anv: s/anv_batch_emit_blk/anv_batch_emit/
[mesa.git] / src / intel / vulkan / gen8_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 #if GEN_GEN == 8
36 void
37 gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer)
38 {
39 uint32_t count = cmd_buffer->state.dynamic.viewport.count;
40 const VkViewport *viewports = cmd_buffer->state.dynamic.viewport.viewports;
41 struct anv_state sf_clip_state =
42 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64);
43 struct anv_state cc_state =
44 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
45
46 for (uint32_t i = 0; i < count; i++) {
47 const VkViewport *vp = &viewports[i];
48
49 /* The gen7 state struct has just the matrix and guardband fields, the
50 * gen8 struct adds the min/max viewport fields. */
51 struct GENX(SF_CLIP_VIEWPORT) sf_clip_viewport = {
52 .ViewportMatrixElementm00 = vp->width / 2,
53 .ViewportMatrixElementm11 = vp->height / 2,
54 .ViewportMatrixElementm22 = 1.0,
55 .ViewportMatrixElementm30 = vp->x + vp->width / 2,
56 .ViewportMatrixElementm31 = vp->y + vp->height / 2,
57 .ViewportMatrixElementm32 = 0.0,
58 .XMinClipGuardband = -1.0f,
59 .XMaxClipGuardband = 1.0f,
60 .YMinClipGuardband = -1.0f,
61 .YMaxClipGuardband = 1.0f,
62 .XMinViewPort = vp->x,
63 .XMaxViewPort = vp->x + vp->width - 1,
64 .YMinViewPort = vp->y,
65 .YMaxViewPort = vp->y + vp->height - 1,
66 };
67
68 struct GENX(CC_VIEWPORT) cc_viewport = {
69 .MinimumDepth = vp->minDepth,
70 .MaximumDepth = vp->maxDepth
71 };
72
73 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64,
74 &sf_clip_viewport);
75 GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport);
76 }
77
78 if (!cmd_buffer->device->info.has_llc) {
79 anv_state_clflush(sf_clip_state);
80 anv_state_clflush(cc_state);
81 }
82
83 anv_batch_emit(&cmd_buffer->batch,
84 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), cc) {
85 cc.CCViewportPointer = cc_state.offset;
86 }
87 anv_batch_emit(&cmd_buffer->batch,
88 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), clip) {
89 clip.SFClipViewportPointer = sf_clip_state.offset;
90 }
91 }
92 #endif
93
94 void
95 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer, bool enable_slm)
96 {
97 /* References for GL state:
98 *
99 * - commits e307cfa..228d5a3
100 * - src/mesa/drivers/dri/i965/gen7_l3_state.c
101 */
102
103 uint32_t l3cr_slm, l3cr_noslm;
104 anv_pack_struct(&l3cr_noslm, GENX(L3CNTLREG),
105 .URBAllocation = 48,
106 .AllAllocation = 48);
107 anv_pack_struct(&l3cr_slm, GENX(L3CNTLREG),
108 .SLMEnable = 1,
109 .URBAllocation = 16,
110 .AllAllocation = 48);
111 const uint32_t l3cr_val = enable_slm ? l3cr_slm : l3cr_noslm;
112 bool changed = cmd_buffer->state.current_l3_config != l3cr_val;
113
114 if (changed) {
115 /* According to the hardware docs, the L3 partitioning can only be
116 * changed while the pipeline is completely drained and the caches are
117 * flushed, which involves a first PIPE_CONTROL flush which stalls the
118 * pipeline...
119 */
120 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
121 pc.DCFlushEnable = true;
122 pc.PostSyncOperation = NoWrite;
123 pc.CommandStreamerStallEnable = true;
124 }
125
126 /* ...followed by a second pipelined PIPE_CONTROL that initiates
127 * invalidation of the relevant caches. Note that because RO
128 * invalidation happens at the top of the pipeline (i.e. right away as
129 * the PIPE_CONTROL command is processed by the CS) we cannot combine it
130 * with the previous stalling flush as the hardware documentation
131 * suggests, because that would cause the CS to stall on previous
132 * rendering *after* RO invalidation and wouldn't prevent the RO caches
133 * from being polluted by concurrent rendering before the stall
134 * completes. This intentionally doesn't implement the SKL+ hardware
135 * workaround suggesting to enable CS stall on PIPE_CONTROLs with the
136 * texture cache invalidation bit set for GPGPU workloads because the
137 * previous and subsequent PIPE_CONTROLs already guarantee that there is
138 * no concurrent GPGPU kernel execution (see SKL HSD 2132585).
139 */
140 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
141 pc.TextureCacheInvalidationEnable = true,
142 pc.ConstantCacheInvalidationEnable = true,
143 pc.InstructionCacheInvalidateEnable = true,
144 pc.StateCacheInvalidationEnable = true,
145 pc.PostSyncOperation = NoWrite;
146 }
147
148 /* Now send a third stalling flush to make sure that invalidation is
149 * complete when the L3 configuration registers are modified.
150 */
151 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
152 pc.DCFlushEnable = true;
153 pc.PostSyncOperation = NoWrite;
154 pc.CommandStreamerStallEnable = true;
155 }
156
157 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
158 lri.RegisterOffset = GENX(L3CNTLREG_num);
159 lri.DataDWord = l3cr_val;
160 }
161 cmd_buffer->state.current_l3_config = l3cr_val;
162 }
163 }
164
165 static void
166 __emit_genx_sf_state(struct anv_cmd_buffer *cmd_buffer)
167 {
168 uint32_t sf_dw[GENX(3DSTATE_SF_length)];
169 struct GENX(3DSTATE_SF) sf = {
170 GENX(3DSTATE_SF_header),
171 .LineWidth = cmd_buffer->state.dynamic.line_width,
172 };
173 GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
174 /* FIXME: gen9.fs */
175 anv_batch_emit_merge(&cmd_buffer->batch, sf_dw,
176 cmd_buffer->state.pipeline->gen8.sf);
177 }
178
179 #include "genxml/gen9_pack.h"
180 static void
181 __emit_gen9_sf_state(struct anv_cmd_buffer *cmd_buffer)
182 {
183 uint32_t sf_dw[GENX(3DSTATE_SF_length)];
184 struct GEN9_3DSTATE_SF sf = {
185 GEN9_3DSTATE_SF_header,
186 .LineWidth = cmd_buffer->state.dynamic.line_width,
187 };
188 GEN9_3DSTATE_SF_pack(NULL, sf_dw, &sf);
189 /* FIXME: gen9.fs */
190 anv_batch_emit_merge(&cmd_buffer->batch, sf_dw,
191 cmd_buffer->state.pipeline->gen8.sf);
192 }
193
194 static void
195 __emit_sf_state(struct anv_cmd_buffer *cmd_buffer)
196 {
197 if (cmd_buffer->device->info.is_cherryview)
198 __emit_gen9_sf_state(cmd_buffer);
199 else
200 __emit_genx_sf_state(cmd_buffer);
201 }
202
203 void
204 genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer)
205 {
206 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
207
208 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
209 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)) {
210 __emit_sf_state(cmd_buffer);
211 }
212
213 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
214 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)){
215 uint32_t raster_dw[GENX(3DSTATE_RASTER_length)];
216 struct GENX(3DSTATE_RASTER) raster = {
217 GENX(3DSTATE_RASTER_header),
218 .GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias,
219 .GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope,
220 .GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp
221 };
222 GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster);
223 anv_batch_emit_merge(&cmd_buffer->batch, raster_dw,
224 pipeline->gen8.raster);
225 }
226
227 /* Stencil reference values moved from COLOR_CALC_STATE in gen8 to
228 * 3DSTATE_WM_DEPTH_STENCIL in gen9. That means the dirty bits gets split
229 * across different state packets for gen8 and gen9. We handle that by
230 * using a big old #if switch here.
231 */
232 #if GEN_GEN == 8
233 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS |
234 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
235 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
236 struct anv_state cc_state =
237 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
238 GENX(COLOR_CALC_STATE_length) * 4,
239 64);
240 struct GENX(COLOR_CALC_STATE) cc = {
241 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
242 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
243 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
244 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
245 .StencilReferenceValue = d->stencil_reference.front & 0xff,
246 .BackFaceStencilReferenceValue = d->stencil_reference.back & 0xff,
247 };
248 GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc);
249
250 if (!cmd_buffer->device->info.has_llc)
251 anv_state_clflush(cc_state);
252
253 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), ccp) {
254 ccp.ColorCalcStatePointer = cc_state.offset;
255 ccp.ColorCalcStatePointerValid = true;
256 }
257 }
258
259 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
260 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
261 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) {
262 uint32_t wm_depth_stencil_dw[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
263 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
264
265 struct GENX(3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil) = {
266 GENX(3DSTATE_WM_DEPTH_STENCIL_header),
267
268 .StencilTestMask = d->stencil_compare_mask.front & 0xff,
269 .StencilWriteMask = d->stencil_write_mask.front & 0xff,
270
271 .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
272 .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
273 };
274 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, wm_depth_stencil_dw,
275 &wm_depth_stencil);
276
277 anv_batch_emit_merge(&cmd_buffer->batch, wm_depth_stencil_dw,
278 pipeline->gen8.wm_depth_stencil);
279 }
280 #else
281 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS) {
282 struct anv_state cc_state =
283 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
284 GEN9_COLOR_CALC_STATE_length * 4,
285 64);
286 struct GEN9_COLOR_CALC_STATE cc = {
287 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
288 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
289 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
290 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
291 };
292 GEN9_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc);
293
294 if (!cmd_buffer->device->info.has_llc)
295 anv_state_clflush(cc_state);
296
297 anv_batch_emit(&cmd_buffer->batch, GEN9_3DSTATE_CC_STATE_POINTERS, ccp) {
298 ccp.ColorCalcStatePointer = cc_state.offset;
299 ccp.ColorCalcStatePointerValid = true;
300 }
301 }
302
303 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
304 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
305 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
306 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
307 uint32_t dwords[GEN9_3DSTATE_WM_DEPTH_STENCIL_length];
308 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
309 struct GEN9_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
310 GEN9_3DSTATE_WM_DEPTH_STENCIL_header,
311
312 .StencilTestMask = d->stencil_compare_mask.front & 0xff,
313 .StencilWriteMask = d->stencil_write_mask.front & 0xff,
314
315 .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
316 .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
317
318 .StencilReferenceValue = d->stencil_reference.front & 0xff,
319 .BackfaceStencilReferenceValue = d->stencil_reference.back & 0xff,
320 };
321 GEN9_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, dwords, &wm_depth_stencil);
322
323 anv_batch_emit_merge(&cmd_buffer->batch, dwords,
324 pipeline->gen9.wm_depth_stencil);
325 }
326 #endif
327
328 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
329 ANV_CMD_DIRTY_INDEX_BUFFER)) {
330 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF), vf) {
331 vf.IndexedDrawCutIndexEnable = pipeline->primitive_restart;
332 vf.CutIndex = cmd_buffer->state.restart_index;
333 }
334 }
335
336 cmd_buffer->state.dirty = 0;
337 }
338
339 void genX(CmdBindIndexBuffer)(
340 VkCommandBuffer commandBuffer,
341 VkBuffer _buffer,
342 VkDeviceSize offset,
343 VkIndexType indexType)
344 {
345 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
346 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
347
348 static const uint32_t vk_to_gen_index_type[] = {
349 [VK_INDEX_TYPE_UINT16] = INDEX_WORD,
350 [VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
351 };
352
353 static const uint32_t restart_index_for_type[] = {
354 [VK_INDEX_TYPE_UINT16] = UINT16_MAX,
355 [VK_INDEX_TYPE_UINT32] = UINT32_MAX,
356 };
357
358 cmd_buffer->state.restart_index = restart_index_for_type[indexType];
359
360 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER), ib) {
361 ib.IndexFormat = vk_to_gen_index_type[indexType];
362 ib.MemoryObjectControlState = GENX(MOCS);
363 ib.BufferStartingAddress =
364 (struct anv_address) { buffer->bo, buffer->offset + offset };
365 ib.BufferSize = buffer->size - offset;
366 }
367
368 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
369 }
370
371 static VkResult
372 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
373 {
374 struct anv_device *device = cmd_buffer->device;
375 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
376 struct anv_state surfaces = { 0, }, samplers = { 0, };
377 VkResult result;
378
379 result = anv_cmd_buffer_emit_samplers(cmd_buffer,
380 MESA_SHADER_COMPUTE, &samplers);
381 if (result != VK_SUCCESS)
382 return result;
383 result = anv_cmd_buffer_emit_binding_table(cmd_buffer,
384 MESA_SHADER_COMPUTE, &surfaces);
385 if (result != VK_SUCCESS)
386 return result;
387
388 struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer);
389
390 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
391 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
392
393 unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8;
394 unsigned push_constant_data_size =
395 (prog_data->nr_params + local_id_dwords) * 4;
396 unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32);
397 unsigned push_constant_regs = reg_aligned_constant_size / 32;
398
399 if (push_state.alloc_size) {
400 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
401 curbe.CURBETotalDataLength = push_state.alloc_size;
402 curbe.CURBEDataStartAddress = push_state.offset;
403 }
404 }
405
406 assert(prog_data->total_shared <= 64 * 1024);
407 uint32_t slm_size = 0;
408 if (prog_data->total_shared > 0) {
409 /* slm_size is in 4k increments, but must be a power of 2. */
410 slm_size = 4 * 1024;
411 while (slm_size < prog_data->total_shared)
412 slm_size <<= 1;
413 slm_size /= 4 * 1024;
414 }
415
416 struct anv_state state =
417 anv_state_pool_emit(&device->dynamic_state_pool,
418 GENX(INTERFACE_DESCRIPTOR_DATA), 64,
419 .KernelStartPointer = pipeline->cs_simd,
420 .KernelStartPointerHigh = 0,
421 .BindingTablePointer = surfaces.offset,
422 .BindingTableEntryCount = 0,
423 .SamplerStatePointer = samplers.offset,
424 .SamplerCount = 0,
425 .ConstantIndirectURBEntryReadLength = push_constant_regs,
426 .ConstantURBEntryReadOffset = 0,
427 .BarrierEnable = cs_prog_data->uses_barrier,
428 .SharedLocalMemorySize = slm_size,
429 .NumberofThreadsinGPGPUThreadGroup =
430 pipeline->cs_thread_width_max);
431
432 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
433 anv_batch_emit(&cmd_buffer->batch,
434 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
435 mid.InterfaceDescriptorTotalLength = size;
436 mid.InterfaceDescriptorDataStartAddress = state.offset;
437 }
438
439 return VK_SUCCESS;
440 }
441
442 void
443 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
444 {
445 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
446 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
447 VkResult result;
448
449 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
450
451 bool needs_slm = cs_prog_data->base.total_shared > 0;
452 genX(cmd_buffer_config_l3)(cmd_buffer, needs_slm);
453
454 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
455
456 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)
457 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
458
459 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
460 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
461 result = flush_compute_descriptor_set(cmd_buffer);
462 assert(result == VK_SUCCESS);
463 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
464 }
465
466 cmd_buffer->state.compute_dirty = 0;
467 }
468
469 void genX(CmdSetEvent)(
470 VkCommandBuffer commandBuffer,
471 VkEvent _event,
472 VkPipelineStageFlags stageMask)
473 {
474 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
475 ANV_FROM_HANDLE(anv_event, event, _event);
476
477 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
478 pc.DestinationAddressType = DAT_PPGTT,
479 pc.PostSyncOperation = WriteImmediateData,
480 pc.Address = (struct anv_address) {
481 &cmd_buffer->device->dynamic_state_block_pool.bo,
482 event->state.offset
483 };
484 pc.ImmediateData = VK_EVENT_SET;
485 }
486 }
487
488 void genX(CmdResetEvent)(
489 VkCommandBuffer commandBuffer,
490 VkEvent _event,
491 VkPipelineStageFlags stageMask)
492 {
493 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
494 ANV_FROM_HANDLE(anv_event, event, _event);
495
496 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
497 pc.DestinationAddressType = DAT_PPGTT;
498 pc.PostSyncOperation = WriteImmediateData;
499 pc.Address = (struct anv_address) {
500 &cmd_buffer->device->dynamic_state_block_pool.bo,
501 event->state.offset
502 };
503 pc.ImmediateData = VK_EVENT_RESET;
504 }
505 }
506
507 void genX(CmdWaitEvents)(
508 VkCommandBuffer commandBuffer,
509 uint32_t eventCount,
510 const VkEvent* pEvents,
511 VkPipelineStageFlags srcStageMask,
512 VkPipelineStageFlags destStageMask,
513 uint32_t memoryBarrierCount,
514 const VkMemoryBarrier* pMemoryBarriers,
515 uint32_t bufferMemoryBarrierCount,
516 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
517 uint32_t imageMemoryBarrierCount,
518 const VkImageMemoryBarrier* pImageMemoryBarriers)
519 {
520 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
521 for (uint32_t i = 0; i < eventCount; i++) {
522 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
523
524 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
525 sem.WaitMode = PollingMode,
526 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
527 sem.SemaphoreDataDword = VK_EVENT_SET,
528 sem.SemaphoreAddress = (struct anv_address) {
529 &cmd_buffer->device->dynamic_state_block_pool.bo,
530 event->state.offset
531 };
532 }
533 }
534
535 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
536 false, /* byRegion */
537 memoryBarrierCount, pMemoryBarriers,
538 bufferMemoryBarrierCount, pBufferMemoryBarriers,
539 imageMemoryBarrierCount, pImageMemoryBarriers);
540 }