anv: Remove default scissor and viewport concepts
[mesa.git] / src / intel / vulkan / gen8_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26 #include <string.h>
27 #include <unistd.h>
28 #include <fcntl.h>
29
30 #include "anv_private.h"
31
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 #if GEN_GEN == 8
36 void
37 gen8_cmd_buffer_emit_viewport(struct anv_cmd_buffer *cmd_buffer)
38 {
39 uint32_t count = cmd_buffer->state.dynamic.viewport.count;
40 const VkViewport *viewports = cmd_buffer->state.dynamic.viewport.viewports;
41 struct anv_state sf_clip_state =
42 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 64, 64);
43 struct anv_state cc_state =
44 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, count * 8, 32);
45
46 for (uint32_t i = 0; i < count; i++) {
47 const VkViewport *vp = &viewports[i];
48
49 /* The gen7 state struct has just the matrix and guardband fields, the
50 * gen8 struct adds the min/max viewport fields. */
51 struct GENX(SF_CLIP_VIEWPORT) sf_clip_viewport = {
52 .ViewportMatrixElementm00 = vp->width / 2,
53 .ViewportMatrixElementm11 = vp->height / 2,
54 .ViewportMatrixElementm22 = 1.0,
55 .ViewportMatrixElementm30 = vp->x + vp->width / 2,
56 .ViewportMatrixElementm31 = vp->y + vp->height / 2,
57 .ViewportMatrixElementm32 = 0.0,
58 .XMinClipGuardband = -1.0f,
59 .XMaxClipGuardband = 1.0f,
60 .YMinClipGuardband = -1.0f,
61 .YMaxClipGuardband = 1.0f,
62 .XMinViewPort = vp->x,
63 .XMaxViewPort = vp->x + vp->width - 1,
64 .YMinViewPort = vp->y,
65 .YMaxViewPort = vp->y + vp->height - 1,
66 };
67
68 struct GENX(CC_VIEWPORT) cc_viewport = {
69 .MinimumDepth = vp->minDepth,
70 .MaximumDepth = vp->maxDepth
71 };
72
73 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_state.map + i * 64,
74 &sf_clip_viewport);
75 GENX(CC_VIEWPORT_pack)(NULL, cc_state.map + i * 8, &cc_viewport);
76 }
77
78 if (!cmd_buffer->device->info.has_llc) {
79 anv_state_clflush(sf_clip_state);
80 anv_state_clflush(cc_state);
81 }
82
83 anv_batch_emit(&cmd_buffer->batch,
84 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC),
85 .CCViewportPointer = cc_state.offset);
86 anv_batch_emit(&cmd_buffer->batch,
87 GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP),
88 .SFClipViewportPointer = sf_clip_state.offset);
89 }
90 #endif
91
92 #define emit_lri(batch, reg, imm) \
93 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), \
94 .RegisterOffset = __anv_reg_num(reg), \
95 .DataDWord = imm)
96
97 void
98 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer, bool enable_slm)
99 {
100 /* References for GL state:
101 *
102 * - commits e307cfa..228d5a3
103 * - src/mesa/drivers/dri/i965/gen7_l3_state.c
104 */
105
106 uint32_t l3cr_slm, l3cr_noslm;
107 anv_pack_struct(&l3cr_noslm, GENX(L3CNTLREG),
108 .URBAllocation = 48,
109 .AllAllocation = 48);
110 anv_pack_struct(&l3cr_slm, GENX(L3CNTLREG),
111 .SLMEnable = 1,
112 .URBAllocation = 16,
113 .AllAllocation = 48);
114 const uint32_t l3cr_val = enable_slm ? l3cr_slm : l3cr_noslm;
115 bool changed = cmd_buffer->state.current_l3_config != l3cr_val;
116
117 if (changed) {
118 /* According to the hardware docs, the L3 partitioning can only be
119 * changed while the pipeline is completely drained and the caches are
120 * flushed, which involves a first PIPE_CONTROL flush which stalls the
121 * pipeline...
122 */
123 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
124 .DCFlushEnable = true,
125 .PostSyncOperation = NoWrite,
126 .CommandStreamerStallEnable = true);
127
128 /* ...followed by a second pipelined PIPE_CONTROL that initiates
129 * invalidation of the relevant caches. Note that because RO
130 * invalidation happens at the top of the pipeline (i.e. right away as
131 * the PIPE_CONTROL command is processed by the CS) we cannot combine it
132 * with the previous stalling flush as the hardware documentation
133 * suggests, because that would cause the CS to stall on previous
134 * rendering *after* RO invalidation and wouldn't prevent the RO caches
135 * from being polluted by concurrent rendering before the stall
136 * completes. This intentionally doesn't implement the SKL+ hardware
137 * workaround suggesting to enable CS stall on PIPE_CONTROLs with the
138 * texture cache invalidation bit set for GPGPU workloads because the
139 * previous and subsequent PIPE_CONTROLs already guarantee that there is
140 * no concurrent GPGPU kernel execution (see SKL HSD 2132585).
141 */
142 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
143 .TextureCacheInvalidationEnable = true,
144 .ConstantCacheInvalidationEnable = true,
145 .InstructionCacheInvalidateEnable = true,
146 .StateCacheInvalidationEnable = true,
147 .PostSyncOperation = NoWrite);
148
149 /* Now send a third stalling flush to make sure that invalidation is
150 * complete when the L3 configuration registers are modified.
151 */
152 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
153 .DCFlushEnable = true,
154 .PostSyncOperation = NoWrite,
155 .CommandStreamerStallEnable = true);
156
157 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG), l3cr_val);
158 cmd_buffer->state.current_l3_config = l3cr_val;
159 }
160 }
161
162 static void
163 __emit_genx_sf_state(struct anv_cmd_buffer *cmd_buffer)
164 {
165 uint32_t sf_dw[GENX(3DSTATE_SF_length)];
166 struct GENX(3DSTATE_SF) sf = {
167 GENX(3DSTATE_SF_header),
168 .LineWidth = cmd_buffer->state.dynamic.line_width,
169 };
170 GENX(3DSTATE_SF_pack)(NULL, sf_dw, &sf);
171 /* FIXME: gen9.fs */
172 anv_batch_emit_merge(&cmd_buffer->batch, sf_dw,
173 cmd_buffer->state.pipeline->gen8.sf);
174 }
175
176 #include "genxml/gen9_pack.h"
177 static void
178 __emit_gen9_sf_state(struct anv_cmd_buffer *cmd_buffer)
179 {
180 uint32_t sf_dw[GENX(3DSTATE_SF_length)];
181 struct GEN9_3DSTATE_SF sf = {
182 GEN9_3DSTATE_SF_header,
183 .LineWidth = cmd_buffer->state.dynamic.line_width,
184 };
185 GEN9_3DSTATE_SF_pack(NULL, sf_dw, &sf);
186 /* FIXME: gen9.fs */
187 anv_batch_emit_merge(&cmd_buffer->batch, sf_dw,
188 cmd_buffer->state.pipeline->gen8.sf);
189 }
190
191 static void
192 __emit_sf_state(struct anv_cmd_buffer *cmd_buffer)
193 {
194 if (cmd_buffer->device->info.is_cherryview)
195 __emit_gen9_sf_state(cmd_buffer);
196 else
197 __emit_genx_sf_state(cmd_buffer);
198 }
199
200 void
201 genX(cmd_buffer_flush_dynamic_state)(struct anv_cmd_buffer *cmd_buffer)
202 {
203 struct anv_pipeline *pipeline = cmd_buffer->state.pipeline;
204
205 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
206 ANV_CMD_DIRTY_DYNAMIC_LINE_WIDTH)) {
207 __emit_sf_state(cmd_buffer);
208 }
209
210 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
211 ANV_CMD_DIRTY_DYNAMIC_DEPTH_BIAS)){
212 uint32_t raster_dw[GENX(3DSTATE_RASTER_length)];
213 struct GENX(3DSTATE_RASTER) raster = {
214 GENX(3DSTATE_RASTER_header),
215 .GlobalDepthOffsetConstant = cmd_buffer->state.dynamic.depth_bias.bias,
216 .GlobalDepthOffsetScale = cmd_buffer->state.dynamic.depth_bias.slope,
217 .GlobalDepthOffsetClamp = cmd_buffer->state.dynamic.depth_bias.clamp
218 };
219 GENX(3DSTATE_RASTER_pack)(NULL, raster_dw, &raster);
220 anv_batch_emit_merge(&cmd_buffer->batch, raster_dw,
221 pipeline->gen8.raster);
222 }
223
224 /* Stencil reference values moved from COLOR_CALC_STATE in gen8 to
225 * 3DSTATE_WM_DEPTH_STENCIL in gen9. That means the dirty bits gets split
226 * across different state packets for gen8 and gen9. We handle that by
227 * using a big old #if switch here.
228 */
229 #if GEN_GEN == 8
230 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS |
231 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
232 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
233 struct anv_state cc_state =
234 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
235 GENX(COLOR_CALC_STATE_length) * 4,
236 64);
237 struct GENX(COLOR_CALC_STATE) cc = {
238 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
239 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
240 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
241 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
242 .StencilReferenceValue = d->stencil_reference.front & 0xff,
243 .BackFaceStencilReferenceValue = d->stencil_reference.back & 0xff,
244 };
245 GENX(COLOR_CALC_STATE_pack)(NULL, cc_state.map, &cc);
246
247 if (!cmd_buffer->device->info.has_llc)
248 anv_state_clflush(cc_state);
249
250 anv_batch_emit(&cmd_buffer->batch,
251 GENX(3DSTATE_CC_STATE_POINTERS),
252 .ColorCalcStatePointer = cc_state.offset,
253 .ColorCalcStatePointerValid = true);
254 }
255
256 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
257 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
258 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK)) {
259 uint32_t wm_depth_stencil_dw[GENX(3DSTATE_WM_DEPTH_STENCIL_length)];
260 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
261
262 struct GENX(3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil) = {
263 GENX(3DSTATE_WM_DEPTH_STENCIL_header),
264
265 .StencilTestMask = d->stencil_compare_mask.front & 0xff,
266 .StencilWriteMask = d->stencil_write_mask.front & 0xff,
267
268 .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
269 .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
270 };
271 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, wm_depth_stencil_dw,
272 &wm_depth_stencil);
273
274 anv_batch_emit_merge(&cmd_buffer->batch, wm_depth_stencil_dw,
275 pipeline->gen8.wm_depth_stencil);
276 }
277 #else
278 if (cmd_buffer->state.dirty & ANV_CMD_DIRTY_DYNAMIC_BLEND_CONSTANTS) {
279 struct anv_state cc_state =
280 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer,
281 GEN9_COLOR_CALC_STATE_length * 4,
282 64);
283 struct GEN9_COLOR_CALC_STATE cc = {
284 .BlendConstantColorRed = cmd_buffer->state.dynamic.blend_constants[0],
285 .BlendConstantColorGreen = cmd_buffer->state.dynamic.blend_constants[1],
286 .BlendConstantColorBlue = cmd_buffer->state.dynamic.blend_constants[2],
287 .BlendConstantColorAlpha = cmd_buffer->state.dynamic.blend_constants[3],
288 };
289 GEN9_COLOR_CALC_STATE_pack(NULL, cc_state.map, &cc);
290
291 if (!cmd_buffer->device->info.has_llc)
292 anv_state_clflush(cc_state);
293
294 anv_batch_emit(&cmd_buffer->batch,
295 GEN9_3DSTATE_CC_STATE_POINTERS,
296 .ColorCalcStatePointer = cc_state.offset,
297 .ColorCalcStatePointerValid = true);
298 }
299
300 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
301 ANV_CMD_DIRTY_DYNAMIC_STENCIL_COMPARE_MASK |
302 ANV_CMD_DIRTY_DYNAMIC_STENCIL_WRITE_MASK |
303 ANV_CMD_DIRTY_DYNAMIC_STENCIL_REFERENCE)) {
304 uint32_t dwords[GEN9_3DSTATE_WM_DEPTH_STENCIL_length];
305 struct anv_dynamic_state *d = &cmd_buffer->state.dynamic;
306 struct GEN9_3DSTATE_WM_DEPTH_STENCIL wm_depth_stencil = {
307 GEN9_3DSTATE_WM_DEPTH_STENCIL_header,
308
309 .StencilTestMask = d->stencil_compare_mask.front & 0xff,
310 .StencilWriteMask = d->stencil_write_mask.front & 0xff,
311
312 .BackfaceStencilTestMask = d->stencil_compare_mask.back & 0xff,
313 .BackfaceStencilWriteMask = d->stencil_write_mask.back & 0xff,
314
315 .StencilReferenceValue = d->stencil_reference.front & 0xff,
316 .BackfaceStencilReferenceValue = d->stencil_reference.back & 0xff,
317 };
318 GEN9_3DSTATE_WM_DEPTH_STENCIL_pack(NULL, dwords, &wm_depth_stencil);
319
320 anv_batch_emit_merge(&cmd_buffer->batch, dwords,
321 pipeline->gen9.wm_depth_stencil);
322 }
323 #endif
324
325 if (cmd_buffer->state.dirty & (ANV_CMD_DIRTY_PIPELINE |
326 ANV_CMD_DIRTY_INDEX_BUFFER)) {
327 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_VF),
328 .IndexedDrawCutIndexEnable = pipeline->primitive_restart,
329 .CutIndex = cmd_buffer->state.restart_index,
330 );
331 }
332
333 cmd_buffer->state.dirty = 0;
334 }
335
336 void genX(CmdBindIndexBuffer)(
337 VkCommandBuffer commandBuffer,
338 VkBuffer _buffer,
339 VkDeviceSize offset,
340 VkIndexType indexType)
341 {
342 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
343 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
344
345 static const uint32_t vk_to_gen_index_type[] = {
346 [VK_INDEX_TYPE_UINT16] = INDEX_WORD,
347 [VK_INDEX_TYPE_UINT32] = INDEX_DWORD,
348 };
349
350 static const uint32_t restart_index_for_type[] = {
351 [VK_INDEX_TYPE_UINT16] = UINT16_MAX,
352 [VK_INDEX_TYPE_UINT32] = UINT32_MAX,
353 };
354
355 cmd_buffer->state.restart_index = restart_index_for_type[indexType];
356
357 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_INDEX_BUFFER),
358 .IndexFormat = vk_to_gen_index_type[indexType],
359 .MemoryObjectControlState = GENX(MOCS),
360 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
361 .BufferSize = buffer->size - offset);
362
363 cmd_buffer->state.dirty |= ANV_CMD_DIRTY_INDEX_BUFFER;
364 }
365
366 static VkResult
367 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
368 {
369 struct anv_device *device = cmd_buffer->device;
370 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
371 struct anv_state surfaces = { 0, }, samplers = { 0, };
372 VkResult result;
373
374 result = anv_cmd_buffer_emit_samplers(cmd_buffer,
375 MESA_SHADER_COMPUTE, &samplers);
376 if (result != VK_SUCCESS)
377 return result;
378 result = anv_cmd_buffer_emit_binding_table(cmd_buffer,
379 MESA_SHADER_COMPUTE, &surfaces);
380 if (result != VK_SUCCESS)
381 return result;
382
383 struct anv_state push_state = anv_cmd_buffer_cs_push_constants(cmd_buffer);
384
385 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
386 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
387
388 unsigned local_id_dwords = cs_prog_data->local_invocation_id_regs * 8;
389 unsigned push_constant_data_size =
390 (prog_data->nr_params + local_id_dwords) * 4;
391 unsigned reg_aligned_constant_size = ALIGN(push_constant_data_size, 32);
392 unsigned push_constant_regs = reg_aligned_constant_size / 32;
393
394 if (push_state.alloc_size) {
395 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD),
396 .CURBETotalDataLength = push_state.alloc_size,
397 .CURBEDataStartAddress = push_state.offset);
398 }
399
400 assert(prog_data->total_shared <= 64 * 1024);
401 uint32_t slm_size = 0;
402 if (prog_data->total_shared > 0) {
403 /* slm_size is in 4k increments, but must be a power of 2. */
404 slm_size = 4 * 1024;
405 while (slm_size < prog_data->total_shared)
406 slm_size <<= 1;
407 slm_size /= 4 * 1024;
408 }
409
410 struct anv_state state =
411 anv_state_pool_emit(&device->dynamic_state_pool,
412 GENX(INTERFACE_DESCRIPTOR_DATA), 64,
413 .KernelStartPointer = pipeline->cs_simd,
414 .KernelStartPointerHigh = 0,
415 .BindingTablePointer = surfaces.offset,
416 .BindingTableEntryCount = 0,
417 .SamplerStatePointer = samplers.offset,
418 .SamplerCount = 0,
419 .ConstantIndirectURBEntryReadLength = push_constant_regs,
420 .ConstantURBEntryReadOffset = 0,
421 .BarrierEnable = cs_prog_data->uses_barrier,
422 .SharedLocalMemorySize = slm_size,
423 .NumberofThreadsinGPGPUThreadGroup =
424 pipeline->cs_thread_width_max);
425
426 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
427 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD),
428 .InterfaceDescriptorTotalLength = size,
429 .InterfaceDescriptorDataStartAddress = state.offset);
430
431 return VK_SUCCESS;
432 }
433
434 void
435 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
436 {
437 struct anv_pipeline *pipeline = cmd_buffer->state.compute_pipeline;
438 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
439 VkResult result;
440
441 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
442
443 bool needs_slm = cs_prog_data->base.total_shared > 0;
444 genX(cmd_buffer_config_l3)(cmd_buffer, needs_slm);
445
446 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
447
448 if (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)
449 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
450
451 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
452 (cmd_buffer->state.compute_dirty & ANV_CMD_DIRTY_PIPELINE)) {
453 result = flush_compute_descriptor_set(cmd_buffer);
454 assert(result == VK_SUCCESS);
455 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
456 }
457
458 cmd_buffer->state.compute_dirty = 0;
459 }
460
461 void genX(CmdSetEvent)(
462 VkCommandBuffer commandBuffer,
463 VkEvent _event,
464 VkPipelineStageFlags stageMask)
465 {
466 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
467 ANV_FROM_HANDLE(anv_event, event, _event);
468
469 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
470 .DestinationAddressType = DAT_PPGTT,
471 .PostSyncOperation = WriteImmediateData,
472 .Address = {
473 &cmd_buffer->device->dynamic_state_block_pool.bo,
474 event->state.offset
475 },
476 .ImmediateData = VK_EVENT_SET);
477 }
478
479 void genX(CmdResetEvent)(
480 VkCommandBuffer commandBuffer,
481 VkEvent _event,
482 VkPipelineStageFlags stageMask)
483 {
484 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
485 ANV_FROM_HANDLE(anv_event, event, _event);
486
487 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL),
488 .DestinationAddressType = DAT_PPGTT,
489 .PostSyncOperation = WriteImmediateData,
490 .Address = {
491 &cmd_buffer->device->dynamic_state_block_pool.bo,
492 event->state.offset
493 },
494 .ImmediateData = VK_EVENT_RESET);
495 }
496
497 void genX(CmdWaitEvents)(
498 VkCommandBuffer commandBuffer,
499 uint32_t eventCount,
500 const VkEvent* pEvents,
501 VkPipelineStageFlags srcStageMask,
502 VkPipelineStageFlags destStageMask,
503 uint32_t memoryBarrierCount,
504 const VkMemoryBarrier* pMemoryBarriers,
505 uint32_t bufferMemoryBarrierCount,
506 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
507 uint32_t imageMemoryBarrierCount,
508 const VkImageMemoryBarrier* pImageMemoryBarriers)
509 {
510 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
511 for (uint32_t i = 0; i < eventCount; i++) {
512 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
513
514 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT),
515 .WaitMode = PollingMode,
516 .CompareOperation = COMPARE_SAD_EQUAL_SDD,
517 .SemaphoreDataDword = VK_EVENT_SET,
518 .SemaphoreAddress = {
519 &cmd_buffer->device->dynamic_state_block_pool.bo,
520 event->state.offset
521 });
522 }
523
524 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
525 false, /* byRegion */
526 memoryBarrierCount, pMemoryBarriers,
527 bufferMemoryBarrierCount, pBufferMemoryBarriers,
528 imageMemoryBarrierCount, pImageMemoryBarriers);
529 }