anv: Re-emit all compute state on pipeline switch
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void
44 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
45 {
46 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
47 lri.RegisterOffset = reg;
48 lri.DataDWord = imm;
49 }
50 }
51
52 void
53 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
54 {
55 struct anv_device *device = cmd_buffer->device;
56 uint32_t mocs = device->isl_dev.mocs.internal;
57
58 /* If we are emitting a new state base address we probably need to re-emit
59 * binding tables.
60 */
61 cmd_buffer->state.descriptors_dirty |= ~0;
62
63 /* Emit a render target cache flush.
64 *
65 * This isn't documented anywhere in the PRM. However, it seems to be
66 * necessary prior to changing the surface state base adress. Without
67 * this, we get GPU hangs when using multi-level command buffers which
68 * clear depth, reset state base address, and then go render stuff.
69 */
70 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
71 pc.DCFlushEnable = true;
72 pc.RenderTargetCacheFlushEnable = true;
73 pc.CommandStreamerStallEnable = true;
74 #if GEN_GEN >= 12
75 pc.TileCacheFlushEnable = true;
76 #endif
77 }
78
79 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
80 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
81 sba.GeneralStateMOCS = mocs;
82 sba.GeneralStateBaseAddressModifyEnable = true;
83
84 sba.StatelessDataPortAccessMOCS = mocs;
85
86 sba.SurfaceStateBaseAddress =
87 anv_cmd_buffer_surface_base_address(cmd_buffer);
88 sba.SurfaceStateMOCS = mocs;
89 sba.SurfaceStateBaseAddressModifyEnable = true;
90
91 sba.DynamicStateBaseAddress =
92 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
93 sba.DynamicStateMOCS = mocs;
94 sba.DynamicStateBaseAddressModifyEnable = true;
95
96 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
97 sba.IndirectObjectMOCS = mocs;
98 sba.IndirectObjectBaseAddressModifyEnable = true;
99
100 sba.InstructionBaseAddress =
101 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
102 sba.InstructionMOCS = mocs;
103 sba.InstructionBaseAddressModifyEnable = true;
104
105 # if (GEN_GEN >= 8)
106 /* Broadwell requires that we specify a buffer size for a bunch of
107 * these fields. However, since we will be growing the BO's live, we
108 * just set them all to the maximum.
109 */
110 sba.GeneralStateBufferSize = 0xfffff;
111 sba.GeneralStateBufferSizeModifyEnable = true;
112 sba.DynamicStateBufferSize = 0xfffff;
113 sba.DynamicStateBufferSizeModifyEnable = true;
114 sba.IndirectObjectBufferSize = 0xfffff;
115 sba.IndirectObjectBufferSizeModifyEnable = true;
116 sba.InstructionBufferSize = 0xfffff;
117 sba.InstructionBuffersizeModifyEnable = true;
118 # else
119 /* On gen7, we have upper bounds instead. According to the docs,
120 * setting an upper bound of zero means that no bounds checking is
121 * performed so, in theory, we should be able to leave them zero.
122 * However, border color is broken and the GPU bounds-checks anyway.
123 * To avoid this and other potential problems, we may as well set it
124 * for everything.
125 */
126 sba.GeneralStateAccessUpperBound =
127 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
128 sba.GeneralStateAccessUpperBoundModifyEnable = true;
129 sba.DynamicStateAccessUpperBound =
130 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
131 sba.DynamicStateAccessUpperBoundModifyEnable = true;
132 sba.InstructionAccessUpperBound =
133 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
134 sba.InstructionAccessUpperBoundModifyEnable = true;
135 # endif
136 # if (GEN_GEN >= 9)
137 if (cmd_buffer->device->instance->physicalDevice.use_softpin) {
138 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
139 .bo = device->surface_state_pool.block_pool.bo,
140 .offset = 0,
141 };
142 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
143 } else {
144 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
145 sba.BindlessSurfaceStateSize = 0;
146 }
147 sba.BindlessSurfaceStateMOCS = mocs;
148 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
149 # endif
150 # if (GEN_GEN >= 10)
151 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
152 sba.BindlessSamplerStateMOCS = mocs;
153 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
154 sba.BindlessSamplerStateBufferSize = 0;
155 # endif
156 }
157
158 /* After re-setting the surface state base address, we have to do some
159 * cache flusing so that the sampler engine will pick up the new
160 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
161 * Shared Function > 3D Sampler > State > State Caching (page 96):
162 *
163 * Coherency with system memory in the state cache, like the texture
164 * cache is handled partially by software. It is expected that the
165 * command stream or shader will issue Cache Flush operation or
166 * Cache_Flush sampler message to ensure that the L1 cache remains
167 * coherent with system memory.
168 *
169 * [...]
170 *
171 * Whenever the value of the Dynamic_State_Base_Addr,
172 * Surface_State_Base_Addr are altered, the L1 state cache must be
173 * invalidated to ensure the new surface or sampler state is fetched
174 * from system memory.
175 *
176 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
177 * which, according the PIPE_CONTROL instruction documentation in the
178 * Broadwell PRM:
179 *
180 * Setting this bit is independent of any other bit in this packet.
181 * This bit controls the invalidation of the L1 and L2 state caches
182 * at the top of the pipe i.e. at the parsing time.
183 *
184 * Unfortunately, experimentation seems to indicate that state cache
185 * invalidation through a PIPE_CONTROL does nothing whatsoever in
186 * regards to surface state and binding tables. In stead, it seems that
187 * invalidating the texture cache is what is actually needed.
188 *
189 * XXX: As far as we have been able to determine through
190 * experimentation, shows that flush the texture cache appears to be
191 * sufficient. The theory here is that all of the sampling/rendering
192 * units cache the binding table in the texture cache. However, we have
193 * yet to be able to actually confirm this.
194 */
195 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
196 pc.TextureCacheInvalidationEnable = true;
197 pc.ConstantCacheInvalidationEnable = true;
198 pc.StateCacheInvalidationEnable = true;
199 }
200 }
201
202 static void
203 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
204 struct anv_state state, struct anv_address addr)
205 {
206 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
207
208 VkResult result =
209 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
210 state.offset + isl_dev->ss.addr_offset,
211 addr.bo, addr.offset, NULL);
212 if (result != VK_SUCCESS)
213 anv_batch_set_error(&cmd_buffer->batch, result);
214 }
215
216 static void
217 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
218 struct anv_surface_state state)
219 {
220 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
221
222 assert(!anv_address_is_null(state.address));
223 add_surface_reloc(cmd_buffer, state.state, state.address);
224
225 if (!anv_address_is_null(state.aux_address)) {
226 VkResult result =
227 anv_reloc_list_add(&cmd_buffer->surface_relocs,
228 &cmd_buffer->pool->alloc,
229 state.state.offset + isl_dev->ss.aux_addr_offset,
230 state.aux_address.bo,
231 state.aux_address.offset,
232 NULL);
233 if (result != VK_SUCCESS)
234 anv_batch_set_error(&cmd_buffer->batch, result);
235 }
236
237 if (!anv_address_is_null(state.clear_address)) {
238 VkResult result =
239 anv_reloc_list_add(&cmd_buffer->surface_relocs,
240 &cmd_buffer->pool->alloc,
241 state.state.offset +
242 isl_dev->ss.clear_color_state_offset,
243 state.clear_address.bo,
244 state.clear_address.offset,
245 NULL);
246 if (result != VK_SUCCESS)
247 anv_batch_set_error(&cmd_buffer->batch, result);
248 }
249 }
250
251 static void
252 color_attachment_compute_aux_usage(struct anv_device * device,
253 struct anv_cmd_state * cmd_state,
254 uint32_t att, VkRect2D render_area,
255 union isl_color_value *fast_clear_color)
256 {
257 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
258 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
259
260 assert(iview->n_planes == 1);
261
262 if (iview->planes[0].isl.base_array_layer >=
263 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
264 iview->planes[0].isl.base_level)) {
265 /* There is no aux buffer which corresponds to the level and layer(s)
266 * being accessed.
267 */
268 att_state->aux_usage = ISL_AUX_USAGE_NONE;
269 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
270 att_state->fast_clear = false;
271 return;
272 }
273
274 att_state->aux_usage =
275 anv_layout_to_aux_usage(&device->info, iview->image,
276 VK_IMAGE_ASPECT_COLOR_BIT,
277 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
278
279 /* If we don't have aux, then we should have returned early in the layer
280 * check above. If we got here, we must have something.
281 */
282 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
283
284 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
285 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
286 att_state->input_aux_usage = att_state->aux_usage;
287 } else {
288 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
289 *
290 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
291 * setting is only allowed if Surface Format supported for Fast
292 * Clear. In addition, if the surface is bound to the sampling
293 * engine, Surface Format must be supported for Render Target
294 * Compression for surfaces bound to the sampling engine."
295 *
296 * In other words, we can only sample from a fast-cleared image if it
297 * also supports color compression.
298 */
299 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
300 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
301 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
302
303 /* While fast-clear resolves and partial resolves are fairly cheap in the
304 * case where you render to most of the pixels, full resolves are not
305 * because they potentially involve reading and writing the entire
306 * framebuffer. If we can't texture with CCS_E, we should leave it off and
307 * limit ourselves to fast clears.
308 */
309 if (cmd_state->pass->attachments[att].first_subpass_layout ==
310 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
311 anv_perf_warn(device->instance, iview->image,
312 "Not temporarily enabling CCS_E.");
313 }
314 } else {
315 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
316 }
317 }
318
319 assert(iview->image->planes[0].aux_surface.isl.usage &
320 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
321
322 union isl_color_value clear_color = {};
323 anv_clear_color_from_att_state(&clear_color, att_state, iview);
324
325 att_state->clear_color_is_zero_one =
326 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
327 att_state->clear_color_is_zero =
328 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
329
330 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
331 /* Start by getting the fast clear type. We use the first subpass
332 * layout here because we don't want to fast-clear if the first subpass
333 * to use the attachment can't handle fast-clears.
334 */
335 enum anv_fast_clear_type fast_clear_type =
336 anv_layout_to_fast_clear_type(&device->info, iview->image,
337 VK_IMAGE_ASPECT_COLOR_BIT,
338 cmd_state->pass->attachments[att].first_subpass_layout);
339 switch (fast_clear_type) {
340 case ANV_FAST_CLEAR_NONE:
341 att_state->fast_clear = false;
342 break;
343 case ANV_FAST_CLEAR_DEFAULT_VALUE:
344 att_state->fast_clear = att_state->clear_color_is_zero;
345 break;
346 case ANV_FAST_CLEAR_ANY:
347 att_state->fast_clear = true;
348 break;
349 }
350
351 /* Potentially, we could do partial fast-clears but doing so has crazy
352 * alignment restrictions. It's easier to just restrict to full size
353 * fast clears for now.
354 */
355 if (render_area.offset.x != 0 ||
356 render_area.offset.y != 0 ||
357 render_area.extent.width != iview->extent.width ||
358 render_area.extent.height != iview->extent.height)
359 att_state->fast_clear = false;
360
361 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
362 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
363 att_state->fast_clear = false;
364
365 /* We only allow fast clears to the first slice of an image (level 0,
366 * layer 0) and only for the entire slice. This guarantees us that, at
367 * any given time, there is only one clear color on any given image at
368 * any given time. At the time of our testing (Jan 17, 2018), there
369 * were no known applications which would benefit from fast-clearing
370 * more than just the first slice.
371 */
372 if (att_state->fast_clear &&
373 (iview->planes[0].isl.base_level > 0 ||
374 iview->planes[0].isl.base_array_layer > 0)) {
375 anv_perf_warn(device->instance, iview->image,
376 "Rendering with multi-lod or multi-layer framebuffer "
377 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
378 "baseArrayLayer > 0. Not fast clearing.");
379 att_state->fast_clear = false;
380 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
381 anv_perf_warn(device->instance, iview->image,
382 "Rendering to a multi-layer framebuffer with "
383 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
384 }
385
386 if (att_state->fast_clear)
387 *fast_clear_color = clear_color;
388 } else {
389 att_state->fast_clear = false;
390 }
391 }
392
393 static void
394 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
395 struct anv_cmd_state *cmd_state,
396 uint32_t att, VkRect2D render_area)
397 {
398 struct anv_render_pass_attachment *pass_att =
399 &cmd_state->pass->attachments[att];
400 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
401 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
402
403 /* These will be initialized after the first subpass transition. */
404 att_state->aux_usage = ISL_AUX_USAGE_NONE;
405 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
406
407 if (GEN_GEN == 7) {
408 /* We don't do any HiZ or depth fast-clears on gen7 yet */
409 att_state->fast_clear = false;
410 return;
411 }
412
413 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
414 /* If we're just clearing stencil, we can always HiZ clear */
415 att_state->fast_clear = true;
416 return;
417 }
418
419 /* Default to false for now */
420 att_state->fast_clear = false;
421
422 /* We must have depth in order to have HiZ */
423 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
424 return;
425
426 const enum isl_aux_usage first_subpass_aux_usage =
427 anv_layout_to_aux_usage(&device->info, iview->image,
428 VK_IMAGE_ASPECT_DEPTH_BIT,
429 pass_att->first_subpass_layout);
430 if (!blorp_can_hiz_clear_depth(&device->info,
431 &iview->image->planes[0].surface.isl,
432 first_subpass_aux_usage,
433 iview->planes[0].isl.base_level,
434 iview->planes[0].isl.base_array_layer,
435 render_area.offset.x,
436 render_area.offset.y,
437 render_area.offset.x +
438 render_area.extent.width,
439 render_area.offset.y +
440 render_area.extent.height))
441 return;
442
443 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
444 return;
445
446 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
447 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
448 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
449 * only supports returning 0.0f. Gens prior to gen8 do not support this
450 * feature at all.
451 */
452 return;
453 }
454
455 /* If we got here, then we can fast clear */
456 att_state->fast_clear = true;
457 }
458
459 static bool
460 need_input_attachment_state(const struct anv_render_pass_attachment *att)
461 {
462 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
463 return false;
464
465 /* We only allocate input attachment states for color surfaces. Compression
466 * is not yet enabled for depth textures and stencil doesn't allow
467 * compression so we can just use the texture surface state from the view.
468 */
469 return vk_format_is_color(att->format);
470 }
471
472 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
473 * the initial layout is undefined, the HiZ buffer and depth buffer will
474 * represent the same data at the end of this operation.
475 */
476 static void
477 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
478 const struct anv_image *image,
479 VkImageLayout initial_layout,
480 VkImageLayout final_layout)
481 {
482 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
483 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
484 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
485 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
486 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
487 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
488
489 enum isl_aux_op hiz_op;
490 if (hiz_enabled && !enable_hiz) {
491 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
492 } else if (!hiz_enabled && enable_hiz) {
493 hiz_op = ISL_AUX_OP_AMBIGUATE;
494 } else {
495 assert(hiz_enabled == enable_hiz);
496 /* If the same buffer will be used, no resolves are necessary. */
497 hiz_op = ISL_AUX_OP_NONE;
498 }
499
500 if (hiz_op != ISL_AUX_OP_NONE)
501 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
502 0, 0, 1, hiz_op);
503 }
504
505 static inline bool
506 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
507 {
508 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
509 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
510 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
511 }
512
513 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
514 * the initial layout is undefined, the HiZ buffer and depth buffer will
515 * represent the same data at the end of this operation.
516 */
517 static void
518 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
519 const struct anv_image *image,
520 uint32_t base_level, uint32_t level_count,
521 uint32_t base_layer, uint32_t layer_count,
522 VkImageLayout initial_layout,
523 VkImageLayout final_layout)
524 {
525 #if GEN_GEN == 7
526 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
527 VK_IMAGE_ASPECT_STENCIL_BIT);
528
529 /* On gen7, we have to store a texturable version of the stencil buffer in
530 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
531 * forth at strategic points. Stencil writes are only allowed in following
532 * layouts:
533 *
534 * - VK_IMAGE_LAYOUT_GENERAL
535 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
536 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
537 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
538 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
539 *
540 * For general, we have no nice opportunity to transition so we do the copy
541 * to the shadow unconditionally at the end of the subpass. For transfer
542 * destinations, we can update it as part of the transfer op. For the other
543 * layouts, we delay the copy until a transition into some other layout.
544 */
545 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
546 vk_image_layout_stencil_write_optimal(initial_layout) &&
547 !vk_image_layout_stencil_write_optimal(final_layout)) {
548 anv_image_copy_to_shadow(cmd_buffer, image,
549 VK_IMAGE_ASPECT_STENCIL_BIT,
550 base_level, level_count,
551 base_layer, layer_count);
552 }
553 #endif /* GEN_GEN == 7 */
554 }
555
556 #define MI_PREDICATE_SRC0 0x2400
557 #define MI_PREDICATE_SRC1 0x2408
558 #define MI_PREDICATE_RESULT 0x2418
559
560 static void
561 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
562 const struct anv_image *image,
563 VkImageAspectFlagBits aspect,
564 uint32_t level,
565 uint32_t base_layer, uint32_t layer_count,
566 bool compressed)
567 {
568 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
569
570 /* We only have compression tracking for CCS_E */
571 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
572 return;
573
574 for (uint32_t a = 0; a < layer_count; a++) {
575 uint32_t layer = base_layer + a;
576 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
577 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
578 image, aspect,
579 level, layer);
580 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
581 }
582 }
583 }
584
585 static void
586 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
587 const struct anv_image *image,
588 VkImageAspectFlagBits aspect,
589 enum anv_fast_clear_type fast_clear)
590 {
591 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
592 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
593 image, aspect);
594 sdi.ImmediateData = fast_clear;
595 }
596
597 /* Whenever we have fast-clear, we consider that slice to be compressed.
598 * This makes building predicates much easier.
599 */
600 if (fast_clear != ANV_FAST_CLEAR_NONE)
601 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
602 }
603
604 /* This is only really practical on haswell and above because it requires
605 * MI math in order to get it correct.
606 */
607 #if GEN_GEN >= 8 || GEN_IS_HASWELL
608 static void
609 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
610 const struct anv_image *image,
611 VkImageAspectFlagBits aspect,
612 uint32_t level, uint32_t array_layer,
613 enum isl_aux_op resolve_op,
614 enum anv_fast_clear_type fast_clear_supported)
615 {
616 struct gen_mi_builder b;
617 gen_mi_builder_init(&b, &cmd_buffer->batch);
618
619 const struct gen_mi_value fast_clear_type =
620 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
621 image, aspect));
622
623 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
624 /* In this case, we're doing a full resolve which means we want the
625 * resolve to happen if any compression (including fast-clears) is
626 * present.
627 *
628 * In order to simplify the logic a bit, we make the assumption that,
629 * if the first slice has been fast-cleared, it is also marked as
630 * compressed. See also set_image_fast_clear_state.
631 */
632 const struct gen_mi_value compression_state =
633 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
634 image, aspect,
635 level, array_layer));
636 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
637 compression_state);
638 gen_mi_store(&b, compression_state, gen_mi_imm(0));
639
640 if (level == 0 && array_layer == 0) {
641 /* If the predicate is true, we want to write 0 to the fast clear type
642 * and, if it's false, leave it alone. We can do this by writing
643 *
644 * clear_type = clear_type & ~predicate;
645 */
646 struct gen_mi_value new_fast_clear_type =
647 gen_mi_iand(&b, fast_clear_type,
648 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
649 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
650 }
651 } else if (level == 0 && array_layer == 0) {
652 /* In this case, we are doing a partial resolve to get rid of fast-clear
653 * colors. We don't care about the compression state but we do care
654 * about how much fast clear is allowed by the final layout.
655 */
656 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
657 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
658
659 /* We need to compute (fast_clear_supported < image->fast_clear) */
660 struct gen_mi_value pred =
661 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
662 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
663 gen_mi_value_ref(&b, pred));
664
665 /* If the predicate is true, we want to write 0 to the fast clear type
666 * and, if it's false, leave it alone. We can do this by writing
667 *
668 * clear_type = clear_type & ~predicate;
669 */
670 struct gen_mi_value new_fast_clear_type =
671 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
672 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
673 } else {
674 /* In this case, we're trying to do a partial resolve on a slice that
675 * doesn't have clear color. There's nothing to do.
676 */
677 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
678 return;
679 }
680
681 /* Set src1 to 0 and use a != condition */
682 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
683
684 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
685 mip.LoadOperation = LOAD_LOADINV;
686 mip.CombineOperation = COMBINE_SET;
687 mip.CompareOperation = COMPARE_SRCS_EQUAL;
688 }
689 }
690 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
691
692 #if GEN_GEN <= 8
693 static void
694 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
695 const struct anv_image *image,
696 VkImageAspectFlagBits aspect,
697 uint32_t level, uint32_t array_layer,
698 enum isl_aux_op resolve_op,
699 enum anv_fast_clear_type fast_clear_supported)
700 {
701 struct gen_mi_builder b;
702 gen_mi_builder_init(&b, &cmd_buffer->batch);
703
704 struct gen_mi_value fast_clear_type_mem =
705 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
706 image, aspect));
707
708 /* This only works for partial resolves and only when the clear color is
709 * all or nothing. On the upside, this emits less command streamer code
710 * and works on Ivybridge and Bay Trail.
711 */
712 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
713 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
714
715 /* We don't support fast clears on anything other than the first slice. */
716 if (level > 0 || array_layer > 0)
717 return;
718
719 /* On gen8, we don't have a concept of default clear colors because we
720 * can't sample from CCS surfaces. It's enough to just load the fast clear
721 * state into the predicate register.
722 */
723 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
724 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
725 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
726
727 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
728 mip.LoadOperation = LOAD_LOADINV;
729 mip.CombineOperation = COMBINE_SET;
730 mip.CompareOperation = COMPARE_SRCS_EQUAL;
731 }
732 }
733 #endif /* GEN_GEN <= 8 */
734
735 static void
736 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
737 const struct anv_image *image,
738 enum isl_format format,
739 VkImageAspectFlagBits aspect,
740 uint32_t level, uint32_t array_layer,
741 enum isl_aux_op resolve_op,
742 enum anv_fast_clear_type fast_clear_supported)
743 {
744 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
745
746 #if GEN_GEN >= 9
747 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
748 aspect, level, array_layer,
749 resolve_op, fast_clear_supported);
750 #else /* GEN_GEN <= 8 */
751 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
752 aspect, level, array_layer,
753 resolve_op, fast_clear_supported);
754 #endif
755
756 /* CCS_D only supports full resolves and BLORP will assert on us if we try
757 * to do a partial resolve on a CCS_D surface.
758 */
759 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
760 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
761 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
762
763 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
764 array_layer, 1, resolve_op, NULL, true);
765 }
766
767 static void
768 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
769 const struct anv_image *image,
770 enum isl_format format,
771 VkImageAspectFlagBits aspect,
772 uint32_t array_layer,
773 enum isl_aux_op resolve_op,
774 enum anv_fast_clear_type fast_clear_supported)
775 {
776 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
777 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
778
779 #if GEN_GEN >= 8 || GEN_IS_HASWELL
780 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
781 aspect, 0, array_layer,
782 resolve_op, fast_clear_supported);
783
784 anv_image_mcs_op(cmd_buffer, image, format, aspect,
785 array_layer, 1, resolve_op, NULL, true);
786 #else
787 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
788 #endif
789 }
790
791 void
792 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
793 const struct anv_image *image,
794 VkImageAspectFlagBits aspect,
795 enum isl_aux_usage aux_usage,
796 uint32_t level,
797 uint32_t base_layer,
798 uint32_t layer_count)
799 {
800 /* The aspect must be exactly one of the image aspects. */
801 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
802
803 /* The only compression types with more than just fast-clears are MCS,
804 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
805 * track the current fast-clear and compression state. This leaves us
806 * with just MCS and CCS_E.
807 */
808 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
809 aux_usage != ISL_AUX_USAGE_MCS)
810 return;
811
812 set_image_compressed_bit(cmd_buffer, image, aspect,
813 level, base_layer, layer_count, true);
814 }
815
816 static void
817 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
818 const struct anv_image *image,
819 VkImageAspectFlagBits aspect)
820 {
821 assert(cmd_buffer && image);
822 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
823
824 set_image_fast_clear_state(cmd_buffer, image, aspect,
825 ANV_FAST_CLEAR_NONE);
826
827 /* Initialize the struct fields that are accessed for fast-clears so that
828 * the HW restrictions on the field values are satisfied.
829 */
830 struct anv_address addr =
831 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
832
833 if (GEN_GEN >= 9) {
834 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
835 const unsigned num_dwords = GEN_GEN >= 10 ?
836 isl_dev->ss.clear_color_state_size / 4 :
837 isl_dev->ss.clear_value_size / 4;
838 for (unsigned i = 0; i < num_dwords; i++) {
839 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
840 sdi.Address = addr;
841 sdi.Address.offset += i * 4;
842 sdi.ImmediateData = 0;
843 }
844 }
845 } else {
846 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
847 sdi.Address = addr;
848 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
849 /* Pre-SKL, the dword containing the clear values also contains
850 * other fields, so we need to initialize those fields to match the
851 * values that would be in a color attachment.
852 */
853 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
854 ISL_CHANNEL_SELECT_GREEN << 22 |
855 ISL_CHANNEL_SELECT_BLUE << 19 |
856 ISL_CHANNEL_SELECT_ALPHA << 16;
857 } else if (GEN_GEN == 7) {
858 /* On IVB, the dword containing the clear values also contains
859 * other fields that must be zero or can be zero.
860 */
861 sdi.ImmediateData = 0;
862 }
863 }
864 }
865 }
866
867 /* Copy the fast-clear value dword(s) between a surface state object and an
868 * image's fast clear state buffer.
869 */
870 static void
871 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
872 struct anv_state surface_state,
873 const struct anv_image *image,
874 VkImageAspectFlagBits aspect,
875 bool copy_from_surface_state)
876 {
877 assert(cmd_buffer && image);
878 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
879
880 struct anv_address ss_clear_addr = {
881 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
882 .offset = surface_state.offset +
883 cmd_buffer->device->isl_dev.ss.clear_value_offset,
884 };
885 const struct anv_address entry_addr =
886 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
887 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
888
889 #if GEN_GEN == 7
890 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
891 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
892 * in-flight when they are issued even if the memory touched is not
893 * currently active for rendering. The weird bit is that it is not the
894 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
895 * rendering hangs such that the next stalling command after the
896 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
897 *
898 * It is unclear exactly why this hang occurs. Both MI commands come with
899 * warnings about the 3D pipeline but that doesn't seem to fully explain
900 * it. My (Jason's) best theory is that it has something to do with the
901 * fact that we're using a GPU state register as our temporary and that
902 * something with reading/writing it is causing problems.
903 *
904 * In order to work around this issue, we emit a PIPE_CONTROL with the
905 * command streamer stall bit set.
906 */
907 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
908 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
909 #endif
910
911 struct gen_mi_builder b;
912 gen_mi_builder_init(&b, &cmd_buffer->batch);
913
914 if (copy_from_surface_state) {
915 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
916 } else {
917 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
918
919 /* Updating a surface state object may require that the state cache be
920 * invalidated. From the SKL PRM, Shared Functions -> State -> State
921 * Caching:
922 *
923 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
924 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
925 * modified [...], the L1 state cache must be invalidated to ensure
926 * the new surface or sampler state is fetched from system memory.
927 *
928 * In testing, SKL doesn't actually seem to need this, but HSW does.
929 */
930 cmd_buffer->state.pending_pipe_bits |=
931 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
932 }
933 }
934
935 /**
936 * @brief Transitions a color buffer from one layout to another.
937 *
938 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
939 * more information.
940 *
941 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
942 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
943 * this represents the maximum layers to transition at each
944 * specified miplevel.
945 */
946 static void
947 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
948 const struct anv_image *image,
949 VkImageAspectFlagBits aspect,
950 const uint32_t base_level, uint32_t level_count,
951 uint32_t base_layer, uint32_t layer_count,
952 VkImageLayout initial_layout,
953 VkImageLayout final_layout)
954 {
955 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
956 /* Validate the inputs. */
957 assert(cmd_buffer);
958 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
959 /* These values aren't supported for simplicity's sake. */
960 assert(level_count != VK_REMAINING_MIP_LEVELS &&
961 layer_count != VK_REMAINING_ARRAY_LAYERS);
962 /* Ensure the subresource range is valid. */
963 UNUSED uint64_t last_level_num = base_level + level_count;
964 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
965 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
966 assert((uint64_t)base_layer + layer_count <= image_layers);
967 assert(last_level_num <= image->levels);
968 /* The spec disallows these final layouts. */
969 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
970 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
971
972 /* No work is necessary if the layout stays the same or if this subresource
973 * range lacks auxiliary data.
974 */
975 if (initial_layout == final_layout)
976 return;
977
978 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
979
980 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
981 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
982 /* This surface is a linear compressed image with a tiled shadow surface
983 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
984 * we need to ensure the shadow copy is up-to-date.
985 */
986 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
987 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
988 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
989 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
990 assert(plane == 0);
991 anv_image_copy_to_shadow(cmd_buffer, image,
992 VK_IMAGE_ASPECT_COLOR_BIT,
993 base_level, level_count,
994 base_layer, layer_count);
995 }
996
997 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
998 return;
999
1000 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
1001
1002 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1003 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1004 /* A subresource in the undefined layout may have been aliased and
1005 * populated with any arrangement of bits. Therefore, we must initialize
1006 * the related aux buffer and clear buffer entry with desirable values.
1007 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1008 * images with VK_IMAGE_TILING_OPTIMAL.
1009 *
1010 * Initialize the relevant clear buffer entries.
1011 */
1012 if (base_level == 0 && base_layer == 0)
1013 init_fast_clear_color(cmd_buffer, image, aspect);
1014
1015 /* Initialize the aux buffers to enable correct rendering. In order to
1016 * ensure that things such as storage images work correctly, aux buffers
1017 * need to be initialized to valid data.
1018 *
1019 * Having an aux buffer with invalid data is a problem for two reasons:
1020 *
1021 * 1) Having an invalid value in the buffer can confuse the hardware.
1022 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1023 * invalid and leads to the hardware doing strange things. It
1024 * doesn't hang as far as we can tell but rendering corruption can
1025 * occur.
1026 *
1027 * 2) If this transition is into the GENERAL layout and we then use the
1028 * image as a storage image, then we must have the aux buffer in the
1029 * pass-through state so that, if we then go to texture from the
1030 * image, we get the results of our storage image writes and not the
1031 * fast clear color or other random data.
1032 *
1033 * For CCS both of the problems above are real demonstrable issues. In
1034 * that case, the only thing we can do is to perform an ambiguate to
1035 * transition the aux surface into the pass-through state.
1036 *
1037 * For MCS, (2) is never an issue because we don't support multisampled
1038 * storage images. In theory, issue (1) is a problem with MCS but we've
1039 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1040 * theory, be interpreted as something but we don't know that all bit
1041 * patterns are actually valid. For 2x and 8x, you could easily end up
1042 * with the MCS referring to an invalid plane because not all bits of
1043 * the MCS value are actually used. Even though we've never seen issues
1044 * in the wild, it's best to play it safe and initialize the MCS. We
1045 * can use a fast-clear for MCS because we only ever touch from render
1046 * and texture (no image load store).
1047 */
1048 if (image->samples == 1) {
1049 for (uint32_t l = 0; l < level_count; l++) {
1050 const uint32_t level = base_level + l;
1051
1052 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1053 if (base_layer >= aux_layers)
1054 break; /* We will only get fewer layers as level increases */
1055 uint32_t level_layer_count =
1056 MIN2(layer_count, aux_layers - base_layer);
1057
1058 anv_image_ccs_op(cmd_buffer, image,
1059 image->planes[plane].surface.isl.format,
1060 aspect, level, base_layer, level_layer_count,
1061 ISL_AUX_OP_AMBIGUATE, NULL, false);
1062
1063 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1064 set_image_compressed_bit(cmd_buffer, image, aspect,
1065 level, base_layer, level_layer_count,
1066 false);
1067 }
1068 }
1069 } else {
1070 if (image->samples == 4 || image->samples == 16) {
1071 anv_perf_warn(cmd_buffer->device->instance, image,
1072 "Doing a potentially unnecessary fast-clear to "
1073 "define an MCS buffer.");
1074 }
1075
1076 assert(base_level == 0 && level_count == 1);
1077 anv_image_mcs_op(cmd_buffer, image,
1078 image->planes[plane].surface.isl.format,
1079 aspect, base_layer, layer_count,
1080 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1081 }
1082 return;
1083 }
1084
1085 const enum isl_aux_usage initial_aux_usage =
1086 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1087 const enum isl_aux_usage final_aux_usage =
1088 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1089
1090 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1091 * We can handle transitions between CCS_D/E to and from NONE. What we
1092 * don't yet handle is switching between CCS_E and CCS_D within a given
1093 * image. Doing so in a performant way requires more detailed aux state
1094 * tracking such as what is done in i965. For now, just assume that we
1095 * only have one type of compression.
1096 */
1097 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1098 final_aux_usage == ISL_AUX_USAGE_NONE ||
1099 initial_aux_usage == final_aux_usage);
1100
1101 /* If initial aux usage is NONE, there is nothing to resolve */
1102 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1103 return;
1104
1105 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1106
1107 /* If the initial layout supports more fast clear than the final layout
1108 * then we need at least a partial resolve.
1109 */
1110 const enum anv_fast_clear_type initial_fast_clear =
1111 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1112 const enum anv_fast_clear_type final_fast_clear =
1113 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1114 if (final_fast_clear < initial_fast_clear)
1115 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1116
1117 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1118 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1119 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1120
1121 if (resolve_op == ISL_AUX_OP_NONE)
1122 return;
1123
1124 /* Perform a resolve to synchronize data between the main and aux buffer.
1125 * Before we begin, we must satisfy the cache flushing requirement specified
1126 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1127 *
1128 * Any transition from any value in {Clear, Render, Resolve} to a
1129 * different value in {Clear, Render, Resolve} requires end of pipe
1130 * synchronization.
1131 *
1132 * We perform a flush of the write cache before and after the clear and
1133 * resolve operations to meet this requirement.
1134 *
1135 * Unlike other drawing, fast clear operations are not properly
1136 * synchronized. The first PIPE_CONTROL here likely ensures that the
1137 * contents of the previous render or clear hit the render target before we
1138 * resolve and the second likely ensures that the resolve is complete before
1139 * we do any more rendering or clearing.
1140 */
1141 cmd_buffer->state.pending_pipe_bits |=
1142 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1143
1144 for (uint32_t l = 0; l < level_count; l++) {
1145 uint32_t level = base_level + l;
1146
1147 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1148 if (base_layer >= aux_layers)
1149 break; /* We will only get fewer layers as level increases */
1150 uint32_t level_layer_count =
1151 MIN2(layer_count, aux_layers - base_layer);
1152
1153 for (uint32_t a = 0; a < level_layer_count; a++) {
1154 uint32_t array_layer = base_layer + a;
1155 if (image->samples == 1) {
1156 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1157 image->planes[plane].surface.isl.format,
1158 aspect, level, array_layer, resolve_op,
1159 final_fast_clear);
1160 } else {
1161 /* We only support fast-clear on the first layer so partial
1162 * resolves should not be used on other layers as they will use
1163 * the clear color stored in memory that is only valid for layer0.
1164 */
1165 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1166 array_layer != 0)
1167 continue;
1168
1169 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1170 image->planes[plane].surface.isl.format,
1171 aspect, array_layer, resolve_op,
1172 final_fast_clear);
1173 }
1174 }
1175 }
1176
1177 cmd_buffer->state.pending_pipe_bits |=
1178 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1179 }
1180
1181 /**
1182 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1183 */
1184 static VkResult
1185 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1186 struct anv_render_pass *pass,
1187 const VkRenderPassBeginInfo *begin)
1188 {
1189 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1190 struct anv_cmd_state *state = &cmd_buffer->state;
1191 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1192
1193 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1194
1195 if (pass->attachment_count > 0) {
1196 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1197 pass->attachment_count *
1198 sizeof(state->attachments[0]),
1199 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1200 if (state->attachments == NULL) {
1201 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1202 return anv_batch_set_error(&cmd_buffer->batch,
1203 VK_ERROR_OUT_OF_HOST_MEMORY);
1204 }
1205 } else {
1206 state->attachments = NULL;
1207 }
1208
1209 /* Reserve one for the NULL state. */
1210 unsigned num_states = 1;
1211 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1212 if (vk_format_is_color(pass->attachments[i].format))
1213 num_states++;
1214
1215 if (need_input_attachment_state(&pass->attachments[i]))
1216 num_states++;
1217 }
1218
1219 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1220 state->render_pass_states =
1221 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1222 num_states * ss_stride, isl_dev->ss.align);
1223
1224 struct anv_state next_state = state->render_pass_states;
1225 next_state.alloc_size = isl_dev->ss.size;
1226
1227 state->null_surface_state = next_state;
1228 next_state.offset += ss_stride;
1229 next_state.map += ss_stride;
1230
1231 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1232 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1233
1234 if (begin && !begin_attachment)
1235 assert(pass->attachment_count == framebuffer->attachment_count);
1236
1237 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1238 if (vk_format_is_color(pass->attachments[i].format)) {
1239 state->attachments[i].color.state = next_state;
1240 next_state.offset += ss_stride;
1241 next_state.map += ss_stride;
1242 }
1243
1244 if (need_input_attachment_state(&pass->attachments[i])) {
1245 state->attachments[i].input.state = next_state;
1246 next_state.offset += ss_stride;
1247 next_state.map += ss_stride;
1248 }
1249
1250 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1251 assert(begin_attachment->attachmentCount == pass->attachment_count);
1252 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1253 cmd_buffer->state.attachments[i].image_view = iview;
1254 } else if (framebuffer && i < framebuffer->attachment_count) {
1255 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1256 }
1257 }
1258 assert(next_state.offset == state->render_pass_states.offset +
1259 state->render_pass_states.alloc_size);
1260
1261 if (begin) {
1262 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1263 isl_extent3d(framebuffer->width,
1264 framebuffer->height,
1265 framebuffer->layers));
1266
1267 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1268 struct anv_render_pass_attachment *att = &pass->attachments[i];
1269 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1270 VkImageAspectFlags clear_aspects = 0;
1271 VkImageAspectFlags load_aspects = 0;
1272
1273 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1274 /* color attachment */
1275 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1276 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1277 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1278 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1279 }
1280 } else {
1281 /* depthstencil attachment */
1282 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1283 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1284 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1285 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1286 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1287 }
1288 }
1289 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1290 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1291 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1292 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1293 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1294 }
1295 }
1296 }
1297
1298 state->attachments[i].current_layout = att->initial_layout;
1299 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1300 state->attachments[i].pending_clear_aspects = clear_aspects;
1301 state->attachments[i].pending_load_aspects = load_aspects;
1302 if (clear_aspects)
1303 state->attachments[i].clear_value = begin->pClearValues[i];
1304
1305 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1306 anv_assert(iview->vk_format == att->format);
1307
1308 const uint32_t num_layers = iview->planes[0].isl.array_len;
1309 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1310
1311 union isl_color_value clear_color = { .u32 = { 0, } };
1312 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1313 anv_assert(iview->n_planes == 1);
1314 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1315 color_attachment_compute_aux_usage(cmd_buffer->device,
1316 state, i, begin->renderArea,
1317 &clear_color);
1318
1319 anv_image_fill_surface_state(cmd_buffer->device,
1320 iview->image,
1321 VK_IMAGE_ASPECT_COLOR_BIT,
1322 &iview->planes[0].isl,
1323 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1324 state->attachments[i].aux_usage,
1325 &clear_color,
1326 0,
1327 &state->attachments[i].color,
1328 NULL);
1329
1330 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1331 } else {
1332 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1333 state, i,
1334 begin->renderArea);
1335 }
1336
1337 if (need_input_attachment_state(&pass->attachments[i])) {
1338 anv_image_fill_surface_state(cmd_buffer->device,
1339 iview->image,
1340 VK_IMAGE_ASPECT_COLOR_BIT,
1341 &iview->planes[0].isl,
1342 ISL_SURF_USAGE_TEXTURE_BIT,
1343 state->attachments[i].input_aux_usage,
1344 &clear_color,
1345 0,
1346 &state->attachments[i].input,
1347 NULL);
1348
1349 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1350 }
1351 }
1352 }
1353
1354 return VK_SUCCESS;
1355 }
1356
1357 VkResult
1358 genX(BeginCommandBuffer)(
1359 VkCommandBuffer commandBuffer,
1360 const VkCommandBufferBeginInfo* pBeginInfo)
1361 {
1362 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1363
1364 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1365 * command buffer's state. Otherwise, we must *reset* its state. In both
1366 * cases we reset it.
1367 *
1368 * From the Vulkan 1.0 spec:
1369 *
1370 * If a command buffer is in the executable state and the command buffer
1371 * was allocated from a command pool with the
1372 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1373 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1374 * as if vkResetCommandBuffer had been called with
1375 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1376 * the command buffer in the recording state.
1377 */
1378 anv_cmd_buffer_reset(cmd_buffer);
1379
1380 cmd_buffer->usage_flags = pBeginInfo->flags;
1381
1382 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1383 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1384
1385 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1386
1387 /* We sometimes store vertex data in the dynamic state buffer for blorp
1388 * operations and our dynamic state stream may re-use data from previous
1389 * command buffers. In order to prevent stale cache data, we flush the VF
1390 * cache. We could do this on every blorp call but that's not really
1391 * needed as all of the data will get written by the CPU prior to the GPU
1392 * executing anything. The chances are fairly high that they will use
1393 * blorp at least once per primary command buffer so it shouldn't be
1394 * wasted.
1395 *
1396 * There is also a workaround on gen8 which requires us to invalidate the
1397 * VF cache occasionally. It's easier if we can assume we start with a
1398 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1399 */
1400 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1401
1402 /* We send an "Indirect State Pointers Disable" packet at
1403 * EndCommandBuffer, so all push contant packets are ignored during a
1404 * context restore. Documentation says after that command, we need to
1405 * emit push constants again before any rendering operation. So we
1406 * flag them dirty here to make sure they get emitted.
1407 */
1408 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1409
1410 VkResult result = VK_SUCCESS;
1411 if (cmd_buffer->usage_flags &
1412 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1413 assert(pBeginInfo->pInheritanceInfo);
1414 cmd_buffer->state.pass =
1415 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1416 cmd_buffer->state.subpass =
1417 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1418
1419 /* This is optional in the inheritance info. */
1420 cmd_buffer->state.framebuffer =
1421 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1422
1423 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1424 cmd_buffer->state.pass, NULL);
1425
1426 /* Record that HiZ is enabled if we can. */
1427 if (cmd_buffer->state.framebuffer) {
1428 const struct anv_image_view * const iview =
1429 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1430
1431 if (iview) {
1432 VkImageLayout layout =
1433 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1434
1435 enum isl_aux_usage aux_usage =
1436 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1437 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1438
1439 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1440 }
1441 }
1442
1443 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1444 }
1445
1446 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1447 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1448 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1449 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1450
1451 /* If secondary buffer supports conditional rendering
1452 * we should emit commands as if conditional rendering is enabled.
1453 */
1454 cmd_buffer->state.conditional_render_enabled =
1455 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1456 }
1457 #endif
1458
1459 return result;
1460 }
1461
1462 /* From the PRM, Volume 2a:
1463 *
1464 * "Indirect State Pointers Disable
1465 *
1466 * At the completion of the post-sync operation associated with this pipe
1467 * control packet, the indirect state pointers in the hardware are
1468 * considered invalid; the indirect pointers are not saved in the context.
1469 * If any new indirect state commands are executed in the command stream
1470 * while the pipe control is pending, the new indirect state commands are
1471 * preserved.
1472 *
1473 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1474 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1475 * commands are only considered as Indirect State Pointers. Once ISP is
1476 * issued in a context, SW must initialize by programming push constant
1477 * commands for all the shaders (at least to zero length) before attempting
1478 * any rendering operation for the same context."
1479 *
1480 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1481 * even though they point to a BO that has been already unreferenced at
1482 * the end of the previous batch buffer. This has been fine so far since
1483 * we are protected by these scratch page (every address not covered by
1484 * a BO should be pointing to the scratch page). But on CNL, it is
1485 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1486 * instruction.
1487 *
1488 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1489 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1490 * context restore, so the mentioned hang doesn't happen. However,
1491 * software must program push constant commands for all stages prior to
1492 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1493 *
1494 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1495 * constants have been loaded into the EUs prior to disable the push constants
1496 * so that it doesn't hang a previous 3DPRIMITIVE.
1497 */
1498 static void
1499 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1500 {
1501 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1502 pc.StallAtPixelScoreboard = true;
1503 pc.CommandStreamerStallEnable = true;
1504 }
1505 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1506 pc.IndirectStatePointersDisable = true;
1507 pc.CommandStreamerStallEnable = true;
1508 }
1509 }
1510
1511 VkResult
1512 genX(EndCommandBuffer)(
1513 VkCommandBuffer commandBuffer)
1514 {
1515 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1516
1517 if (anv_batch_has_error(&cmd_buffer->batch))
1518 return cmd_buffer->batch.status;
1519
1520 /* We want every command buffer to start with the PMA fix in a known state,
1521 * so we disable it at the end of the command buffer.
1522 */
1523 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1524
1525 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1526
1527 emit_isp_disable(cmd_buffer);
1528
1529 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1530
1531 return VK_SUCCESS;
1532 }
1533
1534 void
1535 genX(CmdExecuteCommands)(
1536 VkCommandBuffer commandBuffer,
1537 uint32_t commandBufferCount,
1538 const VkCommandBuffer* pCmdBuffers)
1539 {
1540 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1541
1542 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1543
1544 if (anv_batch_has_error(&primary->batch))
1545 return;
1546
1547 /* The secondary command buffers will assume that the PMA fix is disabled
1548 * when they begin executing. Make sure this is true.
1549 */
1550 genX(cmd_buffer_enable_pma_fix)(primary, false);
1551
1552 /* The secondary command buffer doesn't know which textures etc. have been
1553 * flushed prior to their execution. Apply those flushes now.
1554 */
1555 genX(cmd_buffer_apply_pipe_flushes)(primary);
1556
1557 for (uint32_t i = 0; i < commandBufferCount; i++) {
1558 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1559
1560 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1561 assert(!anv_batch_has_error(&secondary->batch));
1562
1563 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1564 if (secondary->state.conditional_render_enabled) {
1565 if (!primary->state.conditional_render_enabled) {
1566 /* Secondary buffer is constructed as if it will be executed
1567 * with conditional rendering, we should satisfy this dependency
1568 * regardless of conditional rendering being enabled in primary.
1569 */
1570 struct gen_mi_builder b;
1571 gen_mi_builder_init(&b, &primary->batch);
1572 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1573 gen_mi_imm(UINT64_MAX));
1574 }
1575 }
1576 #endif
1577
1578 if (secondary->usage_flags &
1579 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1580 /* If we're continuing a render pass from the primary, we need to
1581 * copy the surface states for the current subpass into the storage
1582 * we allocated for them in BeginCommandBuffer.
1583 */
1584 struct anv_bo *ss_bo =
1585 primary->device->surface_state_pool.block_pool.bo;
1586 struct anv_state src_state = primary->state.render_pass_states;
1587 struct anv_state dst_state = secondary->state.render_pass_states;
1588 assert(src_state.alloc_size == dst_state.alloc_size);
1589
1590 genX(cmd_buffer_so_memcpy)(primary,
1591 (struct anv_address) {
1592 .bo = ss_bo,
1593 .offset = dst_state.offset,
1594 },
1595 (struct anv_address) {
1596 .bo = ss_bo,
1597 .offset = src_state.offset,
1598 },
1599 src_state.alloc_size);
1600 }
1601
1602 anv_cmd_buffer_add_secondary(primary, secondary);
1603 }
1604
1605 /* The secondary isn't counted in our VF cache tracking so we need to
1606 * invalidate the whole thing.
1607 */
1608 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1609 primary->state.pending_pipe_bits |=
1610 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1611 }
1612
1613 /* The secondary may have selected a different pipeline (3D or compute) and
1614 * may have changed the current L3$ configuration. Reset our tracking
1615 * variables to invalid values to ensure that we re-emit these in the case
1616 * where we do any draws or compute dispatches from the primary after the
1617 * secondary has returned.
1618 */
1619 primary->state.current_pipeline = UINT32_MAX;
1620 primary->state.current_l3_config = NULL;
1621 primary->state.current_hash_scale = 0;
1622
1623 /* Each of the secondary command buffers will use its own state base
1624 * address. We need to re-emit state base address for the primary after
1625 * all of the secondaries are done.
1626 *
1627 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1628 * address calls?
1629 */
1630 genX(cmd_buffer_emit_state_base_address)(primary);
1631 }
1632
1633 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1634 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1635 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1636
1637 /**
1638 * Program the hardware to use the specified L3 configuration.
1639 */
1640 void
1641 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1642 const struct gen_l3_config *cfg)
1643 {
1644 assert(cfg);
1645 if (cfg == cmd_buffer->state.current_l3_config)
1646 return;
1647
1648 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1649 intel_logd("L3 config transition: ");
1650 gen_dump_l3_config(cfg, stderr);
1651 }
1652
1653 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1654
1655 /* According to the hardware docs, the L3 partitioning can only be changed
1656 * while the pipeline is completely drained and the caches are flushed,
1657 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1658 */
1659 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1660 pc.DCFlushEnable = true;
1661 pc.PostSyncOperation = NoWrite;
1662 pc.CommandStreamerStallEnable = true;
1663 }
1664
1665 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1666 * invalidation of the relevant caches. Note that because RO invalidation
1667 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1668 * command is processed by the CS) we cannot combine it with the previous
1669 * stalling flush as the hardware documentation suggests, because that
1670 * would cause the CS to stall on previous rendering *after* RO
1671 * invalidation and wouldn't prevent the RO caches from being polluted by
1672 * concurrent rendering before the stall completes. This intentionally
1673 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1674 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1675 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1676 * already guarantee that there is no concurrent GPGPU kernel execution
1677 * (see SKL HSD 2132585).
1678 */
1679 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1680 pc.TextureCacheInvalidationEnable = true;
1681 pc.ConstantCacheInvalidationEnable = true;
1682 pc.InstructionCacheInvalidateEnable = true;
1683 pc.StateCacheInvalidationEnable = true;
1684 pc.PostSyncOperation = NoWrite;
1685 }
1686
1687 /* Now send a third stalling flush to make sure that invalidation is
1688 * complete when the L3 configuration registers are modified.
1689 */
1690 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1691 pc.DCFlushEnable = true;
1692 pc.PostSyncOperation = NoWrite;
1693 pc.CommandStreamerStallEnable = true;
1694 }
1695
1696 #if GEN_GEN >= 8
1697
1698 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1699
1700 #if GEN_GEN >= 12
1701 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1702 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1703 #else
1704 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1705 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1706 #endif
1707
1708 uint32_t l3cr;
1709 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1710 #if GEN_GEN < 12
1711 .SLMEnable = has_slm,
1712 #endif
1713 #if GEN_GEN == 11
1714 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1715 * in L3CNTLREG register. The default setting of the bit is not the
1716 * desirable behavior.
1717 */
1718 .ErrorDetectionBehaviorControl = true,
1719 .UseFullWays = true,
1720 #endif
1721 .URBAllocation = cfg->n[GEN_L3P_URB],
1722 .ROAllocation = cfg->n[GEN_L3P_RO],
1723 .DCAllocation = cfg->n[GEN_L3P_DC],
1724 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1725
1726 /* Set up the L3 partitioning. */
1727 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1728
1729 #else
1730
1731 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1732 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1733 cfg->n[GEN_L3P_ALL];
1734 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1735 cfg->n[GEN_L3P_ALL];
1736 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1737 cfg->n[GEN_L3P_ALL];
1738
1739 assert(!cfg->n[GEN_L3P_ALL]);
1740
1741 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1742 * the matching space on the remaining banks has to be allocated to a
1743 * client (URB for all validated configurations) set to the
1744 * lower-bandwidth 2-bank address hashing mode.
1745 */
1746 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1747 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1748 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1749
1750 /* Minimum number of ways that can be allocated to the URB. */
1751 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1752 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1753
1754 uint32_t l3sqcr1, l3cr2, l3cr3;
1755 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1756 .ConvertDC_UC = !has_dc,
1757 .ConvertIS_UC = !has_is,
1758 .ConvertC_UC = !has_c,
1759 .ConvertT_UC = !has_t);
1760 l3sqcr1 |=
1761 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1762 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1763 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1764
1765 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1766 .SLMEnable = has_slm,
1767 .URBLowBandwidth = urb_low_bw,
1768 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1769 #if !GEN_IS_HASWELL
1770 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1771 #endif
1772 .ROAllocation = cfg->n[GEN_L3P_RO],
1773 .DCAllocation = cfg->n[GEN_L3P_DC]);
1774
1775 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1776 .ISAllocation = cfg->n[GEN_L3P_IS],
1777 .ISLowBandwidth = 0,
1778 .CAllocation = cfg->n[GEN_L3P_C],
1779 .CLowBandwidth = 0,
1780 .TAllocation = cfg->n[GEN_L3P_T],
1781 .TLowBandwidth = 0);
1782
1783 /* Set up the L3 partitioning. */
1784 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1785 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1786 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1787
1788 #if GEN_IS_HASWELL
1789 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1790 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1791 * them disabled to avoid crashing the system hard.
1792 */
1793 uint32_t scratch1, chicken3;
1794 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1795 .L3AtomicDisable = !has_dc);
1796 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1797 .L3AtomicDisableMask = true,
1798 .L3AtomicDisable = !has_dc);
1799 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1800 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1801 }
1802 #endif
1803
1804 #endif
1805
1806 cmd_buffer->state.current_l3_config = cfg;
1807 }
1808
1809 void
1810 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1811 {
1812 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1813
1814 if (cmd_buffer->device->instance->physicalDevice.always_flush_cache)
1815 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
1816
1817 /* Flushes are pipelined while invalidations are handled immediately.
1818 * Therefore, if we're flushing anything then we need to schedule a stall
1819 * before any invalidations can happen.
1820 */
1821 if (bits & ANV_PIPE_FLUSH_BITS)
1822 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1823
1824 /* If we're going to do an invalidate and we have a pending CS stall that
1825 * has yet to be resolved, we do the CS stall now.
1826 */
1827 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1828 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1829 bits |= ANV_PIPE_CS_STALL_BIT;
1830 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1831 }
1832
1833 if (GEN_GEN >= 12 &&
1834 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
1835 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
1836 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
1837 * Enable):
1838 *
1839 * Unified Cache (Tile Cache Disabled):
1840 *
1841 * When the Color and Depth (Z) streams are enabled to be cached in
1842 * the DC space of L2, Software must use "Render Target Cache Flush
1843 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
1844 * Flush" for getting the color and depth (Z) write data to be
1845 * globally observable. In this mode of operation it is not required
1846 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
1847 */
1848 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
1849 }
1850
1851 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
1852 (bits & ANV_PIPE_CS_STALL_BIT) &&
1853 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
1854 /* If we are doing a VF cache invalidate AND a CS stall (it must be
1855 * both) then we can reset our vertex cache tracking.
1856 */
1857 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
1858 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
1859 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
1860 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
1861 }
1862
1863 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1864 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1865 #if GEN_GEN >= 12
1866 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
1867 #endif
1868 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1869 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1870 pipe.RenderTargetCacheFlushEnable =
1871 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1872
1873 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1874 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1875 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1876
1877 /*
1878 * According to the Broadwell documentation, any PIPE_CONTROL with the
1879 * "Command Streamer Stall" bit set must also have another bit set,
1880 * with five different options:
1881 *
1882 * - Render Target Cache Flush
1883 * - Depth Cache Flush
1884 * - Stall at Pixel Scoreboard
1885 * - Post-Sync Operation
1886 * - Depth Stall
1887 * - DC Flush Enable
1888 *
1889 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1890 * mesa and it seems to work fine. The choice is fairly arbitrary.
1891 */
1892 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1893 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1894 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1895 pipe.StallAtPixelScoreboard = true;
1896 }
1897
1898 /* If a render target flush was emitted, then we can toggle off the bit
1899 * saying that render target writes are ongoing.
1900 */
1901 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1902 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
1903
1904 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1905 }
1906
1907 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1908 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1909 *
1910 * "If the VF Cache Invalidation Enable is set to a 1 in a
1911 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
1912 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
1913 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
1914 * a 1."
1915 *
1916 * This appears to hang Broadwell, so we restrict it to just gen9.
1917 */
1918 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
1919 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
1920
1921 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1922 pipe.StateCacheInvalidationEnable =
1923 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1924 pipe.ConstantCacheInvalidationEnable =
1925 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1926 pipe.VFCacheInvalidationEnable =
1927 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1928 pipe.TextureCacheInvalidationEnable =
1929 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1930 pipe.InstructionCacheInvalidateEnable =
1931 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1932
1933 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1934 *
1935 * "When VF Cache Invalidate is set “Post Sync Operation” must be
1936 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
1937 * “Write Timestamp”.
1938 */
1939 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
1940 pipe.PostSyncOperation = WriteImmediateData;
1941 pipe.Address =
1942 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
1943 }
1944 }
1945
1946 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1947 }
1948
1949 cmd_buffer->state.pending_pipe_bits = bits;
1950 }
1951
1952 void genX(CmdPipelineBarrier)(
1953 VkCommandBuffer commandBuffer,
1954 VkPipelineStageFlags srcStageMask,
1955 VkPipelineStageFlags destStageMask,
1956 VkBool32 byRegion,
1957 uint32_t memoryBarrierCount,
1958 const VkMemoryBarrier* pMemoryBarriers,
1959 uint32_t bufferMemoryBarrierCount,
1960 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1961 uint32_t imageMemoryBarrierCount,
1962 const VkImageMemoryBarrier* pImageMemoryBarriers)
1963 {
1964 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1965
1966 /* XXX: Right now, we're really dumb and just flush whatever categories
1967 * the app asks for. One of these days we may make this a bit better
1968 * but right now that's all the hardware allows for in most areas.
1969 */
1970 VkAccessFlags src_flags = 0;
1971 VkAccessFlags dst_flags = 0;
1972
1973 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1974 src_flags |= pMemoryBarriers[i].srcAccessMask;
1975 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1976 }
1977
1978 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1979 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1980 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1981 }
1982
1983 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1984 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1985 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1986 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1987 const VkImageSubresourceRange *range =
1988 &pImageMemoryBarriers[i].subresourceRange;
1989
1990 uint32_t base_layer, layer_count;
1991 if (image->type == VK_IMAGE_TYPE_3D) {
1992 base_layer = 0;
1993 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1994 } else {
1995 base_layer = range->baseArrayLayer;
1996 layer_count = anv_get_layerCount(image, range);
1997 }
1998
1999 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2000 transition_depth_buffer(cmd_buffer, image,
2001 pImageMemoryBarriers[i].oldLayout,
2002 pImageMemoryBarriers[i].newLayout);
2003 }
2004
2005 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2006 transition_stencil_buffer(cmd_buffer, image,
2007 range->baseMipLevel,
2008 anv_get_levelCount(image, range),
2009 base_layer, layer_count,
2010 pImageMemoryBarriers[i].oldLayout,
2011 pImageMemoryBarriers[i].newLayout);
2012 }
2013
2014 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2015 VkImageAspectFlags color_aspects =
2016 anv_image_expand_aspects(image, range->aspectMask);
2017 uint32_t aspect_bit;
2018 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2019 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2020 range->baseMipLevel,
2021 anv_get_levelCount(image, range),
2022 base_layer, layer_count,
2023 pImageMemoryBarriers[i].oldLayout,
2024 pImageMemoryBarriers[i].newLayout);
2025 }
2026 }
2027 }
2028
2029 cmd_buffer->state.pending_pipe_bits |=
2030 anv_pipe_flush_bits_for_access_flags(src_flags) |
2031 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2032 }
2033
2034 static void
2035 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2036 {
2037 VkShaderStageFlags stages =
2038 cmd_buffer->state.gfx.base.pipeline->active_stages;
2039
2040 /* In order to avoid thrash, we assume that vertex and fragment stages
2041 * always exist. In the rare case where one is missing *and* the other
2042 * uses push concstants, this may be suboptimal. However, avoiding stalls
2043 * seems more important.
2044 */
2045 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2046
2047 if (stages == cmd_buffer->state.push_constant_stages)
2048 return;
2049
2050 #if GEN_GEN >= 8
2051 const unsigned push_constant_kb = 32;
2052 #elif GEN_IS_HASWELL
2053 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2054 #else
2055 const unsigned push_constant_kb = 16;
2056 #endif
2057
2058 const unsigned num_stages =
2059 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2060 unsigned size_per_stage = push_constant_kb / num_stages;
2061
2062 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2063 * units of 2KB. Incidentally, these are the same platforms that have
2064 * 32KB worth of push constant space.
2065 */
2066 if (push_constant_kb == 32)
2067 size_per_stage &= ~1u;
2068
2069 uint32_t kb_used = 0;
2070 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2071 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2072 anv_batch_emit(&cmd_buffer->batch,
2073 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2074 alloc._3DCommandSubOpcode = 18 + i;
2075 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2076 alloc.ConstantBufferSize = push_size;
2077 }
2078 kb_used += push_size;
2079 }
2080
2081 anv_batch_emit(&cmd_buffer->batch,
2082 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2083 alloc.ConstantBufferOffset = kb_used;
2084 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2085 }
2086
2087 cmd_buffer->state.push_constant_stages = stages;
2088
2089 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2090 *
2091 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2092 * the next 3DPRIMITIVE command after programming the
2093 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2094 *
2095 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2096 * pipeline setup, we need to dirty push constants.
2097 */
2098 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2099 }
2100
2101 static struct anv_address
2102 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2103 struct anv_descriptor_set *set)
2104 {
2105 if (set->pool) {
2106 /* This is a normal descriptor set */
2107 return (struct anv_address) {
2108 .bo = set->pool->bo,
2109 .offset = set->desc_mem.offset,
2110 };
2111 } else {
2112 /* This is a push descriptor set. We have to flag it as used on the GPU
2113 * so that the next time we push descriptors, we grab a new memory.
2114 */
2115 struct anv_push_descriptor_set *push_set =
2116 (struct anv_push_descriptor_set *)set;
2117 push_set->set_used_on_gpu = true;
2118
2119 return (struct anv_address) {
2120 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2121 .offset = set->desc_mem.offset,
2122 };
2123 }
2124 }
2125
2126 static VkResult
2127 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2128 gl_shader_stage stage,
2129 struct anv_state *bt_state)
2130 {
2131 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2132 struct anv_cmd_pipeline_state *pipe_state;
2133 struct anv_pipeline *pipeline;
2134 uint32_t state_offset;
2135
2136 switch (stage) {
2137 case MESA_SHADER_COMPUTE:
2138 pipe_state = &cmd_buffer->state.compute.base;
2139 break;
2140 default:
2141 pipe_state = &cmd_buffer->state.gfx.base;
2142 break;
2143 }
2144 pipeline = pipe_state->pipeline;
2145
2146 if (!anv_pipeline_has_stage(pipeline, stage)) {
2147 *bt_state = (struct anv_state) { 0, };
2148 return VK_SUCCESS;
2149 }
2150
2151 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2152 if (map->surface_count == 0) {
2153 *bt_state = (struct anv_state) { 0, };
2154 return VK_SUCCESS;
2155 }
2156
2157 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2158 map->surface_count,
2159 &state_offset);
2160 uint32_t *bt_map = bt_state->map;
2161
2162 if (bt_state->map == NULL)
2163 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2164
2165 /* We only need to emit relocs if we're not using softpin. If we are using
2166 * softpin then we always keep all user-allocated memory objects resident.
2167 */
2168 const bool need_client_mem_relocs =
2169 !cmd_buffer->device->instance->physicalDevice.use_softpin;
2170
2171 for (uint32_t s = 0; s < map->surface_count; s++) {
2172 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2173
2174 struct anv_state surface_state;
2175
2176 switch (binding->set) {
2177 case ANV_DESCRIPTOR_SET_NULL:
2178 bt_map[s] = 0;
2179 break;
2180
2181 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2182 /* Color attachment binding */
2183 assert(stage == MESA_SHADER_FRAGMENT);
2184 if (binding->index < subpass->color_count) {
2185 const unsigned att =
2186 subpass->color_attachments[binding->index].attachment;
2187
2188 /* From the Vulkan 1.0.46 spec:
2189 *
2190 * "If any color or depth/stencil attachments are
2191 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2192 * attachments."
2193 */
2194 if (att == VK_ATTACHMENT_UNUSED) {
2195 surface_state = cmd_buffer->state.null_surface_state;
2196 } else {
2197 surface_state = cmd_buffer->state.attachments[att].color.state;
2198 }
2199 } else {
2200 surface_state = cmd_buffer->state.null_surface_state;
2201 }
2202
2203 bt_map[s] = surface_state.offset + state_offset;
2204 break;
2205
2206 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2207 struct anv_state surface_state =
2208 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2209
2210 struct anv_address constant_data = {
2211 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2212 .offset = pipeline->shaders[stage]->constant_data.offset,
2213 };
2214 unsigned constant_data_size =
2215 pipeline->shaders[stage]->constant_data_size;
2216
2217 const enum isl_format format =
2218 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2219 anv_fill_buffer_surface_state(cmd_buffer->device,
2220 surface_state, format,
2221 constant_data, constant_data_size, 1);
2222
2223 bt_map[s] = surface_state.offset + state_offset;
2224 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2225 break;
2226 }
2227
2228 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2229 /* This is always the first binding for compute shaders */
2230 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2231
2232 struct anv_state surface_state =
2233 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2234
2235 const enum isl_format format =
2236 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2237 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2238 format,
2239 cmd_buffer->state.compute.num_workgroups,
2240 12, 1);
2241 bt_map[s] = surface_state.offset + state_offset;
2242 if (need_client_mem_relocs) {
2243 add_surface_reloc(cmd_buffer, surface_state,
2244 cmd_buffer->state.compute.num_workgroups);
2245 }
2246 break;
2247 }
2248
2249 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2250 /* This is a descriptor set buffer so the set index is actually
2251 * given by binding->binding. (Yes, that's confusing.)
2252 */
2253 struct anv_descriptor_set *set =
2254 pipe_state->descriptors[binding->index];
2255 assert(set->desc_mem.alloc_size);
2256 assert(set->desc_surface_state.alloc_size);
2257 bt_map[s] = set->desc_surface_state.offset + state_offset;
2258 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2259 anv_descriptor_set_address(cmd_buffer, set));
2260 break;
2261 }
2262
2263 default: {
2264 assert(binding->set < MAX_SETS);
2265 const struct anv_descriptor *desc =
2266 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2267
2268 switch (desc->type) {
2269 case VK_DESCRIPTOR_TYPE_SAMPLER:
2270 /* Nothing for us to do here */
2271 continue;
2272
2273 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2274 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2275 struct anv_surface_state sstate =
2276 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2277 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2278 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2279 surface_state = sstate.state;
2280 assert(surface_state.alloc_size);
2281 if (need_client_mem_relocs)
2282 add_surface_state_relocs(cmd_buffer, sstate);
2283 break;
2284 }
2285 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2286 assert(stage == MESA_SHADER_FRAGMENT);
2287 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2288 /* For depth and stencil input attachments, we treat it like any
2289 * old texture that a user may have bound.
2290 */
2291 assert(desc->image_view->n_planes == 1);
2292 struct anv_surface_state sstate =
2293 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2294 desc->image_view->planes[0].general_sampler_surface_state :
2295 desc->image_view->planes[0].optimal_sampler_surface_state;
2296 surface_state = sstate.state;
2297 assert(surface_state.alloc_size);
2298 if (need_client_mem_relocs)
2299 add_surface_state_relocs(cmd_buffer, sstate);
2300 } else {
2301 /* For color input attachments, we create the surface state at
2302 * vkBeginRenderPass time so that we can include aux and clear
2303 * color information.
2304 */
2305 assert(binding->input_attachment_index < subpass->input_count);
2306 const unsigned subpass_att = binding->input_attachment_index;
2307 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2308 surface_state = cmd_buffer->state.attachments[att].input.state;
2309 }
2310 break;
2311
2312 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2313 struct anv_surface_state sstate = (binding->write_only)
2314 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2315 : desc->image_view->planes[binding->plane].storage_surface_state;
2316 surface_state = sstate.state;
2317 assert(surface_state.alloc_size);
2318 if (need_client_mem_relocs)
2319 add_surface_state_relocs(cmd_buffer, sstate);
2320 break;
2321 }
2322
2323 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2324 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2325 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2326 surface_state = desc->buffer_view->surface_state;
2327 assert(surface_state.alloc_size);
2328 if (need_client_mem_relocs) {
2329 add_surface_reloc(cmd_buffer, surface_state,
2330 desc->buffer_view->address);
2331 }
2332 break;
2333
2334 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2335 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2336 /* Compute the offset within the buffer */
2337 struct anv_push_constants *push =
2338 &cmd_buffer->state.push_constants[stage];
2339
2340 uint32_t dynamic_offset =
2341 push->dynamic_offsets[binding->dynamic_offset_index];
2342 uint64_t offset = desc->offset + dynamic_offset;
2343 /* Clamp to the buffer size */
2344 offset = MIN2(offset, desc->buffer->size);
2345 /* Clamp the range to the buffer size */
2346 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2347
2348 struct anv_address address =
2349 anv_address_add(desc->buffer->address, offset);
2350
2351 surface_state =
2352 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2353 enum isl_format format =
2354 anv_isl_format_for_descriptor_type(desc->type);
2355
2356 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2357 format, address, range, 1);
2358 if (need_client_mem_relocs)
2359 add_surface_reloc(cmd_buffer, surface_state, address);
2360 break;
2361 }
2362
2363 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2364 surface_state = (binding->write_only)
2365 ? desc->buffer_view->writeonly_storage_surface_state
2366 : desc->buffer_view->storage_surface_state;
2367 assert(surface_state.alloc_size);
2368 if (need_client_mem_relocs) {
2369 add_surface_reloc(cmd_buffer, surface_state,
2370 desc->buffer_view->address);
2371 }
2372 break;
2373
2374 default:
2375 assert(!"Invalid descriptor type");
2376 continue;
2377 }
2378 bt_map[s] = surface_state.offset + state_offset;
2379 break;
2380 }
2381 }
2382 }
2383
2384 return VK_SUCCESS;
2385 }
2386
2387 static VkResult
2388 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2389 gl_shader_stage stage,
2390 struct anv_state *state)
2391 {
2392 struct anv_cmd_pipeline_state *pipe_state =
2393 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2394 &cmd_buffer->state.gfx.base;
2395 struct anv_pipeline *pipeline = pipe_state->pipeline;
2396
2397 if (!anv_pipeline_has_stage(pipeline, stage)) {
2398 *state = (struct anv_state) { 0, };
2399 return VK_SUCCESS;
2400 }
2401
2402 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2403 if (map->sampler_count == 0) {
2404 *state = (struct anv_state) { 0, };
2405 return VK_SUCCESS;
2406 }
2407
2408 uint32_t size = map->sampler_count * 16;
2409 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2410
2411 if (state->map == NULL)
2412 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2413
2414 for (uint32_t s = 0; s < map->sampler_count; s++) {
2415 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2416 const struct anv_descriptor *desc =
2417 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2418
2419 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2420 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2421 continue;
2422
2423 struct anv_sampler *sampler = desc->sampler;
2424
2425 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2426 * happens to be zero.
2427 */
2428 if (sampler == NULL)
2429 continue;
2430
2431 memcpy(state->map + (s * 16),
2432 sampler->state[binding->plane], sizeof(sampler->state[0]));
2433 }
2434
2435 return VK_SUCCESS;
2436 }
2437
2438 static uint32_t
2439 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2440 {
2441 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2442
2443 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2444 pipeline->active_stages;
2445
2446 VkResult result = VK_SUCCESS;
2447 anv_foreach_stage(s, dirty) {
2448 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2449 if (result != VK_SUCCESS)
2450 break;
2451 result = emit_binding_table(cmd_buffer, s,
2452 &cmd_buffer->state.binding_tables[s]);
2453 if (result != VK_SUCCESS)
2454 break;
2455 }
2456
2457 if (result != VK_SUCCESS) {
2458 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2459
2460 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2461 if (result != VK_SUCCESS)
2462 return 0;
2463
2464 /* Re-emit state base addresses so we get the new surface state base
2465 * address before we start emitting binding tables etc.
2466 */
2467 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2468
2469 /* Re-emit all active binding tables */
2470 dirty |= pipeline->active_stages;
2471 anv_foreach_stage(s, dirty) {
2472 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2473 if (result != VK_SUCCESS) {
2474 anv_batch_set_error(&cmd_buffer->batch, result);
2475 return 0;
2476 }
2477 result = emit_binding_table(cmd_buffer, s,
2478 &cmd_buffer->state.binding_tables[s]);
2479 if (result != VK_SUCCESS) {
2480 anv_batch_set_error(&cmd_buffer->batch, result);
2481 return 0;
2482 }
2483 }
2484 }
2485
2486 cmd_buffer->state.descriptors_dirty &= ~dirty;
2487
2488 return dirty;
2489 }
2490
2491 static void
2492 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2493 uint32_t stages)
2494 {
2495 static const uint32_t sampler_state_opcodes[] = {
2496 [MESA_SHADER_VERTEX] = 43,
2497 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2498 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2499 [MESA_SHADER_GEOMETRY] = 46,
2500 [MESA_SHADER_FRAGMENT] = 47,
2501 [MESA_SHADER_COMPUTE] = 0,
2502 };
2503
2504 static const uint32_t binding_table_opcodes[] = {
2505 [MESA_SHADER_VERTEX] = 38,
2506 [MESA_SHADER_TESS_CTRL] = 39,
2507 [MESA_SHADER_TESS_EVAL] = 40,
2508 [MESA_SHADER_GEOMETRY] = 41,
2509 [MESA_SHADER_FRAGMENT] = 42,
2510 [MESA_SHADER_COMPUTE] = 0,
2511 };
2512
2513 anv_foreach_stage(s, stages) {
2514 assert(s < ARRAY_SIZE(binding_table_opcodes));
2515 assert(binding_table_opcodes[s] > 0);
2516
2517 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2518 anv_batch_emit(&cmd_buffer->batch,
2519 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2520 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2521 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2522 }
2523 }
2524
2525 /* Always emit binding table pointers if we're asked to, since on SKL
2526 * this is what flushes push constants. */
2527 anv_batch_emit(&cmd_buffer->batch,
2528 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2529 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2530 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2531 }
2532 }
2533 }
2534
2535 static struct anv_address
2536 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2537 gl_shader_stage stage,
2538 const struct anv_push_range *range)
2539 {
2540 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2541 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2542 switch (range->set) {
2543 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2544 /* This is a descriptor set buffer so the set index is
2545 * actually given by binding->binding. (Yes, that's
2546 * confusing.)
2547 */
2548 struct anv_descriptor_set *set =
2549 gfx_state->base.descriptors[range->index];
2550 return anv_descriptor_set_address(cmd_buffer, set);
2551 break;
2552 }
2553
2554 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2555 struct anv_state state =
2556 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2557 return (struct anv_address) {
2558 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2559 .offset = state.offset,
2560 };
2561 break;
2562 }
2563
2564 default: {
2565 assert(range->set < MAX_SETS);
2566 struct anv_descriptor_set *set =
2567 gfx_state->base.descriptors[range->set];
2568 const struct anv_descriptor *desc =
2569 &set->descriptors[range->index];
2570
2571 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2572 return desc->buffer_view->address;
2573 } else {
2574 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2575 struct anv_push_constants *push =
2576 &cmd_buffer->state.push_constants[stage];
2577 uint32_t dynamic_offset =
2578 push->dynamic_offsets[range->dynamic_offset_index];
2579 return anv_address_add(desc->buffer->address,
2580 desc->offset + dynamic_offset);
2581 }
2582 }
2583 }
2584 #else
2585 /* For Ivy Bridge, push constants are relative to dynamic state
2586 * base address and we only ever push actual push constants.
2587 */
2588 assert(range->length > 0);
2589 assert(range->set == ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
2590 struct anv_state state =
2591 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2592 return (struct anv_address) {
2593 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2594 .offset = state.offset,
2595 };
2596 #endif
2597 }
2598
2599 static void
2600 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2601 gl_shader_stage stage, unsigned buffer_count)
2602 {
2603 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2604 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2605
2606 static const uint32_t push_constant_opcodes[] = {
2607 [MESA_SHADER_VERTEX] = 21,
2608 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2609 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2610 [MESA_SHADER_GEOMETRY] = 22,
2611 [MESA_SHADER_FRAGMENT] = 23,
2612 [MESA_SHADER_COMPUTE] = 0,
2613 };
2614
2615 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2616 assert(push_constant_opcodes[stage] > 0);
2617
2618 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2619 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2620
2621 if (anv_pipeline_has_stage(pipeline, stage)) {
2622 const struct anv_pipeline_bind_map *bind_map =
2623 &pipeline->shaders[stage]->bind_map;
2624
2625 /* The Skylake PRM contains the following restriction:
2626 *
2627 * "The driver must ensure The following case does not occur
2628 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2629 * buffer 3 read length equal to zero committed followed by a
2630 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2631 * zero committed."
2632 *
2633 * To avoid this, we program the buffers in the highest slots.
2634 * This way, slot 0 is only used if slot 3 is also used.
2635 */
2636 assert(buffer_count <= 4);
2637 const unsigned shift = 4 - buffer_count;
2638 for (unsigned i = 0; i < buffer_count; i++) {
2639 const struct anv_push_range *range = &bind_map->push_ranges[i];
2640
2641 /* At this point we only have non-empty ranges */
2642 assert(range->length > 0);
2643
2644 /* For Ivy Bridge, make sure we only set the first range (actual
2645 * push constants)
2646 */
2647 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
2648
2649 const struct anv_address addr =
2650 get_push_range_address(cmd_buffer, stage, range);
2651 c.ConstantBody.ReadLength[i + shift] = range->length;
2652 c.ConstantBody.Buffer[i + shift] =
2653 anv_address_add(addr, range->start * 32);
2654 }
2655 }
2656 }
2657 }
2658
2659 #if GEN_GEN >= 12
2660 static void
2661 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
2662 uint32_t shader_mask, uint32_t count)
2663 {
2664 if (count == 0) {
2665 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
2666 c.ShaderUpdateEnable = shader_mask;
2667 }
2668 return;
2669 }
2670
2671 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2672 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2673
2674 static const uint32_t push_constant_opcodes[] = {
2675 [MESA_SHADER_VERTEX] = 21,
2676 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2677 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2678 [MESA_SHADER_GEOMETRY] = 22,
2679 [MESA_SHADER_FRAGMENT] = 23,
2680 [MESA_SHADER_COMPUTE] = 0,
2681 };
2682
2683 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
2684 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2685 assert(push_constant_opcodes[stage] > 0);
2686
2687 const struct anv_pipeline_bind_map *bind_map =
2688 &pipeline->shaders[stage]->bind_map;
2689
2690 uint32_t *dw;
2691 const uint32_t buffers = (1 << count) - 1;
2692 const uint32_t num_dwords = 2 + 2 * count;
2693
2694 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2695 GENX(3DSTATE_CONSTANT_ALL),
2696 .ShaderUpdateEnable = shader_mask,
2697 .PointerBufferMask = buffers);
2698
2699 for (int i = 0; i < count; i++) {
2700 const struct anv_push_range *range = &bind_map->push_ranges[i];
2701 const struct anv_address addr =
2702 get_push_range_address(cmd_buffer, stage, range);
2703
2704 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
2705 &cmd_buffer->batch, dw + 2 + i * 2,
2706 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
2707 .PointerToConstantBuffer = anv_address_add(addr, range->start * 32),
2708 .ConstantBufferReadLength = range->length,
2709 });
2710 }
2711 }
2712 #endif
2713
2714 static void
2715 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2716 VkShaderStageFlags dirty_stages)
2717 {
2718 VkShaderStageFlags flushed = 0;
2719 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2720 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2721
2722 #if GEN_GEN >= 12
2723 uint32_t nobuffer_stages = 0;
2724 #endif
2725
2726 anv_foreach_stage(stage, dirty_stages) {
2727 unsigned buffer_count = 0;
2728 flushed |= mesa_to_vk_shader_stage(stage);
2729 uint32_t max_push_range = 0;
2730
2731 if (anv_pipeline_has_stage(pipeline, stage)) {
2732 const struct anv_pipeline_bind_map *bind_map =
2733 &pipeline->shaders[stage]->bind_map;
2734
2735 for (unsigned i = 0; i < 4; i++) {
2736 const struct anv_push_range *range = &bind_map->push_ranges[i];
2737 if (range->length > 0) {
2738 buffer_count++;
2739 if (GEN_GEN >= 12 && range->length > max_push_range)
2740 max_push_range = range->length;
2741 }
2742 }
2743 }
2744
2745 #if GEN_GEN >= 12
2746 /* If this stage doesn't have any push constants, emit it later in a
2747 * single CONSTANT_ALL packet.
2748 */
2749 if (buffer_count == 0) {
2750 nobuffer_stages |= 1 << stage;
2751 continue;
2752 }
2753
2754 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
2755 * contains only 5 bits, so we can only use it for buffers smaller than
2756 * 32.
2757 */
2758 if (max_push_range < 32) {
2759 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
2760 buffer_count);
2761 continue;
2762 }
2763 #endif
2764
2765 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffer_count);
2766 }
2767
2768 #if GEN_GEN >= 12
2769 if (nobuffer_stages)
2770 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, 0);
2771 #endif
2772
2773 cmd_buffer->state.push_constants_dirty &= ~flushed;
2774 }
2775
2776 #if GEN_GEN >= 12
2777 void
2778 genX(cmd_buffer_aux_map_state)(struct anv_cmd_buffer *cmd_buffer)
2779 {
2780 void *aux_map_ctx = cmd_buffer->device->aux_map_ctx;
2781 if (!aux_map_ctx)
2782 return;
2783 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
2784 if (cmd_buffer->state.last_aux_map_state != aux_map_state_num) {
2785 /* If the aux-map state number increased, then we need to rewrite the
2786 * register. Rewriting the register is used to both set the aux-map
2787 * translation table address, and also to invalidate any previously
2788 * cached translations.
2789 */
2790 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
2791 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2792 lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
2793 lri.DataDWord = base_addr & 0xffffffff;
2794 }
2795 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2796 lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num) + 4;
2797 lri.DataDWord = base_addr >> 32;
2798 }
2799 cmd_buffer->state.last_aux_map_state = aux_map_state_num;
2800 }
2801 }
2802 #endif
2803
2804 void
2805 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2806 {
2807 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2808 uint32_t *p;
2809
2810 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2811 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2812 vb_emit |= pipeline->vb_used;
2813
2814 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2815
2816 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2817
2818 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
2819
2820 genX(flush_pipeline_select_3d)(cmd_buffer);
2821
2822 #if GEN_GEN >= 12
2823 genX(cmd_buffer_aux_map_state)(cmd_buffer);
2824 #endif
2825
2826 if (vb_emit) {
2827 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2828 const uint32_t num_dwords = 1 + num_buffers * 4;
2829
2830 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2831 GENX(3DSTATE_VERTEX_BUFFERS));
2832 uint32_t vb, i = 0;
2833 for_each_bit(vb, vb_emit) {
2834 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2835 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2836
2837 struct GENX(VERTEX_BUFFER_STATE) state = {
2838 .VertexBufferIndex = vb,
2839
2840 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
2841 #if GEN_GEN <= 7
2842 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
2843 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
2844 #endif
2845
2846 .AddressModifyEnable = true,
2847 .BufferPitch = pipeline->vb[vb].stride,
2848 .BufferStartingAddress = anv_address_add(buffer->address, offset),
2849
2850 #if GEN_GEN >= 8
2851 .BufferSize = buffer->size - offset
2852 #else
2853 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
2854 #endif
2855 };
2856
2857 #if GEN_GEN >= 8 && GEN_GEN <= 9
2858 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
2859 state.BufferStartingAddress,
2860 state.BufferSize);
2861 #endif
2862
2863 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2864 i++;
2865 }
2866 }
2867
2868 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2869
2870 #if GEN_GEN >= 8
2871 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
2872 /* We don't need any per-buffer dirty tracking because you're not
2873 * allowed to bind different XFB buffers while XFB is enabled.
2874 */
2875 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
2876 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
2877 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
2878 #if GEN_GEN < 12
2879 sob.SOBufferIndex = idx;
2880 #else
2881 sob._3DCommandOpcode = 0;
2882 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
2883 #endif
2884
2885 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
2886 sob.SOBufferEnable = true;
2887 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
2888 sob.StreamOffsetWriteEnable = false;
2889 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
2890 xfb->offset);
2891 /* Size is in DWords - 1 */
2892 sob.SurfaceSize = xfb->size / 4 - 1;
2893 }
2894 }
2895 }
2896
2897 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
2898 if (GEN_GEN >= 10)
2899 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2900 }
2901 #endif
2902
2903 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2904 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2905
2906 /* If the pipeline changed, we may need to re-allocate push constant
2907 * space in the URB.
2908 */
2909 cmd_buffer_alloc_push_constants(cmd_buffer);
2910 }
2911
2912 #if GEN_GEN <= 7
2913 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2914 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2915 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2916 *
2917 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2918 * stall needs to be sent just prior to any 3DSTATE_VS,
2919 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2920 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2921 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2922 * PIPE_CONTROL needs to be sent before any combination of VS
2923 * associated 3DSTATE."
2924 */
2925 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2926 pc.DepthStallEnable = true;
2927 pc.PostSyncOperation = WriteImmediateData;
2928 pc.Address =
2929 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2930 }
2931 }
2932 #endif
2933
2934 /* Render targets live in the same binding table as fragment descriptors */
2935 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2936 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2937
2938 /* We emit the binding tables and sampler tables first, then emit push
2939 * constants and then finally emit binding table and sampler table
2940 * pointers. It has to happen in this order, since emitting the binding
2941 * tables may change the push constants (in case of storage images). After
2942 * emitting push constants, on SKL+ we have to emit the corresponding
2943 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2944 */
2945 uint32_t dirty = 0;
2946 if (cmd_buffer->state.descriptors_dirty)
2947 dirty = flush_descriptor_sets(cmd_buffer);
2948
2949 if (dirty || cmd_buffer->state.push_constants_dirty) {
2950 /* Because we're pushing UBOs, we have to push whenever either
2951 * descriptors or push constants is dirty.
2952 */
2953 dirty |= cmd_buffer->state.push_constants_dirty;
2954 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2955 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2956 }
2957
2958 if (dirty)
2959 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2960
2961 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2962 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2963
2964 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2965 ANV_CMD_DIRTY_PIPELINE)) {
2966 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2967 pipeline->depth_clamp_enable);
2968 }
2969
2970 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
2971 ANV_CMD_DIRTY_RENDER_TARGETS))
2972 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2973
2974 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2975 }
2976
2977 static void
2978 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2979 struct anv_address addr,
2980 uint32_t size, uint32_t index)
2981 {
2982 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2983 GENX(3DSTATE_VERTEX_BUFFERS));
2984
2985 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2986 &(struct GENX(VERTEX_BUFFER_STATE)) {
2987 .VertexBufferIndex = index,
2988 .AddressModifyEnable = true,
2989 .BufferPitch = 0,
2990 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
2991 .NullVertexBuffer = size == 0,
2992 #if (GEN_GEN >= 8)
2993 .BufferStartingAddress = addr,
2994 .BufferSize = size
2995 #else
2996 .BufferStartingAddress = addr,
2997 .EndAddress = anv_address_add(addr, size),
2998 #endif
2999 });
3000
3001 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3002 index, addr, size);
3003 }
3004
3005 static void
3006 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3007 struct anv_address addr)
3008 {
3009 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3010 }
3011
3012 static void
3013 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3014 uint32_t base_vertex, uint32_t base_instance)
3015 {
3016 if (base_vertex == 0 && base_instance == 0) {
3017 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3018 } else {
3019 struct anv_state id_state =
3020 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3021
3022 ((uint32_t *)id_state.map)[0] = base_vertex;
3023 ((uint32_t *)id_state.map)[1] = base_instance;
3024
3025 struct anv_address addr = {
3026 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3027 .offset = id_state.offset,
3028 };
3029
3030 emit_base_vertex_instance_bo(cmd_buffer, addr);
3031 }
3032 }
3033
3034 static void
3035 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3036 {
3037 struct anv_state state =
3038 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3039
3040 ((uint32_t *)state.map)[0] = draw_index;
3041
3042 struct anv_address addr = {
3043 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3044 .offset = state.offset,
3045 };
3046
3047 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3048 }
3049
3050 static void
3051 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3052 uint32_t access_type)
3053 {
3054 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3055 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3056
3057 uint64_t vb_used = pipeline->vb_used;
3058 if (vs_prog_data->uses_firstvertex ||
3059 vs_prog_data->uses_baseinstance)
3060 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3061 if (vs_prog_data->uses_drawid)
3062 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3063
3064 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3065 access_type == RANDOM,
3066 vb_used);
3067 }
3068
3069 void genX(CmdDraw)(
3070 VkCommandBuffer commandBuffer,
3071 uint32_t vertexCount,
3072 uint32_t instanceCount,
3073 uint32_t firstVertex,
3074 uint32_t firstInstance)
3075 {
3076 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3077 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3078 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3079
3080 if (anv_batch_has_error(&cmd_buffer->batch))
3081 return;
3082
3083 genX(cmd_buffer_flush_state)(cmd_buffer);
3084
3085 if (cmd_buffer->state.conditional_render_enabled)
3086 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3087
3088 if (vs_prog_data->uses_firstvertex ||
3089 vs_prog_data->uses_baseinstance)
3090 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3091 if (vs_prog_data->uses_drawid)
3092 emit_draw_index(cmd_buffer, 0);
3093
3094 /* Emitting draw index or vertex index BOs may result in needing
3095 * additional VF cache flushes.
3096 */
3097 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3098
3099 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3100 * different views. We need to multiply instanceCount by the view count.
3101 */
3102 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3103
3104 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3105 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3106 prim.VertexAccessType = SEQUENTIAL;
3107 prim.PrimitiveTopologyType = pipeline->topology;
3108 prim.VertexCountPerInstance = vertexCount;
3109 prim.StartVertexLocation = firstVertex;
3110 prim.InstanceCount = instanceCount;
3111 prim.StartInstanceLocation = firstInstance;
3112 prim.BaseVertexLocation = 0;
3113 }
3114
3115 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3116 }
3117
3118 void genX(CmdDrawIndexed)(
3119 VkCommandBuffer commandBuffer,
3120 uint32_t indexCount,
3121 uint32_t instanceCount,
3122 uint32_t firstIndex,
3123 int32_t vertexOffset,
3124 uint32_t firstInstance)
3125 {
3126 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3127 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3128 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3129
3130 if (anv_batch_has_error(&cmd_buffer->batch))
3131 return;
3132
3133 genX(cmd_buffer_flush_state)(cmd_buffer);
3134
3135 if (cmd_buffer->state.conditional_render_enabled)
3136 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3137
3138 if (vs_prog_data->uses_firstvertex ||
3139 vs_prog_data->uses_baseinstance)
3140 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3141 if (vs_prog_data->uses_drawid)
3142 emit_draw_index(cmd_buffer, 0);
3143
3144 /* Emitting draw index or vertex index BOs may result in needing
3145 * additional VF cache flushes.
3146 */
3147 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3148
3149 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3150 * different views. We need to multiply instanceCount by the view count.
3151 */
3152 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3153
3154 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3155 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3156 prim.VertexAccessType = RANDOM;
3157 prim.PrimitiveTopologyType = pipeline->topology;
3158 prim.VertexCountPerInstance = indexCount;
3159 prim.StartVertexLocation = firstIndex;
3160 prim.InstanceCount = instanceCount;
3161 prim.StartInstanceLocation = firstInstance;
3162 prim.BaseVertexLocation = vertexOffset;
3163 }
3164
3165 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3166 }
3167
3168 /* Auto-Draw / Indirect Registers */
3169 #define GEN7_3DPRIM_END_OFFSET 0x2420
3170 #define GEN7_3DPRIM_START_VERTEX 0x2430
3171 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3172 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3173 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3174 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3175
3176 void genX(CmdDrawIndirectByteCountEXT)(
3177 VkCommandBuffer commandBuffer,
3178 uint32_t instanceCount,
3179 uint32_t firstInstance,
3180 VkBuffer counterBuffer,
3181 VkDeviceSize counterBufferOffset,
3182 uint32_t counterOffset,
3183 uint32_t vertexStride)
3184 {
3185 #if GEN_IS_HASWELL || GEN_GEN >= 8
3186 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3187 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3188 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3189 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3190
3191 /* firstVertex is always zero for this draw function */
3192 const uint32_t firstVertex = 0;
3193
3194 if (anv_batch_has_error(&cmd_buffer->batch))
3195 return;
3196
3197 genX(cmd_buffer_flush_state)(cmd_buffer);
3198
3199 if (vs_prog_data->uses_firstvertex ||
3200 vs_prog_data->uses_baseinstance)
3201 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3202 if (vs_prog_data->uses_drawid)
3203 emit_draw_index(cmd_buffer, 0);
3204
3205 /* Emitting draw index or vertex index BOs may result in needing
3206 * additional VF cache flushes.
3207 */
3208 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3209
3210 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3211 * different views. We need to multiply instanceCount by the view count.
3212 */
3213 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3214
3215 struct gen_mi_builder b;
3216 gen_mi_builder_init(&b, &cmd_buffer->batch);
3217 struct gen_mi_value count =
3218 gen_mi_mem32(anv_address_add(counter_buffer->address,
3219 counterBufferOffset));
3220 if (counterOffset)
3221 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3222 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3223 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3224
3225 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3226 gen_mi_imm(firstVertex));
3227 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3228 gen_mi_imm(instanceCount));
3229 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3230 gen_mi_imm(firstInstance));
3231 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3232
3233 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3234 prim.IndirectParameterEnable = true;
3235 prim.VertexAccessType = SEQUENTIAL;
3236 prim.PrimitiveTopologyType = pipeline->topology;
3237 }
3238
3239 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3240 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3241 }
3242
3243 static void
3244 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3245 struct anv_address addr,
3246 bool indexed)
3247 {
3248 struct gen_mi_builder b;
3249 gen_mi_builder_init(&b, &cmd_buffer->batch);
3250
3251 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3252 gen_mi_mem32(anv_address_add(addr, 0)));
3253
3254 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3255 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3256 if (view_count > 1) {
3257 #if GEN_IS_HASWELL || GEN_GEN >= 8
3258 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3259 #else
3260 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3261 "MI_MATH is not supported on Ivy Bridge");
3262 #endif
3263 }
3264 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3265
3266 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3267 gen_mi_mem32(anv_address_add(addr, 8)));
3268
3269 if (indexed) {
3270 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3271 gen_mi_mem32(anv_address_add(addr, 12)));
3272 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3273 gen_mi_mem32(anv_address_add(addr, 16)));
3274 } else {
3275 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3276 gen_mi_mem32(anv_address_add(addr, 12)));
3277 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3278 }
3279 }
3280
3281 void genX(CmdDrawIndirect)(
3282 VkCommandBuffer commandBuffer,
3283 VkBuffer _buffer,
3284 VkDeviceSize offset,
3285 uint32_t drawCount,
3286 uint32_t stride)
3287 {
3288 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3289 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3290 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3291 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3292
3293 if (anv_batch_has_error(&cmd_buffer->batch))
3294 return;
3295
3296 genX(cmd_buffer_flush_state)(cmd_buffer);
3297
3298 if (cmd_buffer->state.conditional_render_enabled)
3299 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3300
3301 for (uint32_t i = 0; i < drawCount; i++) {
3302 struct anv_address draw = anv_address_add(buffer->address, offset);
3303
3304 if (vs_prog_data->uses_firstvertex ||
3305 vs_prog_data->uses_baseinstance)
3306 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3307 if (vs_prog_data->uses_drawid)
3308 emit_draw_index(cmd_buffer, i);
3309
3310 /* Emitting draw index or vertex index BOs may result in needing
3311 * additional VF cache flushes.
3312 */
3313 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3314
3315 load_indirect_parameters(cmd_buffer, draw, false);
3316
3317 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3318 prim.IndirectParameterEnable = true;
3319 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3320 prim.VertexAccessType = SEQUENTIAL;
3321 prim.PrimitiveTopologyType = pipeline->topology;
3322 }
3323
3324 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3325
3326 offset += stride;
3327 }
3328 }
3329
3330 void genX(CmdDrawIndexedIndirect)(
3331 VkCommandBuffer commandBuffer,
3332 VkBuffer _buffer,
3333 VkDeviceSize offset,
3334 uint32_t drawCount,
3335 uint32_t stride)
3336 {
3337 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3338 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3339 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3340 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3341
3342 if (anv_batch_has_error(&cmd_buffer->batch))
3343 return;
3344
3345 genX(cmd_buffer_flush_state)(cmd_buffer);
3346
3347 if (cmd_buffer->state.conditional_render_enabled)
3348 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3349
3350 for (uint32_t i = 0; i < drawCount; i++) {
3351 struct anv_address draw = anv_address_add(buffer->address, offset);
3352
3353 /* TODO: We need to stomp base vertex to 0 somehow */
3354 if (vs_prog_data->uses_firstvertex ||
3355 vs_prog_data->uses_baseinstance)
3356 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3357 if (vs_prog_data->uses_drawid)
3358 emit_draw_index(cmd_buffer, i);
3359
3360 /* Emitting draw index or vertex index BOs may result in needing
3361 * additional VF cache flushes.
3362 */
3363 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3364
3365 load_indirect_parameters(cmd_buffer, draw, true);
3366
3367 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3368 prim.IndirectParameterEnable = true;
3369 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3370 prim.VertexAccessType = RANDOM;
3371 prim.PrimitiveTopologyType = pipeline->topology;
3372 }
3373
3374 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3375
3376 offset += stride;
3377 }
3378 }
3379
3380 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3381
3382 static void
3383 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3384 struct anv_address count_address,
3385 const bool conditional_render_enabled)
3386 {
3387 struct gen_mi_builder b;
3388 gen_mi_builder_init(&b, &cmd_buffer->batch);
3389
3390 if (conditional_render_enabled) {
3391 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3392 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3393 gen_mi_mem32(count_address));
3394 #endif
3395 } else {
3396 /* Upload the current draw count from the draw parameters buffer to
3397 * MI_PREDICATE_SRC0.
3398 */
3399 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3400 gen_mi_mem32(count_address));
3401
3402 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3403 }
3404 }
3405
3406 static void
3407 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3408 uint32_t draw_index)
3409 {
3410 struct gen_mi_builder b;
3411 gen_mi_builder_init(&b, &cmd_buffer->batch);
3412
3413 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3414 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3415
3416 if (draw_index == 0) {
3417 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3418 mip.LoadOperation = LOAD_LOADINV;
3419 mip.CombineOperation = COMBINE_SET;
3420 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3421 }
3422 } else {
3423 /* While draw_index < draw_count the predicate's result will be
3424 * (draw_index == draw_count) ^ TRUE = TRUE
3425 * When draw_index == draw_count the result is
3426 * (TRUE) ^ TRUE = FALSE
3427 * After this all results will be:
3428 * (FALSE) ^ FALSE = FALSE
3429 */
3430 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3431 mip.LoadOperation = LOAD_LOAD;
3432 mip.CombineOperation = COMBINE_XOR;
3433 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3434 }
3435 }
3436 }
3437
3438 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3439 static void
3440 emit_draw_count_predicate_with_conditional_render(
3441 struct anv_cmd_buffer *cmd_buffer,
3442 uint32_t draw_index)
3443 {
3444 struct gen_mi_builder b;
3445 gen_mi_builder_init(&b, &cmd_buffer->batch);
3446
3447 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3448 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3449 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3450
3451 #if GEN_GEN >= 8
3452 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3453 #else
3454 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3455 * so we emit MI_PREDICATE to set it.
3456 */
3457
3458 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3459 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3460
3461 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3462 mip.LoadOperation = LOAD_LOADINV;
3463 mip.CombineOperation = COMBINE_SET;
3464 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3465 }
3466 #endif
3467 }
3468 #endif
3469
3470 void genX(CmdDrawIndirectCountKHR)(
3471 VkCommandBuffer commandBuffer,
3472 VkBuffer _buffer,
3473 VkDeviceSize offset,
3474 VkBuffer _countBuffer,
3475 VkDeviceSize countBufferOffset,
3476 uint32_t maxDrawCount,
3477 uint32_t stride)
3478 {
3479 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3480 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3481 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3482 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3483 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3484 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3485
3486 if (anv_batch_has_error(&cmd_buffer->batch))
3487 return;
3488
3489 genX(cmd_buffer_flush_state)(cmd_buffer);
3490
3491 struct anv_address count_address =
3492 anv_address_add(count_buffer->address, countBufferOffset);
3493
3494 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3495 cmd_state->conditional_render_enabled);
3496
3497 for (uint32_t i = 0; i < maxDrawCount; i++) {
3498 struct anv_address draw = anv_address_add(buffer->address, offset);
3499
3500 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3501 if (cmd_state->conditional_render_enabled) {
3502 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3503 } else {
3504 emit_draw_count_predicate(cmd_buffer, i);
3505 }
3506 #else
3507 emit_draw_count_predicate(cmd_buffer, i);
3508 #endif
3509
3510 if (vs_prog_data->uses_firstvertex ||
3511 vs_prog_data->uses_baseinstance)
3512 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3513 if (vs_prog_data->uses_drawid)
3514 emit_draw_index(cmd_buffer, i);
3515
3516 /* Emitting draw index or vertex index BOs may result in needing
3517 * additional VF cache flushes.
3518 */
3519 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3520
3521 load_indirect_parameters(cmd_buffer, draw, false);
3522
3523 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3524 prim.IndirectParameterEnable = true;
3525 prim.PredicateEnable = true;
3526 prim.VertexAccessType = SEQUENTIAL;
3527 prim.PrimitiveTopologyType = pipeline->topology;
3528 }
3529
3530 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3531
3532 offset += stride;
3533 }
3534 }
3535
3536 void genX(CmdDrawIndexedIndirectCountKHR)(
3537 VkCommandBuffer commandBuffer,
3538 VkBuffer _buffer,
3539 VkDeviceSize offset,
3540 VkBuffer _countBuffer,
3541 VkDeviceSize countBufferOffset,
3542 uint32_t maxDrawCount,
3543 uint32_t stride)
3544 {
3545 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3546 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3547 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3548 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3549 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3550 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3551
3552 if (anv_batch_has_error(&cmd_buffer->batch))
3553 return;
3554
3555 genX(cmd_buffer_flush_state)(cmd_buffer);
3556
3557 struct anv_address count_address =
3558 anv_address_add(count_buffer->address, countBufferOffset);
3559
3560 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3561 cmd_state->conditional_render_enabled);
3562
3563 for (uint32_t i = 0; i < maxDrawCount; i++) {
3564 struct anv_address draw = anv_address_add(buffer->address, offset);
3565
3566 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3567 if (cmd_state->conditional_render_enabled) {
3568 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3569 } else {
3570 emit_draw_count_predicate(cmd_buffer, i);
3571 }
3572 #else
3573 emit_draw_count_predicate(cmd_buffer, i);
3574 #endif
3575
3576 /* TODO: We need to stomp base vertex to 0 somehow */
3577 if (vs_prog_data->uses_firstvertex ||
3578 vs_prog_data->uses_baseinstance)
3579 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3580 if (vs_prog_data->uses_drawid)
3581 emit_draw_index(cmd_buffer, i);
3582
3583 /* Emitting draw index or vertex index BOs may result in needing
3584 * additional VF cache flushes.
3585 */
3586 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3587
3588 load_indirect_parameters(cmd_buffer, draw, true);
3589
3590 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3591 prim.IndirectParameterEnable = true;
3592 prim.PredicateEnable = true;
3593 prim.VertexAccessType = RANDOM;
3594 prim.PrimitiveTopologyType = pipeline->topology;
3595 }
3596
3597 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3598
3599 offset += stride;
3600 }
3601 }
3602
3603 void genX(CmdBeginTransformFeedbackEXT)(
3604 VkCommandBuffer commandBuffer,
3605 uint32_t firstCounterBuffer,
3606 uint32_t counterBufferCount,
3607 const VkBuffer* pCounterBuffers,
3608 const VkDeviceSize* pCounterBufferOffsets)
3609 {
3610 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3611
3612 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3613 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3614 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3615
3616 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3617 *
3618 * "Ssoftware must ensure that no HW stream output operations can be in
3619 * process or otherwise pending at the point that the MI_LOAD/STORE
3620 * commands are processed. This will likely require a pipeline flush."
3621 */
3622 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3623 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3624
3625 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3626 /* If we have a counter buffer, this is a resume so we need to load the
3627 * value into the streamout offset register. Otherwise, this is a begin
3628 * and we need to reset it to zero.
3629 */
3630 if (pCounterBuffers &&
3631 idx >= firstCounterBuffer &&
3632 idx - firstCounterBuffer < counterBufferCount &&
3633 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
3634 uint32_t cb_idx = idx - firstCounterBuffer;
3635 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3636 uint64_t offset = pCounterBufferOffsets ?
3637 pCounterBufferOffsets[cb_idx] : 0;
3638
3639 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3640 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3641 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
3642 offset);
3643 }
3644 } else {
3645 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3646 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3647 lri.DataDWord = 0;
3648 }
3649 }
3650 }
3651
3652 cmd_buffer->state.xfb_enabled = true;
3653 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3654 }
3655
3656 void genX(CmdEndTransformFeedbackEXT)(
3657 VkCommandBuffer commandBuffer,
3658 uint32_t firstCounterBuffer,
3659 uint32_t counterBufferCount,
3660 const VkBuffer* pCounterBuffers,
3661 const VkDeviceSize* pCounterBufferOffsets)
3662 {
3663 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3664
3665 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3666 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3667 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3668
3669 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3670 *
3671 * "Ssoftware must ensure that no HW stream output operations can be in
3672 * process or otherwise pending at the point that the MI_LOAD/STORE
3673 * commands are processed. This will likely require a pipeline flush."
3674 */
3675 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3676 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3677
3678 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
3679 unsigned idx = firstCounterBuffer + cb_idx;
3680
3681 /* If we have a counter buffer, this is a resume so we need to load the
3682 * value into the streamout offset register. Otherwise, this is a begin
3683 * and we need to reset it to zero.
3684 */
3685 if (pCounterBuffers &&
3686 cb_idx < counterBufferCount &&
3687 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
3688 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3689 uint64_t offset = pCounterBufferOffsets ?
3690 pCounterBufferOffsets[cb_idx] : 0;
3691
3692 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
3693 srm.MemoryAddress = anv_address_add(counter_buffer->address,
3694 offset);
3695 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3696 }
3697 }
3698 }
3699
3700 cmd_buffer->state.xfb_enabled = false;
3701 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3702 }
3703
3704 static VkResult
3705 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
3706 {
3707 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3708 struct anv_state surfaces = { 0, }, samplers = { 0, };
3709 VkResult result;
3710
3711 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3712 if (result != VK_SUCCESS) {
3713 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
3714
3715 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
3716 if (result != VK_SUCCESS)
3717 return result;
3718
3719 /* Re-emit state base addresses so we get the new surface state base
3720 * address before we start emitting binding tables etc.
3721 */
3722 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
3723
3724 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3725 if (result != VK_SUCCESS) {
3726 anv_batch_set_error(&cmd_buffer->batch, result);
3727 return result;
3728 }
3729 }
3730
3731 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
3732 if (result != VK_SUCCESS) {
3733 anv_batch_set_error(&cmd_buffer->batch, result);
3734 return result;
3735 }
3736
3737 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3738 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3739 .BindingTablePointer = surfaces.offset,
3740 .SamplerStatePointer = samplers.offset,
3741 };
3742 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3743
3744 struct anv_state state =
3745 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3746 pipeline->interface_descriptor_data,
3747 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3748 64);
3749
3750 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3751 anv_batch_emit(&cmd_buffer->batch,
3752 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3753 mid.InterfaceDescriptorTotalLength = size;
3754 mid.InterfaceDescriptorDataStartAddress = state.offset;
3755 }
3756
3757 return VK_SUCCESS;
3758 }
3759
3760 void
3761 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3762 {
3763 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3764 VkResult result;
3765
3766 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3767
3768 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3769
3770 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3771
3772 #if GEN_GEN >= 12
3773 genX(cmd_buffer_aux_map_state)(cmd_buffer);
3774 #endif
3775
3776 if (cmd_buffer->state.compute.pipeline_dirty) {
3777 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3778 *
3779 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3780 * the only bits that are changed are scoreboard related: Scoreboard
3781 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3782 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3783 * sufficient."
3784 */
3785 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3786 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3787
3788 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3789
3790 /* The workgroup size of the pipeline affects our push constant layout
3791 * so flag push constants as dirty if we change the pipeline.
3792 */
3793 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3794 }
3795
3796 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3797 cmd_buffer->state.compute.pipeline_dirty) {
3798 /* FIXME: figure out descriptors for gen7 */
3799 result = flush_compute_descriptor_set(cmd_buffer);
3800 if (result != VK_SUCCESS)
3801 return;
3802
3803 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3804 }
3805
3806 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3807 struct anv_state push_state =
3808 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3809
3810 if (push_state.alloc_size) {
3811 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3812 curbe.CURBETotalDataLength = push_state.alloc_size;
3813 curbe.CURBEDataStartAddress = push_state.offset;
3814 }
3815 }
3816
3817 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3818 }
3819
3820 cmd_buffer->state.compute.pipeline_dirty = false;
3821
3822 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3823 }
3824
3825 #if GEN_GEN == 7
3826
3827 static VkResult
3828 verify_cmd_parser(const struct anv_device *device,
3829 int required_version,
3830 const char *function)
3831 {
3832 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3833 return vk_errorf(device->instance, device->instance,
3834 VK_ERROR_FEATURE_NOT_PRESENT,
3835 "cmd parser version %d is required for %s",
3836 required_version, function);
3837 } else {
3838 return VK_SUCCESS;
3839 }
3840 }
3841
3842 #endif
3843
3844 static void
3845 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3846 uint32_t baseGroupX,
3847 uint32_t baseGroupY,
3848 uint32_t baseGroupZ)
3849 {
3850 if (anv_batch_has_error(&cmd_buffer->batch))
3851 return;
3852
3853 struct anv_push_constants *push =
3854 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3855 if (push->cs.base_work_group_id[0] != baseGroupX ||
3856 push->cs.base_work_group_id[1] != baseGroupY ||
3857 push->cs.base_work_group_id[2] != baseGroupZ) {
3858 push->cs.base_work_group_id[0] = baseGroupX;
3859 push->cs.base_work_group_id[1] = baseGroupY;
3860 push->cs.base_work_group_id[2] = baseGroupZ;
3861
3862 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3863 }
3864 }
3865
3866 void genX(CmdDispatch)(
3867 VkCommandBuffer commandBuffer,
3868 uint32_t x,
3869 uint32_t y,
3870 uint32_t z)
3871 {
3872 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3873 }
3874
3875 void genX(CmdDispatchBase)(
3876 VkCommandBuffer commandBuffer,
3877 uint32_t baseGroupX,
3878 uint32_t baseGroupY,
3879 uint32_t baseGroupZ,
3880 uint32_t groupCountX,
3881 uint32_t groupCountY,
3882 uint32_t groupCountZ)
3883 {
3884 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3885 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3886 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3887
3888 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3889 baseGroupY, baseGroupZ);
3890
3891 if (anv_batch_has_error(&cmd_buffer->batch))
3892 return;
3893
3894 if (prog_data->uses_num_work_groups) {
3895 struct anv_state state =
3896 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3897 uint32_t *sizes = state.map;
3898 sizes[0] = groupCountX;
3899 sizes[1] = groupCountY;
3900 sizes[2] = groupCountZ;
3901 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3902 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3903 .offset = state.offset,
3904 };
3905 }
3906
3907 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3908
3909 if (cmd_buffer->state.conditional_render_enabled)
3910 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3911
3912 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3913 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3914 ggw.SIMDSize = prog_data->simd_size / 16;
3915 ggw.ThreadDepthCounterMaximum = 0;
3916 ggw.ThreadHeightCounterMaximum = 0;
3917 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3918 ggw.ThreadGroupIDXDimension = groupCountX;
3919 ggw.ThreadGroupIDYDimension = groupCountY;
3920 ggw.ThreadGroupIDZDimension = groupCountZ;
3921 ggw.RightExecutionMask = pipeline->cs_right_mask;
3922 ggw.BottomExecutionMask = 0xffffffff;
3923 }
3924
3925 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3926 }
3927
3928 #define GPGPU_DISPATCHDIMX 0x2500
3929 #define GPGPU_DISPATCHDIMY 0x2504
3930 #define GPGPU_DISPATCHDIMZ 0x2508
3931
3932 void genX(CmdDispatchIndirect)(
3933 VkCommandBuffer commandBuffer,
3934 VkBuffer _buffer,
3935 VkDeviceSize offset)
3936 {
3937 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3938 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3939 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3940 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3941 struct anv_address addr = anv_address_add(buffer->address, offset);
3942 struct anv_batch *batch = &cmd_buffer->batch;
3943
3944 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3945
3946 #if GEN_GEN == 7
3947 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3948 * indirect dispatch registers to be written.
3949 */
3950 if (verify_cmd_parser(cmd_buffer->device, 5,
3951 "vkCmdDispatchIndirect") != VK_SUCCESS)
3952 return;
3953 #endif
3954
3955 if (prog_data->uses_num_work_groups)
3956 cmd_buffer->state.compute.num_workgroups = addr;
3957
3958 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3959
3960 struct gen_mi_builder b;
3961 gen_mi_builder_init(&b, &cmd_buffer->batch);
3962
3963 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
3964 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
3965 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
3966
3967 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
3968 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
3969 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
3970
3971 #if GEN_GEN <= 7
3972 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3973 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
3974 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3975 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3976 mip.LoadOperation = LOAD_LOAD;
3977 mip.CombineOperation = COMBINE_SET;
3978 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3979 }
3980
3981 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3982 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
3983 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3984 mip.LoadOperation = LOAD_LOAD;
3985 mip.CombineOperation = COMBINE_OR;
3986 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3987 }
3988
3989 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3990 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
3991 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3992 mip.LoadOperation = LOAD_LOAD;
3993 mip.CombineOperation = COMBINE_OR;
3994 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3995 }
3996
3997 /* predicate = !predicate; */
3998 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3999 mip.LoadOperation = LOAD_LOADINV;
4000 mip.CombineOperation = COMBINE_OR;
4001 mip.CompareOperation = COMPARE_FALSE;
4002 }
4003
4004 #if GEN_IS_HASWELL
4005 if (cmd_buffer->state.conditional_render_enabled) {
4006 /* predicate &= !(conditional_rendering_predicate == 0); */
4007 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4008 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4009 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4010 mip.LoadOperation = LOAD_LOADINV;
4011 mip.CombineOperation = COMBINE_AND;
4012 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4013 }
4014 }
4015 #endif
4016
4017 #else /* GEN_GEN > 7 */
4018 if (cmd_buffer->state.conditional_render_enabled)
4019 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4020 #endif
4021
4022 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4023 ggw.IndirectParameterEnable = true;
4024 ggw.PredicateEnable = GEN_GEN <= 7 ||
4025 cmd_buffer->state.conditional_render_enabled;
4026 ggw.SIMDSize = prog_data->simd_size / 16;
4027 ggw.ThreadDepthCounterMaximum = 0;
4028 ggw.ThreadHeightCounterMaximum = 0;
4029 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4030 ggw.RightExecutionMask = pipeline->cs_right_mask;
4031 ggw.BottomExecutionMask = 0xffffffff;
4032 }
4033
4034 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4035 }
4036
4037 static void
4038 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4039 uint32_t pipeline)
4040 {
4041 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4042
4043 if (cmd_buffer->state.current_pipeline == pipeline)
4044 return;
4045
4046 #if GEN_GEN >= 8 && GEN_GEN < 10
4047 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4048 *
4049 * Software must clear the COLOR_CALC_STATE Valid field in
4050 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4051 * with Pipeline Select set to GPGPU.
4052 *
4053 * The internal hardware docs recommend the same workaround for Gen9
4054 * hardware too.
4055 */
4056 if (pipeline == GPGPU)
4057 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4058 #endif
4059
4060 #if GEN_GEN == 9
4061 if (pipeline == _3D) {
4062 /* There is a mid-object preemption workaround which requires you to
4063 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4064 * even without preemption, we have issues with geometry flickering when
4065 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4066 * really know why.
4067 */
4068 const uint32_t subslices =
4069 MAX2(cmd_buffer->device->instance->physicalDevice.subslice_total, 1);
4070 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4071 vfe.MaximumNumberofThreads =
4072 devinfo->max_cs_threads * subslices - 1;
4073 vfe.NumberofURBEntries = 2;
4074 vfe.URBEntryAllocationSize = 2;
4075 }
4076
4077 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4078 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4079 * pipeline in case we get back-to-back dispatch calls with the same
4080 * pipeline and a PIPELINE_SELECT in between.
4081 */
4082 cmd_buffer->state.compute.pipeline_dirty = true;
4083 }
4084 #endif
4085
4086 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4087 * PIPELINE_SELECT [DevBWR+]":
4088 *
4089 * Project: DEVSNB+
4090 *
4091 * Software must ensure all the write caches are flushed through a
4092 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4093 * command to invalidate read only caches prior to programming
4094 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4095 */
4096 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4097 pc.RenderTargetCacheFlushEnable = true;
4098 pc.DepthCacheFlushEnable = true;
4099 pc.DCFlushEnable = true;
4100 pc.PostSyncOperation = NoWrite;
4101 pc.CommandStreamerStallEnable = true;
4102 #if GEN_GEN >= 12
4103 pc.TileCacheFlushEnable = true;
4104 #endif
4105 }
4106
4107 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4108 pc.TextureCacheInvalidationEnable = true;
4109 pc.ConstantCacheInvalidationEnable = true;
4110 pc.StateCacheInvalidationEnable = true;
4111 pc.InstructionCacheInvalidateEnable = true;
4112 pc.PostSyncOperation = NoWrite;
4113 #if GEN_GEN >= 12
4114 pc.TileCacheFlushEnable = true;
4115 #endif
4116 }
4117
4118 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4119 #if GEN_GEN >= 9
4120 ps.MaskBits = 3;
4121 #endif
4122 ps.PipelineSelection = pipeline;
4123 }
4124
4125 #if GEN_GEN == 9
4126 if (devinfo->is_geminilake) {
4127 /* Project: DevGLK
4128 *
4129 * "This chicken bit works around a hardware issue with barrier logic
4130 * encountered when switching between GPGPU and 3D pipelines. To
4131 * workaround the issue, this mode bit should be set after a pipeline
4132 * is selected."
4133 */
4134 uint32_t scec;
4135 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4136 .GLKBarrierMode =
4137 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4138 : GLK_BARRIER_MODE_3D_HULL,
4139 .GLKBarrierModeMask = 1);
4140 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4141 }
4142 #endif
4143
4144 cmd_buffer->state.current_pipeline = pipeline;
4145 }
4146
4147 void
4148 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4149 {
4150 genX(flush_pipeline_select)(cmd_buffer, _3D);
4151 }
4152
4153 void
4154 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4155 {
4156 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4157 }
4158
4159 void
4160 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4161 {
4162 if (GEN_GEN >= 8)
4163 return;
4164
4165 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4166 *
4167 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4168 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4169 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4170 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4171 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4172 * Depth Flush Bit set, followed by another pipelined depth stall
4173 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4174 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4175 * via a preceding MI_FLUSH)."
4176 */
4177 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4178 pipe.DepthStallEnable = true;
4179 }
4180 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4181 pipe.DepthCacheFlushEnable = true;
4182 #if GEN_GEN >= 12
4183 pipe.TileCacheFlushEnable = true;
4184 #endif
4185 }
4186 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4187 pipe.DepthStallEnable = true;
4188 }
4189 }
4190
4191 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4192 *
4193 * "The VF cache needs to be invalidated before binding and then using
4194 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4195 * (at a 64B granularity) since the last invalidation. A VF cache
4196 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4197 * bit in PIPE_CONTROL."
4198 *
4199 * This is implemented by carefully tracking all vertex and index buffer
4200 * bindings and flushing if the cache ever ends up with a range in the cache
4201 * that would exceed 4 GiB. This is implemented in three parts:
4202 *
4203 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4204 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4205 * tracking code of the new binding. If this new binding would cause
4206 * the cache to have a too-large range on the next draw call, a pipeline
4207 * stall and VF cache invalidate are added to pending_pipeline_bits.
4208 *
4209 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4210 * empty whenever we emit a VF invalidate.
4211 *
4212 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4213 * after every 3DPRIMITIVE and copies the bound range into the dirty
4214 * range for each used buffer. This has to be a separate step because
4215 * we don't always re-bind all buffers and so 1. can't know which
4216 * buffers are actually bound.
4217 */
4218 void
4219 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4220 int vb_index,
4221 struct anv_address vb_address,
4222 uint32_t vb_size)
4223 {
4224 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4225 !cmd_buffer->device->instance->physicalDevice.use_softpin)
4226 return;
4227
4228 struct anv_vb_cache_range *bound, *dirty;
4229 if (vb_index == -1) {
4230 bound = &cmd_buffer->state.gfx.ib_bound_range;
4231 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4232 } else {
4233 assert(vb_index >= 0);
4234 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4235 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4236 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4237 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4238 }
4239
4240 if (vb_size == 0) {
4241 bound->start = 0;
4242 bound->end = 0;
4243 return;
4244 }
4245
4246 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4247 bound->start = gen_48b_address(anv_address_physical(vb_address));
4248 bound->end = bound->start + vb_size;
4249 assert(bound->end > bound->start); /* No overflow */
4250
4251 /* Align everything to a cache line */
4252 bound->start &= ~(64ull - 1ull);
4253 bound->end = align_u64(bound->end, 64);
4254
4255 /* Compute the dirty range */
4256 dirty->start = MIN2(dirty->start, bound->start);
4257 dirty->end = MAX2(dirty->end, bound->end);
4258
4259 /* If our range is larger than 32 bits, we have to flush */
4260 assert(bound->end - bound->start <= (1ull << 32));
4261 if (dirty->end - dirty->start > (1ull << 32)) {
4262 cmd_buffer->state.pending_pipe_bits |=
4263 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4264 }
4265 }
4266
4267 void
4268 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4269 uint32_t access_type,
4270 uint64_t vb_used)
4271 {
4272 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4273 !cmd_buffer->device->instance->physicalDevice.use_softpin)
4274 return;
4275
4276 if (access_type == RANDOM) {
4277 /* We have an index buffer */
4278 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4279 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4280
4281 if (bound->end > bound->start) {
4282 dirty->start = MIN2(dirty->start, bound->start);
4283 dirty->end = MAX2(dirty->end, bound->end);
4284 }
4285 }
4286
4287 uint64_t mask = vb_used;
4288 while (mask) {
4289 int i = u_bit_scan64(&mask);
4290 assert(i >= 0);
4291 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4292 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4293
4294 struct anv_vb_cache_range *bound, *dirty;
4295 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4296 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4297
4298 if (bound->end > bound->start) {
4299 dirty->start = MIN2(dirty->start, bound->start);
4300 dirty->end = MAX2(dirty->end, bound->end);
4301 }
4302 }
4303 }
4304
4305 /**
4306 * Update the pixel hashing modes that determine the balancing of PS threads
4307 * across subslices and slices.
4308 *
4309 * \param width Width bound of the rendering area (already scaled down if \p
4310 * scale is greater than 1).
4311 * \param height Height bound of the rendering area (already scaled down if \p
4312 * scale is greater than 1).
4313 * \param scale The number of framebuffer samples that could potentially be
4314 * affected by an individual channel of the PS thread. This is
4315 * typically one for single-sampled rendering, but for operations
4316 * like CCS resolves and fast clears a single PS invocation may
4317 * update a huge number of pixels, in which case a finer
4318 * balancing is desirable in order to maximally utilize the
4319 * bandwidth available. UINT_MAX can be used as shorthand for
4320 * "finest hashing mode available".
4321 */
4322 void
4323 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4324 unsigned width, unsigned height,
4325 unsigned scale)
4326 {
4327 #if GEN_GEN == 9
4328 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4329 const unsigned slice_hashing[] = {
4330 /* Because all Gen9 platforms with more than one slice require
4331 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4332 * block is guaranteed to suffer from substantial imbalance, with one
4333 * subslice receiving twice as much work as the other two in the
4334 * slice.
4335 *
4336 * The performance impact of that would be particularly severe when
4337 * three-way hashing is also in use for slice balancing (which is the
4338 * case for all Gen9 GT4 platforms), because one of the slices
4339 * receives one every three 16x16 blocks in either direction, which
4340 * is roughly the periodicity of the underlying subslice imbalance
4341 * pattern ("roughly" because in reality the hardware's
4342 * implementation of three-way hashing doesn't do exact modulo 3
4343 * arithmetic, which somewhat decreases the magnitude of this effect
4344 * in practice). This leads to a systematic subslice imbalance
4345 * within that slice regardless of the size of the primitive. The
4346 * 32x32 hashing mode guarantees that the subslice imbalance within a
4347 * single slice hashing block is minimal, largely eliminating this
4348 * effect.
4349 */
4350 _32x32,
4351 /* Finest slice hashing mode available. */
4352 NORMAL
4353 };
4354 const unsigned subslice_hashing[] = {
4355 /* 16x16 would provide a slight cache locality benefit especially
4356 * visible in the sampler L1 cache efficiency of low-bandwidth
4357 * non-LLC platforms, but it comes at the cost of greater subslice
4358 * imbalance for primitives of dimensions approximately intermediate
4359 * between 16x4 and 16x16.
4360 */
4361 _16x4,
4362 /* Finest subslice hashing mode available. */
4363 _8x4
4364 };
4365 /* Dimensions of the smallest hashing block of a given hashing mode. If
4366 * the rendering area is smaller than this there can't possibly be any
4367 * benefit from switching to this mode, so we optimize out the
4368 * transition.
4369 */
4370 const unsigned min_size[][2] = {
4371 { 16, 4 },
4372 { 8, 4 }
4373 };
4374 const unsigned idx = scale > 1;
4375
4376 if (cmd_buffer->state.current_hash_scale != scale &&
4377 (width > min_size[idx][0] || height > min_size[idx][1])) {
4378 uint32_t gt_mode;
4379
4380 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4381 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4382 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4383 .SubsliceHashing = subslice_hashing[idx],
4384 .SubsliceHashingMask = -1);
4385
4386 cmd_buffer->state.pending_pipe_bits |=
4387 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4388 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4389
4390 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4391
4392 cmd_buffer->state.current_hash_scale = scale;
4393 }
4394 #endif
4395 }
4396
4397 static void
4398 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4399 {
4400 struct anv_device *device = cmd_buffer->device;
4401 const struct anv_image_view *iview =
4402 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4403 const struct anv_image *image = iview ? iview->image : NULL;
4404
4405 /* FIXME: Width and Height are wrong */
4406
4407 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4408
4409 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4410 device->isl_dev.ds.size / 4);
4411 if (dw == NULL)
4412 return;
4413
4414 struct isl_depth_stencil_hiz_emit_info info = { };
4415
4416 if (iview)
4417 info.view = &iview->planes[0].isl;
4418
4419 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4420 uint32_t depth_plane =
4421 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4422 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4423
4424 info.depth_surf = &surface->isl;
4425
4426 info.depth_address =
4427 anv_batch_emit_reloc(&cmd_buffer->batch,
4428 dw + device->isl_dev.ds.depth_offset / 4,
4429 image->planes[depth_plane].address.bo,
4430 image->planes[depth_plane].address.offset +
4431 surface->offset);
4432 info.mocs =
4433 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4434
4435 const uint32_t ds =
4436 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4437 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4438 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4439 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4440
4441 info.hiz_address =
4442 anv_batch_emit_reloc(&cmd_buffer->batch,
4443 dw + device->isl_dev.ds.hiz_offset / 4,
4444 image->planes[depth_plane].address.bo,
4445 image->planes[depth_plane].address.offset +
4446 image->planes[depth_plane].aux_surface.offset);
4447
4448 info.depth_clear_value = ANV_HZ_FC_VAL;
4449 }
4450 }
4451
4452 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4453 uint32_t stencil_plane =
4454 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4455 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4456
4457 info.stencil_surf = &surface->isl;
4458
4459 info.stencil_address =
4460 anv_batch_emit_reloc(&cmd_buffer->batch,
4461 dw + device->isl_dev.ds.stencil_offset / 4,
4462 image->planes[stencil_plane].address.bo,
4463 image->planes[stencil_plane].address.offset +
4464 surface->offset);
4465 info.mocs =
4466 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4467 }
4468
4469 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4470
4471 if (GEN_GEN >= 12) {
4472 /* GEN:BUG:1408224581
4473 *
4474 * Workaround: Gen12LP Astep only An additional pipe control with
4475 * post-sync = store dword operation would be required.( w/a is to
4476 * have an additional pipe control after the stencil state whenever
4477 * the surface state bits of this state is changing).
4478 */
4479 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4480 pc.PostSyncOperation = WriteImmediateData;
4481 pc.Address =
4482 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4483 }
4484 }
4485 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4486 }
4487
4488 /**
4489 * This ANDs the view mask of the current subpass with the pending clear
4490 * views in the attachment to get the mask of views active in the subpass
4491 * that still need to be cleared.
4492 */
4493 static inline uint32_t
4494 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4495 const struct anv_attachment_state *att_state)
4496 {
4497 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4498 }
4499
4500 static inline bool
4501 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4502 const struct anv_attachment_state *att_state)
4503 {
4504 if (!cmd_state->subpass->view_mask)
4505 return true;
4506
4507 uint32_t pending_clear_mask =
4508 get_multiview_subpass_clear_mask(cmd_state, att_state);
4509
4510 return pending_clear_mask & 1;
4511 }
4512
4513 static inline bool
4514 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4515 uint32_t att_idx)
4516 {
4517 const uint32_t last_subpass_idx =
4518 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4519 const struct anv_subpass *last_subpass =
4520 &cmd_state->pass->subpasses[last_subpass_idx];
4521 return last_subpass == cmd_state->subpass;
4522 }
4523
4524 static void
4525 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4526 uint32_t subpass_id)
4527 {
4528 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4529 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4530 cmd_state->subpass = subpass;
4531
4532 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4533
4534 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4535 * different views. If the client asks for instancing, we need to use the
4536 * Instance Data Step Rate to ensure that we repeat the client's
4537 * per-instance data once for each view. Since this bit is in
4538 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4539 * of each subpass.
4540 */
4541 if (GEN_GEN == 7)
4542 cmd_buffer->state.gfx.vb_dirty |= ~0;
4543
4544 /* It is possible to start a render pass with an old pipeline. Because the
4545 * render pass and subpass index are both baked into the pipeline, this is
4546 * highly unlikely. In order to do so, it requires that you have a render
4547 * pass with a single subpass and that you use that render pass twice
4548 * back-to-back and use the same pipeline at the start of the second render
4549 * pass as at the end of the first. In order to avoid unpredictable issues
4550 * with this edge case, we just dirty the pipeline at the start of every
4551 * subpass.
4552 */
4553 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4554
4555 /* Accumulate any subpass flushes that need to happen before the subpass */
4556 cmd_buffer->state.pending_pipe_bits |=
4557 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4558
4559 VkRect2D render_area = cmd_buffer->state.render_area;
4560 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4561
4562 bool is_multiview = subpass->view_mask != 0;
4563
4564 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4565 const uint32_t a = subpass->attachments[i].attachment;
4566 if (a == VK_ATTACHMENT_UNUSED)
4567 continue;
4568
4569 assert(a < cmd_state->pass->attachment_count);
4570 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4571
4572 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4573 const struct anv_image *image = iview->image;
4574
4575 /* A resolve is necessary before use as an input attachment if the clear
4576 * color or auxiliary buffer usage isn't supported by the sampler.
4577 */
4578 const bool input_needs_resolve =
4579 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4580 att_state->input_aux_usage != att_state->aux_usage;
4581
4582 VkImageLayout target_layout, target_stencil_layout;
4583 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4584 !input_needs_resolve) {
4585 /* Layout transitions before the final only help to enable sampling
4586 * as an input attachment. If the input attachment supports sampling
4587 * using the auxiliary surface, we can skip such transitions by
4588 * making the target layout one that is CCS-aware.
4589 */
4590 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4591 } else {
4592 target_layout = subpass->attachments[i].layout;
4593 target_stencil_layout = subpass->attachments[i].stencil_layout;
4594 }
4595
4596 uint32_t base_layer, layer_count;
4597 if (image->type == VK_IMAGE_TYPE_3D) {
4598 base_layer = 0;
4599 layer_count = anv_minify(iview->image->extent.depth,
4600 iview->planes[0].isl.base_level);
4601 } else {
4602 base_layer = iview->planes[0].isl.base_array_layer;
4603 layer_count = fb->layers;
4604 }
4605
4606 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4607 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4608 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4609 iview->planes[0].isl.base_level, 1,
4610 base_layer, layer_count,
4611 att_state->current_layout, target_layout);
4612 }
4613
4614 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4615 transition_depth_buffer(cmd_buffer, image,
4616 att_state->current_layout, target_layout);
4617 att_state->aux_usage =
4618 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4619 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
4620 }
4621
4622 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4623 transition_stencil_buffer(cmd_buffer, image,
4624 iview->planes[0].isl.base_level, 1,
4625 base_layer, layer_count,
4626 att_state->current_stencil_layout,
4627 target_stencil_layout);
4628 }
4629 att_state->current_layout = target_layout;
4630 att_state->current_stencil_layout = target_stencil_layout;
4631
4632 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
4633 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4634
4635 /* Multi-planar images are not supported as attachments */
4636 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4637 assert(image->n_planes == 1);
4638
4639 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
4640 uint32_t clear_layer_count = fb->layers;
4641
4642 if (att_state->fast_clear &&
4643 do_first_layer_clear(cmd_state, att_state)) {
4644 /* We only support fast-clears on the first layer */
4645 assert(iview->planes[0].isl.base_level == 0);
4646 assert(iview->planes[0].isl.base_array_layer == 0);
4647
4648 union isl_color_value clear_color = {};
4649 anv_clear_color_from_att_state(&clear_color, att_state, iview);
4650 if (iview->image->samples == 1) {
4651 anv_image_ccs_op(cmd_buffer, image,
4652 iview->planes[0].isl.format,
4653 VK_IMAGE_ASPECT_COLOR_BIT,
4654 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
4655 &clear_color,
4656 false);
4657 } else {
4658 anv_image_mcs_op(cmd_buffer, image,
4659 iview->planes[0].isl.format,
4660 VK_IMAGE_ASPECT_COLOR_BIT,
4661 0, 1, ISL_AUX_OP_FAST_CLEAR,
4662 &clear_color,
4663 false);
4664 }
4665 base_clear_layer++;
4666 clear_layer_count--;
4667 if (is_multiview)
4668 att_state->pending_clear_views &= ~1;
4669
4670 if (att_state->clear_color_is_zero) {
4671 /* This image has the auxiliary buffer enabled. We can mark the
4672 * subresource as not needing a resolve because the clear color
4673 * will match what's in every RENDER_SURFACE_STATE object when
4674 * it's being used for sampling.
4675 */
4676 set_image_fast_clear_state(cmd_buffer, iview->image,
4677 VK_IMAGE_ASPECT_COLOR_BIT,
4678 ANV_FAST_CLEAR_DEFAULT_VALUE);
4679 } else {
4680 set_image_fast_clear_state(cmd_buffer, iview->image,
4681 VK_IMAGE_ASPECT_COLOR_BIT,
4682 ANV_FAST_CLEAR_ANY);
4683 }
4684 }
4685
4686 /* From the VkFramebufferCreateInfo spec:
4687 *
4688 * "If the render pass uses multiview, then layers must be one and each
4689 * attachment requires a number of layers that is greater than the
4690 * maximum bit index set in the view mask in the subpasses in which it
4691 * is used."
4692 *
4693 * So if multiview is active we ignore the number of layers in the
4694 * framebuffer and instead we honor the view mask from the subpass.
4695 */
4696 if (is_multiview) {
4697 assert(image->n_planes == 1);
4698 uint32_t pending_clear_mask =
4699 get_multiview_subpass_clear_mask(cmd_state, att_state);
4700
4701 uint32_t layer_idx;
4702 for_each_bit(layer_idx, pending_clear_mask) {
4703 uint32_t layer =
4704 iview->planes[0].isl.base_array_layer + layer_idx;
4705
4706 anv_image_clear_color(cmd_buffer, image,
4707 VK_IMAGE_ASPECT_COLOR_BIT,
4708 att_state->aux_usage,
4709 iview->planes[0].isl.format,
4710 iview->planes[0].isl.swizzle,
4711 iview->planes[0].isl.base_level,
4712 layer, 1,
4713 render_area,
4714 vk_to_isl_color(att_state->clear_value.color));
4715 }
4716
4717 att_state->pending_clear_views &= ~pending_clear_mask;
4718 } else if (clear_layer_count > 0) {
4719 assert(image->n_planes == 1);
4720 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4721 att_state->aux_usage,
4722 iview->planes[0].isl.format,
4723 iview->planes[0].isl.swizzle,
4724 iview->planes[0].isl.base_level,
4725 base_clear_layer, clear_layer_count,
4726 render_area,
4727 vk_to_isl_color(att_state->clear_value.color));
4728 }
4729 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
4730 VK_IMAGE_ASPECT_STENCIL_BIT)) {
4731 if (att_state->fast_clear && !is_multiview) {
4732 /* We currently only support HiZ for single-layer images */
4733 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4734 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
4735 assert(iview->planes[0].isl.base_level == 0);
4736 assert(iview->planes[0].isl.base_array_layer == 0);
4737 assert(fb->layers == 1);
4738 }
4739
4740 anv_image_hiz_clear(cmd_buffer, image,
4741 att_state->pending_clear_aspects,
4742 iview->planes[0].isl.base_level,
4743 iview->planes[0].isl.base_array_layer,
4744 fb->layers, render_area,
4745 att_state->clear_value.depthStencil.stencil);
4746 } else if (is_multiview) {
4747 uint32_t pending_clear_mask =
4748 get_multiview_subpass_clear_mask(cmd_state, att_state);
4749
4750 uint32_t layer_idx;
4751 for_each_bit(layer_idx, pending_clear_mask) {
4752 uint32_t layer =
4753 iview->planes[0].isl.base_array_layer + layer_idx;
4754
4755 anv_image_clear_depth_stencil(cmd_buffer, image,
4756 att_state->pending_clear_aspects,
4757 att_state->aux_usage,
4758 iview->planes[0].isl.base_level,
4759 layer, 1,
4760 render_area,
4761 att_state->clear_value.depthStencil.depth,
4762 att_state->clear_value.depthStencil.stencil);
4763 }
4764
4765 att_state->pending_clear_views &= ~pending_clear_mask;
4766 } else {
4767 anv_image_clear_depth_stencil(cmd_buffer, image,
4768 att_state->pending_clear_aspects,
4769 att_state->aux_usage,
4770 iview->planes[0].isl.base_level,
4771 iview->planes[0].isl.base_array_layer,
4772 fb->layers, render_area,
4773 att_state->clear_value.depthStencil.depth,
4774 att_state->clear_value.depthStencil.stencil);
4775 }
4776 } else {
4777 assert(att_state->pending_clear_aspects == 0);
4778 }
4779
4780 if (GEN_GEN < 10 &&
4781 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4782 image->planes[0].aux_surface.isl.size_B > 0 &&
4783 iview->planes[0].isl.base_level == 0 &&
4784 iview->planes[0].isl.base_array_layer == 0) {
4785 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
4786 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
4787 image, VK_IMAGE_ASPECT_COLOR_BIT,
4788 false /* copy to ss */);
4789 }
4790
4791 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
4792 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
4793 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
4794 image, VK_IMAGE_ASPECT_COLOR_BIT,
4795 false /* copy to ss */);
4796 }
4797 }
4798
4799 if (subpass->attachments[i].usage ==
4800 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
4801 /* We assume that if we're starting a subpass, we're going to do some
4802 * rendering so we may end up with compressed data.
4803 */
4804 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
4805 VK_IMAGE_ASPECT_COLOR_BIT,
4806 att_state->aux_usage,
4807 iview->planes[0].isl.base_level,
4808 iview->planes[0].isl.base_array_layer,
4809 fb->layers);
4810 } else if (subpass->attachments[i].usage ==
4811 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
4812 /* We may be writing depth or stencil so we need to mark the surface.
4813 * Unfortunately, there's no way to know at this point whether the
4814 * depth or stencil tests used will actually write to the surface.
4815 *
4816 * Even though stencil may be plane 1, it always shares a base_level
4817 * with depth.
4818 */
4819 const struct isl_view *ds_view = &iview->planes[0].isl;
4820 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
4821 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4822 VK_IMAGE_ASPECT_DEPTH_BIT,
4823 att_state->aux_usage,
4824 ds_view->base_level,
4825 ds_view->base_array_layer,
4826 fb->layers);
4827 }
4828 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
4829 /* Even though stencil may be plane 1, it always shares a
4830 * base_level with depth.
4831 */
4832 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4833 VK_IMAGE_ASPECT_STENCIL_BIT,
4834 ISL_AUX_USAGE_NONE,
4835 ds_view->base_level,
4836 ds_view->base_array_layer,
4837 fb->layers);
4838 }
4839 }
4840
4841 /* If multiview is enabled, then we are only done clearing when we no
4842 * longer have pending layers to clear, or when we have processed the
4843 * last subpass that uses this attachment.
4844 */
4845 if (!is_multiview ||
4846 att_state->pending_clear_views == 0 ||
4847 current_subpass_is_last_for_attachment(cmd_state, a)) {
4848 att_state->pending_clear_aspects = 0;
4849 }
4850
4851 att_state->pending_load_aspects = 0;
4852 }
4853
4854 cmd_buffer_emit_depth_stencil(cmd_buffer);
4855
4856 #if GEN_GEN >= 11
4857 /* The PIPE_CONTROL command description says:
4858 *
4859 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
4860 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
4861 * Target Cache Flush by enabling this bit. When render target flush
4862 * is set due to new association of BTI, PS Scoreboard Stall bit must
4863 * be set in this packet."
4864 */
4865 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4866 pc.RenderTargetCacheFlushEnable = true;
4867 pc.StallAtPixelScoreboard = true;
4868 #if GEN_GEN >= 12
4869 pc.TileCacheFlushEnable = true;
4870 #endif
4871 }
4872 #endif
4873 }
4874
4875 static enum blorp_filter
4876 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
4877 {
4878 switch (vk_mode) {
4879 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
4880 return BLORP_FILTER_SAMPLE_0;
4881 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
4882 return BLORP_FILTER_AVERAGE;
4883 case VK_RESOLVE_MODE_MIN_BIT_KHR:
4884 return BLORP_FILTER_MIN_SAMPLE;
4885 case VK_RESOLVE_MODE_MAX_BIT_KHR:
4886 return BLORP_FILTER_MAX_SAMPLE;
4887 default:
4888 return BLORP_FILTER_NONE;
4889 }
4890 }
4891
4892 static void
4893 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
4894 {
4895 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4896 struct anv_subpass *subpass = cmd_state->subpass;
4897 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
4898 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4899
4900 if (subpass->has_color_resolve) {
4901 /* We are about to do some MSAA resolves. We need to flush so that the
4902 * result of writes to the MSAA color attachments show up in the sampler
4903 * when we blit to the single-sampled resolve target.
4904 */
4905 cmd_buffer->state.pending_pipe_bits |=
4906 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4907 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
4908
4909 for (uint32_t i = 0; i < subpass->color_count; ++i) {
4910 uint32_t src_att = subpass->color_attachments[i].attachment;
4911 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
4912
4913 if (dst_att == VK_ATTACHMENT_UNUSED)
4914 continue;
4915
4916 assert(src_att < cmd_buffer->state.pass->attachment_count);
4917 assert(dst_att < cmd_buffer->state.pass->attachment_count);
4918
4919 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
4920 /* From the Vulkan 1.0 spec:
4921 *
4922 * If the first use of an attachment in a render pass is as a
4923 * resolve attachment, then the loadOp is effectively ignored
4924 * as the resolve is guaranteed to overwrite all pixels in the
4925 * render area.
4926 */
4927 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
4928 }
4929
4930 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
4931 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
4932
4933 const VkRect2D render_area = cmd_buffer->state.render_area;
4934
4935 enum isl_aux_usage src_aux_usage =
4936 cmd_buffer->state.attachments[src_att].aux_usage;
4937 enum isl_aux_usage dst_aux_usage =
4938 cmd_buffer->state.attachments[dst_att].aux_usage;
4939
4940 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
4941 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
4942
4943 anv_image_msaa_resolve(cmd_buffer,
4944 src_iview->image, src_aux_usage,
4945 src_iview->planes[0].isl.base_level,
4946 src_iview->planes[0].isl.base_array_layer,
4947 dst_iview->image, dst_aux_usage,
4948 dst_iview->planes[0].isl.base_level,
4949 dst_iview->planes[0].isl.base_array_layer,
4950 VK_IMAGE_ASPECT_COLOR_BIT,
4951 render_area.offset.x, render_area.offset.y,
4952 render_area.offset.x, render_area.offset.y,
4953 render_area.extent.width,
4954 render_area.extent.height,
4955 fb->layers, BLORP_FILTER_NONE);
4956 }
4957 }
4958
4959 if (subpass->ds_resolve_attachment) {
4960 /* We are about to do some MSAA resolves. We need to flush so that the
4961 * result of writes to the MSAA depth attachments show up in the sampler
4962 * when we blit to the single-sampled resolve target.
4963 */
4964 cmd_buffer->state.pending_pipe_bits |=
4965 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4966 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
4967
4968 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
4969 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
4970
4971 assert(src_att < cmd_buffer->state.pass->attachment_count);
4972 assert(dst_att < cmd_buffer->state.pass->attachment_count);
4973
4974 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
4975 /* From the Vulkan 1.0 spec:
4976 *
4977 * If the first use of an attachment in a render pass is as a
4978 * resolve attachment, then the loadOp is effectively ignored
4979 * as the resolve is guaranteed to overwrite all pixels in the
4980 * render area.
4981 */
4982 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
4983 }
4984
4985 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
4986 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
4987
4988 const VkRect2D render_area = cmd_buffer->state.render_area;
4989
4990 struct anv_attachment_state *src_state =
4991 &cmd_state->attachments[src_att];
4992 struct anv_attachment_state *dst_state =
4993 &cmd_state->attachments[dst_att];
4994
4995 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
4996 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
4997
4998 /* MSAA resolves sample from the source attachment. Transition the
4999 * depth attachment first to get rid of any HiZ that we may not be
5000 * able to handle.
5001 */
5002 transition_depth_buffer(cmd_buffer, src_iview->image,
5003 src_state->current_layout,
5004 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
5005 src_state->aux_usage =
5006 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5007 VK_IMAGE_ASPECT_DEPTH_BIT,
5008 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
5009 src_state->current_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
5010
5011 /* MSAA resolves write to the resolve attachment as if it were any
5012 * other transfer op. Transition the resolve attachment accordingly.
5013 */
5014 VkImageLayout dst_initial_layout = dst_state->current_layout;
5015
5016 /* If our render area is the entire size of the image, we're going to
5017 * blow it all away so we can claim the initial layout is UNDEFINED
5018 * and we'll get a HiZ ambiguate instead of a resolve.
5019 */
5020 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5021 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5022 render_area.extent.width == dst_iview->extent.width &&
5023 render_area.extent.height == dst_iview->extent.height)
5024 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5025
5026 transition_depth_buffer(cmd_buffer, dst_iview->image,
5027 dst_initial_layout,
5028 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5029 dst_state->aux_usage =
5030 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5031 VK_IMAGE_ASPECT_DEPTH_BIT,
5032 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5033 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5034
5035 enum blorp_filter filter =
5036 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5037
5038 anv_image_msaa_resolve(cmd_buffer,
5039 src_iview->image, src_state->aux_usage,
5040 src_iview->planes[0].isl.base_level,
5041 src_iview->planes[0].isl.base_array_layer,
5042 dst_iview->image, dst_state->aux_usage,
5043 dst_iview->planes[0].isl.base_level,
5044 dst_iview->planes[0].isl.base_array_layer,
5045 VK_IMAGE_ASPECT_DEPTH_BIT,
5046 render_area.offset.x, render_area.offset.y,
5047 render_area.offset.x, render_area.offset.y,
5048 render_area.extent.width,
5049 render_area.extent.height,
5050 fb->layers, filter);
5051 }
5052
5053 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5054 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5055
5056 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
5057 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5058
5059 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5060 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5061
5062 enum blorp_filter filter =
5063 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5064
5065 anv_image_msaa_resolve(cmd_buffer,
5066 src_iview->image, src_aux_usage,
5067 src_iview->planes[0].isl.base_level,
5068 src_iview->planes[0].isl.base_array_layer,
5069 dst_iview->image, dst_aux_usage,
5070 dst_iview->planes[0].isl.base_level,
5071 dst_iview->planes[0].isl.base_array_layer,
5072 VK_IMAGE_ASPECT_STENCIL_BIT,
5073 render_area.offset.x, render_area.offset.y,
5074 render_area.offset.x, render_area.offset.y,
5075 render_area.extent.width,
5076 render_area.extent.height,
5077 fb->layers, filter);
5078 }
5079 }
5080
5081 #if GEN_GEN == 7
5082 /* On gen7, we have to store a texturable version of the stencil buffer in
5083 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5084 * forth at strategic points. Stencil writes are only allowed in following
5085 * layouts:
5086 *
5087 * - VK_IMAGE_LAYOUT_GENERAL
5088 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5089 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5090 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5091 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5092 *
5093 * For general, we have no nice opportunity to transition so we do the copy
5094 * to the shadow unconditionally at the end of the subpass. For transfer
5095 * destinations, we can update it as part of the transfer op. For the other
5096 * layouts, we delay the copy until a transition into some other layout.
5097 */
5098 if (subpass->depth_stencil_attachment) {
5099 uint32_t a = subpass->depth_stencil_attachment->attachment;
5100 assert(a != VK_ATTACHMENT_UNUSED);
5101
5102 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5103 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5104 const struct anv_image *image = iview->image;
5105
5106 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5107 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5108 VK_IMAGE_ASPECT_STENCIL_BIT);
5109
5110 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5111 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5112 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5113 anv_image_copy_to_shadow(cmd_buffer, image,
5114 VK_IMAGE_ASPECT_STENCIL_BIT,
5115 iview->planes[plane].isl.base_level, 1,
5116 iview->planes[plane].isl.base_array_layer,
5117 fb->layers);
5118 }
5119 }
5120 }
5121 #endif /* GEN_GEN == 7 */
5122
5123 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5124 const uint32_t a = subpass->attachments[i].attachment;
5125 if (a == VK_ATTACHMENT_UNUSED)
5126 continue;
5127
5128 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5129 continue;
5130
5131 assert(a < cmd_state->pass->attachment_count);
5132 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5133 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5134 const struct anv_image *image = iview->image;
5135
5136 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5137 image->vk_format != iview->vk_format) {
5138 enum anv_fast_clear_type fast_clear_type =
5139 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5140 image, VK_IMAGE_ASPECT_COLOR_BIT,
5141 att_state->current_layout);
5142
5143 /* If any clear color was used, flush it down the aux surfaces. If we
5144 * don't do it now using the view's format we might use the clear
5145 * color incorrectly in the following resolves (for example with an
5146 * SRGB view & a UNORM image).
5147 */
5148 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5149 anv_perf_warn(cmd_buffer->device->instance, iview,
5150 "Doing a partial resolve to get rid of clear color at the "
5151 "end of a renderpass due to an image/view format mismatch");
5152
5153 uint32_t base_layer, layer_count;
5154 if (image->type == VK_IMAGE_TYPE_3D) {
5155 base_layer = 0;
5156 layer_count = anv_minify(iview->image->extent.depth,
5157 iview->planes[0].isl.base_level);
5158 } else {
5159 base_layer = iview->planes[0].isl.base_array_layer;
5160 layer_count = fb->layers;
5161 }
5162
5163 for (uint32_t a = 0; a < layer_count; a++) {
5164 uint32_t array_layer = base_layer + a;
5165 if (image->samples == 1) {
5166 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5167 iview->planes[0].isl.format,
5168 VK_IMAGE_ASPECT_COLOR_BIT,
5169 iview->planes[0].isl.base_level,
5170 array_layer,
5171 ISL_AUX_OP_PARTIAL_RESOLVE,
5172 ANV_FAST_CLEAR_NONE);
5173 } else {
5174 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5175 iview->planes[0].isl.format,
5176 VK_IMAGE_ASPECT_COLOR_BIT,
5177 base_layer,
5178 ISL_AUX_OP_PARTIAL_RESOLVE,
5179 ANV_FAST_CLEAR_NONE);
5180 }
5181 }
5182 }
5183 }
5184
5185 /* Transition the image into the final layout for this render pass */
5186 VkImageLayout target_layout =
5187 cmd_state->pass->attachments[a].final_layout;
5188 VkImageLayout target_stencil_layout =
5189 cmd_state->pass->attachments[a].stencil_final_layout;
5190
5191 uint32_t base_layer, layer_count;
5192 if (image->type == VK_IMAGE_TYPE_3D) {
5193 base_layer = 0;
5194 layer_count = anv_minify(iview->image->extent.depth,
5195 iview->planes[0].isl.base_level);
5196 } else {
5197 base_layer = iview->planes[0].isl.base_array_layer;
5198 layer_count = fb->layers;
5199 }
5200
5201 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5202 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5203 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5204 iview->planes[0].isl.base_level, 1,
5205 base_layer, layer_count,
5206 att_state->current_layout, target_layout);
5207 }
5208
5209 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5210 transition_depth_buffer(cmd_buffer, image,
5211 att_state->current_layout, target_layout);
5212 }
5213
5214 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5215 transition_stencil_buffer(cmd_buffer, image,
5216 iview->planes[0].isl.base_level, 1,
5217 base_layer, layer_count,
5218 att_state->current_stencil_layout,
5219 target_stencil_layout);
5220 }
5221 }
5222
5223 /* Accumulate any subpass flushes that need to happen after the subpass.
5224 * Yes, they do get accumulated twice in the NextSubpass case but since
5225 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5226 * ORing the bits in twice so it's harmless.
5227 */
5228 cmd_buffer->state.pending_pipe_bits |=
5229 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5230 }
5231
5232 void genX(CmdBeginRenderPass)(
5233 VkCommandBuffer commandBuffer,
5234 const VkRenderPassBeginInfo* pRenderPassBegin,
5235 VkSubpassContents contents)
5236 {
5237 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5238 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5239 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5240
5241 cmd_buffer->state.framebuffer = framebuffer;
5242 cmd_buffer->state.pass = pass;
5243 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5244 VkResult result =
5245 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5246
5247 /* If we failed to setup the attachments we should not try to go further */
5248 if (result != VK_SUCCESS) {
5249 assert(anv_batch_has_error(&cmd_buffer->batch));
5250 return;
5251 }
5252
5253 genX(flush_pipeline_select_3d)(cmd_buffer);
5254
5255 cmd_buffer_begin_subpass(cmd_buffer, 0);
5256 }
5257
5258 void genX(CmdBeginRenderPass2KHR)(
5259 VkCommandBuffer commandBuffer,
5260 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5261 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5262 {
5263 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5264 pSubpassBeginInfo->contents);
5265 }
5266
5267 void genX(CmdNextSubpass)(
5268 VkCommandBuffer commandBuffer,
5269 VkSubpassContents contents)
5270 {
5271 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5272
5273 if (anv_batch_has_error(&cmd_buffer->batch))
5274 return;
5275
5276 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5277
5278 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5279 cmd_buffer_end_subpass(cmd_buffer);
5280 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5281 }
5282
5283 void genX(CmdNextSubpass2KHR)(
5284 VkCommandBuffer commandBuffer,
5285 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5286 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5287 {
5288 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5289 }
5290
5291 void genX(CmdEndRenderPass)(
5292 VkCommandBuffer commandBuffer)
5293 {
5294 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5295
5296 if (anv_batch_has_error(&cmd_buffer->batch))
5297 return;
5298
5299 cmd_buffer_end_subpass(cmd_buffer);
5300
5301 cmd_buffer->state.hiz_enabled = false;
5302
5303 #ifndef NDEBUG
5304 anv_dump_add_attachments(cmd_buffer);
5305 #endif
5306
5307 /* Remove references to render pass specific state. This enables us to
5308 * detect whether or not we're in a renderpass.
5309 */
5310 cmd_buffer->state.framebuffer = NULL;
5311 cmd_buffer->state.pass = NULL;
5312 cmd_buffer->state.subpass = NULL;
5313 }
5314
5315 void genX(CmdEndRenderPass2KHR)(
5316 VkCommandBuffer commandBuffer,
5317 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5318 {
5319 genX(CmdEndRenderPass)(commandBuffer);
5320 }
5321
5322 void
5323 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5324 {
5325 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5326 struct gen_mi_builder b;
5327 gen_mi_builder_init(&b, &cmd_buffer->batch);
5328
5329 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5330 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5331 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5332
5333 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5334 mip.LoadOperation = LOAD_LOADINV;
5335 mip.CombineOperation = COMBINE_SET;
5336 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5337 }
5338 #endif
5339 }
5340
5341 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5342 void genX(CmdBeginConditionalRenderingEXT)(
5343 VkCommandBuffer commandBuffer,
5344 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5345 {
5346 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5347 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5348 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5349 struct anv_address value_address =
5350 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5351
5352 const bool isInverted = pConditionalRenderingBegin->flags &
5353 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5354
5355 cmd_state->conditional_render_enabled = true;
5356
5357 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5358
5359 struct gen_mi_builder b;
5360 gen_mi_builder_init(&b, &cmd_buffer->batch);
5361
5362 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5363 *
5364 * If the value of the predicate in buffer memory changes
5365 * while conditional rendering is active, the rendering commands
5366 * may be discarded in an implementation-dependent way.
5367 * Some implementations may latch the value of the predicate
5368 * upon beginning conditional rendering while others
5369 * may read it before every rendering command.
5370 *
5371 * So it's perfectly fine to read a value from the buffer once.
5372 */
5373 struct gen_mi_value value = gen_mi_mem32(value_address);
5374
5375 /* Precompute predicate result, it is necessary to support secondary
5376 * command buffers since it is unknown if conditional rendering is
5377 * inverted when populating them.
5378 */
5379 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5380 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5381 gen_mi_ult(&b, gen_mi_imm(0), value));
5382 }
5383
5384 void genX(CmdEndConditionalRenderingEXT)(
5385 VkCommandBuffer commandBuffer)
5386 {
5387 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5388 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5389
5390 cmd_state->conditional_render_enabled = false;
5391 }
5392 #endif
5393
5394 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5395 * command streamer for later execution.
5396 */
5397 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5398 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5399 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5400 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5401 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5402 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5403 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5404 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5405 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5406 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5407 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5408 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5409 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5410 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5411 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5412
5413 void genX(CmdSetEvent)(
5414 VkCommandBuffer commandBuffer,
5415 VkEvent _event,
5416 VkPipelineStageFlags stageMask)
5417 {
5418 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5419 ANV_FROM_HANDLE(anv_event, event, _event);
5420
5421 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5422 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5423 pc.StallAtPixelScoreboard = true;
5424 pc.CommandStreamerStallEnable = true;
5425 }
5426
5427 pc.DestinationAddressType = DAT_PPGTT,
5428 pc.PostSyncOperation = WriteImmediateData,
5429 pc.Address = (struct anv_address) {
5430 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5431 event->state.offset
5432 };
5433 pc.ImmediateData = VK_EVENT_SET;
5434 }
5435 }
5436
5437 void genX(CmdResetEvent)(
5438 VkCommandBuffer commandBuffer,
5439 VkEvent _event,
5440 VkPipelineStageFlags stageMask)
5441 {
5442 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5443 ANV_FROM_HANDLE(anv_event, event, _event);
5444
5445 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5446 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5447 pc.StallAtPixelScoreboard = true;
5448 pc.CommandStreamerStallEnable = true;
5449 }
5450
5451 pc.DestinationAddressType = DAT_PPGTT;
5452 pc.PostSyncOperation = WriteImmediateData;
5453 pc.Address = (struct anv_address) {
5454 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5455 event->state.offset
5456 };
5457 pc.ImmediateData = VK_EVENT_RESET;
5458 }
5459 }
5460
5461 void genX(CmdWaitEvents)(
5462 VkCommandBuffer commandBuffer,
5463 uint32_t eventCount,
5464 const VkEvent* pEvents,
5465 VkPipelineStageFlags srcStageMask,
5466 VkPipelineStageFlags destStageMask,
5467 uint32_t memoryBarrierCount,
5468 const VkMemoryBarrier* pMemoryBarriers,
5469 uint32_t bufferMemoryBarrierCount,
5470 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5471 uint32_t imageMemoryBarrierCount,
5472 const VkImageMemoryBarrier* pImageMemoryBarriers)
5473 {
5474 #if GEN_GEN >= 8
5475 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5476
5477 for (uint32_t i = 0; i < eventCount; i++) {
5478 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5479
5480 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5481 sem.WaitMode = PollingMode,
5482 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5483 sem.SemaphoreDataDword = VK_EVENT_SET,
5484 sem.SemaphoreAddress = (struct anv_address) {
5485 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5486 event->state.offset
5487 };
5488 }
5489 }
5490 #else
5491 anv_finishme("Implement events on gen7");
5492 #endif
5493
5494 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5495 false, /* byRegion */
5496 memoryBarrierCount, pMemoryBarriers,
5497 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5498 imageMemoryBarrierCount, pImageMemoryBarriers);
5499 }
5500
5501 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5502 VkCommandBuffer commandBuffer,
5503 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5504 {
5505 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5506
5507 switch (pOverrideInfo->type) {
5508 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5509 uint32_t dw;
5510
5511 #if GEN_GEN >= 9
5512 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5513 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5514 .MediaInstructionDisable = pOverrideInfo->enable,
5515 ._3DRenderingInstructionDisableMask = true,
5516 .MediaInstructionDisableMask = true);
5517 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5518 #else
5519 anv_pack_struct(&dw, GENX(INSTPM),
5520 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5521 .MediaInstructionDisable = pOverrideInfo->enable,
5522 ._3DRenderingInstructionDisableMask = true,
5523 .MediaInstructionDisableMask = true);
5524 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5525 #endif
5526 break;
5527 }
5528
5529 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5530 if (pOverrideInfo->enable) {
5531 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5532 cmd_buffer->state.pending_pipe_bits |=
5533 ANV_PIPE_FLUSH_BITS |
5534 ANV_PIPE_INVALIDATE_BITS;
5535 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5536 }
5537 break;
5538
5539 default:
5540 unreachable("Invalid override");
5541 }
5542
5543 return VK_SUCCESS;
5544 }
5545
5546 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5547 VkCommandBuffer commandBuffer,
5548 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5549 {
5550 /* TODO: Waiting on the register to write, might depend on generation. */
5551
5552 return VK_SUCCESS;
5553 }