anv: fix number of planes for depth & stencil
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
183 const struct anv_image_view *image_view,
184 const uint32_t plane,
185 struct anv_surface_state state)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188 const struct anv_image *image = image_view->image;
189 uint32_t image_plane = image_view->planes[plane].image_plane;
190
191 add_surface_state_reloc(cmd_buffer, state.state,
192 image->planes[image_plane].bo, state.address);
193
194 if (state.aux_address) {
195 VkResult result =
196 anv_reloc_list_add(&cmd_buffer->surface_relocs,
197 &cmd_buffer->pool->alloc,
198 state.state.offset + isl_dev->ss.aux_addr_offset,
199 image->planes[image_plane].bo, state.aux_address);
200 if (result != VK_SUCCESS)
201 anv_batch_set_error(&cmd_buffer->batch, result);
202 }
203
204 if (state.clear_address) {
205 VkResult result =
206 anv_reloc_list_add(&cmd_buffer->surface_relocs,
207 &cmd_buffer->pool->alloc,
208 state.state.offset +
209 isl_dev->ss.clear_color_state_offset,
210 image->planes[image_plane].bo, state.clear_address);
211 if (result != VK_SUCCESS)
212 anv_batch_set_error(&cmd_buffer->batch, result);
213 }
214 }
215
216 static void
217 color_attachment_compute_aux_usage(struct anv_device * device,
218 struct anv_cmd_state * cmd_state,
219 uint32_t att, VkRect2D render_area,
220 union isl_color_value *fast_clear_color)
221 {
222 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
223 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
224
225 assert(iview->n_planes == 1);
226
227 if (iview->planes[0].isl.base_array_layer >=
228 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
229 iview->planes[0].isl.base_level)) {
230 /* There is no aux buffer which corresponds to the level and layer(s)
231 * being accessed.
232 */
233 att_state->aux_usage = ISL_AUX_USAGE_NONE;
234 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
235 att_state->fast_clear = false;
236 return;
237 }
238
239 att_state->aux_usage =
240 anv_layout_to_aux_usage(&device->info, iview->image,
241 VK_IMAGE_ASPECT_COLOR_BIT,
242 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
243
244 /* If we don't have aux, then we should have returned early in the layer
245 * check above. If we got here, we must have something.
246 */
247 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
248
249 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
250 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
251 att_state->input_aux_usage = att_state->aux_usage;
252 } else {
253 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
254 *
255 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
256 * setting is only allowed if Surface Format supported for Fast
257 * Clear. In addition, if the surface is bound to the sampling
258 * engine, Surface Format must be supported for Render Target
259 * Compression for surfaces bound to the sampling engine."
260 *
261 * In other words, we can only sample from a fast-cleared image if it
262 * also supports color compression.
263 */
264 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
265 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
266
267 /* While fast-clear resolves and partial resolves are fairly cheap in the
268 * case where you render to most of the pixels, full resolves are not
269 * because they potentially involve reading and writing the entire
270 * framebuffer. If we can't texture with CCS_E, we should leave it off and
271 * limit ourselves to fast clears.
272 */
273 if (cmd_state->pass->attachments[att].first_subpass_layout ==
274 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
275 anv_perf_warn(device->instance, iview->image,
276 "Not temporarily enabling CCS_E.");
277 }
278 } else {
279 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
280 }
281 }
282
283 assert(iview->image->planes[0].aux_surface.isl.usage &
284 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
285
286 union isl_color_value clear_color = {};
287 anv_clear_color_from_att_state(&clear_color, att_state, iview);
288
289 att_state->clear_color_is_zero_one =
290 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
291 att_state->clear_color_is_zero =
292 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
293
294 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
295 /* Start by getting the fast clear type. We use the first subpass
296 * layout here because we don't want to fast-clear if the first subpass
297 * to use the attachment can't handle fast-clears.
298 */
299 enum anv_fast_clear_type fast_clear_type =
300 anv_layout_to_fast_clear_type(&device->info, iview->image,
301 VK_IMAGE_ASPECT_COLOR_BIT,
302 cmd_state->pass->attachments[att].first_subpass_layout);
303 switch (fast_clear_type) {
304 case ANV_FAST_CLEAR_NONE:
305 att_state->fast_clear = false;
306 break;
307 case ANV_FAST_CLEAR_DEFAULT_VALUE:
308 att_state->fast_clear = att_state->clear_color_is_zero;
309 break;
310 case ANV_FAST_CLEAR_ANY:
311 att_state->fast_clear = true;
312 break;
313 }
314
315 /* Potentially, we could do partial fast-clears but doing so has crazy
316 * alignment restrictions. It's easier to just restrict to full size
317 * fast clears for now.
318 */
319 if (render_area.offset.x != 0 ||
320 render_area.offset.y != 0 ||
321 render_area.extent.width != iview->extent.width ||
322 render_area.extent.height != iview->extent.height)
323 att_state->fast_clear = false;
324
325 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
326 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
327 att_state->fast_clear = false;
328
329 /* We only allow fast clears to the first slice of an image (level 0,
330 * layer 0) and only for the entire slice. This guarantees us that, at
331 * any given time, there is only one clear color on any given image at
332 * any given time. At the time of our testing (Jan 17, 2018), there
333 * were no known applications which would benefit from fast-clearing
334 * more than just the first slice.
335 */
336 if (att_state->fast_clear &&
337 (iview->planes[0].isl.base_level > 0 ||
338 iview->planes[0].isl.base_array_layer > 0)) {
339 anv_perf_warn(device->instance, iview->image,
340 "Rendering with multi-lod or multi-layer framebuffer "
341 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
342 "baseArrayLayer > 0. Not fast clearing.");
343 att_state->fast_clear = false;
344 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
345 anv_perf_warn(device->instance, iview->image,
346 "Rendering to a multi-layer framebuffer with "
347 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
348 }
349
350 if (att_state->fast_clear)
351 *fast_clear_color = clear_color;
352 } else {
353 att_state->fast_clear = false;
354 }
355 }
356
357 static void
358 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
359 struct anv_cmd_state *cmd_state,
360 uint32_t att, VkRect2D render_area)
361 {
362 struct anv_render_pass_attachment *pass_att =
363 &cmd_state->pass->attachments[att];
364 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
365 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
366
367 /* These will be initialized after the first subpass transition. */
368 att_state->aux_usage = ISL_AUX_USAGE_NONE;
369 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
370
371 if (GEN_GEN == 7) {
372 /* We don't do any HiZ or depth fast-clears on gen7 yet */
373 att_state->fast_clear = false;
374 return;
375 }
376
377 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
378 /* If we're just clearing stencil, we can always HiZ clear */
379 att_state->fast_clear = true;
380 return;
381 }
382
383 /* Default to false for now */
384 att_state->fast_clear = false;
385
386 /* We must have depth in order to have HiZ */
387 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
388 return;
389
390 const enum isl_aux_usage first_subpass_aux_usage =
391 anv_layout_to_aux_usage(&device->info, iview->image,
392 VK_IMAGE_ASPECT_DEPTH_BIT,
393 pass_att->first_subpass_layout);
394 if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ)
395 return;
396
397 if (!blorp_can_hiz_clear_depth(GEN_GEN,
398 iview->planes[0].isl.format,
399 iview->image->samples,
400 render_area.offset.x,
401 render_area.offset.y,
402 render_area.offset.x +
403 render_area.extent.width,
404 render_area.offset.y +
405 render_area.extent.height))
406 return;
407
408 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
409 return;
410
411 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
412 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
413 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
414 * only supports returning 0.0f. Gens prior to gen8 do not support this
415 * feature at all.
416 */
417 return;
418 }
419
420 /* If we got here, then we can fast clear */
421 att_state->fast_clear = true;
422 }
423
424 static bool
425 need_input_attachment_state(const struct anv_render_pass_attachment *att)
426 {
427 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
428 return false;
429
430 /* We only allocate input attachment states for color surfaces. Compression
431 * is not yet enabled for depth textures and stencil doesn't allow
432 * compression so we can just use the texture surface state from the view.
433 */
434 return vk_format_is_color(att->format);
435 }
436
437 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
438 * the initial layout is undefined, the HiZ buffer and depth buffer will
439 * represent the same data at the end of this operation.
440 */
441 static void
442 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
443 const struct anv_image *image,
444 VkImageLayout initial_layout,
445 VkImageLayout final_layout)
446 {
447 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
448 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
449 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
450 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
451 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
452 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
453
454 enum isl_aux_op hiz_op;
455 if (hiz_enabled && !enable_hiz) {
456 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
457 } else if (!hiz_enabled && enable_hiz) {
458 hiz_op = ISL_AUX_OP_AMBIGUATE;
459 } else {
460 assert(hiz_enabled == enable_hiz);
461 /* If the same buffer will be used, no resolves are necessary. */
462 hiz_op = ISL_AUX_OP_NONE;
463 }
464
465 if (hiz_op != ISL_AUX_OP_NONE)
466 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
467 0, 0, 1, hiz_op);
468 }
469
470 #define MI_PREDICATE_SRC0 0x2400
471 #define MI_PREDICATE_SRC1 0x2408
472
473 static void
474 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
475 const struct anv_image *image,
476 VkImageAspectFlagBits aspect,
477 uint32_t level,
478 uint32_t base_layer, uint32_t layer_count,
479 bool compressed)
480 {
481 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
482
483 /* We only have compression tracking for CCS_E */
484 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
485 return;
486
487 for (uint32_t a = 0; a < layer_count; a++) {
488 uint32_t layer = base_layer + a;
489 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
490 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
491 image, aspect,
492 level, layer);
493 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
494 }
495 }
496 }
497
498 static void
499 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
500 const struct anv_image *image,
501 VkImageAspectFlagBits aspect,
502 enum anv_fast_clear_type fast_clear)
503 {
504 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
505 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
506 image, aspect);
507 sdi.ImmediateData = fast_clear;
508 }
509
510 /* Whenever we have fast-clear, we consider that slice to be compressed.
511 * This makes building predicates much easier.
512 */
513 if (fast_clear != ANV_FAST_CLEAR_NONE)
514 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
515 }
516
517 #if GEN_IS_HASWELL || GEN_GEN >= 8
518 static inline uint32_t
519 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
520 {
521 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
522 .ALUOpcode = opcode,
523 .Operand1 = operand1,
524 .Operand2 = operand2,
525 };
526
527 uint32_t dw;
528 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
529
530 return dw;
531 }
532 #endif
533
534 #define CS_GPR(n) (0x2600 + (n) * 8)
535
536 /* This is only really practical on haswell and above because it requires
537 * MI math in order to get it correct.
538 */
539 #if GEN_GEN >= 8 || GEN_IS_HASWELL
540 static void
541 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
542 const struct anv_image *image,
543 VkImageAspectFlagBits aspect,
544 uint32_t level, uint32_t array_layer,
545 enum isl_aux_op resolve_op,
546 enum anv_fast_clear_type fast_clear_supported)
547 {
548 struct anv_address fast_clear_type_addr =
549 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
550
551 /* Name some registers */
552 const int image_fc_reg = MI_ALU_REG0;
553 const int fc_imm_reg = MI_ALU_REG1;
554 const int pred_reg = MI_ALU_REG2;
555
556 uint32_t *dw;
557
558 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
559 /* In this case, we're doing a full resolve which means we want the
560 * resolve to happen if any compression (including fast-clears) is
561 * present.
562 *
563 * In order to simplify the logic a bit, we make the assumption that,
564 * if the first slice has been fast-cleared, it is also marked as
565 * compressed. See also set_image_fast_clear_state.
566 */
567 struct anv_address compression_state_addr =
568 anv_image_get_compression_state_addr(cmd_buffer->device, image,
569 aspect, level, array_layer);
570 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
571 lrm.RegisterAddress = MI_PREDICATE_SRC0;
572 lrm.MemoryAddress = compression_state_addr;
573 }
574 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
575 sdi.Address = compression_state_addr;
576 sdi.ImmediateData = 0;
577 }
578
579 if (level == 0 && array_layer == 0) {
580 /* If the predicate is true, we want to write 0 to the fast clear type
581 * and, if it's false, leave it alone. We can do this by writing
582 *
583 * clear_type = clear_type & ~predicate;
584 */
585 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
586 lrm.RegisterAddress = CS_GPR(image_fc_reg);
587 lrm.MemoryAddress = fast_clear_type_addr;
588 }
589 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
590 lrr.DestinationRegisterAddress = CS_GPR(pred_reg);
591 lrr.SourceRegisterAddress = MI_PREDICATE_SRC0;
592 }
593
594 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
595 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
596 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
597 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
598 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
599
600 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
601 srm.MemoryAddress = fast_clear_type_addr;
602 srm.RegisterAddress = CS_GPR(image_fc_reg);
603 }
604 }
605 } else if (level == 0 && array_layer == 0) {
606 /* In this case, we are doing a partial resolve to get rid of fast-clear
607 * colors. We don't care about the compression state but we do care
608 * about how much fast clear is allowed by the final layout.
609 */
610 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
611 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
612
613 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
614 lrm.RegisterAddress = CS_GPR(image_fc_reg);
615 lrm.MemoryAddress = fast_clear_type_addr;
616 }
617 emit_lri(&cmd_buffer->batch, CS_GPR(image_fc_reg) + 4, 0);
618
619 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg), fast_clear_supported);
620 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg) + 4, 0);
621
622 /* We need to compute (fast_clear_supported < image->fast_clear).
623 * We do this by subtracting and storing the carry bit.
624 */
625 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
626 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm_reg);
627 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc_reg);
628 dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
629 dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF);
630
631 /* Store the predicate */
632 emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg));
633
634 /* If the predicate is true, we want to write 0 to the fast clear type
635 * and, if it's false, leave it alone. We can do this by writing
636 *
637 * clear_type = clear_type & ~predicate;
638 */
639 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
640 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
641 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
642 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
643 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
644
645 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
646 srm.RegisterAddress = CS_GPR(image_fc_reg);
647 srm.MemoryAddress = fast_clear_type_addr;
648 }
649 } else {
650 /* In this case, we're trying to do a partial resolve on a slice that
651 * doesn't have clear color. There's nothing to do.
652 */
653 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
654 return;
655 }
656
657 /* We use the first half of src0 for the actual predicate. Set the second
658 * half of src0 and all of src1 to 0 as the predicate operation will be
659 * doing an implicit src0 != src1.
660 */
661 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
662 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
663 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
664
665 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
666 mip.LoadOperation = LOAD_LOADINV;
667 mip.CombineOperation = COMBINE_SET;
668 mip.CompareOperation = COMPARE_SRCS_EQUAL;
669 }
670 }
671 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
672
673 #if GEN_GEN <= 8
674 static void
675 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
676 const struct anv_image *image,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 struct anv_address fast_clear_type_addr =
683 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
684
685 /* This only works for partial resolves and only when the clear color is
686 * all or nothing. On the upside, this emits less command streamer code
687 * and works on Ivybridge and Bay Trail.
688 */
689 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
690 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
691
692 /* We don't support fast clears on anything other than the first slice. */
693 if (level > 0 || array_layer > 0)
694 return;
695
696 /* On gen8, we don't have a concept of default clear colors because we
697 * can't sample from CCS surfaces. It's enough to just load the fast clear
698 * state into the predicate register.
699 */
700 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
701 lrm.RegisterAddress = MI_PREDICATE_SRC0;
702 lrm.MemoryAddress = fast_clear_type_addr;
703 }
704 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
705 sdi.Address = fast_clear_type_addr;
706 sdi.ImmediateData = 0;
707 }
708
709 /* We use the first half of src0 for the actual predicate. Set the second
710 * half of src0 and all of src1 to 0 as the predicate operation will be
711 * doing an implicit src0 != src1.
712 */
713 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
714 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
715 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
716
717 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
718 mip.LoadOperation = LOAD_LOADINV;
719 mip.CombineOperation = COMBINE_SET;
720 mip.CompareOperation = COMPARE_SRCS_EQUAL;
721 }
722 }
723 #endif /* GEN_GEN <= 8 */
724
725 static void
726 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
727 const struct anv_image *image,
728 VkImageAspectFlagBits aspect,
729 uint32_t level, uint32_t array_layer,
730 enum isl_aux_op resolve_op,
731 enum anv_fast_clear_type fast_clear_supported)
732 {
733 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
734
735 #if GEN_GEN >= 9
736 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
737 aspect, level, array_layer,
738 resolve_op, fast_clear_supported);
739 #else /* GEN_GEN <= 8 */
740 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
741 aspect, level, array_layer,
742 resolve_op, fast_clear_supported);
743 #endif
744
745 /* CCS_D only supports full resolves and BLORP will assert on us if we try
746 * to do a partial resolve on a CCS_D surface.
747 */
748 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
749 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
750 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
751
752 anv_image_ccs_op(cmd_buffer, image, aspect, level,
753 array_layer, 1, resolve_op, NULL, true);
754 }
755
756 static void
757 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
758 const struct anv_image *image,
759 VkImageAspectFlagBits aspect,
760 uint32_t array_layer,
761 enum isl_aux_op resolve_op,
762 enum anv_fast_clear_type fast_clear_supported)
763 {
764 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
765 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
766
767 #if GEN_GEN >= 8 || GEN_IS_HASWELL
768 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
769 aspect, 0, array_layer,
770 resolve_op, fast_clear_supported);
771
772 anv_image_mcs_op(cmd_buffer, image, aspect,
773 array_layer, 1, resolve_op, NULL, true);
774 #else
775 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
776 #endif
777 }
778
779 void
780 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
781 const struct anv_image *image,
782 VkImageAspectFlagBits aspect,
783 enum isl_aux_usage aux_usage,
784 uint32_t level,
785 uint32_t base_layer,
786 uint32_t layer_count)
787 {
788 /* The aspect must be exactly one of the image aspects. */
789 assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects));
790
791 /* The only compression types with more than just fast-clears are MCS,
792 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
793 * track the current fast-clear and compression state. This leaves us
794 * with just MCS and CCS_E.
795 */
796 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
797 aux_usage != ISL_AUX_USAGE_MCS)
798 return;
799
800 set_image_compressed_bit(cmd_buffer, image, aspect,
801 level, base_layer, layer_count, true);
802 }
803
804 static void
805 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
806 const struct anv_image *image,
807 VkImageAspectFlagBits aspect)
808 {
809 assert(cmd_buffer && image);
810 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
811
812 set_image_fast_clear_state(cmd_buffer, image, aspect,
813 ANV_FAST_CLEAR_NONE);
814
815 /* The fast clear value dword(s) will be copied into a surface state object.
816 * Ensure that the restrictions of the fields in the dword(s) are followed.
817 *
818 * CCS buffers on SKL+ can have any value set for the clear colors.
819 */
820 if (image->samples == 1 && GEN_GEN >= 9)
821 return;
822
823 /* Other combinations of auxiliary buffers and platforms require specific
824 * values in the clear value dword(s).
825 */
826 struct anv_address addr =
827 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
828
829 if (GEN_GEN >= 9) {
830 for (unsigned i = 0; i < 4; i++) {
831 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
832 sdi.Address = addr;
833 sdi.Address.offset += i * 4;
834 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
835 assert(image->samples > 1);
836 sdi.ImmediateData = 0;
837 }
838 }
839 } else {
840 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
841 sdi.Address = addr;
842 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
843 /* Pre-SKL, the dword containing the clear values also contains
844 * other fields, so we need to initialize those fields to match the
845 * values that would be in a color attachment.
846 */
847 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
848 ISL_CHANNEL_SELECT_GREEN << 22 |
849 ISL_CHANNEL_SELECT_BLUE << 19 |
850 ISL_CHANNEL_SELECT_ALPHA << 16;
851 } else if (GEN_GEN == 7) {
852 /* On IVB, the dword containing the clear values also contains
853 * other fields that must be zero or can be zero.
854 */
855 sdi.ImmediateData = 0;
856 }
857 }
858 }
859 }
860
861 /* Copy the fast-clear value dword(s) between a surface state object and an
862 * image's fast clear state buffer.
863 */
864 static void
865 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
866 struct anv_state surface_state,
867 const struct anv_image *image,
868 VkImageAspectFlagBits aspect,
869 bool copy_from_surface_state)
870 {
871 assert(cmd_buffer && image);
872 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
873
874 struct anv_bo *ss_bo =
875 &cmd_buffer->device->surface_state_pool.block_pool.bo;
876 uint32_t ss_clear_offset = surface_state.offset +
877 cmd_buffer->device->isl_dev.ss.clear_value_offset;
878 const struct anv_address entry_addr =
879 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
880 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
881
882 if (copy_from_surface_state) {
883 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
884 ss_bo, ss_clear_offset, copy_size);
885 } else {
886 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
887 entry_addr.bo, entry_addr.offset, copy_size);
888
889 /* Updating a surface state object may require that the state cache be
890 * invalidated. From the SKL PRM, Shared Functions -> State -> State
891 * Caching:
892 *
893 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
894 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
895 * modified [...], the L1 state cache must be invalidated to ensure
896 * the new surface or sampler state is fetched from system memory.
897 *
898 * In testing, SKL doesn't actually seem to need this, but HSW does.
899 */
900 cmd_buffer->state.pending_pipe_bits |=
901 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
902 }
903 }
904
905 /**
906 * @brief Transitions a color buffer from one layout to another.
907 *
908 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
909 * more information.
910 *
911 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
912 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
913 * this represents the maximum layers to transition at each
914 * specified miplevel.
915 */
916 static void
917 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
918 const struct anv_image *image,
919 VkImageAspectFlagBits aspect,
920 const uint32_t base_level, uint32_t level_count,
921 uint32_t base_layer, uint32_t layer_count,
922 VkImageLayout initial_layout,
923 VkImageLayout final_layout)
924 {
925 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
926 /* Validate the inputs. */
927 assert(cmd_buffer);
928 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
929 /* These values aren't supported for simplicity's sake. */
930 assert(level_count != VK_REMAINING_MIP_LEVELS &&
931 layer_count != VK_REMAINING_ARRAY_LAYERS);
932 /* Ensure the subresource range is valid. */
933 uint64_t last_level_num = base_level + level_count;
934 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
935 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
936 assert((uint64_t)base_layer + layer_count <= image_layers);
937 assert(last_level_num <= image->levels);
938 /* The spec disallows these final layouts. */
939 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
940 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
941
942 /* No work is necessary if the layout stays the same or if this subresource
943 * range lacks auxiliary data.
944 */
945 if (initial_layout == final_layout)
946 return;
947
948 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
949
950 if (image->planes[plane].shadow_surface.isl.size > 0 &&
951 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
952 /* This surface is a linear compressed image with a tiled shadow surface
953 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
954 * we need to ensure the shadow copy is up-to-date.
955 */
956 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
957 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
958 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
959 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
960 assert(plane == 0);
961 anv_image_copy_to_shadow(cmd_buffer, image,
962 base_level, level_count,
963 base_layer, layer_count);
964 }
965
966 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
967 return;
968
969 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
970
971 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
972 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
973 /* A subresource in the undefined layout may have been aliased and
974 * populated with any arrangement of bits. Therefore, we must initialize
975 * the related aux buffer and clear buffer entry with desirable values.
976 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
977 * images with VK_IMAGE_TILING_OPTIMAL.
978 *
979 * Initialize the relevant clear buffer entries.
980 */
981 if (base_level == 0 && base_layer == 0)
982 init_fast_clear_color(cmd_buffer, image, aspect);
983
984 /* Initialize the aux buffers to enable correct rendering. In order to
985 * ensure that things such as storage images work correctly, aux buffers
986 * need to be initialized to valid data.
987 *
988 * Having an aux buffer with invalid data is a problem for two reasons:
989 *
990 * 1) Having an invalid value in the buffer can confuse the hardware.
991 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
992 * invalid and leads to the hardware doing strange things. It
993 * doesn't hang as far as we can tell but rendering corruption can
994 * occur.
995 *
996 * 2) If this transition is into the GENERAL layout and we then use the
997 * image as a storage image, then we must have the aux buffer in the
998 * pass-through state so that, if we then go to texture from the
999 * image, we get the results of our storage image writes and not the
1000 * fast clear color or other random data.
1001 *
1002 * For CCS both of the problems above are real demonstrable issues. In
1003 * that case, the only thing we can do is to perform an ambiguate to
1004 * transition the aux surface into the pass-through state.
1005 *
1006 * For MCS, (2) is never an issue because we don't support multisampled
1007 * storage images. In theory, issue (1) is a problem with MCS but we've
1008 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1009 * theory, be interpreted as something but we don't know that all bit
1010 * patterns are actually valid. For 2x and 8x, you could easily end up
1011 * with the MCS referring to an invalid plane because not all bits of
1012 * the MCS value are actually used. Even though we've never seen issues
1013 * in the wild, it's best to play it safe and initialize the MCS. We
1014 * can use a fast-clear for MCS because we only ever touch from render
1015 * and texture (no image load store).
1016 */
1017 if (image->samples == 1) {
1018 for (uint32_t l = 0; l < level_count; l++) {
1019 const uint32_t level = base_level + l;
1020
1021 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1022 if (base_layer >= aux_layers)
1023 break; /* We will only get fewer layers as level increases */
1024 uint32_t level_layer_count =
1025 MIN2(layer_count, aux_layers - base_layer);
1026
1027 anv_image_ccs_op(cmd_buffer, image, aspect, level,
1028 base_layer, level_layer_count,
1029 ISL_AUX_OP_AMBIGUATE, NULL, false);
1030
1031 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1032 set_image_compressed_bit(cmd_buffer, image, aspect,
1033 level, base_layer, level_layer_count,
1034 false);
1035 }
1036 }
1037 } else {
1038 if (image->samples == 4 || image->samples == 16) {
1039 anv_perf_warn(cmd_buffer->device->instance, image,
1040 "Doing a potentially unnecessary fast-clear to "
1041 "define an MCS buffer.");
1042 }
1043
1044 assert(base_level == 0 && level_count == 1);
1045 anv_image_mcs_op(cmd_buffer, image, aspect,
1046 base_layer, layer_count,
1047 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1048 }
1049 return;
1050 }
1051
1052 const enum isl_aux_usage initial_aux_usage =
1053 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1054 const enum isl_aux_usage final_aux_usage =
1055 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1056
1057 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1058 * We can handle transitions between CCS_D/E to and from NONE. What we
1059 * don't yet handle is switching between CCS_E and CCS_D within a given
1060 * image. Doing so in a performant way requires more detailed aux state
1061 * tracking such as what is done in i965. For now, just assume that we
1062 * only have one type of compression.
1063 */
1064 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1065 final_aux_usage == ISL_AUX_USAGE_NONE ||
1066 initial_aux_usage == final_aux_usage);
1067
1068 /* If initial aux usage is NONE, there is nothing to resolve */
1069 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1070 return;
1071
1072 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1073
1074 /* If the initial layout supports more fast clear than the final layout
1075 * then we need at least a partial resolve.
1076 */
1077 const enum anv_fast_clear_type initial_fast_clear =
1078 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1079 const enum anv_fast_clear_type final_fast_clear =
1080 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1081 if (final_fast_clear < initial_fast_clear)
1082 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1083
1084 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1085 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1086 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1087
1088 if (resolve_op == ISL_AUX_OP_NONE)
1089 return;
1090
1091 /* Perform a resolve to synchronize data between the main and aux buffer.
1092 * Before we begin, we must satisfy the cache flushing requirement specified
1093 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1094 *
1095 * Any transition from any value in {Clear, Render, Resolve} to a
1096 * different value in {Clear, Render, Resolve} requires end of pipe
1097 * synchronization.
1098 *
1099 * We perform a flush of the write cache before and after the clear and
1100 * resolve operations to meet this requirement.
1101 *
1102 * Unlike other drawing, fast clear operations are not properly
1103 * synchronized. The first PIPE_CONTROL here likely ensures that the
1104 * contents of the previous render or clear hit the render target before we
1105 * resolve and the second likely ensures that the resolve is complete before
1106 * we do any more rendering or clearing.
1107 */
1108 cmd_buffer->state.pending_pipe_bits |=
1109 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1110
1111 for (uint32_t l = 0; l < level_count; l++) {
1112 uint32_t level = base_level + l;
1113
1114 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1115 if (base_layer >= aux_layers)
1116 break; /* We will only get fewer layers as level increases */
1117 uint32_t level_layer_count =
1118 MIN2(layer_count, aux_layers - base_layer);
1119
1120 for (uint32_t a = 0; a < level_layer_count; a++) {
1121 uint32_t array_layer = base_layer + a;
1122 if (image->samples == 1) {
1123 anv_cmd_predicated_ccs_resolve(cmd_buffer, image, aspect,
1124 level, array_layer, resolve_op,
1125 final_fast_clear);
1126 } else {
1127 anv_cmd_predicated_mcs_resolve(cmd_buffer, image, aspect,
1128 array_layer, resolve_op,
1129 final_fast_clear);
1130 }
1131 }
1132 }
1133
1134 cmd_buffer->state.pending_pipe_bits |=
1135 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1136 }
1137
1138 /**
1139 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1140 */
1141 static VkResult
1142 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1143 struct anv_render_pass *pass,
1144 const VkRenderPassBeginInfo *begin)
1145 {
1146 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1147 struct anv_cmd_state *state = &cmd_buffer->state;
1148
1149 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1150
1151 if (pass->attachment_count > 0) {
1152 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1153 pass->attachment_count *
1154 sizeof(state->attachments[0]),
1155 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1156 if (state->attachments == NULL) {
1157 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1158 return anv_batch_set_error(&cmd_buffer->batch,
1159 VK_ERROR_OUT_OF_HOST_MEMORY);
1160 }
1161 } else {
1162 state->attachments = NULL;
1163 }
1164
1165 /* Reserve one for the NULL state. */
1166 unsigned num_states = 1;
1167 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1168 if (vk_format_is_color(pass->attachments[i].format))
1169 num_states++;
1170
1171 if (need_input_attachment_state(&pass->attachments[i]))
1172 num_states++;
1173 }
1174
1175 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1176 state->render_pass_states =
1177 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1178 num_states * ss_stride, isl_dev->ss.align);
1179
1180 struct anv_state next_state = state->render_pass_states;
1181 next_state.alloc_size = isl_dev->ss.size;
1182
1183 state->null_surface_state = next_state;
1184 next_state.offset += ss_stride;
1185 next_state.map += ss_stride;
1186
1187 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1188 if (vk_format_is_color(pass->attachments[i].format)) {
1189 state->attachments[i].color.state = next_state;
1190 next_state.offset += ss_stride;
1191 next_state.map += ss_stride;
1192 }
1193
1194 if (need_input_attachment_state(&pass->attachments[i])) {
1195 state->attachments[i].input.state = next_state;
1196 next_state.offset += ss_stride;
1197 next_state.map += ss_stride;
1198 }
1199 }
1200 assert(next_state.offset == state->render_pass_states.offset +
1201 state->render_pass_states.alloc_size);
1202
1203 if (begin) {
1204 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
1205 assert(pass->attachment_count == framebuffer->attachment_count);
1206
1207 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1208 isl_extent3d(framebuffer->width,
1209 framebuffer->height,
1210 framebuffer->layers));
1211
1212 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1213 struct anv_render_pass_attachment *att = &pass->attachments[i];
1214 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1215 VkImageAspectFlags clear_aspects = 0;
1216 VkImageAspectFlags load_aspects = 0;
1217
1218 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1219 /* color attachment */
1220 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1221 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1222 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1223 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1224 }
1225 } else {
1226 /* depthstencil attachment */
1227 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1228 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1229 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1230 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1231 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1232 }
1233 }
1234 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1235 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1236 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1237 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1238 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1239 }
1240 }
1241 }
1242
1243 state->attachments[i].current_layout = att->initial_layout;
1244 state->attachments[i].pending_clear_aspects = clear_aspects;
1245 state->attachments[i].pending_load_aspects = load_aspects;
1246 if (clear_aspects)
1247 state->attachments[i].clear_value = begin->pClearValues[i];
1248
1249 struct anv_image_view *iview = framebuffer->attachments[i];
1250 anv_assert(iview->vk_format == att->format);
1251
1252 const uint32_t num_layers = iview->planes[0].isl.array_len;
1253 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1254
1255 union isl_color_value clear_color = { .u32 = { 0, } };
1256 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1257 anv_assert(iview->n_planes == 1);
1258 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1259 color_attachment_compute_aux_usage(cmd_buffer->device,
1260 state, i, begin->renderArea,
1261 &clear_color);
1262
1263 anv_image_fill_surface_state(cmd_buffer->device,
1264 iview->image,
1265 VK_IMAGE_ASPECT_COLOR_BIT,
1266 &iview->planes[0].isl,
1267 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1268 state->attachments[i].aux_usage,
1269 &clear_color,
1270 0,
1271 &state->attachments[i].color,
1272 NULL);
1273
1274 add_image_view_relocs(cmd_buffer, iview, 0,
1275 state->attachments[i].color);
1276 } else {
1277 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1278 state, i,
1279 begin->renderArea);
1280 }
1281
1282 if (need_input_attachment_state(&pass->attachments[i])) {
1283 anv_image_fill_surface_state(cmd_buffer->device,
1284 iview->image,
1285 VK_IMAGE_ASPECT_COLOR_BIT,
1286 &iview->planes[0].isl,
1287 ISL_SURF_USAGE_TEXTURE_BIT,
1288 state->attachments[i].input_aux_usage,
1289 &clear_color,
1290 0,
1291 &state->attachments[i].input,
1292 NULL);
1293
1294 add_image_view_relocs(cmd_buffer, iview, 0,
1295 state->attachments[i].input);
1296 }
1297 }
1298 }
1299
1300 return VK_SUCCESS;
1301 }
1302
1303 VkResult
1304 genX(BeginCommandBuffer)(
1305 VkCommandBuffer commandBuffer,
1306 const VkCommandBufferBeginInfo* pBeginInfo)
1307 {
1308 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1309
1310 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1311 * command buffer's state. Otherwise, we must *reset* its state. In both
1312 * cases we reset it.
1313 *
1314 * From the Vulkan 1.0 spec:
1315 *
1316 * If a command buffer is in the executable state and the command buffer
1317 * was allocated from a command pool with the
1318 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1319 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1320 * as if vkResetCommandBuffer had been called with
1321 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1322 * the command buffer in the recording state.
1323 */
1324 anv_cmd_buffer_reset(cmd_buffer);
1325
1326 cmd_buffer->usage_flags = pBeginInfo->flags;
1327
1328 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1329 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1330
1331 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1332
1333 /* We sometimes store vertex data in the dynamic state buffer for blorp
1334 * operations and our dynamic state stream may re-use data from previous
1335 * command buffers. In order to prevent stale cache data, we flush the VF
1336 * cache. We could do this on every blorp call but that's not really
1337 * needed as all of the data will get written by the CPU prior to the GPU
1338 * executing anything. The chances are fairly high that they will use
1339 * blorp at least once per primary command buffer so it shouldn't be
1340 * wasted.
1341 */
1342 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1343 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1344
1345 /* We send an "Indirect State Pointers Disable" packet at
1346 * EndCommandBuffer, so all push contant packets are ignored during a
1347 * context restore. Documentation says after that command, we need to
1348 * emit push constants again before any rendering operation. So we
1349 * flag them dirty here to make sure they get emitted.
1350 */
1351 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1352
1353 VkResult result = VK_SUCCESS;
1354 if (cmd_buffer->usage_flags &
1355 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1356 assert(pBeginInfo->pInheritanceInfo);
1357 cmd_buffer->state.pass =
1358 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1359 cmd_buffer->state.subpass =
1360 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1361
1362 /* This is optional in the inheritance info. */
1363 cmd_buffer->state.framebuffer =
1364 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1365
1366 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1367 cmd_buffer->state.pass, NULL);
1368
1369 /* Record that HiZ is enabled if we can. */
1370 if (cmd_buffer->state.framebuffer) {
1371 const struct anv_image_view * const iview =
1372 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1373
1374 if (iview) {
1375 VkImageLayout layout =
1376 cmd_buffer->state.subpass->depth_stencil_attachment.layout;
1377
1378 enum isl_aux_usage aux_usage =
1379 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1380 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1381
1382 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1383 }
1384 }
1385
1386 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1387 }
1388
1389 return result;
1390 }
1391
1392 /* From the PRM, Volume 2a:
1393 *
1394 * "Indirect State Pointers Disable
1395 *
1396 * At the completion of the post-sync operation associated with this pipe
1397 * control packet, the indirect state pointers in the hardware are
1398 * considered invalid; the indirect pointers are not saved in the context.
1399 * If any new indirect state commands are executed in the command stream
1400 * while the pipe control is pending, the new indirect state commands are
1401 * preserved.
1402 *
1403 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1404 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1405 * commands are only considered as Indirect State Pointers. Once ISP is
1406 * issued in a context, SW must initialize by programming push constant
1407 * commands for all the shaders (at least to zero length) before attempting
1408 * any rendering operation for the same context."
1409 *
1410 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1411 * even though they point to a BO that has been already unreferenced at
1412 * the end of the previous batch buffer. This has been fine so far since
1413 * we are protected by these scratch page (every address not covered by
1414 * a BO should be pointing to the scratch page). But on CNL, it is
1415 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1416 * instruction.
1417 *
1418 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1419 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1420 * context restore, so the mentioned hang doesn't happen. However,
1421 * software must program push constant commands for all stages prior to
1422 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1423 */
1424 static void
1425 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1426 {
1427 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1428 pc.IndirectStatePointersDisable = true;
1429 pc.CommandStreamerStallEnable = true;
1430 }
1431 }
1432
1433 VkResult
1434 genX(EndCommandBuffer)(
1435 VkCommandBuffer commandBuffer)
1436 {
1437 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1438
1439 if (anv_batch_has_error(&cmd_buffer->batch))
1440 return cmd_buffer->batch.status;
1441
1442 /* We want every command buffer to start with the PMA fix in a known state,
1443 * so we disable it at the end of the command buffer.
1444 */
1445 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1446
1447 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1448
1449 emit_isp_disable(cmd_buffer);
1450
1451 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1452
1453 return VK_SUCCESS;
1454 }
1455
1456 void
1457 genX(CmdExecuteCommands)(
1458 VkCommandBuffer commandBuffer,
1459 uint32_t commandBufferCount,
1460 const VkCommandBuffer* pCmdBuffers)
1461 {
1462 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1463
1464 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1465
1466 if (anv_batch_has_error(&primary->batch))
1467 return;
1468
1469 /* The secondary command buffers will assume that the PMA fix is disabled
1470 * when they begin executing. Make sure this is true.
1471 */
1472 genX(cmd_buffer_enable_pma_fix)(primary, false);
1473
1474 /* The secondary command buffer doesn't know which textures etc. have been
1475 * flushed prior to their execution. Apply those flushes now.
1476 */
1477 genX(cmd_buffer_apply_pipe_flushes)(primary);
1478
1479 for (uint32_t i = 0; i < commandBufferCount; i++) {
1480 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1481
1482 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1483 assert(!anv_batch_has_error(&secondary->batch));
1484
1485 if (secondary->usage_flags &
1486 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1487 /* If we're continuing a render pass from the primary, we need to
1488 * copy the surface states for the current subpass into the storage
1489 * we allocated for them in BeginCommandBuffer.
1490 */
1491 struct anv_bo *ss_bo =
1492 &primary->device->surface_state_pool.block_pool.bo;
1493 struct anv_state src_state = primary->state.render_pass_states;
1494 struct anv_state dst_state = secondary->state.render_pass_states;
1495 assert(src_state.alloc_size == dst_state.alloc_size);
1496
1497 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1498 ss_bo, src_state.offset,
1499 src_state.alloc_size);
1500 }
1501
1502 anv_cmd_buffer_add_secondary(primary, secondary);
1503 }
1504
1505 /* The secondary may have selected a different pipeline (3D or compute) and
1506 * may have changed the current L3$ configuration. Reset our tracking
1507 * variables to invalid values to ensure that we re-emit these in the case
1508 * where we do any draws or compute dispatches from the primary after the
1509 * secondary has returned.
1510 */
1511 primary->state.current_pipeline = UINT32_MAX;
1512 primary->state.current_l3_config = NULL;
1513
1514 /* Each of the secondary command buffers will use its own state base
1515 * address. We need to re-emit state base address for the primary after
1516 * all of the secondaries are done.
1517 *
1518 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1519 * address calls?
1520 */
1521 genX(cmd_buffer_emit_state_base_address)(primary);
1522 }
1523
1524 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1525 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1526 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1527
1528 /**
1529 * Program the hardware to use the specified L3 configuration.
1530 */
1531 void
1532 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1533 const struct gen_l3_config *cfg)
1534 {
1535 assert(cfg);
1536 if (cfg == cmd_buffer->state.current_l3_config)
1537 return;
1538
1539 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1540 intel_logd("L3 config transition: ");
1541 gen_dump_l3_config(cfg, stderr);
1542 }
1543
1544 const bool has_slm = cfg->n[GEN_L3P_SLM];
1545
1546 /* According to the hardware docs, the L3 partitioning can only be changed
1547 * while the pipeline is completely drained and the caches are flushed,
1548 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1549 */
1550 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1551 pc.DCFlushEnable = true;
1552 pc.PostSyncOperation = NoWrite;
1553 pc.CommandStreamerStallEnable = true;
1554 }
1555
1556 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1557 * invalidation of the relevant caches. Note that because RO invalidation
1558 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1559 * command is processed by the CS) we cannot combine it with the previous
1560 * stalling flush as the hardware documentation suggests, because that
1561 * would cause the CS to stall on previous rendering *after* RO
1562 * invalidation and wouldn't prevent the RO caches from being polluted by
1563 * concurrent rendering before the stall completes. This intentionally
1564 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1565 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1566 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1567 * already guarantee that there is no concurrent GPGPU kernel execution
1568 * (see SKL HSD 2132585).
1569 */
1570 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1571 pc.TextureCacheInvalidationEnable = true;
1572 pc.ConstantCacheInvalidationEnable = true;
1573 pc.InstructionCacheInvalidateEnable = true;
1574 pc.StateCacheInvalidationEnable = true;
1575 pc.PostSyncOperation = NoWrite;
1576 }
1577
1578 /* Now send a third stalling flush to make sure that invalidation is
1579 * complete when the L3 configuration registers are modified.
1580 */
1581 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1582 pc.DCFlushEnable = true;
1583 pc.PostSyncOperation = NoWrite;
1584 pc.CommandStreamerStallEnable = true;
1585 }
1586
1587 #if GEN_GEN >= 8
1588
1589 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1590
1591 uint32_t l3cr;
1592 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1593 .SLMEnable = has_slm,
1594 .URBAllocation = cfg->n[GEN_L3P_URB],
1595 .ROAllocation = cfg->n[GEN_L3P_RO],
1596 .DCAllocation = cfg->n[GEN_L3P_DC],
1597 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1598
1599 /* Set up the L3 partitioning. */
1600 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1601
1602 #else
1603
1604 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1605 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1606 cfg->n[GEN_L3P_ALL];
1607 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1608 cfg->n[GEN_L3P_ALL];
1609 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1610 cfg->n[GEN_L3P_ALL];
1611
1612 assert(!cfg->n[GEN_L3P_ALL]);
1613
1614 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1615 * the matching space on the remaining banks has to be allocated to a
1616 * client (URB for all validated configurations) set to the
1617 * lower-bandwidth 2-bank address hashing mode.
1618 */
1619 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1620 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1621 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1622
1623 /* Minimum number of ways that can be allocated to the URB. */
1624 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1625 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1626
1627 uint32_t l3sqcr1, l3cr2, l3cr3;
1628 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1629 .ConvertDC_UC = !has_dc,
1630 .ConvertIS_UC = !has_is,
1631 .ConvertC_UC = !has_c,
1632 .ConvertT_UC = !has_t);
1633 l3sqcr1 |=
1634 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1635 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1636 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1637
1638 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1639 .SLMEnable = has_slm,
1640 .URBLowBandwidth = urb_low_bw,
1641 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1642 #if !GEN_IS_HASWELL
1643 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1644 #endif
1645 .ROAllocation = cfg->n[GEN_L3P_RO],
1646 .DCAllocation = cfg->n[GEN_L3P_DC]);
1647
1648 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1649 .ISAllocation = cfg->n[GEN_L3P_IS],
1650 .ISLowBandwidth = 0,
1651 .CAllocation = cfg->n[GEN_L3P_C],
1652 .CLowBandwidth = 0,
1653 .TAllocation = cfg->n[GEN_L3P_T],
1654 .TLowBandwidth = 0);
1655
1656 /* Set up the L3 partitioning. */
1657 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1658 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1659 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1660
1661 #if GEN_IS_HASWELL
1662 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1663 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1664 * them disabled to avoid crashing the system hard.
1665 */
1666 uint32_t scratch1, chicken3;
1667 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1668 .L3AtomicDisable = !has_dc);
1669 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1670 .L3AtomicDisableMask = true,
1671 .L3AtomicDisable = !has_dc);
1672 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1673 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1674 }
1675 #endif
1676
1677 #endif
1678
1679 cmd_buffer->state.current_l3_config = cfg;
1680 }
1681
1682 void
1683 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1684 {
1685 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1686
1687 /* Flushes are pipelined while invalidations are handled immediately.
1688 * Therefore, if we're flushing anything then we need to schedule a stall
1689 * before any invalidations can happen.
1690 */
1691 if (bits & ANV_PIPE_FLUSH_BITS)
1692 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1693
1694 /* If we're going to do an invalidate and we have a pending CS stall that
1695 * has yet to be resolved, we do the CS stall now.
1696 */
1697 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1698 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1699 bits |= ANV_PIPE_CS_STALL_BIT;
1700 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1701 }
1702
1703 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1704 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1705 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1706 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1707 pipe.RenderTargetCacheFlushEnable =
1708 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1709
1710 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1711 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1712 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1713
1714 /*
1715 * According to the Broadwell documentation, any PIPE_CONTROL with the
1716 * "Command Streamer Stall" bit set must also have another bit set,
1717 * with five different options:
1718 *
1719 * - Render Target Cache Flush
1720 * - Depth Cache Flush
1721 * - Stall at Pixel Scoreboard
1722 * - Post-Sync Operation
1723 * - Depth Stall
1724 * - DC Flush Enable
1725 *
1726 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1727 * mesa and it seems to work fine. The choice is fairly arbitrary.
1728 */
1729 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1730 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1731 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1732 pipe.StallAtPixelScoreboard = true;
1733 }
1734
1735 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1736 }
1737
1738 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1739 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1740 pipe.StateCacheInvalidationEnable =
1741 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1742 pipe.ConstantCacheInvalidationEnable =
1743 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1744 pipe.VFCacheInvalidationEnable =
1745 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1746 pipe.TextureCacheInvalidationEnable =
1747 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1748 pipe.InstructionCacheInvalidateEnable =
1749 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1750 }
1751
1752 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1753 }
1754
1755 cmd_buffer->state.pending_pipe_bits = bits;
1756 }
1757
1758 void genX(CmdPipelineBarrier)(
1759 VkCommandBuffer commandBuffer,
1760 VkPipelineStageFlags srcStageMask,
1761 VkPipelineStageFlags destStageMask,
1762 VkBool32 byRegion,
1763 uint32_t memoryBarrierCount,
1764 const VkMemoryBarrier* pMemoryBarriers,
1765 uint32_t bufferMemoryBarrierCount,
1766 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1767 uint32_t imageMemoryBarrierCount,
1768 const VkImageMemoryBarrier* pImageMemoryBarriers)
1769 {
1770 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1771
1772 /* XXX: Right now, we're really dumb and just flush whatever categories
1773 * the app asks for. One of these days we may make this a bit better
1774 * but right now that's all the hardware allows for in most areas.
1775 */
1776 VkAccessFlags src_flags = 0;
1777 VkAccessFlags dst_flags = 0;
1778
1779 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1780 src_flags |= pMemoryBarriers[i].srcAccessMask;
1781 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1782 }
1783
1784 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1785 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1786 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1787 }
1788
1789 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1790 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1791 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1792 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1793 const VkImageSubresourceRange *range =
1794 &pImageMemoryBarriers[i].subresourceRange;
1795
1796 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1797 transition_depth_buffer(cmd_buffer, image,
1798 pImageMemoryBarriers[i].oldLayout,
1799 pImageMemoryBarriers[i].newLayout);
1800 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1801 VkImageAspectFlags color_aspects =
1802 anv_image_expand_aspects(image, range->aspectMask);
1803 uint32_t aspect_bit;
1804
1805 uint32_t base_layer, layer_count;
1806 if (image->type == VK_IMAGE_TYPE_3D) {
1807 base_layer = 0;
1808 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1809 } else {
1810 base_layer = range->baseArrayLayer;
1811 layer_count = anv_get_layerCount(image, range);
1812 }
1813
1814 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1815 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1816 range->baseMipLevel,
1817 anv_get_levelCount(image, range),
1818 base_layer, layer_count,
1819 pImageMemoryBarriers[i].oldLayout,
1820 pImageMemoryBarriers[i].newLayout);
1821 }
1822 }
1823 }
1824
1825 cmd_buffer->state.pending_pipe_bits |=
1826 anv_pipe_flush_bits_for_access_flags(src_flags) |
1827 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1828 }
1829
1830 static void
1831 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1832 {
1833 VkShaderStageFlags stages =
1834 cmd_buffer->state.gfx.base.pipeline->active_stages;
1835
1836 /* In order to avoid thrash, we assume that vertex and fragment stages
1837 * always exist. In the rare case where one is missing *and* the other
1838 * uses push concstants, this may be suboptimal. However, avoiding stalls
1839 * seems more important.
1840 */
1841 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1842
1843 if (stages == cmd_buffer->state.push_constant_stages)
1844 return;
1845
1846 #if GEN_GEN >= 8
1847 const unsigned push_constant_kb = 32;
1848 #elif GEN_IS_HASWELL
1849 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1850 #else
1851 const unsigned push_constant_kb = 16;
1852 #endif
1853
1854 const unsigned num_stages =
1855 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1856 unsigned size_per_stage = push_constant_kb / num_stages;
1857
1858 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1859 * units of 2KB. Incidentally, these are the same platforms that have
1860 * 32KB worth of push constant space.
1861 */
1862 if (push_constant_kb == 32)
1863 size_per_stage &= ~1u;
1864
1865 uint32_t kb_used = 0;
1866 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1867 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1868 anv_batch_emit(&cmd_buffer->batch,
1869 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1870 alloc._3DCommandSubOpcode = 18 + i;
1871 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1872 alloc.ConstantBufferSize = push_size;
1873 }
1874 kb_used += push_size;
1875 }
1876
1877 anv_batch_emit(&cmd_buffer->batch,
1878 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1879 alloc.ConstantBufferOffset = kb_used;
1880 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1881 }
1882
1883 cmd_buffer->state.push_constant_stages = stages;
1884
1885 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1886 *
1887 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1888 * the next 3DPRIMITIVE command after programming the
1889 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1890 *
1891 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1892 * pipeline setup, we need to dirty push constants.
1893 */
1894 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1895 }
1896
1897 static const struct anv_descriptor *
1898 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1899 const struct anv_pipeline_binding *binding)
1900 {
1901 assert(binding->set < MAX_SETS);
1902 const struct anv_descriptor_set *set =
1903 pipe_state->descriptors[binding->set];
1904 const uint32_t offset =
1905 set->layout->binding[binding->binding].descriptor_index;
1906 return &set->descriptors[offset + binding->index];
1907 }
1908
1909 static uint32_t
1910 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1911 const struct anv_pipeline_binding *binding)
1912 {
1913 assert(binding->set < MAX_SETS);
1914 const struct anv_descriptor_set *set =
1915 pipe_state->descriptors[binding->set];
1916
1917 uint32_t dynamic_offset_idx =
1918 pipe_state->layout->set[binding->set].dynamic_offset_start +
1919 set->layout->binding[binding->binding].dynamic_offset_index +
1920 binding->index;
1921
1922 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1923 }
1924
1925 static VkResult
1926 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1927 gl_shader_stage stage,
1928 struct anv_state *bt_state)
1929 {
1930 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1931 struct anv_cmd_pipeline_state *pipe_state;
1932 struct anv_pipeline *pipeline;
1933 uint32_t bias, state_offset;
1934
1935 switch (stage) {
1936 case MESA_SHADER_COMPUTE:
1937 pipe_state = &cmd_buffer->state.compute.base;
1938 bias = 1;
1939 break;
1940 default:
1941 pipe_state = &cmd_buffer->state.gfx.base;
1942 bias = 0;
1943 break;
1944 }
1945 pipeline = pipe_state->pipeline;
1946
1947 if (!anv_pipeline_has_stage(pipeline, stage)) {
1948 *bt_state = (struct anv_state) { 0, };
1949 return VK_SUCCESS;
1950 }
1951
1952 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1953 if (bias + map->surface_count == 0) {
1954 *bt_state = (struct anv_state) { 0, };
1955 return VK_SUCCESS;
1956 }
1957
1958 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1959 bias + map->surface_count,
1960 &state_offset);
1961 uint32_t *bt_map = bt_state->map;
1962
1963 if (bt_state->map == NULL)
1964 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1965
1966 if (stage == MESA_SHADER_COMPUTE &&
1967 get_cs_prog_data(pipeline)->uses_num_work_groups) {
1968 struct anv_bo *bo = cmd_buffer->state.compute.num_workgroups.bo;
1969 uint32_t bo_offset = cmd_buffer->state.compute.num_workgroups.offset;
1970
1971 struct anv_state surface_state;
1972 surface_state =
1973 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1974
1975 const enum isl_format format =
1976 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1977 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1978 format, bo_offset, 12, 1);
1979
1980 bt_map[0] = surface_state.offset + state_offset;
1981 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1982 }
1983
1984 if (map->surface_count == 0)
1985 goto out;
1986
1987 if (map->image_count > 0) {
1988 VkResult result =
1989 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1990 if (result != VK_SUCCESS)
1991 return result;
1992
1993 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1994 }
1995
1996 uint32_t image = 0;
1997 for (uint32_t s = 0; s < map->surface_count; s++) {
1998 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1999
2000 struct anv_state surface_state;
2001
2002 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
2003 /* Color attachment binding */
2004 assert(stage == MESA_SHADER_FRAGMENT);
2005 assert(binding->binding == 0);
2006 if (binding->index < subpass->color_count) {
2007 const unsigned att =
2008 subpass->color_attachments[binding->index].attachment;
2009
2010 /* From the Vulkan 1.0.46 spec:
2011 *
2012 * "If any color or depth/stencil attachments are
2013 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2014 * attachments."
2015 */
2016 if (att == VK_ATTACHMENT_UNUSED) {
2017 surface_state = cmd_buffer->state.null_surface_state;
2018 } else {
2019 surface_state = cmd_buffer->state.attachments[att].color.state;
2020 }
2021 } else {
2022 surface_state = cmd_buffer->state.null_surface_state;
2023 }
2024
2025 bt_map[bias + s] = surface_state.offset + state_offset;
2026 continue;
2027 }
2028
2029 const struct anv_descriptor *desc =
2030 anv_descriptor_for_binding(pipe_state, binding);
2031
2032 switch (desc->type) {
2033 case VK_DESCRIPTOR_TYPE_SAMPLER:
2034 /* Nothing for us to do here */
2035 continue;
2036
2037 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2038 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2039 struct anv_surface_state sstate =
2040 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2041 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2042 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2043 surface_state = sstate.state;
2044 assert(surface_state.alloc_size);
2045 add_image_view_relocs(cmd_buffer, desc->image_view,
2046 binding->plane, sstate);
2047 break;
2048 }
2049 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2050 assert(stage == MESA_SHADER_FRAGMENT);
2051 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2052 /* For depth and stencil input attachments, we treat it like any
2053 * old texture that a user may have bound.
2054 */
2055 struct anv_surface_state sstate =
2056 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2057 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2058 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2059 surface_state = sstate.state;
2060 assert(surface_state.alloc_size);
2061 add_image_view_relocs(cmd_buffer, desc->image_view,
2062 binding->plane, sstate);
2063 } else {
2064 /* For color input attachments, we create the surface state at
2065 * vkBeginRenderPass time so that we can include aux and clear
2066 * color information.
2067 */
2068 assert(binding->input_attachment_index < subpass->input_count);
2069 const unsigned subpass_att = binding->input_attachment_index;
2070 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2071 surface_state = cmd_buffer->state.attachments[att].input.state;
2072 }
2073 break;
2074
2075 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2076 struct anv_surface_state sstate = (binding->write_only)
2077 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2078 : desc->image_view->planes[binding->plane].storage_surface_state;
2079 surface_state = sstate.state;
2080 assert(surface_state.alloc_size);
2081 add_image_view_relocs(cmd_buffer, desc->image_view,
2082 binding->plane, sstate);
2083
2084 struct brw_image_param *image_param =
2085 &cmd_buffer->state.push_constants[stage]->images[image++];
2086
2087 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
2088 image_param->surface_idx = bias + s;
2089 break;
2090 }
2091
2092 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2093 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2094 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2095 surface_state = desc->buffer_view->surface_state;
2096 assert(surface_state.alloc_size);
2097 add_surface_state_reloc(cmd_buffer, surface_state,
2098 desc->buffer_view->bo,
2099 desc->buffer_view->offset);
2100 break;
2101
2102 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2103 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2104 /* Compute the offset within the buffer */
2105 uint32_t dynamic_offset =
2106 dynamic_offset_for_binding(pipe_state, binding);
2107 uint64_t offset = desc->offset + dynamic_offset;
2108 /* Clamp to the buffer size */
2109 offset = MIN2(offset, desc->buffer->size);
2110 /* Clamp the range to the buffer size */
2111 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2112
2113 surface_state =
2114 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2115 enum isl_format format =
2116 anv_isl_format_for_descriptor_type(desc->type);
2117
2118 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2119 format, offset, range, 1);
2120 add_surface_state_reloc(cmd_buffer, surface_state,
2121 desc->buffer->bo,
2122 desc->buffer->offset + offset);
2123 break;
2124 }
2125
2126 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2127 surface_state = (binding->write_only)
2128 ? desc->buffer_view->writeonly_storage_surface_state
2129 : desc->buffer_view->storage_surface_state;
2130 assert(surface_state.alloc_size);
2131 add_surface_state_reloc(cmd_buffer, surface_state,
2132 desc->buffer_view->bo,
2133 desc->buffer_view->offset);
2134
2135 struct brw_image_param *image_param =
2136 &cmd_buffer->state.push_constants[stage]->images[image++];
2137
2138 *image_param = desc->buffer_view->storage_image_param;
2139 image_param->surface_idx = bias + s;
2140 break;
2141
2142 default:
2143 assert(!"Invalid descriptor type");
2144 continue;
2145 }
2146
2147 bt_map[bias + s] = surface_state.offset + state_offset;
2148 }
2149 assert(image == map->image_count);
2150
2151 out:
2152 anv_state_flush(cmd_buffer->device, *bt_state);
2153
2154 #if GEN_GEN >= 11
2155 /* The PIPE_CONTROL command description says:
2156 *
2157 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
2158 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2159 * Target Cache Flush by enabling this bit. When render target flush
2160 * is set due to new association of BTI, PS Scoreboard Stall bit must
2161 * be set in this packet."
2162 *
2163 * FINISHME: Currently we shuffle around the surface states in the binding
2164 * table based on if they are getting used or not. So, we've to do below
2165 * pipe control flush for every binding table upload. Make changes so
2166 * that we do it only when we modify render target surface states.
2167 */
2168 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2169 pc.RenderTargetCacheFlushEnable = true;
2170 pc.StallAtPixelScoreboard = true;
2171 }
2172 #endif
2173
2174 return VK_SUCCESS;
2175 }
2176
2177 static VkResult
2178 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2179 gl_shader_stage stage,
2180 struct anv_state *state)
2181 {
2182 struct anv_cmd_pipeline_state *pipe_state =
2183 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2184 &cmd_buffer->state.gfx.base;
2185 struct anv_pipeline *pipeline = pipe_state->pipeline;
2186
2187 if (!anv_pipeline_has_stage(pipeline, stage)) {
2188 *state = (struct anv_state) { 0, };
2189 return VK_SUCCESS;
2190 }
2191
2192 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2193 if (map->sampler_count == 0) {
2194 *state = (struct anv_state) { 0, };
2195 return VK_SUCCESS;
2196 }
2197
2198 uint32_t size = map->sampler_count * 16;
2199 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2200
2201 if (state->map == NULL)
2202 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2203
2204 for (uint32_t s = 0; s < map->sampler_count; s++) {
2205 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2206 const struct anv_descriptor *desc =
2207 anv_descriptor_for_binding(pipe_state, binding);
2208
2209 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2210 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2211 continue;
2212
2213 struct anv_sampler *sampler = desc->sampler;
2214
2215 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2216 * happens to be zero.
2217 */
2218 if (sampler == NULL)
2219 continue;
2220
2221 memcpy(state->map + (s * 16),
2222 sampler->state[binding->plane], sizeof(sampler->state[0]));
2223 }
2224
2225 anv_state_flush(cmd_buffer->device, *state);
2226
2227 return VK_SUCCESS;
2228 }
2229
2230 static uint32_t
2231 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2232 {
2233 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2234
2235 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2236 pipeline->active_stages;
2237
2238 VkResult result = VK_SUCCESS;
2239 anv_foreach_stage(s, dirty) {
2240 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2241 if (result != VK_SUCCESS)
2242 break;
2243 result = emit_binding_table(cmd_buffer, s,
2244 &cmd_buffer->state.binding_tables[s]);
2245 if (result != VK_SUCCESS)
2246 break;
2247 }
2248
2249 if (result != VK_SUCCESS) {
2250 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2251
2252 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2253 if (result != VK_SUCCESS)
2254 return 0;
2255
2256 /* Re-emit state base addresses so we get the new surface state base
2257 * address before we start emitting binding tables etc.
2258 */
2259 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2260
2261 /* Re-emit all active binding tables */
2262 dirty |= pipeline->active_stages;
2263 anv_foreach_stage(s, dirty) {
2264 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2265 if (result != VK_SUCCESS) {
2266 anv_batch_set_error(&cmd_buffer->batch, result);
2267 return 0;
2268 }
2269 result = emit_binding_table(cmd_buffer, s,
2270 &cmd_buffer->state.binding_tables[s]);
2271 if (result != VK_SUCCESS) {
2272 anv_batch_set_error(&cmd_buffer->batch, result);
2273 return 0;
2274 }
2275 }
2276 }
2277
2278 cmd_buffer->state.descriptors_dirty &= ~dirty;
2279
2280 return dirty;
2281 }
2282
2283 static void
2284 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2285 uint32_t stages)
2286 {
2287 static const uint32_t sampler_state_opcodes[] = {
2288 [MESA_SHADER_VERTEX] = 43,
2289 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2290 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2291 [MESA_SHADER_GEOMETRY] = 46,
2292 [MESA_SHADER_FRAGMENT] = 47,
2293 [MESA_SHADER_COMPUTE] = 0,
2294 };
2295
2296 static const uint32_t binding_table_opcodes[] = {
2297 [MESA_SHADER_VERTEX] = 38,
2298 [MESA_SHADER_TESS_CTRL] = 39,
2299 [MESA_SHADER_TESS_EVAL] = 40,
2300 [MESA_SHADER_GEOMETRY] = 41,
2301 [MESA_SHADER_FRAGMENT] = 42,
2302 [MESA_SHADER_COMPUTE] = 0,
2303 };
2304
2305 anv_foreach_stage(s, stages) {
2306 assert(s < ARRAY_SIZE(binding_table_opcodes));
2307 assert(binding_table_opcodes[s] > 0);
2308
2309 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2310 anv_batch_emit(&cmd_buffer->batch,
2311 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2312 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2313 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2314 }
2315 }
2316
2317 /* Always emit binding table pointers if we're asked to, since on SKL
2318 * this is what flushes push constants. */
2319 anv_batch_emit(&cmd_buffer->batch,
2320 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2321 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2322 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2323 }
2324 }
2325 }
2326
2327 static void
2328 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2329 VkShaderStageFlags dirty_stages)
2330 {
2331 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2332 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2333
2334 static const uint32_t push_constant_opcodes[] = {
2335 [MESA_SHADER_VERTEX] = 21,
2336 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2337 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2338 [MESA_SHADER_GEOMETRY] = 22,
2339 [MESA_SHADER_FRAGMENT] = 23,
2340 [MESA_SHADER_COMPUTE] = 0,
2341 };
2342
2343 VkShaderStageFlags flushed = 0;
2344
2345 anv_foreach_stage(stage, dirty_stages) {
2346 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2347 assert(push_constant_opcodes[stage] > 0);
2348
2349 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2350 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2351
2352 if (anv_pipeline_has_stage(pipeline, stage)) {
2353 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2354 const struct brw_stage_prog_data *prog_data =
2355 pipeline->shaders[stage]->prog_data;
2356 const struct anv_pipeline_bind_map *bind_map =
2357 &pipeline->shaders[stage]->bind_map;
2358
2359 /* The Skylake PRM contains the following restriction:
2360 *
2361 * "The driver must ensure The following case does not occur
2362 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2363 * buffer 3 read length equal to zero committed followed by a
2364 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2365 * zero committed."
2366 *
2367 * To avoid this, we program the buffers in the highest slots.
2368 * This way, slot 0 is only used if slot 3 is also used.
2369 */
2370 int n = 3;
2371
2372 for (int i = 3; i >= 0; i--) {
2373 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2374 if (range->length == 0)
2375 continue;
2376
2377 const unsigned surface =
2378 prog_data->binding_table.ubo_start + range->block;
2379
2380 assert(surface <= bind_map->surface_count);
2381 const struct anv_pipeline_binding *binding =
2382 &bind_map->surface_to_descriptor[surface];
2383
2384 const struct anv_descriptor *desc =
2385 anv_descriptor_for_binding(&gfx_state->base, binding);
2386
2387 struct anv_address read_addr;
2388 uint32_t read_len;
2389 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2390 read_len = MIN2(range->length,
2391 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
2392 read_addr = (struct anv_address) {
2393 .bo = desc->buffer_view->bo,
2394 .offset = desc->buffer_view->offset +
2395 range->start * 32,
2396 };
2397 } else {
2398 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2399
2400 uint32_t dynamic_offset =
2401 dynamic_offset_for_binding(&gfx_state->base, binding);
2402 uint32_t buf_offset =
2403 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2404 uint32_t buf_range =
2405 MIN2(desc->range, desc->buffer->size - buf_offset);
2406
2407 read_len = MIN2(range->length,
2408 DIV_ROUND_UP(buf_range, 32) - range->start);
2409 read_addr = (struct anv_address) {
2410 .bo = desc->buffer->bo,
2411 .offset = desc->buffer->offset + buf_offset +
2412 range->start * 32,
2413 };
2414 }
2415
2416 if (read_len > 0) {
2417 c.ConstantBody.Buffer[n] = read_addr;
2418 c.ConstantBody.ReadLength[n] = read_len;
2419 n--;
2420 }
2421 }
2422
2423 struct anv_state state =
2424 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2425
2426 if (state.alloc_size > 0) {
2427 c.ConstantBody.Buffer[n] = (struct anv_address) {
2428 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2429 .offset = state.offset,
2430 };
2431 c.ConstantBody.ReadLength[n] =
2432 DIV_ROUND_UP(state.alloc_size, 32);
2433 }
2434 #else
2435 /* For Ivy Bridge, the push constants packets have a different
2436 * rule that would require us to iterate in the other direction
2437 * and possibly mess around with dynamic state base address.
2438 * Don't bother; just emit regular push constants at n = 0.
2439 */
2440 struct anv_state state =
2441 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2442
2443 if (state.alloc_size > 0) {
2444 c.ConstantBody.Buffer[0].offset = state.offset,
2445 c.ConstantBody.ReadLength[0] =
2446 DIV_ROUND_UP(state.alloc_size, 32);
2447 }
2448 #endif
2449 }
2450 }
2451
2452 flushed |= mesa_to_vk_shader_stage(stage);
2453 }
2454
2455 cmd_buffer->state.push_constants_dirty &= ~flushed;
2456 }
2457
2458 void
2459 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2460 {
2461 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2462 uint32_t *p;
2463
2464 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2465
2466 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2467
2468 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2469
2470 genX(flush_pipeline_select_3d)(cmd_buffer);
2471
2472 if (vb_emit) {
2473 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2474 const uint32_t num_dwords = 1 + num_buffers * 4;
2475
2476 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2477 GENX(3DSTATE_VERTEX_BUFFERS));
2478 uint32_t vb, i = 0;
2479 for_each_bit(vb, vb_emit) {
2480 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2481 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2482
2483 struct GENX(VERTEX_BUFFER_STATE) state = {
2484 .VertexBufferIndex = vb,
2485
2486 #if GEN_GEN >= 8
2487 .MemoryObjectControlState = GENX(MOCS),
2488 #else
2489 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
2490 /* Our implementation of VK_KHR_multiview uses instancing to draw
2491 * the different views. If the client asks for instancing, we
2492 * need to use the Instance Data Step Rate to ensure that we
2493 * repeat the client's per-instance data once for each view.
2494 */
2495 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
2496 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2497 #endif
2498
2499 .AddressModifyEnable = true,
2500 .BufferPitch = pipeline->binding_stride[vb],
2501 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2502
2503 #if GEN_GEN >= 8
2504 .BufferSize = buffer->size - offset
2505 #else
2506 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
2507 #endif
2508 };
2509
2510 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2511 i++;
2512 }
2513 }
2514
2515 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2516
2517 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2518 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2519
2520 /* The exact descriptor layout is pulled from the pipeline, so we need
2521 * to re-emit binding tables on every pipeline change.
2522 */
2523 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2524
2525 /* If the pipeline changed, we may need to re-allocate push constant
2526 * space in the URB.
2527 */
2528 cmd_buffer_alloc_push_constants(cmd_buffer);
2529 }
2530
2531 #if GEN_GEN <= 7
2532 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2533 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2534 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2535 *
2536 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2537 * stall needs to be sent just prior to any 3DSTATE_VS,
2538 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2539 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2540 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2541 * PIPE_CONTROL needs to be sent before any combination of VS
2542 * associated 3DSTATE."
2543 */
2544 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2545 pc.DepthStallEnable = true;
2546 pc.PostSyncOperation = WriteImmediateData;
2547 pc.Address =
2548 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2549 }
2550 }
2551 #endif
2552
2553 /* Render targets live in the same binding table as fragment descriptors */
2554 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2555 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2556
2557 /* We emit the binding tables and sampler tables first, then emit push
2558 * constants and then finally emit binding table and sampler table
2559 * pointers. It has to happen in this order, since emitting the binding
2560 * tables may change the push constants (in case of storage images). After
2561 * emitting push constants, on SKL+ we have to emit the corresponding
2562 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2563 */
2564 uint32_t dirty = 0;
2565 if (cmd_buffer->state.descriptors_dirty)
2566 dirty = flush_descriptor_sets(cmd_buffer);
2567
2568 if (dirty || cmd_buffer->state.push_constants_dirty) {
2569 /* Because we're pushing UBOs, we have to push whenever either
2570 * descriptors or push constants is dirty.
2571 */
2572 dirty |= cmd_buffer->state.push_constants_dirty;
2573 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2574 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2575 }
2576
2577 if (dirty)
2578 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2579
2580 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2581 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2582
2583 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2584 ANV_CMD_DIRTY_PIPELINE)) {
2585 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2586 pipeline->depth_clamp_enable);
2587 }
2588
2589 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2590 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2591
2592 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2593
2594 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2595 }
2596
2597 static void
2598 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2599 struct anv_bo *bo, uint32_t offset,
2600 uint32_t size, uint32_t index)
2601 {
2602 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2603 GENX(3DSTATE_VERTEX_BUFFERS));
2604
2605 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2606 &(struct GENX(VERTEX_BUFFER_STATE)) {
2607 .VertexBufferIndex = index,
2608 .AddressModifyEnable = true,
2609 .BufferPitch = 0,
2610 #if (GEN_GEN >= 8)
2611 .MemoryObjectControlState = GENX(MOCS),
2612 .BufferStartingAddress = { bo, offset },
2613 .BufferSize = size
2614 #else
2615 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2616 .BufferStartingAddress = { bo, offset },
2617 .EndAddress = { bo, offset + size },
2618 #endif
2619 });
2620 }
2621
2622 static void
2623 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2624 struct anv_bo *bo, uint32_t offset)
2625 {
2626 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2627 }
2628
2629 static void
2630 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2631 uint32_t base_vertex, uint32_t base_instance)
2632 {
2633 struct anv_state id_state =
2634 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2635
2636 ((uint32_t *)id_state.map)[0] = base_vertex;
2637 ((uint32_t *)id_state.map)[1] = base_instance;
2638
2639 anv_state_flush(cmd_buffer->device, id_state);
2640
2641 emit_base_vertex_instance_bo(cmd_buffer,
2642 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2643 }
2644
2645 static void
2646 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2647 {
2648 struct anv_state state =
2649 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2650
2651 ((uint32_t *)state.map)[0] = draw_index;
2652
2653 anv_state_flush(cmd_buffer->device, state);
2654
2655 emit_vertex_bo(cmd_buffer,
2656 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2657 state.offset, 4, ANV_DRAWID_VB_INDEX);
2658 }
2659
2660 void genX(CmdDraw)(
2661 VkCommandBuffer commandBuffer,
2662 uint32_t vertexCount,
2663 uint32_t instanceCount,
2664 uint32_t firstVertex,
2665 uint32_t firstInstance)
2666 {
2667 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2668 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2669 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2670
2671 if (anv_batch_has_error(&cmd_buffer->batch))
2672 return;
2673
2674 genX(cmd_buffer_flush_state)(cmd_buffer);
2675
2676 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2677 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2678 if (vs_prog_data->uses_drawid)
2679 emit_draw_index(cmd_buffer, 0);
2680
2681 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2682 * different views. We need to multiply instanceCount by the view count.
2683 */
2684 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2685
2686 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2687 prim.VertexAccessType = SEQUENTIAL;
2688 prim.PrimitiveTopologyType = pipeline->topology;
2689 prim.VertexCountPerInstance = vertexCount;
2690 prim.StartVertexLocation = firstVertex;
2691 prim.InstanceCount = instanceCount;
2692 prim.StartInstanceLocation = firstInstance;
2693 prim.BaseVertexLocation = 0;
2694 }
2695 }
2696
2697 void genX(CmdDrawIndexed)(
2698 VkCommandBuffer commandBuffer,
2699 uint32_t indexCount,
2700 uint32_t instanceCount,
2701 uint32_t firstIndex,
2702 int32_t vertexOffset,
2703 uint32_t firstInstance)
2704 {
2705 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2706 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2707 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2708
2709 if (anv_batch_has_error(&cmd_buffer->batch))
2710 return;
2711
2712 genX(cmd_buffer_flush_state)(cmd_buffer);
2713
2714 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2715 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2716 if (vs_prog_data->uses_drawid)
2717 emit_draw_index(cmd_buffer, 0);
2718
2719 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2720 * different views. We need to multiply instanceCount by the view count.
2721 */
2722 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2723
2724 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2725 prim.VertexAccessType = RANDOM;
2726 prim.PrimitiveTopologyType = pipeline->topology;
2727 prim.VertexCountPerInstance = indexCount;
2728 prim.StartVertexLocation = firstIndex;
2729 prim.InstanceCount = instanceCount;
2730 prim.StartInstanceLocation = firstInstance;
2731 prim.BaseVertexLocation = vertexOffset;
2732 }
2733 }
2734
2735 /* Auto-Draw / Indirect Registers */
2736 #define GEN7_3DPRIM_END_OFFSET 0x2420
2737 #define GEN7_3DPRIM_START_VERTEX 0x2430
2738 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2739 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2740 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2741 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2742
2743 /* MI_MATH only exists on Haswell+ */
2744 #if GEN_IS_HASWELL || GEN_GEN >= 8
2745
2746 /* Emit dwords to multiply GPR0 by N */
2747 static void
2748 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2749 {
2750 VK_OUTARRAY_MAKE(out, dw, dw_count);
2751
2752 #define append_alu(opcode, operand1, operand2) \
2753 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2754
2755 assert(N > 0);
2756 unsigned top_bit = 31 - __builtin_clz(N);
2757 for (int i = top_bit - 1; i >= 0; i--) {
2758 /* We get our initial data in GPR0 and we write the final data out to
2759 * GPR0 but we use GPR1 as our scratch register.
2760 */
2761 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2762 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2763
2764 /* Shift the current value left by 1 */
2765 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2766 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2767 append_alu(MI_ALU_ADD, 0, 0);
2768
2769 if (N & (1 << i)) {
2770 /* Store ACCU to R1 and add R0 to R1 */
2771 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2772 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2773 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2774 append_alu(MI_ALU_ADD, 0, 0);
2775 }
2776
2777 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2778 }
2779
2780 #undef append_alu
2781 }
2782
2783 static void
2784 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2785 {
2786 uint32_t num_dwords;
2787 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2788
2789 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2790 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2791 }
2792
2793 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2794
2795 static void
2796 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2797 struct anv_buffer *buffer, uint64_t offset,
2798 bool indexed)
2799 {
2800 struct anv_batch *batch = &cmd_buffer->batch;
2801 struct anv_bo *bo = buffer->bo;
2802 uint32_t bo_offset = buffer->offset + offset;
2803
2804 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2805
2806 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2807 if (view_count > 1) {
2808 #if GEN_IS_HASWELL || GEN_GEN >= 8
2809 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2810 emit_mul_gpr0(batch, view_count);
2811 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2812 #else
2813 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2814 "MI_MATH is not supported on Ivy Bridge");
2815 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2816 #endif
2817 } else {
2818 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2819 }
2820
2821 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2822
2823 if (indexed) {
2824 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2825 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2826 } else {
2827 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2828 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2829 }
2830 }
2831
2832 void genX(CmdDrawIndirect)(
2833 VkCommandBuffer commandBuffer,
2834 VkBuffer _buffer,
2835 VkDeviceSize offset,
2836 uint32_t drawCount,
2837 uint32_t stride)
2838 {
2839 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2840 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2841 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2842 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2843
2844 if (anv_batch_has_error(&cmd_buffer->batch))
2845 return;
2846
2847 genX(cmd_buffer_flush_state)(cmd_buffer);
2848
2849 for (uint32_t i = 0; i < drawCount; i++) {
2850 struct anv_bo *bo = buffer->bo;
2851 uint32_t bo_offset = buffer->offset + offset;
2852
2853 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2854 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2855 if (vs_prog_data->uses_drawid)
2856 emit_draw_index(cmd_buffer, i);
2857
2858 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2859
2860 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2861 prim.IndirectParameterEnable = true;
2862 prim.VertexAccessType = SEQUENTIAL;
2863 prim.PrimitiveTopologyType = pipeline->topology;
2864 }
2865
2866 offset += stride;
2867 }
2868 }
2869
2870 void genX(CmdDrawIndexedIndirect)(
2871 VkCommandBuffer commandBuffer,
2872 VkBuffer _buffer,
2873 VkDeviceSize offset,
2874 uint32_t drawCount,
2875 uint32_t stride)
2876 {
2877 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2878 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2879 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2880 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2881
2882 if (anv_batch_has_error(&cmd_buffer->batch))
2883 return;
2884
2885 genX(cmd_buffer_flush_state)(cmd_buffer);
2886
2887 for (uint32_t i = 0; i < drawCount; i++) {
2888 struct anv_bo *bo = buffer->bo;
2889 uint32_t bo_offset = buffer->offset + offset;
2890
2891 /* TODO: We need to stomp base vertex to 0 somehow */
2892 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2893 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2894 if (vs_prog_data->uses_drawid)
2895 emit_draw_index(cmd_buffer, i);
2896
2897 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2898
2899 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2900 prim.IndirectParameterEnable = true;
2901 prim.VertexAccessType = RANDOM;
2902 prim.PrimitiveTopologyType = pipeline->topology;
2903 }
2904
2905 offset += stride;
2906 }
2907 }
2908
2909 static VkResult
2910 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2911 {
2912 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2913 struct anv_state surfaces = { 0, }, samplers = { 0, };
2914 VkResult result;
2915
2916 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2917 if (result != VK_SUCCESS) {
2918 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2919
2920 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2921 if (result != VK_SUCCESS)
2922 return result;
2923
2924 /* Re-emit state base addresses so we get the new surface state base
2925 * address before we start emitting binding tables etc.
2926 */
2927 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2928
2929 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2930 if (result != VK_SUCCESS) {
2931 anv_batch_set_error(&cmd_buffer->batch, result);
2932 return result;
2933 }
2934 }
2935
2936 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2937 if (result != VK_SUCCESS) {
2938 anv_batch_set_error(&cmd_buffer->batch, result);
2939 return result;
2940 }
2941
2942 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2943 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2944 .BindingTablePointer = surfaces.offset,
2945 .SamplerStatePointer = samplers.offset,
2946 };
2947 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2948
2949 struct anv_state state =
2950 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2951 pipeline->interface_descriptor_data,
2952 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2953 64);
2954
2955 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2956 anv_batch_emit(&cmd_buffer->batch,
2957 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2958 mid.InterfaceDescriptorTotalLength = size;
2959 mid.InterfaceDescriptorDataStartAddress = state.offset;
2960 }
2961
2962 return VK_SUCCESS;
2963 }
2964
2965 void
2966 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2967 {
2968 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2969 MAYBE_UNUSED VkResult result;
2970
2971 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2972
2973 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2974
2975 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2976
2977 if (cmd_buffer->state.compute.pipeline_dirty) {
2978 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2979 *
2980 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2981 * the only bits that are changed are scoreboard related: Scoreboard
2982 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2983 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2984 * sufficient."
2985 */
2986 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2987 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2988
2989 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2990 }
2991
2992 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2993 cmd_buffer->state.compute.pipeline_dirty) {
2994 /* FIXME: figure out descriptors for gen7 */
2995 result = flush_compute_descriptor_set(cmd_buffer);
2996 if (result != VK_SUCCESS)
2997 return;
2998
2999 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3000 }
3001
3002 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3003 struct anv_state push_state =
3004 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3005
3006 if (push_state.alloc_size) {
3007 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3008 curbe.CURBETotalDataLength = push_state.alloc_size;
3009 curbe.CURBEDataStartAddress = push_state.offset;
3010 }
3011 }
3012 }
3013
3014 cmd_buffer->state.compute.pipeline_dirty = false;
3015
3016 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3017 }
3018
3019 #if GEN_GEN == 7
3020
3021 static VkResult
3022 verify_cmd_parser(const struct anv_device *device,
3023 int required_version,
3024 const char *function)
3025 {
3026 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3027 return vk_errorf(device->instance, device->instance,
3028 VK_ERROR_FEATURE_NOT_PRESENT,
3029 "cmd parser version %d is required for %s",
3030 required_version, function);
3031 } else {
3032 return VK_SUCCESS;
3033 }
3034 }
3035
3036 #endif
3037
3038 static void
3039 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3040 uint32_t baseGroupX,
3041 uint32_t baseGroupY,
3042 uint32_t baseGroupZ)
3043 {
3044 if (anv_batch_has_error(&cmd_buffer->batch))
3045 return;
3046
3047 VkResult result =
3048 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, MESA_SHADER_COMPUTE,
3049 base_work_group_id);
3050 if (result != VK_SUCCESS) {
3051 cmd_buffer->batch.status = result;
3052 return;
3053 }
3054
3055 struct anv_push_constants *push =
3056 cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3057 if (push->base_work_group_id[0] != baseGroupX ||
3058 push->base_work_group_id[1] != baseGroupY ||
3059 push->base_work_group_id[2] != baseGroupZ) {
3060 push->base_work_group_id[0] = baseGroupX;
3061 push->base_work_group_id[1] = baseGroupY;
3062 push->base_work_group_id[2] = baseGroupZ;
3063
3064 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3065 }
3066 }
3067
3068 void genX(CmdDispatch)(
3069 VkCommandBuffer commandBuffer,
3070 uint32_t x,
3071 uint32_t y,
3072 uint32_t z)
3073 {
3074 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3075 }
3076
3077 void genX(CmdDispatchBase)(
3078 VkCommandBuffer commandBuffer,
3079 uint32_t baseGroupX,
3080 uint32_t baseGroupY,
3081 uint32_t baseGroupZ,
3082 uint32_t groupCountX,
3083 uint32_t groupCountY,
3084 uint32_t groupCountZ)
3085 {
3086 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3087 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3088 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3089
3090 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3091 baseGroupY, baseGroupZ);
3092
3093 if (anv_batch_has_error(&cmd_buffer->batch))
3094 return;
3095
3096 if (prog_data->uses_num_work_groups) {
3097 struct anv_state state =
3098 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3099 uint32_t *sizes = state.map;
3100 sizes[0] = groupCountX;
3101 sizes[1] = groupCountY;
3102 sizes[2] = groupCountZ;
3103 anv_state_flush(cmd_buffer->device, state);
3104 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3105 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3106 .offset = state.offset,
3107 };
3108 }
3109
3110 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3111
3112 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3113 ggw.SIMDSize = prog_data->simd_size / 16;
3114 ggw.ThreadDepthCounterMaximum = 0;
3115 ggw.ThreadHeightCounterMaximum = 0;
3116 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3117 ggw.ThreadGroupIDXDimension = groupCountX;
3118 ggw.ThreadGroupIDYDimension = groupCountY;
3119 ggw.ThreadGroupIDZDimension = groupCountZ;
3120 ggw.RightExecutionMask = pipeline->cs_right_mask;
3121 ggw.BottomExecutionMask = 0xffffffff;
3122 }
3123
3124 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3125 }
3126
3127 #define GPGPU_DISPATCHDIMX 0x2500
3128 #define GPGPU_DISPATCHDIMY 0x2504
3129 #define GPGPU_DISPATCHDIMZ 0x2508
3130
3131 void genX(CmdDispatchIndirect)(
3132 VkCommandBuffer commandBuffer,
3133 VkBuffer _buffer,
3134 VkDeviceSize offset)
3135 {
3136 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3137 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3138 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3139 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3140 struct anv_bo *bo = buffer->bo;
3141 uint32_t bo_offset = buffer->offset + offset;
3142 struct anv_batch *batch = &cmd_buffer->batch;
3143
3144 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3145
3146 #if GEN_GEN == 7
3147 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3148 * indirect dispatch registers to be written.
3149 */
3150 if (verify_cmd_parser(cmd_buffer->device, 5,
3151 "vkCmdDispatchIndirect") != VK_SUCCESS)
3152 return;
3153 #endif
3154
3155 if (prog_data->uses_num_work_groups) {
3156 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3157 .bo = bo,
3158 .offset = bo_offset,
3159 };
3160 }
3161
3162 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3163
3164 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
3165 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
3166 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
3167
3168 #if GEN_GEN <= 7
3169 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
3170 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
3171 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
3172 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
3173
3174 /* Load compute_dispatch_indirect_x_size into SRC0 */
3175 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
3176
3177 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3178 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3179 mip.LoadOperation = LOAD_LOAD;
3180 mip.CombineOperation = COMBINE_SET;
3181 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3182 }
3183
3184 /* Load compute_dispatch_indirect_y_size into SRC0 */
3185 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
3186
3187 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3188 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3189 mip.LoadOperation = LOAD_LOAD;
3190 mip.CombineOperation = COMBINE_OR;
3191 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3192 }
3193
3194 /* Load compute_dispatch_indirect_z_size into SRC0 */
3195 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
3196
3197 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3198 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3199 mip.LoadOperation = LOAD_LOAD;
3200 mip.CombineOperation = COMBINE_OR;
3201 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3202 }
3203
3204 /* predicate = !predicate; */
3205 #define COMPARE_FALSE 1
3206 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3207 mip.LoadOperation = LOAD_LOADINV;
3208 mip.CombineOperation = COMBINE_OR;
3209 mip.CompareOperation = COMPARE_FALSE;
3210 }
3211 #endif
3212
3213 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
3214 ggw.IndirectParameterEnable = true;
3215 ggw.PredicateEnable = GEN_GEN <= 7;
3216 ggw.SIMDSize = prog_data->simd_size / 16;
3217 ggw.ThreadDepthCounterMaximum = 0;
3218 ggw.ThreadHeightCounterMaximum = 0;
3219 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3220 ggw.RightExecutionMask = pipeline->cs_right_mask;
3221 ggw.BottomExecutionMask = 0xffffffff;
3222 }
3223
3224 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
3225 }
3226
3227 static void
3228 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
3229 uint32_t pipeline)
3230 {
3231 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3232
3233 if (cmd_buffer->state.current_pipeline == pipeline)
3234 return;
3235
3236 #if GEN_GEN >= 8 && GEN_GEN < 10
3237 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3238 *
3239 * Software must clear the COLOR_CALC_STATE Valid field in
3240 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3241 * with Pipeline Select set to GPGPU.
3242 *
3243 * The internal hardware docs recommend the same workaround for Gen9
3244 * hardware too.
3245 */
3246 if (pipeline == GPGPU)
3247 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
3248 #endif
3249
3250 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3251 * PIPELINE_SELECT [DevBWR+]":
3252 *
3253 * Project: DEVSNB+
3254 *
3255 * Software must ensure all the write caches are flushed through a
3256 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3257 * command to invalidate read only caches prior to programming
3258 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3259 */
3260 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3261 pc.RenderTargetCacheFlushEnable = true;
3262 pc.DepthCacheFlushEnable = true;
3263 pc.DCFlushEnable = true;
3264 pc.PostSyncOperation = NoWrite;
3265 pc.CommandStreamerStallEnable = true;
3266 }
3267
3268 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3269 pc.TextureCacheInvalidationEnable = true;
3270 pc.ConstantCacheInvalidationEnable = true;
3271 pc.StateCacheInvalidationEnable = true;
3272 pc.InstructionCacheInvalidateEnable = true;
3273 pc.PostSyncOperation = NoWrite;
3274 }
3275
3276 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
3277 #if GEN_GEN >= 9
3278 ps.MaskBits = 3;
3279 #endif
3280 ps.PipelineSelection = pipeline;
3281 }
3282
3283 #if GEN_GEN == 9
3284 if (devinfo->is_geminilake) {
3285 /* Project: DevGLK
3286 *
3287 * "This chicken bit works around a hardware issue with barrier logic
3288 * encountered when switching between GPGPU and 3D pipelines. To
3289 * workaround the issue, this mode bit should be set after a pipeline
3290 * is selected."
3291 */
3292 uint32_t scec;
3293 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
3294 .GLKBarrierMode =
3295 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
3296 : GLK_BARRIER_MODE_3D_HULL,
3297 .GLKBarrierModeMask = 1);
3298 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
3299 }
3300 #endif
3301
3302 cmd_buffer->state.current_pipeline = pipeline;
3303 }
3304
3305 void
3306 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
3307 {
3308 genX(flush_pipeline_select)(cmd_buffer, _3D);
3309 }
3310
3311 void
3312 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
3313 {
3314 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
3315 }
3316
3317 void
3318 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
3319 {
3320 if (GEN_GEN >= 8)
3321 return;
3322
3323 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3324 *
3325 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3326 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3327 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3328 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3329 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3330 * Depth Flush Bit set, followed by another pipelined depth stall
3331 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3332 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
3333 * via a preceding MI_FLUSH)."
3334 */
3335 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3336 pipe.DepthStallEnable = true;
3337 }
3338 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3339 pipe.DepthCacheFlushEnable = true;
3340 }
3341 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3342 pipe.DepthStallEnable = true;
3343 }
3344 }
3345
3346 static void
3347 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
3348 {
3349 struct anv_device *device = cmd_buffer->device;
3350 const struct anv_image_view *iview =
3351 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
3352 const struct anv_image *image = iview ? iview->image : NULL;
3353
3354 /* FIXME: Width and Height are wrong */
3355
3356 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
3357
3358 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
3359 device->isl_dev.ds.size / 4);
3360 if (dw == NULL)
3361 return;
3362
3363 struct isl_depth_stencil_hiz_emit_info info = {
3364 .mocs = device->default_mocs,
3365 };
3366
3367 if (iview)
3368 info.view = &iview->planes[0].isl;
3369
3370 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
3371 uint32_t depth_plane =
3372 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
3373 const struct anv_surface *surface = &image->planes[depth_plane].surface;
3374
3375 info.depth_surf = &surface->isl;
3376
3377 info.depth_address =
3378 anv_batch_emit_reloc(&cmd_buffer->batch,
3379 dw + device->isl_dev.ds.depth_offset / 4,
3380 image->planes[depth_plane].bo,
3381 image->planes[depth_plane].bo_offset +
3382 surface->offset);
3383
3384 const uint32_t ds =
3385 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
3386 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
3387 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
3388 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
3389
3390 info.hiz_address =
3391 anv_batch_emit_reloc(&cmd_buffer->batch,
3392 dw + device->isl_dev.ds.hiz_offset / 4,
3393 image->planes[depth_plane].bo,
3394 image->planes[depth_plane].bo_offset +
3395 image->planes[depth_plane].aux_surface.offset);
3396
3397 info.depth_clear_value = ANV_HZ_FC_VAL;
3398 }
3399 }
3400
3401 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
3402 uint32_t stencil_plane =
3403 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
3404 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
3405
3406 info.stencil_surf = &surface->isl;
3407
3408 info.stencil_address =
3409 anv_batch_emit_reloc(&cmd_buffer->batch,
3410 dw + device->isl_dev.ds.stencil_offset / 4,
3411 image->planes[stencil_plane].bo,
3412 image->planes[stencil_plane].bo_offset + surface->offset);
3413 }
3414
3415 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
3416
3417 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
3418 }
3419
3420 /**
3421 * This ANDs the view mask of the current subpass with the pending clear
3422 * views in the attachment to get the mask of views active in the subpass
3423 * that still need to be cleared.
3424 */
3425 static inline uint32_t
3426 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
3427 const struct anv_attachment_state *att_state)
3428 {
3429 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
3430 }
3431
3432 static inline bool
3433 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
3434 const struct anv_attachment_state *att_state)
3435 {
3436 if (!cmd_state->subpass->view_mask)
3437 return true;
3438
3439 uint32_t pending_clear_mask =
3440 get_multiview_subpass_clear_mask(cmd_state, att_state);
3441
3442 return pending_clear_mask & 1;
3443 }
3444
3445 static inline bool
3446 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
3447 uint32_t att_idx)
3448 {
3449 const uint32_t last_subpass_idx =
3450 cmd_state->pass->attachments[att_idx].last_subpass_idx;
3451 const struct anv_subpass *last_subpass =
3452 &cmd_state->pass->subpasses[last_subpass_idx];
3453 return last_subpass == cmd_state->subpass;
3454 }
3455
3456 static void
3457 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
3458 uint32_t subpass_id)
3459 {
3460 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3461 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
3462 cmd_state->subpass = subpass;
3463
3464 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3465
3466 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3467 * different views. If the client asks for instancing, we need to use the
3468 * Instance Data Step Rate to ensure that we repeat the client's
3469 * per-instance data once for each view. Since this bit is in
3470 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3471 * of each subpass.
3472 */
3473 if (GEN_GEN == 7)
3474 cmd_buffer->state.gfx.vb_dirty |= ~0;
3475
3476 /* It is possible to start a render pass with an old pipeline. Because the
3477 * render pass and subpass index are both baked into the pipeline, this is
3478 * highly unlikely. In order to do so, it requires that you have a render
3479 * pass with a single subpass and that you use that render pass twice
3480 * back-to-back and use the same pipeline at the start of the second render
3481 * pass as at the end of the first. In order to avoid unpredictable issues
3482 * with this edge case, we just dirty the pipeline at the start of every
3483 * subpass.
3484 */
3485 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3486
3487 /* Accumulate any subpass flushes that need to happen before the subpass */
3488 cmd_buffer->state.pending_pipe_bits |=
3489 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3490
3491 VkRect2D render_area = cmd_buffer->state.render_area;
3492 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3493
3494 bool is_multiview = subpass->view_mask != 0;
3495
3496 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3497 const uint32_t a = subpass->attachments[i].attachment;
3498 if (a == VK_ATTACHMENT_UNUSED)
3499 continue;
3500
3501 assert(a < cmd_state->pass->attachment_count);
3502 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3503
3504 struct anv_image_view *iview = fb->attachments[a];
3505 const struct anv_image *image = iview->image;
3506
3507 /* A resolve is necessary before use as an input attachment if the clear
3508 * color or auxiliary buffer usage isn't supported by the sampler.
3509 */
3510 const bool input_needs_resolve =
3511 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3512 att_state->input_aux_usage != att_state->aux_usage;
3513
3514 VkImageLayout target_layout;
3515 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3516 !input_needs_resolve) {
3517 /* Layout transitions before the final only help to enable sampling
3518 * as an input attachment. If the input attachment supports sampling
3519 * using the auxiliary surface, we can skip such transitions by
3520 * making the target layout one that is CCS-aware.
3521 */
3522 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3523 } else {
3524 target_layout = subpass->attachments[i].layout;
3525 }
3526
3527 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3528 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3529
3530 uint32_t base_layer, layer_count;
3531 if (image->type == VK_IMAGE_TYPE_3D) {
3532 base_layer = 0;
3533 layer_count = anv_minify(iview->image->extent.depth,
3534 iview->planes[0].isl.base_level);
3535 } else {
3536 base_layer = iview->planes[0].isl.base_array_layer;
3537 layer_count = fb->layers;
3538 }
3539
3540 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3541 iview->planes[0].isl.base_level, 1,
3542 base_layer, layer_count,
3543 att_state->current_layout, target_layout);
3544 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3545 transition_depth_buffer(cmd_buffer, image,
3546 att_state->current_layout, target_layout);
3547 att_state->aux_usage =
3548 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3549 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3550 }
3551 att_state->current_layout = target_layout;
3552
3553 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
3554 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3555
3556 /* Multi-planar images are not supported as attachments */
3557 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3558 assert(image->n_planes == 1);
3559
3560 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
3561 uint32_t clear_layer_count = fb->layers;
3562
3563 if (att_state->fast_clear &&
3564 do_first_layer_clear(cmd_state, att_state)) {
3565 /* We only support fast-clears on the first layer */
3566 assert(iview->planes[0].isl.base_level == 0);
3567 assert(iview->planes[0].isl.base_array_layer == 0);
3568
3569 union isl_color_value clear_color = {};
3570 anv_clear_color_from_att_state(&clear_color, att_state, iview);
3571 if (iview->image->samples == 1) {
3572 anv_image_ccs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3573 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
3574 &clear_color,
3575 false);
3576 } else {
3577 anv_image_mcs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3578 0, 1, ISL_AUX_OP_FAST_CLEAR,
3579 &clear_color,
3580 false);
3581 }
3582 base_clear_layer++;
3583 clear_layer_count--;
3584 if (is_multiview)
3585 att_state->pending_clear_views &= ~1;
3586
3587 if (att_state->clear_color_is_zero) {
3588 /* This image has the auxiliary buffer enabled. We can mark the
3589 * subresource as not needing a resolve because the clear color
3590 * will match what's in every RENDER_SURFACE_STATE object when
3591 * it's being used for sampling.
3592 */
3593 set_image_fast_clear_state(cmd_buffer, iview->image,
3594 VK_IMAGE_ASPECT_COLOR_BIT,
3595 ANV_FAST_CLEAR_DEFAULT_VALUE);
3596 } else {
3597 set_image_fast_clear_state(cmd_buffer, iview->image,
3598 VK_IMAGE_ASPECT_COLOR_BIT,
3599 ANV_FAST_CLEAR_ANY);
3600 }
3601 }
3602
3603 /* From the VkFramebufferCreateInfo spec:
3604 *
3605 * "If the render pass uses multiview, then layers must be one and each
3606 * attachment requires a number of layers that is greater than the
3607 * maximum bit index set in the view mask in the subpasses in which it
3608 * is used."
3609 *
3610 * So if multiview is active we ignore the number of layers in the
3611 * framebuffer and instead we honor the view mask from the subpass.
3612 */
3613 if (is_multiview) {
3614 assert(image->n_planes == 1);
3615 uint32_t pending_clear_mask =
3616 get_multiview_subpass_clear_mask(cmd_state, att_state);
3617
3618 uint32_t layer_idx;
3619 for_each_bit(layer_idx, pending_clear_mask) {
3620 uint32_t layer =
3621 iview->planes[0].isl.base_array_layer + layer_idx;
3622
3623 anv_image_clear_color(cmd_buffer, image,
3624 VK_IMAGE_ASPECT_COLOR_BIT,
3625 att_state->aux_usage,
3626 iview->planes[0].isl.format,
3627 iview->planes[0].isl.swizzle,
3628 iview->planes[0].isl.base_level,
3629 layer, 1,
3630 render_area,
3631 vk_to_isl_color(att_state->clear_value.color));
3632 }
3633
3634 att_state->pending_clear_views &= ~pending_clear_mask;
3635 } else if (clear_layer_count > 0) {
3636 assert(image->n_planes == 1);
3637 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3638 att_state->aux_usage,
3639 iview->planes[0].isl.format,
3640 iview->planes[0].isl.swizzle,
3641 iview->planes[0].isl.base_level,
3642 base_clear_layer, clear_layer_count,
3643 render_area,
3644 vk_to_isl_color(att_state->clear_value.color));
3645 }
3646 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
3647 VK_IMAGE_ASPECT_STENCIL_BIT)) {
3648 if (att_state->fast_clear && !is_multiview) {
3649 /* We currently only support HiZ for single-layer images */
3650 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3651 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
3652 assert(iview->planes[0].isl.base_level == 0);
3653 assert(iview->planes[0].isl.base_array_layer == 0);
3654 assert(fb->layers == 1);
3655 }
3656
3657 anv_image_hiz_clear(cmd_buffer, image,
3658 att_state->pending_clear_aspects,
3659 iview->planes[0].isl.base_level,
3660 iview->planes[0].isl.base_array_layer,
3661 fb->layers, render_area,
3662 att_state->clear_value.depthStencil.stencil);
3663 } else if (is_multiview) {
3664 uint32_t pending_clear_mask =
3665 get_multiview_subpass_clear_mask(cmd_state, att_state);
3666
3667 uint32_t layer_idx;
3668 for_each_bit(layer_idx, pending_clear_mask) {
3669 uint32_t layer =
3670 iview->planes[0].isl.base_array_layer + layer_idx;
3671
3672 anv_image_clear_depth_stencil(cmd_buffer, image,
3673 att_state->pending_clear_aspects,
3674 att_state->aux_usage,
3675 iview->planes[0].isl.base_level,
3676 layer, 1,
3677 render_area,
3678 att_state->clear_value.depthStencil.depth,
3679 att_state->clear_value.depthStencil.stencil);
3680 }
3681
3682 att_state->pending_clear_views &= ~pending_clear_mask;
3683 } else {
3684 anv_image_clear_depth_stencil(cmd_buffer, image,
3685 att_state->pending_clear_aspects,
3686 att_state->aux_usage,
3687 iview->planes[0].isl.base_level,
3688 iview->planes[0].isl.base_array_layer,
3689 fb->layers, render_area,
3690 att_state->clear_value.depthStencil.depth,
3691 att_state->clear_value.depthStencil.stencil);
3692 }
3693 } else {
3694 assert(att_state->pending_clear_aspects == 0);
3695 }
3696
3697 if (GEN_GEN < 10 &&
3698 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
3699 image->planes[0].aux_surface.isl.size > 0 &&
3700 iview->planes[0].isl.base_level == 0 &&
3701 iview->planes[0].isl.base_array_layer == 0) {
3702 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
3703 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3704 image, VK_IMAGE_ASPECT_COLOR_BIT,
3705 false /* copy to ss */);
3706 }
3707
3708 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
3709 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3710 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3711 image, VK_IMAGE_ASPECT_COLOR_BIT,
3712 false /* copy to ss */);
3713 }
3714 }
3715
3716 if (subpass->attachments[i].usage ==
3717 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
3718 /* We assume that if we're starting a subpass, we're going to do some
3719 * rendering so we may end up with compressed data.
3720 */
3721 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
3722 VK_IMAGE_ASPECT_COLOR_BIT,
3723 att_state->aux_usage,
3724 iview->planes[0].isl.base_level,
3725 iview->planes[0].isl.base_array_layer,
3726 fb->layers);
3727 } else if (subpass->attachments[i].usage ==
3728 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
3729 /* We may be writing depth or stencil so we need to mark the surface.
3730 * Unfortunately, there's no way to know at this point whether the
3731 * depth or stencil tests used will actually write to the surface.
3732 *
3733 * Even though stencil may be plane 1, it always shares a base_level
3734 * with depth.
3735 */
3736 const struct isl_view *ds_view = &iview->planes[0].isl;
3737 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
3738 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3739 VK_IMAGE_ASPECT_DEPTH_BIT,
3740 att_state->aux_usage,
3741 ds_view->base_level,
3742 ds_view->base_array_layer,
3743 fb->layers);
3744 }
3745 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
3746 /* Even though stencil may be plane 1, it always shares a
3747 * base_level with depth.
3748 */
3749 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3750 VK_IMAGE_ASPECT_STENCIL_BIT,
3751 ISL_AUX_USAGE_NONE,
3752 ds_view->base_level,
3753 ds_view->base_array_layer,
3754 fb->layers);
3755 }
3756 }
3757
3758 /* If multiview is enabled, then we are only done clearing when we no
3759 * longer have pending layers to clear, or when we have processed the
3760 * last subpass that uses this attachment.
3761 */
3762 if (!is_multiview ||
3763 att_state->pending_clear_views == 0 ||
3764 current_subpass_is_last_for_attachment(cmd_state, a)) {
3765 att_state->pending_clear_aspects = 0;
3766 }
3767
3768 att_state->pending_load_aspects = 0;
3769 }
3770
3771 cmd_buffer_emit_depth_stencil(cmd_buffer);
3772 }
3773
3774 static void
3775 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
3776 {
3777 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3778 struct anv_subpass *subpass = cmd_state->subpass;
3779 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3780
3781 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3782
3783 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3784 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3785 const uint32_t a = subpass->attachments[i].attachment;
3786 if (a == VK_ATTACHMENT_UNUSED)
3787 continue;
3788
3789 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
3790 continue;
3791
3792 assert(a < cmd_state->pass->attachment_count);
3793 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3794 struct anv_image_view *iview = fb->attachments[a];
3795 const struct anv_image *image = iview->image;
3796
3797 /* Transition the image into the final layout for this render pass */
3798 VkImageLayout target_layout =
3799 cmd_state->pass->attachments[a].final_layout;
3800
3801 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3802 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3803
3804 uint32_t base_layer, layer_count;
3805 if (image->type == VK_IMAGE_TYPE_3D) {
3806 base_layer = 0;
3807 layer_count = anv_minify(iview->image->extent.depth,
3808 iview->planes[0].isl.base_level);
3809 } else {
3810 base_layer = iview->planes[0].isl.base_array_layer;
3811 layer_count = fb->layers;
3812 }
3813
3814 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3815 iview->planes[0].isl.base_level, 1,
3816 base_layer, layer_count,
3817 att_state->current_layout, target_layout);
3818 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3819 transition_depth_buffer(cmd_buffer, image,
3820 att_state->current_layout, target_layout);
3821 }
3822 }
3823
3824 /* Accumulate any subpass flushes that need to happen after the subpass.
3825 * Yes, they do get accumulated twice in the NextSubpass case but since
3826 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
3827 * ORing the bits in twice so it's harmless.
3828 */
3829 cmd_buffer->state.pending_pipe_bits |=
3830 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
3831 }
3832
3833 void genX(CmdBeginRenderPass)(
3834 VkCommandBuffer commandBuffer,
3835 const VkRenderPassBeginInfo* pRenderPassBegin,
3836 VkSubpassContents contents)
3837 {
3838 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3839 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3840 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3841
3842 cmd_buffer->state.framebuffer = framebuffer;
3843 cmd_buffer->state.pass = pass;
3844 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3845 VkResult result =
3846 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3847
3848 /* If we failed to setup the attachments we should not try to go further */
3849 if (result != VK_SUCCESS) {
3850 assert(anv_batch_has_error(&cmd_buffer->batch));
3851 return;
3852 }
3853
3854 genX(flush_pipeline_select_3d)(cmd_buffer);
3855
3856 cmd_buffer_begin_subpass(cmd_buffer, 0);
3857 }
3858
3859 void genX(CmdNextSubpass)(
3860 VkCommandBuffer commandBuffer,
3861 VkSubpassContents contents)
3862 {
3863 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3864
3865 if (anv_batch_has_error(&cmd_buffer->batch))
3866 return;
3867
3868 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3869
3870 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
3871 cmd_buffer_end_subpass(cmd_buffer);
3872 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
3873 }
3874
3875 void genX(CmdEndRenderPass)(
3876 VkCommandBuffer commandBuffer)
3877 {
3878 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3879
3880 if (anv_batch_has_error(&cmd_buffer->batch))
3881 return;
3882
3883 cmd_buffer_end_subpass(cmd_buffer);
3884
3885 cmd_buffer->state.hiz_enabled = false;
3886
3887 #ifndef NDEBUG
3888 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3889 #endif
3890
3891 /* Remove references to render pass specific state. This enables us to
3892 * detect whether or not we're in a renderpass.
3893 */
3894 cmd_buffer->state.framebuffer = NULL;
3895 cmd_buffer->state.pass = NULL;
3896 cmd_buffer->state.subpass = NULL;
3897 }