anv/cmd_buffer: Add code for performing HZ operations
[mesa.git] / src / intel / vulkan / gen8_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 #if GEN_GEN == 8
36 void
37 gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer)
38 {
39 uint32_t count = cmd_buffer->state.dynamic.viewport.count;
40 const VkViewport *viewports = cmd_buffer->state.dynamic.viewport.viewports;
41 struct anv_state sf_clip_state =
42 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64);
43
44 for (uint32_t i = 0; i < count; i++) {
45 const VkViewport *vp = &viewports[i];
46
47 /* The gen7 state struct has just the matrix and guardband fields, the
48 * gen8 struct adds the min/max viewport fields. */
49 struct GENX(SF_CLIP_VIEWPORT) sf_clip_viewport = {
50 .ViewportMatrixElementm00 = vp->width / 2,
51 .ViewportMatrixElementm11 = vp->height / 2,
52 .ViewportMatrixElementm22 = 1.0,
53 .ViewportMatrixElementm30 = vp->x + vp->width / 2,
54 .ViewportMatrixElementm31 = vp->y + vp->height / 2,
55 .ViewportMatrixElementm32 = 0.0,
56 .XMinClipGuardband = -1.0f,
57 .XMaxClipGuardband = 1.0f,
58 .YMinClipGuardband = -1.0f,
59 .YMaxClipGuardband = 1.0f,
60 .XMinViewPort = vp->x,
61 .XMaxViewPort = vp->x + vp->width - 1,
62 .YMinViewPort = vp->y,
63 .YMaxViewPort = vp->y + vp->height - 1,
64 };
65
66 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64,
67 &sf_clip_viewport);
68 }
69
70 if (!cmd_buffer->device->info.has_llc)
71 anv_state_clflush(sf_clip_state);
72
73 anv_batch_emit(&cmd_buffer->batch,
74 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), clip) {
75 clip.SFClipViewportPointer = sf_clip_state.offset;
76 }
77 }
78
79 void
80 gen8_cmd_buffer_emit_depth_viewport(struct anv_cmd_buffer *cmd_buffer,
81 bool depth_clamp_enable)
82 {
83 uint32_t count = cmd_buffer->state.dynamic.viewport.count;
84 const VkViewport *viewports = cmd_buffer->state.dynamic.viewport.viewports;
85 struct anv_state cc_state =
86 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
87
88 for (uint32_t i = 0; i < count; i++) {
89 const VkViewport *vp = &viewports[i];
90
91 struct GENX(CC_VIEWPORT) cc_viewport = {
92 .MinimumDepth = depth_clamp_enable ? vp->minDepth : 0.0f,
93 .MaximumDepth = depth_clamp_enable ? vp->maxDepth : 1.0f,
94 };
95
96 GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport);
97 }
98
99 if (!cmd_buffer->device->info.has_llc)
100 anv_state_clflush(cc_state);
101
102 anv_batch_emit(&cmd_buffer->batch,
103 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), cc) {
104 cc.CCViewportPointer = cc_state.offset;
105 }
106 }
107 #endif
108
109 static void
110 __emit_genx_sf_state(struct anv_cmd_buffer *cmd_buffer)
111 {
112 uint32_t sf_dw[GENX(3DSTATE_SF_length)];
113 struct GENX(3DSTATE_SF) sf = {
114 GENX(3DSTATE_SF_header),
115 .LineWidth = cmd_buffer->state.dynamic.line_width,
116 };
117 GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
118 /* FIXME: gen9.fs */
119 anv_batch_emit_merge(&cmd_buffer->batch, sf_dw,
120 cmd_buffer->state.pipeline->gen8.sf);
121 }
122
123 #include "genxml/gen9_pack.h"
124 static void
125 __emit_gen9_sf_state(struct anv_cmd_buffer *cmd_buffer)
126 {
127 uint32_t sf_dw[GENX(3DSTATE_SF_length)];
128 struct GEN9_3DSTATE_SF sf = {
129 GEN9_3DSTATE_SF_header,
130 .LineWidth = cmd_buffer->state.dynamic.line_width,
131 };
132 GEN9_3DSTATE_SF_pack(NULL, sf_dw, &sf);
133 /* FIXME: gen9.fs */
134 anv_batch_emit_merge(&cmd_buffer->batch, sf_dw,
135 cmd_buffer->state.pipeline->gen8.sf);
136 }
137
138 static void
139 __emit_sf_state(struct anv_cmd_buffer *cmd_buffer)
140 {
141 if (cmd_buffer->device->info.is_cherryview)
142 __emit_gen9_sf_state(cmd_buffer);
143 else
144 __emit_genx_sf_state(cmd_buffer);
145 }
146
147 void
148 genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer)
149 {
150 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
151
152 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
153 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)) {
154 __emit_sf_state(cmd_buffer);
155 }
156
157 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
158 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)){
159 uint32_t raster_dw[GENX(3DSTATE_RASTER_length)];
160 struct GENX(3DSTATE_RASTER) raster = {
161 GENX(3DSTATE_RASTER_header),
162 .GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias,
163 .GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope,
164 .GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp
165 };
166 GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster);
167 anv_batch_emit_merge(&cmd_buffer->batch, raster_dw,
168 pipeline->gen8.raster);
169 }
170
171 /* Stencil reference values moved from COLOR_CALC_STATE in gen8 to
172 * 3DSTATE_WM_DEPTH_STENCIL in gen9. That means the dirty bits gets split
173 * across different state packets for gen8 and gen9. We handle that by
174 * using a big old #if switch here.
175 */
176 #if GEN_GEN == 8
177 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS |
178 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
179 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
180 struct anv_state cc_state =
181 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
182 GENX(COLOR_CALC_STATE_length) * 4,
183 64);
184 struct GENX(COLOR_CALC_STATE) cc = {
185 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
186 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
187 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
188 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
189 .StencilReferenceValue = d->stencil_reference.front & 0xff,
190 .BackFaceStencilReferenceValue = d->stencil_reference.back & 0xff,
191 };
192 GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc);
193
194 if (!cmd_buffer->device->info.has_llc)
195 anv_state_clflush(cc_state);
196
197 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) {
198 ccp.ColorCalcStatePointer = cc_state.offset;
199 ccp.ColorCalcStatePointerValid = true;
200 }
201 }
202
203 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
204 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
205 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) {
206 uint32_t wm_depth_stencil_dw[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
207 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
208
209 struct GENX(3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil) = {
210 GENX(3DSTATE_WM_DEPTH_STENCIL_header),
211
212 .StencilTestMask = d->stencil_compare_mask.front & 0xff,
213 .StencilWriteMask = d->stencil_write_mask.front & 0xff,
214
215 .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
216 .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
217 };
218 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, wm_depth_stencil_dw,
219 &wm_depth_stencil);
220
221 anv_batch_emit_merge(&cmd_buffer->batch, wm_depth_stencil_dw,
222 pipeline->gen8.wm_depth_stencil);
223 }
224 #else
225 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS) {
226 struct anv_state cc_state =
227 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
228 GEN9_COLOR_CALC_STATE_length * 4,
229 64);
230 struct GEN9_COLOR_CALC_STATE cc = {
231 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
232 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
233 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
234 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
235 };
236 GEN9_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc);
237
238 if (!cmd_buffer->device->info.has_llc)
239 anv_state_clflush(cc_state);
240
241 anv_batch_emit(&cmd_buffer->batch, GEN9_3DSTATE_CC_STATE_POINTERS, ccp) {
242 ccp.ColorCalcStatePointer = cc_state.offset;
243 ccp.ColorCalcStatePointerValid = true;
244 }
245 }
246
247 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
248 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
249 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
250 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
251 uint32_t dwords[GEN9_3DSTATE_WM_DEPTH_STENCIL_length];
252 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
253 struct GEN9_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
254 GEN9_3DSTATE_WM_DEPTH_STENCIL_header,
255
256 .StencilTestMask = d->stencil_compare_mask.front & 0xff,
257 .StencilWriteMask = d->stencil_write_mask.front & 0xff,
258
259 .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
260 .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
261
262 .StencilReferenceValue = d->stencil_reference.front & 0xff,
263 .BackfaceStencilReferenceValue = d->stencil_reference.back & 0xff,
264 };
265 GEN9_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, dwords, &wm_depth_stencil);
266
267 anv_batch_emit_merge(&cmd_buffer->batch, dwords,
268 pipeline->gen9.wm_depth_stencil);
269 }
270 #endif
271
272 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
273 ANV_CMD_DIRTY_INDEX_BUFFER)) {
274 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF), vf) {
275 vf.IndexedDrawCutIndexEnable = pipeline->primitive_restart;
276 vf.CutIndex = cmd_buffer->state.restart_index;
277 }
278 }
279
280 cmd_buffer->state.dirty = 0;
281 }
282
283 void genX(CmdBindIndexBuffer)(
284 VkCommandBuffer commandBuffer,
285 VkBuffer _buffer,
286 VkDeviceSize offset,
287 VkIndexType indexType)
288 {
289 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
290 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
291
292 static const uint32_t vk_to_gen_index_type[] = {
293 [VK_INDEX_TYPE_UINT16] = INDEX_WORD,
294 [VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
295 };
296
297 static const uint32_t restart_index_for_type[] = {
298 [VK_INDEX_TYPE_UINT16] = UINT16_MAX,
299 [VK_INDEX_TYPE_UINT32] = UINT32_MAX,
300 };
301
302 cmd_buffer->state.restart_index = restart_index_for_type[indexType];
303
304 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
305 ib.IndexFormat = vk_to_gen_index_type[indexType];
306 ib.MemoryObjectControlState = GENX(MOCS);
307 ib.BufferStartingAddress =
308 (struct anv_address) { buffer->bo, buffer->offset + offset };
309 ib.BufferSize = buffer->size - offset;
310 }
311
312 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
313 }
314
315 static VkResult
316 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
317 {
318 struct anv_device *device = cmd_buffer->device;
319 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
320 struct anv_state surfaces = { 0, }, samplers = { 0, };
321 VkResult result;
322
323 result = anv_cmd_buffer_emit_samplers(cmd_buffer,
324 MESA_SHADER_COMPUTE, &samplers);
325 if (result != VK_SUCCESS)
326 return result;
327 result = anv_cmd_buffer_emit_binding_table(cmd_buffer,
328 MESA_SHADER_COMPUTE, &surfaces);
329 if (result != VK_SUCCESS)
330 return result;
331
332 struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer);
333
334 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
335 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
336
337 if (push_state.alloc_size) {
338 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
339 curbe.CURBETotalDataLength = push_state.alloc_size;
340 curbe.CURBEDataStartAddress = push_state.offset;
341 }
342 }
343
344 const uint32_t slm_size = encode_slm_size(GEN_GEN, prog_data->total_shared);
345
346 struct anv_state state =
347 anv_state_pool_emit(&device->dynamic_state_pool,
348 GENX(INTERFACE_DESCRIPTOR_DATA), 64,
349 .KernelStartPointer = pipeline->cs_simd,
350 .KernelStartPointerHigh = 0,
351 .BindingTablePointer = surfaces.offset,
352 .BindingTableEntryCount = 0,
353 .SamplerStatePointer = samplers.offset,
354 .SamplerCount = 0,
355 .ConstantIndirectURBEntryReadLength =
356 cs_prog_data->push.per_thread.regs,
357 .ConstantURBEntryReadOffset = 0,
358 .BarrierEnable = cs_prog_data->uses_barrier,
359 .SharedLocalMemorySize = slm_size,
360 .NumberofThreadsinGPGPUThreadGroup =
361 cs_prog_data->threads,
362 .CrossThreadConstantDataReadLength =
363 cs_prog_data->push.cross_thread.regs);
364
365 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
366 anv_batch_emit(&cmd_buffer->batch,
367 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
368 mid.InterfaceDescriptorTotalLength = size;
369 mid.InterfaceDescriptorDataStartAddress = state.offset;
370 }
371
372 return VK_SUCCESS;
373 }
374
375 void
376 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
377 {
378 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
379 MAYBE_UNUSED VkResult result;
380
381 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
382
383 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
384
385 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
386
387 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)
388 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
389
390 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
391 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
392 result = flush_compute_descriptor_set(cmd_buffer);
393 assert(result == VK_SUCCESS);
394 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
395 }
396
397 cmd_buffer->state.compute_dirty = 0;
398
399 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
400 }
401
402
403 /**
404 * Emit the HZ_OP packet in the sequence specified by the BDW PRM section
405 * entitled: "Optimized Depth Buffer Clear and/or Stencil Buffer Clear."
406 *
407 * \todo Enable Stencil Buffer-only clears
408 */
409 void
410 genX(cmd_buffer_emit_hz_op)(struct anv_cmd_buffer *cmd_buffer,
411 enum blorp_hiz_op op)
412 {
413 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
414 const struct anv_image_view *iview =
415 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
416
417 if (iview == NULL || !anv_image_has_hiz(iview->image))
418 return;
419
420 const uint32_t ds = cmd_state->subpass->depth_stencil_attachment;
421
422 /* Section 7.4. of the Vulkan 1.0.27 spec states:
423 *
424 * "The render area must be contained within the framebuffer dimensions."
425 *
426 * Therefore, the only way the extent of the render area can match that of
427 * the image view is if the render area offset equals (0, 0).
428 */
429 const bool full_surface_op =
430 cmd_state->render_area.extent.width == iview->extent.width &&
431 cmd_state->render_area.extent.height == iview->extent.height;
432 if (full_surface_op)
433 assert(cmd_state->render_area.offset.x == 0 &&
434 cmd_state->render_area.offset.y == 0);
435
436 /* This variable corresponds to the Pixel Dim column in the table below */
437 struct isl_extent2d px_dim;
438
439 /* Validate that we can perform the HZ operation and that it's necessary. */
440 switch (op) {
441 case BLORP_HIZ_OP_DEPTH_CLEAR:
442 if (cmd_buffer->state.pass->attachments[ds].load_op !=
443 VK_ATTACHMENT_LOAD_OP_CLEAR)
444 return;
445
446 /* Apply alignment restrictions. Despite the BDW PRM mentioning this is
447 * only needed for a depth buffer surface type of D16_UNORM, testing
448 * showed it to be necessary for other depth formats as well
449 * (e.g., D32_FLOAT).
450 */
451 #if GEN_GEN == 8
452 /* Pre-SKL, HiZ has an 8x4 sample block. As the number of samples
453 * increases, the number of pixels representable by this block
454 * decreases by a factor of the sample dimensions. Sample dimensions
455 * scale following the MSAA interleaved pattern.
456 *
457 * Sample|Sample|Pixel
458 * Count |Dim |Dim
459 * ===================
460 * 1 | 1x1 | 8x4
461 * 2 | 2x1 | 4x4
462 * 4 | 2x2 | 4x2
463 * 8 | 4x2 | 2x2
464 * 16 | 4x4 | 2x1
465 *
466 * Table: Pixel Dimensions in a HiZ Sample Block Pre-SKL
467 */
468 /* This variable corresponds to the Sample Dim column in the table
469 * above.
470 */
471 const struct isl_extent2d sa_dim =
472 isl_get_interleaved_msaa_px_size_sa(iview->image->samples);
473 px_dim.w = 8 / sa_dim.w;
474 px_dim.h = 4 / sa_dim.h;
475 #elif GEN_GEN >= 9
476 /* SKL+, the sample block becomes a "pixel block" so the expected
477 * pixel dimension is a constant 8x4 px for all sample counts.
478 */
479 px_dim = (struct isl_extent2d) { .w = 8, .h = 4};
480 #endif
481
482 if (!full_surface_op) {
483 /* Fast depth clears clear an entire sample block at a time. As a
484 * result, the rectangle must be aligned to the pixel dimensions of
485 * a sample block for a successful operation.
486 *
487 * Fast clears can still work if the offset is aligned and the render
488 * area offset + extent touches the edge of a depth buffer whose extent
489 * is unaligned. This is because each physical HiZ miplevel is padded
490 * by the px_dim. In this case, the size of the clear rectangle will be
491 * padded later on in this function.
492 */
493 if (cmd_state->render_area.offset.x % px_dim.w ||
494 cmd_state->render_area.offset.y % px_dim.h)
495 return;
496 if (cmd_state->render_area.offset.x +
497 cmd_state->render_area.extent.width != iview->extent.width &&
498 cmd_state->render_area.extent.width % px_dim.w)
499 return;
500 if (cmd_state->render_area.offset.y +
501 cmd_state->render_area.extent.height != iview->extent.height &&
502 cmd_state->render_area.extent.height % px_dim.h)
503 return;
504 }
505 break;
506 case BLORP_HIZ_OP_DEPTH_RESOLVE:
507 if (cmd_buffer->state.pass->attachments[ds].store_op !=
508 VK_ATTACHMENT_STORE_OP_STORE)
509 return;
510 break;
511 case BLORP_HIZ_OP_HIZ_RESOLVE:
512 if (cmd_buffer->state.pass->attachments[ds].load_op !=
513 VK_ATTACHMENT_LOAD_OP_LOAD)
514 return;
515 break;
516 case BLORP_HIZ_OP_NONE:
517 unreachable("Invalid HiZ OP");
518 break;
519 }
520
521 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_WM_HZ_OP), hzp) {
522 switch (op) {
523 case BLORP_HIZ_OP_DEPTH_CLEAR:
524 hzp.StencilBufferClearEnable = VK_IMAGE_ASPECT_STENCIL_BIT &
525 cmd_state->attachments[ds].pending_clear_aspects;
526 hzp.DepthBufferClearEnable = VK_IMAGE_ASPECT_DEPTH_BIT &
527 cmd_state->attachments[ds].pending_clear_aspects;
528 hzp.FullSurfaceDepthandStencilClear = full_surface_op;
529 hzp.StencilClearValue =
530 cmd_state->attachments[ds].clear_value.depthStencil.stencil & 0xff;
531
532 /* Mark aspects as cleared */
533 cmd_state->attachments[ds].pending_clear_aspects = 0;
534 break;
535 case BLORP_HIZ_OP_DEPTH_RESOLVE:
536 hzp.DepthBufferResolveEnable = true;
537 break;
538 case BLORP_HIZ_OP_HIZ_RESOLVE:
539 hzp.HierarchicalDepthBufferResolveEnable = true;
540 break;
541 case BLORP_HIZ_OP_NONE:
542 unreachable("Invalid HiZ OP");
543 break;
544 }
545
546 if (op != BLORP_HIZ_OP_DEPTH_CLEAR) {
547 /* The Optimized HiZ resolve rectangle must be the size of the full RT
548 * and aligned to 8x4. The non-optimized Depth resolve rectangle must
549 * be the size of the full RT. The same alignment is assumed to be
550 * required.
551 */
552 hzp.ClearRectangleXMin = 0;
553 hzp.ClearRectangleYMin = 0;
554 hzp.ClearRectangleXMax = align_u32(iview->extent.width, 8);
555 hzp.ClearRectangleYMax = align_u32(iview->extent.height, 4);
556 } else {
557 /* This clear rectangle is aligned */
558 hzp.ClearRectangleXMin = cmd_state->render_area.offset.x;
559 hzp.ClearRectangleYMin = cmd_state->render_area.offset.y;
560 hzp.ClearRectangleXMax = cmd_state->render_area.offset.x +
561 align_u32(cmd_state->render_area.extent.width, px_dim.width);
562 hzp.ClearRectangleYMax = cmd_state->render_area.offset.y +
563 align_u32(cmd_state->render_area.extent.height, px_dim.height);
564 }
565
566
567 /* Due to a hardware issue, this bit MBZ */
568 hzp.ScissorRectangleEnable = false;
569 hzp.NumberofMultisamples = ffs(iview->image->samples) - 1;
570 hzp.SampleMask = 0xFFFF;
571 }
572
573 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
574 pc.PostSyncOperation = WriteImmediateData;
575 pc.Address =
576 (struct anv_address){ &cmd_buffer->device->workaround_bo, 0 };
577 }
578
579 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_WM_HZ_OP), hzp);
580
581 if (!full_surface_op && op == BLORP_HIZ_OP_DEPTH_CLEAR) {
582 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
583 pc.DepthStallEnable = true;
584 pc.DepthCacheFlushEnable = true;
585 }
586 }
587 }
588
589 void genX(CmdSetEvent)(
590 VkCommandBuffer commandBuffer,
591 VkEvent _event,
592 VkPipelineStageFlags stageMask)
593 {
594 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
595 ANV_FROM_HANDLE(anv_event, event, _event);
596
597 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
598 pc.DestinationAddressType = DAT_PPGTT,
599 pc.PostSyncOperation = WriteImmediateData,
600 pc.Address = (struct anv_address) {
601 &cmd_buffer->device->dynamic_state_block_pool.bo,
602 event->state.offset
603 };
604 pc.ImmediateData = VK_EVENT_SET;
605 }
606 }
607
608 void genX(CmdResetEvent)(
609 VkCommandBuffer commandBuffer,
610 VkEvent _event,
611 VkPipelineStageFlags stageMask)
612 {
613 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
614 ANV_FROM_HANDLE(anv_event, event, _event);
615
616 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
617 pc.DestinationAddressType = DAT_PPGTT;
618 pc.PostSyncOperation = WriteImmediateData;
619 pc.Address = (struct anv_address) {
620 &cmd_buffer->device->dynamic_state_block_pool.bo,
621 event->state.offset
622 };
623 pc.ImmediateData = VK_EVENT_RESET;
624 }
625 }
626
627 void genX(CmdWaitEvents)(
628 VkCommandBuffer commandBuffer,
629 uint32_t eventCount,
630 const VkEvent* pEvents,
631 VkPipelineStageFlags srcStageMask,
632 VkPipelineStageFlags destStageMask,
633 uint32_t memoryBarrierCount,
634 const VkMemoryBarrier* pMemoryBarriers,
635 uint32_t bufferMemoryBarrierCount,
636 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
637 uint32_t imageMemoryBarrierCount,
638 const VkImageMemoryBarrier* pImageMemoryBarriers)
639 {
640 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
641 for (uint32_t i = 0; i < eventCount; i++) {
642 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
643
644 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
645 sem.WaitMode = PollingMode,
646 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
647 sem.SemaphoreDataDword = VK_EVENT_SET,
648 sem.SemaphoreAddress = (struct anv_address) {
649 &cmd_buffer->device->dynamic_state_block_pool.bo,
650 event->state.offset
651 };
652 }
653 }
654
655 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
656 false, /* byRegion */
657 memoryBarrierCount, pMemoryBarriers,
658 bufferMemoryBarrierCount, pBufferMemoryBarriers,
659 imageMemoryBarrierCount, pImageMemoryBarriers);
660 }