool,
914 uint32_t block_size, uint32_t *padding);
915 int32_t anv_block_pool_alloc_back(struct anv_block_pool *pool,
916 uint32_t block_size);
917 void* anv_block_pool_map(struct anv_block_pool *pool, int32_t offset, uint32_t
918 size);
919
920 VkResult anv_state_pool_init(struct anv_state_pool *pool,
921 struct anv_device *device,
922 uint64_t start_address,
923 uint32_t block_size);
924 void anv_state_pool_finish(struct anv_state_pool *pool);
925 struct anv_state anv_state_pool_alloc(struct anv_state_pool *pool,
926 uint32_t state_size, uint32_t alignment);
927 struct anv_state anv_state_pool_alloc_back(struct anv_state_pool *pool);
928 void anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state);
929 void anv_state_stream_init(struct anv_state_stream *stream,
930 struct anv_state_pool *state_pool,
931 uint32_t block_size);
932 void anv_state_stream_finish(struct anv_state_stream *stream);
933 struct anv_state anv_state_stream_alloc(struct anv_state_stream *stream,
934 uint32_t size, uint32_t alignment);
935
936 VkResult anv_state_table_init(struct anv_state_table *table,
937 struct anv_device *device,
938 uint32_t initial_entries);
939 void anv_state_table_finish(struct anv_state_table *table);
940 VkResult anv_state_table_add(struct anv_state_table *table, uint32_t *idx,
941 uint32_t count);
942 void anv_free_list_push(union anv_free_list *list,
943 struct anv_state_table *table,
944 uint32_t idx, uint32_t count);
945 struct anv_state* anv_free_list_pop(union anv_free_list *list,
946 struct anv_state_table *table);
947
948
949 static inline struct anv_state *
950 anv_state_table_get(struct anv_state_table *table, uint32_t idx)
951 {
952 return &table->map[idx].state;
953 }
954 /**
955 * Implements a pool of re-usable BOs. The interface is identical to that
956 * of block_pool except that each block is its own BO.
957 */
958 struct anv_bo_pool {
959 struct anv_device *device;
960
961 struct util_sparse_array_free_list free_list[16];
962 };
963
964 void anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device);
965 void anv_bo_pool_finish(struct anv_bo_pool *pool);
966 VkResult anv_bo_pool_alloc(struct anv_bo_pool *pool, uint32_t size,
967 struct anv_bo **bo_out);
968 void anv_bo_pool_free(struct anv_bo_pool *pool, struct anv_bo *bo);
969
970 struct anv_scratch_pool {
971 /* Indexed by Per-Thread Scratch Space number (the hardware value) and stage */
972 struct anv_bo *bos[16][MESA_SHADER_STAGES];
973 };
974
975 void anv_scratch_pool_init(struct anv_device *device,
976 struct anv_scratch_pool *pool);
977 void anv_scratch_pool_finish(struct anv_device *device,
978 struct anv_scratch_pool *pool);
979 struct anv_bo *anv_scratch_pool_alloc(struct anv_device *device,
980 struct anv_scratch_pool *pool,
981 gl_shader_stage stage,
982 unsigned per_thread_scratch);
983
984 /** Implements a BO cache that ensures a 1-1 mapping of GEM BOs to anv_bos */
985 struct anv_bo_cache {
986 struct util_sparse_array bo_map;
987 pthread_mutex_t mutex;
988 };
989
990 VkResult anv_bo_cache_init(struct anv_bo_cache *cache);
991 void anv_bo_cache_finish(struct anv_bo_cache *cache);
992
993 struct anv_memory_type {
994 /* Standard bits passed on to the client */
995 VkMemoryPropertyFlags propertyFlags;
996 uint32_t heapIndex;
997 };
998
999 struct anv_memory_heap {
1000 /* Standard bits passed on to the client */
1001 VkDeviceSize size;
1002 VkMemoryHeapFlags flags;
1003
1004 /* Driver-internal book-keeping */
1005 VkDeviceSize used;
1006 };
1007
1008 struct anv_physical_device {
1009 VK_LOADER_DATA _loader_data;
1010
1011 /* Link in anv_instance::physical_devices */
1012 struct list_head link;
1013
1014 struct anv_instance * instance;
1015 bool no_hw;
1016 char path[20];
1017 const char * name;
1018 struct {
1019 uint16_t domain;
1020 uint8_t bus;
1021 uint8_t device;
1022 uint8_t function;
1023 } pci_info;
1024 struct gen_device_info info;
1025 /** Amount of "GPU memory" we want to advertise
1026 *
1027 * Clearly, this value is bogus since Intel is a UMA architecture. On
1028 * gen7 platforms, we are limited by GTT size unless we want to implement
1029 * fine-grained tracking and GTT splitting. On Broadwell and above we are
1030 * practically unlimited. However, we will never report more than 3/4 of
1031 * the total system ram to try and avoid running out of RAM.
1032 */
1033 bool supports_48bit_addresses;
1034 struct brw_compiler * compiler;
1035 struct isl_device isl_dev;
1036 struct gen_perf_config * perf;
1037 int cmd_parser_version;
1038 bool has_softpin;
1039 bool has_exec_async;
1040 bool has_exec_capture;
1041 bool has_exec_fence;
1042 bool has_syncobj;
1043 bool has_syncobj_wait;
1044 bool has_context_priority;
1045 bool has_context_isolation;
1046 bool has_mem_available;
1047 bool has_mmap_offset;
1048 uint64_t gtt_size;
1049
1050 bool use_softpin;
1051 bool always_use_bindless;
1052
1053 /** True if we can access buffers using A64 messages */
1054 bool has_a64_buffer_access;
1055 /** True if we can use bindless access for images */
1056 bool has_bindless_images;
1057 /** True if we can use bindless access for samplers */
1058 bool has_bindless_samplers;
1059
1060 /** True if this device has implicit AUX
1061 *
1062 * If true, CCS is handled as an implicit attachment to the BO rather than
1063 * as an explicitly bound surface.
1064 */
1065 bool has_implicit_ccs;
1066
1067 bool always_flush_cache;
1068
1069 struct anv_device_extension_table supported_extensions;
1070
1071 uint32_t eu_total;
1072 uint32_t subslice_total;
1073
1074 struct {
1075 uint32_t type_count;
1076 struct anv_memory_type types[VK_MAX_MEMORY_TYPES];
1077 uint32_t heap_count;
1078 struct anv_memory_heap heaps[VK_MAX_MEMORY_HEAPS];
1079 } memory;
1080
1081 uint8_t driver_build_sha1[20];
1082 uint8_t pipeline_cache_uuid[VK_UUID_SIZE];
1083 uint8_t driver_uuid[VK_UUID_SIZE];
1084 uint8_t device_uuid[VK_UUID_SIZE];
1085
1086 struct disk_cache * disk_cache;
1087
1088 struct wsi_device wsi_device;
1089 int local_fd;
1090 int master_fd;
1091 };
1092
1093 struct anv_app_info {
1094 const char* app_name;
1095 uint32_t app_version;
1096 const char* engine_name;
1097 uint32_t engine_version;
1098 uint32_t api_version;
1099 };
1100
1101 struct anv_instance {
1102 VK_LOADER_DATA _loader_data;
1103
1104 VkAllocationCallbacks alloc;
1105
1106 struct anv_app_info app_info;
1107
1108 struct anv_instance_extension_table enabled_extensions;
1109 struct anv_instance_dispatch_table dispatch;
1110 struct anv_physical_device_dispatch_table physical_device_dispatch;
1111 struct anv_device_dispatch_table device_dispatch;
1112
1113 bool physical_devices_enumerated;
1114 struct list_head physical_devices;
1115
1116 bool pipeline_cache_enabled;
1117
1118 struct vk_debug_report_instance debug_report_callbacks;
1119
1120 struct driOptionCache dri_options;
1121 struct driOptionCache available_dri_options;
1122 };
1123
1124 VkResult anv_init_wsi(struct anv_physical_device *physical_device);
1125 void anv_finish_wsi(struct anv_physical_device *physical_device);
1126
1127 uint32_t anv_physical_device_api_version(struct anv_physical_device *dev);
1128 bool anv_physical_device_extension_supported(struct anv_physical_device *dev,
1129 const char *name);
1130
1131 struct anv_queue_submit {
1132 struct anv_cmd_buffer * cmd_buffer;
1133
1134 uint32_t fence_count;
1135 uint32_t fence_array_length;
1136 struct drm_i915_gem_exec_fence * fences;
1137
1138 uint32_t temporary_semaphore_count;
1139 uint32_t temporary_semaphore_array_length;
1140 struct anv_semaphore_impl * temporary_semaphores;
1141
1142 /* Semaphores to be signaled with a SYNC_FD. */
1143 struct anv_semaphore ** sync_fd_semaphores;
1144 uint32_t sync_fd_semaphore_count;
1145 uint32_t sync_fd_semaphore_array_length;
1146
1147 /* Allocated only with non shareable timelines. */
1148 struct anv_timeline ** wait_timelines;
1149 uint32_t wait_timeline_count;
1150 uint32_t wait_timeline_array_length;
1151 uint64_t * wait_timeline_values;
1152
1153 struct anv_timeline ** signal_timelines;
1154 uint32_t signal_timeline_count;
1155 uint32_t signal_timeline_array_length;
1156 uint64_t * signal_timeline_values;
1157
1158 int in_fence;
1159 bool need_out_fence;
1160 int out_fence;
1161
1162 uint32_t fence_bo_count;
1163 uint32_t fence_bo_array_length;
1164 /* An array of struct anv_bo pointers with lower bit used as a flag to
1165 * signal we will wait on that BO (see anv_(un)pack_ptr).
1166 */
1167 uintptr_t * fence_bos;
1168
1169 const VkAllocationCallbacks * alloc;
1170 VkSystemAllocationScope alloc_scope;
1171
1172 struct anv_bo * simple_bo;
1173 uint32_t simple_bo_size;
1174
1175 struct list_head link;
1176 };
1177
1178 struct anv_queue {
1179 VK_LOADER_DATA _loader_data;
1180
1181 struct anv_device * device;
1182
1183 /*
1184 * A list of struct anv_queue_submit to be submitted to i915.
1185 */
1186 struct list_head queued_submits;
1187
1188 VkDeviceQueueCreateFlags flags;
1189 };
1190
1191 struct anv_pipeline_cache {
1192 struct anv_device * device;
1193 pthread_mutex_t mutex;
1194
1195 struct hash_table * nir_cache;
1196
1197 struct hash_table * cache;
1198 };
1199
1200 struct nir_xfb_info;
1201 struct anv_pipeline_bind_map;
1202
1203 void anv_pipeline_cache_init(struct anv_pipeline_cache *cache,
1204 struct anv_device *device,
1205 bool cache_enabled);
1206 void anv_pipeline_cache_finish(struct anv_pipeline_cache *cache);
1207
1208 struct anv_shader_bin *
1209 anv_pipeline_cache_search(struct anv_pipeline_cache *cache,
1210 const void *key, uint32_t key_size);
1211 struct anv_shader_bin *
1212 anv_pipeline_cache_upload_kernel(struct anv_pipeline_cache *cache,
1213 gl_shader_stage stage,
1214 const void *key_data, uint32_t key_size,
1215 const void *kernel_data, uint32_t kernel_size,
1216 const void *constant_data,
1217 uint32_t constant_data_size,
1218 const struct brw_stage_prog_data *prog_data,
1219 uint32_t prog_data_size,
1220 const struct brw_compile_stats *stats,
1221 uint32_t num_stats,
1222 const struct nir_xfb_info *xfb_info,
1223 const struct anv_pipeline_bind_map *bind_map);
1224
1225 struct anv_shader_bin *
1226 anv_device_search_for_kernel(struct anv_device *device,
1227 struct anv_pipeline_cache *cache,
1228 const void *key_data, uint32_t key_size,
1229 bool *user_cache_bit);
1230
1231 struct anv_shader_bin *
1232 anv_device_upload_kernel(struct anv_device *device,
1233 struct anv_pipeline_cache *cache,
1234 gl_shader_stage stage,
1235 const void *key_data, uint32_t key_size,
1236 const void *kernel_data, uint32_t kernel_size,
1237 const void *constant_data,
1238 uint32_t constant_data_size,
1239 const struct brw_stage_prog_data *prog_data,
1240 uint32_t prog_data_size,
1241 const struct brw_compile_stats *stats,
1242 uint32_t num_stats,
1243 const struct nir_xfb_info *xfb_info,
1244 const struct anv_pipeline_bind_map *bind_map);
1245
1246 struct nir_shader;
1247 struct nir_shader_compiler_options;
1248
1249 struct nir_shader *
1250 anv_device_search_for_nir(struct anv_device *device,
1251 struct anv_pipeline_cache *cache,
1252 const struct nir_shader_compiler_options *nir_options,
1253 unsigned char sha1_key[20],
1254 void *mem_ctx);
1255
1256 void
1257 anv_device_upload_nir(struct anv_device *device,
1258 struct anv_pipeline_cache *cache,
1259 const struct nir_shader *nir,
1260 unsigned char sha1_key[20]);
1261
1262 struct anv_device {
1263 VK_LOADER_DATA _loader_data;
1264
1265 VkAllocationCallbacks alloc;
1266
1267 struct anv_physical_device * physical;
1268 bool no_hw;
1269 struct gen_device_info info;
1270 struct isl_device isl_dev;
1271 int context_id;
1272 int fd;
1273 bool can_chain_batches;
1274 bool robust_buffer_access;
1275 struct anv_device_extension_table enabled_extensions;
1276 struct anv_device_dispatch_table dispatch;
1277
1278 pthread_mutex_t vma_mutex;
1279 struct util_vma_heap vma_lo;
1280 struct util_vma_heap vma_cva;
1281 struct util_vma_heap vma_hi;
1282
1283 /** List of all anv_device_memory objects */
1284 struct list_head memory_objects;
1285
1286 struct anv_bo_pool batch_bo_pool;
1287
1288 struct anv_bo_cache bo_cache;
1289
1290 struct anv_state_pool dynamic_state_pool;
1291 struct anv_state_pool instruction_state_pool;
1292 struct anv_state_pool binding_table_pool;
1293 struct anv_state_pool surface_state_pool;
1294
1295 struct anv_bo * workaround_bo;
1296 struct anv_bo * trivial_batch_bo;
1297 struct anv_bo * hiz_clear_bo;
1298
1299 struct anv_pipeline_cache default_pipeline_cache;
1300 struct blorp_context blorp;
1301
1302 struct anv_state border_colors;
1303
1304 struct anv_state slice_hash;
1305
1306 struct anv_queue queue;
1307
1308 struct anv_scratch_pool scratch_pool;
1309
1310 pthread_mutex_t mutex;
1311 pthread_cond_t queue_submit;
1312 int _lost;
1313
1314 struct gen_batch_decode_ctx decoder_ctx;
1315 /*
1316 * When decoding a anv_cmd_buffer, we might need to search for BOs through
1317 * the cmd_buffer's list.
1318 */
1319 struct anv_cmd_buffer *cmd_buffer_being_decoded;
1320
1321 int perf_fd; /* -1 if no opened */
1322 uint64_t perf_metric; /* 0 if unset */
1323
1324 struct gen_aux_map_context *aux_map_ctx;
1325 };
1326
1327 static inline struct anv_instance *
1328 anv_device_instance_or_null(const struct anv_device *device)
1329 {
1330 return device ? device->physical->instance : NULL;
1331 }
1332
1333 static inline struct anv_state_pool *
1334 anv_binding_table_pool(struct anv_device *device)
1335 {
1336 if (device->physical->use_softpin)
1337 return &device->binding_table_pool;
1338 else
1339 return &device->surface_state_pool;
1340 }
1341
1342 static inline struct anv_state
1343 anv_binding_table_pool_alloc(struct anv_device *device) {
1344 if (device->physical->use_softpin)
1345 return anv_state_pool_alloc(&device->binding_table_pool,
1346 device->binding_table_pool.block_size, 0);
1347 else
1348 return anv_state_pool_alloc_back(&device->surface_state_pool);
1349 }
1350
1351 static inline void
1352 anv_binding_table_pool_free(struct anv_device *device, struct anv_state state) {
1353 anv_state_pool_free(anv_binding_table_pool(device), state);
1354 }
1355
1356 static inline uint32_t
1357 anv_mocs_for_bo(const struct anv_device *device, const struct anv_bo *bo)
1358 {
1359 if (bo->is_external)
1360 return device->isl_dev.mocs.external;
1361 else
1362 return device->isl_dev.mocs.internal;
1363 }
1364
1365 void anv_device_init_blorp(struct anv_device *device);
1366 void anv_device_finish_blorp(struct anv_device *device);
1367
1368 void _anv_device_set_all_queue_lost(struct anv_device *device);
1369 VkResult _anv_device_set_lost(struct anv_device *device,
1370 const char *file, int line,
1371 const char *msg, ...)
1372 anv_printflike(4, 5);
1373 VkResult _anv_queue_set_lost(struct anv_queue *queue,
1374 const char *file, int line,
1375 const char *msg, ...)
1376 anv_printflike(4, 5);
1377 #define anv_device_set_lost(dev, ...) \
1378 _anv_device_set_lost(dev, __FILE__, __LINE__, __VA_ARGS__)
1379 #define anv_queue_set_lost(queue, ...) \
1380 _anv_queue_set_lost(queue, __FILE__, __LINE__, __VA_ARGS__)
1381
1382 static inline bool
1383 anv_device_is_lost(struct anv_device *device)
1384 {
1385 return unlikely(p_atomic_read(&device->_lost));
1386 }
1387
1388 VkResult anv_device_query_status(struct anv_device *device);
1389
1390
1391 enum anv_bo_alloc_flags {
1392 /** Specifies that the BO must have a 32-bit address
1393 *
1394 * This is the opposite of EXEC_OBJECT_SUPPORTS_48B_ADDRESS.
1395 */
1396 ANV_BO_ALLOC_32BIT_ADDRESS = (1 << 0),
1397
1398 /** Specifies that the BO may be shared externally */
1399 ANV_BO_ALLOC_EXTERNAL = (1 << 1),
1400
1401 /** Specifies that the BO should be mapped */
1402 ANV_BO_ALLOC_MAPPED = (1 << 2),
1403
1404 /** Specifies that the BO should be snooped so we get coherency */
1405 ANV_BO_ALLOC_SNOOPED = (1 << 3),
1406
1407 /** Specifies that the BO should be captured in error states */
1408 ANV_BO_ALLOC_CAPTURE = (1 << 4),
1409
1410 /** Specifies that the BO will have an address assigned by the caller
1411 *
1412 * Such BOs do not exist in any VMA heap.
1413 */
1414 ANV_BO_ALLOC_FIXED_ADDRESS = (1 << 5),
1415
1416 /** Enables implicit synchronization on the BO
1417 *
1418 * This is the opposite of EXEC_OBJECT_ASYNC.
1419 */
1420 ANV_BO_ALLOC_IMPLICIT_SYNC = (1 << 6),
1421
1422 /** Enables implicit synchronization on the BO
1423 *
1424 * This is equivalent to EXEC_OBJECT_WRITE.
1425 */
1426 ANV_BO_ALLOC_IMPLICIT_WRITE = (1 << 7),
1427
1428 /** Has an address which is visible to the client */
1429 ANV_BO_ALLOC_CLIENT_VISIBLE_ADDRESS = (1 << 8),
1430
1431 /** This buffer has implicit CCS data attached to it */
1432 ANV_BO_ALLOC_IMPLICIT_CCS = (1 << 9),
1433 };
1434
1435 VkResult anv_device_alloc_bo(struct anv_device *device, uint64_t size,
1436 enum anv_bo_alloc_flags alloc_flags,
1437 uint64_t explicit_address,
1438 struct anv_bo **bo);
1439 VkResult anv_device_import_bo_from_host_ptr(struct anv_device *device,
1440 void *host_ptr, uint32_t size,
1441 enum anv_bo_alloc_flags alloc_flags,
1442 uint64_t client_address,
1443 struct anv_bo **bo_out);
1444 VkResult anv_device_import_bo(struct anv_device *device, int fd,
1445 enum anv_bo_alloc_flags alloc_flags,
1446 uint64_t client_address,
1447 struct anv_bo **bo);
1448 VkResult anv_device_export_bo(struct anv_device *device,
1449 struct anv_bo *bo, int *fd_out);
1450 void anv_device_release_bo(struct anv_device *device,
1451 struct anv_bo *bo);
1452
1453 static inline struct anv_bo *
1454 anv_device_lookup_bo(struct anv_device *device, uint32_t gem_handle)
1455 {
1456 return util_sparse_array_get(&device->bo_cache.bo_map, gem_handle);
1457 }
1458
1459 VkResult anv_device_bo_busy(struct anv_device *device, struct anv_bo *bo);
1460 VkResult anv_device_wait(struct anv_device *device, struct anv_bo *bo,
1461 int64_t timeout);
1462
1463 VkResult anv_queue_init(struct anv_device *device, struct anv_queue *queue);
1464 void anv_queue_finish(struct anv_queue *queue);
1465
1466 VkResult anv_queue_execbuf_locked(struct anv_queue *queue, struct anv_queue_submit *submit);
1467 VkResult anv_queue_submit_simple_batch(struct anv_queue *queue,
1468 struct anv_batch *batch);
1469
1470 uint64_t anv_gettime_ns(void);
1471 uint64_t anv_get_absolute_timeout(uint64_t timeout);
1472
1473 void* anv_gem_mmap(struct anv_device *device,
1474 uint32_t gem_handle, uint64_t offset, uint64_t size, uint32_t flags);
1475 void anv_gem_munmap(struct anv_device *device, void *p, uint64_t size);
1476 uint32_t anv_gem_create(struct anv_device *device, uint64_t size);
1477 void anv_gem_close(struct anv_device *device, uint32_t gem_handle);
1478 uint32_t anv_gem_userptr(struct anv_device *device, void *mem, size_t size);
1479 int anv_gem_busy(struct anv_device *device, uint32_t gem_handle);
1480 int anv_gem_wait(struct anv_device *device, uint32_t gem_handle, int64_t *timeout_ns);
1481 int anv_gem_execbuffer(struct anv_device *device,
1482 struct drm_i915_gem_execbuffer2 *execbuf);
1483 int anv_gem_set_tiling(struct anv_device *device, uint32_t gem_handle,
1484 uint32_t stride, uint32_t tiling);
1485 int anv_gem_create_context(struct anv_device *device);
1486 bool anv_gem_has_context_priority(int fd);
1487 int anv_gem_destroy_context(struct anv_device *device, int context);
1488 int anv_gem_set_context_param(int fd, int context, uint32_t param,
1489 uint64_t value);
1490 int anv_gem_get_context_param(int fd, int context, uint32_t param,
1491 uint64_t *value);
1492 int anv_gem_get_param(int fd, uint32_t param);
1493 int anv_gem_get_tiling(struct anv_device *device, uint32_t gem_handle);
1494 bool anv_gem_get_bit6_swizzle(int fd, uint32_t tiling);
1495 int anv_gem_get_aperture(int fd, uint64_t *size);
1496 int anv_gem_gpu_get_reset_stats(struct anv_device *device,
1497 uint32_t *active, uint32_t *pending);
1498 int anv_gem_handle_to_fd(struct anv_device *device, uint32_t gem_handle);
1499 int anv_gem_reg_read(struct anv_device *device,
1500 uint32_t offset, uint64_t *result);
1501 uint32_t anv_gem_fd_to_handle(struct anv_device *device, int fd);
1502 int anv_gem_set_caching(struct anv_device *device, uint32_t gem_handle, uint32_t caching);
1503 int anv_gem_set_domain(struct anv_device *device, uint32_t gem_handle,
1504 uint32_t read_domains, uint32_t write_domain);
1505 int anv_gem_sync_file_merge(struct anv_device *device, int fd1, int fd2);
1506 uint32_t anv_gem_syncobj_create(struct anv_device *device, uint32_t flags);
1507 void anv_gem_syncobj_destroy(struct anv_device *device, uint32_t handle);
1508 int anv_gem_syncobj_handle_to_fd(struct anv_device *device, uint32_t handle);
1509 uint32_t anv_gem_syncobj_fd_to_handle(struct anv_device *device, int fd);
1510 int anv_gem_syncobj_export_sync_file(struct anv_device *device,
1511 uint32_t handle);
1512 int anv_gem_syncobj_import_sync_file(struct anv_device *device,
1513 uint32_t handle, int fd);
1514 void anv_gem_syncobj_reset(struct anv_device *device, uint32_t handle);
1515 bool anv_gem_supports_syncobj_wait(int fd);
1516 int anv_gem_syncobj_wait(struct anv_device *device,
1517 uint32_t *handles, uint32_t num_handles,
1518 int64_t abs_timeout_ns, bool wait_all);
1519
1520 uint64_t anv_vma_alloc(struct anv_device *device,
1521 uint64_t size, uint64_t align,
1522 enum anv_bo_alloc_flags alloc_flags,
1523 uint64_t client_address);
1524 void anv_vma_free(struct anv_device *device,
1525 uint64_t address, uint64_t size);
1526
1527 struct anv_reloc_list {
1528 uint32_t num_relocs;
1529 uint32_t array_length;
1530 struct drm_i915_gem_relocation_entry * relocs;
1531 struct anv_bo ** reloc_bos;
1532 uint32_t dep_words;
1533 BITSET_WORD * deps;
1534 };
1535
1536 VkResult anv_reloc_list_init(struct anv_reloc_list *list,
1537 const VkAllocationCallbacks *alloc);
1538 void anv_reloc_list_finish(struct anv_reloc_list *list,
1539 const VkAllocationCallbacks *alloc);
1540
1541 VkResult anv_reloc_list_add(struct anv_reloc_list *list,
1542 const VkAllocationCallbacks *alloc,
1543 uint32_t offset, struct anv_bo *target_bo,
1544 uint32_t delta, uint64_t *address_u64_out);
1545
1546 struct anv_batch_bo {
1547 /* Link in the anv_cmd_buffer.owned_batch_bos list */
1548 struct list_head link;
1549
1550 struct anv_bo * bo;
1551
1552 /* Bytes actually consumed in this batch BO */
1553 uint32_t length;
1554
1555 struct anv_reloc_list relocs;
1556 };
1557
1558 struct anv_batch {
1559 const VkAllocationCallbacks * alloc;
1560
1561 void * start;
1562 void * end;
1563 void * next;
1564
1565 struct anv_reloc_list * relocs;
1566
1567 /* This callback is called (with the associated user data) in the event
1568 * that the batch runs out of space.
1569 */
1570 VkResult (*extend_cb)(struct anv_batch *, void *);
1571 void * user_data;
1572
1573 /**
1574 * Current error status of the command buffer. Used to track inconsistent
1575 * or incomplete command buffer states that are the consequence of run-time
1576 * errors such as out of memory scenarios. We want to track this in the
1577 * batch because the command buffer object is not visible to some parts
1578 * of the driver.
1579 */
1580 VkResult status;
1581 };
1582
1583 void *anv_batch_emit_dwords(struct anv_batch *batch, int num_dwords);
1584 void anv_batch_emit_batch(struct anv_batch *batch, struct anv_batch *other);
1585 uint64_t anv_batch_emit_reloc(struct anv_batch *batch,
1586 void *location, struct anv_bo *bo, uint32_t offset);
1587
1588 static inline VkResult
1589 anv_batch_set_error(struct anv_batch *batch, VkResult error)
1590 {
1591 assert(error != VK_SUCCESS);
1592 if (batch->status == VK_SUCCESS)
1593 batch->status = error;
1594 return batch->status;
1595 }
1596
1597 static inline bool
1598 anv_batch_has_error(struct anv_batch *batch)
1599 {
1600 return batch->status != VK_SUCCESS;
1601 }
1602
1603 struct anv_address {
1604 struct anv_bo *bo;
1605 uint32_t offset;
1606 };
1607
1608 #define ANV_NULL_ADDRESS ((struct anv_address) { NULL, 0 })
1609
1610 static inline bool
1611 anv_address_is_null(struct anv_address addr)
1612 {
1613 return addr.bo == NULL && addr.offset == 0;
1614 }
1615
1616 static inline uint64_t
1617 anv_address_physical(struct anv_address addr)
1618 {
1619 if (addr.bo && (addr.bo->flags & EXEC_OBJECT_PINNED))
1620 return gen_canonical_address(addr.bo->offset + addr.offset);
1621 else
1622 return gen_canonical_address(addr.offset);
1623 }
1624
1625 static inline struct anv_address
1626 anv_address_add(struct anv_address addr, uint64_t offset)
1627 {
1628 addr.offset += offset;
1629 return addr;
1630 }
1631
1632 static inline void
1633 write_reloc(const struct anv_device *device, void *p, uint64_t v, bool flush)
1634 {
1635 unsigned reloc_size = 0;
1636 if (device->info.gen >= 8) {
1637 reloc_size = sizeof(uint64_t);
1638 *(uint64_t *)p = gen_canonical_address(v);
1639 } else {
1640 reloc_size = sizeof(uint32_t);
1641 *(uint32_t *)p = v;
1642 }
1643
1644 if (flush && !device->info.has_llc)
1645 gen_flush_range(p, reloc_size);
1646 }
1647
1648 static inline uint64_t
1649 _anv_combine_address(struct anv_batch *batch, void *location,
1650 const struct anv_address address, uint32_t delta)
1651 {
1652 if (address.bo == NULL) {
1653 return address.offset + delta;
1654 } else {
1655 assert(batch->start <= location && location < batch->end);
1656
1657 return anv_batch_emit_reloc(batch, location, address.bo, address.offset + delta);
1658 }
1659 }
1660
1661 #define __gen_address_type struct anv_address
1662 #define __gen_user_data struct anv_batch
1663 #define __gen_combine_address _anv_combine_address
1664
1665 /* Wrapper macros needed to work around preprocessor argument issues. In
1666 * particular, arguments don't get pre-evaluated if they are concatenated.
1667 * This means that, if you pass GENX(3DSTATE_PS) into the emit macro, the
1668 * GENX macro won't get evaluated if the emit macro contains "cmd ## foo".
1669 * We can work around this easily enough with these helpers.
1670 */
1671 #define __anv_cmd_length(cmd) cmd ## _length
1672 #define __anv_cmd_length_bias(cmd) cmd ## _length_bias
1673 #define __anv_cmd_header(cmd) cmd ## _header
1674 #define __anv_cmd_pack(cmd) cmd ## _pack
1675 #define __anv_reg_num(reg) reg ## _num
1676
1677 #define anv_pack_struct(dst, struc, ...) do { \
1678 struct struc __template = { \
1679 __VA_ARGS__ \
1680 }; \
1681 __anv_cmd_pack(struc)(NULL, dst, &__template); \
1682 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dst, __anv_cmd_length(struc) * 4)); \
1683 } while (0)
1684
1685 #define anv_batch_emitn(batch, n, cmd, ...) ({ \
1686 void *__dst = anv_batch_emit_dwords(batch, n); \
1687 if (__dst) { \
1688 struct cmd __template = { \
1689 __anv_cmd_header(cmd), \
1690 .DWordLength = n - __anv_cmd_length_bias(cmd), \
1691 __VA_ARGS__ \
1692 }; \
1693 __anv_cmd_pack(cmd)(batch, __dst, &__template); \
1694 } \
1695 __dst; \
1696 })
1697
1698 #define anv_batch_emit_merge(batch, dwords0, dwords1) \
1699 do { \
1700 uint32_t *dw; \
1701 \
1702 STATIC_ASSERT(ARRAY_SIZE(dwords0) == ARRAY_SIZE(dwords1)); \
1703 dw = anv_batch_emit_dwords((batch), ARRAY_SIZE(dwords0)); \
1704 if (!dw) \
1705 break; \
1706 for (uint32_t i = 0; i < ARRAY_SIZE(dwords0); i++) \
1707 dw[i] = (dwords0)[i] | (dwords1)[i]; \
1708 VG(VALGRIND_CHECK_MEM_IS_DEFINED(dw, ARRAY_SIZE(dwords0) * 4));\
1709 } while (0)
1710
1711 #define anv_batch_emit(batch, cmd, name) \
1712 for (struct cmd name = { __anv_cmd_header(cmd) }, \
1713 *_dst = anv_batch_emit_dwords(batch, __anv_cmd_length(cmd)); \
1714 __builtin_expect(_dst != NULL, 1); \
1715 ({ __anv_cmd_pack(cmd)(batch, _dst, &name); \
1716 VG(VALGRIND_CHECK_MEM_IS_DEFINED(_dst, __anv_cmd_length(cmd) * 4)); \
1717 _dst = NULL; \
1718 }))
1719
1720 struct anv_device_memory {
1721 struct list_head link;
1722
1723 struct anv_bo * bo;
1724 struct anv_memory_type * type;
1725 VkDeviceSize map_size;
1726 void * map;
1727
1728 /* If set, we are holding reference to AHardwareBuffer
1729 * which we must release when memory is freed.
1730 */
1731 struct AHardwareBuffer * ahw;
1732
1733 /* If set, this memory comes from a host pointer. */
1734 void * host_ptr;
1735 };
1736
1737 /**
1738 * Header for Vertex URB Entry (VUE)
1739 */
1740 struct anv_vue_header {
1741 uint32_t Reserved;
1742 uint32_t RTAIndex; /* RenderTargetArrayIndex */
1743 uint32_t ViewportIndex;
1744 float PointWidth;
1745 };
1746
1747 /** Struct representing a sampled image descriptor
1748 *
1749 * This descriptor layout is used for sampled images, bare sampler, and
1750 * combined image/sampler descriptors.
1751 */
1752 struct anv_sampled_image_descriptor {
1753 /** Bindless image handle
1754 *
1755 * This is expected to already be shifted such that the 20-bit
1756 * SURFACE_STATE table index is in the top 20 bits.
1757 */
1758 uint32_t image;
1759
1760 /** Bindless sampler handle
1761 *
1762 * This is assumed to be a 32B-aligned SAMPLER_STATE pointer relative
1763 * to the dynamic state base address.
1764 */
1765 uint32_t sampler;
1766 };
1767
1768 struct anv_texture_swizzle_descriptor {
1769 /** Texture swizzle
1770 *
1771 * See also nir_intrinsic_channel_select_intel
1772 */
1773 uint8_t swizzle[4];
1774
1775 /** Unused padding to ensure the struct is a multiple of 64 bits */
1776 uint32_t _pad;
1777 };
1778
1779 /** Struct representing a storage image descriptor */
1780 struct anv_storage_image_descriptor {
1781 /** Bindless image handles
1782 *
1783 * These are expected to already be shifted such that the 20-bit
1784 * SURFACE_STATE table index is in the top 20 bits.
1785 */
1786 uint32_t read_write;
1787 uint32_t write_only;
1788 };
1789
1790 /** Struct representing a address/range descriptor
1791 *
1792 * The fields of this struct correspond directly to the data layout of
1793 * nir_address_format_64bit_bounded_global addresses. The last field is the
1794 * offset in the NIR address so it must be zero so that when you load the
1795 * descriptor you get a pointer to the start of the range.
1796 */
1797 struct anv_address_range_descriptor {
1798 uint64_t address;
1799 uint32_t range;
1800 uint32_t zero;
1801 };
1802
1803 enum anv_descriptor_data {
1804 /** The descriptor contains a BTI reference to a surface state */
1805 ANV_DESCRIPTOR_SURFACE_STATE = (1 << 0),
1806 /** The descriptor contains a BTI reference to a sampler state */
1807 ANV_DESCRIPTOR_SAMPLER_STATE = (1 << 1),
1808 /** The descriptor contains an actual buffer view */
1809 ANV_DESCRIPTOR_BUFFER_VIEW = (1 << 2),
1810 /** The descriptor contains auxiliary image layout data */
1811 ANV_DESCRIPTOR_IMAGE_PARAM = (1 << 3),
1812 /** The descriptor contains auxiliary image layout data */
1813 ANV_DESCRIPTOR_INLINE_UNIFORM = (1 << 4),
1814 /** anv_address_range_descriptor with a buffer address and range */
1815 ANV_DESCRIPTOR_ADDRESS_RANGE = (1 << 5),
1816 /** Bindless surface handle */
1817 ANV_DESCRIPTOR_SAMPLED_IMAGE = (1 << 6),
1818 /** Storage image handles */
1819 ANV_DESCRIPTOR_STORAGE_IMAGE = (1 << 7),
1820 /** Storage image handles */
1821 ANV_DESCRIPTOR_TEXTURE_SWIZZLE = (1 << 8),
1822 };
1823
1824 struct anv_descriptor_set_binding_layout {
1825 #ifndef NDEBUG
1826 /* The type of the descriptors in this binding */
1827 VkDescriptorType type;
1828 #endif
1829
1830 /* Flags provided when this binding was created */
1831 VkDescriptorBindingFlagsEXT flags;
1832
1833 /* Bitfield representing the type of data this descriptor contains */
1834 enum anv_descriptor_data data;
1835
1836 /* Maximum number of YCbCr texture/sampler planes */
1837 uint8_t max_plane_count;
1838
1839 /* Number of array elements in this binding (or size in bytes for inline
1840 * uniform data)
1841 */
1842 uint16_t array_size;
1843
1844 /* Index into the flattend descriptor set */
1845 uint16_t descriptor_index;
1846
1847 /* Index into the dynamic state array for a dynamic buffer */
1848 int16_t dynamic_offset_index;
1849
1850 /* Index into the descriptor set buffer views */
1851 int16_t buffer_view_index;
1852
1853 /* Offset into the descriptor buffer where this descriptor lives */
1854 uint32_t descriptor_offset;
1855
1856 /* Immutable samplers (or NULL if no immutable samplers) */
1857 struct anv_sampler **immutable_samplers;
1858 };
1859
1860 unsigned anv_descriptor_size(const struct anv_descriptor_set_binding_layout *layout);
1861
1862 unsigned anv_descriptor_type_size(const struct anv_physical_device *pdevice,
1863 VkDescriptorType type);
1864
1865 bool anv_descriptor_supports_bindless(const struct anv_physical_device *pdevice,
1866 const struct anv_descriptor_set_binding_layout *binding,
1867 bool sampler);
1868
1869 bool anv_descriptor_requires_bindless(const struct anv_physical_device *pdevice,
1870 const struct anv_descriptor_set_binding_layout *binding,
1871 bool sampler);
1872
1873 struct anv_descriptor_set_layout {
1874 /* Descriptor set layouts can be destroyed at almost any time */
1875 uint32_t ref_cnt;
1876
1877 /* Number of bindings in this descriptor set */
1878 uint16_t binding_count;
1879
1880 /* Total size of the descriptor set with room for all array entries */
1881 uint16_t size;
1882
1883 /* Shader stages affected by this descriptor set */
1884 uint16_t shader_stages;
1885
1886 /* Number of buffer views in this descriptor set */
1887 uint16_t buffer_view_count;
1888
1889 /* Number of dynamic offsets used by this descriptor set */
1890 uint16_t dynamic_offset_count;
1891
1892 /* For each shader stage, which offsets apply to that stage */
1893 uint16_t stage_dynamic_offsets[MESA_SHADER_STAGES];
1894
1895 /* Size of the descriptor buffer for this descriptor set */
1896 uint32_t descriptor_buffer_size;
1897
1898 /* Bindings in this descriptor set */
1899 struct anv_descriptor_set_binding_layout binding[0];
1900 };
1901
1902 static inline void
1903 anv_descriptor_set_layout_ref(struct anv_descriptor_set_layout *layout)
1904 {
1905 assert(layout && layout->ref_cnt >= 1);
1906 p_atomic_inc(&layout->ref_cnt);
1907 }
1908
1909 static inline void
1910 anv_descriptor_set_layout_unref(struct anv_device *device,
1911 struct anv_descriptor_set_layout *layout)
1912 {
1913 assert(layout && layout->ref_cnt >= 1);
1914 if (p_atomic_dec_zero(&layout->ref_cnt))
1915 vk_free(&device->alloc, layout);
1916 }
1917
1918 struct anv_descriptor {
1919 VkDescriptorType type;
1920
1921 union {
1922 struct {
1923 VkImageLayout layout;
1924 struct anv_image_view *image_view;
1925 struct anv_sampler *sampler;
1926 };
1927
1928 struct {
1929 struct anv_buffer *buffer;
1930 uint64_t offset;
1931 uint64_t range;
1932 };
1933
1934 struct anv_buffer_view *buffer_view;
1935 };
1936 };
1937
1938 struct anv_descriptor_set {
1939 struct anv_descriptor_pool *pool;
1940 struct anv_descriptor_set_layout *layout;
1941 uint32_t size;
1942
1943 /* State relative to anv_descriptor_pool::bo */
1944 struct anv_state desc_mem;
1945 /* Surface state for the descriptor buffer */
1946 struct anv_state desc_surface_state;
1947
1948 uint32_t buffer_view_count;
1949 struct anv_buffer_view *buffer_views;
1950
1951 /* Link to descriptor pool's desc_sets list . */
1952 struct list_head pool_link;
1953
1954 struct anv_descriptor descriptors[0];
1955 };
1956
1957 struct anv_buffer_view {
1958 enum isl_format format; /**< VkBufferViewCreateInfo::format */
1959 uint64_t range; /**< VkBufferViewCreateInfo::range */
1960
1961 struct anv_address address;
1962
1963 struct anv_state surface_state;
1964 struct anv_state storage_surface_state;
1965 struct anv_state writeonly_storage_surface_state;
1966
1967 struct brw_image_param storage_image_param;
1968 };
1969
1970 struct anv_push_descriptor_set {
1971 struct anv_descriptor_set set;
1972
1973 /* Put this field right behind anv_descriptor_set so it fills up the
1974 * descriptors[0] field. */
1975 struct anv_descriptor descriptors[MAX_PUSH_DESCRIPTORS];
1976
1977 /** True if the descriptor set buffer has been referenced by a draw or
1978 * dispatch command.
1979 */
1980 bool set_used_on_gpu;
1981
1982 struct anv_buffer_view buffer_views[MAX_PUSH_DESCRIPTORS];
1983 };
1984
1985 struct anv_descriptor_pool {
1986 uint32_t size;
1987 uint32_t next;
1988 uint32_t free_list;
1989
1990 struct anv_bo *bo;
1991 struct util_vma_heap bo_heap;
1992
1993 struct anv_state_stream surface_state_stream;
1994 void *surface_state_free_list;
1995
1996 struct list_head desc_sets;
1997
1998 char data[0];
1999 };
2000
2001 enum anv_descriptor_template_entry_type {
2002 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_IMAGE,
2003 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER,
2004 ANV_DESCRIPTOR_TEMPLATE_ENTRY_TYPE_BUFFER_VIEW
2005 };
2006
2007 struct anv_descriptor_template_entry {
2008 /* The type of descriptor in this entry */
2009 VkDescriptorType type;
2010
2011 /* Binding in the descriptor set */
2012 uint32_t binding;
2013
2014 /* Offset at which to write into the descriptor set binding */
2015 uint32_t array_element;
2016
2017 /* Number of elements to write into the descriptor set binding */
2018 uint32_t array_count;
2019
2020 /* Offset into the user provided data */
2021 size_t offset;
2022
2023 /* Stride between elements into the user provided data */
2024 size_t stride;
2025 };
2026
2027 struct anv_descriptor_update_template {
2028 VkPipelineBindPoint bind_point;
2029
2030 /* The descriptor set this template corresponds to. This value is only
2031 * valid if the template was created with the templateType
2032 * VK_DESCRIPTOR_UPDATE_TEMPLATE_TYPE_DESCRIPTOR_SET.
2033 */
2034 uint8_t set;
2035
2036 /* Number of entries in this template */
2037 uint32_t entry_count;
2038
2039 /* Entries of the template */
2040 struct anv_descriptor_template_entry entries[0];
2041 };
2042
2043 size_t
2044 anv_descriptor_set_layout_size(const struct anv_descriptor_set_layout *layout);
2045
2046 void
2047 anv_descriptor_set_write_image_view(struct anv_device *device,
2048 struct anv_descriptor_set *set,
2049 const VkDescriptorImageInfo * const info,
2050 VkDescriptorType type,
2051 uint32_t binding,
2052 uint32_t element);
2053
2054 void
2055 anv_descriptor_set_write_buffer_view(struct anv_device *device,
2056 struct anv_descriptor_set *set,
2057 VkDescriptorType type,
2058 struct anv_buffer_view *buffer_view,
2059 uint32_t binding,
2060 uint32_t element);
2061
2062 void
2063 anv_descriptor_set_write_buffer(struct anv_device *device,
2064 struct anv_descriptor_set *set,
2065 struct anv_state_stream *alloc_stream,
2066 VkDescriptorType type,
2067 struct anv_buffer *buffer,
2068 uint32_t binding,
2069 uint32_t element,
2070 VkDeviceSize offset,
2071 VkDeviceSize range);
2072 void
2073 anv_descriptor_set_write_inline_uniform_data(struct anv_device *device,
2074 struct anv_descriptor_set *set,
2075 uint32_t binding,
2076 const void *data,
2077 size_t offset,
2078 size_t size);
2079
2080 void
2081 anv_descriptor_set_write_template(struct anv_device *device,
2082 struct anv_descriptor_set *set,
2083 struct anv_state_stream *alloc_stream,
2084 const struct anv_descriptor_update_template *template,
2085 const void *data);
2086
2087 VkResult
2088 anv_descriptor_set_create(struct anv_device *device,
2089 struct anv_descriptor_pool *pool,
2090 struct anv_descriptor_set_layout *layout,
2091 struct anv_descriptor_set **out_set);
2092
2093 void
2094 anv_descriptor_set_destroy(struct anv_device *device,
2095 struct anv_descriptor_pool *pool,
2096 struct anv_descriptor_set *set);
2097
2098 #define ANV_DESCRIPTOR_SET_NULL (UINT8_MAX - 5)
2099 #define ANV_DESCRIPTOR_SET_PUSH_CONSTANTS (UINT8_MAX - 4)
2100 #define ANV_DESCRIPTOR_SET_DESCRIPTORS (UINT8_MAX - 3)
2101 #define ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS (UINT8_MAX - 2)
2102 #define ANV_DESCRIPTOR_SET_SHADER_CONSTANTS (UINT8_MAX - 1)
2103 #define ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS UINT8_MAX
2104
2105 struct anv_pipeline_binding {
2106 /** Index in the descriptor set
2107 *
2108 * This is a flattened index; the descriptor set layout is already taken
2109 * into account.
2110 */
2111 uint32_t index;
2112
2113 /** The descriptor set this surface corresponds to.
2114 *
2115 * The special ANV_DESCRIPTOR_SET_* values above indicates that this
2116 * binding is not a normal descriptor set but something else.
2117 */
2118 uint8_t set;
2119
2120 union {
2121 /** Plane in the binding index for images */
2122 uint8_t plane;
2123
2124 /** Input attachment index (relative to the subpass) */
2125 uint8_t input_attachment_index;
2126
2127 /** Dynamic offset index (for dynamic UBOs and SSBOs) */
2128 uint8_t dynamic_offset_index;
2129 };
2130
2131 /** For a storage image, whether it is write-only */
2132 uint8_t write_only;
2133
2134 /** Pad to 64 bits so that there are no holes and we can safely memcmp
2135 * assuming POD zero-initialization.
2136 */
2137 uint8_t pad;
2138 };
2139
2140 struct anv_push_range {
2141 /** Index in the descriptor set */
2142 uint32_t index;
2143
2144 /** Descriptor set index */
2145 uint8_t set;
2146
2147 /** Dynamic offset index (for dynamic UBOs) */
2148 uint8_t dynamic_offset_index;
2149
2150 /** Start offset in units of 32B */
2151 uint8_t start;
2152
2153 /** Range in units of 32B */
2154 uint8_t length;
2155 };
2156
2157 struct anv_pipeline_layout {
2158 struct {
2159 struct anv_descriptor_set_layout *layout;
2160 uint32_t dynamic_offset_start;
2161 } set[MAX_SETS];
2162
2163 uint32_t num_sets;
2164
2165 unsigned char sha1[20];
2166 };
2167
2168 struct anv_buffer {
2169 struct anv_device * device;
2170 VkDeviceSize size;
2171
2172 VkBufferUsageFlags usage;
2173
2174 /* Set when bound */
2175 struct anv_address address;
2176 };
2177
2178 static inline uint64_t
2179 anv_buffer_get_range(struct anv_buffer *buffer, uint64_t offset, uint64_t range)
2180 {
2181 assert(offset <= buffer->size);
2182 if (range == VK_WHOLE_SIZE) {
2183 return buffer->size - offset;
2184 } else {
2185 assert(range + offset >= range);
2186 assert(range + offset <= buffer->size);
2187 return range;
2188 }
2189 }
2190
2191 enum anv_cmd_dirty_bits {
2192 ANV_CMD_DIRTY_DYNAMIC_VIEWPORT = 1 << 0, /* VK_DYNAMIC_STATE_VIEWPORT */
2193 ANV_CMD_DIRTY_DYNAMIC_SCISSOR = 1 << 1, /* VK_DYNAMIC_STATE_SCISSOR */
2194 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH = 1 << 2, /* VK_DYNAMIC_STATE_LINE_WIDTH */
2195 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS = 1 << 3, /* VK_DYNAMIC_STATE_DEPTH_BIAS */
2196 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS = 1 << 4, /* VK_DYNAMIC_STATE_BLEND_CONSTANTS */
2197 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS = 1 << 5, /* VK_DYNAMIC_STATE_DEPTH_BOUNDS */
2198 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK = 1 << 6, /* VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK */
2199 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK = 1 << 7, /* VK_DYNAMIC_STATE_STENCIL_WRITE_MASK */
2200 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE = 1 << 8, /* VK_DYNAMIC_STATE_STENCIL_REFERENCE */
2201 ANV_CMD_DIRTY_PIPELINE = 1 << 9,
2202 ANV_CMD_DIRTY_INDEX_BUFFER = 1 << 10,
2203 ANV_CMD_DIRTY_RENDER_TARGETS = 1 << 11,
2204 ANV_CMD_DIRTY_XFB_ENABLE = 1 << 12,
2205 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE = 1 << 13, /* VK_DYNAMIC_STATE_LINE_STIPPLE_EXT */
2206 };
2207 typedef uint32_t anv_cmd_dirty_mask_t;
2208
2209 #define ANV_CMD_DIRTY_DYNAMIC_ALL \
2210 (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT | \
2211 ANV_CMD_DIRTY_DYNAMIC_SCISSOR | \
2212 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH | \
2213 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS | \
2214 ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS | \
2215 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS | \
2216 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK | \
2217 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK | \
2218 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE | \
2219 ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE)
2220
2221 static inline enum anv_cmd_dirty_bits
2222 anv_cmd_dirty_bit_for_vk_dynamic_state(VkDynamicState vk_state)
2223 {
2224 switch (vk_state) {
2225 case VK_DYNAMIC_STATE_VIEWPORT:
2226 return ANV_CMD_DIRTY_DYNAMIC_VIEWPORT;
2227 case VK_DYNAMIC_STATE_SCISSOR:
2228 return ANV_CMD_DIRTY_DYNAMIC_SCISSOR;
2229 case VK_DYNAMIC_STATE_LINE_WIDTH:
2230 return ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH;
2231 case VK_DYNAMIC_STATE_DEPTH_BIAS:
2232 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS;
2233 case VK_DYNAMIC_STATE_BLEND_CONSTANTS:
2234 return ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS;
2235 case VK_DYNAMIC_STATE_DEPTH_BOUNDS:
2236 return ANV_CMD_DIRTY_DYNAMIC_DEPTH_BOUNDS;
2237 case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK:
2238 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK;
2239 case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK:
2240 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK;
2241 case VK_DYNAMIC_STATE_STENCIL_REFERENCE:
2242 return ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE;
2243 case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT:
2244 return ANV_CMD_DIRTY_DYNAMIC_LINE_STIPPLE;
2245 default:
2246 assert(!"Unsupported dynamic state");
2247 return 0;
2248 }
2249 }
2250
2251
2252 enum anv_pipe_bits {
2253 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT = (1 << 0),
2254 ANV_PIPE_STALL_AT_SCOREBOARD_BIT = (1 << 1),
2255 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT = (1 << 2),
2256 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT = (1 << 3),
2257 ANV_PIPE_VF_CACHE_INVALIDATE_BIT = (1 << 4),
2258 ANV_PIPE_DATA_CACHE_FLUSH_BIT = (1 << 5),
2259 ANV_PIPE_TILE_CACHE_FLUSH_BIT = (1 << 6),
2260 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT = (1 << 10),
2261 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT = (1 << 11),
2262 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT = (1 << 12),
2263 ANV_PIPE_DEPTH_STALL_BIT = (1 << 13),
2264 ANV_PIPE_CS_STALL_BIT = (1 << 20),
2265 ANV_PIPE_END_OF_PIPE_SYNC_BIT = (1 << 21),
2266
2267 /* This bit does not exist directly in PIPE_CONTROL. Instead it means that
2268 * a flush has happened but not a CS stall. The next time we do any sort
2269 * of invalidation we need to insert a CS stall at that time. Otherwise,
2270 * we would have to CS stall on every flush which could be bad.
2271 */
2272 ANV_PIPE_NEEDS_END_OF_PIPE_SYNC_BIT = (1 << 22),
2273
2274 /* This bit does not exist directly in PIPE_CONTROL. It means that render
2275 * target operations related to transfer commands with VkBuffer as
2276 * destination are ongoing. Some operations like copies on the command
2277 * streamer might need to be aware of this to trigger the appropriate stall
2278 * before they can proceed with the copy.
2279 */
2280 ANV_PIPE_RENDER_TARGET_BUFFER_WRITES = (1 << 23),
2281
2282 /* This bit does not exist directly in PIPE_CONTROL. It means that Gen12
2283 * AUX-TT data has changed and we need to invalidate AUX-TT data. This is
2284 * done by writing the AUX-TT register.
2285 */
2286 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT = (1 << 24),
2287
2288 /* This bit does not exist directly in PIPE_CONTROL. It means that a
2289 * PIPE_CONTROL with a post-sync operation will follow. This is used to
2290 * implement a workaround for Gen9.
2291 */
2292 ANV_PIPE_POST_SYNC_BIT = (1 << 25),
2293 };
2294
2295 #define ANV_PIPE_FLUSH_BITS ( \
2296 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT | \
2297 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2298 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | \
2299 ANV_PIPE_TILE_CACHE_FLUSH_BIT)
2300
2301 #define ANV_PIPE_STALL_BITS ( \
2302 ANV_PIPE_STALL_AT_SCOREBOARD_BIT | \
2303 ANV_PIPE_DEPTH_STALL_BIT | \
2304 ANV_PIPE_CS_STALL_BIT)
2305
2306 #define ANV_PIPE_INVALIDATE_BITS ( \
2307 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT | \
2308 ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT | \
2309 ANV_PIPE_VF_CACHE_INVALIDATE_BIT | \
2310 ANV_PIPE_DATA_CACHE_FLUSH_BIT | \
2311 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT | \
2312 ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT | \
2313 ANV_PIPE_AUX_TABLE_INVALIDATE_BIT)
2314
2315 static inline enum anv_pipe_bits
2316 anv_pipe_flush_bits_for_access_flags(VkAccessFlags flags)
2317 {
2318 enum anv_pipe_bits pipe_bits = 0;
2319
2320 unsigned b;
2321 for_each_bit(b, flags) {
2322 switch ((VkAccessFlagBits)(1 << b)) {
2323 case VK_ACCESS_SHADER_WRITE_BIT:
2324 /* We're transitioning a buffer that was previously used as write
2325 * destination through the data port. To make its content available
2326 * to future operations, flush the data cache.
2327 */
2328 pipe_bits |= ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2329 break;
2330 case VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT:
2331 /* We're transitioning a buffer that was previously used as render
2332 * target. To make its content available to future operations, flush
2333 * the render target cache.
2334 */
2335 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2336 break;
2337 case VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT:
2338 /* We're transitioning a buffer that was previously used as depth
2339 * buffer. To make its content available to future operations, flush
2340 * the depth cache.
2341 */
2342 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2343 break;
2344 case VK_ACCESS_TRANSFER_WRITE_BIT:
2345 /* We're transitioning a buffer that was previously used as a
2346 * transfer write destination. Generic write operations include color
2347 * & depth operations as well as buffer operations like :
2348 * - vkCmdClearColorImage()
2349 * - vkCmdClearDepthStencilImage()
2350 * - vkCmdBlitImage()
2351 * - vkCmdCopy*(), vkCmdUpdate*(), vkCmdFill*()
2352 *
2353 * Most of these operations are implemented using Blorp which writes
2354 * through the render target, so flush that cache to make it visible
2355 * to future operations. And for depth related operations we also
2356 * need to flush the depth cache.
2357 */
2358 pipe_bits |= ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2359 pipe_bits |= ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2360 break;
2361 case VK_ACCESS_MEMORY_WRITE_BIT:
2362 /* We're transitioning a buffer for generic write operations. Flush
2363 * all the caches.
2364 */
2365 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2366 break;
2367 default:
2368 break; /* Nothing to do */
2369 }
2370 }
2371
2372 return pipe_bits;
2373 }
2374
2375 static inline enum anv_pipe_bits
2376 anv_pipe_invalidate_bits_for_access_flags(VkAccessFlags flags)
2377 {
2378 enum anv_pipe_bits pipe_bits = 0;
2379
2380 unsigned b;
2381 for_each_bit(b, flags) {
2382 switch ((VkAccessFlagBits)(1 << b)) {
2383 case VK_ACCESS_INDIRECT_COMMAND_READ_BIT:
2384 /* Indirect draw commands take a buffer as input that we're going to
2385 * read from the command streamer to load some of the HW registers
2386 * (see genX_cmd_buffer.c:load_indirect_parameters). This requires a
2387 * command streamer stall so that all the cache flushes have
2388 * completed before the command streamer loads from memory.
2389 */
2390 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2391 /* Indirect draw commands also set gl_BaseVertex & gl_BaseIndex
2392 * through a vertex buffer, so invalidate that cache.
2393 */
2394 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2395 /* For CmdDipatchIndirect, we also load gl_NumWorkGroups through a
2396 * UBO from the buffer, so we need to invalidate constant cache.
2397 */
2398 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2399 break;
2400 case VK_ACCESS_INDEX_READ_BIT:
2401 case VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT:
2402 /* We transitioning a buffer to be used for as input for vkCmdDraw*
2403 * commands, so we invalidate the VF cache to make sure there is no
2404 * stale data when we start rendering.
2405 */
2406 pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2407 break;
2408 case VK_ACCESS_UNIFORM_READ_BIT:
2409 /* We transitioning a buffer to be used as uniform data. Because
2410 * uniform is accessed through the data port & sampler, we need to
2411 * invalidate the texture cache (sampler) & constant cache (data
2412 * port) to avoid stale data.
2413 */
2414 pipe_bits |= ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2415 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2416 break;
2417 case VK_ACCESS_SHADER_READ_BIT:
2418 case VK_ACCESS_INPUT_ATTACHMENT_READ_BIT:
2419 case VK_ACCESS_TRANSFER_READ_BIT:
2420 /* Transitioning a buffer to be read through the sampler, so
2421 * invalidate the texture cache, we don't want any stale data.
2422 */
2423 pipe_bits |= ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2424 break;
2425 case VK_ACCESS_MEMORY_READ_BIT:
2426 /* Transitioning a buffer for generic read, invalidate all the
2427 * caches.
2428 */
2429 pipe_bits |= ANV_PIPE_INVALIDATE_BITS;
2430 break;
2431 case VK_ACCESS_MEMORY_WRITE_BIT:
2432 /* Generic write, make sure all previously written things land in
2433 * memory.
2434 */
2435 pipe_bits |= ANV_PIPE_FLUSH_BITS;
2436 break;
2437 case VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT:
2438 /* Transitioning a buffer for conditional rendering. We'll load the
2439 * content of this buffer into HW registers using the command
2440 * streamer, so we need to stall the command streamer to make sure
2441 * any in-flight flush operations have completed.
2442 */
2443 pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2444 break;
2445 default:
2446 break; /* Nothing to do */
2447 }
2448 }
2449
2450 return pipe_bits;
2451 }
2452
2453 #define VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV ( \
2454 VK_IMAGE_ASPECT_COLOR_BIT | \
2455 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2456 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2457 VK_IMAGE_ASPECT_PLANE_2_BIT)
2458 #define VK_IMAGE_ASPECT_PLANES_BITS_ANV ( \
2459 VK_IMAGE_ASPECT_PLANE_0_BIT | \
2460 VK_IMAGE_ASPECT_PLANE_1_BIT | \
2461 VK_IMAGE_ASPECT_PLANE_2_BIT)
2462
2463 struct anv_vertex_binding {
2464 struct anv_buffer * buffer;
2465 VkDeviceSize offset;
2466 };
2467
2468 struct anv_xfb_binding {
2469 struct anv_buffer * buffer;
2470 VkDeviceSize offset;
2471 VkDeviceSize size;
2472 };
2473
2474 struct anv_push_constants {
2475 /** Push constant data provided by the client through vkPushConstants */
2476 uint8_t client_data[MAX_PUSH_CONSTANTS_SIZE];
2477
2478 /** Dynamic offsets for dynamic UBOs and SSBOs */
2479 uint32_t dynamic_offsets[MAX_DYNAMIC_BUFFERS];
2480
2481 uint64_t push_reg_mask;
2482
2483 /** Pad out to a multiple of 32 bytes */
2484 uint32_t pad[2];
2485
2486 struct {
2487 /** Base workgroup ID
2488 *
2489 * Used for vkCmdDispatchBase.
2490 */
2491 uint32_t base_work_group_id[3];
2492
2493 /** Subgroup ID
2494 *
2495 * This is never set by software but is implicitly filled out when
2496 * uploading the push constants for compute shaders.
2497 */
2498 uint32_t subgroup_id;
2499 } cs;
2500 };
2501
2502 struct anv_dynamic_state {
2503 struct {
2504 uint32_t count;
2505 VkViewport viewports[MAX_VIEWPORTS];
2506 } viewport;
2507
2508 struct {
2509 uint32_t count;
2510 VkRect2D scissors[MAX_SCISSORS];
2511 } scissor;
2512
2513 float line_width;
2514
2515 struct {
2516 float bias;
2517 float clamp;
2518 float slope;
2519 } depth_bias;
2520
2521 float blend_constants[4];
2522
2523 struct {
2524 float min;
2525 float max;
2526 } depth_bounds;
2527
2528 struct {
2529 uint32_t front;
2530 uint32_t back;
2531 } stencil_compare_mask;
2532
2533 struct {
2534 uint32_t front;
2535 uint32_t back;
2536 } stencil_write_mask;
2537
2538 struct {
2539 uint32_t front;
2540 uint32_t back;
2541 } stencil_reference;
2542
2543 struct {
2544 uint32_t factor;
2545 uint16_t pattern;
2546 } line_stipple;
2547 };
2548
2549 extern const struct anv_dynamic_state default_dynamic_state;
2550
2551 uint32_t anv_dynamic_state_copy(struct anv_dynamic_state *dest,
2552 const struct anv_dynamic_state *src,
2553 uint32_t copy_mask);
2554
2555 struct anv_surface_state {
2556 struct anv_state state;
2557 /** Address of the surface referred to by this state
2558 *
2559 * This address is relative to the start of the BO.
2560 */
2561 struct anv_address address;
2562 /* Address of the aux surface, if any
2563 *
2564 * This field is ANV_NULL_ADDRESS if and only if no aux surface exists.
2565 *
2566 * With the exception of gen8, the bottom 12 bits of this address' offset
2567 * include extra aux information.
2568 */
2569 struct anv_address aux_address;
2570 /* Address of the clear color, if any
2571 *
2572 * This address is relative to the start of the BO.
2573 */
2574 struct anv_address clear_address;
2575 };
2576
2577 /**
2578 * Attachment state when recording a renderpass instance.
2579 *
2580 * The clear value is valid only if there exists a pending clear.
2581 */
2582 struct anv_attachment_state {
2583 enum isl_aux_usage aux_usage;
2584 struct anv_surface_state color;
2585 struct anv_surface_state input;
2586
2587 VkImageLayout current_layout;
2588 VkImageLayout current_stencil_layout;
2589 VkImageAspectFlags pending_clear_aspects;
2590 VkImageAspectFlags pending_load_aspects;
2591 bool fast_clear;
2592 VkClearValue clear_value;
2593
2594 /* When multiview is active, attachments with a renderpass clear
2595 * operation have their respective layers cleared on the first
2596 * subpass that uses them, and only in that subpass. We keep track
2597 * of this using a bitfield to indicate which layers of an attachment
2598 * have not been cleared yet when multiview is active.
2599 */
2600 uint32_t pending_clear_views;
2601 struct anv_image_view * image_view;
2602 };
2603
2604 /** State tracking for vertex buffer flushes
2605 *
2606 * On Gen8-9, the VF cache only considers the bottom 32 bits of memory
2607 * addresses. If you happen to have two vertex buffers which get placed
2608 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
2609 * collisions. In order to solve this problem, we track vertex address ranges
2610 * which are live in the cache and invalidate the cache if one ever exceeds 32
2611 * bits.
2612 */
2613 struct anv_vb_cache_range {
2614 /* Virtual address at which the live vertex buffer cache range starts for
2615 * this vertex buffer index.
2616 */
2617 uint64_t start;
2618
2619 /* Virtual address of the byte after where vertex buffer cache range ends.
2620 * This is exclusive such that end - start is the size of the range.
2621 */
2622 uint64_t end;
2623 };
2624
2625 /** State tracking for particular pipeline bind point
2626 *
2627 * This struct is the base struct for anv_cmd_graphics_state and
2628 * anv_cmd_compute_state. These are used to track state which is bound to a
2629 * particular type of pipeline. Generic state that applies per-stage such as
2630 * binding table offsets and push constants is tracked generically with a
2631 * per-stage array in anv_cmd_state.
2632 */
2633 struct anv_cmd_pipeline_state {
2634 struct anv_descriptor_set *descriptors[MAX_SETS];
2635 struct anv_push_descriptor_set *push_descriptors[MAX_SETS];
2636 };
2637
2638 /** State tracking for graphics pipeline
2639 *
2640 * This has anv_cmd_pipeline_state as a base struct to track things which get
2641 * bound to a graphics pipeline. Along with general pipeline bind point state
2642 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2643 * state which is graphics-specific.
2644 */
2645 struct anv_cmd_graphics_state {
2646 struct anv_cmd_pipeline_state base;
2647
2648 struct anv_graphics_pipeline *pipeline;
2649
2650 anv_cmd_dirty_mask_t dirty;
2651 uint32_t vb_dirty;
2652
2653 struct anv_vb_cache_range ib_bound_range;
2654 struct anv_vb_cache_range ib_dirty_range;
2655 struct anv_vb_cache_range vb_bound_ranges[33];
2656 struct anv_vb_cache_range vb_dirty_ranges[33];
2657
2658 struct anv_dynamic_state dynamic;
2659
2660 struct {
2661 struct anv_buffer *index_buffer;
2662 uint32_t index_type; /**< 3DSTATE_INDEX_BUFFER.IndexFormat */
2663 uint32_t index_offset;
2664 } gen7;
2665 };
2666
2667 /** State tracking for compute pipeline
2668 *
2669 * This has anv_cmd_pipeline_state as a base struct to track things which get
2670 * bound to a compute pipeline. Along with general pipeline bind point state
2671 * which is in the anv_cmd_pipeline_state base struct, it also contains other
2672 * state which is compute-specific.
2673 */
2674 struct anv_cmd_compute_state {
2675 struct anv_cmd_pipeline_state base;
2676
2677 struct anv_compute_pipeline *pipeline;
2678
2679 bool pipeline_dirty;
2680
2681 struct anv_address num_workgroups;
2682 };
2683
2684 /** State required while building cmd buffer */
2685 struct anv_cmd_state {
2686 /* PIPELINE_SELECT.PipelineSelection */
2687 uint32_t current_pipeline;
2688 const struct gen_l3_config * current_l3_config;
2689 uint32_t last_aux_map_state;
2690
2691 struct anv_cmd_graphics_state gfx;
2692 struct anv_cmd_compute_state compute;
2693
2694 enum anv_pipe_bits pending_pipe_bits;
2695 VkShaderStageFlags descriptors_dirty;
2696 VkShaderStageFlags push_constants_dirty;
2697
2698 struct anv_framebuffer * framebuffer;
2699 struct anv_render_pass * pass;
2700 struct anv_subpass * subpass;
2701 VkRect2D render_area;
2702 uint32_t restart_index;
2703 struct anv_vertex_binding vertex_bindings[MAX_VBS];
2704 bool xfb_enabled;
2705 struct anv_xfb_binding xfb_bindings[MAX_XFB_BUFFERS];
2706 VkShaderStageFlags push_constant_stages;
2707 struct anv_push_constants push_constants[MESA_SHADER_STAGES];
2708 struct anv_state binding_tables[MESA_SHADER_STAGES];
2709 struct anv_state samplers[MESA_SHADER_STAGES];
2710
2711 unsigned char sampler_sha1s[MESA_SHADER_STAGES][20];
2712 unsigned char surface_sha1s[MESA_SHADER_STAGES][20];
2713 unsigned char push_sha1s[MESA_SHADER_STAGES][20];
2714
2715 /**
2716 * Whether or not the gen8 PMA fix is enabled. We ensure that, at the top
2717 * of any command buffer it is disabled by disabling it in EndCommandBuffer
2718 * and before invoking the secondary in ExecuteCommands.
2719 */
2720 bool pma_fix_enabled;
2721
2722 /**
2723 * Whether or not we know for certain that HiZ is enabled for the current
2724 * subpass. If, for whatever reason, we are unsure as to whether HiZ is
2725 * enabled or not, this will be false.
2726 */
2727 bool hiz_enabled;
2728
2729 bool conditional_render_enabled;
2730
2731 /**
2732 * Last rendering scale argument provided to
2733 * genX(cmd_buffer_emit_hashing_mode)().
2734 */
2735 unsigned current_hash_scale;
2736
2737 /**
2738 * Array length is anv_cmd_state::pass::attachment_count. Array content is
2739 * valid only when recording a render pass instance.
2740 */
2741 struct anv_attachment_state * attachments;
2742
2743 /**
2744 * Surface states for color render targets. These are stored in a single
2745 * flat array. For depth-stencil attachments, the surface state is simply
2746 * left blank.
2747 */
2748 struct anv_state attachment_states;
2749
2750 /**
2751 * A null surface state of the right size to match the framebuffer. This
2752 * is one of the states in attachment_states.
2753 */
2754 struct anv_state null_surface_state;
2755 };
2756
2757 struct anv_cmd_pool {
2758 VkAllocationCallbacks alloc;
2759 struct list_head cmd_buffers;
2760 };
2761
2762 #define ANV_CMD_BUFFER_BATCH_SIZE 8192
2763
2764 enum anv_cmd_buffer_exec_mode {
2765 ANV_CMD_BUFFER_EXEC_MODE_PRIMARY,
2766 ANV_CMD_BUFFER_EXEC_MODE_EMIT,
2767 ANV_CMD_BUFFER_EXEC_MODE_GROW_AND_EMIT,
2768 ANV_CMD_BUFFER_EXEC_MODE_CHAIN,
2769 ANV_CMD_BUFFER_EXEC_MODE_COPY_AND_CHAIN,
2770 };
2771
2772 struct anv_cmd_buffer {
2773 VK_LOADER_DATA _loader_data;
2774
2775 struct anv_device * device;
2776
2777 struct anv_cmd_pool * pool;
2778 struct list_head pool_link;
2779
2780 struct anv_batch batch;
2781
2782 /* Fields required for the actual chain of anv_batch_bo's.
2783 *
2784 * These fields are initialized by anv_cmd_buffer_init_batch_bo_chain().
2785 */
2786 struct list_head batch_bos;
2787 enum anv_cmd_buffer_exec_mode exec_mode;
2788
2789 /* A vector of anv_batch_bo pointers for every batch or surface buffer
2790 * referenced by this command buffer
2791 *
2792 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2793 */
2794 struct u_vector seen_bbos;
2795
2796 /* A vector of int32_t's for every block of binding tables.
2797 *
2798 * initialized by anv_cmd_buffer_init_batch_bo_chain()
2799 */
2800 struct u_vector bt_block_states;
2801 struct anv_state bt_next;
2802
2803 struct anv_reloc_list surface_relocs;
2804 /** Last seen surface state block pool center bo offset */
2805 uint32_t last_ss_pool_center;
2806
2807 /* Serial for tracking buffer completion */
2808 uint32_t serial;
2809
2810 /* Stream objects for storing temporary data */
2811 struct anv_state_stream surface_state_stream;
2812 struct anv_state_stream dynamic_state_stream;
2813
2814 VkCommandBufferUsageFlags usage_flags;
2815 VkCommandBufferLevel level;
2816
2817 struct anv_cmd_state state;
2818
2819 /* Set by SetPerformanceMarkerINTEL, written into queries by CmdBeginQuery */
2820 uint64_t intel_perf_marker;
2821 };
2822
2823 VkResult anv_cmd_buffer_init_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2824 void anv_cmd_buffer_fini_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2825 void anv_cmd_buffer_reset_batch_bo_chain(struct anv_cmd_buffer *cmd_buffer);
2826 void anv_cmd_buffer_end_batch_buffer(struct anv_cmd_buffer *cmd_buffer);
2827 void anv_cmd_buffer_add_secondary(struct anv_cmd_buffer *primary,
2828 struct anv_cmd_buffer *secondary);
2829 void anv_cmd_buffer_prepare_execbuf(struct anv_cmd_buffer *cmd_buffer);
2830 VkResult anv_cmd_buffer_execbuf(struct anv_queue *queue,
2831 struct anv_cmd_buffer *cmd_buffer,
2832 const VkSemaphore *in_semaphores,
2833 const uint64_t *in_wait_values,
2834 uint32_t num_in_semaphores,
2835 const VkSemaphore *out_semaphores,
2836 const uint64_t *out_signal_values,
2837 uint32_t num_out_semaphores,
2838 VkFence fence);
2839
2840 VkResult anv_cmd_buffer_reset(struct anv_cmd_buffer *cmd_buffer);
2841
2842 struct anv_state anv_cmd_buffer_emit_dynamic(struct anv_cmd_buffer *cmd_buffer,
2843 const void *data, uint32_t size, uint32_t alignment);
2844 struct anv_state anv_cmd_buffer_merge_dynamic(struct anv_cmd_buffer *cmd_buffer,
2845 uint32_t *a, uint32_t *b,
2846 uint32_t dwords, uint32_t alignment);
2847
2848 struct anv_address
2849 anv_cmd_buffer_surface_base_address(struct anv_cmd_buffer *cmd_buffer);
2850 struct anv_state
2851 anv_cmd_buffer_alloc_binding_table(struct anv_cmd_buffer *cmd_buffer,
2852 uint32_t entries, uint32_t *state_offset);
2853 struct anv_state
2854 anv_cmd_buffer_alloc_surface_state(struct anv_cmd_buffer *cmd_buffer);
2855 struct anv_state
2856 anv_cmd_buffer_alloc_dynamic_state(struct anv_cmd_buffer *cmd_buffer,
2857 uint32_t size, uint32_t alignment);
2858
2859 VkResult
2860 anv_cmd_buffer_new_binding_table_block(struct anv_cmd_buffer *cmd_buffer);
2861
2862 void gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer);
2863 void gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
2864 bool depth_clamp_enable);
2865 void gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer);
2866
2867 void anv_cmd_buffer_setup_attachments(struct anv_cmd_buffer *cmd_buffer,
2868 struct anv_render_pass *pass,
2869 struct anv_framebuffer *framebuffer,
2870 const VkClearValue *clear_values);
2871
2872 void anv_cmd_buffer_emit_state_base_address(struct anv_cmd_buffer *cmd_buffer);
2873
2874 struct anv_state
2875 anv_cmd_buffer_push_constants(struct anv_cmd_buffer *cmd_buffer,
2876 gl_shader_stage stage);
2877 struct anv_state
2878 anv_cmd_buffer_cs_push_constants(struct anv_cmd_buffer *cmd_buffer);
2879
2880 const struct anv_image_view *
2881 anv_cmd_buffer_get_depth_stencil_view(const struct anv_cmd_buffer *cmd_buffer);
2882
2883 VkResult
2884 anv_cmd_buffer_alloc_blorp_binding_table(struct anv_cmd_buffer *cmd_buffer,
2885 uint32_t num_entries,
2886 uint32_t *state_offset,
2887 struct anv_state *bt_state);
2888
2889 void anv_cmd_buffer_dump(struct anv_cmd_buffer *cmd_buffer);
2890
2891 void anv_cmd_emit_conditional_render_predicate(struct anv_cmd_buffer *cmd_buffer);
2892
2893 enum anv_fence_type {
2894 ANV_FENCE_TYPE_NONE = 0,
2895 ANV_FENCE_TYPE_BO,
2896 ANV_FENCE_TYPE_WSI_BO,
2897 ANV_FENCE_TYPE_SYNCOBJ,
2898 ANV_FENCE_TYPE_WSI,
2899 };
2900
2901 enum anv_bo_fence_state {
2902 /** Indicates that this is a new (or newly reset fence) */
2903 ANV_BO_FENCE_STATE_RESET,
2904
2905 /** Indicates that this fence has been submitted to the GPU but is still
2906 * (as far as we know) in use by the GPU.
2907 */
2908 ANV_BO_FENCE_STATE_SUBMITTED,
2909
2910 ANV_BO_FENCE_STATE_SIGNALED,
2911 };
2912
2913 struct anv_fence_impl {
2914 enum anv_fence_type type;
2915
2916 union {
2917 /** Fence implementation for BO fences
2918 *
2919 * These fences use a BO and a set of CPU-tracked state flags. The BO
2920 * is added to the object list of the last execbuf call in a QueueSubmit
2921 * and is marked EXEC_WRITE. The state flags track when the BO has been
2922 * submitted to the kernel. We need to do this because Vulkan lets you
2923 * wait on a fence that has not yet been submitted and I915_GEM_BUSY
2924 * will say it's idle in this case.
2925 */
2926 struct {
2927 struct anv_bo *bo;
2928 enum anv_bo_fence_state state;
2929 } bo;
2930
2931 /** DRM syncobj handle for syncobj-based fences */
2932 uint32_t syncobj;
2933
2934 /** WSI fence */
2935 struct wsi_fence *fence_wsi;
2936 };
2937 };
2938
2939 struct anv_fence {
2940 /* Permanent fence state. Every fence has some form of permanent state
2941 * (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on (for
2942 * cross-process fences) or it could just be a dummy for use internally.
2943 */
2944 struct anv_fence_impl permanent;
2945
2946 /* Temporary fence state. A fence *may* have temporary state. That state
2947 * is added to the fence by an import operation and is reset back to
2948 * ANV_SEMAPHORE_TYPE_NONE when the fence is reset. A fence with temporary
2949 * state cannot be signaled because the fence must already be signaled
2950 * before the temporary state can be exported from the fence in the other
2951 * process and imported here.
2952 */
2953 struct anv_fence_impl temporary;
2954 };
2955
2956 void anv_fence_reset_temporary(struct anv_device *device,
2957 struct anv_fence *fence);
2958
2959 struct anv_event {
2960 uint64_t semaphore;
2961 struct anv_state state;
2962 };
2963
2964 enum anv_semaphore_type {
2965 ANV_SEMAPHORE_TYPE_NONE = 0,
2966 ANV_SEMAPHORE_TYPE_DUMMY,
2967 ANV_SEMAPHORE_TYPE_BO,
2968 ANV_SEMAPHORE_TYPE_WSI_BO,
2969 ANV_SEMAPHORE_TYPE_SYNC_FILE,
2970 ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ,
2971 ANV_SEMAPHORE_TYPE_TIMELINE,
2972 };
2973
2974 struct anv_timeline_point {
2975 struct list_head link;
2976
2977 uint64_t serial;
2978
2979 /* Number of waiter on this point, when > 0 the point should not be garbage
2980 * collected.
2981 */
2982 int waiting;
2983
2984 /* BO used for synchronization. */
2985 struct anv_bo *bo;
2986 };
2987
2988 struct anv_timeline {
2989 pthread_mutex_t mutex;
2990 pthread_cond_t cond;
2991
2992 uint64_t highest_past;
2993 uint64_t highest_pending;
2994
2995 struct list_head points;
2996 struct list_head free_points;
2997 };
2998
2999 struct anv_semaphore_impl {
3000 enum anv_semaphore_type type;
3001
3002 union {
3003 /* A BO representing this semaphore when type == ANV_SEMAPHORE_TYPE_BO
3004 * or type == ANV_SEMAPHORE_TYPE_WSI_BO. This BO will be added to the
3005 * object list on any execbuf2 calls for which this semaphore is used as
3006 * a wait or signal fence. When used as a signal fence or when type ==
3007 * ANV_SEMAPHORE_TYPE_WSI_BO, the EXEC_OBJECT_WRITE flag will be set.
3008 */
3009 struct anv_bo *bo;
3010
3011 /* The sync file descriptor when type == ANV_SEMAPHORE_TYPE_SYNC_FILE.
3012 * If the semaphore is in the unsignaled state due to either just being
3013 * created or because it has been used for a wait, fd will be -1.
3014 */
3015 int fd;
3016
3017 /* Sync object handle when type == ANV_SEMAPHORE_TYPE_DRM_SYNCOBJ.
3018 * Unlike GEM BOs, DRM sync objects aren't deduplicated by the kernel on
3019 * import so we don't need to bother with a userspace cache.
3020 */
3021 uint32_t syncobj;
3022
3023 /* Non shareable timeline semaphore
3024 *
3025 * Used when kernel don't have support for timeline semaphores.
3026 */
3027 struct anv_timeline timeline;
3028 };
3029 };
3030
3031 struct anv_semaphore {
3032 uint32_t refcount;
3033
3034 /* Permanent semaphore state. Every semaphore has some form of permanent
3035 * state (type != ANV_SEMAPHORE_TYPE_NONE). This may be a BO to fence on
3036 * (for cross-process semaphores0 or it could just be a dummy for use
3037 * internally.
3038 */
3039 struct anv_semaphore_impl permanent;
3040
3041 /* Temporary semaphore state. A semaphore *may* have temporary state.
3042 * That state is added to the semaphore by an import operation and is reset
3043 * back to ANV_SEMAPHORE_TYPE_NONE when the semaphore is waited on. A
3044 * semaphore with temporary state cannot be signaled because the semaphore
3045 * must already be signaled before the temporary state can be exported from
3046 * the semaphore in the other process and imported here.
3047 */
3048 struct anv_semaphore_impl temporary;
3049 };
3050
3051 void anv_semaphore_reset_temporary(struct anv_device *device,
3052 struct anv_semaphore *semaphore);
3053
3054 struct anv_shader_module {
3055 unsigned char sha1[20];
3056 uint32_t size;
3057 char data[0];
3058 };
3059
3060 static inline gl_shader_stage
3061 vk_to_mesa_shader_stage(VkShaderStageFlagBits vk_stage)
3062 {
3063 assert(__builtin_popcount(vk_stage) == 1);
3064 return ffs(vk_stage) - 1;
3065 }
3066
3067 static inline VkShaderStageFlagBits
3068 mesa_to_vk_shader_stage(gl_shader_stage mesa_stage)
3069 {
3070 return (1 << mesa_stage);
3071 }
3072
3073 #define ANV_STAGE_MASK ((1 << MESA_SHADER_STAGES) - 1)
3074
3075 #define anv_foreach_stage(stage, stage_bits) \
3076 for (gl_shader_stage stage, \
3077 __tmp = (gl_shader_stage)((stage_bits) & ANV_STAGE_MASK); \
3078 stage = __builtin_ffs(__tmp) - 1, __tmp; \
3079 __tmp &= ~(1 << (stage)))
3080
3081 struct anv_pipeline_bind_map {
3082 unsigned char surface_sha1[20];
3083 unsigned char sampler_sha1[20];
3084 unsigned char push_sha1[20];
3085
3086 uint32_t surface_count;
3087 uint32_t sampler_count;
3088
3089 struct anv_pipeline_binding * surface_to_descriptor;
3090 struct anv_pipeline_binding * sampler_to_descriptor;
3091
3092 struct anv_push_range push_ranges[4];
3093 };
3094
3095 struct anv_shader_bin_key {
3096 uint32_t size;
3097 uint8_t data[0];
3098 };
3099
3100 struct anv_shader_bin {
3101 uint32_t ref_cnt;
3102
3103 gl_shader_stage stage;
3104
3105 const struct anv_shader_bin_key *key;
3106
3107 struct anv_state kernel;
3108 uint32_t kernel_size;
3109
3110 struct anv_state constant_data;
3111 uint32_t constant_data_size;
3112
3113 const struct brw_stage_prog_data *prog_data;
3114 uint32_t prog_data_size;
3115
3116 struct brw_compile_stats stats[3];
3117 uint32_t num_stats;
3118
3119 struct nir_xfb_info *xfb_info;
3120
3121 struct anv_pipeline_bind_map bind_map;
3122 };
3123
3124 struct anv_shader_bin *
3125 anv_shader_bin_create(struct anv_device *device,
3126 gl_shader_stage stage,
3127 const void *key, uint32_t key_size,
3128 const void *kernel, uint32_t kernel_size,
3129 const void *constant_data, uint32_t constant_data_size,
3130 const struct brw_stage_prog_data *prog_data,
3131 uint32_t prog_data_size,
3132 const struct brw_compile_stats *stats, uint32_t num_stats,
3133 const struct nir_xfb_info *xfb_info,
3134 const struct anv_pipeline_bind_map *bind_map);
3135
3136 void
3137 anv_shader_bin_destroy(struct anv_device *device, struct anv_shader_bin *shader);
3138
3139 static inline void
3140 anv_shader_bin_ref(struct anv_shader_bin *shader)
3141 {
3142 assert(shader && shader->ref_cnt >= 1);
3143 p_atomic_inc(&shader->ref_cnt);
3144 }
3145
3146 static inline void
3147 anv_shader_bin_unref(struct anv_device *device, struct anv_shader_bin *shader)
3148 {
3149 assert(shader && shader->ref_cnt >= 1);
3150 if (p_atomic_dec_zero(&shader->ref_cnt))
3151 anv_shader_bin_destroy(device, shader);
3152 }
3153
3154 struct anv_pipeline_executable {
3155 gl_shader_stage stage;
3156
3157 struct brw_compile_stats stats;
3158
3159 char *nir;
3160 char *disasm;
3161 };
3162
3163 enum anv_pipeline_type {
3164 ANV_PIPELINE_GRAPHICS,
3165 ANV_PIPELINE_COMPUTE,
3166 };
3167
3168 struct anv_pipeline {
3169 struct anv_device * device;
3170
3171 struct anv_batch batch;
3172 struct anv_reloc_list batch_relocs;
3173
3174 void * mem_ctx;
3175
3176 enum anv_pipeline_type type;
3177 VkPipelineCreateFlags flags;
3178
3179 struct util_dynarray executables;
3180
3181 const struct gen_l3_config * l3_config;
3182 };
3183
3184 struct anv_graphics_pipeline {
3185 struct anv_pipeline base;
3186
3187 uint32_t batch_data[512];
3188
3189 anv_cmd_dirty_mask_t dynamic_state_mask;
3190 struct anv_dynamic_state dynamic_state;
3191
3192 uint32_t topology;
3193
3194 struct anv_subpass * subpass;
3195
3196 struct anv_shader_bin * shaders[MESA_SHADER_STAGES];
3197
3198 VkShaderStageFlags active_stages;
3199
3200 bool primitive_restart;
3201 bool writes_depth;
3202 bool depth_test_enable;
3203 bool writes_stencil;
3204 bool stencil_test_enable;
3205 bool depth_clamp_enable;
3206 bool depth_clip_enable;
3207 bool sample_shading_enable;
3208 bool kill_pixel;
3209 bool depth_bounds_test_enable;
3210
3211 /* When primitive replication is used, subpass->view_mask will describe what
3212 * views to replicate.
3213 */
3214 bool use_primitive_replication;
3215
3216 struct anv_state blend_state;
3217
3218 uint32_t vb_used;
3219 struct anv_pipeline_vertex_binding {
3220 uint32_t stride;
3221 bool instanced;
3222 uint32_t instance_divisor;
3223 } vb[MAX_VBS];
3224
3225 struct {
3226 uint32_t sf[7];
3227 uint32_t depth_stencil_state[3];
3228 } gen7;
3229
3230 struct {
3231 uint32_t sf[4];
3232 uint32_t raster[5];
3233 uint32_t wm_depth_stencil[3];
3234 } gen8;
3235
3236 struct {
3237 uint32_t wm_depth_stencil[4];
3238 } gen9;
3239 };
3240
3241 struct anv_compute_pipeline {
3242 struct anv_pipeline base;
3243
3244 struct anv_shader_bin * cs;
3245 uint32_t cs_right_mask;
3246 uint32_t batch_data[9];
3247 uint32_t interface_descriptor_data[8];
3248 };
3249
3250 #define ANV_DECL_PIPELINE_DOWNCAST(pipe_type, pipe_enum) \
3251 static inline struct anv_##pipe_type##_pipeline * \
3252 anv_pipeline_to_##pipe_type(struct anv_pipeline *pipeline) \
3253 { \
3254 assert(pipeline->type == pipe_enum); \
3255 return (struct anv_##pipe_type##_pipeline *) pipeline; \
3256 }
3257
3258 ANV_DECL_PIPELINE_DOWNCAST(graphics, ANV_PIPELINE_GRAPHICS)
3259 ANV_DECL_PIPELINE_DOWNCAST(compute, ANV_PIPELINE_COMPUTE)
3260
3261 static inline bool
3262 anv_pipeline_has_stage(const struct anv_graphics_pipeline *pipeline,
3263 gl_shader_stage stage)
3264 {
3265 return (pipeline->active_stages & mesa_to_vk_shader_stage(stage)) != 0;
3266 }
3267
3268 #define ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(prefix, stage) \
3269 static inline const struct brw_##prefix##_prog_data * \
3270 get_##prefix##_prog_data(const struct anv_graphics_pipeline *pipeline) \
3271 { \
3272 if (anv_pipeline_has_stage(pipeline, stage)) { \
3273 return (const struct brw_##prefix##_prog_data *) \
3274 pipeline->shaders[stage]->prog_data; \
3275 } else { \
3276 return NULL; \
3277 } \
3278 }
3279
3280 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(vs, MESA_SHADER_VERTEX)
3281 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tcs, MESA_SHADER_TESS_CTRL)
3282 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(tes, MESA_SHADER_TESS_EVAL)
3283 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(gs, MESA_SHADER_GEOMETRY)
3284 ANV_DECL_GET_GRAPHICS_PROG_DATA_FUNC(wm, MESA_SHADER_FRAGMENT)
3285
3286 static inline const struct brw_cs_prog_data *
3287 get_cs_prog_data(const struct anv_compute_pipeline *pipeline)
3288 {
3289 assert(pipeline->cs);
3290 return (const struct brw_cs_prog_data *) pipeline->cs->prog_data;
3291 }
3292
3293 static inline const struct brw_vue_prog_data *
3294 anv_pipeline_get_last_vue_prog_data(const struct anv_graphics_pipeline *pipeline)
3295 {
3296 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
3297 return &get_gs_prog_data(pipeline)->base;
3298 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
3299 return &get_tes_prog_data(pipeline)->base;
3300 else
3301 return &get_vs_prog_data(pipeline)->base;
3302 }
3303
3304 VkResult
3305 anv_pipeline_init(struct anv_graphics_pipeline *pipeline, struct anv_device *device,
3306 struct anv_pipeline_cache *cache,
3307 const VkGraphicsPipelineCreateInfo *pCreateInfo,
3308 const VkAllocationCallbacks *alloc);
3309
3310 VkResult
3311 anv_pipeline_compile_cs(struct anv_compute_pipeline *pipeline,
3312 struct anv_pipeline_cache *cache,
3313 const VkComputePipelineCreateInfo *info,
3314 const struct anv_shader_module *module,
3315 const char *entrypoint,
3316 const VkSpecializationInfo *spec_info);
3317
3318 uint32_t
3319 anv_cs_workgroup_size(const struct anv_compute_pipeline *pipeline);
3320
3321 uint32_t
3322 anv_cs_threads(const struct anv_compute_pipeline *pipeline);
3323
3324 struct anv_format_plane {
3325 enum isl_format isl_format:16;
3326 struct isl_swizzle swizzle;
3327
3328 /* Whether this plane contains chroma channels */
3329 bool has_chroma;
3330
3331 /* For downscaling of YUV planes */
3332 uint8_t denominator_scales[2];
3333
3334 /* How to map sampled ycbcr planes to a single 4 component element. */
3335 struct isl_swizzle ycbcr_swizzle;
3336
3337 /* What aspect is associated to this plane */
3338 VkImageAspectFlags aspect;
3339 };
3340
3341
3342 struct anv_format {
3343 struct anv_format_plane planes[3];
3344 VkFormat vk_format;
3345 uint8_t n_planes;
3346 bool can_ycbcr;
3347 };
3348
3349 /**
3350 * Return the aspect's _format_ plane, not its _memory_ plane (using the
3351 * vocabulary of VK_EXT_image_drm_format_modifier). As a consequence, \a
3352 * aspect_mask may contain VK_IMAGE_ASPECT_PLANE_*, but must not contain
3353 * VK_IMAGE_ASPECT_MEMORY_PLANE_* .
3354 */
3355 static inline uint32_t
3356 anv_image_aspect_to_plane(VkImageAspectFlags image_aspects,
3357 VkImageAspectFlags aspect_mask)
3358 {
3359 switch (aspect_mask) {
3360 case VK_IMAGE_ASPECT_COLOR_BIT:
3361 case VK_IMAGE_ASPECT_DEPTH_BIT:
3362 case VK_IMAGE_ASPECT_PLANE_0_BIT:
3363 return 0;
3364 case VK_IMAGE_ASPECT_STENCIL_BIT:
3365 if ((image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) == 0)
3366 return 0;
3367 /* Fall-through */
3368 case VK_IMAGE_ASPECT_PLANE_1_BIT:
3369 return 1;
3370 case VK_IMAGE_ASPECT_PLANE_2_BIT:
3371 return 2;
3372 default:
3373 /* Purposefully assert with depth/stencil aspects. */
3374 unreachable("invalid image aspect");
3375 }
3376 }
3377
3378 static inline VkImageAspectFlags
3379 anv_plane_to_aspect(VkImageAspectFlags image_aspects,
3380 uint32_t plane)
3381 {
3382 if (image_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3383 if (util_bitcount(image_aspects) > 1)
3384 return VK_IMAGE_ASPECT_PLANE_0_BIT << plane;
3385 return VK_IMAGE_ASPECT_COLOR_BIT;
3386 }
3387 if (image_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)
3388 return VK_IMAGE_ASPECT_DEPTH_BIT << plane;
3389 assert(image_aspects == VK_IMAGE_ASPECT_STENCIL_BIT);
3390 return VK_IMAGE_ASPECT_STENCIL_BIT;
3391 }
3392
3393 #define anv_foreach_image_aspect_bit(b, image, aspects) \
3394 for_each_bit(b, anv_image_expand_aspects(image, aspects))
3395
3396 const struct anv_format *
3397 anv_get_format(VkFormat format);
3398
3399 static inline uint32_t
3400 anv_get_format_planes(VkFormat vk_format)
3401 {
3402 const struct anv_format *format = anv_get_format(vk_format);
3403
3404 return format != NULL ? format->n_planes : 0;
3405 }
3406
3407 struct anv_format_plane
3408 anv_get_format_plane(const struct gen_device_info *devinfo, VkFormat vk_format,
3409 VkImageAspectFlagBits aspect, VkImageTiling tiling);
3410
3411 static inline enum isl_format
3412 anv_get_isl_format(const struct gen_device_info *devinfo, VkFormat vk_format,
3413 VkImageAspectFlags aspect, VkImageTiling tiling)
3414 {
3415 return anv_get_format_plane(devinfo, vk_format, aspect, tiling).isl_format;
3416 }
3417
3418 bool anv_formats_ccs_e_compatible(const struct gen_device_info *devinfo,
3419 VkImageCreateFlags create_flags,
3420 VkFormat vk_format,
3421 VkImageTiling vk_tiling,
3422 const VkImageFormatListCreateInfoKHR *fmt_list);
3423
3424 static inline struct isl_swizzle
3425 anv_swizzle_for_render(struct isl_swizzle swizzle)
3426 {
3427 /* Sometimes the swizzle will have alpha map to one. We do this to fake
3428 * RGB as RGBA for texturing
3429 */
3430 assert(swizzle.a == ISL_CHANNEL_SELECT_ONE ||
3431 swizzle.a == ISL_CHANNEL_SELECT_ALPHA);
3432
3433 /* But it doesn't matter what we render to that channel */
3434 swizzle.a = ISL_CHANNEL_SELECT_ALPHA;
3435
3436 return swizzle;
3437 }
3438
3439 void
3440 anv_pipeline_setup_l3_config(struct anv_pipeline *pipeline, bool needs_slm);
3441
3442 /**
3443 * Subsurface of an anv_image.
3444 */
3445 struct anv_surface {
3446 /** Valid only if isl_surf::size_B > 0. */
3447 struct isl_surf isl;
3448
3449 /**
3450 * Offset from VkImage's base address, as bound by vkBindImageMemory().
3451 */
3452 uint32_t offset;
3453 };
3454
3455 struct anv_image {
3456 VkImageType type; /**< VkImageCreateInfo::imageType */
3457 /* The original VkFormat provided by the client. This may not match any
3458 * of the actual surface formats.
3459 */
3460 VkFormat vk_format;
3461 const struct anv_format *format;
3462
3463 VkImageAspectFlags aspects;
3464 VkExtent3D extent;
3465 uint32_t levels;
3466 uint32_t array_size;
3467 uint32_t samples; /**< VkImageCreateInfo::samples */
3468 uint32_t n_planes;
3469 VkImageUsageFlags usage; /**< VkImageCreateInfo::usage. */
3470 VkImageUsageFlags stencil_usage;
3471 VkImageCreateFlags create_flags; /* Flags used when creating image. */
3472 VkImageTiling tiling; /** VkImageCreateInfo::tiling */
3473
3474 /** True if this is needs to be bound to an appropriately tiled BO.
3475 *
3476 * When not using modifiers, consumers such as X11, Wayland, and KMS need
3477 * the tiling passed via I915_GEM_SET_TILING. When exporting these buffers
3478 * we require a dedicated allocation so that we can know to allocate a
3479 * tiled buffer.
3480 */
3481 bool needs_set_tiling;
3482
3483 /**
3484 * Must be DRM_FORMAT_MOD_INVALID unless tiling is
3485 * VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT.
3486 */
3487 uint64_t drm_format_mod;
3488
3489 VkDeviceSize size;
3490 uint32_t alignment;
3491
3492 /* Whether the image is made of several underlying buffer objects rather a
3493 * single one with different offsets.
3494 */
3495 bool disjoint;
3496
3497 /* Image was created with external format. */
3498 bool external_format;
3499
3500 /**
3501 * Image subsurfaces
3502 *
3503 * For each foo, anv_image::planes[x].surface is valid if and only if
3504 * anv_image::aspects has a x aspect. Refer to anv_image_aspect_to_plane()
3505 * to figure the number associated with a given aspect.
3506 *
3507 * The hardware requires that the depth buffer and stencil buffer be
3508 * separate surfaces. From Vulkan's perspective, though, depth and stencil
3509 * reside in the same VkImage. To satisfy both the hardware and Vulkan, we
3510 * allocate the depth and stencil buffers as separate surfaces in the same
3511 * bo.
3512 *
3513 * Memory layout :
3514 *
3515 * -----------------------
3516 * | surface0 | /|\
3517 * ----------------------- |
3518 * | shadow surface0 | |
3519 * ----------------------- | Plane 0
3520 * | aux surface0 | |
3521 * ----------------------- |
3522 * | fast clear colors0 | \|/
3523 * -----------------------
3524 * | surface1 | /|\
3525 * ----------------------- |
3526 * | shadow surface1 | |
3527 * ----------------------- | Plane 1
3528 * | aux surface1 | |
3529 * ----------------------- |
3530 * | fast clear colors1 | \|/
3531 * -----------------------
3532 * | ... |
3533 * | |
3534 * -----------------------
3535 */
3536 struct {
3537 /**
3538 * Offset of the entire plane (whenever the image is disjoint this is
3539 * set to 0).
3540 */
3541 uint32_t offset;
3542
3543 VkDeviceSize size;
3544 uint32_t alignment;
3545
3546 struct anv_surface surface;
3547
3548 /**
3549 * A surface which shadows the main surface and may have different
3550 * tiling. This is used for sampling using a tiling that isn't supported
3551 * for other operations.
3552 */
3553 struct anv_surface shadow_surface;
3554
3555 /**
3556 * The base aux usage for this image. For color images, this can be
3557 * either CCS_E or CCS_D depending on whether or not we can reliably
3558 * leave CCS on all the time.
3559 */
3560 enum isl_aux_usage aux_usage;
3561
3562 struct anv_surface aux_surface;
3563
3564 /**
3565 * Offset of the fast clear state (used to compute the
3566 * fast_clear_state_offset of the following planes).
3567 */
3568 uint32_t fast_clear_state_offset;
3569
3570 /**
3571 * BO associated with this plane, set when bound.
3572 */
3573 struct anv_address address;
3574
3575 /**
3576 * When destroying the image, also free the bo.
3577 * */
3578 bool bo_is_owned;
3579 } planes[3];
3580 };
3581
3582 /* The ordering of this enum is important */
3583 enum anv_fast_clear_type {
3584 /** Image does not have/support any fast-clear blocks */
3585 ANV_FAST_CLEAR_NONE = 0,
3586 /** Image has/supports fast-clear but only to the default value */
3587 ANV_FAST_CLEAR_DEFAULT_VALUE = 1,
3588 /** Image has/supports fast-clear with an arbitrary fast-clear value */
3589 ANV_FAST_CLEAR_ANY = 2,
3590 };
3591
3592 /* Returns the number of auxiliary buffer levels attached to an image. */
3593 static inline uint8_t
3594 anv_image_aux_levels(const struct anv_image * const image,
3595 VkImageAspectFlagBits aspect)
3596 {
3597 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3598 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
3599 return 0;
3600
3601 /* The Gen12 CCS aux surface is represented with only one level. */
3602 return image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3603 image->planes[plane].surface.isl.levels :
3604 image->planes[plane].aux_surface.isl.levels;
3605 }
3606
3607 /* Returns the number of auxiliary buffer layers attached to an image. */
3608 static inline uint32_t
3609 anv_image_aux_layers(const struct anv_image * const image,
3610 VkImageAspectFlagBits aspect,
3611 const uint8_t miplevel)
3612 {
3613 assert(image);
3614
3615 /* The miplevel must exist in the main buffer. */
3616 assert(miplevel < image->levels);
3617
3618 if (miplevel >= anv_image_aux_levels(image, aspect)) {
3619 /* There are no layers with auxiliary data because the miplevel has no
3620 * auxiliary data.
3621 */
3622 return 0;
3623 } else {
3624 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3625
3626 /* The Gen12 CCS aux surface is represented with only one layer. */
3627 const struct isl_extent4d *aux_logical_level0_px =
3628 image->planes[plane].aux_surface.isl.tiling == ISL_TILING_GEN12_CCS ?
3629 &image->planes[plane].surface.isl.logical_level0_px :
3630 &image->planes[plane].aux_surface.isl.logical_level0_px;
3631
3632 return MAX2(aux_logical_level0_px->array_len,
3633 aux_logical_level0_px->depth >> miplevel);
3634 }
3635 }
3636
3637 static inline struct anv_address
3638 anv_image_get_clear_color_addr(const struct anv_device *device,
3639 const struct anv_image *image,
3640 VkImageAspectFlagBits aspect)
3641 {
3642 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
3643
3644 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3645 return anv_address_add(image->planes[plane].address,
3646 image->planes[plane].fast_clear_state_offset);
3647 }
3648
3649 static inline struct anv_address
3650 anv_image_get_fast_clear_type_addr(const struct anv_device *device,
3651 const struct anv_image *image,
3652 VkImageAspectFlagBits aspect)
3653 {
3654 struct anv_address addr =
3655 anv_image_get_clear_color_addr(device, image, aspect);
3656
3657 const unsigned clear_color_state_size = device->info.gen >= 10 ?
3658 device->isl_dev.ss.clear_color_state_size :
3659 device->isl_dev.ss.clear_value_size;
3660 return anv_address_add(addr, clear_color_state_size);
3661 }
3662
3663 static inline struct anv_address
3664 anv_image_get_compression_state_addr(const struct anv_device *device,
3665 const struct anv_image *image,
3666 VkImageAspectFlagBits aspect,
3667 uint32_t level, uint32_t array_layer)
3668 {
3669 assert(level < anv_image_aux_levels(image, aspect));
3670 assert(array_layer < anv_image_aux_layers(image, aspect, level));
3671 UNUSED uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
3672 assert(image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E);
3673
3674 struct anv_address addr =
3675 anv_image_get_fast_clear_type_addr(device, image, aspect);
3676 addr.offset += 4; /* Go past the fast clear type */
3677
3678 if (image->type == VK_IMAGE_TYPE_3D) {
3679 for (uint32_t l = 0; l < level; l++)
3680 addr.offset += anv_minify(image->extent.depth, l) * 4;
3681 } else {
3682 addr.offset += level * image->array_size * 4;
3683 }
3684 addr.offset += array_layer * 4;
3685
3686 assert(addr.offset <
3687 image->planes[plane].address.offset + image->planes[plane].size);
3688 return addr;
3689 }
3690
3691 /* Returns true if a HiZ-enabled depth buffer can be sampled from. */
3692 static inline bool
3693 anv_can_sample_with_hiz(const struct gen_device_info * const devinfo,
3694 const struct anv_image *image)
3695 {
3696 if (!(image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
3697 return false;
3698
3699 /* For Gen8-11, there are some restrictions around sampling from HiZ.
3700 * The Skylake PRM docs for RENDER_SURFACE_STATE::AuxiliarySurfaceMode
3701 * say:
3702 *
3703 * "If this field is set to AUX_HIZ, Number of Multisamples must
3704 * be MULTISAMPLECOUNT_1, and Surface Type cannot be SURFTYPE_3D."
3705 */
3706 if (image->type == VK_IMAGE_TYPE_3D)
3707 return false;
3708
3709 /* Allow this feature on BDW even though it is disabled in the BDW devinfo
3710 * struct. There's documentation which suggests that this feature actually
3711 * reduces performance on BDW, but it has only been observed to help so
3712 * far. Sampling fast-cleared blocks on BDW must also be handled with care
3713 * (see depth_stencil_attachment_compute_aux_usage() for more info).
3714 */
3715 if (devinfo->gen != 8 && !devinfo->has_sample_with_hiz)
3716 return false;
3717
3718 return image->samples == 1;
3719 }
3720
3721 static inline bool
3722 anv_image_plane_uses_aux_map(const struct anv_device *device,
3723 const struct anv_image *image,
3724 uint32_t plane)
3725 {
3726 return device->info.has_aux_map &&
3727 isl_aux_usage_has_ccs(image->planes[plane].aux_usage);
3728 }
3729
3730 void
3731 anv_cmd_buffer_mark_image_written(struct anv_cmd_buffer *cmd_buffer,
3732 const struct anv_image *image,
3733 VkImageAspectFlagBits aspect,
3734 enum isl_aux_usage aux_usage,
3735 uint32_t level,
3736 uint32_t base_layer,
3737 uint32_t layer_count);
3738
3739 void
3740 anv_image_clear_color(struct anv_cmd_buffer *cmd_buffer,
3741 const struct anv_image *image,
3742 VkImageAspectFlagBits aspect,
3743 enum isl_aux_usage aux_usage,
3744 enum isl_format format, struct isl_swizzle swizzle,
3745 uint32_t level, uint32_t base_layer, uint32_t layer_count,
3746 VkRect2D area, union isl_color_value clear_color);
3747 void
3748 anv_image_clear_depth_stencil(struct anv_cmd_buffer *cmd_buffer,
3749 const struct anv_image *image,
3750 VkImageAspectFlags aspects,
3751 enum isl_aux_usage depth_aux_usage,
3752 uint32_t level,
3753 uint32_t base_layer, uint32_t layer_count,
3754 VkRect2D area,
3755 float depth_value, uint8_t stencil_value);
3756 void
3757 anv_image_msaa_resolve(struct anv_cmd_buffer *cmd_buffer,
3758 const struct anv_image *src_image,
3759 enum isl_aux_usage src_aux_usage,
3760 uint32_t src_level, uint32_t src_base_layer,
3761 const struct anv_image *dst_image,
3762 enum isl_aux_usage dst_aux_usage,
3763 uint32_t dst_level, uint32_t dst_base_layer,
3764 VkImageAspectFlagBits aspect,
3765 uint32_t src_x, uint32_t src_y,
3766 uint32_t dst_x, uint32_t dst_y,
3767 uint32_t width, uint32_t height,
3768 uint32_t layer_count,
3769 enum blorp_filter filter);
3770 void
3771 anv_image_hiz_op(struct anv_cmd_buffer *cmd_buffer,
3772 const struct anv_image *image,
3773 VkImageAspectFlagBits aspect, uint32_t level,
3774 uint32_t base_layer, uint32_t layer_count,
3775 enum isl_aux_op hiz_op);
3776 void
3777 anv_image_hiz_clear(struct anv_cmd_buffer *cmd_buffer,
3778 const struct anv_image *image,
3779 VkImageAspectFlags aspects,
3780 uint32_t level,
3781 uint32_t base_layer, uint32_t layer_count,
3782 VkRect2D area, uint8_t stencil_value);
3783 void
3784 anv_image_mcs_op(struct anv_cmd_buffer *cmd_buffer,
3785 const struct anv_image *image,
3786 enum isl_format format, struct isl_swizzle swizzle,
3787 VkImageAspectFlagBits aspect,
3788 uint32_t base_layer, uint32_t layer_count,
3789 enum isl_aux_op mcs_op, union isl_color_value *clear_value,
3790 bool predicate);
3791 void
3792 anv_image_ccs_op(struct anv_cmd_buffer *cmd_buffer,
3793 const struct anv_image *image,
3794 enum isl_format format, struct isl_swizzle swizzle,
3795 VkImageAspectFlagBits aspect, uint32_t level,
3796 uint32_t base_layer, uint32_t layer_count,
3797 enum isl_aux_op ccs_op, union isl_color_value *clear_value,
3798 bool predicate);
3799
3800 void
3801 anv_image_copy_to_shadow(struct anv_cmd_buffer *cmd_buffer,
3802 const struct anv_image *image,
3803 VkImageAspectFlagBits aspect,
3804 uint32_t base_level, uint32_t level_count,
3805 uint32_t base_layer, uint32_t layer_count);
3806
3807 enum isl_aux_state
3808 anv_layout_to_aux_state(const struct gen_device_info * const devinfo,
3809 const struct anv_image *image,
3810 const VkImageAspectFlagBits aspect,
3811 const VkImageLayout layout);
3812
3813 enum isl_aux_usage
3814 anv_layout_to_aux_usage(const struct gen_device_info * const devinfo,
3815 const struct anv_image *image,
3816 const VkImageAspectFlagBits aspect,
3817 const VkImageUsageFlagBits usage,
3818 const VkImageLayout layout);
3819
3820 enum anv_fast_clear_type
3821 anv_layout_to_fast_clear_type(const struct gen_device_info * const devinfo,
3822 const struct anv_image * const image,
3823 const VkImageAspectFlagBits aspect,
3824 const VkImageLayout layout);
3825
3826 /* This is defined as a macro so that it works for both
3827 * VkImageSubresourceRange and VkImageSubresourceLayers
3828 */
3829 #define anv_get_layerCount(_image, _range) \
3830 ((_range)->layerCount == VK_REMAINING_ARRAY_LAYERS ? \
3831 (_image)->array_size - (_range)->baseArrayLayer : (_range)->layerCount)
3832
3833 static inline uint32_t
3834 anv_get_levelCount(const struct anv_image *image,
3835 const VkImageSubresourceRange *range)
3836 {
3837 return range->levelCount == VK_REMAINING_MIP_LEVELS ?
3838 image->levels - range->baseMipLevel : range->levelCount;
3839 }
3840
3841 static inline VkImageAspectFlags
3842 anv_image_expand_aspects(const struct anv_image *image,
3843 VkImageAspectFlags aspects)
3844 {
3845 /* If the underlying image has color plane aspects and
3846 * VK_IMAGE_ASPECT_COLOR_BIT has been requested, then return the aspects of
3847 * the underlying image. */
3848 if ((image->aspects & VK_IMAGE_ASPECT_PLANES_BITS_ANV) != 0 &&
3849 aspects == VK_IMAGE_ASPECT_COLOR_BIT)
3850 return image->aspects;
3851
3852 return aspects;
3853 }
3854
3855 static inline bool
3856 anv_image_aspects_compatible(VkImageAspectFlags aspects1,
3857 VkImageAspectFlags aspects2)
3858 {
3859 if (aspects1 == aspects2)
3860 return true;
3861
3862 /* Only 1 color aspects are compatibles. */
3863 if ((aspects1 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3864 (aspects2 & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) != 0 &&
3865 util_bitcount(aspects1) == util_bitcount(aspects2))
3866 return true;
3867
3868 return false;
3869 }
3870
3871 struct anv_image_view {
3872 const struct anv_image *image; /**< VkImageViewCreateInfo::image */
3873
3874 VkImageAspectFlags aspect_mask;
3875 VkFormat vk_format;
3876 VkExtent3D extent; /**< Extent of VkImageViewCreateInfo::baseMipLevel. */
3877
3878 unsigned n_planes;
3879 struct {
3880 uint32_t image_plane;
3881
3882 struct isl_view isl;
3883
3884 /**
3885 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3886 * image layout of SHADER_READ_ONLY_OPTIMAL or
3887 * DEPTH_STENCIL_READ_ONLY_OPTIMAL.
3888 */
3889 struct anv_surface_state optimal_sampler_surface_state;
3890
3891 /**
3892 * RENDER_SURFACE_STATE when using image as a sampler surface with an
3893 * image layout of GENERAL.
3894 */
3895 struct anv_surface_state general_sampler_surface_state;
3896
3897 /**
3898 * RENDER_SURFACE_STATE when using image as a storage image. Separate
3899 * states for write-only and readable, using the real format for
3900 * write-only and the lowered format for readable.
3901 */
3902 struct anv_surface_state storage_surface_state;
3903 struct anv_surface_state writeonly_storage_surface_state;
3904
3905 struct brw_image_param storage_image_param;
3906 } planes[3];
3907 };
3908
3909 enum anv_image_view_state_flags {
3910 ANV_IMAGE_VIEW_STATE_STORAGE_WRITE_ONLY = (1 << 0),
3911 ANV_IMAGE_VIEW_STATE_TEXTURE_OPTIMAL = (1 << 1),
3912 };
3913
3914 void anv_image_fill_surface_state(struct anv_device *device,
3915 const struct anv_image *image,
3916 VkImageAspectFlagBits aspect,
3917 const struct isl_view *view,
3918 isl_surf_usage_flags_t view_usage,
3919 enum isl_aux_usage aux_usage,
3920 const union isl_color_value *clear_color,
3921 enum anv_image_view_state_flags flags,
3922 struct anv_surface_state *state_inout,
3923 struct brw_image_param *image_param_out);
3924
3925 struct anv_image_create_info {
3926 const VkImageCreateInfo *vk_info;
3927
3928 /** An opt-in bitmask which filters an ISL-mapping of the Vulkan tiling. */
3929 isl_tiling_flags_t isl_tiling_flags;
3930
3931 /** These flags will be added to any derived from VkImageCreateInfo. */
3932 isl_surf_usage_flags_t isl_extra_usage_flags;
3933
3934 uint32_t stride;
3935 bool external_format;
3936 };
3937
3938 VkResult anv_image_create(VkDevice _device,
3939 const struct anv_image_create_info *info,
3940 const VkAllocationCallbacks* alloc,
3941 VkImage *pImage);
3942
3943 enum isl_format
3944 anv_isl_format_for_descriptor_type(VkDescriptorType type);
3945
3946 static inline VkExtent3D
3947 anv_sanitize_image_extent(const VkImageType imageType,
3948 const VkExtent3D imageExtent)
3949 {
3950 switch (imageType) {
3951 case VK_IMAGE_TYPE_1D:
3952 return (VkExtent3D) { imageExtent.width, 1, 1 };
3953 case VK_IMAGE_TYPE_2D:
3954 return (VkExtent3D) { imageExtent.width, imageExtent.height, 1 };
3955 case VK_IMAGE_TYPE_3D:
3956 return imageExtent;
3957 default:
3958 unreachable("invalid image type");
3959 }
3960 }
3961
3962 static inline VkOffset3D
3963 anv_sanitize_image_offset(const VkImageType imageType,
3964 const VkOffset3D imageOffset)
3965 {
3966 switch (imageType) {
3967 case VK_IMAGE_TYPE_1D:
3968 return (VkOffset3D) { imageOffset.x, 0, 0 };
3969 case VK_IMAGE_TYPE_2D:
3970 return (VkOffset3D) { imageOffset.x, imageOffset.y, 0 };
3971 case VK_IMAGE_TYPE_3D:
3972 return imageOffset;
3973 default:
3974 unreachable("invalid image type");
3975 }
3976 }
3977
3978 VkFormatFeatureFlags
3979 anv_get_image_format_features(const struct gen_device_info *devinfo,
3980 VkFormat vk_format,
3981 const struct anv_format *anv_format,
3982 VkImageTiling vk_tiling);
3983
3984 void anv_fill_buffer_surface_state(struct anv_device *device,
3985 struct anv_state state,
3986 enum isl_format format,
3987 struct anv_address address,
3988 uint32_t range, uint32_t stride);
3989
3990 static inline void
3991 anv_clear_color_from_att_state(union isl_color_value *clear_color,
3992 const struct anv_attachment_state *att_state,
3993 const struct anv_image_view *iview)
3994 {
3995 const struct isl_format_layout *view_fmtl =
3996 isl_format_get_layout(iview->planes[0].isl.format);
3997
3998 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
3999 if (view_fmtl->channels.c.bits) \
4000 clear_color->u32[i] = att_state->clear_value.color.uint32[i]
4001
4002 COPY_CLEAR_COLOR_CHANNEL(r, 0);
4003 COPY_CLEAR_COLOR_CHANNEL(g, 1);
4004 COPY_CLEAR_COLOR_CHANNEL(b, 2);
4005 COPY_CLEAR_COLOR_CHANNEL(a, 3);
4006
4007 #undef COPY_CLEAR_COLOR_CHANNEL
4008 }
4009
4010
4011 struct anv_ycbcr_conversion {
4012 const struct anv_format * format;
4013 VkSamplerYcbcrModelConversion ycbcr_model;
4014 VkSamplerYcbcrRange ycbcr_range;
4015 VkComponentSwizzle mapping[4];
4016 VkChromaLocation chroma_offsets[2];
4017 VkFilter chroma_filter;
4018 bool chroma_reconstruction;
4019 };
4020
4021 struct anv_sampler {
4022 uint32_t state[3][4];
4023 uint32_t n_planes;
4024 struct anv_ycbcr_conversion *conversion;
4025
4026 /* Blob of sampler state data which is guaranteed to be 32-byte aligned
4027 * and with a 32-byte stride for use as bindless samplers.
4028 */
4029 struct anv_state bindless_state;
4030 };
4031
4032 struct anv_framebuffer {
4033 uint32_t width;
4034 uint32_t height;
4035 uint32_t layers;
4036
4037 uint32_t attachment_count;
4038 struct anv_image_view * attachments[0];
4039 };
4040
4041 struct anv_subpass_attachment {
4042 VkImageUsageFlagBits usage;
4043 uint32_t attachment;
4044 VkImageLayout layout;
4045
4046 /* Used only with attachment containing stencil data. */
4047 VkImageLayout stencil_layout;
4048 };
4049
4050 struct anv_subpass {
4051 uint32_t attachment_count;
4052
4053 /**
4054 * A pointer to all attachment references used in this subpass.
4055 * Only valid if ::attachment_count > 0.
4056 */
4057 struct anv_subpass_attachment * attachments;
4058 uint32_t input_count;
4059 struct anv_subpass_attachment * input_attachments;
4060 uint32_t color_count;
4061 struct anv_subpass_attachment * color_attachments;
4062 struct anv_subpass_attachment * resolve_attachments;
4063
4064 struct anv_subpass_attachment * depth_stencil_attachment;
4065 struct anv_subpass_attachment * ds_resolve_attachment;
4066 VkResolveModeFlagBitsKHR depth_resolve_mode;
4067 VkResolveModeFlagBitsKHR stencil_resolve_mode;
4068
4069 uint32_t view_mask;
4070
4071 /** Subpass has a depth/stencil self-dependency */
4072 bool has_ds_self_dep;
4073
4074 /** Subpass has at least one color resolve attachment */
4075 bool has_color_resolve;
4076 };
4077
4078 static inline unsigned
4079 anv_subpass_view_count(const struct anv_subpass *subpass)
4080 {
4081 return MAX2(1, util_bitcount(subpass->view_mask));
4082 }
4083
4084 struct anv_render_pass_attachment {
4085 /* TODO: Consider using VkAttachmentDescription instead of storing each of
4086 * its members individually.
4087 */
4088 VkFormat format;
4089 uint32_t samples;
4090 VkImageUsageFlags usage;
4091 VkAttachmentLoadOp load_op;
4092 VkAttachmentStoreOp store_op;
4093 VkAttachmentLoadOp stencil_load_op;
4094 VkImageLayout initial_layout;
4095 VkImageLayout final_layout;
4096 VkImageLayout first_subpass_layout;
4097
4098 VkImageLayout stencil_initial_layout;
4099 VkImageLayout stencil_final_layout;
4100
4101 /* The subpass id in which the attachment will be used last. */
4102 uint32_t last_subpass_idx;
4103 };
4104
4105 struct anv_render_pass {
4106 uint32_t attachment_count;
4107 uint32_t subpass_count;
4108 /* An array of subpass_count+1 flushes, one per subpass boundary */
4109 enum anv_pipe_bits * subpass_flushes;
4110 struct anv_render_pass_attachment * attachments;
4111 struct anv_subpass subpasses[0];
4112 };
4113
4114 #define ANV_PIPELINE_STATISTICS_MASK 0x000007ff
4115
4116 struct anv_query_pool {
4117 VkQueryType type;
4118 VkQueryPipelineStatisticFlags pipeline_statistics;
4119 /** Stride between slots, in bytes */
4120 uint32_t stride;
4121 /** Number of slots in this query pool */
4122 uint32_t slots;
4123 struct anv_bo * bo;
4124 };
4125
4126 int anv_get_instance_entrypoint_index(const char *name);
4127 int anv_get_device_entrypoint_index(const char *name);
4128 int anv_get_physical_device_entrypoint_index(const char *name);
4129
4130 const char *anv_get_instance_entry_name(int index);
4131 const char *anv_get_physical_device_entry_name(int index);
4132 const char *anv_get_device_entry_name(int index);
4133
4134 bool
4135 anv_instance_entrypoint_is_enabled(int index, uint32_t core_version,
4136 const struct anv_instance_extension_table *instance);
4137 bool
4138 anv_physical_device_entrypoint_is_enabled(int index, uint32_t core_version,
4139 const struct anv_instance_extension_table *instance);
4140 bool
4141 anv_device_entrypoint_is_enabled(int index, uint32_t core_version,
4142 const struct anv_instance_extension_table *instance,
4143 const struct anv_device_extension_table *device);
4144
4145 void *anv_lookup_entrypoint(const struct gen_device_info *devinfo,
4146 const char *name);
4147
4148 void anv_dump_image_to_ppm(struct anv_device *device,
4149 struct anv_image *image, unsigned miplevel,
4150 unsigned array_layer, VkImageAspectFlagBits aspect,
4151 const char *filename);
4152
4153 enum anv_dump_action {
4154 ANV_DUMP_FRAMEBUFFERS_BIT = 0x1,
4155 };
4156
4157 void anv_dump_start(struct anv_device *device, enum anv_dump_action actions);
4158 void anv_dump_finish(void);
4159
4160 void anv_dump_add_attachments(struct anv_cmd_buffer *cmd_buffer);
4161
4162 static inline uint32_t
4163 anv_get_subpass_id(const struct anv_cmd_state * const cmd_state)
4164 {
4165 /* This function must be called from within a subpass. */
4166 assert(cmd_state->pass && cmd_state->subpass);
4167
4168 const uint32_t subpass_id = cmd_state->subpass - cmd_state->pass->subpasses;
4169
4170 /* The id of this subpass shouldn't exceed the number of subpasses in this
4171 * render pass minus 1.
4172 */
4173 assert(subpass_id < cmd_state->pass->subpass_count);
4174 return subpass_id;
4175 }
4176
4177 struct gen_perf_config *anv_get_perf(const struct gen_device_info *devinfo, int fd);
4178 void anv_device_perf_init(struct anv_device *device);
4179
4180 #define ANV_DEFINE_HANDLE_CASTS(__anv_type, __VkType) \
4181 \
4182 static inline struct __anv_type * \
4183 __anv_type ## _from_handle(__VkType _handle) \
4184 { \
4185 return (struct __anv_type *) _handle; \
4186 } \
4187 \
4188 static inline __VkType \
4189 __anv_type ## _to_handle(struct __anv_type *_obj) \
4190 { \
4191 return (__VkType) _obj; \
4192 }
4193
4194 #define ANV_DEFINE_NONDISP_HANDLE_CASTS(__anv_type, __VkType) \
4195 \
4196 static inline struct __anv_type * \
4197 __anv_type ## _from_handle(__VkType _handle) \
4198 { \
4199 return (struct __anv_type *)(uintptr_t) _handle; \
4200 } \
4201 \
4202 static inline __VkType \
4203 __anv_type ## _to_handle(struct __anv_type *_obj) \
4204 { \
4205 return (__VkType)(uintptr_t) _obj; \
4206 }
4207
4208 #define ANV_FROM_HANDLE(__anv_type, __name, __handle) \
4209 struct __anv_type *__name = __anv_type ## _from_handle(__handle)
4210
4211 ANV_DEFINE_HANDLE_CASTS(anv_cmd_buffer, VkCommandBuffer)
4212 ANV_DEFINE_HANDLE_CASTS(anv_device, VkDevice)
4213 ANV_DEFINE_HANDLE_CASTS(anv_instance, VkInstance)
4214 ANV_DEFINE_HANDLE_CASTS(anv_physical_device, VkPhysicalDevice)
4215 ANV_DEFINE_HANDLE_CASTS(anv_queue, VkQueue)
4216
4217 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_cmd_pool, VkCommandPool)
4218 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer, VkBuffer)
4219 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_buffer_view, VkBufferView)
4220 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_pool, VkDescriptorPool)
4221 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set, VkDescriptorSet)
4222 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_set_layout, VkDescriptorSetLayout)
4223 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_descriptor_update_template, VkDescriptorUpdateTemplate)
4224 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_device_memory, VkDeviceMemory)
4225 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_fence, VkFence)
4226 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_event, VkEvent)
4227 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_framebuffer, VkFramebuffer)
4228 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image, VkImage)
4229 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_image_view, VkImageView);
4230 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_cache, VkPipelineCache)
4231 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline, VkPipeline)
4232 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_pipeline_layout, VkPipelineLayout)
4233 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_query_pool, VkQueryPool)
4234 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_render_pass, VkRenderPass)
4235 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_sampler, VkSampler)
4236 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_semaphore, VkSemaphore)
4237 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_shader_module, VkShaderModule)
4238 ANV_DEFINE_NONDISP_HANDLE_CASTS(vk_debug_report_callback, VkDebugReportCallbackEXT)
4239 ANV_DEFINE_NONDISP_HANDLE_CASTS(anv_ycbcr_conversion, VkSamplerYcbcrConversion)
4240
4241 /* Gen-specific function declarations */
4242 #ifdef genX
4243 # include "anv_genX.h"
4244 #else
4245 # define genX(x) gen7_##x
4246 # include "anv_genX.h"
4247 # undef genX
4248 # define genX(x) gen75_##x
4249 # include "anv_genX.h"
4250 # undef genX
4251 # define genX(x) gen8_##x
4252 # include "anv_genX.h"
4253 # undef genX
4254 # define genX(x) gen9_##x
4255 # include "anv_genX.h"
4256 # undef genX
4257 # define genX(x) gen10_##x
4258 # include "anv_genX.h"
4259 # undef genX
4260 # define genX(x) gen11_##x
4261 # include "anv_genX.h"
4262 # undef genX
4263 # define genX(x) gen12_##x
4264 # include "anv_genX.h"
4265 # undef genX
4266 #endif
4267
4268 #endif /* ANV_PRIVATE_H */