anv/cmd_buffer: Mark depth/stencil surfaces written in begin_subpass
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
183 const struct anv_image_view *image_view,
184 const uint32_t plane,
185 struct anv_surface_state state)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188 const struct anv_image *image = image_view->image;
189 uint32_t image_plane = image_view->planes[plane].image_plane;
190
191 add_surface_state_reloc(cmd_buffer, state.state,
192 image->planes[image_plane].bo, state.address);
193
194 if (state.aux_address) {
195 VkResult result =
196 anv_reloc_list_add(&cmd_buffer->surface_relocs,
197 &cmd_buffer->pool->alloc,
198 state.state.offset + isl_dev->ss.aux_addr_offset,
199 image->planes[image_plane].bo, state.aux_address);
200 if (result != VK_SUCCESS)
201 anv_batch_set_error(&cmd_buffer->batch, result);
202 }
203 }
204
205 static void
206 color_attachment_compute_aux_usage(struct anv_device * device,
207 struct anv_cmd_state * cmd_state,
208 uint32_t att, VkRect2D render_area,
209 union isl_color_value *fast_clear_color)
210 {
211 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
212 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
213
214 assert(iview->n_planes == 1);
215
216 if (iview->planes[0].isl.base_array_layer >=
217 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
218 iview->planes[0].isl.base_level)) {
219 /* There is no aux buffer which corresponds to the level and layer(s)
220 * being accessed.
221 */
222 att_state->aux_usage = ISL_AUX_USAGE_NONE;
223 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
224 att_state->fast_clear = false;
225 return;
226 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_MCS) {
227 att_state->aux_usage = ISL_AUX_USAGE_MCS;
228 att_state->input_aux_usage = ISL_AUX_USAGE_MCS;
229 att_state->fast_clear = false;
230 return;
231 } else if (iview->image->planes[0].aux_usage == ISL_AUX_USAGE_CCS_E) {
232 att_state->aux_usage = ISL_AUX_USAGE_CCS_E;
233 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_E;
234 } else {
235 att_state->aux_usage = ISL_AUX_USAGE_CCS_D;
236 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
237 *
238 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
239 * setting is only allowed if Surface Format supported for Fast
240 * Clear. In addition, if the surface is bound to the sampling
241 * engine, Surface Format must be supported for Render Target
242 * Compression for surfaces bound to the sampling engine."
243 *
244 * In other words, we can only sample from a fast-cleared image if it
245 * also supports color compression.
246 */
247 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
248 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
249
250 /* While fast-clear resolves and partial resolves are fairly cheap in the
251 * case where you render to most of the pixels, full resolves are not
252 * because they potentially involve reading and writing the entire
253 * framebuffer. If we can't texture with CCS_E, we should leave it off and
254 * limit ourselves to fast clears.
255 */
256 if (cmd_state->pass->attachments[att].first_subpass_layout ==
257 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
258 anv_perf_warn(device->instance, iview->image,
259 "Not temporarily enabling CCS_E.");
260 }
261 } else {
262 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
263 }
264 }
265
266 assert(iview->image->planes[0].aux_surface.isl.usage & ISL_SURF_USAGE_CCS_BIT);
267
268 const struct isl_format_layout *view_fmtl =
269 isl_format_get_layout(iview->planes[0].isl.format);
270 union isl_color_value clear_color = {};
271
272 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
273 if (view_fmtl->channels.c.bits) \
274 clear_color.u32[i] = att_state->clear_value.color.uint32[i]
275
276 COPY_CLEAR_COLOR_CHANNEL(r, 0);
277 COPY_CLEAR_COLOR_CHANNEL(g, 1);
278 COPY_CLEAR_COLOR_CHANNEL(b, 2);
279 COPY_CLEAR_COLOR_CHANNEL(a, 3);
280
281 #undef COPY_CLEAR_COLOR_CHANNEL
282
283 att_state->clear_color_is_zero_one =
284 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
285 att_state->clear_color_is_zero =
286 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
287
288 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
289 /* Start off assuming fast clears are possible */
290 att_state->fast_clear = true;
291
292 /* Potentially, we could do partial fast-clears but doing so has crazy
293 * alignment restrictions. It's easier to just restrict to full size
294 * fast clears for now.
295 */
296 if (render_area.offset.x != 0 ||
297 render_area.offset.y != 0 ||
298 render_area.extent.width != iview->extent.width ||
299 render_area.extent.height != iview->extent.height)
300 att_state->fast_clear = false;
301
302 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
303 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
304 att_state->fast_clear = false;
305
306 /* We only allow fast clears in the GENERAL layout if the auxiliary
307 * buffer is always enabled and the fast-clear value is all 0's. See
308 * add_aux_state_tracking_buffer() for more information.
309 */
310 if (cmd_state->pass->attachments[att].first_subpass_layout ==
311 VK_IMAGE_LAYOUT_GENERAL &&
312 (!att_state->clear_color_is_zero ||
313 iview->image->planes[0].aux_usage == ISL_AUX_USAGE_NONE)) {
314 att_state->fast_clear = false;
315 }
316
317 /* We only allow fast clears to the first slice of an image (level 0,
318 * layer 0) and only for the entire slice. This guarantees us that, at
319 * any given time, there is only one clear color on any given image at
320 * any given time. At the time of our testing (Jan 17, 2018), there
321 * were no known applications which would benefit from fast-clearing
322 * more than just the first slice.
323 */
324 if (att_state->fast_clear &&
325 (iview->planes[0].isl.base_level > 0 ||
326 iview->planes[0].isl.base_array_layer > 0)) {
327 anv_perf_warn(device->instance, iview->image,
328 "Rendering with multi-lod or multi-layer framebuffer "
329 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
330 "baseArrayLayer > 0. Not fast clearing.");
331 att_state->fast_clear = false;
332 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
333 anv_perf_warn(device->instance, iview->image,
334 "Rendering to a multi-layer framebuffer with "
335 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
336 }
337
338 if (att_state->fast_clear)
339 *fast_clear_color = clear_color;
340 } else {
341 att_state->fast_clear = false;
342 }
343 }
344
345 static void
346 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
347 struct anv_cmd_state *cmd_state,
348 uint32_t att, VkRect2D render_area)
349 {
350 struct anv_render_pass_attachment *pass_att =
351 &cmd_state->pass->attachments[att];
352 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
353 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
354
355 /* These will be initialized after the first subpass transition. */
356 att_state->aux_usage = ISL_AUX_USAGE_NONE;
357 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
358
359 if (GEN_GEN == 7) {
360 /* We don't do any HiZ or depth fast-clears on gen7 yet */
361 att_state->fast_clear = false;
362 return;
363 }
364
365 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
366 /* If we're just clearing stencil, we can always HiZ clear */
367 att_state->fast_clear = true;
368 return;
369 }
370
371 /* Default to false for now */
372 att_state->fast_clear = false;
373
374 /* We must have depth in order to have HiZ */
375 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
376 return;
377
378 const enum isl_aux_usage first_subpass_aux_usage =
379 anv_layout_to_aux_usage(&device->info, iview->image,
380 VK_IMAGE_ASPECT_DEPTH_BIT,
381 pass_att->first_subpass_layout);
382 if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ)
383 return;
384
385 if (!blorp_can_hiz_clear_depth(GEN_GEN,
386 iview->planes[0].isl.format,
387 iview->image->samples,
388 render_area.offset.x,
389 render_area.offset.y,
390 render_area.offset.x +
391 render_area.extent.width,
392 render_area.offset.y +
393 render_area.extent.height))
394 return;
395
396 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
397 return;
398
399 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
400 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
401 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
402 * only supports returning 0.0f. Gens prior to gen8 do not support this
403 * feature at all.
404 */
405 return;
406 }
407
408 /* If we got here, then we can fast clear */
409 att_state->fast_clear = true;
410 }
411
412 static bool
413 need_input_attachment_state(const struct anv_render_pass_attachment *att)
414 {
415 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
416 return false;
417
418 /* We only allocate input attachment states for color surfaces. Compression
419 * is not yet enabled for depth textures and stencil doesn't allow
420 * compression so we can just use the texture surface state from the view.
421 */
422 return vk_format_is_color(att->format);
423 }
424
425 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
426 * the initial layout is undefined, the HiZ buffer and depth buffer will
427 * represent the same data at the end of this operation.
428 */
429 static void
430 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
431 const struct anv_image *image,
432 VkImageLayout initial_layout,
433 VkImageLayout final_layout)
434 {
435 assert(image);
436
437 /* A transition is a no-op if HiZ is not enabled, or if the initial and
438 * final layouts are equal.
439 *
440 * The undefined layout indicates that the user doesn't care about the data
441 * that's currently in the buffer. Therefore, a data-preserving resolve
442 * operation is not needed.
443 */
444 if (image->planes[0].aux_usage != ISL_AUX_USAGE_HIZ || initial_layout == final_layout)
445 return;
446
447 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
448 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
449 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
450 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
451 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
452 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
453
454 enum isl_aux_op hiz_op;
455 if (hiz_enabled && !enable_hiz) {
456 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
457 } else if (!hiz_enabled && enable_hiz) {
458 hiz_op = ISL_AUX_OP_AMBIGUATE;
459 } else {
460 assert(hiz_enabled == enable_hiz);
461 /* If the same buffer will be used, no resolves are necessary. */
462 hiz_op = ISL_AUX_OP_NONE;
463 }
464
465 if (hiz_op != ISL_AUX_OP_NONE)
466 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
467 0, 0, 1, hiz_op);
468 }
469
470 #define MI_PREDICATE_SRC0 0x2400
471 #define MI_PREDICATE_SRC1 0x2408
472
473 static void
474 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
475 const struct anv_image *image,
476 VkImageAspectFlagBits aspect,
477 uint32_t level,
478 uint32_t base_layer, uint32_t layer_count,
479 bool compressed)
480 {
481 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
482
483 /* We only have compression tracking for CCS_E */
484 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
485 return;
486
487 for (uint32_t a = 0; a < layer_count; a++) {
488 uint32_t layer = base_layer + a;
489 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
490 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
491 image, aspect,
492 level, layer);
493 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
494 }
495 }
496 }
497
498 static void
499 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
500 const struct anv_image *image,
501 VkImageAspectFlagBits aspect,
502 enum anv_fast_clear_type fast_clear)
503 {
504 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
505 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
506 image, aspect);
507 sdi.ImmediateData = fast_clear;
508 }
509
510 /* Whenever we have fast-clear, we consider that slice to be compressed.
511 * This makes building predicates much easier.
512 */
513 if (fast_clear != ANV_FAST_CLEAR_NONE)
514 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
515 }
516
517 #if GEN_IS_HASWELL || GEN_GEN >= 8
518 static inline uint32_t
519 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
520 {
521 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
522 .ALUOpcode = opcode,
523 .Operand1 = operand1,
524 .Operand2 = operand2,
525 };
526
527 uint32_t dw;
528 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
529
530 return dw;
531 }
532 #endif
533
534 #define CS_GPR(n) (0x2600 + (n) * 8)
535
536 static void
537 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
538 const struct anv_image *image,
539 VkImageAspectFlagBits aspect,
540 uint32_t level, uint32_t array_layer,
541 enum isl_aux_op resolve_op,
542 enum anv_fast_clear_type fast_clear_supported)
543 {
544 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
545 struct anv_address fast_clear_type_addr =
546 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
547
548 #if GEN_GEN >= 9
549 /* Name some registers */
550 const int image_fc_reg = MI_ALU_REG0;
551 const int fc_imm_reg = MI_ALU_REG1;
552 const int pred_reg = MI_ALU_REG2;
553
554 uint32_t *dw;
555
556 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
557 /* In this case, we're doing a full resolve which means we want the
558 * resolve to happen if any compression (including fast-clears) is
559 * present.
560 *
561 * In order to simplify the logic a bit, we make the assumption that,
562 * if the first slice has been fast-cleared, it is also marked as
563 * compressed. See also set_image_fast_clear_state.
564 */
565 struct anv_address compression_state_addr =
566 anv_image_get_compression_state_addr(cmd_buffer->device, image,
567 aspect, level, array_layer);
568 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
569 lrm.RegisterAddress = MI_PREDICATE_SRC0;
570 lrm.MemoryAddress = compression_state_addr;
571 }
572 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
573 sdi.Address = compression_state_addr;
574 sdi.ImmediateData = 0;
575 }
576
577 if (level == 0 && array_layer == 0) {
578 /* If the predicate is true, we want to write 0 to the fast clear type
579 * and, if it's false, leave it alone. We can do this by writing
580 *
581 * clear_type = clear_type & ~predicate;
582 */
583 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
584 lrm.RegisterAddress = CS_GPR(image_fc_reg);
585 lrm.MemoryAddress = fast_clear_type_addr;
586 }
587 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
588 lrr.DestinationRegisterAddress = CS_GPR(pred_reg);
589 lrr.SourceRegisterAddress = MI_PREDICATE_SRC0;
590 }
591
592 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
593 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
594 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
595 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
596 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
597
598 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
599 srm.MemoryAddress = fast_clear_type_addr;
600 srm.RegisterAddress = CS_GPR(image_fc_reg);
601 }
602 }
603 } else if (level == 0 && array_layer == 0) {
604 /* In this case, we are doing a partial resolve to get rid of fast-clear
605 * colors. We don't care about the compression state but we do care
606 * about how much fast clear is allowed by the final layout.
607 */
608 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
609 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
610
611 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
612 lrm.RegisterAddress = CS_GPR(image_fc_reg);
613 lrm.MemoryAddress = fast_clear_type_addr;
614 }
615 emit_lri(&cmd_buffer->batch, CS_GPR(image_fc_reg) + 4, 0);
616
617 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg), fast_clear_supported);
618 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg) + 4, 0);
619
620 /* We need to compute (fast_clear_supported < image->fast_clear).
621 * We do this by subtracting and storing the carry bit.
622 */
623 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
624 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm_reg);
625 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc_reg);
626 dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
627 dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF);
628
629 /* Store the predicate */
630 emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg));
631
632 /* If the predicate is true, we want to write 0 to the fast clear type
633 * and, if it's false, leave it alone. We can do this by writing
634 *
635 * clear_type = clear_type & ~predicate;
636 */
637 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
638 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
639 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
640 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
641 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
642
643 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
644 srm.RegisterAddress = CS_GPR(image_fc_reg);
645 srm.MemoryAddress = fast_clear_type_addr;
646 }
647 } else {
648 /* In this case, we're trying to do a partial resolve on a slice that
649 * doesn't have clear color. There's nothing to do.
650 */
651 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
652 return;
653 }
654
655 #else /* GEN_GEN <= 8 */
656 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
657 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
658
659 /* We don't support fast clears on anything other than the first slice. */
660 if (level > 0 || array_layer > 0)
661 return;
662
663 /* On gen8, we don't have a concept of default clear colors because we
664 * can't sample from CCS surfaces. It's enough to just load the fast clear
665 * state into the predicate register.
666 */
667 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
668 lrm.RegisterAddress = MI_PREDICATE_SRC0;
669 lrm.MemoryAddress = fast_clear_type_addr;
670 }
671 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
672 sdi.Address = fast_clear_type_addr;
673 sdi.ImmediateData = 0;
674 }
675 #endif
676
677 /* We use the first half of src0 for the actual predicate. Set the second
678 * half of src0 and all of src1 to 0 as the predicate operation will be
679 * doing an implicit src0 != src1.
680 */
681 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
682 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
683 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
684
685 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
686 mip.LoadOperation = LOAD_LOADINV;
687 mip.CombineOperation = COMBINE_SET;
688 mip.CompareOperation = COMPARE_SRCS_EQUAL;
689 }
690
691 /* CCS_D only supports full resolves and BLORP will assert on us if we try
692 * to do a partial resolve on a CCS_D surface.
693 */
694 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
695 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
696 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
697
698 anv_image_ccs_op(cmd_buffer, image, aspect, level,
699 array_layer, 1, resolve_op, true);
700 }
701
702 void
703 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
704 const struct anv_image *image,
705 VkImageAspectFlagBits aspect,
706 enum isl_aux_usage aux_usage,
707 uint32_t level,
708 uint32_t base_layer,
709 uint32_t layer_count)
710 {
711 /* The aspect must be exactly one of the image aspects. */
712 assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects));
713
714 /* The only compression types with more than just fast-clears are MCS,
715 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
716 * track the current fast-clear and compression state. This leaves us
717 * with just MCS and CCS_E.
718 */
719 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
720 aux_usage != ISL_AUX_USAGE_MCS)
721 return;
722
723 set_image_compressed_bit(cmd_buffer, image, aspect,
724 level, base_layer, layer_count, true);
725 }
726
727 static void
728 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
729 const struct anv_image *image,
730 VkImageAspectFlagBits aspect)
731 {
732 assert(cmd_buffer && image);
733 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
734
735 set_image_fast_clear_state(cmd_buffer, image, aspect,
736 ANV_FAST_CLEAR_NONE);
737
738 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
739 enum isl_aux_usage aux_usage = image->planes[plane].aux_usage;
740
741 /* The fast clear value dword(s) will be copied into a surface state object.
742 * Ensure that the restrictions of the fields in the dword(s) are followed.
743 *
744 * CCS buffers on SKL+ can have any value set for the clear colors.
745 */
746 if (image->samples == 1 && GEN_GEN >= 9)
747 return;
748
749 /* Other combinations of auxiliary buffers and platforms require specific
750 * values in the clear value dword(s).
751 */
752 struct anv_address addr =
753 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
754 unsigned i = 0;
755 for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
756 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
757 sdi.Address = addr;
758
759 if (GEN_GEN >= 9) {
760 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
761 assert(aux_usage == ISL_AUX_USAGE_MCS);
762 sdi.ImmediateData = 0;
763 } else if (GEN_VERSIONx10 >= 75) {
764 /* Pre-SKL, the dword containing the clear values also contains
765 * other fields, so we need to initialize those fields to match the
766 * values that would be in a color attachment.
767 */
768 assert(i == 0);
769 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
770 ISL_CHANNEL_SELECT_GREEN << 22 |
771 ISL_CHANNEL_SELECT_BLUE << 19 |
772 ISL_CHANNEL_SELECT_ALPHA << 16;
773 } else if (GEN_VERSIONx10 == 70) {
774 /* On IVB, the dword containing the clear values also contains
775 * other fields that must be zero or can be zero.
776 */
777 assert(i == 0);
778 sdi.ImmediateData = 0;
779 }
780 }
781
782 addr.offset += 4;
783 }
784 }
785
786 /* Copy the fast-clear value dword(s) between a surface state object and an
787 * image's fast clear state buffer.
788 */
789 static void
790 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
791 struct anv_state surface_state,
792 const struct anv_image *image,
793 VkImageAspectFlagBits aspect,
794 bool copy_from_surface_state)
795 {
796 assert(cmd_buffer && image);
797 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
798
799 struct anv_bo *ss_bo =
800 &cmd_buffer->device->surface_state_pool.block_pool.bo;
801 uint32_t ss_clear_offset = surface_state.offset +
802 cmd_buffer->device->isl_dev.ss.clear_value_offset;
803 const struct anv_address entry_addr =
804 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
805 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
806
807 if (copy_from_surface_state) {
808 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
809 ss_bo, ss_clear_offset, copy_size);
810 } else {
811 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
812 entry_addr.bo, entry_addr.offset, copy_size);
813
814 /* Updating a surface state object may require that the state cache be
815 * invalidated. From the SKL PRM, Shared Functions -> State -> State
816 * Caching:
817 *
818 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
819 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
820 * modified [...], the L1 state cache must be invalidated to ensure
821 * the new surface or sampler state is fetched from system memory.
822 *
823 * In testing, SKL doesn't actually seem to need this, but HSW does.
824 */
825 cmd_buffer->state.pending_pipe_bits |=
826 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
827 }
828 }
829
830 /**
831 * @brief Transitions a color buffer from one layout to another.
832 *
833 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
834 * more information.
835 *
836 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
837 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
838 * this represents the maximum layers to transition at each
839 * specified miplevel.
840 */
841 static void
842 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
843 const struct anv_image *image,
844 VkImageAspectFlagBits aspect,
845 const uint32_t base_level, uint32_t level_count,
846 uint32_t base_layer, uint32_t layer_count,
847 VkImageLayout initial_layout,
848 VkImageLayout final_layout)
849 {
850 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
851 /* Validate the inputs. */
852 assert(cmd_buffer);
853 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
854 /* These values aren't supported for simplicity's sake. */
855 assert(level_count != VK_REMAINING_MIP_LEVELS &&
856 layer_count != VK_REMAINING_ARRAY_LAYERS);
857 /* Ensure the subresource range is valid. */
858 uint64_t last_level_num = base_level + level_count;
859 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
860 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
861 assert((uint64_t)base_layer + layer_count <= image_layers);
862 assert(last_level_num <= image->levels);
863 /* The spec disallows these final layouts. */
864 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
865 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
866
867 /* No work is necessary if the layout stays the same or if this subresource
868 * range lacks auxiliary data.
869 */
870 if (initial_layout == final_layout)
871 return;
872
873 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
874
875 if (image->planes[plane].shadow_surface.isl.size > 0 &&
876 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
877 /* This surface is a linear compressed image with a tiled shadow surface
878 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
879 * we need to ensure the shadow copy is up-to-date.
880 */
881 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
882 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
883 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
884 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
885 assert(plane == 0);
886 anv_image_copy_to_shadow(cmd_buffer, image,
887 base_level, level_count,
888 base_layer, layer_count);
889 }
890
891 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
892 return;
893
894 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
895
896 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
897 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
898 /* A subresource in the undefined layout may have been aliased and
899 * populated with any arrangement of bits. Therefore, we must initialize
900 * the related aux buffer and clear buffer entry with desirable values.
901 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
902 * images with VK_IMAGE_TILING_OPTIMAL.
903 *
904 * Initialize the relevant clear buffer entries.
905 */
906 if (base_level == 0 && base_layer == 0)
907 init_fast_clear_color(cmd_buffer, image, aspect);
908
909 /* Initialize the aux buffers to enable correct rendering. In order to
910 * ensure that things such as storage images work correctly, aux buffers
911 * need to be initialized to valid data.
912 *
913 * Having an aux buffer with invalid data is a problem for two reasons:
914 *
915 * 1) Having an invalid value in the buffer can confuse the hardware.
916 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
917 * invalid and leads to the hardware doing strange things. It
918 * doesn't hang as far as we can tell but rendering corruption can
919 * occur.
920 *
921 * 2) If this transition is into the GENERAL layout and we then use the
922 * image as a storage image, then we must have the aux buffer in the
923 * pass-through state so that, if we then go to texture from the
924 * image, we get the results of our storage image writes and not the
925 * fast clear color or other random data.
926 *
927 * For CCS both of the problems above are real demonstrable issues. In
928 * that case, the only thing we can do is to perform an ambiguate to
929 * transition the aux surface into the pass-through state.
930 *
931 * For MCS, (2) is never an issue because we don't support multisampled
932 * storage images. In theory, issue (1) is a problem with MCS but we've
933 * never seen it in the wild. For 4x and 16x, all bit patters could, in
934 * theory, be interpreted as something but we don't know that all bit
935 * patterns are actually valid. For 2x and 8x, you could easily end up
936 * with the MCS referring to an invalid plane because not all bits of
937 * the MCS value are actually used. Even though we've never seen issues
938 * in the wild, it's best to play it safe and initialize the MCS. We
939 * can use a fast-clear for MCS because we only ever touch from render
940 * and texture (no image load store).
941 */
942 if (image->samples == 1) {
943 for (uint32_t l = 0; l < level_count; l++) {
944 const uint32_t level = base_level + l;
945
946 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
947 if (base_layer >= aux_layers)
948 break; /* We will only get fewer layers as level increases */
949 uint32_t level_layer_count =
950 MIN2(layer_count, aux_layers - base_layer);
951
952 anv_image_ccs_op(cmd_buffer, image, aspect, level,
953 base_layer, level_layer_count,
954 ISL_AUX_OP_AMBIGUATE, false);
955
956 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
957 set_image_compressed_bit(cmd_buffer, image, aspect,
958 level, base_layer, level_layer_count,
959 false);
960 }
961 }
962 } else {
963 if (image->samples == 4 || image->samples == 16) {
964 anv_perf_warn(cmd_buffer->device->instance, image,
965 "Doing a potentially unnecessary fast-clear to "
966 "define an MCS buffer.");
967 }
968
969 assert(base_level == 0 && level_count == 1);
970 anv_image_mcs_op(cmd_buffer, image, aspect,
971 base_layer, layer_count,
972 ISL_AUX_OP_FAST_CLEAR, false);
973 }
974 return;
975 }
976
977 const enum isl_aux_usage initial_aux_usage =
978 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
979 const enum isl_aux_usage final_aux_usage =
980 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
981
982 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
983 * We can handle transitions between CCS_D/E to and from NONE. What we
984 * don't yet handle is switching between CCS_E and CCS_D within a given
985 * image. Doing so in a performant way requires more detailed aux state
986 * tracking such as what is done in i965. For now, just assume that we
987 * only have one type of compression.
988 */
989 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
990 final_aux_usage == ISL_AUX_USAGE_NONE ||
991 initial_aux_usage == final_aux_usage);
992
993 /* If initial aux usage is NONE, there is nothing to resolve */
994 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
995 return;
996
997 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
998
999 /* If the initial layout supports more fast clear than the final layout
1000 * then we need at least a partial resolve.
1001 */
1002 const enum anv_fast_clear_type initial_fast_clear =
1003 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1004 const enum anv_fast_clear_type final_fast_clear =
1005 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1006 if (final_fast_clear < initial_fast_clear)
1007 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1008
1009 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1010 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1011 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1012
1013 if (resolve_op == ISL_AUX_OP_NONE)
1014 return;
1015
1016 /* Perform a resolve to synchronize data between the main and aux buffer.
1017 * Before we begin, we must satisfy the cache flushing requirement specified
1018 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1019 *
1020 * Any transition from any value in {Clear, Render, Resolve} to a
1021 * different value in {Clear, Render, Resolve} requires end of pipe
1022 * synchronization.
1023 *
1024 * We perform a flush of the write cache before and after the clear and
1025 * resolve operations to meet this requirement.
1026 *
1027 * Unlike other drawing, fast clear operations are not properly
1028 * synchronized. The first PIPE_CONTROL here likely ensures that the
1029 * contents of the previous render or clear hit the render target before we
1030 * resolve and the second likely ensures that the resolve is complete before
1031 * we do any more rendering or clearing.
1032 */
1033 cmd_buffer->state.pending_pipe_bits |=
1034 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1035
1036 for (uint32_t l = 0; l < level_count; l++) {
1037 uint32_t level = base_level + l;
1038
1039 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1040 if (base_layer >= aux_layers)
1041 break; /* We will only get fewer layers as level increases */
1042 uint32_t level_layer_count =
1043 MIN2(layer_count, aux_layers - base_layer);
1044
1045 for (uint32_t a = 0; a < level_layer_count; a++) {
1046 uint32_t array_layer = base_layer + a;
1047 anv_cmd_predicated_ccs_resolve(cmd_buffer, image, aspect,
1048 level, array_layer, resolve_op,
1049 final_fast_clear);
1050 }
1051 }
1052
1053 cmd_buffer->state.pending_pipe_bits |=
1054 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1055 }
1056
1057 /**
1058 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1059 */
1060 static VkResult
1061 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1062 struct anv_render_pass *pass,
1063 const VkRenderPassBeginInfo *begin)
1064 {
1065 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1066 struct anv_cmd_state *state = &cmd_buffer->state;
1067
1068 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1069
1070 if (pass->attachment_count > 0) {
1071 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1072 pass->attachment_count *
1073 sizeof(state->attachments[0]),
1074 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1075 if (state->attachments == NULL) {
1076 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1077 return anv_batch_set_error(&cmd_buffer->batch,
1078 VK_ERROR_OUT_OF_HOST_MEMORY);
1079 }
1080 } else {
1081 state->attachments = NULL;
1082 }
1083
1084 /* Reserve one for the NULL state. */
1085 unsigned num_states = 1;
1086 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1087 if (vk_format_is_color(pass->attachments[i].format))
1088 num_states++;
1089
1090 if (need_input_attachment_state(&pass->attachments[i]))
1091 num_states++;
1092 }
1093
1094 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1095 state->render_pass_states =
1096 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1097 num_states * ss_stride, isl_dev->ss.align);
1098
1099 struct anv_state next_state = state->render_pass_states;
1100 next_state.alloc_size = isl_dev->ss.size;
1101
1102 state->null_surface_state = next_state;
1103 next_state.offset += ss_stride;
1104 next_state.map += ss_stride;
1105
1106 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1107 if (vk_format_is_color(pass->attachments[i].format)) {
1108 state->attachments[i].color.state = next_state;
1109 next_state.offset += ss_stride;
1110 next_state.map += ss_stride;
1111 }
1112
1113 if (need_input_attachment_state(&pass->attachments[i])) {
1114 state->attachments[i].input.state = next_state;
1115 next_state.offset += ss_stride;
1116 next_state.map += ss_stride;
1117 }
1118 }
1119 assert(next_state.offset == state->render_pass_states.offset +
1120 state->render_pass_states.alloc_size);
1121
1122 if (begin) {
1123 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
1124 assert(pass->attachment_count == framebuffer->attachment_count);
1125
1126 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1127 isl_extent3d(framebuffer->width,
1128 framebuffer->height,
1129 framebuffer->layers));
1130
1131 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1132 struct anv_render_pass_attachment *att = &pass->attachments[i];
1133 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1134 VkImageAspectFlags clear_aspects = 0;
1135 VkImageAspectFlags load_aspects = 0;
1136
1137 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1138 /* color attachment */
1139 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1140 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1141 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1142 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1143 }
1144 } else {
1145 /* depthstencil attachment */
1146 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1147 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1148 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1149 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1150 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1151 }
1152 }
1153 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1154 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1155 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1156 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1157 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1158 }
1159 }
1160 }
1161
1162 state->attachments[i].current_layout = att->initial_layout;
1163 state->attachments[i].pending_clear_aspects = clear_aspects;
1164 state->attachments[i].pending_load_aspects = load_aspects;
1165 if (clear_aspects)
1166 state->attachments[i].clear_value = begin->pClearValues[i];
1167
1168 struct anv_image_view *iview = framebuffer->attachments[i];
1169 anv_assert(iview->vk_format == att->format);
1170 anv_assert(iview->n_planes == 1);
1171
1172 union isl_color_value clear_color = { .u32 = { 0, } };
1173 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1174 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1175 color_attachment_compute_aux_usage(cmd_buffer->device,
1176 state, i, begin->renderArea,
1177 &clear_color);
1178
1179 anv_image_fill_surface_state(cmd_buffer->device,
1180 iview->image,
1181 VK_IMAGE_ASPECT_COLOR_BIT,
1182 &iview->planes[0].isl,
1183 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1184 state->attachments[i].aux_usage,
1185 &clear_color,
1186 0,
1187 &state->attachments[i].color,
1188 NULL);
1189
1190 add_image_view_relocs(cmd_buffer, iview, 0,
1191 state->attachments[i].color);
1192 } else {
1193 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1194 state, i,
1195 begin->renderArea);
1196 }
1197
1198 if (need_input_attachment_state(&pass->attachments[i])) {
1199 anv_image_fill_surface_state(cmd_buffer->device,
1200 iview->image,
1201 VK_IMAGE_ASPECT_COLOR_BIT,
1202 &iview->planes[0].isl,
1203 ISL_SURF_USAGE_TEXTURE_BIT,
1204 state->attachments[i].input_aux_usage,
1205 &clear_color,
1206 0,
1207 &state->attachments[i].input,
1208 NULL);
1209
1210 add_image_view_relocs(cmd_buffer, iview, 0,
1211 state->attachments[i].input);
1212 }
1213 }
1214 }
1215
1216 return VK_SUCCESS;
1217 }
1218
1219 VkResult
1220 genX(BeginCommandBuffer)(
1221 VkCommandBuffer commandBuffer,
1222 const VkCommandBufferBeginInfo* pBeginInfo)
1223 {
1224 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1225
1226 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1227 * command buffer's state. Otherwise, we must *reset* its state. In both
1228 * cases we reset it.
1229 *
1230 * From the Vulkan 1.0 spec:
1231 *
1232 * If a command buffer is in the executable state and the command buffer
1233 * was allocated from a command pool with the
1234 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1235 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1236 * as if vkResetCommandBuffer had been called with
1237 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1238 * the command buffer in the recording state.
1239 */
1240 anv_cmd_buffer_reset(cmd_buffer);
1241
1242 cmd_buffer->usage_flags = pBeginInfo->flags;
1243
1244 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1245 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1246
1247 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1248
1249 /* We sometimes store vertex data in the dynamic state buffer for blorp
1250 * operations and our dynamic state stream may re-use data from previous
1251 * command buffers. In order to prevent stale cache data, we flush the VF
1252 * cache. We could do this on every blorp call but that's not really
1253 * needed as all of the data will get written by the CPU prior to the GPU
1254 * executing anything. The chances are fairly high that they will use
1255 * blorp at least once per primary command buffer so it shouldn't be
1256 * wasted.
1257 */
1258 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1259 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1260
1261 /* We send an "Indirect State Pointers Disable" packet at
1262 * EndCommandBuffer, so all push contant packets are ignored during a
1263 * context restore. Documentation says after that command, we need to
1264 * emit push constants again before any rendering operation. So we
1265 * flag them dirty here to make sure they get emitted.
1266 */
1267 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1268
1269 VkResult result = VK_SUCCESS;
1270 if (cmd_buffer->usage_flags &
1271 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1272 assert(pBeginInfo->pInheritanceInfo);
1273 cmd_buffer->state.pass =
1274 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1275 cmd_buffer->state.subpass =
1276 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1277
1278 /* This is optional in the inheritance info. */
1279 cmd_buffer->state.framebuffer =
1280 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1281
1282 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1283 cmd_buffer->state.pass, NULL);
1284
1285 /* Record that HiZ is enabled if we can. */
1286 if (cmd_buffer->state.framebuffer) {
1287 const struct anv_image_view * const iview =
1288 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1289
1290 if (iview) {
1291 VkImageLayout layout =
1292 cmd_buffer->state.subpass->depth_stencil_attachment.layout;
1293
1294 enum isl_aux_usage aux_usage =
1295 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1296 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1297
1298 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1299 }
1300 }
1301
1302 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1303 }
1304
1305 return result;
1306 }
1307
1308 /* From the PRM, Volume 2a:
1309 *
1310 * "Indirect State Pointers Disable
1311 *
1312 * At the completion of the post-sync operation associated with this pipe
1313 * control packet, the indirect state pointers in the hardware are
1314 * considered invalid; the indirect pointers are not saved in the context.
1315 * If any new indirect state commands are executed in the command stream
1316 * while the pipe control is pending, the new indirect state commands are
1317 * preserved.
1318 *
1319 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1320 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1321 * commands are only considered as Indirect State Pointers. Once ISP is
1322 * issued in a context, SW must initialize by programming push constant
1323 * commands for all the shaders (at least to zero length) before attempting
1324 * any rendering operation for the same context."
1325 *
1326 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1327 * even though they point to a BO that has been already unreferenced at
1328 * the end of the previous batch buffer. This has been fine so far since
1329 * we are protected by these scratch page (every address not covered by
1330 * a BO should be pointing to the scratch page). But on CNL, it is
1331 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1332 * instruction.
1333 *
1334 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1335 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1336 * context restore, so the mentioned hang doesn't happen. However,
1337 * software must program push constant commands for all stages prior to
1338 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1339 */
1340 static void
1341 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1342 {
1343 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1344 pc.IndirectStatePointersDisable = true;
1345 pc.CommandStreamerStallEnable = true;
1346 }
1347 }
1348
1349 VkResult
1350 genX(EndCommandBuffer)(
1351 VkCommandBuffer commandBuffer)
1352 {
1353 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1354
1355 if (anv_batch_has_error(&cmd_buffer->batch))
1356 return cmd_buffer->batch.status;
1357
1358 /* We want every command buffer to start with the PMA fix in a known state,
1359 * so we disable it at the end of the command buffer.
1360 */
1361 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1362
1363 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1364
1365 emit_isp_disable(cmd_buffer);
1366
1367 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1368
1369 return VK_SUCCESS;
1370 }
1371
1372 void
1373 genX(CmdExecuteCommands)(
1374 VkCommandBuffer commandBuffer,
1375 uint32_t commandBufferCount,
1376 const VkCommandBuffer* pCmdBuffers)
1377 {
1378 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1379
1380 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1381
1382 if (anv_batch_has_error(&primary->batch))
1383 return;
1384
1385 /* The secondary command buffers will assume that the PMA fix is disabled
1386 * when they begin executing. Make sure this is true.
1387 */
1388 genX(cmd_buffer_enable_pma_fix)(primary, false);
1389
1390 /* The secondary command buffer doesn't know which textures etc. have been
1391 * flushed prior to their execution. Apply those flushes now.
1392 */
1393 genX(cmd_buffer_apply_pipe_flushes)(primary);
1394
1395 for (uint32_t i = 0; i < commandBufferCount; i++) {
1396 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1397
1398 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1399 assert(!anv_batch_has_error(&secondary->batch));
1400
1401 if (secondary->usage_flags &
1402 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1403 /* If we're continuing a render pass from the primary, we need to
1404 * copy the surface states for the current subpass into the storage
1405 * we allocated for them in BeginCommandBuffer.
1406 */
1407 struct anv_bo *ss_bo =
1408 &primary->device->surface_state_pool.block_pool.bo;
1409 struct anv_state src_state = primary->state.render_pass_states;
1410 struct anv_state dst_state = secondary->state.render_pass_states;
1411 assert(src_state.alloc_size == dst_state.alloc_size);
1412
1413 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1414 ss_bo, src_state.offset,
1415 src_state.alloc_size);
1416 }
1417
1418 anv_cmd_buffer_add_secondary(primary, secondary);
1419 }
1420
1421 /* The secondary may have selected a different pipeline (3D or compute) and
1422 * may have changed the current L3$ configuration. Reset our tracking
1423 * variables to invalid values to ensure that we re-emit these in the case
1424 * where we do any draws or compute dispatches from the primary after the
1425 * secondary has returned.
1426 */
1427 primary->state.current_pipeline = UINT32_MAX;
1428 primary->state.current_l3_config = NULL;
1429
1430 /* Each of the secondary command buffers will use its own state base
1431 * address. We need to re-emit state base address for the primary after
1432 * all of the secondaries are done.
1433 *
1434 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1435 * address calls?
1436 */
1437 genX(cmd_buffer_emit_state_base_address)(primary);
1438 }
1439
1440 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1441 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1442 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1443
1444 /**
1445 * Program the hardware to use the specified L3 configuration.
1446 */
1447 void
1448 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1449 const struct gen_l3_config *cfg)
1450 {
1451 assert(cfg);
1452 if (cfg == cmd_buffer->state.current_l3_config)
1453 return;
1454
1455 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1456 intel_logd("L3 config transition: ");
1457 gen_dump_l3_config(cfg, stderr);
1458 }
1459
1460 const bool has_slm = cfg->n[GEN_L3P_SLM];
1461
1462 /* According to the hardware docs, the L3 partitioning can only be changed
1463 * while the pipeline is completely drained and the caches are flushed,
1464 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1465 */
1466 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1467 pc.DCFlushEnable = true;
1468 pc.PostSyncOperation = NoWrite;
1469 pc.CommandStreamerStallEnable = true;
1470 }
1471
1472 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1473 * invalidation of the relevant caches. Note that because RO invalidation
1474 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1475 * command is processed by the CS) we cannot combine it with the previous
1476 * stalling flush as the hardware documentation suggests, because that
1477 * would cause the CS to stall on previous rendering *after* RO
1478 * invalidation and wouldn't prevent the RO caches from being polluted by
1479 * concurrent rendering before the stall completes. This intentionally
1480 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1481 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1482 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1483 * already guarantee that there is no concurrent GPGPU kernel execution
1484 * (see SKL HSD 2132585).
1485 */
1486 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1487 pc.TextureCacheInvalidationEnable = true;
1488 pc.ConstantCacheInvalidationEnable = true;
1489 pc.InstructionCacheInvalidateEnable = true;
1490 pc.StateCacheInvalidationEnable = true;
1491 pc.PostSyncOperation = NoWrite;
1492 }
1493
1494 /* Now send a third stalling flush to make sure that invalidation is
1495 * complete when the L3 configuration registers are modified.
1496 */
1497 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1498 pc.DCFlushEnable = true;
1499 pc.PostSyncOperation = NoWrite;
1500 pc.CommandStreamerStallEnable = true;
1501 }
1502
1503 #if GEN_GEN >= 8
1504
1505 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1506
1507 uint32_t l3cr;
1508 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1509 .SLMEnable = has_slm,
1510 .URBAllocation = cfg->n[GEN_L3P_URB],
1511 .ROAllocation = cfg->n[GEN_L3P_RO],
1512 .DCAllocation = cfg->n[GEN_L3P_DC],
1513 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1514
1515 /* Set up the L3 partitioning. */
1516 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1517
1518 #else
1519
1520 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1521 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1522 cfg->n[GEN_L3P_ALL];
1523 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1524 cfg->n[GEN_L3P_ALL];
1525 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1526 cfg->n[GEN_L3P_ALL];
1527
1528 assert(!cfg->n[GEN_L3P_ALL]);
1529
1530 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1531 * the matching space on the remaining banks has to be allocated to a
1532 * client (URB for all validated configurations) set to the
1533 * lower-bandwidth 2-bank address hashing mode.
1534 */
1535 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1536 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1537 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1538
1539 /* Minimum number of ways that can be allocated to the URB. */
1540 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1541 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1542
1543 uint32_t l3sqcr1, l3cr2, l3cr3;
1544 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1545 .ConvertDC_UC = !has_dc,
1546 .ConvertIS_UC = !has_is,
1547 .ConvertC_UC = !has_c,
1548 .ConvertT_UC = !has_t);
1549 l3sqcr1 |=
1550 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1551 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1552 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1553
1554 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1555 .SLMEnable = has_slm,
1556 .URBLowBandwidth = urb_low_bw,
1557 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1558 #if !GEN_IS_HASWELL
1559 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1560 #endif
1561 .ROAllocation = cfg->n[GEN_L3P_RO],
1562 .DCAllocation = cfg->n[GEN_L3P_DC]);
1563
1564 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1565 .ISAllocation = cfg->n[GEN_L3P_IS],
1566 .ISLowBandwidth = 0,
1567 .CAllocation = cfg->n[GEN_L3P_C],
1568 .CLowBandwidth = 0,
1569 .TAllocation = cfg->n[GEN_L3P_T],
1570 .TLowBandwidth = 0);
1571
1572 /* Set up the L3 partitioning. */
1573 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1574 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1575 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1576
1577 #if GEN_IS_HASWELL
1578 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1579 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1580 * them disabled to avoid crashing the system hard.
1581 */
1582 uint32_t scratch1, chicken3;
1583 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1584 .L3AtomicDisable = !has_dc);
1585 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1586 .L3AtomicDisableMask = true,
1587 .L3AtomicDisable = !has_dc);
1588 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1589 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1590 }
1591 #endif
1592
1593 #endif
1594
1595 cmd_buffer->state.current_l3_config = cfg;
1596 }
1597
1598 void
1599 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1600 {
1601 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1602
1603 /* Flushes are pipelined while invalidations are handled immediately.
1604 * Therefore, if we're flushing anything then we need to schedule a stall
1605 * before any invalidations can happen.
1606 */
1607 if (bits & ANV_PIPE_FLUSH_BITS)
1608 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1609
1610 /* If we're going to do an invalidate and we have a pending CS stall that
1611 * has yet to be resolved, we do the CS stall now.
1612 */
1613 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1614 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1615 bits |= ANV_PIPE_CS_STALL_BIT;
1616 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1617 }
1618
1619 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1620 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1621 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1622 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1623 pipe.RenderTargetCacheFlushEnable =
1624 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1625
1626 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1627 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1628 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1629
1630 /*
1631 * According to the Broadwell documentation, any PIPE_CONTROL with the
1632 * "Command Streamer Stall" bit set must also have another bit set,
1633 * with five different options:
1634 *
1635 * - Render Target Cache Flush
1636 * - Depth Cache Flush
1637 * - Stall at Pixel Scoreboard
1638 * - Post-Sync Operation
1639 * - Depth Stall
1640 * - DC Flush Enable
1641 *
1642 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1643 * mesa and it seems to work fine. The choice is fairly arbitrary.
1644 */
1645 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1646 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1647 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1648 pipe.StallAtPixelScoreboard = true;
1649 }
1650
1651 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1652 }
1653
1654 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1655 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1656 pipe.StateCacheInvalidationEnable =
1657 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1658 pipe.ConstantCacheInvalidationEnable =
1659 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1660 pipe.VFCacheInvalidationEnable =
1661 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1662 pipe.TextureCacheInvalidationEnable =
1663 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1664 pipe.InstructionCacheInvalidateEnable =
1665 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1666 }
1667
1668 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1669 }
1670
1671 cmd_buffer->state.pending_pipe_bits = bits;
1672 }
1673
1674 void genX(CmdPipelineBarrier)(
1675 VkCommandBuffer commandBuffer,
1676 VkPipelineStageFlags srcStageMask,
1677 VkPipelineStageFlags destStageMask,
1678 VkBool32 byRegion,
1679 uint32_t memoryBarrierCount,
1680 const VkMemoryBarrier* pMemoryBarriers,
1681 uint32_t bufferMemoryBarrierCount,
1682 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1683 uint32_t imageMemoryBarrierCount,
1684 const VkImageMemoryBarrier* pImageMemoryBarriers)
1685 {
1686 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1687
1688 /* XXX: Right now, we're really dumb and just flush whatever categories
1689 * the app asks for. One of these days we may make this a bit better
1690 * but right now that's all the hardware allows for in most areas.
1691 */
1692 VkAccessFlags src_flags = 0;
1693 VkAccessFlags dst_flags = 0;
1694
1695 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1696 src_flags |= pMemoryBarriers[i].srcAccessMask;
1697 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1698 }
1699
1700 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1701 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1702 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1703 }
1704
1705 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1706 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1707 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1708 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1709 const VkImageSubresourceRange *range =
1710 &pImageMemoryBarriers[i].subresourceRange;
1711
1712 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1713 transition_depth_buffer(cmd_buffer, image,
1714 pImageMemoryBarriers[i].oldLayout,
1715 pImageMemoryBarriers[i].newLayout);
1716 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1717 VkImageAspectFlags color_aspects =
1718 anv_image_expand_aspects(image, range->aspectMask);
1719 uint32_t aspect_bit;
1720
1721 uint32_t base_layer, layer_count;
1722 if (image->type == VK_IMAGE_TYPE_3D) {
1723 base_layer = 0;
1724 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1725 } else {
1726 base_layer = range->baseArrayLayer;
1727 layer_count = anv_get_layerCount(image, range);
1728 }
1729
1730 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1731 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1732 range->baseMipLevel,
1733 anv_get_levelCount(image, range),
1734 base_layer, layer_count,
1735 pImageMemoryBarriers[i].oldLayout,
1736 pImageMemoryBarriers[i].newLayout);
1737 }
1738 }
1739 }
1740
1741 cmd_buffer->state.pending_pipe_bits |=
1742 anv_pipe_flush_bits_for_access_flags(src_flags) |
1743 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1744 }
1745
1746 static void
1747 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1748 {
1749 VkShaderStageFlags stages =
1750 cmd_buffer->state.gfx.base.pipeline->active_stages;
1751
1752 /* In order to avoid thrash, we assume that vertex and fragment stages
1753 * always exist. In the rare case where one is missing *and* the other
1754 * uses push concstants, this may be suboptimal. However, avoiding stalls
1755 * seems more important.
1756 */
1757 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1758
1759 if (stages == cmd_buffer->state.push_constant_stages)
1760 return;
1761
1762 #if GEN_GEN >= 8
1763 const unsigned push_constant_kb = 32;
1764 #elif GEN_IS_HASWELL
1765 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1766 #else
1767 const unsigned push_constant_kb = 16;
1768 #endif
1769
1770 const unsigned num_stages =
1771 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1772 unsigned size_per_stage = push_constant_kb / num_stages;
1773
1774 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1775 * units of 2KB. Incidentally, these are the same platforms that have
1776 * 32KB worth of push constant space.
1777 */
1778 if (push_constant_kb == 32)
1779 size_per_stage &= ~1u;
1780
1781 uint32_t kb_used = 0;
1782 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1783 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1784 anv_batch_emit(&cmd_buffer->batch,
1785 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1786 alloc._3DCommandSubOpcode = 18 + i;
1787 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1788 alloc.ConstantBufferSize = push_size;
1789 }
1790 kb_used += push_size;
1791 }
1792
1793 anv_batch_emit(&cmd_buffer->batch,
1794 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1795 alloc.ConstantBufferOffset = kb_used;
1796 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1797 }
1798
1799 cmd_buffer->state.push_constant_stages = stages;
1800
1801 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1802 *
1803 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1804 * the next 3DPRIMITIVE command after programming the
1805 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1806 *
1807 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1808 * pipeline setup, we need to dirty push constants.
1809 */
1810 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1811 }
1812
1813 static const struct anv_descriptor *
1814 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1815 const struct anv_pipeline_binding *binding)
1816 {
1817 assert(binding->set < MAX_SETS);
1818 const struct anv_descriptor_set *set =
1819 pipe_state->descriptors[binding->set];
1820 const uint32_t offset =
1821 set->layout->binding[binding->binding].descriptor_index;
1822 return &set->descriptors[offset + binding->index];
1823 }
1824
1825 static uint32_t
1826 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1827 const struct anv_pipeline_binding *binding)
1828 {
1829 assert(binding->set < MAX_SETS);
1830 const struct anv_descriptor_set *set =
1831 pipe_state->descriptors[binding->set];
1832
1833 uint32_t dynamic_offset_idx =
1834 pipe_state->layout->set[binding->set].dynamic_offset_start +
1835 set->layout->binding[binding->binding].dynamic_offset_index +
1836 binding->index;
1837
1838 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1839 }
1840
1841 static VkResult
1842 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1843 gl_shader_stage stage,
1844 struct anv_state *bt_state)
1845 {
1846 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1847 struct anv_cmd_pipeline_state *pipe_state;
1848 struct anv_pipeline *pipeline;
1849 uint32_t bias, state_offset;
1850
1851 switch (stage) {
1852 case MESA_SHADER_COMPUTE:
1853 pipe_state = &cmd_buffer->state.compute.base;
1854 bias = 1;
1855 break;
1856 default:
1857 pipe_state = &cmd_buffer->state.gfx.base;
1858 bias = 0;
1859 break;
1860 }
1861 pipeline = pipe_state->pipeline;
1862
1863 if (!anv_pipeline_has_stage(pipeline, stage)) {
1864 *bt_state = (struct anv_state) { 0, };
1865 return VK_SUCCESS;
1866 }
1867
1868 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1869 if (bias + map->surface_count == 0) {
1870 *bt_state = (struct anv_state) { 0, };
1871 return VK_SUCCESS;
1872 }
1873
1874 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1875 bias + map->surface_count,
1876 &state_offset);
1877 uint32_t *bt_map = bt_state->map;
1878
1879 if (bt_state->map == NULL)
1880 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1881
1882 if (stage == MESA_SHADER_COMPUTE &&
1883 get_cs_prog_data(pipeline)->uses_num_work_groups) {
1884 struct anv_bo *bo = cmd_buffer->state.compute.num_workgroups.bo;
1885 uint32_t bo_offset = cmd_buffer->state.compute.num_workgroups.offset;
1886
1887 struct anv_state surface_state;
1888 surface_state =
1889 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1890
1891 const enum isl_format format =
1892 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1893 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1894 format, bo_offset, 12, 1);
1895
1896 bt_map[0] = surface_state.offset + state_offset;
1897 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1898 }
1899
1900 if (map->surface_count == 0)
1901 goto out;
1902
1903 if (map->image_count > 0) {
1904 VkResult result =
1905 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1906 if (result != VK_SUCCESS)
1907 return result;
1908
1909 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1910 }
1911
1912 uint32_t image = 0;
1913 for (uint32_t s = 0; s < map->surface_count; s++) {
1914 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1915
1916 struct anv_state surface_state;
1917
1918 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1919 /* Color attachment binding */
1920 assert(stage == MESA_SHADER_FRAGMENT);
1921 assert(binding->binding == 0);
1922 if (binding->index < subpass->color_count) {
1923 const unsigned att =
1924 subpass->color_attachments[binding->index].attachment;
1925
1926 /* From the Vulkan 1.0.46 spec:
1927 *
1928 * "If any color or depth/stencil attachments are
1929 * VK_ATTACHMENT_UNUSED, then no writes occur for those
1930 * attachments."
1931 */
1932 if (att == VK_ATTACHMENT_UNUSED) {
1933 surface_state = cmd_buffer->state.null_surface_state;
1934 } else {
1935 surface_state = cmd_buffer->state.attachments[att].color.state;
1936 }
1937 } else {
1938 surface_state = cmd_buffer->state.null_surface_state;
1939 }
1940
1941 bt_map[bias + s] = surface_state.offset + state_offset;
1942 continue;
1943 }
1944
1945 const struct anv_descriptor *desc =
1946 anv_descriptor_for_binding(pipe_state, binding);
1947
1948 switch (desc->type) {
1949 case VK_DESCRIPTOR_TYPE_SAMPLER:
1950 /* Nothing for us to do here */
1951 continue;
1952
1953 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1954 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1955 struct anv_surface_state sstate =
1956 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1957 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1958 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1959 surface_state = sstate.state;
1960 assert(surface_state.alloc_size);
1961 add_image_view_relocs(cmd_buffer, desc->image_view,
1962 binding->plane, sstate);
1963 break;
1964 }
1965 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1966 assert(stage == MESA_SHADER_FRAGMENT);
1967 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
1968 /* For depth and stencil input attachments, we treat it like any
1969 * old texture that a user may have bound.
1970 */
1971 struct anv_surface_state sstate =
1972 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1973 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1974 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1975 surface_state = sstate.state;
1976 assert(surface_state.alloc_size);
1977 add_image_view_relocs(cmd_buffer, desc->image_view,
1978 binding->plane, sstate);
1979 } else {
1980 /* For color input attachments, we create the surface state at
1981 * vkBeginRenderPass time so that we can include aux and clear
1982 * color information.
1983 */
1984 assert(binding->input_attachment_index < subpass->input_count);
1985 const unsigned subpass_att = binding->input_attachment_index;
1986 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1987 surface_state = cmd_buffer->state.attachments[att].input.state;
1988 }
1989 break;
1990
1991 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1992 struct anv_surface_state sstate = (binding->write_only)
1993 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
1994 : desc->image_view->planes[binding->plane].storage_surface_state;
1995 surface_state = sstate.state;
1996 assert(surface_state.alloc_size);
1997 add_image_view_relocs(cmd_buffer, desc->image_view,
1998 binding->plane, sstate);
1999
2000 struct brw_image_param *image_param =
2001 &cmd_buffer->state.push_constants[stage]->images[image++];
2002
2003 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
2004 image_param->surface_idx = bias + s;
2005 break;
2006 }
2007
2008 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2009 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2010 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2011 surface_state = desc->buffer_view->surface_state;
2012 assert(surface_state.alloc_size);
2013 add_surface_state_reloc(cmd_buffer, surface_state,
2014 desc->buffer_view->bo,
2015 desc->buffer_view->offset);
2016 break;
2017
2018 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2019 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2020 /* Compute the offset within the buffer */
2021 uint32_t dynamic_offset =
2022 dynamic_offset_for_binding(pipe_state, binding);
2023 uint64_t offset = desc->offset + dynamic_offset;
2024 /* Clamp to the buffer size */
2025 offset = MIN2(offset, desc->buffer->size);
2026 /* Clamp the range to the buffer size */
2027 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2028
2029 surface_state =
2030 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2031 enum isl_format format =
2032 anv_isl_format_for_descriptor_type(desc->type);
2033
2034 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2035 format, offset, range, 1);
2036 add_surface_state_reloc(cmd_buffer, surface_state,
2037 desc->buffer->bo,
2038 desc->buffer->offset + offset);
2039 break;
2040 }
2041
2042 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2043 surface_state = (binding->write_only)
2044 ? desc->buffer_view->writeonly_storage_surface_state
2045 : desc->buffer_view->storage_surface_state;
2046 assert(surface_state.alloc_size);
2047 add_surface_state_reloc(cmd_buffer, surface_state,
2048 desc->buffer_view->bo,
2049 desc->buffer_view->offset);
2050
2051 struct brw_image_param *image_param =
2052 &cmd_buffer->state.push_constants[stage]->images[image++];
2053
2054 *image_param = desc->buffer_view->storage_image_param;
2055 image_param->surface_idx = bias + s;
2056 break;
2057
2058 default:
2059 assert(!"Invalid descriptor type");
2060 continue;
2061 }
2062
2063 bt_map[bias + s] = surface_state.offset + state_offset;
2064 }
2065 assert(image == map->image_count);
2066
2067 out:
2068 anv_state_flush(cmd_buffer->device, *bt_state);
2069
2070 #if GEN_GEN >= 11
2071 /* The PIPE_CONTROL command description says:
2072 *
2073 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
2074 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2075 * Target Cache Flush by enabling this bit. When render target flush
2076 * is set due to new association of BTI, PS Scoreboard Stall bit must
2077 * be set in this packet."
2078 *
2079 * FINISHME: Currently we shuffle around the surface states in the binding
2080 * table based on if they are getting used or not. So, we've to do below
2081 * pipe control flush for every binding table upload. Make changes so
2082 * that we do it only when we modify render target surface states.
2083 */
2084 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2085 pc.RenderTargetCacheFlushEnable = true;
2086 pc.StallAtPixelScoreboard = true;
2087 }
2088 #endif
2089
2090 return VK_SUCCESS;
2091 }
2092
2093 static VkResult
2094 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2095 gl_shader_stage stage,
2096 struct anv_state *state)
2097 {
2098 struct anv_cmd_pipeline_state *pipe_state =
2099 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2100 &cmd_buffer->state.gfx.base;
2101 struct anv_pipeline *pipeline = pipe_state->pipeline;
2102
2103 if (!anv_pipeline_has_stage(pipeline, stage)) {
2104 *state = (struct anv_state) { 0, };
2105 return VK_SUCCESS;
2106 }
2107
2108 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2109 if (map->sampler_count == 0) {
2110 *state = (struct anv_state) { 0, };
2111 return VK_SUCCESS;
2112 }
2113
2114 uint32_t size = map->sampler_count * 16;
2115 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2116
2117 if (state->map == NULL)
2118 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2119
2120 for (uint32_t s = 0; s < map->sampler_count; s++) {
2121 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2122 const struct anv_descriptor *desc =
2123 anv_descriptor_for_binding(pipe_state, binding);
2124
2125 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2126 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2127 continue;
2128
2129 struct anv_sampler *sampler = desc->sampler;
2130
2131 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2132 * happens to be zero.
2133 */
2134 if (sampler == NULL)
2135 continue;
2136
2137 memcpy(state->map + (s * 16),
2138 sampler->state[binding->plane], sizeof(sampler->state[0]));
2139 }
2140
2141 anv_state_flush(cmd_buffer->device, *state);
2142
2143 return VK_SUCCESS;
2144 }
2145
2146 static uint32_t
2147 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2148 {
2149 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2150
2151 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2152 pipeline->active_stages;
2153
2154 VkResult result = VK_SUCCESS;
2155 anv_foreach_stage(s, dirty) {
2156 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2157 if (result != VK_SUCCESS)
2158 break;
2159 result = emit_binding_table(cmd_buffer, s,
2160 &cmd_buffer->state.binding_tables[s]);
2161 if (result != VK_SUCCESS)
2162 break;
2163 }
2164
2165 if (result != VK_SUCCESS) {
2166 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2167
2168 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2169 if (result != VK_SUCCESS)
2170 return 0;
2171
2172 /* Re-emit state base addresses so we get the new surface state base
2173 * address before we start emitting binding tables etc.
2174 */
2175 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2176
2177 /* Re-emit all active binding tables */
2178 dirty |= pipeline->active_stages;
2179 anv_foreach_stage(s, dirty) {
2180 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2181 if (result != VK_SUCCESS) {
2182 anv_batch_set_error(&cmd_buffer->batch, result);
2183 return 0;
2184 }
2185 result = emit_binding_table(cmd_buffer, s,
2186 &cmd_buffer->state.binding_tables[s]);
2187 if (result != VK_SUCCESS) {
2188 anv_batch_set_error(&cmd_buffer->batch, result);
2189 return 0;
2190 }
2191 }
2192 }
2193
2194 cmd_buffer->state.descriptors_dirty &= ~dirty;
2195
2196 return dirty;
2197 }
2198
2199 static void
2200 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2201 uint32_t stages)
2202 {
2203 static const uint32_t sampler_state_opcodes[] = {
2204 [MESA_SHADER_VERTEX] = 43,
2205 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2206 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2207 [MESA_SHADER_GEOMETRY] = 46,
2208 [MESA_SHADER_FRAGMENT] = 47,
2209 [MESA_SHADER_COMPUTE] = 0,
2210 };
2211
2212 static const uint32_t binding_table_opcodes[] = {
2213 [MESA_SHADER_VERTEX] = 38,
2214 [MESA_SHADER_TESS_CTRL] = 39,
2215 [MESA_SHADER_TESS_EVAL] = 40,
2216 [MESA_SHADER_GEOMETRY] = 41,
2217 [MESA_SHADER_FRAGMENT] = 42,
2218 [MESA_SHADER_COMPUTE] = 0,
2219 };
2220
2221 anv_foreach_stage(s, stages) {
2222 assert(s < ARRAY_SIZE(binding_table_opcodes));
2223 assert(binding_table_opcodes[s] > 0);
2224
2225 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2226 anv_batch_emit(&cmd_buffer->batch,
2227 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2228 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2229 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2230 }
2231 }
2232
2233 /* Always emit binding table pointers if we're asked to, since on SKL
2234 * this is what flushes push constants. */
2235 anv_batch_emit(&cmd_buffer->batch,
2236 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2237 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2238 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2239 }
2240 }
2241 }
2242
2243 static void
2244 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2245 VkShaderStageFlags dirty_stages)
2246 {
2247 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2248 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2249
2250 static const uint32_t push_constant_opcodes[] = {
2251 [MESA_SHADER_VERTEX] = 21,
2252 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2253 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2254 [MESA_SHADER_GEOMETRY] = 22,
2255 [MESA_SHADER_FRAGMENT] = 23,
2256 [MESA_SHADER_COMPUTE] = 0,
2257 };
2258
2259 VkShaderStageFlags flushed = 0;
2260
2261 anv_foreach_stage(stage, dirty_stages) {
2262 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2263 assert(push_constant_opcodes[stage] > 0);
2264
2265 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2266 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2267
2268 if (anv_pipeline_has_stage(pipeline, stage)) {
2269 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2270 const struct brw_stage_prog_data *prog_data =
2271 pipeline->shaders[stage]->prog_data;
2272 const struct anv_pipeline_bind_map *bind_map =
2273 &pipeline->shaders[stage]->bind_map;
2274
2275 /* The Skylake PRM contains the following restriction:
2276 *
2277 * "The driver must ensure The following case does not occur
2278 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2279 * buffer 3 read length equal to zero committed followed by a
2280 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2281 * zero committed."
2282 *
2283 * To avoid this, we program the buffers in the highest slots.
2284 * This way, slot 0 is only used if slot 3 is also used.
2285 */
2286 int n = 3;
2287
2288 for (int i = 3; i >= 0; i--) {
2289 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2290 if (range->length == 0)
2291 continue;
2292
2293 const unsigned surface =
2294 prog_data->binding_table.ubo_start + range->block;
2295
2296 assert(surface <= bind_map->surface_count);
2297 const struct anv_pipeline_binding *binding =
2298 &bind_map->surface_to_descriptor[surface];
2299
2300 const struct anv_descriptor *desc =
2301 anv_descriptor_for_binding(&gfx_state->base, binding);
2302
2303 struct anv_address read_addr;
2304 uint32_t read_len;
2305 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2306 read_len = MIN2(range->length,
2307 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
2308 read_addr = (struct anv_address) {
2309 .bo = desc->buffer_view->bo,
2310 .offset = desc->buffer_view->offset +
2311 range->start * 32,
2312 };
2313 } else {
2314 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2315
2316 uint32_t dynamic_offset =
2317 dynamic_offset_for_binding(&gfx_state->base, binding);
2318 uint32_t buf_offset =
2319 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2320 uint32_t buf_range =
2321 MIN2(desc->range, desc->buffer->size - buf_offset);
2322
2323 read_len = MIN2(range->length,
2324 DIV_ROUND_UP(buf_range, 32) - range->start);
2325 read_addr = (struct anv_address) {
2326 .bo = desc->buffer->bo,
2327 .offset = desc->buffer->offset + buf_offset +
2328 range->start * 32,
2329 };
2330 }
2331
2332 if (read_len > 0) {
2333 c.ConstantBody.Buffer[n] = read_addr;
2334 c.ConstantBody.ReadLength[n] = read_len;
2335 n--;
2336 }
2337 }
2338
2339 struct anv_state state =
2340 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2341
2342 if (state.alloc_size > 0) {
2343 c.ConstantBody.Buffer[n] = (struct anv_address) {
2344 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2345 .offset = state.offset,
2346 };
2347 c.ConstantBody.ReadLength[n] =
2348 DIV_ROUND_UP(state.alloc_size, 32);
2349 }
2350 #else
2351 /* For Ivy Bridge, the push constants packets have a different
2352 * rule that would require us to iterate in the other direction
2353 * and possibly mess around with dynamic state base address.
2354 * Don't bother; just emit regular push constants at n = 0.
2355 */
2356 struct anv_state state =
2357 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2358
2359 if (state.alloc_size > 0) {
2360 c.ConstantBody.Buffer[0].offset = state.offset,
2361 c.ConstantBody.ReadLength[0] =
2362 DIV_ROUND_UP(state.alloc_size, 32);
2363 }
2364 #endif
2365 }
2366 }
2367
2368 flushed |= mesa_to_vk_shader_stage(stage);
2369 }
2370
2371 cmd_buffer->state.push_constants_dirty &= ~flushed;
2372 }
2373
2374 void
2375 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2376 {
2377 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2378 uint32_t *p;
2379
2380 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2381
2382 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2383
2384 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2385
2386 genX(flush_pipeline_select_3d)(cmd_buffer);
2387
2388 if (vb_emit) {
2389 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2390 const uint32_t num_dwords = 1 + num_buffers * 4;
2391
2392 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2393 GENX(3DSTATE_VERTEX_BUFFERS));
2394 uint32_t vb, i = 0;
2395 for_each_bit(vb, vb_emit) {
2396 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2397 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2398
2399 struct GENX(VERTEX_BUFFER_STATE) state = {
2400 .VertexBufferIndex = vb,
2401
2402 #if GEN_GEN >= 8
2403 .MemoryObjectControlState = GENX(MOCS),
2404 #else
2405 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
2406 /* Our implementation of VK_KHR_multiview uses instancing to draw
2407 * the different views. If the client asks for instancing, we
2408 * need to use the Instance Data Step Rate to ensure that we
2409 * repeat the client's per-instance data once for each view.
2410 */
2411 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
2412 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2413 #endif
2414
2415 .AddressModifyEnable = true,
2416 .BufferPitch = pipeline->binding_stride[vb],
2417 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2418
2419 #if GEN_GEN >= 8
2420 .BufferSize = buffer->size - offset
2421 #else
2422 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
2423 #endif
2424 };
2425
2426 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2427 i++;
2428 }
2429 }
2430
2431 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2432
2433 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2434 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2435
2436 /* The exact descriptor layout is pulled from the pipeline, so we need
2437 * to re-emit binding tables on every pipeline change.
2438 */
2439 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2440
2441 /* If the pipeline changed, we may need to re-allocate push constant
2442 * space in the URB.
2443 */
2444 cmd_buffer_alloc_push_constants(cmd_buffer);
2445 }
2446
2447 #if GEN_GEN <= 7
2448 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2449 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2450 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2451 *
2452 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2453 * stall needs to be sent just prior to any 3DSTATE_VS,
2454 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2455 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2456 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2457 * PIPE_CONTROL needs to be sent before any combination of VS
2458 * associated 3DSTATE."
2459 */
2460 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2461 pc.DepthStallEnable = true;
2462 pc.PostSyncOperation = WriteImmediateData;
2463 pc.Address =
2464 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2465 }
2466 }
2467 #endif
2468
2469 /* Render targets live in the same binding table as fragment descriptors */
2470 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2471 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2472
2473 /* We emit the binding tables and sampler tables first, then emit push
2474 * constants and then finally emit binding table and sampler table
2475 * pointers. It has to happen in this order, since emitting the binding
2476 * tables may change the push constants (in case of storage images). After
2477 * emitting push constants, on SKL+ we have to emit the corresponding
2478 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2479 */
2480 uint32_t dirty = 0;
2481 if (cmd_buffer->state.descriptors_dirty)
2482 dirty = flush_descriptor_sets(cmd_buffer);
2483
2484 if (dirty || cmd_buffer->state.push_constants_dirty) {
2485 /* Because we're pushing UBOs, we have to push whenever either
2486 * descriptors or push constants is dirty.
2487 */
2488 dirty |= cmd_buffer->state.push_constants_dirty;
2489 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2490 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2491 }
2492
2493 if (dirty)
2494 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2495
2496 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2497 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2498
2499 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2500 ANV_CMD_DIRTY_PIPELINE)) {
2501 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2502 pipeline->depth_clamp_enable);
2503 }
2504
2505 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2506 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2507
2508 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2509
2510 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2511 }
2512
2513 static void
2514 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2515 struct anv_bo *bo, uint32_t offset,
2516 uint32_t size, uint32_t index)
2517 {
2518 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2519 GENX(3DSTATE_VERTEX_BUFFERS));
2520
2521 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2522 &(struct GENX(VERTEX_BUFFER_STATE)) {
2523 .VertexBufferIndex = index,
2524 .AddressModifyEnable = true,
2525 .BufferPitch = 0,
2526 #if (GEN_GEN >= 8)
2527 .MemoryObjectControlState = GENX(MOCS),
2528 .BufferStartingAddress = { bo, offset },
2529 .BufferSize = size
2530 #else
2531 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2532 .BufferStartingAddress = { bo, offset },
2533 .EndAddress = { bo, offset + size },
2534 #endif
2535 });
2536 }
2537
2538 static void
2539 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2540 struct anv_bo *bo, uint32_t offset)
2541 {
2542 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2543 }
2544
2545 static void
2546 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2547 uint32_t base_vertex, uint32_t base_instance)
2548 {
2549 struct anv_state id_state =
2550 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2551
2552 ((uint32_t *)id_state.map)[0] = base_vertex;
2553 ((uint32_t *)id_state.map)[1] = base_instance;
2554
2555 anv_state_flush(cmd_buffer->device, id_state);
2556
2557 emit_base_vertex_instance_bo(cmd_buffer,
2558 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2559 }
2560
2561 static void
2562 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2563 {
2564 struct anv_state state =
2565 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2566
2567 ((uint32_t *)state.map)[0] = draw_index;
2568
2569 anv_state_flush(cmd_buffer->device, state);
2570
2571 emit_vertex_bo(cmd_buffer,
2572 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2573 state.offset, 4, ANV_DRAWID_VB_INDEX);
2574 }
2575
2576 void genX(CmdDraw)(
2577 VkCommandBuffer commandBuffer,
2578 uint32_t vertexCount,
2579 uint32_t instanceCount,
2580 uint32_t firstVertex,
2581 uint32_t firstInstance)
2582 {
2583 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2584 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2585 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2586
2587 if (anv_batch_has_error(&cmd_buffer->batch))
2588 return;
2589
2590 genX(cmd_buffer_flush_state)(cmd_buffer);
2591
2592 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2593 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2594 if (vs_prog_data->uses_drawid)
2595 emit_draw_index(cmd_buffer, 0);
2596
2597 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2598 * different views. We need to multiply instanceCount by the view count.
2599 */
2600 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2601
2602 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2603 prim.VertexAccessType = SEQUENTIAL;
2604 prim.PrimitiveTopologyType = pipeline->topology;
2605 prim.VertexCountPerInstance = vertexCount;
2606 prim.StartVertexLocation = firstVertex;
2607 prim.InstanceCount = instanceCount;
2608 prim.StartInstanceLocation = firstInstance;
2609 prim.BaseVertexLocation = 0;
2610 }
2611 }
2612
2613 void genX(CmdDrawIndexed)(
2614 VkCommandBuffer commandBuffer,
2615 uint32_t indexCount,
2616 uint32_t instanceCount,
2617 uint32_t firstIndex,
2618 int32_t vertexOffset,
2619 uint32_t firstInstance)
2620 {
2621 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2622 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2623 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2624
2625 if (anv_batch_has_error(&cmd_buffer->batch))
2626 return;
2627
2628 genX(cmd_buffer_flush_state)(cmd_buffer);
2629
2630 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2631 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2632 if (vs_prog_data->uses_drawid)
2633 emit_draw_index(cmd_buffer, 0);
2634
2635 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2636 * different views. We need to multiply instanceCount by the view count.
2637 */
2638 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2639
2640 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2641 prim.VertexAccessType = RANDOM;
2642 prim.PrimitiveTopologyType = pipeline->topology;
2643 prim.VertexCountPerInstance = indexCount;
2644 prim.StartVertexLocation = firstIndex;
2645 prim.InstanceCount = instanceCount;
2646 prim.StartInstanceLocation = firstInstance;
2647 prim.BaseVertexLocation = vertexOffset;
2648 }
2649 }
2650
2651 /* Auto-Draw / Indirect Registers */
2652 #define GEN7_3DPRIM_END_OFFSET 0x2420
2653 #define GEN7_3DPRIM_START_VERTEX 0x2430
2654 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2655 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2656 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2657 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2658
2659 /* MI_MATH only exists on Haswell+ */
2660 #if GEN_IS_HASWELL || GEN_GEN >= 8
2661
2662 /* Emit dwords to multiply GPR0 by N */
2663 static void
2664 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2665 {
2666 VK_OUTARRAY_MAKE(out, dw, dw_count);
2667
2668 #define append_alu(opcode, operand1, operand2) \
2669 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2670
2671 assert(N > 0);
2672 unsigned top_bit = 31 - __builtin_clz(N);
2673 for (int i = top_bit - 1; i >= 0; i--) {
2674 /* We get our initial data in GPR0 and we write the final data out to
2675 * GPR0 but we use GPR1 as our scratch register.
2676 */
2677 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2678 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2679
2680 /* Shift the current value left by 1 */
2681 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2682 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2683 append_alu(MI_ALU_ADD, 0, 0);
2684
2685 if (N & (1 << i)) {
2686 /* Store ACCU to R1 and add R0 to R1 */
2687 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2688 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2689 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2690 append_alu(MI_ALU_ADD, 0, 0);
2691 }
2692
2693 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2694 }
2695
2696 #undef append_alu
2697 }
2698
2699 static void
2700 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2701 {
2702 uint32_t num_dwords;
2703 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2704
2705 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2706 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2707 }
2708
2709 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2710
2711 static void
2712 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2713 struct anv_buffer *buffer, uint64_t offset,
2714 bool indexed)
2715 {
2716 struct anv_batch *batch = &cmd_buffer->batch;
2717 struct anv_bo *bo = buffer->bo;
2718 uint32_t bo_offset = buffer->offset + offset;
2719
2720 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2721
2722 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2723 if (view_count > 1) {
2724 #if GEN_IS_HASWELL || GEN_GEN >= 8
2725 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2726 emit_mul_gpr0(batch, view_count);
2727 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2728 #else
2729 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2730 "MI_MATH is not supported on Ivy Bridge");
2731 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2732 #endif
2733 } else {
2734 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2735 }
2736
2737 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2738
2739 if (indexed) {
2740 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2741 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2742 } else {
2743 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2744 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2745 }
2746 }
2747
2748 void genX(CmdDrawIndirect)(
2749 VkCommandBuffer commandBuffer,
2750 VkBuffer _buffer,
2751 VkDeviceSize offset,
2752 uint32_t drawCount,
2753 uint32_t stride)
2754 {
2755 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2756 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2757 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2758 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2759
2760 if (anv_batch_has_error(&cmd_buffer->batch))
2761 return;
2762
2763 genX(cmd_buffer_flush_state)(cmd_buffer);
2764
2765 for (uint32_t i = 0; i < drawCount; i++) {
2766 struct anv_bo *bo = buffer->bo;
2767 uint32_t bo_offset = buffer->offset + offset;
2768
2769 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2770 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2771 if (vs_prog_data->uses_drawid)
2772 emit_draw_index(cmd_buffer, i);
2773
2774 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2775
2776 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2777 prim.IndirectParameterEnable = true;
2778 prim.VertexAccessType = SEQUENTIAL;
2779 prim.PrimitiveTopologyType = pipeline->topology;
2780 }
2781
2782 offset += stride;
2783 }
2784 }
2785
2786 void genX(CmdDrawIndexedIndirect)(
2787 VkCommandBuffer commandBuffer,
2788 VkBuffer _buffer,
2789 VkDeviceSize offset,
2790 uint32_t drawCount,
2791 uint32_t stride)
2792 {
2793 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2794 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2795 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2796 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2797
2798 if (anv_batch_has_error(&cmd_buffer->batch))
2799 return;
2800
2801 genX(cmd_buffer_flush_state)(cmd_buffer);
2802
2803 for (uint32_t i = 0; i < drawCount; i++) {
2804 struct anv_bo *bo = buffer->bo;
2805 uint32_t bo_offset = buffer->offset + offset;
2806
2807 /* TODO: We need to stomp base vertex to 0 somehow */
2808 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2809 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2810 if (vs_prog_data->uses_drawid)
2811 emit_draw_index(cmd_buffer, i);
2812
2813 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2814
2815 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2816 prim.IndirectParameterEnable = true;
2817 prim.VertexAccessType = RANDOM;
2818 prim.PrimitiveTopologyType = pipeline->topology;
2819 }
2820
2821 offset += stride;
2822 }
2823 }
2824
2825 static VkResult
2826 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2827 {
2828 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2829 struct anv_state surfaces = { 0, }, samplers = { 0, };
2830 VkResult result;
2831
2832 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2833 if (result != VK_SUCCESS) {
2834 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2835
2836 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2837 if (result != VK_SUCCESS)
2838 return result;
2839
2840 /* Re-emit state base addresses so we get the new surface state base
2841 * address before we start emitting binding tables etc.
2842 */
2843 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2844
2845 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2846 if (result != VK_SUCCESS) {
2847 anv_batch_set_error(&cmd_buffer->batch, result);
2848 return result;
2849 }
2850 }
2851
2852 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2853 if (result != VK_SUCCESS) {
2854 anv_batch_set_error(&cmd_buffer->batch, result);
2855 return result;
2856 }
2857
2858 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2859 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2860 .BindingTablePointer = surfaces.offset,
2861 .SamplerStatePointer = samplers.offset,
2862 };
2863 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2864
2865 struct anv_state state =
2866 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2867 pipeline->interface_descriptor_data,
2868 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2869 64);
2870
2871 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2872 anv_batch_emit(&cmd_buffer->batch,
2873 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2874 mid.InterfaceDescriptorTotalLength = size;
2875 mid.InterfaceDescriptorDataStartAddress = state.offset;
2876 }
2877
2878 return VK_SUCCESS;
2879 }
2880
2881 void
2882 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2883 {
2884 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2885 MAYBE_UNUSED VkResult result;
2886
2887 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2888
2889 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2890
2891 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2892
2893 if (cmd_buffer->state.compute.pipeline_dirty) {
2894 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2895 *
2896 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2897 * the only bits that are changed are scoreboard related: Scoreboard
2898 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2899 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2900 * sufficient."
2901 */
2902 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2903 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2904
2905 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2906 }
2907
2908 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2909 cmd_buffer->state.compute.pipeline_dirty) {
2910 /* FIXME: figure out descriptors for gen7 */
2911 result = flush_compute_descriptor_set(cmd_buffer);
2912 if (result != VK_SUCCESS)
2913 return;
2914
2915 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2916 }
2917
2918 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2919 struct anv_state push_state =
2920 anv_cmd_buffer_cs_push_constants(cmd_buffer);
2921
2922 if (push_state.alloc_size) {
2923 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2924 curbe.CURBETotalDataLength = push_state.alloc_size;
2925 curbe.CURBEDataStartAddress = push_state.offset;
2926 }
2927 }
2928 }
2929
2930 cmd_buffer->state.compute.pipeline_dirty = false;
2931
2932 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2933 }
2934
2935 #if GEN_GEN == 7
2936
2937 static VkResult
2938 verify_cmd_parser(const struct anv_device *device,
2939 int required_version,
2940 const char *function)
2941 {
2942 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2943 return vk_errorf(device->instance, device->instance,
2944 VK_ERROR_FEATURE_NOT_PRESENT,
2945 "cmd parser version %d is required for %s",
2946 required_version, function);
2947 } else {
2948 return VK_SUCCESS;
2949 }
2950 }
2951
2952 #endif
2953
2954 void genX(CmdDispatch)(
2955 VkCommandBuffer commandBuffer,
2956 uint32_t x,
2957 uint32_t y,
2958 uint32_t z)
2959 {
2960 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2961 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2962 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2963
2964 if (anv_batch_has_error(&cmd_buffer->batch))
2965 return;
2966
2967 if (prog_data->uses_num_work_groups) {
2968 struct anv_state state =
2969 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2970 uint32_t *sizes = state.map;
2971 sizes[0] = x;
2972 sizes[1] = y;
2973 sizes[2] = z;
2974 anv_state_flush(cmd_buffer->device, state);
2975 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2976 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2977 .offset = state.offset,
2978 };
2979 }
2980
2981 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2982
2983 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2984 ggw.SIMDSize = prog_data->simd_size / 16;
2985 ggw.ThreadDepthCounterMaximum = 0;
2986 ggw.ThreadHeightCounterMaximum = 0;
2987 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2988 ggw.ThreadGroupIDXDimension = x;
2989 ggw.ThreadGroupIDYDimension = y;
2990 ggw.ThreadGroupIDZDimension = z;
2991 ggw.RightExecutionMask = pipeline->cs_right_mask;
2992 ggw.BottomExecutionMask = 0xffffffff;
2993 }
2994
2995 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2996 }
2997
2998 #define GPGPU_DISPATCHDIMX 0x2500
2999 #define GPGPU_DISPATCHDIMY 0x2504
3000 #define GPGPU_DISPATCHDIMZ 0x2508
3001
3002 void genX(CmdDispatchIndirect)(
3003 VkCommandBuffer commandBuffer,
3004 VkBuffer _buffer,
3005 VkDeviceSize offset)
3006 {
3007 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3008 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3009 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3010 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3011 struct anv_bo *bo = buffer->bo;
3012 uint32_t bo_offset = buffer->offset + offset;
3013 struct anv_batch *batch = &cmd_buffer->batch;
3014
3015 #if GEN_GEN == 7
3016 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3017 * indirect dispatch registers to be written.
3018 */
3019 if (verify_cmd_parser(cmd_buffer->device, 5,
3020 "vkCmdDispatchIndirect") != VK_SUCCESS)
3021 return;
3022 #endif
3023
3024 if (prog_data->uses_num_work_groups) {
3025 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3026 .bo = bo,
3027 .offset = bo_offset,
3028 };
3029 }
3030
3031 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3032
3033 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
3034 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
3035 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
3036
3037 #if GEN_GEN <= 7
3038 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
3039 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
3040 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
3041 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
3042
3043 /* Load compute_dispatch_indirect_x_size into SRC0 */
3044 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
3045
3046 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3047 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3048 mip.LoadOperation = LOAD_LOAD;
3049 mip.CombineOperation = COMBINE_SET;
3050 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3051 }
3052
3053 /* Load compute_dispatch_indirect_y_size into SRC0 */
3054 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
3055
3056 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3057 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3058 mip.LoadOperation = LOAD_LOAD;
3059 mip.CombineOperation = COMBINE_OR;
3060 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3061 }
3062
3063 /* Load compute_dispatch_indirect_z_size into SRC0 */
3064 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
3065
3066 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3067 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3068 mip.LoadOperation = LOAD_LOAD;
3069 mip.CombineOperation = COMBINE_OR;
3070 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3071 }
3072
3073 /* predicate = !predicate; */
3074 #define COMPARE_FALSE 1
3075 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3076 mip.LoadOperation = LOAD_LOADINV;
3077 mip.CombineOperation = COMBINE_OR;
3078 mip.CompareOperation = COMPARE_FALSE;
3079 }
3080 #endif
3081
3082 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
3083 ggw.IndirectParameterEnable = true;
3084 ggw.PredicateEnable = GEN_GEN <= 7;
3085 ggw.SIMDSize = prog_data->simd_size / 16;
3086 ggw.ThreadDepthCounterMaximum = 0;
3087 ggw.ThreadHeightCounterMaximum = 0;
3088 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3089 ggw.RightExecutionMask = pipeline->cs_right_mask;
3090 ggw.BottomExecutionMask = 0xffffffff;
3091 }
3092
3093 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
3094 }
3095
3096 static void
3097 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
3098 uint32_t pipeline)
3099 {
3100 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3101
3102 if (cmd_buffer->state.current_pipeline == pipeline)
3103 return;
3104
3105 #if GEN_GEN >= 8 && GEN_GEN < 10
3106 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3107 *
3108 * Software must clear the COLOR_CALC_STATE Valid field in
3109 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3110 * with Pipeline Select set to GPGPU.
3111 *
3112 * The internal hardware docs recommend the same workaround for Gen9
3113 * hardware too.
3114 */
3115 if (pipeline == GPGPU)
3116 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
3117 #endif
3118
3119 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3120 * PIPELINE_SELECT [DevBWR+]":
3121 *
3122 * Project: DEVSNB+
3123 *
3124 * Software must ensure all the write caches are flushed through a
3125 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3126 * command to invalidate read only caches prior to programming
3127 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3128 */
3129 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3130 pc.RenderTargetCacheFlushEnable = true;
3131 pc.DepthCacheFlushEnable = true;
3132 pc.DCFlushEnable = true;
3133 pc.PostSyncOperation = NoWrite;
3134 pc.CommandStreamerStallEnable = true;
3135 }
3136
3137 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3138 pc.TextureCacheInvalidationEnable = true;
3139 pc.ConstantCacheInvalidationEnable = true;
3140 pc.StateCacheInvalidationEnable = true;
3141 pc.InstructionCacheInvalidateEnable = true;
3142 pc.PostSyncOperation = NoWrite;
3143 }
3144
3145 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
3146 #if GEN_GEN >= 9
3147 ps.MaskBits = 3;
3148 #endif
3149 ps.PipelineSelection = pipeline;
3150 }
3151
3152 #if GEN_GEN == 9
3153 if (devinfo->is_geminilake) {
3154 /* Project: DevGLK
3155 *
3156 * "This chicken bit works around a hardware issue with barrier logic
3157 * encountered when switching between GPGPU and 3D pipelines. To
3158 * workaround the issue, this mode bit should be set after a pipeline
3159 * is selected."
3160 */
3161 uint32_t scec;
3162 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
3163 .GLKBarrierMode =
3164 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
3165 : GLK_BARRIER_MODE_3D_HULL,
3166 .GLKBarrierModeMask = 1);
3167 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
3168 }
3169 #endif
3170
3171 cmd_buffer->state.current_pipeline = pipeline;
3172 }
3173
3174 void
3175 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
3176 {
3177 genX(flush_pipeline_select)(cmd_buffer, _3D);
3178 }
3179
3180 void
3181 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
3182 {
3183 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
3184 }
3185
3186 void
3187 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
3188 {
3189 if (GEN_GEN >= 8)
3190 return;
3191
3192 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3193 *
3194 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3195 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3196 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3197 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3198 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3199 * Depth Flush Bit set, followed by another pipelined depth stall
3200 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3201 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
3202 * via a preceding MI_FLUSH)."
3203 */
3204 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3205 pipe.DepthStallEnable = true;
3206 }
3207 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3208 pipe.DepthCacheFlushEnable = true;
3209 }
3210 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3211 pipe.DepthStallEnable = true;
3212 }
3213 }
3214
3215 static void
3216 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
3217 {
3218 struct anv_device *device = cmd_buffer->device;
3219 const struct anv_image_view *iview =
3220 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
3221 const struct anv_image *image = iview ? iview->image : NULL;
3222
3223 /* FIXME: Width and Height are wrong */
3224
3225 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
3226
3227 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
3228 device->isl_dev.ds.size / 4);
3229 if (dw == NULL)
3230 return;
3231
3232 struct isl_depth_stencil_hiz_emit_info info = {
3233 .mocs = device->default_mocs,
3234 };
3235
3236 if (iview)
3237 info.view = &iview->planes[0].isl;
3238
3239 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
3240 uint32_t depth_plane =
3241 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
3242 const struct anv_surface *surface = &image->planes[depth_plane].surface;
3243
3244 info.depth_surf = &surface->isl;
3245
3246 info.depth_address =
3247 anv_batch_emit_reloc(&cmd_buffer->batch,
3248 dw + device->isl_dev.ds.depth_offset / 4,
3249 image->planes[depth_plane].bo,
3250 image->planes[depth_plane].bo_offset +
3251 surface->offset);
3252
3253 const uint32_t ds =
3254 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
3255 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
3256 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
3257 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
3258
3259 info.hiz_address =
3260 anv_batch_emit_reloc(&cmd_buffer->batch,
3261 dw + device->isl_dev.ds.hiz_offset / 4,
3262 image->planes[depth_plane].bo,
3263 image->planes[depth_plane].bo_offset +
3264 image->planes[depth_plane].aux_surface.offset);
3265
3266 info.depth_clear_value = ANV_HZ_FC_VAL;
3267 }
3268 }
3269
3270 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
3271 uint32_t stencil_plane =
3272 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
3273 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
3274
3275 info.stencil_surf = &surface->isl;
3276
3277 info.stencil_address =
3278 anv_batch_emit_reloc(&cmd_buffer->batch,
3279 dw + device->isl_dev.ds.stencil_offset / 4,
3280 image->planes[stencil_plane].bo,
3281 image->planes[stencil_plane].bo_offset + surface->offset);
3282 }
3283
3284 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
3285
3286 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
3287 }
3288
3289
3290 /**
3291 * @brief Perform any layout transitions required at the beginning and/or end
3292 * of the current subpass for depth buffers.
3293 *
3294 * TODO: Consider preprocessing the attachment reference array at render pass
3295 * create time to determine if no layout transition is needed at the
3296 * beginning and/or end of each subpass.
3297 *
3298 * @param cmd_buffer The command buffer the transition is happening within.
3299 * @param subpass_end If true, marks that the transition is happening at the
3300 * end of the subpass.
3301 */
3302 static void
3303 cmd_buffer_subpass_transition_layouts(struct anv_cmd_buffer * const cmd_buffer,
3304 const bool subpass_end)
3305 {
3306 /* We need a non-NULL command buffer. */
3307 assert(cmd_buffer);
3308
3309 const struct anv_cmd_state * const cmd_state = &cmd_buffer->state;
3310 const struct anv_subpass * const subpass = cmd_state->subpass;
3311
3312 /* This function must be called within a subpass. */
3313 assert(subpass);
3314
3315 /* If there are attachment references, the array shouldn't be NULL.
3316 */
3317 if (subpass->attachment_count > 0)
3318 assert(subpass->attachments);
3319
3320 /* Iterate over the array of attachment references. */
3321 for (const struct anv_subpass_attachment *att_ref = subpass->attachments;
3322 att_ref < subpass->attachments + subpass->attachment_count; att_ref++) {
3323
3324 /* If the attachment is unused, we can't perform a layout transition. */
3325 if (att_ref->attachment == VK_ATTACHMENT_UNUSED)
3326 continue;
3327
3328 /* This attachment index shouldn't go out of bounds. */
3329 assert(att_ref->attachment < cmd_state->pass->attachment_count);
3330
3331 const struct anv_render_pass_attachment * const att_desc =
3332 &cmd_state->pass->attachments[att_ref->attachment];
3333 struct anv_attachment_state * const att_state =
3334 &cmd_buffer->state.attachments[att_ref->attachment];
3335
3336 /* The attachment should not be used in a subpass after its last. */
3337 assert(att_desc->last_subpass_idx >= anv_get_subpass_id(cmd_state));
3338
3339 if (subpass_end && anv_get_subpass_id(cmd_state) <
3340 att_desc->last_subpass_idx) {
3341 /* We're calling this function on a buffer twice in one subpass and
3342 * this is not the last use of the buffer. The layout should not have
3343 * changed from the first call and no transition is necessary.
3344 */
3345 assert(att_state->current_layout == att_ref->layout ||
3346 att_state->current_layout ==
3347 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
3348 continue;
3349 }
3350
3351 /* The attachment index must be less than the number of attachments
3352 * within the framebuffer.
3353 */
3354 assert(att_ref->attachment < cmd_state->framebuffer->attachment_count);
3355
3356 const struct anv_image_view * const iview =
3357 cmd_state->framebuffer->attachments[att_ref->attachment];
3358 const struct anv_image * const image = iview->image;
3359
3360 /* Get the appropriate target layout for this attachment. */
3361 VkImageLayout target_layout;
3362
3363 /* A resolve is necessary before use as an input attachment if the clear
3364 * color or auxiliary buffer usage isn't supported by the sampler.
3365 */
3366 const bool input_needs_resolve =
3367 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3368 att_state->input_aux_usage != att_state->aux_usage;
3369 if (subpass_end) {
3370 target_layout = att_desc->final_layout;
3371 } else if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3372 !input_needs_resolve) {
3373 /* Layout transitions before the final only help to enable sampling as
3374 * an input attachment. If the input attachment supports sampling
3375 * using the auxiliary surface, we can skip such transitions by making
3376 * the target layout one that is CCS-aware.
3377 */
3378 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3379 } else {
3380 target_layout = att_ref->layout;
3381 }
3382
3383 /* Perform the layout transition. */
3384 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3385 transition_depth_buffer(cmd_buffer, image,
3386 att_state->current_layout, target_layout);
3387 att_state->aux_usage =
3388 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3389 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3390 } else if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3391 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3392
3393 uint32_t base_layer, layer_count;
3394 if (image->type == VK_IMAGE_TYPE_3D) {
3395 base_layer = 0;
3396 layer_count = anv_minify(iview->image->extent.depth,
3397 iview->planes[0].isl.base_level);
3398 } else {
3399 base_layer = iview->planes[0].isl.base_array_layer;
3400 layer_count = cmd_state->framebuffer->layers;
3401 }
3402
3403 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3404 iview->planes[0].isl.base_level, 1,
3405 base_layer, layer_count,
3406 att_state->current_layout, target_layout);
3407 }
3408
3409 att_state->current_layout = target_layout;
3410 }
3411 }
3412
3413 static void
3414 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
3415 uint32_t subpass_id)
3416 {
3417 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3418 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
3419 cmd_state->subpass = subpass;
3420
3421 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3422
3423 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3424 * different views. If the client asks for instancing, we need to use the
3425 * Instance Data Step Rate to ensure that we repeat the client's
3426 * per-instance data once for each view. Since this bit is in
3427 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3428 * of each subpass.
3429 */
3430 if (GEN_GEN == 7)
3431 cmd_buffer->state.gfx.vb_dirty |= ~0;
3432
3433 /* It is possible to start a render pass with an old pipeline. Because the
3434 * render pass and subpass index are both baked into the pipeline, this is
3435 * highly unlikely. In order to do so, it requires that you have a render
3436 * pass with a single subpass and that you use that render pass twice
3437 * back-to-back and use the same pipeline at the start of the second render
3438 * pass as at the end of the first. In order to avoid unpredictable issues
3439 * with this edge case, we just dirty the pipeline at the start of every
3440 * subpass.
3441 */
3442 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3443
3444 /* Accumulate any subpass flushes that need to happen before the subpass */
3445 cmd_buffer->state.pending_pipe_bits |=
3446 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3447
3448 /* Perform transitions to the subpass layout before any writes have
3449 * occurred.
3450 */
3451 cmd_buffer_subpass_transition_layouts(cmd_buffer, false);
3452
3453 VkRect2D render_area = cmd_buffer->state.render_area;
3454 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3455
3456 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3457 const uint32_t a = subpass->attachments[i].attachment;
3458 if (a == VK_ATTACHMENT_UNUSED)
3459 continue;
3460
3461 assert(a < cmd_state->pass->attachment_count);
3462 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3463
3464 struct anv_image_view *iview = fb->attachments[a];
3465 const struct anv_image *image = iview->image;
3466
3467 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
3468 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3469
3470 /* Multi-planar images are not supported as attachments */
3471 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3472 assert(image->n_planes == 1);
3473
3474 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
3475 uint32_t clear_layer_count = fb->layers;
3476
3477 if (att_state->fast_clear) {
3478 /* We only support fast-clears on the first layer */
3479 assert(iview->planes[0].isl.base_level == 0);
3480 assert(iview->planes[0].isl.base_array_layer == 0);
3481
3482 anv_image_ccs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3483 0, 0, 1, ISL_AUX_OP_FAST_CLEAR, false);
3484 base_clear_layer++;
3485 clear_layer_count--;
3486
3487 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3488 image, VK_IMAGE_ASPECT_COLOR_BIT,
3489 true /* copy from ss */);
3490
3491 if (att_state->clear_color_is_zero) {
3492 /* This image has the auxiliary buffer enabled. We can mark the
3493 * subresource as not needing a resolve because the clear color
3494 * will match what's in every RENDER_SURFACE_STATE object when
3495 * it's being used for sampling.
3496 */
3497 set_image_fast_clear_state(cmd_buffer, iview->image,
3498 VK_IMAGE_ASPECT_COLOR_BIT,
3499 ANV_FAST_CLEAR_DEFAULT_VALUE);
3500 } else {
3501 set_image_fast_clear_state(cmd_buffer, iview->image,
3502 VK_IMAGE_ASPECT_COLOR_BIT,
3503 ANV_FAST_CLEAR_ANY);
3504 }
3505 }
3506
3507 if (clear_layer_count > 0) {
3508 assert(image->n_planes == 1);
3509 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3510 att_state->aux_usage,
3511 iview->planes[0].isl.format,
3512 iview->planes[0].isl.swizzle,
3513 iview->planes[0].isl.base_level,
3514 base_clear_layer, clear_layer_count,
3515 render_area,
3516 vk_to_isl_color(att_state->clear_value.color));
3517 }
3518 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
3519 VK_IMAGE_ASPECT_STENCIL_BIT)) {
3520 if (att_state->fast_clear) {
3521 /* We currently only support HiZ for single-layer images */
3522 assert(iview->planes[0].isl.base_level == 0);
3523 assert(iview->planes[0].isl.base_array_layer == 0);
3524 assert(fb->layers == 1);
3525
3526 anv_image_hiz_clear(cmd_buffer, image,
3527 att_state->pending_clear_aspects,
3528 iview->planes[0].isl.base_level,
3529 iview->planes[0].isl.base_array_layer,
3530 fb->layers, render_area,
3531 att_state->clear_value.depthStencil.stencil);
3532 } else {
3533 anv_image_clear_depth_stencil(cmd_buffer, image,
3534 att_state->pending_clear_aspects,
3535 att_state->aux_usage,
3536 iview->planes[0].isl.base_level,
3537 iview->planes[0].isl.base_array_layer,
3538 fb->layers, render_area,
3539 att_state->clear_value.depthStencil.depth,
3540 att_state->clear_value.depthStencil.stencil);
3541 }
3542 } else {
3543 assert(att_state->pending_clear_aspects == 0);
3544 }
3545
3546 if (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3547 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
3548 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3549 image, VK_IMAGE_ASPECT_COLOR_BIT,
3550 false /* copy to ss */);
3551 }
3552
3553 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
3554 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3555 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3556 image, VK_IMAGE_ASPECT_COLOR_BIT,
3557 false /* copy to ss */);
3558 }
3559 }
3560
3561 if (subpass->attachments[i].usage ==
3562 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
3563 /* We assume that if we're starting a subpass, we're going to do some
3564 * rendering so we may end up with compressed data.
3565 */
3566 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
3567 VK_IMAGE_ASPECT_COLOR_BIT,
3568 att_state->aux_usage,
3569 iview->planes[0].isl.base_level,
3570 iview->planes[0].isl.base_array_layer,
3571 fb->layers);
3572 } else if (subpass->attachments[i].usage ==
3573 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
3574 /* We may be writing depth or stencil so we need to mark the surface.
3575 * Unfortunately, there's no way to know at this point whether the
3576 * depth or stencil tests used will actually write to the surface.
3577 *
3578 * Even though stencil may be plane 1, it always shares a base_level
3579 * with depth.
3580 */
3581 const struct isl_view *ds_view = &iview->planes[0].isl;
3582 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
3583 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3584 VK_IMAGE_ASPECT_DEPTH_BIT,
3585 att_state->aux_usage,
3586 ds_view->base_level,
3587 ds_view->base_array_layer,
3588 fb->layers);
3589 }
3590 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
3591 /* Even though stencil may be plane 1, it always shares a
3592 * base_level with depth.
3593 */
3594 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3595 VK_IMAGE_ASPECT_STENCIL_BIT,
3596 ISL_AUX_USAGE_NONE,
3597 ds_view->base_level,
3598 ds_view->base_array_layer,
3599 fb->layers);
3600 }
3601 }
3602
3603 att_state->pending_clear_aspects = 0;
3604 att_state->pending_load_aspects = 0;
3605 }
3606
3607 cmd_buffer_emit_depth_stencil(cmd_buffer);
3608 }
3609
3610 static void
3611 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
3612 {
3613 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3614
3615 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3616
3617 /* Perform transitions to the final layout after all writes have occurred.
3618 */
3619 cmd_buffer_subpass_transition_layouts(cmd_buffer, true);
3620
3621 /* Accumulate any subpass flushes that need to happen after the subpass.
3622 * Yes, they do get accumulated twice in the NextSubpass case but since
3623 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
3624 * ORing the bits in twice so it's harmless.
3625 */
3626 cmd_buffer->state.pending_pipe_bits |=
3627 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
3628 }
3629
3630 void genX(CmdBeginRenderPass)(
3631 VkCommandBuffer commandBuffer,
3632 const VkRenderPassBeginInfo* pRenderPassBegin,
3633 VkSubpassContents contents)
3634 {
3635 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3636 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3637 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3638
3639 cmd_buffer->state.framebuffer = framebuffer;
3640 cmd_buffer->state.pass = pass;
3641 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3642 VkResult result =
3643 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3644
3645 /* If we failed to setup the attachments we should not try to go further */
3646 if (result != VK_SUCCESS) {
3647 assert(anv_batch_has_error(&cmd_buffer->batch));
3648 return;
3649 }
3650
3651 genX(flush_pipeline_select_3d)(cmd_buffer);
3652
3653 cmd_buffer_begin_subpass(cmd_buffer, 0);
3654 }
3655
3656 void genX(CmdNextSubpass)(
3657 VkCommandBuffer commandBuffer,
3658 VkSubpassContents contents)
3659 {
3660 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3661
3662 if (anv_batch_has_error(&cmd_buffer->batch))
3663 return;
3664
3665 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3666
3667 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
3668 cmd_buffer_end_subpass(cmd_buffer);
3669 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
3670 }
3671
3672 void genX(CmdEndRenderPass)(
3673 VkCommandBuffer commandBuffer)
3674 {
3675 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3676
3677 if (anv_batch_has_error(&cmd_buffer->batch))
3678 return;
3679
3680 cmd_buffer_end_subpass(cmd_buffer);
3681
3682 cmd_buffer->state.hiz_enabled = false;
3683
3684 #ifndef NDEBUG
3685 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3686 #endif
3687
3688 /* Remove references to render pass specific state. This enables us to
3689 * detect whether or not we're in a renderpass.
3690 */
3691 cmd_buffer->state.framebuffer = NULL;
3692 cmd_buffer->state.pass = NULL;
3693 cmd_buffer->state.subpass = NULL;
3694 }