Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / intel / vulkan / gen7_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 #if GEN_GEN == 7 && !GEN_IS_HASWELL
36 void
37 gen7_cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
38 uint32_t stages)
39 {
40 static const uint32_t sampler_state_opcodes[] = {
41 [MESA_SHADER_VERTEX] = 43,
42 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
43 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
44 [MESA_SHADER_GEOMETRY] = 46,
45 [MESA_SHADER_FRAGMENT] = 47,
46 [MESA_SHADER_COMPUTE] = 0,
47 };
48
49 static const uint32_t binding_table_opcodes[] = {
50 [MESA_SHADER_VERTEX] = 38,
51 [MESA_SHADER_TESS_CTRL] = 39,
52 [MESA_SHADER_TESS_EVAL] = 40,
53 [MESA_SHADER_GEOMETRY] = 41,
54 [MESA_SHADER_FRAGMENT] = 42,
55 [MESA_SHADER_COMPUTE] = 0,
56 };
57
58 anv_foreach_stage(s, stages) {
59 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
60 anv_batch_emit(&cmd_buffer->batch,
61 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS),
62 ._3DCommandSubOpcode = sampler_state_opcodes[s],
63 .PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset);
64 }
65
66 /* Always emit binding table pointers if we're asked to, since on SKL
67 * this is what flushes push constants. */
68 anv_batch_emit(&cmd_buffer->batch,
69 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS),
70 ._3DCommandSubOpcode = binding_table_opcodes[s],
71 .PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset);
72 }
73 }
74
75 uint32_t
76 gen7_cmd_buffer_flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
77 {
78 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
79 cmd_buffer->state.pipeline->active_stages;
80
81 VkResult result = VK_SUCCESS;
82 anv_foreach_stage(s, dirty) {
83 result = anv_cmd_buffer_emit_samplers(cmd_buffer, s,
84 &cmd_buffer->state.samplers[s]);
85 if (result != VK_SUCCESS)
86 break;
87 result = anv_cmd_buffer_emit_binding_table(cmd_buffer, s,
88 &cmd_buffer->state.binding_tables[s]);
89 if (result != VK_SUCCESS)
90 break;
91 }
92
93 if (result != VK_SUCCESS) {
94 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
95
96 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
97 assert(result == VK_SUCCESS);
98
99 /* Re-emit state base addresses so we get the new surface state base
100 * address before we start emitting binding tables etc.
101 */
102 anv_cmd_buffer_emit_state_base_address(cmd_buffer);
103
104 /* Re-emit all active binding tables */
105 dirty |= cmd_buffer->state.pipeline->active_stages;
106 anv_foreach_stage(s, dirty) {
107 result = anv_cmd_buffer_emit_samplers(cmd_buffer, s,
108 &cmd_buffer->state.samplers[s]);
109 if (result != VK_SUCCESS)
110 return result;
111 result = anv_cmd_buffer_emit_binding_table(cmd_buffer, s,
112 &cmd_buffer->state.binding_tables[s]);
113 if (result != VK_SUCCESS)
114 return result;
115 }
116 }
117
118 cmd_buffer->state.descriptors_dirty &= ~dirty;
119
120 return dirty;
121 }
122 #endif /* GEN_GEN == 7 && !GEN_IS_HASWELL */
123
124 static inline int64_t
125 clamp_int64(int64_t x, int64_t min, int64_t max)
126 {
127 if (x < min)
128 return min;
129 else if (x < max)
130 return x;
131 else
132 return max;
133 }
134
135 #if GEN_GEN == 7 && !GEN_IS_HASWELL
136 void
137 gen7_cmd_buffer_emit_scissor(struct anv_cmd_buffer *cmd_buffer)
138 {
139 uint32_t count = cmd_buffer->state.dynamic.scissor.count;
140 const VkRect2D *scissors = cmd_buffer->state.dynamic.scissor.scissors;
141 struct anv_state scissor_state =
142 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
143
144 for (uint32_t i = 0; i < count; i++) {
145 const VkRect2D *s = &scissors[i];
146
147 /* Since xmax and ymax are inclusive, we have to have xmax < xmin or
148 * ymax < ymin for empty clips. In case clip x, y, width height are all
149 * 0, the clamps below produce 0 for xmin, ymin, xmax, ymax, which isn't
150 * what we want. Just special case empty clips and produce a canonical
151 * empty clip. */
152 static const struct GEN7_SCISSOR_RECT empty_scissor = {
153 .ScissorRectangleYMin = 1,
154 .ScissorRectangleXMin = 1,
155 .ScissorRectangleYMax = 0,
156 .ScissorRectangleXMax = 0
157 };
158
159 const int max = 0xffff;
160 struct GEN7_SCISSOR_RECT scissor = {
161 /* Do this math using int64_t so overflow gets clamped correctly. */
162 .ScissorRectangleYMin = clamp_int64(s->offset.y, 0, max),
163 .ScissorRectangleXMin = clamp_int64(s->offset.x, 0, max),
164 .ScissorRectangleYMax = clamp_int64((uint64_t) s->offset.y + s->extent.height - 1, 0, max),
165 .ScissorRectangleXMax = clamp_int64((uint64_t) s->offset.x + s->extent.width - 1, 0, max)
166 };
167
168 if (s->extent.width <= 0 || s->extent.height <= 0) {
169 GEN7_SCISSOR_RECT_pack(NULL, scissor_state.map + i * 8,
170 &empty_scissor);
171 } else {
172 GEN7_SCISSOR_RECT_pack(NULL, scissor_state.map + i * 8, &scissor);
173 }
174 }
175
176 anv_batch_emit(&cmd_buffer->batch, GEN7_3DSTATE_SCISSOR_STATE_POINTERS,
177 .ScissorRectPointer = scissor_state.offset);
178
179 if (!cmd_buffer->device->info.has_llc)
180 anv_state_clflush(scissor_state);
181 }
182 #endif
183
184 static const uint32_t vk_to_gen_index_type[] = {
185 [VK_INDEX_TYPE_UINT16] = INDEX_WORD,
186 [VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
187 };
188
189 static const uint32_t restart_index_for_type[] = {
190 [VK_INDEX_TYPE_UINT16] = UINT16_MAX,
191 [VK_INDEX_TYPE_UINT32] = UINT32_MAX,
192 };
193
194 void genX(CmdBindIndexBuffer)(
195 VkCommandBuffer commandBuffer,
196 VkBuffer _buffer,
197 VkDeviceSize offset,
198 VkIndexType indexType)
199 {
200 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
201 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
202
203 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
204 if (GEN_IS_HASWELL)
205 cmd_buffer->state.restart_index = restart_index_for_type[indexType];
206 cmd_buffer->state.gen7.index_buffer = buffer;
207 cmd_buffer->state.gen7.index_type = vk_to_gen_index_type[indexType];
208 cmd_buffer->state.gen7.index_offset = offset;
209 }
210
211 static VkResult
212 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
213 {
214 struct anv_device *device = cmd_buffer->device;
215 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
216 struct anv_state surfaces = { 0, }, samplers = { 0, };
217 VkResult result;
218
219 result = anv_cmd_buffer_emit_samplers(cmd_buffer,
220 MESA_SHADER_COMPUTE, &samplers);
221 if (result != VK_SUCCESS)
222 return result;
223 result = anv_cmd_buffer_emit_binding_table(cmd_buffer,
224 MESA_SHADER_COMPUTE, &surfaces);
225 if (result != VK_SUCCESS)
226 return result;
227
228 struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer);
229
230 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
231 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
232
233 unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8;
234 unsigned push_constant_data_size =
235 (prog_data->nr_params + local_id_dwords) * 4;
236 unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32);
237 unsigned push_constant_regs = reg_aligned_constant_size / 32;
238
239 if (push_state.alloc_size) {
240 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD),
241 .CURBETotalDataLength = push_state.alloc_size,
242 .CURBEDataStartAddress = push_state.offset);
243 }
244
245 assert(prog_data->total_shared <= 64 * 1024);
246 uint32_t slm_size = 0;
247 if (prog_data->total_shared > 0) {
248 /* slm_size is in 4k increments, but must be a power of 2. */
249 slm_size = 4 * 1024;
250 while (slm_size < prog_data->total_shared)
251 slm_size <<= 1;
252 slm_size /= 4 * 1024;
253 }
254
255 struct anv_state state =
256 anv_state_pool_emit(&device->dynamic_state_pool,
257 GENX(INTERFACE_DESCRIPTOR_DATA), 64,
258 .KernelStartPointer = pipeline->cs_simd,
259 .BindingTablePointer = surfaces.offset,
260 .SamplerStatePointer = samplers.offset,
261 .ConstantURBEntryReadLength =
262 push_constant_regs,
263 #if !GEN_IS_HASWELL
264 .ConstantURBEntryReadOffset = 0,
265 #endif
266 .BarrierEnable = cs_prog_data->uses_barrier,
267 .SharedLocalMemorySize = slm_size,
268 .NumberofThreadsinGPGPUThreadGroup =
269 pipeline->cs_thread_width_max);
270
271 const uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
272 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD),
273 .InterfaceDescriptorTotalLength = size,
274 .InterfaceDescriptorDataStartAddress = state.offset);
275
276 return VK_SUCCESS;
277 }
278
279 #define emit_lri(batch, reg, imm) \
280 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), \
281 .RegisterOffset = __anv_reg_num(reg), \
282 .DataDWord = imm)
283
284 void
285 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer, bool enable_slm)
286 {
287 /* References for GL state:
288 *
289 * - commits e307cfa..228d5a3
290 * - src/mesa/drivers/dri/i965/gen7_l3_state.c
291 */
292
293 uint32_t l3cr2_slm, l3cr2_noslm;
294 anv_pack_struct(&l3cr2_noslm, GENX(L3CNTLREG2),
295 .URBAllocation = 24,
296 .ROAllocation = 0,
297 .DCAllocation = 16);
298 anv_pack_struct(&l3cr2_slm, GENX(L3CNTLREG2),
299 .SLMEnable = 1,
300 .URBAllocation = 16,
301 .URBLowBandwidth = 1,
302 .ROAllocation = 0,
303 .DCAllocation = 8);
304 const uint32_t l3cr2_val = enable_slm ? l3cr2_slm : l3cr2_noslm;
305 bool changed = cmd_buffer->state.current_l3_config != l3cr2_val;
306
307 if (changed) {
308 /* According to the hardware docs, the L3 partitioning can only be
309 * changed while the pipeline is completely drained and the caches are
310 * flushed, which involves a first PIPE_CONTROL flush which stalls the
311 * pipeline...
312 */
313 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
314 .DCFlushEnable = true,
315 .PostSyncOperation = NoWrite,
316 .CommandStreamerStallEnable = true);
317
318 /* ...followed by a second pipelined PIPE_CONTROL that initiates
319 * invalidation of the relevant caches. Note that because RO
320 * invalidation happens at the top of the pipeline (i.e. right away as
321 * the PIPE_CONTROL command is processed by the CS) we cannot combine it
322 * with the previous stalling flush as the hardware documentation
323 * suggests, because that would cause the CS to stall on previous
324 * rendering *after* RO invalidation and wouldn't prevent the RO caches
325 * from being polluted by concurrent rendering before the stall
326 * completes. This intentionally doesn't implement the SKL+ hardware
327 * workaround suggesting to enable CS stall on PIPE_CONTROLs with the
328 * texture cache invalidation bit set for GPGPU workloads because the
329 * previous and subsequent PIPE_CONTROLs already guarantee that there is
330 * no concurrent GPGPU kernel execution (see SKL HSD 2132585).
331 */
332 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
333 .TextureCacheInvalidationEnable = true,
334 .ConstantCacheInvalidationEnable = true,
335 .InstructionCacheInvalidateEnable = true,
336 .StateCacheInvalidationEnable = true,
337 .PostSyncOperation = NoWrite);
338
339 /* Now send a third stalling flush to make sure that invalidation is
340 * complete when the L3 configuration registers are modified.
341 */
342 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
343 .DCFlushEnable = true,
344 .PostSyncOperation = NoWrite,
345 .CommandStreamerStallEnable = true);
346
347 anv_finishme("write GEN7_L3SQCREG1");
348 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2), l3cr2_val);
349
350 uint32_t l3cr3_slm, l3cr3_noslm;
351 anv_pack_struct(&l3cr3_noslm, GENX(L3CNTLREG3),
352 .ISAllocation = 8,
353 .CAllocation = 4,
354 .TAllocation = 8);
355 anv_pack_struct(&l3cr3_slm, GENX(L3CNTLREG3),
356 .ISAllocation = 8,
357 .CAllocation = 8,
358 .TAllocation = 8);
359 const uint32_t l3cr3_val = enable_slm ? l3cr3_slm : l3cr3_noslm;
360 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3), l3cr3_val);
361
362 cmd_buffer->state.current_l3_config = l3cr2_val;
363 }
364 }
365
366 void
367 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
368 {
369 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
370 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
371 VkResult result;
372
373 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
374
375 bool needs_slm = cs_prog_data->base.total_shared > 0;
376 genX(cmd_buffer_config_l3)(cmd_buffer, needs_slm);
377
378 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
379
380 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)
381 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
382
383 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
384 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
385 /* FIXME: figure out descriptors for gen7 */
386 result = flush_compute_descriptor_set(cmd_buffer);
387 assert(result == VK_SUCCESS);
388 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
389 }
390
391 cmd_buffer->state.compute_dirty = 0;
392 }
393
394 void
395 genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer)
396 {
397 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
398
399 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
400 ANV_CMD_DIRTY_RENDER_TARGETS |
401 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH |
402 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)) {
403
404 const struct anv_image_view *iview =
405 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
406 const struct anv_image *image = iview ? iview->image : NULL;
407 const struct anv_format *anv_format =
408 iview ? anv_format_for_vk_format(iview->vk_format) : NULL;
409 const bool has_depth = iview && anv_format->has_depth;
410 const uint32_t depth_format = has_depth ?
411 isl_surf_get_depth_format(&cmd_buffer->device->isl_dev,
412 &image->depth_surface.isl) : D16_UNORM;
413
414 uint32_t sf_dw[GENX(3DSTATE_SF_length)];
415 struct GENX(3DSTATE_SF) sf = {
416 GENX(3DSTATE_SF_header),
417 .DepthBufferSurfaceFormat = depth_format,
418 .LineWidth = cmd_buffer->state.dynamic.line_width,
419 .GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias,
420 .GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope,
421 .GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp
422 };
423 GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
424
425 anv_batch_emit_merge(&cmd_buffer->batch, sf_dw, pipeline->gen7.sf);
426 }
427
428 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS |
429 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
430 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
431 struct anv_state cc_state =
432 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
433 GENX(COLOR_CALC_STATE_length) * 4,
434 64);
435 struct GENX(COLOR_CALC_STATE) cc = {
436 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
437 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
438 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
439 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
440 .StencilReferenceValue = d->stencil_reference.front & 0xff,
441 .BackFaceStencilReferenceValue = d->stencil_reference.back & 0xff,
442 };
443 GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc);
444 if (!cmd_buffer->device->info.has_llc)
445 anv_state_clflush(cc_state);
446
447 anv_batch_emit(&cmd_buffer->batch,
448 GENX(3DSTATE_CC_STATE_POINTERS),
449 .ColorCalcStatePointer = cc_state.offset);
450 }
451
452 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
453 ANV_CMD_DIRTY_RENDER_TARGETS |
454 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
455 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) {
456 uint32_t depth_stencil_dw[GENX(DEPTH_STENCIL_STATE_length)];
457 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
458
459 struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
460 .StencilTestMask = d->stencil_compare_mask.front & 0xff,
461 .StencilWriteMask = d->stencil_write_mask.front & 0xff,
462
463 .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
464 .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
465 };
466 GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
467
468 struct anv_state ds_state =
469 anv_cmd_buffer_merge_dynamic(cmd_buffer, depth_stencil_dw,
470 pipeline->gen7.depth_stencil_state,
471 GENX(DEPTH_STENCIL_STATE_length), 64);
472
473 anv_batch_emit(&cmd_buffer->batch,
474 GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS),
475 .PointertoDEPTH_STENCIL_STATE = ds_state.offset);
476 }
477
478 if (cmd_buffer->state.gen7.index_buffer &&
479 cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
480 ANV_CMD_DIRTY_INDEX_BUFFER)) {
481 struct anv_buffer *buffer = cmd_buffer->state.gen7.index_buffer;
482 uint32_t offset = cmd_buffer->state.gen7.index_offset;
483
484 #if GEN_IS_HASWELL
485 anv_batch_emit(&cmd_buffer->batch, GEN75_3DSTATE_VF,
486 .IndexedDrawCutIndexEnable = pipeline->primitive_restart,
487 .CutIndex = cmd_buffer->state.restart_index);
488 #endif
489
490 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER),
491 #if !GEN_IS_HASWELL
492 .CutIndexEnable = pipeline->primitive_restart,
493 #endif
494 .IndexFormat = cmd_buffer->state.gen7.index_type,
495 .MemoryObjectControlState = GENX(MOCS),
496 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
497 .BufferEndingAddress = { buffer->bo, buffer->offset + buffer->size });
498 }
499
500 cmd_buffer->state.dirty = 0;
501 }
502
503 void genX(CmdSetEvent)(
504 VkCommandBuffer commandBuffer,
505 VkEvent event,
506 VkPipelineStageFlags stageMask)
507 {
508 stub();
509 }
510
511 void genX(CmdResetEvent)(
512 VkCommandBuffer commandBuffer,
513 VkEvent event,
514 VkPipelineStageFlags stageMask)
515 {
516 stub();
517 }
518
519 void genX(CmdWaitEvents)(
520 VkCommandBuffer commandBuffer,
521 uint32_t eventCount,
522 const VkEvent* pEvents,
523 VkPipelineStageFlags srcStageMask,
524 VkPipelineStageFlags destStageMask,
525 uint32_t memoryBarrierCount,
526 const VkMemoryBarrier* pMemoryBarriers,
527 uint32_t bufferMemoryBarrierCount,
528 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
529 uint32_t imageMemoryBarrierCount,
530 const VkImageMemoryBarrier* pImageMemoryBarriers)
531 {
532 stub();
533 }