anv: Always fill out the AUX table even if CCS is disabled
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
44 uint32_t pipeline);
45
46 static void
47 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
48 {
49 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
50 lri.RegisterOffset = reg;
51 lri.DataDWord = imm;
52 }
53 }
54
55 void
56 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
57 {
58 struct anv_device *device = cmd_buffer->device;
59 UNUSED const struct gen_device_info *devinfo = &device->info;
60 uint32_t mocs = device->isl_dev.mocs.internal;
61
62 /* If we are emitting a new state base address we probably need to re-emit
63 * binding tables.
64 */
65 cmd_buffer->state.descriptors_dirty |= ~0;
66
67 /* Emit a render target cache flush.
68 *
69 * This isn't documented anywhere in the PRM. However, it seems to be
70 * necessary prior to changing the surface state base adress. Without
71 * this, we get GPU hangs when using multi-level command buffers which
72 * clear depth, reset state base address, and then go render stuff.
73 */
74 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
75 pc.DCFlushEnable = true;
76 pc.RenderTargetCacheFlushEnable = true;
77 pc.CommandStreamerStallEnable = true;
78 #if GEN_GEN >= 12
79 pc.TileCacheFlushEnable = true;
80 #endif
81 #if GEN_GEN == 12
82 /* GEN:BUG:1606662791:
83 *
84 * Software must program PIPE_CONTROL command with "HDC Pipeline
85 * Flush" prior to programming of the below two non-pipeline state :
86 * * STATE_BASE_ADDRESS
87 * * 3DSTATE_BINDING_TABLE_POOL_ALLOC
88 */
89 if (devinfo->revision == 0 /* A0 */)
90 pc.HDCPipelineFlushEnable = true;
91 #endif
92 }
93
94 #if GEN_GEN == 12
95 /* GEN:BUG:1607854226:
96 *
97 * Workaround the non pipelined state not applying in MEDIA/GPGPU pipeline
98 * mode by putting the pipeline temporarily in 3D mode.
99 */
100 uint32_t gen12_wa_pipeline = cmd_buffer->state.current_pipeline;
101 genX(flush_pipeline_select_3d)(cmd_buffer);
102 #endif
103
104 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
105 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
106 sba.GeneralStateMOCS = mocs;
107 sba.GeneralStateBaseAddressModifyEnable = true;
108
109 sba.StatelessDataPortAccessMOCS = mocs;
110
111 sba.SurfaceStateBaseAddress =
112 anv_cmd_buffer_surface_base_address(cmd_buffer);
113 sba.SurfaceStateMOCS = mocs;
114 sba.SurfaceStateBaseAddressModifyEnable = true;
115
116 sba.DynamicStateBaseAddress =
117 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
118 sba.DynamicStateMOCS = mocs;
119 sba.DynamicStateBaseAddressModifyEnable = true;
120
121 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
122 sba.IndirectObjectMOCS = mocs;
123 sba.IndirectObjectBaseAddressModifyEnable = true;
124
125 sba.InstructionBaseAddress =
126 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
127 sba.InstructionMOCS = mocs;
128 sba.InstructionBaseAddressModifyEnable = true;
129
130 # if (GEN_GEN >= 8)
131 /* Broadwell requires that we specify a buffer size for a bunch of
132 * these fields. However, since we will be growing the BO's live, we
133 * just set them all to the maximum.
134 */
135 sba.GeneralStateBufferSize = 0xfffff;
136 sba.IndirectObjectBufferSize = 0xfffff;
137 if (device->physical->use_softpin) {
138 /* With softpin, we use fixed addresses so we actually know how big
139 * our base addresses are.
140 */
141 sba.DynamicStateBufferSize = DYNAMIC_STATE_POOL_SIZE / 4096;
142 sba.InstructionBufferSize = INSTRUCTION_STATE_POOL_SIZE / 4096;
143 } else {
144 sba.DynamicStateBufferSize = 0xfffff;
145 sba.InstructionBufferSize = 0xfffff;
146 }
147 sba.GeneralStateBufferSizeModifyEnable = true;
148 sba.IndirectObjectBufferSizeModifyEnable = true;
149 sba.DynamicStateBufferSizeModifyEnable = true;
150 sba.InstructionBuffersizeModifyEnable = true;
151 # else
152 /* On gen7, we have upper bounds instead. According to the docs,
153 * setting an upper bound of zero means that no bounds checking is
154 * performed so, in theory, we should be able to leave them zero.
155 * However, border color is broken and the GPU bounds-checks anyway.
156 * To avoid this and other potential problems, we may as well set it
157 * for everything.
158 */
159 sba.GeneralStateAccessUpperBound =
160 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
161 sba.GeneralStateAccessUpperBoundModifyEnable = true;
162 sba.DynamicStateAccessUpperBound =
163 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
164 sba.DynamicStateAccessUpperBoundModifyEnable = true;
165 sba.InstructionAccessUpperBound =
166 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
167 sba.InstructionAccessUpperBoundModifyEnable = true;
168 # endif
169 # if (GEN_GEN >= 9)
170 if (cmd_buffer->device->physical->use_softpin) {
171 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
172 .bo = device->surface_state_pool.block_pool.bo,
173 .offset = 0,
174 };
175 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
176 } else {
177 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
178 sba.BindlessSurfaceStateSize = 0;
179 }
180 sba.BindlessSurfaceStateMOCS = mocs;
181 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
182 # endif
183 # if (GEN_GEN >= 10)
184 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
185 sba.BindlessSamplerStateMOCS = mocs;
186 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
187 sba.BindlessSamplerStateBufferSize = 0;
188 # endif
189 }
190
191 #if GEN_GEN == 12
192 /* GEN:BUG:1607854226:
193 *
194 * Put the pipeline back into its current mode.
195 */
196 if (gen12_wa_pipeline != UINT32_MAX)
197 genX(flush_pipeline_select)(cmd_buffer, gen12_wa_pipeline);
198 #endif
199
200 /* After re-setting the surface state base address, we have to do some
201 * cache flusing so that the sampler engine will pick up the new
202 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
203 * Shared Function > 3D Sampler > State > State Caching (page 96):
204 *
205 * Coherency with system memory in the state cache, like the texture
206 * cache is handled partially by software. It is expected that the
207 * command stream or shader will issue Cache Flush operation or
208 * Cache_Flush sampler message to ensure that the L1 cache remains
209 * coherent with system memory.
210 *
211 * [...]
212 *
213 * Whenever the value of the Dynamic_State_Base_Addr,
214 * Surface_State_Base_Addr are altered, the L1 state cache must be
215 * invalidated to ensure the new surface or sampler state is fetched
216 * from system memory.
217 *
218 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
219 * which, according the PIPE_CONTROL instruction documentation in the
220 * Broadwell PRM:
221 *
222 * Setting this bit is independent of any other bit in this packet.
223 * This bit controls the invalidation of the L1 and L2 state caches
224 * at the top of the pipe i.e. at the parsing time.
225 *
226 * Unfortunately, experimentation seems to indicate that state cache
227 * invalidation through a PIPE_CONTROL does nothing whatsoever in
228 * regards to surface state and binding tables. In stead, it seems that
229 * invalidating the texture cache is what is actually needed.
230 *
231 * XXX: As far as we have been able to determine through
232 * experimentation, shows that flush the texture cache appears to be
233 * sufficient. The theory here is that all of the sampling/rendering
234 * units cache the binding table in the texture cache. However, we have
235 * yet to be able to actually confirm this.
236 */
237 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
238 pc.TextureCacheInvalidationEnable = true;
239 pc.ConstantCacheInvalidationEnable = true;
240 pc.StateCacheInvalidationEnable = true;
241 }
242 }
243
244 static void
245 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
246 struct anv_state state, struct anv_address addr)
247 {
248 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
249
250 VkResult result =
251 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
252 state.offset + isl_dev->ss.addr_offset,
253 addr.bo, addr.offset, NULL);
254 if (result != VK_SUCCESS)
255 anv_batch_set_error(&cmd_buffer->batch, result);
256 }
257
258 static void
259 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
260 struct anv_surface_state state)
261 {
262 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
263
264 assert(!anv_address_is_null(state.address));
265 add_surface_reloc(cmd_buffer, state.state, state.address);
266
267 if (!anv_address_is_null(state.aux_address)) {
268 VkResult result =
269 anv_reloc_list_add(&cmd_buffer->surface_relocs,
270 &cmd_buffer->pool->alloc,
271 state.state.offset + isl_dev->ss.aux_addr_offset,
272 state.aux_address.bo,
273 state.aux_address.offset,
274 NULL);
275 if (result != VK_SUCCESS)
276 anv_batch_set_error(&cmd_buffer->batch, result);
277 }
278
279 if (!anv_address_is_null(state.clear_address)) {
280 VkResult result =
281 anv_reloc_list_add(&cmd_buffer->surface_relocs,
282 &cmd_buffer->pool->alloc,
283 state.state.offset +
284 isl_dev->ss.clear_color_state_offset,
285 state.clear_address.bo,
286 state.clear_address.offset,
287 NULL);
288 if (result != VK_SUCCESS)
289 anv_batch_set_error(&cmd_buffer->batch, result);
290 }
291 }
292
293 static void
294 color_attachment_compute_aux_usage(struct anv_device * device,
295 struct anv_cmd_state * cmd_state,
296 uint32_t att, VkRect2D render_area,
297 union isl_color_value *fast_clear_color)
298 {
299 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
300 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
301
302 assert(iview->n_planes == 1);
303
304 if (iview->planes[0].isl.base_array_layer >=
305 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
306 iview->planes[0].isl.base_level)) {
307 /* There is no aux buffer which corresponds to the level and layer(s)
308 * being accessed.
309 */
310 att_state->aux_usage = ISL_AUX_USAGE_NONE;
311 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
312 att_state->fast_clear = false;
313 return;
314 }
315
316 att_state->aux_usage =
317 anv_layout_to_aux_usage(&device->info, iview->image,
318 VK_IMAGE_ASPECT_COLOR_BIT,
319 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
320 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
321
322 /* If we don't have aux, then we should have returned early in the layer
323 * check above. If we got here, we must have something.
324 */
325 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
326
327 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
328 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
329 att_state->input_aux_usage = att_state->aux_usage;
330 } else {
331 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
332 *
333 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
334 * setting is only allowed if Surface Format supported for Fast
335 * Clear. In addition, if the surface is bound to the sampling
336 * engine, Surface Format must be supported for Render Target
337 * Compression for surfaces bound to the sampling engine."
338 *
339 * In other words, we can only sample from a fast-cleared image if it
340 * also supports color compression.
341 */
342 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
343 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
344 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
345
346 /* While fast-clear resolves and partial resolves are fairly cheap in the
347 * case where you render to most of the pixels, full resolves are not
348 * because they potentially involve reading and writing the entire
349 * framebuffer. If we can't texture with CCS_E, we should leave it off and
350 * limit ourselves to fast clears.
351 */
352 if (cmd_state->pass->attachments[att].first_subpass_layout ==
353 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
354 anv_perf_warn(device, iview->image,
355 "Not temporarily enabling CCS_E.");
356 }
357 } else {
358 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
359 }
360 }
361
362 assert(iview->image->planes[0].aux_surface.isl.usage &
363 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
364
365 union isl_color_value clear_color = {};
366 anv_clear_color_from_att_state(&clear_color, att_state, iview);
367
368 att_state->clear_color_is_zero_one =
369 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
370 att_state->clear_color_is_zero =
371 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
372
373 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
374 /* Start by getting the fast clear type. We use the first subpass
375 * layout here because we don't want to fast-clear if the first subpass
376 * to use the attachment can't handle fast-clears.
377 */
378 enum anv_fast_clear_type fast_clear_type =
379 anv_layout_to_fast_clear_type(&device->info, iview->image,
380 VK_IMAGE_ASPECT_COLOR_BIT,
381 cmd_state->pass->attachments[att].first_subpass_layout);
382 switch (fast_clear_type) {
383 case ANV_FAST_CLEAR_NONE:
384 att_state->fast_clear = false;
385 break;
386 case ANV_FAST_CLEAR_DEFAULT_VALUE:
387 att_state->fast_clear = att_state->clear_color_is_zero;
388 break;
389 case ANV_FAST_CLEAR_ANY:
390 att_state->fast_clear = true;
391 break;
392 }
393
394 /* Potentially, we could do partial fast-clears but doing so has crazy
395 * alignment restrictions. It's easier to just restrict to full size
396 * fast clears for now.
397 */
398 if (render_area.offset.x != 0 ||
399 render_area.offset.y != 0 ||
400 render_area.extent.width != iview->extent.width ||
401 render_area.extent.height != iview->extent.height)
402 att_state->fast_clear = false;
403
404 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
405 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
406 att_state->fast_clear = false;
407
408 /* We only allow fast clears to the first slice of an image (level 0,
409 * layer 0) and only for the entire slice. This guarantees us that, at
410 * any given time, there is only one clear color on any given image at
411 * any given time. At the time of our testing (Jan 17, 2018), there
412 * were no known applications which would benefit from fast-clearing
413 * more than just the first slice.
414 */
415 if (att_state->fast_clear &&
416 (iview->planes[0].isl.base_level > 0 ||
417 iview->planes[0].isl.base_array_layer > 0)) {
418 anv_perf_warn(device, iview->image,
419 "Rendering with multi-lod or multi-layer framebuffer "
420 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
421 "baseArrayLayer > 0. Not fast clearing.");
422 att_state->fast_clear = false;
423 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
424 anv_perf_warn(device, iview->image,
425 "Rendering to a multi-layer framebuffer with "
426 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
427 }
428
429 if (att_state->fast_clear)
430 *fast_clear_color = clear_color;
431 } else {
432 att_state->fast_clear = false;
433 }
434 }
435
436 static void
437 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
438 struct anv_cmd_state *cmd_state,
439 uint32_t att, VkRect2D render_area)
440 {
441 struct anv_render_pass_attachment *pass_att =
442 &cmd_state->pass->attachments[att];
443 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
444 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
445
446 /* These will be initialized after the first subpass transition. */
447 att_state->aux_usage = ISL_AUX_USAGE_NONE;
448 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
449
450 /* This is unused for depth/stencil but valgrind complains if it
451 * isn't initialized
452 */
453 att_state->clear_color_is_zero_one = false;
454
455 if (GEN_GEN == 7) {
456 /* We don't do any HiZ or depth fast-clears on gen7 yet */
457 att_state->fast_clear = false;
458 return;
459 }
460
461 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
462 /* If we're just clearing stencil, we can always HiZ clear */
463 att_state->fast_clear = true;
464 return;
465 }
466
467 /* Default to false for now */
468 att_state->fast_clear = false;
469
470 /* We must have depth in order to have HiZ */
471 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
472 return;
473
474 const enum isl_aux_usage first_subpass_aux_usage =
475 anv_layout_to_aux_usage(&device->info, iview->image,
476 VK_IMAGE_ASPECT_DEPTH_BIT,
477 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
478 pass_att->first_subpass_layout);
479 if (!blorp_can_hiz_clear_depth(&device->info,
480 &iview->image->planes[0].surface.isl,
481 first_subpass_aux_usage,
482 iview->planes[0].isl.base_level,
483 iview->planes[0].isl.base_array_layer,
484 render_area.offset.x,
485 render_area.offset.y,
486 render_area.offset.x +
487 render_area.extent.width,
488 render_area.offset.y +
489 render_area.extent.height))
490 return;
491
492 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
493 return;
494
495 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
496 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
497 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
498 * only supports returning 0.0f. Gens prior to gen8 do not support this
499 * feature at all.
500 */
501 return;
502 }
503
504 /* If we got here, then we can fast clear */
505 att_state->fast_clear = true;
506 }
507
508 static bool
509 need_input_attachment_state(const struct anv_render_pass_attachment *att)
510 {
511 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
512 return false;
513
514 /* We only allocate input attachment states for color surfaces. Compression
515 * is not yet enabled for depth textures and stencil doesn't allow
516 * compression so we can just use the texture surface state from the view.
517 */
518 return vk_format_is_color(att->format);
519 }
520
521 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
522 * the initial layout is undefined, the HiZ buffer and depth buffer will
523 * represent the same data at the end of this operation.
524 */
525 static void
526 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
527 const struct anv_image *image,
528 VkImageLayout initial_layout,
529 VkImageLayout final_layout)
530 {
531 uint32_t depth_plane =
532 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
533 if (image->planes[depth_plane].aux_usage == ISL_AUX_USAGE_NONE)
534 return;
535
536 const enum isl_aux_state initial_state =
537 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
538 VK_IMAGE_ASPECT_DEPTH_BIT,
539 initial_layout);
540 const enum isl_aux_state final_state =
541 anv_layout_to_aux_state(&cmd_buffer->device->info, image,
542 VK_IMAGE_ASPECT_DEPTH_BIT,
543 final_layout);
544
545 const bool initial_depth_valid =
546 isl_aux_state_has_valid_primary(initial_state);
547 const bool initial_hiz_valid =
548 isl_aux_state_has_valid_aux(initial_state);
549 const bool final_needs_depth =
550 isl_aux_state_has_valid_primary(final_state);
551 const bool final_needs_hiz =
552 isl_aux_state_has_valid_aux(final_state);
553
554 /* Getting into the pass-through state for Depth is tricky and involves
555 * both a resolve and an ambiguate. We don't handle that state right now
556 * as anv_layout_to_aux_state never returns it.
557 */
558 assert(final_state != ISL_AUX_STATE_PASS_THROUGH);
559
560 if (final_needs_depth && !initial_depth_valid) {
561 assert(initial_hiz_valid);
562 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
563 0, 0, 1, ISL_AUX_OP_FULL_RESOLVE);
564 } else if (final_needs_hiz && !initial_hiz_valid) {
565 assert(initial_depth_valid);
566 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
567 0, 0, 1, ISL_AUX_OP_AMBIGUATE);
568 }
569 }
570
571 static inline bool
572 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
573 {
574 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
575 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
576 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
577 }
578
579 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
580 * the initial layout is undefined, the HiZ buffer and depth buffer will
581 * represent the same data at the end of this operation.
582 */
583 static void
584 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
585 const struct anv_image *image,
586 uint32_t base_level, uint32_t level_count,
587 uint32_t base_layer, uint32_t layer_count,
588 VkImageLayout initial_layout,
589 VkImageLayout final_layout)
590 {
591 #if GEN_GEN == 7
592 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
593 VK_IMAGE_ASPECT_STENCIL_BIT);
594
595 /* On gen7, we have to store a texturable version of the stencil buffer in
596 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
597 * forth at strategic points. Stencil writes are only allowed in following
598 * layouts:
599 *
600 * - VK_IMAGE_LAYOUT_GENERAL
601 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
602 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
603 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
604 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
605 *
606 * For general, we have no nice opportunity to transition so we do the copy
607 * to the shadow unconditionally at the end of the subpass. For transfer
608 * destinations, we can update it as part of the transfer op. For the other
609 * layouts, we delay the copy until a transition into some other layout.
610 */
611 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
612 vk_image_layout_stencil_write_optimal(initial_layout) &&
613 !vk_image_layout_stencil_write_optimal(final_layout)) {
614 anv_image_copy_to_shadow(cmd_buffer, image,
615 VK_IMAGE_ASPECT_STENCIL_BIT,
616 base_level, level_count,
617 base_layer, layer_count);
618 }
619 #endif /* GEN_GEN == 7 */
620 }
621
622 #define MI_PREDICATE_SRC0 0x2400
623 #define MI_PREDICATE_SRC1 0x2408
624 #define MI_PREDICATE_RESULT 0x2418
625
626 static void
627 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
628 const struct anv_image *image,
629 VkImageAspectFlagBits aspect,
630 uint32_t level,
631 uint32_t base_layer, uint32_t layer_count,
632 bool compressed)
633 {
634 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
635
636 /* We only have compression tracking for CCS_E */
637 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
638 return;
639
640 for (uint32_t a = 0; a < layer_count; a++) {
641 uint32_t layer = base_layer + a;
642 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
643 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
644 image, aspect,
645 level, layer);
646 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
647 }
648 }
649 }
650
651 static void
652 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
653 const struct anv_image *image,
654 VkImageAspectFlagBits aspect,
655 enum anv_fast_clear_type fast_clear)
656 {
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
658 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
659 image, aspect);
660 sdi.ImmediateData = fast_clear;
661 }
662
663 /* Whenever we have fast-clear, we consider that slice to be compressed.
664 * This makes building predicates much easier.
665 */
666 if (fast_clear != ANV_FAST_CLEAR_NONE)
667 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
668 }
669
670 /* This is only really practical on haswell and above because it requires
671 * MI math in order to get it correct.
672 */
673 #if GEN_GEN >= 8 || GEN_IS_HASWELL
674 static void
675 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
676 const struct anv_image *image,
677 VkImageAspectFlagBits aspect,
678 uint32_t level, uint32_t array_layer,
679 enum isl_aux_op resolve_op,
680 enum anv_fast_clear_type fast_clear_supported)
681 {
682 struct gen_mi_builder b;
683 gen_mi_builder_init(&b, &cmd_buffer->batch);
684
685 const struct gen_mi_value fast_clear_type =
686 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
687 image, aspect));
688
689 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
690 /* In this case, we're doing a full resolve which means we want the
691 * resolve to happen if any compression (including fast-clears) is
692 * present.
693 *
694 * In order to simplify the logic a bit, we make the assumption that,
695 * if the first slice has been fast-cleared, it is also marked as
696 * compressed. See also set_image_fast_clear_state.
697 */
698 const struct gen_mi_value compression_state =
699 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
700 image, aspect,
701 level, array_layer));
702 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
703 compression_state);
704 gen_mi_store(&b, compression_state, gen_mi_imm(0));
705
706 if (level == 0 && array_layer == 0) {
707 /* If the predicate is true, we want to write 0 to the fast clear type
708 * and, if it's false, leave it alone. We can do this by writing
709 *
710 * clear_type = clear_type & ~predicate;
711 */
712 struct gen_mi_value new_fast_clear_type =
713 gen_mi_iand(&b, fast_clear_type,
714 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
715 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
716 }
717 } else if (level == 0 && array_layer == 0) {
718 /* In this case, we are doing a partial resolve to get rid of fast-clear
719 * colors. We don't care about the compression state but we do care
720 * about how much fast clear is allowed by the final layout.
721 */
722 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
723 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
724
725 /* We need to compute (fast_clear_supported < image->fast_clear) */
726 struct gen_mi_value pred =
727 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
728 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
729 gen_mi_value_ref(&b, pred));
730
731 /* If the predicate is true, we want to write 0 to the fast clear type
732 * and, if it's false, leave it alone. We can do this by writing
733 *
734 * clear_type = clear_type & ~predicate;
735 */
736 struct gen_mi_value new_fast_clear_type =
737 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
738 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
739 } else {
740 /* In this case, we're trying to do a partial resolve on a slice that
741 * doesn't have clear color. There's nothing to do.
742 */
743 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
744 return;
745 }
746
747 /* Set src1 to 0 and use a != condition */
748 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
749
750 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
751 mip.LoadOperation = LOAD_LOADINV;
752 mip.CombineOperation = COMBINE_SET;
753 mip.CompareOperation = COMPARE_SRCS_EQUAL;
754 }
755 }
756 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
757
758 #if GEN_GEN <= 8
759 static void
760 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
761 const struct anv_image *image,
762 VkImageAspectFlagBits aspect,
763 uint32_t level, uint32_t array_layer,
764 enum isl_aux_op resolve_op,
765 enum anv_fast_clear_type fast_clear_supported)
766 {
767 struct gen_mi_builder b;
768 gen_mi_builder_init(&b, &cmd_buffer->batch);
769
770 struct gen_mi_value fast_clear_type_mem =
771 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
772 image, aspect));
773
774 /* This only works for partial resolves and only when the clear color is
775 * all or nothing. On the upside, this emits less command streamer code
776 * and works on Ivybridge and Bay Trail.
777 */
778 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
779 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
780
781 /* We don't support fast clears on anything other than the first slice. */
782 if (level > 0 || array_layer > 0)
783 return;
784
785 /* On gen8, we don't have a concept of default clear colors because we
786 * can't sample from CCS surfaces. It's enough to just load the fast clear
787 * state into the predicate register.
788 */
789 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
790 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
791 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
792
793 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
794 mip.LoadOperation = LOAD_LOADINV;
795 mip.CombineOperation = COMBINE_SET;
796 mip.CompareOperation = COMPARE_SRCS_EQUAL;
797 }
798 }
799 #endif /* GEN_GEN <= 8 */
800
801 static void
802 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
803 const struct anv_image *image,
804 enum isl_format format,
805 VkImageAspectFlagBits aspect,
806 uint32_t level, uint32_t array_layer,
807 enum isl_aux_op resolve_op,
808 enum anv_fast_clear_type fast_clear_supported)
809 {
810 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
811
812 #if GEN_GEN >= 9
813 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
814 aspect, level, array_layer,
815 resolve_op, fast_clear_supported);
816 #else /* GEN_GEN <= 8 */
817 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
818 aspect, level, array_layer,
819 resolve_op, fast_clear_supported);
820 #endif
821
822 /* CCS_D only supports full resolves and BLORP will assert on us if we try
823 * to do a partial resolve on a CCS_D surface.
824 */
825 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
826 image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_D)
827 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
828
829 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
830 array_layer, 1, resolve_op, NULL, true);
831 }
832
833 static void
834 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
835 const struct anv_image *image,
836 enum isl_format format,
837 VkImageAspectFlagBits aspect,
838 uint32_t array_layer,
839 enum isl_aux_op resolve_op,
840 enum anv_fast_clear_type fast_clear_supported)
841 {
842 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
843 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
844
845 #if GEN_GEN >= 8 || GEN_IS_HASWELL
846 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
847 aspect, 0, array_layer,
848 resolve_op, fast_clear_supported);
849
850 anv_image_mcs_op(cmd_buffer, image, format, aspect,
851 array_layer, 1, resolve_op, NULL, true);
852 #else
853 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
854 #endif
855 }
856
857 void
858 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
859 const struct anv_image *image,
860 VkImageAspectFlagBits aspect,
861 enum isl_aux_usage aux_usage,
862 uint32_t level,
863 uint32_t base_layer,
864 uint32_t layer_count)
865 {
866 /* The aspect must be exactly one of the image aspects. */
867 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
868
869 /* The only compression types with more than just fast-clears are MCS,
870 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
871 * track the current fast-clear and compression state. This leaves us
872 * with just MCS and CCS_E.
873 */
874 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
875 aux_usage != ISL_AUX_USAGE_MCS)
876 return;
877
878 set_image_compressed_bit(cmd_buffer, image, aspect,
879 level, base_layer, layer_count, true);
880 }
881
882 static void
883 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
884 const struct anv_image *image,
885 VkImageAspectFlagBits aspect)
886 {
887 assert(cmd_buffer && image);
888 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
889
890 set_image_fast_clear_state(cmd_buffer, image, aspect,
891 ANV_FAST_CLEAR_NONE);
892
893 /* Initialize the struct fields that are accessed for fast-clears so that
894 * the HW restrictions on the field values are satisfied.
895 */
896 struct anv_address addr =
897 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
898
899 if (GEN_GEN >= 9) {
900 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
901 const unsigned num_dwords = GEN_GEN >= 10 ?
902 isl_dev->ss.clear_color_state_size / 4 :
903 isl_dev->ss.clear_value_size / 4;
904 for (unsigned i = 0; i < num_dwords; i++) {
905 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
906 sdi.Address = addr;
907 sdi.Address.offset += i * 4;
908 sdi.ImmediateData = 0;
909 }
910 }
911 } else {
912 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
913 sdi.Address = addr;
914 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
915 /* Pre-SKL, the dword containing the clear values also contains
916 * other fields, so we need to initialize those fields to match the
917 * values that would be in a color attachment.
918 */
919 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
920 ISL_CHANNEL_SELECT_GREEN << 22 |
921 ISL_CHANNEL_SELECT_BLUE << 19 |
922 ISL_CHANNEL_SELECT_ALPHA << 16;
923 } else if (GEN_GEN == 7) {
924 /* On IVB, the dword containing the clear values also contains
925 * other fields that must be zero or can be zero.
926 */
927 sdi.ImmediateData = 0;
928 }
929 }
930 }
931 }
932
933 /* Copy the fast-clear value dword(s) between a surface state object and an
934 * image's fast clear state buffer.
935 */
936 static void
937 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
938 struct anv_state surface_state,
939 const struct anv_image *image,
940 VkImageAspectFlagBits aspect,
941 bool copy_from_surface_state)
942 {
943 assert(cmd_buffer && image);
944 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
945
946 struct anv_address ss_clear_addr = {
947 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
948 .offset = surface_state.offset +
949 cmd_buffer->device->isl_dev.ss.clear_value_offset,
950 };
951 const struct anv_address entry_addr =
952 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
953 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
954
955 #if GEN_GEN == 7
956 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
957 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
958 * in-flight when they are issued even if the memory touched is not
959 * currently active for rendering. The weird bit is that it is not the
960 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
961 * rendering hangs such that the next stalling command after the
962 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
963 *
964 * It is unclear exactly why this hang occurs. Both MI commands come with
965 * warnings about the 3D pipeline but that doesn't seem to fully explain
966 * it. My (Jason's) best theory is that it has something to do with the
967 * fact that we're using a GPU state register as our temporary and that
968 * something with reading/writing it is causing problems.
969 *
970 * In order to work around this issue, we emit a PIPE_CONTROL with the
971 * command streamer stall bit set.
972 */
973 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
974 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
975 #endif
976
977 struct gen_mi_builder b;
978 gen_mi_builder_init(&b, &cmd_buffer->batch);
979
980 if (copy_from_surface_state) {
981 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
982 } else {
983 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
984
985 /* Updating a surface state object may require that the state cache be
986 * invalidated. From the SKL PRM, Shared Functions -> State -> State
987 * Caching:
988 *
989 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
990 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
991 * modified [...], the L1 state cache must be invalidated to ensure
992 * the new surface or sampler state is fetched from system memory.
993 *
994 * In testing, SKL doesn't actually seem to need this, but HSW does.
995 */
996 cmd_buffer->state.pending_pipe_bits |=
997 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
998 }
999 }
1000
1001 #define READ_ONCE(x) (*(volatile __typeof__(x) *)&(x))
1002
1003 #if GEN_GEN == 12
1004 static void
1005 anv_image_init_aux_tt(struct anv_cmd_buffer *cmd_buffer,
1006 const struct anv_image *image,
1007 VkImageAspectFlagBits aspect,
1008 uint32_t base_level, uint32_t level_count,
1009 uint32_t base_layer, uint32_t layer_count)
1010 {
1011 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1012
1013 uint64_t base_address =
1014 anv_address_physical(image->planes[plane].address);
1015
1016 const struct isl_surf *isl_surf = &image->planes[plane].surface.isl;
1017 uint64_t format_bits = gen_aux_map_format_bits_for_isl_surf(isl_surf);
1018
1019 /* We're about to live-update the AUX-TT. We really don't want anyone else
1020 * trying to read it while we're doing this. We could probably get away
1021 * with not having this stall in some cases if we were really careful but
1022 * it's better to play it safe. Full stall the GPU.
1023 */
1024 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
1025 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1026
1027 struct gen_mi_builder b;
1028 gen_mi_builder_init(&b, &cmd_buffer->batch);
1029
1030 for (uint32_t a = 0; a < layer_count; a++) {
1031 const uint32_t layer = base_layer + a;
1032
1033 uint64_t start_offset_B = UINT64_MAX, end_offset_B = 0;
1034 for (uint32_t l = 0; l < level_count; l++) {
1035 const uint32_t level = base_level + l;
1036
1037 uint32_t logical_array_layer, logical_z_offset_px;
1038 if (image->type == VK_IMAGE_TYPE_3D) {
1039 logical_array_layer = 0;
1040
1041 /* If the given miplevel does not have this layer, then any higher
1042 * miplevels won't either because miplevels only get smaller the
1043 * higher the LOD.
1044 */
1045 assert(layer < image->extent.depth);
1046 if (layer >= anv_minify(image->extent.depth, level))
1047 break;
1048 logical_z_offset_px = layer;
1049 } else {
1050 assert(layer < image->array_size);
1051 logical_array_layer = layer;
1052 logical_z_offset_px = 0;
1053 }
1054
1055 uint32_t slice_start_offset_B, slice_end_offset_B;
1056 isl_surf_get_image_range_B_tile(isl_surf, level,
1057 logical_array_layer,
1058 logical_z_offset_px,
1059 &slice_start_offset_B,
1060 &slice_end_offset_B);
1061
1062 start_offset_B = MIN2(start_offset_B, slice_start_offset_B);
1063 end_offset_B = MAX2(end_offset_B, slice_end_offset_B);
1064 }
1065
1066 /* Aux operates 64K at a time */
1067 start_offset_B = align_down_u64(start_offset_B, 64 * 1024);
1068 end_offset_B = align_u64(end_offset_B, 64 * 1024);
1069
1070 for (uint64_t offset = start_offset_B;
1071 offset < end_offset_B; offset += 64 * 1024) {
1072 uint64_t address = base_address + offset;
1073
1074 uint64_t aux_entry_addr64, *aux_entry_map;
1075 aux_entry_map = gen_aux_map_get_entry(cmd_buffer->device->aux_map_ctx,
1076 address, &aux_entry_addr64);
1077
1078 assert(cmd_buffer->device->physical->use_softpin);
1079 struct anv_address aux_entry_address = {
1080 .bo = NULL,
1081 .offset = aux_entry_addr64,
1082 };
1083
1084 const uint64_t old_aux_entry = READ_ONCE(*aux_entry_map);
1085 uint64_t new_aux_entry =
1086 (old_aux_entry & GEN_AUX_MAP_ADDRESS_MASK) | format_bits;
1087
1088 if (isl_aux_usage_has_ccs(image->planes[plane].aux_usage))
1089 new_aux_entry |= GEN_AUX_MAP_ENTRY_VALID_BIT;
1090
1091 gen_mi_store(&b, gen_mi_mem64(aux_entry_address),
1092 gen_mi_imm(new_aux_entry));
1093 }
1094 }
1095
1096 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1097 }
1098 #endif /* GEN_GEN == 12 */
1099
1100 /**
1101 * @brief Transitions a color buffer from one layout to another.
1102 *
1103 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
1104 * more information.
1105 *
1106 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
1107 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
1108 * this represents the maximum layers to transition at each
1109 * specified miplevel.
1110 */
1111 static void
1112 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
1113 const struct anv_image *image,
1114 VkImageAspectFlagBits aspect,
1115 const uint32_t base_level, uint32_t level_count,
1116 uint32_t base_layer, uint32_t layer_count,
1117 VkImageLayout initial_layout,
1118 VkImageLayout final_layout)
1119 {
1120 struct anv_device *device = cmd_buffer->device;
1121 const struct gen_device_info *devinfo = &device->info;
1122 /* Validate the inputs. */
1123 assert(cmd_buffer);
1124 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
1125 /* These values aren't supported for simplicity's sake. */
1126 assert(level_count != VK_REMAINING_MIP_LEVELS &&
1127 layer_count != VK_REMAINING_ARRAY_LAYERS);
1128 /* Ensure the subresource range is valid. */
1129 UNUSED uint64_t last_level_num = base_level + level_count;
1130 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
1131 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
1132 assert((uint64_t)base_layer + layer_count <= image_layers);
1133 assert(last_level_num <= image->levels);
1134 /* The spec disallows these final layouts. */
1135 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
1136 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
1137
1138 /* No work is necessary if the layout stays the same or if this subresource
1139 * range lacks auxiliary data.
1140 */
1141 if (initial_layout == final_layout)
1142 return;
1143
1144 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
1145
1146 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
1147 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
1148 /* This surface is a linear compressed image with a tiled shadow surface
1149 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
1150 * we need to ensure the shadow copy is up-to-date.
1151 */
1152 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1153 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
1154 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
1155 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
1156 assert(plane == 0);
1157 anv_image_copy_to_shadow(cmd_buffer, image,
1158 VK_IMAGE_ASPECT_COLOR_BIT,
1159 base_level, level_count,
1160 base_layer, layer_count);
1161 }
1162
1163 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
1164 return;
1165
1166 assert(image->planes[plane].surface.isl.tiling != ISL_TILING_LINEAR);
1167
1168 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1169 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1170 #if GEN_GEN == 12
1171 if (device->physical->has_implicit_ccs && devinfo->has_aux_map) {
1172 anv_image_init_aux_tt(cmd_buffer, image, aspect,
1173 base_level, level_count,
1174 base_layer, layer_count);
1175 }
1176 #else
1177 assert(!(device->physical->has_implicit_ccs && devinfo->has_aux_map));
1178 #endif
1179
1180 /* A subresource in the undefined layout may have been aliased and
1181 * populated with any arrangement of bits. Therefore, we must initialize
1182 * the related aux buffer and clear buffer entry with desirable values.
1183 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1184 * images with VK_IMAGE_TILING_OPTIMAL.
1185 *
1186 * Initialize the relevant clear buffer entries.
1187 */
1188 if (base_level == 0 && base_layer == 0)
1189 init_fast_clear_color(cmd_buffer, image, aspect);
1190
1191 /* Initialize the aux buffers to enable correct rendering. In order to
1192 * ensure that things such as storage images work correctly, aux buffers
1193 * need to be initialized to valid data.
1194 *
1195 * Having an aux buffer with invalid data is a problem for two reasons:
1196 *
1197 * 1) Having an invalid value in the buffer can confuse the hardware.
1198 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1199 * invalid and leads to the hardware doing strange things. It
1200 * doesn't hang as far as we can tell but rendering corruption can
1201 * occur.
1202 *
1203 * 2) If this transition is into the GENERAL layout and we then use the
1204 * image as a storage image, then we must have the aux buffer in the
1205 * pass-through state so that, if we then go to texture from the
1206 * image, we get the results of our storage image writes and not the
1207 * fast clear color or other random data.
1208 *
1209 * For CCS both of the problems above are real demonstrable issues. In
1210 * that case, the only thing we can do is to perform an ambiguate to
1211 * transition the aux surface into the pass-through state.
1212 *
1213 * For MCS, (2) is never an issue because we don't support multisampled
1214 * storage images. In theory, issue (1) is a problem with MCS but we've
1215 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1216 * theory, be interpreted as something but we don't know that all bit
1217 * patterns are actually valid. For 2x and 8x, you could easily end up
1218 * with the MCS referring to an invalid plane because not all bits of
1219 * the MCS value are actually used. Even though we've never seen issues
1220 * in the wild, it's best to play it safe and initialize the MCS. We
1221 * can use a fast-clear for MCS because we only ever touch from render
1222 * and texture (no image load store).
1223 */
1224 if (image->samples == 1) {
1225 for (uint32_t l = 0; l < level_count; l++) {
1226 const uint32_t level = base_level + l;
1227
1228 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1229 if (base_layer >= aux_layers)
1230 break; /* We will only get fewer layers as level increases */
1231 uint32_t level_layer_count =
1232 MIN2(layer_count, aux_layers - base_layer);
1233
1234 anv_image_ccs_op(cmd_buffer, image,
1235 image->planes[plane].surface.isl.format,
1236 aspect, level, base_layer, level_layer_count,
1237 ISL_AUX_OP_AMBIGUATE, NULL, false);
1238
1239 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1240 set_image_compressed_bit(cmd_buffer, image, aspect,
1241 level, base_layer, level_layer_count,
1242 false);
1243 }
1244 }
1245 } else {
1246 if (image->samples == 4 || image->samples == 16) {
1247 anv_perf_warn(cmd_buffer->device, image,
1248 "Doing a potentially unnecessary fast-clear to "
1249 "define an MCS buffer.");
1250 }
1251
1252 assert(base_level == 0 && level_count == 1);
1253 anv_image_mcs_op(cmd_buffer, image,
1254 image->planes[plane].surface.isl.format,
1255 aspect, base_layer, layer_count,
1256 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1257 }
1258 return;
1259 }
1260
1261 const enum isl_aux_usage initial_aux_usage =
1262 anv_layout_to_aux_usage(devinfo, image, aspect, 0, initial_layout);
1263 const enum isl_aux_usage final_aux_usage =
1264 anv_layout_to_aux_usage(devinfo, image, aspect, 0, final_layout);
1265
1266 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1267 * We can handle transitions between CCS_D/E to and from NONE. What we
1268 * don't yet handle is switching between CCS_E and CCS_D within a given
1269 * image. Doing so in a performant way requires more detailed aux state
1270 * tracking such as what is done in i965. For now, just assume that we
1271 * only have one type of compression.
1272 */
1273 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1274 final_aux_usage == ISL_AUX_USAGE_NONE ||
1275 initial_aux_usage == final_aux_usage);
1276
1277 /* If initial aux usage is NONE, there is nothing to resolve */
1278 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1279 return;
1280
1281 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1282
1283 /* If the initial layout supports more fast clear than the final layout
1284 * then we need at least a partial resolve.
1285 */
1286 const enum anv_fast_clear_type initial_fast_clear =
1287 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1288 const enum anv_fast_clear_type final_fast_clear =
1289 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1290 if (final_fast_clear < initial_fast_clear)
1291 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1292
1293 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1294 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1295 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1296
1297 if (resolve_op == ISL_AUX_OP_NONE)
1298 return;
1299
1300 /* Perform a resolve to synchronize data between the main and aux buffer.
1301 * Before we begin, we must satisfy the cache flushing requirement specified
1302 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1303 *
1304 * Any transition from any value in {Clear, Render, Resolve} to a
1305 * different value in {Clear, Render, Resolve} requires end of pipe
1306 * synchronization.
1307 *
1308 * We perform a flush of the write cache before and after the clear and
1309 * resolve operations to meet this requirement.
1310 *
1311 * Unlike other drawing, fast clear operations are not properly
1312 * synchronized. The first PIPE_CONTROL here likely ensures that the
1313 * contents of the previous render or clear hit the render target before we
1314 * resolve and the second likely ensures that the resolve is complete before
1315 * we do any more rendering or clearing.
1316 */
1317 cmd_buffer->state.pending_pipe_bits |=
1318 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1319
1320 for (uint32_t l = 0; l < level_count; l++) {
1321 uint32_t level = base_level + l;
1322
1323 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1324 if (base_layer >= aux_layers)
1325 break; /* We will only get fewer layers as level increases */
1326 uint32_t level_layer_count =
1327 MIN2(layer_count, aux_layers - base_layer);
1328
1329 for (uint32_t a = 0; a < level_layer_count; a++) {
1330 uint32_t array_layer = base_layer + a;
1331 if (image->samples == 1) {
1332 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1333 image->planes[plane].surface.isl.format,
1334 aspect, level, array_layer, resolve_op,
1335 final_fast_clear);
1336 } else {
1337 /* We only support fast-clear on the first layer so partial
1338 * resolves should not be used on other layers as they will use
1339 * the clear color stored in memory that is only valid for layer0.
1340 */
1341 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1342 array_layer != 0)
1343 continue;
1344
1345 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1346 image->planes[plane].surface.isl.format,
1347 aspect, array_layer, resolve_op,
1348 final_fast_clear);
1349 }
1350 }
1351 }
1352
1353 cmd_buffer->state.pending_pipe_bits |=
1354 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1355 }
1356
1357 /**
1358 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1359 */
1360 static VkResult
1361 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1362 struct anv_render_pass *pass,
1363 const VkRenderPassBeginInfo *begin)
1364 {
1365 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1366 struct anv_cmd_state *state = &cmd_buffer->state;
1367 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1368
1369 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1370
1371 if (pass->attachment_count > 0) {
1372 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1373 pass->attachment_count *
1374 sizeof(state->attachments[0]),
1375 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1376 if (state->attachments == NULL) {
1377 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1378 return anv_batch_set_error(&cmd_buffer->batch,
1379 VK_ERROR_OUT_OF_HOST_MEMORY);
1380 }
1381 } else {
1382 state->attachments = NULL;
1383 }
1384
1385 /* Reserve one for the NULL state. */
1386 unsigned num_states = 1;
1387 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1388 if (vk_format_is_color(pass->attachments[i].format))
1389 num_states++;
1390
1391 if (need_input_attachment_state(&pass->attachments[i]))
1392 num_states++;
1393 }
1394
1395 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1396 state->render_pass_states =
1397 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1398 num_states * ss_stride, isl_dev->ss.align);
1399
1400 struct anv_state next_state = state->render_pass_states;
1401 next_state.alloc_size = isl_dev->ss.size;
1402
1403 state->null_surface_state = next_state;
1404 next_state.offset += ss_stride;
1405 next_state.map += ss_stride;
1406
1407 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1408 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1409
1410 if (begin && !begin_attachment)
1411 assert(pass->attachment_count == framebuffer->attachment_count);
1412
1413 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1414 if (vk_format_is_color(pass->attachments[i].format)) {
1415 state->attachments[i].color.state = next_state;
1416 next_state.offset += ss_stride;
1417 next_state.map += ss_stride;
1418 }
1419
1420 if (need_input_attachment_state(&pass->attachments[i])) {
1421 state->attachments[i].input.state = next_state;
1422 next_state.offset += ss_stride;
1423 next_state.map += ss_stride;
1424 }
1425
1426 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1427 assert(begin_attachment->attachmentCount == pass->attachment_count);
1428 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1429 cmd_buffer->state.attachments[i].image_view = iview;
1430 } else if (framebuffer && i < framebuffer->attachment_count) {
1431 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1432 }
1433 }
1434 assert(next_state.offset == state->render_pass_states.offset +
1435 state->render_pass_states.alloc_size);
1436
1437 if (begin) {
1438 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1439 isl_extent3d(framebuffer->width,
1440 framebuffer->height,
1441 framebuffer->layers));
1442
1443 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1444 struct anv_render_pass_attachment *att = &pass->attachments[i];
1445 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1446 VkImageAspectFlags clear_aspects = 0;
1447 VkImageAspectFlags load_aspects = 0;
1448
1449 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1450 /* color attachment */
1451 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1452 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1453 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1454 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1455 }
1456 } else {
1457 /* depthstencil attachment */
1458 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1459 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1460 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1461 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1462 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1463 }
1464 }
1465 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1466 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1467 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1468 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1469 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1470 }
1471 }
1472 }
1473
1474 state->attachments[i].current_layout = att->initial_layout;
1475 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1476 state->attachments[i].pending_clear_aspects = clear_aspects;
1477 state->attachments[i].pending_load_aspects = load_aspects;
1478 if (clear_aspects)
1479 state->attachments[i].clear_value = begin->pClearValues[i];
1480
1481 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1482 anv_assert(iview->vk_format == att->format);
1483
1484 const uint32_t num_layers = iview->planes[0].isl.array_len;
1485 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1486
1487 union isl_color_value clear_color = { .u32 = { 0, } };
1488 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1489 anv_assert(iview->n_planes == 1);
1490 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1491 color_attachment_compute_aux_usage(cmd_buffer->device,
1492 state, i, begin->renderArea,
1493 &clear_color);
1494
1495 anv_image_fill_surface_state(cmd_buffer->device,
1496 iview->image,
1497 VK_IMAGE_ASPECT_COLOR_BIT,
1498 &iview->planes[0].isl,
1499 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1500 state->attachments[i].aux_usage,
1501 &clear_color,
1502 0,
1503 &state->attachments[i].color,
1504 NULL);
1505
1506 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1507 } else {
1508 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1509 state, i,
1510 begin->renderArea);
1511 }
1512
1513 if (need_input_attachment_state(&pass->attachments[i])) {
1514 anv_image_fill_surface_state(cmd_buffer->device,
1515 iview->image,
1516 VK_IMAGE_ASPECT_COLOR_BIT,
1517 &iview->planes[0].isl,
1518 ISL_SURF_USAGE_TEXTURE_BIT,
1519 state->attachments[i].input_aux_usage,
1520 &clear_color,
1521 0,
1522 &state->attachments[i].input,
1523 NULL);
1524
1525 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1526 }
1527 }
1528 }
1529
1530 return VK_SUCCESS;
1531 }
1532
1533 VkResult
1534 genX(BeginCommandBuffer)(
1535 VkCommandBuffer commandBuffer,
1536 const VkCommandBufferBeginInfo* pBeginInfo)
1537 {
1538 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1539
1540 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1541 * command buffer's state. Otherwise, we must *reset* its state. In both
1542 * cases we reset it.
1543 *
1544 * From the Vulkan 1.0 spec:
1545 *
1546 * If a command buffer is in the executable state and the command buffer
1547 * was allocated from a command pool with the
1548 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1549 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1550 * as if vkResetCommandBuffer had been called with
1551 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1552 * the command buffer in the recording state.
1553 */
1554 anv_cmd_buffer_reset(cmd_buffer);
1555
1556 cmd_buffer->usage_flags = pBeginInfo->flags;
1557
1558 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1559 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1560
1561 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1562
1563 /* We sometimes store vertex data in the dynamic state buffer for blorp
1564 * operations and our dynamic state stream may re-use data from previous
1565 * command buffers. In order to prevent stale cache data, we flush the VF
1566 * cache. We could do this on every blorp call but that's not really
1567 * needed as all of the data will get written by the CPU prior to the GPU
1568 * executing anything. The chances are fairly high that they will use
1569 * blorp at least once per primary command buffer so it shouldn't be
1570 * wasted.
1571 *
1572 * There is also a workaround on gen8 which requires us to invalidate the
1573 * VF cache occasionally. It's easier if we can assume we start with a
1574 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1575 */
1576 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1577
1578 /* Re-emit the aux table register in every command buffer. This way we're
1579 * ensured that we have the table even if this command buffer doesn't
1580 * initialize any images.
1581 */
1582 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_AUX_TABLE_INVALIDATE_BIT;
1583
1584 /* We send an "Indirect State Pointers Disable" packet at
1585 * EndCommandBuffer, so all push contant packets are ignored during a
1586 * context restore. Documentation says after that command, we need to
1587 * emit push constants again before any rendering operation. So we
1588 * flag them dirty here to make sure they get emitted.
1589 */
1590 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1591
1592 VkResult result = VK_SUCCESS;
1593 if (cmd_buffer->usage_flags &
1594 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1595 assert(pBeginInfo->pInheritanceInfo);
1596 cmd_buffer->state.pass =
1597 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1598 cmd_buffer->state.subpass =
1599 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1600
1601 /* This is optional in the inheritance info. */
1602 cmd_buffer->state.framebuffer =
1603 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1604
1605 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1606 cmd_buffer->state.pass, NULL);
1607
1608 /* Record that HiZ is enabled if we can. */
1609 if (cmd_buffer->state.framebuffer) {
1610 const struct anv_image_view * const iview =
1611 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1612
1613 if (iview) {
1614 VkImageLayout layout =
1615 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1616
1617 enum isl_aux_usage aux_usage =
1618 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1619 VK_IMAGE_ASPECT_DEPTH_BIT,
1620 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
1621 layout);
1622
1623 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1624 }
1625 }
1626
1627 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1628 }
1629
1630 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1631 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1632 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1633 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1634
1635 /* If secondary buffer supports conditional rendering
1636 * we should emit commands as if conditional rendering is enabled.
1637 */
1638 cmd_buffer->state.conditional_render_enabled =
1639 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1640 }
1641 #endif
1642
1643 return result;
1644 }
1645
1646 /* From the PRM, Volume 2a:
1647 *
1648 * "Indirect State Pointers Disable
1649 *
1650 * At the completion of the post-sync operation associated with this pipe
1651 * control packet, the indirect state pointers in the hardware are
1652 * considered invalid; the indirect pointers are not saved in the context.
1653 * If any new indirect state commands are executed in the command stream
1654 * while the pipe control is pending, the new indirect state commands are
1655 * preserved.
1656 *
1657 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1658 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1659 * commands are only considered as Indirect State Pointers. Once ISP is
1660 * issued in a context, SW must initialize by programming push constant
1661 * commands for all the shaders (at least to zero length) before attempting
1662 * any rendering operation for the same context."
1663 *
1664 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1665 * even though they point to a BO that has been already unreferenced at
1666 * the end of the previous batch buffer. This has been fine so far since
1667 * we are protected by these scratch page (every address not covered by
1668 * a BO should be pointing to the scratch page). But on CNL, it is
1669 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1670 * instruction.
1671 *
1672 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1673 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1674 * context restore, so the mentioned hang doesn't happen. However,
1675 * software must program push constant commands for all stages prior to
1676 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1677 *
1678 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1679 * constants have been loaded into the EUs prior to disable the push constants
1680 * so that it doesn't hang a previous 3DPRIMITIVE.
1681 */
1682 static void
1683 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1684 {
1685 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1686 pc.StallAtPixelScoreboard = true;
1687 pc.CommandStreamerStallEnable = true;
1688 }
1689 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1690 pc.IndirectStatePointersDisable = true;
1691 pc.CommandStreamerStallEnable = true;
1692 }
1693 }
1694
1695 VkResult
1696 genX(EndCommandBuffer)(
1697 VkCommandBuffer commandBuffer)
1698 {
1699 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1700
1701 if (anv_batch_has_error(&cmd_buffer->batch))
1702 return cmd_buffer->batch.status;
1703
1704 /* We want every command buffer to start with the PMA fix in a known state,
1705 * so we disable it at the end of the command buffer.
1706 */
1707 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1708
1709 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1710
1711 emit_isp_disable(cmd_buffer);
1712
1713 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1714
1715 return VK_SUCCESS;
1716 }
1717
1718 void
1719 genX(CmdExecuteCommands)(
1720 VkCommandBuffer commandBuffer,
1721 uint32_t commandBufferCount,
1722 const VkCommandBuffer* pCmdBuffers)
1723 {
1724 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1725
1726 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1727
1728 if (anv_batch_has_error(&primary->batch))
1729 return;
1730
1731 /* The secondary command buffers will assume that the PMA fix is disabled
1732 * when they begin executing. Make sure this is true.
1733 */
1734 genX(cmd_buffer_enable_pma_fix)(primary, false);
1735
1736 /* The secondary command buffer doesn't know which textures etc. have been
1737 * flushed prior to their execution. Apply those flushes now.
1738 */
1739 genX(cmd_buffer_apply_pipe_flushes)(primary);
1740
1741 for (uint32_t i = 0; i < commandBufferCount; i++) {
1742 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1743
1744 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1745 assert(!anv_batch_has_error(&secondary->batch));
1746
1747 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1748 if (secondary->state.conditional_render_enabled) {
1749 if (!primary->state.conditional_render_enabled) {
1750 /* Secondary buffer is constructed as if it will be executed
1751 * with conditional rendering, we should satisfy this dependency
1752 * regardless of conditional rendering being enabled in primary.
1753 */
1754 struct gen_mi_builder b;
1755 gen_mi_builder_init(&b, &primary->batch);
1756 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1757 gen_mi_imm(UINT64_MAX));
1758 }
1759 }
1760 #endif
1761
1762 if (secondary->usage_flags &
1763 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1764 /* If we're continuing a render pass from the primary, we need to
1765 * copy the surface states for the current subpass into the storage
1766 * we allocated for them in BeginCommandBuffer.
1767 */
1768 struct anv_bo *ss_bo =
1769 primary->device->surface_state_pool.block_pool.bo;
1770 struct anv_state src_state = primary->state.render_pass_states;
1771 struct anv_state dst_state = secondary->state.render_pass_states;
1772 assert(src_state.alloc_size == dst_state.alloc_size);
1773
1774 genX(cmd_buffer_so_memcpy)(primary,
1775 (struct anv_address) {
1776 .bo = ss_bo,
1777 .offset = dst_state.offset,
1778 },
1779 (struct anv_address) {
1780 .bo = ss_bo,
1781 .offset = src_state.offset,
1782 },
1783 src_state.alloc_size);
1784 }
1785
1786 anv_cmd_buffer_add_secondary(primary, secondary);
1787 }
1788
1789 /* The secondary isn't counted in our VF cache tracking so we need to
1790 * invalidate the whole thing.
1791 */
1792 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1793 primary->state.pending_pipe_bits |=
1794 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1795 }
1796
1797 /* The secondary may have selected a different pipeline (3D or compute) and
1798 * may have changed the current L3$ configuration. Reset our tracking
1799 * variables to invalid values to ensure that we re-emit these in the case
1800 * where we do any draws or compute dispatches from the primary after the
1801 * secondary has returned.
1802 */
1803 primary->state.current_pipeline = UINT32_MAX;
1804 primary->state.current_l3_config = NULL;
1805 primary->state.current_hash_scale = 0;
1806
1807 /* Each of the secondary command buffers will use its own state base
1808 * address. We need to re-emit state base address for the primary after
1809 * all of the secondaries are done.
1810 *
1811 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1812 * address calls?
1813 */
1814 genX(cmd_buffer_emit_state_base_address)(primary);
1815 }
1816
1817 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1818 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1819 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1820
1821 /**
1822 * Program the hardware to use the specified L3 configuration.
1823 */
1824 void
1825 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1826 const struct gen_l3_config *cfg)
1827 {
1828 assert(cfg);
1829 if (cfg == cmd_buffer->state.current_l3_config)
1830 return;
1831
1832 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1833 intel_logd("L3 config transition: ");
1834 gen_dump_l3_config(cfg, stderr);
1835 }
1836
1837 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1838
1839 /* According to the hardware docs, the L3 partitioning can only be changed
1840 * while the pipeline is completely drained and the caches are flushed,
1841 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1842 */
1843 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1844 pc.DCFlushEnable = true;
1845 pc.PostSyncOperation = NoWrite;
1846 pc.CommandStreamerStallEnable = true;
1847 }
1848
1849 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1850 * invalidation of the relevant caches. Note that because RO invalidation
1851 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1852 * command is processed by the CS) we cannot combine it with the previous
1853 * stalling flush as the hardware documentation suggests, because that
1854 * would cause the CS to stall on previous rendering *after* RO
1855 * invalidation and wouldn't prevent the RO caches from being polluted by
1856 * concurrent rendering before the stall completes. This intentionally
1857 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1858 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1859 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1860 * already guarantee that there is no concurrent GPGPU kernel execution
1861 * (see SKL HSD 2132585).
1862 */
1863 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1864 pc.TextureCacheInvalidationEnable = true;
1865 pc.ConstantCacheInvalidationEnable = true;
1866 pc.InstructionCacheInvalidateEnable = true;
1867 pc.StateCacheInvalidationEnable = true;
1868 pc.PostSyncOperation = NoWrite;
1869 }
1870
1871 /* Now send a third stalling flush to make sure that invalidation is
1872 * complete when the L3 configuration registers are modified.
1873 */
1874 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1875 pc.DCFlushEnable = true;
1876 pc.PostSyncOperation = NoWrite;
1877 pc.CommandStreamerStallEnable = true;
1878 }
1879
1880 #if GEN_GEN >= 8
1881
1882 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1883
1884 #if GEN_GEN >= 12
1885 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1886 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1887 #else
1888 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1889 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1890 #endif
1891
1892 uint32_t l3cr;
1893 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1894 #if GEN_GEN < 11
1895 .SLMEnable = has_slm,
1896 #endif
1897 #if GEN_GEN == 11
1898 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1899 * in L3CNTLREG register. The default setting of the bit is not the
1900 * desirable behavior.
1901 */
1902 .ErrorDetectionBehaviorControl = true,
1903 .UseFullWays = true,
1904 #endif
1905 .URBAllocation = cfg->n[GEN_L3P_URB],
1906 .ROAllocation = cfg->n[GEN_L3P_RO],
1907 .DCAllocation = cfg->n[GEN_L3P_DC],
1908 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1909
1910 /* Set up the L3 partitioning. */
1911 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1912
1913 #else
1914
1915 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1916 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1917 cfg->n[GEN_L3P_ALL];
1918 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1919 cfg->n[GEN_L3P_ALL];
1920 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1921 cfg->n[GEN_L3P_ALL];
1922
1923 assert(!cfg->n[GEN_L3P_ALL]);
1924
1925 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1926 * the matching space on the remaining banks has to be allocated to a
1927 * client (URB for all validated configurations) set to the
1928 * lower-bandwidth 2-bank address hashing mode.
1929 */
1930 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1931 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1932 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1933
1934 /* Minimum number of ways that can be allocated to the URB. */
1935 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1936 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1937
1938 uint32_t l3sqcr1, l3cr2, l3cr3;
1939 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1940 .ConvertDC_UC = !has_dc,
1941 .ConvertIS_UC = !has_is,
1942 .ConvertC_UC = !has_c,
1943 .ConvertT_UC = !has_t);
1944 l3sqcr1 |=
1945 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1946 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1947 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1948
1949 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1950 .SLMEnable = has_slm,
1951 .URBLowBandwidth = urb_low_bw,
1952 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1953 #if !GEN_IS_HASWELL
1954 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1955 #endif
1956 .ROAllocation = cfg->n[GEN_L3P_RO],
1957 .DCAllocation = cfg->n[GEN_L3P_DC]);
1958
1959 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1960 .ISAllocation = cfg->n[GEN_L3P_IS],
1961 .ISLowBandwidth = 0,
1962 .CAllocation = cfg->n[GEN_L3P_C],
1963 .CLowBandwidth = 0,
1964 .TAllocation = cfg->n[GEN_L3P_T],
1965 .TLowBandwidth = 0);
1966
1967 /* Set up the L3 partitioning. */
1968 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1969 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1970 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1971
1972 #if GEN_IS_HASWELL
1973 if (cmd_buffer->device->physical->cmd_parser_version >= 4) {
1974 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1975 * them disabled to avoid crashing the system hard.
1976 */
1977 uint32_t scratch1, chicken3;
1978 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1979 .L3AtomicDisable = !has_dc);
1980 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1981 .L3AtomicDisableMask = true,
1982 .L3AtomicDisable = !has_dc);
1983 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1984 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1985 }
1986 #endif
1987
1988 #endif
1989
1990 cmd_buffer->state.current_l3_config = cfg;
1991 }
1992
1993 void
1994 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1995 {
1996 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1997
1998 if (cmd_buffer->device->physical->always_flush_cache)
1999 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
2000
2001 /* Flushes are pipelined while invalidations are handled immediately.
2002 * Therefore, if we're flushing anything then we need to schedule a stall
2003 * before any invalidations can happen.
2004 */
2005 if (bits & ANV_PIPE_FLUSH_BITS)
2006 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
2007
2008 /* If we're going to do an invalidate and we have a pending CS stall that
2009 * has yet to be resolved, we do the CS stall now.
2010 */
2011 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
2012 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
2013 bits |= ANV_PIPE_CS_STALL_BIT;
2014 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
2015 }
2016
2017 if (GEN_GEN >= 12 &&
2018 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
2019 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
2020 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
2021 * Enable):
2022 *
2023 * Unified Cache (Tile Cache Disabled):
2024 *
2025 * When the Color and Depth (Z) streams are enabled to be cached in
2026 * the DC space of L2, Software must use "Render Target Cache Flush
2027 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
2028 * Flush" for getting the color and depth (Z) write data to be
2029 * globally observable. In this mode of operation it is not required
2030 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
2031 */
2032 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2033 }
2034
2035 /* GEN:BUG:1409226450, Wait for EU to be idle before pipe control which
2036 * invalidates the instruction cache
2037 */
2038 if (GEN_GEN == 12 && (bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT))
2039 bits |= ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2040
2041 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
2042 (bits & ANV_PIPE_CS_STALL_BIT) &&
2043 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
2044 /* If we are doing a VF cache invalidate AND a CS stall (it must be
2045 * both) then we can reset our vertex cache tracking.
2046 */
2047 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
2048 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
2049 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
2050 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
2051 }
2052
2053 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
2054 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2055 #if GEN_GEN >= 12
2056 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
2057 #endif
2058 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
2059 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
2060 pipe.RenderTargetCacheFlushEnable =
2061 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
2062
2063 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must
2064 * be set with any PIPE_CONTROL with Depth Flush Enable bit set.
2065 */
2066 #if GEN_GEN >= 12
2067 pipe.DepthStallEnable =
2068 pipe.DepthCacheFlushEnable || (bits & ANV_PIPE_DEPTH_STALL_BIT);
2069 #else
2070 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
2071 #endif
2072
2073 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
2074 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
2075
2076 /*
2077 * According to the Broadwell documentation, any PIPE_CONTROL with the
2078 * "Command Streamer Stall" bit set must also have another bit set,
2079 * with five different options:
2080 *
2081 * - Render Target Cache Flush
2082 * - Depth Cache Flush
2083 * - Stall at Pixel Scoreboard
2084 * - Post-Sync Operation
2085 * - Depth Stall
2086 * - DC Flush Enable
2087 *
2088 * I chose "Stall at Pixel Scoreboard" since that's what we use in
2089 * mesa and it seems to work fine. The choice is fairly arbitrary.
2090 */
2091 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
2092 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
2093 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
2094 pipe.StallAtPixelScoreboard = true;
2095 }
2096
2097 /* If a render target flush was emitted, then we can toggle off the bit
2098 * saying that render target writes are ongoing.
2099 */
2100 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
2101 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
2102
2103 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
2104 }
2105
2106 if (bits & ANV_PIPE_INVALIDATE_BITS) {
2107 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2108 *
2109 * "If the VF Cache Invalidation Enable is set to a 1 in a
2110 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
2111 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
2112 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
2113 * a 1."
2114 *
2115 * This appears to hang Broadwell, so we restrict it to just gen9.
2116 */
2117 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
2118 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
2119
2120 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
2121 pipe.StateCacheInvalidationEnable =
2122 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
2123 pipe.ConstantCacheInvalidationEnable =
2124 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
2125 pipe.VFCacheInvalidationEnable =
2126 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
2127 pipe.TextureCacheInvalidationEnable =
2128 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
2129 pipe.InstructionCacheInvalidateEnable =
2130 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
2131
2132 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
2133 *
2134 * "When VF Cache Invalidate is set “Post Sync Operation” must be
2135 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
2136 * “Write Timestamp”.
2137 */
2138 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
2139 pipe.PostSyncOperation = WriteImmediateData;
2140 pipe.Address =
2141 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2142 }
2143 }
2144
2145 #if GEN_GEN == 12
2146 if ((bits & ANV_PIPE_AUX_TABLE_INVALIDATE_BIT) &&
2147 cmd_buffer->device->info.has_aux_map) {
2148 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2149 lri.RegisterOffset = GENX(GFX_CCS_AUX_INV_num);
2150 lri.DataDWord = 1;
2151 }
2152 }
2153 #endif
2154
2155 bits &= ~ANV_PIPE_INVALIDATE_BITS;
2156 }
2157
2158 cmd_buffer->state.pending_pipe_bits = bits;
2159 }
2160
2161 void genX(CmdPipelineBarrier)(
2162 VkCommandBuffer commandBuffer,
2163 VkPipelineStageFlags srcStageMask,
2164 VkPipelineStageFlags destStageMask,
2165 VkBool32 byRegion,
2166 uint32_t memoryBarrierCount,
2167 const VkMemoryBarrier* pMemoryBarriers,
2168 uint32_t bufferMemoryBarrierCount,
2169 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
2170 uint32_t imageMemoryBarrierCount,
2171 const VkImageMemoryBarrier* pImageMemoryBarriers)
2172 {
2173 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2174
2175 /* XXX: Right now, we're really dumb and just flush whatever categories
2176 * the app asks for. One of these days we may make this a bit better
2177 * but right now that's all the hardware allows for in most areas.
2178 */
2179 VkAccessFlags src_flags = 0;
2180 VkAccessFlags dst_flags = 0;
2181
2182 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
2183 src_flags |= pMemoryBarriers[i].srcAccessMask;
2184 dst_flags |= pMemoryBarriers[i].dstAccessMask;
2185 }
2186
2187 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
2188 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
2189 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
2190 }
2191
2192 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
2193 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
2194 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
2195 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
2196 const VkImageSubresourceRange *range =
2197 &pImageMemoryBarriers[i].subresourceRange;
2198
2199 uint32_t base_layer, layer_count;
2200 if (image->type == VK_IMAGE_TYPE_3D) {
2201 base_layer = 0;
2202 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
2203 } else {
2204 base_layer = range->baseArrayLayer;
2205 layer_count = anv_get_layerCount(image, range);
2206 }
2207
2208 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2209 transition_depth_buffer(cmd_buffer, image,
2210 pImageMemoryBarriers[i].oldLayout,
2211 pImageMemoryBarriers[i].newLayout);
2212 }
2213
2214 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2215 transition_stencil_buffer(cmd_buffer, image,
2216 range->baseMipLevel,
2217 anv_get_levelCount(image, range),
2218 base_layer, layer_count,
2219 pImageMemoryBarriers[i].oldLayout,
2220 pImageMemoryBarriers[i].newLayout);
2221 }
2222
2223 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2224 VkImageAspectFlags color_aspects =
2225 anv_image_expand_aspects(image, range->aspectMask);
2226 uint32_t aspect_bit;
2227 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2228 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2229 range->baseMipLevel,
2230 anv_get_levelCount(image, range),
2231 base_layer, layer_count,
2232 pImageMemoryBarriers[i].oldLayout,
2233 pImageMemoryBarriers[i].newLayout);
2234 }
2235 }
2236 }
2237
2238 cmd_buffer->state.pending_pipe_bits |=
2239 anv_pipe_flush_bits_for_access_flags(src_flags) |
2240 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2241 }
2242
2243 static void
2244 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2245 {
2246 VkShaderStageFlags stages =
2247 cmd_buffer->state.gfx.base.pipeline->active_stages;
2248
2249 /* In order to avoid thrash, we assume that vertex and fragment stages
2250 * always exist. In the rare case where one is missing *and* the other
2251 * uses push concstants, this may be suboptimal. However, avoiding stalls
2252 * seems more important.
2253 */
2254 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2255
2256 if (stages == cmd_buffer->state.push_constant_stages)
2257 return;
2258
2259 #if GEN_GEN >= 8
2260 const unsigned push_constant_kb = 32;
2261 #elif GEN_IS_HASWELL
2262 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2263 #else
2264 const unsigned push_constant_kb = 16;
2265 #endif
2266
2267 const unsigned num_stages =
2268 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2269 unsigned size_per_stage = push_constant_kb / num_stages;
2270
2271 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2272 * units of 2KB. Incidentally, these are the same platforms that have
2273 * 32KB worth of push constant space.
2274 */
2275 if (push_constant_kb == 32)
2276 size_per_stage &= ~1u;
2277
2278 uint32_t kb_used = 0;
2279 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2280 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2281 anv_batch_emit(&cmd_buffer->batch,
2282 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2283 alloc._3DCommandSubOpcode = 18 + i;
2284 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2285 alloc.ConstantBufferSize = push_size;
2286 }
2287 kb_used += push_size;
2288 }
2289
2290 anv_batch_emit(&cmd_buffer->batch,
2291 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2292 alloc.ConstantBufferOffset = kb_used;
2293 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2294 }
2295
2296 cmd_buffer->state.push_constant_stages = stages;
2297
2298 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2299 *
2300 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2301 * the next 3DPRIMITIVE command after programming the
2302 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2303 *
2304 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2305 * pipeline setup, we need to dirty push constants.
2306 */
2307 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2308 }
2309
2310 static struct anv_address
2311 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2312 struct anv_descriptor_set *set)
2313 {
2314 if (set->pool) {
2315 /* This is a normal descriptor set */
2316 return (struct anv_address) {
2317 .bo = set->pool->bo,
2318 .offset = set->desc_mem.offset,
2319 };
2320 } else {
2321 /* This is a push descriptor set. We have to flag it as used on the GPU
2322 * so that the next time we push descriptors, we grab a new memory.
2323 */
2324 struct anv_push_descriptor_set *push_set =
2325 (struct anv_push_descriptor_set *)set;
2326 push_set->set_used_on_gpu = true;
2327
2328 return (struct anv_address) {
2329 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2330 .offset = set->desc_mem.offset,
2331 };
2332 }
2333 }
2334
2335 static VkResult
2336 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2337 gl_shader_stage stage,
2338 struct anv_state *bt_state)
2339 {
2340 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2341 struct anv_cmd_pipeline_state *pipe_state;
2342 struct anv_pipeline *pipeline;
2343 uint32_t state_offset;
2344
2345 switch (stage) {
2346 case MESA_SHADER_COMPUTE:
2347 pipe_state = &cmd_buffer->state.compute.base;
2348 break;
2349 default:
2350 pipe_state = &cmd_buffer->state.gfx.base;
2351 break;
2352 }
2353 pipeline = pipe_state->pipeline;
2354
2355 if (!anv_pipeline_has_stage(pipeline, stage)) {
2356 *bt_state = (struct anv_state) { 0, };
2357 return VK_SUCCESS;
2358 }
2359
2360 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2361 if (map->surface_count == 0) {
2362 *bt_state = (struct anv_state) { 0, };
2363 return VK_SUCCESS;
2364 }
2365
2366 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2367 map->surface_count,
2368 &state_offset);
2369 uint32_t *bt_map = bt_state->map;
2370
2371 if (bt_state->map == NULL)
2372 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2373
2374 /* We only need to emit relocs if we're not using softpin. If we are using
2375 * softpin then we always keep all user-allocated memory objects resident.
2376 */
2377 const bool need_client_mem_relocs =
2378 !cmd_buffer->device->physical->use_softpin;
2379
2380 for (uint32_t s = 0; s < map->surface_count; s++) {
2381 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2382
2383 struct anv_state surface_state;
2384
2385 switch (binding->set) {
2386 case ANV_DESCRIPTOR_SET_NULL:
2387 bt_map[s] = 0;
2388 break;
2389
2390 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2391 /* Color attachment binding */
2392 assert(stage == MESA_SHADER_FRAGMENT);
2393 if (binding->index < subpass->color_count) {
2394 const unsigned att =
2395 subpass->color_attachments[binding->index].attachment;
2396
2397 /* From the Vulkan 1.0.46 spec:
2398 *
2399 * "If any color or depth/stencil attachments are
2400 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2401 * attachments."
2402 */
2403 if (att == VK_ATTACHMENT_UNUSED) {
2404 surface_state = cmd_buffer->state.null_surface_state;
2405 } else {
2406 surface_state = cmd_buffer->state.attachments[att].color.state;
2407 }
2408 } else {
2409 surface_state = cmd_buffer->state.null_surface_state;
2410 }
2411
2412 bt_map[s] = surface_state.offset + state_offset;
2413 break;
2414
2415 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2416 struct anv_state surface_state =
2417 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2418
2419 struct anv_address constant_data = {
2420 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2421 .offset = pipeline->shaders[stage]->constant_data.offset,
2422 };
2423 unsigned constant_data_size =
2424 pipeline->shaders[stage]->constant_data_size;
2425
2426 const enum isl_format format =
2427 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2428 anv_fill_buffer_surface_state(cmd_buffer->device,
2429 surface_state, format,
2430 constant_data, constant_data_size, 1);
2431
2432 bt_map[s] = surface_state.offset + state_offset;
2433 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2434 break;
2435 }
2436
2437 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2438 /* This is always the first binding for compute shaders */
2439 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2440
2441 struct anv_state surface_state =
2442 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2443
2444 const enum isl_format format =
2445 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2446 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2447 format,
2448 cmd_buffer->state.compute.num_workgroups,
2449 12, 1);
2450 bt_map[s] = surface_state.offset + state_offset;
2451 if (need_client_mem_relocs) {
2452 add_surface_reloc(cmd_buffer, surface_state,
2453 cmd_buffer->state.compute.num_workgroups);
2454 }
2455 break;
2456 }
2457
2458 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2459 /* This is a descriptor set buffer so the set index is actually
2460 * given by binding->binding. (Yes, that's confusing.)
2461 */
2462 struct anv_descriptor_set *set =
2463 pipe_state->descriptors[binding->index];
2464 assert(set->desc_mem.alloc_size);
2465 assert(set->desc_surface_state.alloc_size);
2466 bt_map[s] = set->desc_surface_state.offset + state_offset;
2467 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2468 anv_descriptor_set_address(cmd_buffer, set));
2469 break;
2470 }
2471
2472 default: {
2473 assert(binding->set < MAX_SETS);
2474 const struct anv_descriptor *desc =
2475 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2476
2477 switch (desc->type) {
2478 case VK_DESCRIPTOR_TYPE_SAMPLER:
2479 /* Nothing for us to do here */
2480 continue;
2481
2482 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2483 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2484 struct anv_surface_state sstate =
2485 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2486 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2487 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2488 surface_state = sstate.state;
2489 assert(surface_state.alloc_size);
2490 if (need_client_mem_relocs)
2491 add_surface_state_relocs(cmd_buffer, sstate);
2492 break;
2493 }
2494 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2495 assert(stage == MESA_SHADER_FRAGMENT);
2496 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2497 /* For depth and stencil input attachments, we treat it like any
2498 * old texture that a user may have bound.
2499 */
2500 assert(desc->image_view->n_planes == 1);
2501 struct anv_surface_state sstate =
2502 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2503 desc->image_view->planes[0].general_sampler_surface_state :
2504 desc->image_view->planes[0].optimal_sampler_surface_state;
2505 surface_state = sstate.state;
2506 assert(surface_state.alloc_size);
2507 if (need_client_mem_relocs)
2508 add_surface_state_relocs(cmd_buffer, sstate);
2509 } else {
2510 /* For color input attachments, we create the surface state at
2511 * vkBeginRenderPass time so that we can include aux and clear
2512 * color information.
2513 */
2514 assert(binding->input_attachment_index < subpass->input_count);
2515 const unsigned subpass_att = binding->input_attachment_index;
2516 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2517 surface_state = cmd_buffer->state.attachments[att].input.state;
2518 }
2519 break;
2520
2521 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2522 struct anv_surface_state sstate = (binding->write_only)
2523 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2524 : desc->image_view->planes[binding->plane].storage_surface_state;
2525 surface_state = sstate.state;
2526 assert(surface_state.alloc_size);
2527 if (need_client_mem_relocs)
2528 add_surface_state_relocs(cmd_buffer, sstate);
2529 break;
2530 }
2531
2532 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2533 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2534 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2535 surface_state = desc->buffer_view->surface_state;
2536 assert(surface_state.alloc_size);
2537 if (need_client_mem_relocs) {
2538 add_surface_reloc(cmd_buffer, surface_state,
2539 desc->buffer_view->address);
2540 }
2541 break;
2542
2543 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2544 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2545 /* Compute the offset within the buffer */
2546 struct anv_push_constants *push =
2547 &cmd_buffer->state.push_constants[stage];
2548
2549 uint32_t dynamic_offset =
2550 push->dynamic_offsets[binding->dynamic_offset_index];
2551 uint64_t offset = desc->offset + dynamic_offset;
2552 /* Clamp to the buffer size */
2553 offset = MIN2(offset, desc->buffer->size);
2554 /* Clamp the range to the buffer size */
2555 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2556
2557 struct anv_address address =
2558 anv_address_add(desc->buffer->address, offset);
2559
2560 surface_state =
2561 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2562 enum isl_format format =
2563 anv_isl_format_for_descriptor_type(desc->type);
2564
2565 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2566 format, address, range, 1);
2567 if (need_client_mem_relocs)
2568 add_surface_reloc(cmd_buffer, surface_state, address);
2569 break;
2570 }
2571
2572 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2573 surface_state = (binding->write_only)
2574 ? desc->buffer_view->writeonly_storage_surface_state
2575 : desc->buffer_view->storage_surface_state;
2576 assert(surface_state.alloc_size);
2577 if (need_client_mem_relocs) {
2578 add_surface_reloc(cmd_buffer, surface_state,
2579 desc->buffer_view->address);
2580 }
2581 break;
2582
2583 default:
2584 assert(!"Invalid descriptor type");
2585 continue;
2586 }
2587 bt_map[s] = surface_state.offset + state_offset;
2588 break;
2589 }
2590 }
2591 }
2592
2593 return VK_SUCCESS;
2594 }
2595
2596 static VkResult
2597 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2598 gl_shader_stage stage,
2599 struct anv_state *state)
2600 {
2601 struct anv_cmd_pipeline_state *pipe_state =
2602 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2603 &cmd_buffer->state.gfx.base;
2604 struct anv_pipeline *pipeline = pipe_state->pipeline;
2605
2606 if (!anv_pipeline_has_stage(pipeline, stage)) {
2607 *state = (struct anv_state) { 0, };
2608 return VK_SUCCESS;
2609 }
2610
2611 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2612 if (map->sampler_count == 0) {
2613 *state = (struct anv_state) { 0, };
2614 return VK_SUCCESS;
2615 }
2616
2617 uint32_t size = map->sampler_count * 16;
2618 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2619
2620 if (state->map == NULL)
2621 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2622
2623 for (uint32_t s = 0; s < map->sampler_count; s++) {
2624 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2625 const struct anv_descriptor *desc =
2626 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2627
2628 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2629 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2630 continue;
2631
2632 struct anv_sampler *sampler = desc->sampler;
2633
2634 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2635 * happens to be zero.
2636 */
2637 if (sampler == NULL)
2638 continue;
2639
2640 memcpy(state->map + (s * 16),
2641 sampler->state[binding->plane], sizeof(sampler->state[0]));
2642 }
2643
2644 return VK_SUCCESS;
2645 }
2646
2647 static uint32_t
2648 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer,
2649 struct anv_pipeline *pipeline)
2650 {
2651 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2652 pipeline->active_stages;
2653
2654 VkResult result = VK_SUCCESS;
2655 anv_foreach_stage(s, dirty) {
2656 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2657 if (result != VK_SUCCESS)
2658 break;
2659 result = emit_binding_table(cmd_buffer, s,
2660 &cmd_buffer->state.binding_tables[s]);
2661 if (result != VK_SUCCESS)
2662 break;
2663 }
2664
2665 if (result != VK_SUCCESS) {
2666 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2667
2668 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2669 if (result != VK_SUCCESS)
2670 return 0;
2671
2672 /* Re-emit state base addresses so we get the new surface state base
2673 * address before we start emitting binding tables etc.
2674 */
2675 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2676
2677 /* Re-emit all active binding tables */
2678 dirty |= pipeline->active_stages;
2679 anv_foreach_stage(s, dirty) {
2680 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2681 if (result != VK_SUCCESS) {
2682 anv_batch_set_error(&cmd_buffer->batch, result);
2683 return 0;
2684 }
2685 result = emit_binding_table(cmd_buffer, s,
2686 &cmd_buffer->state.binding_tables[s]);
2687 if (result != VK_SUCCESS) {
2688 anv_batch_set_error(&cmd_buffer->batch, result);
2689 return 0;
2690 }
2691 }
2692 }
2693
2694 cmd_buffer->state.descriptors_dirty &= ~dirty;
2695
2696 return dirty;
2697 }
2698
2699 static void
2700 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2701 uint32_t stages)
2702 {
2703 static const uint32_t sampler_state_opcodes[] = {
2704 [MESA_SHADER_VERTEX] = 43,
2705 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2706 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2707 [MESA_SHADER_GEOMETRY] = 46,
2708 [MESA_SHADER_FRAGMENT] = 47,
2709 [MESA_SHADER_COMPUTE] = 0,
2710 };
2711
2712 static const uint32_t binding_table_opcodes[] = {
2713 [MESA_SHADER_VERTEX] = 38,
2714 [MESA_SHADER_TESS_CTRL] = 39,
2715 [MESA_SHADER_TESS_EVAL] = 40,
2716 [MESA_SHADER_GEOMETRY] = 41,
2717 [MESA_SHADER_FRAGMENT] = 42,
2718 [MESA_SHADER_COMPUTE] = 0,
2719 };
2720
2721 anv_foreach_stage(s, stages) {
2722 assert(s < ARRAY_SIZE(binding_table_opcodes));
2723 assert(binding_table_opcodes[s] > 0);
2724
2725 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2726 anv_batch_emit(&cmd_buffer->batch,
2727 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2728 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2729 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2730 }
2731 }
2732
2733 /* Always emit binding table pointers if we're asked to, since on SKL
2734 * this is what flushes push constants. */
2735 anv_batch_emit(&cmd_buffer->batch,
2736 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2737 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2738 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2739 }
2740 }
2741 }
2742
2743 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2744 static struct anv_address
2745 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2746 gl_shader_stage stage,
2747 const struct anv_push_range *range)
2748 {
2749 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2750 switch (range->set) {
2751 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2752 /* This is a descriptor set buffer so the set index is
2753 * actually given by binding->binding. (Yes, that's
2754 * confusing.)
2755 */
2756 struct anv_descriptor_set *set =
2757 gfx_state->base.descriptors[range->index];
2758 return anv_descriptor_set_address(cmd_buffer, set);
2759 break;
2760 }
2761
2762 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2763 struct anv_state state =
2764 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2765 return (struct anv_address) {
2766 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2767 .offset = state.offset,
2768 };
2769 break;
2770 }
2771
2772 default: {
2773 assert(range->set < MAX_SETS);
2774 struct anv_descriptor_set *set =
2775 gfx_state->base.descriptors[range->set];
2776 const struct anv_descriptor *desc =
2777 &set->descriptors[range->index];
2778
2779 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2780 return desc->buffer_view->address;
2781 } else {
2782 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2783 struct anv_push_constants *push =
2784 &cmd_buffer->state.push_constants[stage];
2785 uint32_t dynamic_offset =
2786 push->dynamic_offsets[range->dynamic_offset_index];
2787 return anv_address_add(desc->buffer->address,
2788 desc->offset + dynamic_offset);
2789 }
2790 }
2791 }
2792 }
2793 #endif
2794
2795 static void
2796 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2797 gl_shader_stage stage, unsigned buffer_count)
2798 {
2799 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2800 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2801
2802 static const uint32_t push_constant_opcodes[] = {
2803 [MESA_SHADER_VERTEX] = 21,
2804 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2805 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2806 [MESA_SHADER_GEOMETRY] = 22,
2807 [MESA_SHADER_FRAGMENT] = 23,
2808 [MESA_SHADER_COMPUTE] = 0,
2809 };
2810
2811 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2812 assert(push_constant_opcodes[stage] > 0);
2813
2814 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2815 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2816
2817 if (anv_pipeline_has_stage(pipeline, stage)) {
2818 const struct anv_pipeline_bind_map *bind_map =
2819 &pipeline->shaders[stage]->bind_map;
2820
2821 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2822 /* The Skylake PRM contains the following restriction:
2823 *
2824 * "The driver must ensure The following case does not occur
2825 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2826 * buffer 3 read length equal to zero committed followed by a
2827 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2828 * zero committed."
2829 *
2830 * To avoid this, we program the buffers in the highest slots.
2831 * This way, slot 0 is only used if slot 3 is also used.
2832 */
2833 assert(buffer_count <= 4);
2834 const unsigned shift = 4 - buffer_count;
2835 for (unsigned i = 0; i < buffer_count; i++) {
2836 const struct anv_push_range *range = &bind_map->push_ranges[i];
2837
2838 /* At this point we only have non-empty ranges */
2839 assert(range->length > 0);
2840
2841 /* For Ivy Bridge, make sure we only set the first range (actual
2842 * push constants)
2843 */
2844 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
2845
2846 const struct anv_address addr =
2847 get_push_range_address(cmd_buffer, stage, range);
2848 c.ConstantBody.ReadLength[i + shift] = range->length;
2849 c.ConstantBody.Buffer[i + shift] =
2850 anv_address_add(addr, range->start * 32);
2851 }
2852 #else
2853 /* For Ivy Bridge, push constants are relative to dynamic state
2854 * base address and we only ever push actual push constants.
2855 */
2856 if (bind_map->push_ranges[0].length > 0) {
2857 assert(bind_map->push_ranges[0].set ==
2858 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
2859 struct anv_state state =
2860 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2861 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
2862 c.ConstantBody.Buffer[0].bo = NULL;
2863 c.ConstantBody.Buffer[0].offset = state.offset;
2864 }
2865 assert(bind_map->push_ranges[1].length == 0);
2866 assert(bind_map->push_ranges[2].length == 0);
2867 assert(bind_map->push_ranges[3].length == 0);
2868 #endif
2869 }
2870 }
2871 }
2872
2873 #if GEN_GEN >= 12
2874 static void
2875 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
2876 uint32_t shader_mask, uint32_t count)
2877 {
2878 if (count == 0) {
2879 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
2880 c.ShaderUpdateEnable = shader_mask;
2881 }
2882 return;
2883 }
2884
2885 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2886 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2887
2888 static const uint32_t push_constant_opcodes[] = {
2889 [MESA_SHADER_VERTEX] = 21,
2890 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2891 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2892 [MESA_SHADER_GEOMETRY] = 22,
2893 [MESA_SHADER_FRAGMENT] = 23,
2894 [MESA_SHADER_COMPUTE] = 0,
2895 };
2896
2897 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
2898 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2899 assert(push_constant_opcodes[stage] > 0);
2900
2901 const struct anv_pipeline_bind_map *bind_map =
2902 &pipeline->shaders[stage]->bind_map;
2903
2904 uint32_t *dw;
2905 const uint32_t buffers = (1 << count) - 1;
2906 const uint32_t num_dwords = 2 + 2 * count;
2907
2908 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2909 GENX(3DSTATE_CONSTANT_ALL),
2910 .ShaderUpdateEnable = shader_mask,
2911 .PointerBufferMask = buffers);
2912
2913 for (int i = 0; i < count; i++) {
2914 const struct anv_push_range *range = &bind_map->push_ranges[i];
2915 const struct anv_address addr =
2916 get_push_range_address(cmd_buffer, stage, range);
2917
2918 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
2919 &cmd_buffer->batch, dw + 2 + i * 2,
2920 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
2921 .PointerToConstantBuffer = anv_address_add(addr, range->start * 32),
2922 .ConstantBufferReadLength = range->length,
2923 });
2924 }
2925 }
2926 #endif
2927
2928 static void
2929 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2930 VkShaderStageFlags dirty_stages)
2931 {
2932 VkShaderStageFlags flushed = 0;
2933 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2934 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2935
2936 #if GEN_GEN >= 12
2937 uint32_t nobuffer_stages = 0;
2938 #endif
2939
2940 anv_foreach_stage(stage, dirty_stages) {
2941 unsigned buffer_count = 0;
2942 flushed |= mesa_to_vk_shader_stage(stage);
2943 uint32_t max_push_range = 0;
2944
2945 if (anv_pipeline_has_stage(pipeline, stage)) {
2946 const struct anv_pipeline_bind_map *bind_map =
2947 &pipeline->shaders[stage]->bind_map;
2948
2949 for (unsigned i = 0; i < 4; i++) {
2950 const struct anv_push_range *range = &bind_map->push_ranges[i];
2951 if (range->length > 0) {
2952 buffer_count++;
2953 if (GEN_GEN >= 12 && range->length > max_push_range)
2954 max_push_range = range->length;
2955 }
2956 }
2957 }
2958
2959 #if GEN_GEN >= 12
2960 /* If this stage doesn't have any push constants, emit it later in a
2961 * single CONSTANT_ALL packet.
2962 */
2963 if (buffer_count == 0) {
2964 nobuffer_stages |= 1 << stage;
2965 continue;
2966 }
2967
2968 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
2969 * contains only 5 bits, so we can only use it for buffers smaller than
2970 * 32.
2971 */
2972 if (max_push_range < 32) {
2973 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
2974 buffer_count);
2975 continue;
2976 }
2977 #endif
2978
2979 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffer_count);
2980 }
2981
2982 #if GEN_GEN >= 12
2983 if (nobuffer_stages)
2984 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, 0);
2985 #endif
2986
2987 cmd_buffer->state.push_constants_dirty &= ~flushed;
2988 }
2989
2990 void
2991 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2992 {
2993 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2994 uint32_t *p;
2995
2996 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2997 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2998 vb_emit |= pipeline->vb_used;
2999
3000 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
3001
3002 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3003
3004 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
3005
3006 genX(flush_pipeline_select_3d)(cmd_buffer);
3007
3008 if (vb_emit) {
3009 const uint32_t num_buffers = __builtin_popcount(vb_emit);
3010 const uint32_t num_dwords = 1 + num_buffers * 4;
3011
3012 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
3013 GENX(3DSTATE_VERTEX_BUFFERS));
3014 uint32_t vb, i = 0;
3015 for_each_bit(vb, vb_emit) {
3016 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
3017 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
3018
3019 struct GENX(VERTEX_BUFFER_STATE) state = {
3020 .VertexBufferIndex = vb,
3021
3022 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
3023 #if GEN_GEN <= 7
3024 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
3025 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
3026 #endif
3027
3028 .AddressModifyEnable = true,
3029 .BufferPitch = pipeline->vb[vb].stride,
3030 .BufferStartingAddress = anv_address_add(buffer->address, offset),
3031
3032 #if GEN_GEN >= 8
3033 .BufferSize = buffer->size - offset
3034 #else
3035 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
3036 #endif
3037 };
3038
3039 #if GEN_GEN >= 8 && GEN_GEN <= 9
3040 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
3041 state.BufferStartingAddress,
3042 state.BufferSize);
3043 #endif
3044
3045 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
3046 i++;
3047 }
3048 }
3049
3050 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
3051
3052 #if GEN_GEN >= 8
3053 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
3054 /* We don't need any per-buffer dirty tracking because you're not
3055 * allowed to bind different XFB buffers while XFB is enabled.
3056 */
3057 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3058 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
3059 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
3060 #if GEN_GEN < 12
3061 sob.SOBufferIndex = idx;
3062 #else
3063 sob._3DCommandOpcode = 0;
3064 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
3065 #endif
3066
3067 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
3068 sob.SOBufferEnable = true;
3069 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
3070 sob.StreamOffsetWriteEnable = false;
3071 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
3072 xfb->offset);
3073 /* Size is in DWords - 1 */
3074 sob.SurfaceSize = xfb->size / 4 - 1;
3075 }
3076 }
3077 }
3078
3079 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
3080 if (GEN_GEN >= 10)
3081 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3082 }
3083 #endif
3084
3085 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
3086 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3087
3088 /* If the pipeline changed, we may need to re-allocate push constant
3089 * space in the URB.
3090 */
3091 cmd_buffer_alloc_push_constants(cmd_buffer);
3092 }
3093
3094 #if GEN_GEN <= 7
3095 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
3096 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
3097 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
3098 *
3099 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
3100 * stall needs to be sent just prior to any 3DSTATE_VS,
3101 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
3102 * 3DSTATE_BINDING_TABLE_POINTER_VS,
3103 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
3104 * PIPE_CONTROL needs to be sent before any combination of VS
3105 * associated 3DSTATE."
3106 */
3107 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3108 pc.DepthStallEnable = true;
3109 pc.PostSyncOperation = WriteImmediateData;
3110 pc.Address =
3111 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
3112 }
3113 }
3114 #endif
3115
3116 /* Render targets live in the same binding table as fragment descriptors */
3117 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
3118 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
3119
3120 /* We emit the binding tables and sampler tables first, then emit push
3121 * constants and then finally emit binding table and sampler table
3122 * pointers. It has to happen in this order, since emitting the binding
3123 * tables may change the push constants (in case of storage images). After
3124 * emitting push constants, on SKL+ we have to emit the corresponding
3125 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
3126 */
3127 uint32_t dirty = 0;
3128 if (cmd_buffer->state.descriptors_dirty)
3129 dirty = flush_descriptor_sets(cmd_buffer, pipeline);
3130
3131 if (dirty || cmd_buffer->state.push_constants_dirty) {
3132 /* Because we're pushing UBOs, we have to push whenever either
3133 * descriptors or push constants is dirty.
3134 */
3135 dirty |= cmd_buffer->state.push_constants_dirty;
3136 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
3137 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
3138 }
3139
3140 if (dirty)
3141 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
3142
3143 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
3144 gen8_cmd_buffer_emit_viewport(cmd_buffer);
3145
3146 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
3147 ANV_CMD_DIRTY_PIPELINE)) {
3148 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
3149 pipeline->depth_clamp_enable);
3150 }
3151
3152 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
3153 ANV_CMD_DIRTY_RENDER_TARGETS))
3154 gen7_cmd_buffer_emit_scissor(cmd_buffer);
3155
3156 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
3157 }
3158
3159 static void
3160 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
3161 struct anv_address addr,
3162 uint32_t size, uint32_t index)
3163 {
3164 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
3165 GENX(3DSTATE_VERTEX_BUFFERS));
3166
3167 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
3168 &(struct GENX(VERTEX_BUFFER_STATE)) {
3169 .VertexBufferIndex = index,
3170 .AddressModifyEnable = true,
3171 .BufferPitch = 0,
3172 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
3173 .NullVertexBuffer = size == 0,
3174 #if (GEN_GEN >= 8)
3175 .BufferStartingAddress = addr,
3176 .BufferSize = size
3177 #else
3178 .BufferStartingAddress = addr,
3179 .EndAddress = anv_address_add(addr, size),
3180 #endif
3181 });
3182
3183 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3184 index, addr, size);
3185 }
3186
3187 static void
3188 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3189 struct anv_address addr)
3190 {
3191 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3192 }
3193
3194 static void
3195 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3196 uint32_t base_vertex, uint32_t base_instance)
3197 {
3198 if (base_vertex == 0 && base_instance == 0) {
3199 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3200 } else {
3201 struct anv_state id_state =
3202 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3203
3204 ((uint32_t *)id_state.map)[0] = base_vertex;
3205 ((uint32_t *)id_state.map)[1] = base_instance;
3206
3207 struct anv_address addr = {
3208 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3209 .offset = id_state.offset,
3210 };
3211
3212 emit_base_vertex_instance_bo(cmd_buffer, addr);
3213 }
3214 }
3215
3216 static void
3217 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3218 {
3219 struct anv_state state =
3220 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3221
3222 ((uint32_t *)state.map)[0] = draw_index;
3223
3224 struct anv_address addr = {
3225 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3226 .offset = state.offset,
3227 };
3228
3229 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3230 }
3231
3232 static void
3233 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3234 uint32_t access_type)
3235 {
3236 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3237 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3238
3239 uint64_t vb_used = pipeline->vb_used;
3240 if (vs_prog_data->uses_firstvertex ||
3241 vs_prog_data->uses_baseinstance)
3242 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3243 if (vs_prog_data->uses_drawid)
3244 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3245
3246 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3247 access_type == RANDOM,
3248 vb_used);
3249 }
3250
3251 void genX(CmdDraw)(
3252 VkCommandBuffer commandBuffer,
3253 uint32_t vertexCount,
3254 uint32_t instanceCount,
3255 uint32_t firstVertex,
3256 uint32_t firstInstance)
3257 {
3258 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3259 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3260 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3261
3262 if (anv_batch_has_error(&cmd_buffer->batch))
3263 return;
3264
3265 genX(cmd_buffer_flush_state)(cmd_buffer);
3266
3267 if (cmd_buffer->state.conditional_render_enabled)
3268 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3269
3270 if (vs_prog_data->uses_firstvertex ||
3271 vs_prog_data->uses_baseinstance)
3272 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3273 if (vs_prog_data->uses_drawid)
3274 emit_draw_index(cmd_buffer, 0);
3275
3276 /* Emitting draw index or vertex index BOs may result in needing
3277 * additional VF cache flushes.
3278 */
3279 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3280
3281 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3282 * different views. We need to multiply instanceCount by the view count.
3283 */
3284 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3285
3286 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3287 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3288 prim.VertexAccessType = SEQUENTIAL;
3289 prim.PrimitiveTopologyType = pipeline->topology;
3290 prim.VertexCountPerInstance = vertexCount;
3291 prim.StartVertexLocation = firstVertex;
3292 prim.InstanceCount = instanceCount;
3293 prim.StartInstanceLocation = firstInstance;
3294 prim.BaseVertexLocation = 0;
3295 }
3296
3297 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3298 }
3299
3300 void genX(CmdDrawIndexed)(
3301 VkCommandBuffer commandBuffer,
3302 uint32_t indexCount,
3303 uint32_t instanceCount,
3304 uint32_t firstIndex,
3305 int32_t vertexOffset,
3306 uint32_t firstInstance)
3307 {
3308 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3309 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3310 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3311
3312 if (anv_batch_has_error(&cmd_buffer->batch))
3313 return;
3314
3315 genX(cmd_buffer_flush_state)(cmd_buffer);
3316
3317 if (cmd_buffer->state.conditional_render_enabled)
3318 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3319
3320 if (vs_prog_data->uses_firstvertex ||
3321 vs_prog_data->uses_baseinstance)
3322 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3323 if (vs_prog_data->uses_drawid)
3324 emit_draw_index(cmd_buffer, 0);
3325
3326 /* Emitting draw index or vertex index BOs may result in needing
3327 * additional VF cache flushes.
3328 */
3329 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3330
3331 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3332 * different views. We need to multiply instanceCount by the view count.
3333 */
3334 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3335
3336 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3337 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3338 prim.VertexAccessType = RANDOM;
3339 prim.PrimitiveTopologyType = pipeline->topology;
3340 prim.VertexCountPerInstance = indexCount;
3341 prim.StartVertexLocation = firstIndex;
3342 prim.InstanceCount = instanceCount;
3343 prim.StartInstanceLocation = firstInstance;
3344 prim.BaseVertexLocation = vertexOffset;
3345 }
3346
3347 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3348 }
3349
3350 /* Auto-Draw / Indirect Registers */
3351 #define GEN7_3DPRIM_END_OFFSET 0x2420
3352 #define GEN7_3DPRIM_START_VERTEX 0x2430
3353 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3354 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3355 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3356 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3357
3358 void genX(CmdDrawIndirectByteCountEXT)(
3359 VkCommandBuffer commandBuffer,
3360 uint32_t instanceCount,
3361 uint32_t firstInstance,
3362 VkBuffer counterBuffer,
3363 VkDeviceSize counterBufferOffset,
3364 uint32_t counterOffset,
3365 uint32_t vertexStride)
3366 {
3367 #if GEN_IS_HASWELL || GEN_GEN >= 8
3368 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3369 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3370 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3371 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3372
3373 /* firstVertex is always zero for this draw function */
3374 const uint32_t firstVertex = 0;
3375
3376 if (anv_batch_has_error(&cmd_buffer->batch))
3377 return;
3378
3379 genX(cmd_buffer_flush_state)(cmd_buffer);
3380
3381 if (vs_prog_data->uses_firstvertex ||
3382 vs_prog_data->uses_baseinstance)
3383 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3384 if (vs_prog_data->uses_drawid)
3385 emit_draw_index(cmd_buffer, 0);
3386
3387 /* Emitting draw index or vertex index BOs may result in needing
3388 * additional VF cache flushes.
3389 */
3390 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3391
3392 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3393 * different views. We need to multiply instanceCount by the view count.
3394 */
3395 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3396
3397 struct gen_mi_builder b;
3398 gen_mi_builder_init(&b, &cmd_buffer->batch);
3399 struct gen_mi_value count =
3400 gen_mi_mem32(anv_address_add(counter_buffer->address,
3401 counterBufferOffset));
3402 if (counterOffset)
3403 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3404 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3405 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3406
3407 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3408 gen_mi_imm(firstVertex));
3409 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3410 gen_mi_imm(instanceCount));
3411 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3412 gen_mi_imm(firstInstance));
3413 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3414
3415 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3416 prim.IndirectParameterEnable = true;
3417 prim.VertexAccessType = SEQUENTIAL;
3418 prim.PrimitiveTopologyType = pipeline->topology;
3419 }
3420
3421 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3422 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3423 }
3424
3425 static void
3426 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3427 struct anv_address addr,
3428 bool indexed)
3429 {
3430 struct gen_mi_builder b;
3431 gen_mi_builder_init(&b, &cmd_buffer->batch);
3432
3433 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3434 gen_mi_mem32(anv_address_add(addr, 0)));
3435
3436 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3437 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3438 if (view_count > 1) {
3439 #if GEN_IS_HASWELL || GEN_GEN >= 8
3440 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3441 #else
3442 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3443 "MI_MATH is not supported on Ivy Bridge");
3444 #endif
3445 }
3446 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3447
3448 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3449 gen_mi_mem32(anv_address_add(addr, 8)));
3450
3451 if (indexed) {
3452 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3453 gen_mi_mem32(anv_address_add(addr, 12)));
3454 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3455 gen_mi_mem32(anv_address_add(addr, 16)));
3456 } else {
3457 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3458 gen_mi_mem32(anv_address_add(addr, 12)));
3459 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3460 }
3461 }
3462
3463 void genX(CmdDrawIndirect)(
3464 VkCommandBuffer commandBuffer,
3465 VkBuffer _buffer,
3466 VkDeviceSize offset,
3467 uint32_t drawCount,
3468 uint32_t stride)
3469 {
3470 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3471 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3472 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3473 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3474
3475 if (anv_batch_has_error(&cmd_buffer->batch))
3476 return;
3477
3478 genX(cmd_buffer_flush_state)(cmd_buffer);
3479
3480 if (cmd_buffer->state.conditional_render_enabled)
3481 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3482
3483 for (uint32_t i = 0; i < drawCount; i++) {
3484 struct anv_address draw = anv_address_add(buffer->address, offset);
3485
3486 if (vs_prog_data->uses_firstvertex ||
3487 vs_prog_data->uses_baseinstance)
3488 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3489 if (vs_prog_data->uses_drawid)
3490 emit_draw_index(cmd_buffer, i);
3491
3492 /* Emitting draw index or vertex index BOs may result in needing
3493 * additional VF cache flushes.
3494 */
3495 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3496
3497 load_indirect_parameters(cmd_buffer, draw, false);
3498
3499 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3500 prim.IndirectParameterEnable = true;
3501 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3502 prim.VertexAccessType = SEQUENTIAL;
3503 prim.PrimitiveTopologyType = pipeline->topology;
3504 }
3505
3506 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3507
3508 offset += stride;
3509 }
3510 }
3511
3512 void genX(CmdDrawIndexedIndirect)(
3513 VkCommandBuffer commandBuffer,
3514 VkBuffer _buffer,
3515 VkDeviceSize offset,
3516 uint32_t drawCount,
3517 uint32_t stride)
3518 {
3519 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3520 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3521 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3522 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3523
3524 if (anv_batch_has_error(&cmd_buffer->batch))
3525 return;
3526
3527 genX(cmd_buffer_flush_state)(cmd_buffer);
3528
3529 if (cmd_buffer->state.conditional_render_enabled)
3530 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3531
3532 for (uint32_t i = 0; i < drawCount; i++) {
3533 struct anv_address draw = anv_address_add(buffer->address, offset);
3534
3535 /* TODO: We need to stomp base vertex to 0 somehow */
3536 if (vs_prog_data->uses_firstvertex ||
3537 vs_prog_data->uses_baseinstance)
3538 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3539 if (vs_prog_data->uses_drawid)
3540 emit_draw_index(cmd_buffer, i);
3541
3542 /* Emitting draw index or vertex index BOs may result in needing
3543 * additional VF cache flushes.
3544 */
3545 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3546
3547 load_indirect_parameters(cmd_buffer, draw, true);
3548
3549 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3550 prim.IndirectParameterEnable = true;
3551 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3552 prim.VertexAccessType = RANDOM;
3553 prim.PrimitiveTopologyType = pipeline->topology;
3554 }
3555
3556 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3557
3558 offset += stride;
3559 }
3560 }
3561
3562 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3563
3564 static void
3565 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3566 struct anv_address count_address,
3567 const bool conditional_render_enabled)
3568 {
3569 struct gen_mi_builder b;
3570 gen_mi_builder_init(&b, &cmd_buffer->batch);
3571
3572 if (conditional_render_enabled) {
3573 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3574 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3575 gen_mi_mem32(count_address));
3576 #endif
3577 } else {
3578 /* Upload the current draw count from the draw parameters buffer to
3579 * MI_PREDICATE_SRC0.
3580 */
3581 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3582 gen_mi_mem32(count_address));
3583
3584 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3585 }
3586 }
3587
3588 static void
3589 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3590 uint32_t draw_index)
3591 {
3592 struct gen_mi_builder b;
3593 gen_mi_builder_init(&b, &cmd_buffer->batch);
3594
3595 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3596 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3597
3598 if (draw_index == 0) {
3599 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3600 mip.LoadOperation = LOAD_LOADINV;
3601 mip.CombineOperation = COMBINE_SET;
3602 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3603 }
3604 } else {
3605 /* While draw_index < draw_count the predicate's result will be
3606 * (draw_index == draw_count) ^ TRUE = TRUE
3607 * When draw_index == draw_count the result is
3608 * (TRUE) ^ TRUE = FALSE
3609 * After this all results will be:
3610 * (FALSE) ^ FALSE = FALSE
3611 */
3612 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3613 mip.LoadOperation = LOAD_LOAD;
3614 mip.CombineOperation = COMBINE_XOR;
3615 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3616 }
3617 }
3618 }
3619
3620 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3621 static void
3622 emit_draw_count_predicate_with_conditional_render(
3623 struct anv_cmd_buffer *cmd_buffer,
3624 uint32_t draw_index)
3625 {
3626 struct gen_mi_builder b;
3627 gen_mi_builder_init(&b, &cmd_buffer->batch);
3628
3629 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3630 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3631 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3632
3633 #if GEN_GEN >= 8
3634 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3635 #else
3636 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3637 * so we emit MI_PREDICATE to set it.
3638 */
3639
3640 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3641 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3642
3643 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3644 mip.LoadOperation = LOAD_LOADINV;
3645 mip.CombineOperation = COMBINE_SET;
3646 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3647 }
3648 #endif
3649 }
3650 #endif
3651
3652 void genX(CmdDrawIndirectCount)(
3653 VkCommandBuffer commandBuffer,
3654 VkBuffer _buffer,
3655 VkDeviceSize offset,
3656 VkBuffer _countBuffer,
3657 VkDeviceSize countBufferOffset,
3658 uint32_t maxDrawCount,
3659 uint32_t stride)
3660 {
3661 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3662 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3663 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3664 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3665 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3666 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3667
3668 if (anv_batch_has_error(&cmd_buffer->batch))
3669 return;
3670
3671 genX(cmd_buffer_flush_state)(cmd_buffer);
3672
3673 struct anv_address count_address =
3674 anv_address_add(count_buffer->address, countBufferOffset);
3675
3676 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3677 cmd_state->conditional_render_enabled);
3678
3679 for (uint32_t i = 0; i < maxDrawCount; i++) {
3680 struct anv_address draw = anv_address_add(buffer->address, offset);
3681
3682 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3683 if (cmd_state->conditional_render_enabled) {
3684 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3685 } else {
3686 emit_draw_count_predicate(cmd_buffer, i);
3687 }
3688 #else
3689 emit_draw_count_predicate(cmd_buffer, i);
3690 #endif
3691
3692 if (vs_prog_data->uses_firstvertex ||
3693 vs_prog_data->uses_baseinstance)
3694 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3695 if (vs_prog_data->uses_drawid)
3696 emit_draw_index(cmd_buffer, i);
3697
3698 /* Emitting draw index or vertex index BOs may result in needing
3699 * additional VF cache flushes.
3700 */
3701 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3702
3703 load_indirect_parameters(cmd_buffer, draw, false);
3704
3705 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3706 prim.IndirectParameterEnable = true;
3707 prim.PredicateEnable = true;
3708 prim.VertexAccessType = SEQUENTIAL;
3709 prim.PrimitiveTopologyType = pipeline->topology;
3710 }
3711
3712 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3713
3714 offset += stride;
3715 }
3716 }
3717
3718 void genX(CmdDrawIndexedIndirectCount)(
3719 VkCommandBuffer commandBuffer,
3720 VkBuffer _buffer,
3721 VkDeviceSize offset,
3722 VkBuffer _countBuffer,
3723 VkDeviceSize countBufferOffset,
3724 uint32_t maxDrawCount,
3725 uint32_t stride)
3726 {
3727 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3728 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3729 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3730 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3731 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3732 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3733
3734 if (anv_batch_has_error(&cmd_buffer->batch))
3735 return;
3736
3737 genX(cmd_buffer_flush_state)(cmd_buffer);
3738
3739 struct anv_address count_address =
3740 anv_address_add(count_buffer->address, countBufferOffset);
3741
3742 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3743 cmd_state->conditional_render_enabled);
3744
3745 for (uint32_t i = 0; i < maxDrawCount; i++) {
3746 struct anv_address draw = anv_address_add(buffer->address, offset);
3747
3748 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3749 if (cmd_state->conditional_render_enabled) {
3750 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3751 } else {
3752 emit_draw_count_predicate(cmd_buffer, i);
3753 }
3754 #else
3755 emit_draw_count_predicate(cmd_buffer, i);
3756 #endif
3757
3758 /* TODO: We need to stomp base vertex to 0 somehow */
3759 if (vs_prog_data->uses_firstvertex ||
3760 vs_prog_data->uses_baseinstance)
3761 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3762 if (vs_prog_data->uses_drawid)
3763 emit_draw_index(cmd_buffer, i);
3764
3765 /* Emitting draw index or vertex index BOs may result in needing
3766 * additional VF cache flushes.
3767 */
3768 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3769
3770 load_indirect_parameters(cmd_buffer, draw, true);
3771
3772 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3773 prim.IndirectParameterEnable = true;
3774 prim.PredicateEnable = true;
3775 prim.VertexAccessType = RANDOM;
3776 prim.PrimitiveTopologyType = pipeline->topology;
3777 }
3778
3779 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3780
3781 offset += stride;
3782 }
3783 }
3784
3785 void genX(CmdBeginTransformFeedbackEXT)(
3786 VkCommandBuffer commandBuffer,
3787 uint32_t firstCounterBuffer,
3788 uint32_t counterBufferCount,
3789 const VkBuffer* pCounterBuffers,
3790 const VkDeviceSize* pCounterBufferOffsets)
3791 {
3792 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3793
3794 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3795 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3796 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3797
3798 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3799 *
3800 * "Ssoftware must ensure that no HW stream output operations can be in
3801 * process or otherwise pending at the point that the MI_LOAD/STORE
3802 * commands are processed. This will likely require a pipeline flush."
3803 */
3804 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3805 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3806
3807 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3808 /* If we have a counter buffer, this is a resume so we need to load the
3809 * value into the streamout offset register. Otherwise, this is a begin
3810 * and we need to reset it to zero.
3811 */
3812 if (pCounterBuffers &&
3813 idx >= firstCounterBuffer &&
3814 idx - firstCounterBuffer < counterBufferCount &&
3815 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
3816 uint32_t cb_idx = idx - firstCounterBuffer;
3817 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3818 uint64_t offset = pCounterBufferOffsets ?
3819 pCounterBufferOffsets[cb_idx] : 0;
3820
3821 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3822 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3823 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
3824 offset);
3825 }
3826 } else {
3827 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3828 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3829 lri.DataDWord = 0;
3830 }
3831 }
3832 }
3833
3834 cmd_buffer->state.xfb_enabled = true;
3835 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3836 }
3837
3838 void genX(CmdEndTransformFeedbackEXT)(
3839 VkCommandBuffer commandBuffer,
3840 uint32_t firstCounterBuffer,
3841 uint32_t counterBufferCount,
3842 const VkBuffer* pCounterBuffers,
3843 const VkDeviceSize* pCounterBufferOffsets)
3844 {
3845 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3846
3847 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3848 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3849 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3850
3851 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3852 *
3853 * "Ssoftware must ensure that no HW stream output operations can be in
3854 * process or otherwise pending at the point that the MI_LOAD/STORE
3855 * commands are processed. This will likely require a pipeline flush."
3856 */
3857 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3858 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3859
3860 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
3861 unsigned idx = firstCounterBuffer + cb_idx;
3862
3863 /* If we have a counter buffer, this is a resume so we need to load the
3864 * value into the streamout offset register. Otherwise, this is a begin
3865 * and we need to reset it to zero.
3866 */
3867 if (pCounterBuffers &&
3868 cb_idx < counterBufferCount &&
3869 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
3870 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3871 uint64_t offset = pCounterBufferOffsets ?
3872 pCounterBufferOffsets[cb_idx] : 0;
3873
3874 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
3875 srm.MemoryAddress = anv_address_add(counter_buffer->address,
3876 offset);
3877 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3878 }
3879 }
3880 }
3881
3882 cmd_buffer->state.xfb_enabled = false;
3883 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3884 }
3885
3886 void
3887 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3888 {
3889 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3890
3891 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3892
3893 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3894
3895 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3896
3897 if (cmd_buffer->state.compute.pipeline_dirty) {
3898 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3899 *
3900 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3901 * the only bits that are changed are scoreboard related: Scoreboard
3902 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3903 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3904 * sufficient."
3905 */
3906 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3907 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3908
3909 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3910
3911 /* The workgroup size of the pipeline affects our push constant layout
3912 * so flag push constants as dirty if we change the pipeline.
3913 */
3914 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3915 }
3916
3917 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3918 cmd_buffer->state.compute.pipeline_dirty) {
3919 flush_descriptor_sets(cmd_buffer, pipeline);
3920
3921 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3922 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3923 .BindingTablePointer =
3924 cmd_buffer->state.binding_tables[MESA_SHADER_COMPUTE].offset,
3925 .SamplerStatePointer =
3926 cmd_buffer->state.samplers[MESA_SHADER_COMPUTE].offset,
3927 };
3928 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3929
3930 struct anv_state state =
3931 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3932 pipeline->interface_descriptor_data,
3933 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3934 64);
3935
3936 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3937 anv_batch_emit(&cmd_buffer->batch,
3938 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3939 mid.InterfaceDescriptorTotalLength = size;
3940 mid.InterfaceDescriptorDataStartAddress = state.offset;
3941 }
3942 }
3943
3944 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3945 struct anv_state push_state =
3946 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3947
3948 if (push_state.alloc_size) {
3949 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3950 curbe.CURBETotalDataLength = push_state.alloc_size;
3951 curbe.CURBEDataStartAddress = push_state.offset;
3952 }
3953 }
3954
3955 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3956 }
3957
3958 cmd_buffer->state.compute.pipeline_dirty = false;
3959
3960 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3961 }
3962
3963 #if GEN_GEN == 7
3964
3965 static VkResult
3966 verify_cmd_parser(const struct anv_device *device,
3967 int required_version,
3968 const char *function)
3969 {
3970 if (device->physical->cmd_parser_version < required_version) {
3971 return vk_errorf(device, device->physical,
3972 VK_ERROR_FEATURE_NOT_PRESENT,
3973 "cmd parser version %d is required for %s",
3974 required_version, function);
3975 } else {
3976 return VK_SUCCESS;
3977 }
3978 }
3979
3980 #endif
3981
3982 static void
3983 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3984 uint32_t baseGroupX,
3985 uint32_t baseGroupY,
3986 uint32_t baseGroupZ)
3987 {
3988 if (anv_batch_has_error(&cmd_buffer->batch))
3989 return;
3990
3991 struct anv_push_constants *push =
3992 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3993 if (push->cs.base_work_group_id[0] != baseGroupX ||
3994 push->cs.base_work_group_id[1] != baseGroupY ||
3995 push->cs.base_work_group_id[2] != baseGroupZ) {
3996 push->cs.base_work_group_id[0] = baseGroupX;
3997 push->cs.base_work_group_id[1] = baseGroupY;
3998 push->cs.base_work_group_id[2] = baseGroupZ;
3999
4000 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4001 }
4002 }
4003
4004 void genX(CmdDispatch)(
4005 VkCommandBuffer commandBuffer,
4006 uint32_t x,
4007 uint32_t y,
4008 uint32_t z)
4009 {
4010 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
4011 }
4012
4013 void genX(CmdDispatchBase)(
4014 VkCommandBuffer commandBuffer,
4015 uint32_t baseGroupX,
4016 uint32_t baseGroupY,
4017 uint32_t baseGroupZ,
4018 uint32_t groupCountX,
4019 uint32_t groupCountY,
4020 uint32_t groupCountZ)
4021 {
4022 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4023 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4024 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4025
4026 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
4027 baseGroupY, baseGroupZ);
4028
4029 if (anv_batch_has_error(&cmd_buffer->batch))
4030 return;
4031
4032 if (prog_data->uses_num_work_groups) {
4033 struct anv_state state =
4034 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
4035 uint32_t *sizes = state.map;
4036 sizes[0] = groupCountX;
4037 sizes[1] = groupCountY;
4038 sizes[2] = groupCountZ;
4039 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
4040 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
4041 .offset = state.offset,
4042 };
4043
4044 /* The num_workgroups buffer goes in the binding table */
4045 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4046 }
4047
4048 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4049
4050 if (cmd_buffer->state.conditional_render_enabled)
4051 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4052
4053 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
4054 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
4055 ggw.SIMDSize = prog_data->simd_size / 16;
4056 ggw.ThreadDepthCounterMaximum = 0;
4057 ggw.ThreadHeightCounterMaximum = 0;
4058 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4059 ggw.ThreadGroupIDXDimension = groupCountX;
4060 ggw.ThreadGroupIDYDimension = groupCountY;
4061 ggw.ThreadGroupIDZDimension = groupCountZ;
4062 ggw.RightExecutionMask = pipeline->cs_right_mask;
4063 ggw.BottomExecutionMask = 0xffffffff;
4064 }
4065
4066 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
4067 }
4068
4069 #define GPGPU_DISPATCHDIMX 0x2500
4070 #define GPGPU_DISPATCHDIMY 0x2504
4071 #define GPGPU_DISPATCHDIMZ 0x2508
4072
4073 void genX(CmdDispatchIndirect)(
4074 VkCommandBuffer commandBuffer,
4075 VkBuffer _buffer,
4076 VkDeviceSize offset)
4077 {
4078 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4079 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
4080 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
4081 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
4082 struct anv_address addr = anv_address_add(buffer->address, offset);
4083 struct anv_batch *batch = &cmd_buffer->batch;
4084
4085 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
4086
4087 #if GEN_GEN == 7
4088 /* Linux 4.4 added command parser version 5 which allows the GPGPU
4089 * indirect dispatch registers to be written.
4090 */
4091 if (verify_cmd_parser(cmd_buffer->device, 5,
4092 "vkCmdDispatchIndirect") != VK_SUCCESS)
4093 return;
4094 #endif
4095
4096 if (prog_data->uses_num_work_groups) {
4097 cmd_buffer->state.compute.num_workgroups = addr;
4098
4099 /* The num_workgroups buffer goes in the binding table */
4100 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
4101 }
4102
4103 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
4104
4105 struct gen_mi_builder b;
4106 gen_mi_builder_init(&b, &cmd_buffer->batch);
4107
4108 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
4109 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
4110 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
4111
4112 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
4113 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
4114 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
4115
4116 #if GEN_GEN <= 7
4117 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4118 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
4119 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
4120 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4121 mip.LoadOperation = LOAD_LOAD;
4122 mip.CombineOperation = COMBINE_SET;
4123 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4124 }
4125
4126 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4127 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
4128 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4129 mip.LoadOperation = LOAD_LOAD;
4130 mip.CombineOperation = COMBINE_OR;
4131 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4132 }
4133
4134 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4135 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
4136 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4137 mip.LoadOperation = LOAD_LOAD;
4138 mip.CombineOperation = COMBINE_OR;
4139 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4140 }
4141
4142 /* predicate = !predicate; */
4143 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4144 mip.LoadOperation = LOAD_LOADINV;
4145 mip.CombineOperation = COMBINE_OR;
4146 mip.CompareOperation = COMPARE_FALSE;
4147 }
4148
4149 #if GEN_IS_HASWELL
4150 if (cmd_buffer->state.conditional_render_enabled) {
4151 /* predicate &= !(conditional_rendering_predicate == 0); */
4152 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4153 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4154 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4155 mip.LoadOperation = LOAD_LOADINV;
4156 mip.CombineOperation = COMBINE_AND;
4157 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4158 }
4159 }
4160 #endif
4161
4162 #else /* GEN_GEN > 7 */
4163 if (cmd_buffer->state.conditional_render_enabled)
4164 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4165 #endif
4166
4167 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4168 ggw.IndirectParameterEnable = true;
4169 ggw.PredicateEnable = GEN_GEN <= 7 ||
4170 cmd_buffer->state.conditional_render_enabled;
4171 ggw.SIMDSize = prog_data->simd_size / 16;
4172 ggw.ThreadDepthCounterMaximum = 0;
4173 ggw.ThreadHeightCounterMaximum = 0;
4174 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4175 ggw.RightExecutionMask = pipeline->cs_right_mask;
4176 ggw.BottomExecutionMask = 0xffffffff;
4177 }
4178
4179 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4180 }
4181
4182 static void
4183 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4184 uint32_t pipeline)
4185 {
4186 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4187
4188 if (cmd_buffer->state.current_pipeline == pipeline)
4189 return;
4190
4191 #if GEN_GEN >= 8 && GEN_GEN < 10
4192 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4193 *
4194 * Software must clear the COLOR_CALC_STATE Valid field in
4195 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4196 * with Pipeline Select set to GPGPU.
4197 *
4198 * The internal hardware docs recommend the same workaround for Gen9
4199 * hardware too.
4200 */
4201 if (pipeline == GPGPU)
4202 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4203 #endif
4204
4205 #if GEN_GEN == 9
4206 if (pipeline == _3D) {
4207 /* There is a mid-object preemption workaround which requires you to
4208 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4209 * even without preemption, we have issues with geometry flickering when
4210 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4211 * really know why.
4212 */
4213 const uint32_t subslices =
4214 MAX2(cmd_buffer->device->physical->subslice_total, 1);
4215 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4216 vfe.MaximumNumberofThreads =
4217 devinfo->max_cs_threads * subslices - 1;
4218 vfe.NumberofURBEntries = 2;
4219 vfe.URBEntryAllocationSize = 2;
4220 }
4221
4222 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4223 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4224 * pipeline in case we get back-to-back dispatch calls with the same
4225 * pipeline and a PIPELINE_SELECT in between.
4226 */
4227 cmd_buffer->state.compute.pipeline_dirty = true;
4228 }
4229 #endif
4230
4231 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4232 * PIPELINE_SELECT [DevBWR+]":
4233 *
4234 * Project: DEVSNB+
4235 *
4236 * Software must ensure all the write caches are flushed through a
4237 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4238 * command to invalidate read only caches prior to programming
4239 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4240 */
4241 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4242 pc.RenderTargetCacheFlushEnable = true;
4243 pc.DepthCacheFlushEnable = true;
4244 pc.DCFlushEnable = true;
4245 pc.PostSyncOperation = NoWrite;
4246 pc.CommandStreamerStallEnable = true;
4247 #if GEN_GEN >= 12
4248 pc.TileCacheFlushEnable = true;
4249
4250 /* GEN:BUG:1409600907: "PIPE_CONTROL with Depth Stall Enable bit must be
4251 * set with any PIPE_CONTROL with Depth Flush Enable bit set.
4252 */
4253 pc.DepthStallEnable = true;
4254 #endif
4255 }
4256
4257 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4258 pc.TextureCacheInvalidationEnable = true;
4259 pc.ConstantCacheInvalidationEnable = true;
4260 pc.StateCacheInvalidationEnable = true;
4261 pc.InstructionCacheInvalidateEnable = true;
4262 pc.PostSyncOperation = NoWrite;
4263 #if GEN_GEN >= 12
4264 pc.TileCacheFlushEnable = true;
4265 #endif
4266 }
4267
4268 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4269 #if GEN_GEN >= 9
4270 ps.MaskBits = 3;
4271 #endif
4272 ps.PipelineSelection = pipeline;
4273 }
4274
4275 #if GEN_GEN == 9
4276 if (devinfo->is_geminilake) {
4277 /* Project: DevGLK
4278 *
4279 * "This chicken bit works around a hardware issue with barrier logic
4280 * encountered when switching between GPGPU and 3D pipelines. To
4281 * workaround the issue, this mode bit should be set after a pipeline
4282 * is selected."
4283 */
4284 uint32_t scec;
4285 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4286 .GLKBarrierMode =
4287 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4288 : GLK_BARRIER_MODE_3D_HULL,
4289 .GLKBarrierModeMask = 1);
4290 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4291 }
4292 #endif
4293
4294 cmd_buffer->state.current_pipeline = pipeline;
4295 }
4296
4297 void
4298 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4299 {
4300 genX(flush_pipeline_select)(cmd_buffer, _3D);
4301 }
4302
4303 void
4304 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4305 {
4306 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4307 }
4308
4309 void
4310 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4311 {
4312 if (GEN_GEN >= 8)
4313 return;
4314
4315 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4316 *
4317 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4318 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4319 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4320 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4321 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4322 * Depth Flush Bit set, followed by another pipelined depth stall
4323 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4324 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4325 * via a preceding MI_FLUSH)."
4326 */
4327 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4328 pipe.DepthStallEnable = true;
4329 }
4330 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4331 pipe.DepthCacheFlushEnable = true;
4332 #if GEN_GEN >= 12
4333 pipe.TileCacheFlushEnable = true;
4334 #endif
4335 }
4336 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4337 pipe.DepthStallEnable = true;
4338 }
4339 }
4340
4341 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4342 *
4343 * "The VF cache needs to be invalidated before binding and then using
4344 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4345 * (at a 64B granularity) since the last invalidation. A VF cache
4346 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4347 * bit in PIPE_CONTROL."
4348 *
4349 * This is implemented by carefully tracking all vertex and index buffer
4350 * bindings and flushing if the cache ever ends up with a range in the cache
4351 * that would exceed 4 GiB. This is implemented in three parts:
4352 *
4353 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4354 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4355 * tracking code of the new binding. If this new binding would cause
4356 * the cache to have a too-large range on the next draw call, a pipeline
4357 * stall and VF cache invalidate are added to pending_pipeline_bits.
4358 *
4359 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4360 * empty whenever we emit a VF invalidate.
4361 *
4362 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4363 * after every 3DPRIMITIVE and copies the bound range into the dirty
4364 * range for each used buffer. This has to be a separate step because
4365 * we don't always re-bind all buffers and so 1. can't know which
4366 * buffers are actually bound.
4367 */
4368 void
4369 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4370 int vb_index,
4371 struct anv_address vb_address,
4372 uint32_t vb_size)
4373 {
4374 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4375 !cmd_buffer->device->physical->use_softpin)
4376 return;
4377
4378 struct anv_vb_cache_range *bound, *dirty;
4379 if (vb_index == -1) {
4380 bound = &cmd_buffer->state.gfx.ib_bound_range;
4381 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4382 } else {
4383 assert(vb_index >= 0);
4384 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4385 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4386 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4387 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4388 }
4389
4390 if (vb_size == 0) {
4391 bound->start = 0;
4392 bound->end = 0;
4393 return;
4394 }
4395
4396 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4397 bound->start = gen_48b_address(anv_address_physical(vb_address));
4398 bound->end = bound->start + vb_size;
4399 assert(bound->end > bound->start); /* No overflow */
4400
4401 /* Align everything to a cache line */
4402 bound->start &= ~(64ull - 1ull);
4403 bound->end = align_u64(bound->end, 64);
4404
4405 /* Compute the dirty range */
4406 dirty->start = MIN2(dirty->start, bound->start);
4407 dirty->end = MAX2(dirty->end, bound->end);
4408
4409 /* If our range is larger than 32 bits, we have to flush */
4410 assert(bound->end - bound->start <= (1ull << 32));
4411 if (dirty->end - dirty->start > (1ull << 32)) {
4412 cmd_buffer->state.pending_pipe_bits |=
4413 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4414 }
4415 }
4416
4417 void
4418 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4419 uint32_t access_type,
4420 uint64_t vb_used)
4421 {
4422 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4423 !cmd_buffer->device->physical->use_softpin)
4424 return;
4425
4426 if (access_type == RANDOM) {
4427 /* We have an index buffer */
4428 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4429 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4430
4431 if (bound->end > bound->start) {
4432 dirty->start = MIN2(dirty->start, bound->start);
4433 dirty->end = MAX2(dirty->end, bound->end);
4434 }
4435 }
4436
4437 uint64_t mask = vb_used;
4438 while (mask) {
4439 int i = u_bit_scan64(&mask);
4440 assert(i >= 0);
4441 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4442 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4443
4444 struct anv_vb_cache_range *bound, *dirty;
4445 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4446 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4447
4448 if (bound->end > bound->start) {
4449 dirty->start = MIN2(dirty->start, bound->start);
4450 dirty->end = MAX2(dirty->end, bound->end);
4451 }
4452 }
4453 }
4454
4455 /**
4456 * Update the pixel hashing modes that determine the balancing of PS threads
4457 * across subslices and slices.
4458 *
4459 * \param width Width bound of the rendering area (already scaled down if \p
4460 * scale is greater than 1).
4461 * \param height Height bound of the rendering area (already scaled down if \p
4462 * scale is greater than 1).
4463 * \param scale The number of framebuffer samples that could potentially be
4464 * affected by an individual channel of the PS thread. This is
4465 * typically one for single-sampled rendering, but for operations
4466 * like CCS resolves and fast clears a single PS invocation may
4467 * update a huge number of pixels, in which case a finer
4468 * balancing is desirable in order to maximally utilize the
4469 * bandwidth available. UINT_MAX can be used as shorthand for
4470 * "finest hashing mode available".
4471 */
4472 void
4473 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4474 unsigned width, unsigned height,
4475 unsigned scale)
4476 {
4477 #if GEN_GEN == 9
4478 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4479 const unsigned slice_hashing[] = {
4480 /* Because all Gen9 platforms with more than one slice require
4481 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4482 * block is guaranteed to suffer from substantial imbalance, with one
4483 * subslice receiving twice as much work as the other two in the
4484 * slice.
4485 *
4486 * The performance impact of that would be particularly severe when
4487 * three-way hashing is also in use for slice balancing (which is the
4488 * case for all Gen9 GT4 platforms), because one of the slices
4489 * receives one every three 16x16 blocks in either direction, which
4490 * is roughly the periodicity of the underlying subslice imbalance
4491 * pattern ("roughly" because in reality the hardware's
4492 * implementation of three-way hashing doesn't do exact modulo 3
4493 * arithmetic, which somewhat decreases the magnitude of this effect
4494 * in practice). This leads to a systematic subslice imbalance
4495 * within that slice regardless of the size of the primitive. The
4496 * 32x32 hashing mode guarantees that the subslice imbalance within a
4497 * single slice hashing block is minimal, largely eliminating this
4498 * effect.
4499 */
4500 _32x32,
4501 /* Finest slice hashing mode available. */
4502 NORMAL
4503 };
4504 const unsigned subslice_hashing[] = {
4505 /* 16x16 would provide a slight cache locality benefit especially
4506 * visible in the sampler L1 cache efficiency of low-bandwidth
4507 * non-LLC platforms, but it comes at the cost of greater subslice
4508 * imbalance for primitives of dimensions approximately intermediate
4509 * between 16x4 and 16x16.
4510 */
4511 _16x4,
4512 /* Finest subslice hashing mode available. */
4513 _8x4
4514 };
4515 /* Dimensions of the smallest hashing block of a given hashing mode. If
4516 * the rendering area is smaller than this there can't possibly be any
4517 * benefit from switching to this mode, so we optimize out the
4518 * transition.
4519 */
4520 const unsigned min_size[][2] = {
4521 { 16, 4 },
4522 { 8, 4 }
4523 };
4524 const unsigned idx = scale > 1;
4525
4526 if (cmd_buffer->state.current_hash_scale != scale &&
4527 (width > min_size[idx][0] || height > min_size[idx][1])) {
4528 uint32_t gt_mode;
4529
4530 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4531 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4532 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4533 .SubsliceHashing = subslice_hashing[idx],
4534 .SubsliceHashingMask = -1);
4535
4536 cmd_buffer->state.pending_pipe_bits |=
4537 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4538 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4539
4540 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4541
4542 cmd_buffer->state.current_hash_scale = scale;
4543 }
4544 #endif
4545 }
4546
4547 static void
4548 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4549 {
4550 struct anv_device *device = cmd_buffer->device;
4551 const struct anv_image_view *iview =
4552 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4553 const struct anv_image *image = iview ? iview->image : NULL;
4554
4555 /* FIXME: Width and Height are wrong */
4556
4557 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4558
4559 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4560 device->isl_dev.ds.size / 4);
4561 if (dw == NULL)
4562 return;
4563
4564 struct isl_depth_stencil_hiz_emit_info info = { };
4565
4566 if (iview)
4567 info.view = &iview->planes[0].isl;
4568
4569 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4570 uint32_t depth_plane =
4571 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4572 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4573
4574 info.depth_surf = &surface->isl;
4575
4576 info.depth_address =
4577 anv_batch_emit_reloc(&cmd_buffer->batch,
4578 dw + device->isl_dev.ds.depth_offset / 4,
4579 image->planes[depth_plane].address.bo,
4580 image->planes[depth_plane].address.offset +
4581 surface->offset);
4582 info.mocs =
4583 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4584
4585 const uint32_t ds =
4586 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4587 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4588 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4589 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4590
4591 info.hiz_address =
4592 anv_batch_emit_reloc(&cmd_buffer->batch,
4593 dw + device->isl_dev.ds.hiz_offset / 4,
4594 image->planes[depth_plane].address.bo,
4595 image->planes[depth_plane].address.offset +
4596 image->planes[depth_plane].aux_surface.offset);
4597
4598 info.depth_clear_value = ANV_HZ_FC_VAL;
4599 }
4600 }
4601
4602 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4603 uint32_t stencil_plane =
4604 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4605 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4606
4607 info.stencil_surf = &surface->isl;
4608
4609 info.stencil_address =
4610 anv_batch_emit_reloc(&cmd_buffer->batch,
4611 dw + device->isl_dev.ds.stencil_offset / 4,
4612 image->planes[stencil_plane].address.bo,
4613 image->planes[stencil_plane].address.offset +
4614 surface->offset);
4615 info.mocs =
4616 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4617 }
4618
4619 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4620
4621 if (GEN_GEN >= 12) {
4622 /* GEN:BUG:1408224581
4623 *
4624 * Workaround: Gen12LP Astep only An additional pipe control with
4625 * post-sync = store dword operation would be required.( w/a is to
4626 * have an additional pipe control after the stencil state whenever
4627 * the surface state bits of this state is changing).
4628 */
4629 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4630 pc.PostSyncOperation = WriteImmediateData;
4631 pc.Address =
4632 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4633 }
4634 }
4635 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4636 }
4637
4638 /**
4639 * This ANDs the view mask of the current subpass with the pending clear
4640 * views in the attachment to get the mask of views active in the subpass
4641 * that still need to be cleared.
4642 */
4643 static inline uint32_t
4644 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4645 const struct anv_attachment_state *att_state)
4646 {
4647 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4648 }
4649
4650 static inline bool
4651 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4652 const struct anv_attachment_state *att_state)
4653 {
4654 if (!cmd_state->subpass->view_mask)
4655 return true;
4656
4657 uint32_t pending_clear_mask =
4658 get_multiview_subpass_clear_mask(cmd_state, att_state);
4659
4660 return pending_clear_mask & 1;
4661 }
4662
4663 static inline bool
4664 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4665 uint32_t att_idx)
4666 {
4667 const uint32_t last_subpass_idx =
4668 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4669 const struct anv_subpass *last_subpass =
4670 &cmd_state->pass->subpasses[last_subpass_idx];
4671 return last_subpass == cmd_state->subpass;
4672 }
4673
4674 static void
4675 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4676 uint32_t subpass_id)
4677 {
4678 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4679 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4680 cmd_state->subpass = subpass;
4681
4682 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4683
4684 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4685 * different views. If the client asks for instancing, we need to use the
4686 * Instance Data Step Rate to ensure that we repeat the client's
4687 * per-instance data once for each view. Since this bit is in
4688 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4689 * of each subpass.
4690 */
4691 if (GEN_GEN == 7)
4692 cmd_buffer->state.gfx.vb_dirty |= ~0;
4693
4694 /* It is possible to start a render pass with an old pipeline. Because the
4695 * render pass and subpass index are both baked into the pipeline, this is
4696 * highly unlikely. In order to do so, it requires that you have a render
4697 * pass with a single subpass and that you use that render pass twice
4698 * back-to-back and use the same pipeline at the start of the second render
4699 * pass as at the end of the first. In order to avoid unpredictable issues
4700 * with this edge case, we just dirty the pipeline at the start of every
4701 * subpass.
4702 */
4703 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4704
4705 /* Accumulate any subpass flushes that need to happen before the subpass */
4706 cmd_buffer->state.pending_pipe_bits |=
4707 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4708
4709 VkRect2D render_area = cmd_buffer->state.render_area;
4710 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4711
4712 bool is_multiview = subpass->view_mask != 0;
4713
4714 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4715 const uint32_t a = subpass->attachments[i].attachment;
4716 if (a == VK_ATTACHMENT_UNUSED)
4717 continue;
4718
4719 assert(a < cmd_state->pass->attachment_count);
4720 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4721
4722 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4723 const struct anv_image *image = iview->image;
4724
4725 /* A resolve is necessary before use as an input attachment if the clear
4726 * color or auxiliary buffer usage isn't supported by the sampler.
4727 */
4728 const bool input_needs_resolve =
4729 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4730 att_state->input_aux_usage != att_state->aux_usage;
4731
4732 VkImageLayout target_layout;
4733 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4734 !input_needs_resolve) {
4735 /* Layout transitions before the final only help to enable sampling
4736 * as an input attachment. If the input attachment supports sampling
4737 * using the auxiliary surface, we can skip such transitions by
4738 * making the target layout one that is CCS-aware.
4739 */
4740 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4741 } else {
4742 target_layout = subpass->attachments[i].layout;
4743 }
4744
4745 VkImageLayout target_stencil_layout =
4746 subpass->attachments[i].stencil_layout;
4747
4748 uint32_t base_layer, layer_count;
4749 if (image->type == VK_IMAGE_TYPE_3D) {
4750 base_layer = 0;
4751 layer_count = anv_minify(iview->image->extent.depth,
4752 iview->planes[0].isl.base_level);
4753 } else {
4754 base_layer = iview->planes[0].isl.base_array_layer;
4755 layer_count = fb->layers;
4756 }
4757
4758 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4759 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4760 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4761 iview->planes[0].isl.base_level, 1,
4762 base_layer, layer_count,
4763 att_state->current_layout, target_layout);
4764 }
4765
4766 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4767 transition_depth_buffer(cmd_buffer, image,
4768 att_state->current_layout, target_layout);
4769 att_state->aux_usage =
4770 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4771 VK_IMAGE_ASPECT_DEPTH_BIT,
4772 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
4773 target_layout);
4774 }
4775
4776 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4777 transition_stencil_buffer(cmd_buffer, image,
4778 iview->planes[0].isl.base_level, 1,
4779 base_layer, layer_count,
4780 att_state->current_stencil_layout,
4781 target_stencil_layout);
4782 }
4783 att_state->current_layout = target_layout;
4784 att_state->current_stencil_layout = target_stencil_layout;
4785
4786 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
4787 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4788
4789 /* Multi-planar images are not supported as attachments */
4790 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4791 assert(image->n_planes == 1);
4792
4793 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
4794 uint32_t clear_layer_count = fb->layers;
4795
4796 if (att_state->fast_clear &&
4797 do_first_layer_clear(cmd_state, att_state)) {
4798 /* We only support fast-clears on the first layer */
4799 assert(iview->planes[0].isl.base_level == 0);
4800 assert(iview->planes[0].isl.base_array_layer == 0);
4801
4802 union isl_color_value clear_color = {};
4803 anv_clear_color_from_att_state(&clear_color, att_state, iview);
4804 if (iview->image->samples == 1) {
4805 anv_image_ccs_op(cmd_buffer, image,
4806 iview->planes[0].isl.format,
4807 VK_IMAGE_ASPECT_COLOR_BIT,
4808 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
4809 &clear_color,
4810 false);
4811 } else {
4812 anv_image_mcs_op(cmd_buffer, image,
4813 iview->planes[0].isl.format,
4814 VK_IMAGE_ASPECT_COLOR_BIT,
4815 0, 1, ISL_AUX_OP_FAST_CLEAR,
4816 &clear_color,
4817 false);
4818 }
4819 base_clear_layer++;
4820 clear_layer_count--;
4821 if (is_multiview)
4822 att_state->pending_clear_views &= ~1;
4823
4824 if (att_state->clear_color_is_zero) {
4825 /* This image has the auxiliary buffer enabled. We can mark the
4826 * subresource as not needing a resolve because the clear color
4827 * will match what's in every RENDER_SURFACE_STATE object when
4828 * it's being used for sampling.
4829 */
4830 set_image_fast_clear_state(cmd_buffer, iview->image,
4831 VK_IMAGE_ASPECT_COLOR_BIT,
4832 ANV_FAST_CLEAR_DEFAULT_VALUE);
4833 } else {
4834 set_image_fast_clear_state(cmd_buffer, iview->image,
4835 VK_IMAGE_ASPECT_COLOR_BIT,
4836 ANV_FAST_CLEAR_ANY);
4837 }
4838 }
4839
4840 /* From the VkFramebufferCreateInfo spec:
4841 *
4842 * "If the render pass uses multiview, then layers must be one and each
4843 * attachment requires a number of layers that is greater than the
4844 * maximum bit index set in the view mask in the subpasses in which it
4845 * is used."
4846 *
4847 * So if multiview is active we ignore the number of layers in the
4848 * framebuffer and instead we honor the view mask from the subpass.
4849 */
4850 if (is_multiview) {
4851 assert(image->n_planes == 1);
4852 uint32_t pending_clear_mask =
4853 get_multiview_subpass_clear_mask(cmd_state, att_state);
4854
4855 uint32_t layer_idx;
4856 for_each_bit(layer_idx, pending_clear_mask) {
4857 uint32_t layer =
4858 iview->planes[0].isl.base_array_layer + layer_idx;
4859
4860 anv_image_clear_color(cmd_buffer, image,
4861 VK_IMAGE_ASPECT_COLOR_BIT,
4862 att_state->aux_usage,
4863 iview->planes[0].isl.format,
4864 iview->planes[0].isl.swizzle,
4865 iview->planes[0].isl.base_level,
4866 layer, 1,
4867 render_area,
4868 vk_to_isl_color(att_state->clear_value.color));
4869 }
4870
4871 att_state->pending_clear_views &= ~pending_clear_mask;
4872 } else if (clear_layer_count > 0) {
4873 assert(image->n_planes == 1);
4874 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4875 att_state->aux_usage,
4876 iview->planes[0].isl.format,
4877 iview->planes[0].isl.swizzle,
4878 iview->planes[0].isl.base_level,
4879 base_clear_layer, clear_layer_count,
4880 render_area,
4881 vk_to_isl_color(att_state->clear_value.color));
4882 }
4883 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
4884 VK_IMAGE_ASPECT_STENCIL_BIT)) {
4885 if (att_state->fast_clear && !is_multiview) {
4886 /* We currently only support HiZ for single-layer images */
4887 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4888 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
4889 assert(iview->planes[0].isl.base_level == 0);
4890 assert(iview->planes[0].isl.base_array_layer == 0);
4891 assert(fb->layers == 1);
4892 }
4893
4894 anv_image_hiz_clear(cmd_buffer, image,
4895 att_state->pending_clear_aspects,
4896 iview->planes[0].isl.base_level,
4897 iview->planes[0].isl.base_array_layer,
4898 fb->layers, render_area,
4899 att_state->clear_value.depthStencil.stencil);
4900 } else if (is_multiview) {
4901 uint32_t pending_clear_mask =
4902 get_multiview_subpass_clear_mask(cmd_state, att_state);
4903
4904 uint32_t layer_idx;
4905 for_each_bit(layer_idx, pending_clear_mask) {
4906 uint32_t layer =
4907 iview->planes[0].isl.base_array_layer + layer_idx;
4908
4909 anv_image_clear_depth_stencil(cmd_buffer, image,
4910 att_state->pending_clear_aspects,
4911 att_state->aux_usage,
4912 iview->planes[0].isl.base_level,
4913 layer, 1,
4914 render_area,
4915 att_state->clear_value.depthStencil.depth,
4916 att_state->clear_value.depthStencil.stencil);
4917 }
4918
4919 att_state->pending_clear_views &= ~pending_clear_mask;
4920 } else {
4921 anv_image_clear_depth_stencil(cmd_buffer, image,
4922 att_state->pending_clear_aspects,
4923 att_state->aux_usage,
4924 iview->planes[0].isl.base_level,
4925 iview->planes[0].isl.base_array_layer,
4926 fb->layers, render_area,
4927 att_state->clear_value.depthStencil.depth,
4928 att_state->clear_value.depthStencil.stencil);
4929 }
4930 } else {
4931 assert(att_state->pending_clear_aspects == 0);
4932 }
4933
4934 if (GEN_GEN < 10 &&
4935 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4936 image->planes[0].aux_usage != ISL_AUX_USAGE_NONE &&
4937 iview->planes[0].isl.base_level == 0 &&
4938 iview->planes[0].isl.base_array_layer == 0) {
4939 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
4940 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
4941 image, VK_IMAGE_ASPECT_COLOR_BIT,
4942 false /* copy to ss */);
4943 }
4944
4945 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
4946 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
4947 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
4948 image, VK_IMAGE_ASPECT_COLOR_BIT,
4949 false /* copy to ss */);
4950 }
4951 }
4952
4953 if (subpass->attachments[i].usage ==
4954 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
4955 /* We assume that if we're starting a subpass, we're going to do some
4956 * rendering so we may end up with compressed data.
4957 */
4958 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
4959 VK_IMAGE_ASPECT_COLOR_BIT,
4960 att_state->aux_usage,
4961 iview->planes[0].isl.base_level,
4962 iview->planes[0].isl.base_array_layer,
4963 fb->layers);
4964 } else if (subpass->attachments[i].usage ==
4965 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
4966 /* We may be writing depth or stencil so we need to mark the surface.
4967 * Unfortunately, there's no way to know at this point whether the
4968 * depth or stencil tests used will actually write to the surface.
4969 *
4970 * Even though stencil may be plane 1, it always shares a base_level
4971 * with depth.
4972 */
4973 const struct isl_view *ds_view = &iview->planes[0].isl;
4974 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
4975 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4976 VK_IMAGE_ASPECT_DEPTH_BIT,
4977 att_state->aux_usage,
4978 ds_view->base_level,
4979 ds_view->base_array_layer,
4980 fb->layers);
4981 }
4982 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
4983 /* Even though stencil may be plane 1, it always shares a
4984 * base_level with depth.
4985 */
4986 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4987 VK_IMAGE_ASPECT_STENCIL_BIT,
4988 ISL_AUX_USAGE_NONE,
4989 ds_view->base_level,
4990 ds_view->base_array_layer,
4991 fb->layers);
4992 }
4993 }
4994
4995 /* If multiview is enabled, then we are only done clearing when we no
4996 * longer have pending layers to clear, or when we have processed the
4997 * last subpass that uses this attachment.
4998 */
4999 if (!is_multiview ||
5000 att_state->pending_clear_views == 0 ||
5001 current_subpass_is_last_for_attachment(cmd_state, a)) {
5002 att_state->pending_clear_aspects = 0;
5003 }
5004
5005 att_state->pending_load_aspects = 0;
5006 }
5007
5008 cmd_buffer_emit_depth_stencil(cmd_buffer);
5009
5010 #if GEN_GEN >= 11
5011 /* The PIPE_CONTROL command description says:
5012 *
5013 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
5014 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
5015 * Target Cache Flush by enabling this bit. When render target flush
5016 * is set due to new association of BTI, PS Scoreboard Stall bit must
5017 * be set in this packet."
5018 */
5019 cmd_buffer->state.pending_pipe_bits |=
5020 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT |
5021 ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
5022 #endif
5023 }
5024
5025 static enum blorp_filter
5026 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
5027 {
5028 switch (vk_mode) {
5029 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
5030 return BLORP_FILTER_SAMPLE_0;
5031 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
5032 return BLORP_FILTER_AVERAGE;
5033 case VK_RESOLVE_MODE_MIN_BIT_KHR:
5034 return BLORP_FILTER_MIN_SAMPLE;
5035 case VK_RESOLVE_MODE_MAX_BIT_KHR:
5036 return BLORP_FILTER_MAX_SAMPLE;
5037 default:
5038 return BLORP_FILTER_NONE;
5039 }
5040 }
5041
5042 static void
5043 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
5044 {
5045 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5046 struct anv_subpass *subpass = cmd_state->subpass;
5047 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
5048 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
5049
5050 if (subpass->has_color_resolve) {
5051 /* We are about to do some MSAA resolves. We need to flush so that the
5052 * result of writes to the MSAA color attachments show up in the sampler
5053 * when we blit to the single-sampled resolve target.
5054 */
5055 cmd_buffer->state.pending_pipe_bits |=
5056 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5057 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
5058
5059 for (uint32_t i = 0; i < subpass->color_count; ++i) {
5060 uint32_t src_att = subpass->color_attachments[i].attachment;
5061 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
5062
5063 if (dst_att == VK_ATTACHMENT_UNUSED)
5064 continue;
5065
5066 assert(src_att < cmd_buffer->state.pass->attachment_count);
5067 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5068
5069 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5070 /* From the Vulkan 1.0 spec:
5071 *
5072 * If the first use of an attachment in a render pass is as a
5073 * resolve attachment, then the loadOp is effectively ignored
5074 * as the resolve is guaranteed to overwrite all pixels in the
5075 * render area.
5076 */
5077 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5078 }
5079
5080 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5081 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5082
5083 const VkRect2D render_area = cmd_buffer->state.render_area;
5084
5085 enum isl_aux_usage src_aux_usage =
5086 cmd_buffer->state.attachments[src_att].aux_usage;
5087 enum isl_aux_usage dst_aux_usage =
5088 cmd_buffer->state.attachments[dst_att].aux_usage;
5089
5090 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
5091 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
5092
5093 anv_image_msaa_resolve(cmd_buffer,
5094 src_iview->image, src_aux_usage,
5095 src_iview->planes[0].isl.base_level,
5096 src_iview->planes[0].isl.base_array_layer,
5097 dst_iview->image, dst_aux_usage,
5098 dst_iview->planes[0].isl.base_level,
5099 dst_iview->planes[0].isl.base_array_layer,
5100 VK_IMAGE_ASPECT_COLOR_BIT,
5101 render_area.offset.x, render_area.offset.y,
5102 render_area.offset.x, render_area.offset.y,
5103 render_area.extent.width,
5104 render_area.extent.height,
5105 fb->layers, BLORP_FILTER_NONE);
5106 }
5107 }
5108
5109 if (subpass->ds_resolve_attachment) {
5110 /* We are about to do some MSAA resolves. We need to flush so that the
5111 * result of writes to the MSAA depth attachments show up in the sampler
5112 * when we blit to the single-sampled resolve target.
5113 */
5114 cmd_buffer->state.pending_pipe_bits |=
5115 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
5116 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
5117
5118 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
5119 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
5120
5121 assert(src_att < cmd_buffer->state.pass->attachment_count);
5122 assert(dst_att < cmd_buffer->state.pass->attachment_count);
5123
5124 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
5125 /* From the Vulkan 1.0 spec:
5126 *
5127 * If the first use of an attachment in a render pass is as a
5128 * resolve attachment, then the loadOp is effectively ignored
5129 * as the resolve is guaranteed to overwrite all pixels in the
5130 * render area.
5131 */
5132 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
5133 }
5134
5135 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
5136 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
5137
5138 const VkRect2D render_area = cmd_buffer->state.render_area;
5139
5140 struct anv_attachment_state *src_state =
5141 &cmd_state->attachments[src_att];
5142 struct anv_attachment_state *dst_state =
5143 &cmd_state->attachments[dst_att];
5144
5145 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5146 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5147
5148 /* MSAA resolves sample from the source attachment. Transition the
5149 * depth attachment first to get rid of any HiZ that we may not be
5150 * able to handle.
5151 */
5152 transition_depth_buffer(cmd_buffer, src_iview->image,
5153 src_state->current_layout,
5154 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5155 src_state->aux_usage =
5156 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5157 VK_IMAGE_ASPECT_DEPTH_BIT,
5158 VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
5159 VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
5160 src_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5161
5162 /* MSAA resolves write to the resolve attachment as if it were any
5163 * other transfer op. Transition the resolve attachment accordingly.
5164 */
5165 VkImageLayout dst_initial_layout = dst_state->current_layout;
5166
5167 /* If our render area is the entire size of the image, we're going to
5168 * blow it all away so we can claim the initial layout is UNDEFINED
5169 * and we'll get a HiZ ambiguate instead of a resolve.
5170 */
5171 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5172 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5173 render_area.extent.width == dst_iview->extent.width &&
5174 render_area.extent.height == dst_iview->extent.height)
5175 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5176
5177 transition_depth_buffer(cmd_buffer, dst_iview->image,
5178 dst_initial_layout,
5179 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5180 dst_state->aux_usage =
5181 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5182 VK_IMAGE_ASPECT_DEPTH_BIT,
5183 VK_IMAGE_USAGE_TRANSFER_DST_BIT,
5184 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5185 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5186
5187 enum blorp_filter filter =
5188 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5189
5190 anv_image_msaa_resolve(cmd_buffer,
5191 src_iview->image, src_state->aux_usage,
5192 src_iview->planes[0].isl.base_level,
5193 src_iview->planes[0].isl.base_array_layer,
5194 dst_iview->image, dst_state->aux_usage,
5195 dst_iview->planes[0].isl.base_level,
5196 dst_iview->planes[0].isl.base_array_layer,
5197 VK_IMAGE_ASPECT_DEPTH_BIT,
5198 render_area.offset.x, render_area.offset.y,
5199 render_area.offset.x, render_area.offset.y,
5200 render_area.extent.width,
5201 render_area.extent.height,
5202 fb->layers, filter);
5203 }
5204
5205 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5206 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5207
5208 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
5209 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5210
5211 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5212 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5213
5214 enum blorp_filter filter =
5215 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5216
5217 anv_image_msaa_resolve(cmd_buffer,
5218 src_iview->image, src_aux_usage,
5219 src_iview->planes[0].isl.base_level,
5220 src_iview->planes[0].isl.base_array_layer,
5221 dst_iview->image, dst_aux_usage,
5222 dst_iview->planes[0].isl.base_level,
5223 dst_iview->planes[0].isl.base_array_layer,
5224 VK_IMAGE_ASPECT_STENCIL_BIT,
5225 render_area.offset.x, render_area.offset.y,
5226 render_area.offset.x, render_area.offset.y,
5227 render_area.extent.width,
5228 render_area.extent.height,
5229 fb->layers, filter);
5230 }
5231 }
5232
5233 #if GEN_GEN == 7
5234 /* On gen7, we have to store a texturable version of the stencil buffer in
5235 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5236 * forth at strategic points. Stencil writes are only allowed in following
5237 * layouts:
5238 *
5239 * - VK_IMAGE_LAYOUT_GENERAL
5240 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5241 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5242 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5243 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5244 *
5245 * For general, we have no nice opportunity to transition so we do the copy
5246 * to the shadow unconditionally at the end of the subpass. For transfer
5247 * destinations, we can update it as part of the transfer op. For the other
5248 * layouts, we delay the copy until a transition into some other layout.
5249 */
5250 if (subpass->depth_stencil_attachment) {
5251 uint32_t a = subpass->depth_stencil_attachment->attachment;
5252 assert(a != VK_ATTACHMENT_UNUSED);
5253
5254 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5255 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5256 const struct anv_image *image = iview->image;
5257
5258 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5259 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5260 VK_IMAGE_ASPECT_STENCIL_BIT);
5261
5262 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5263 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5264 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5265 anv_image_copy_to_shadow(cmd_buffer, image,
5266 VK_IMAGE_ASPECT_STENCIL_BIT,
5267 iview->planes[plane].isl.base_level, 1,
5268 iview->planes[plane].isl.base_array_layer,
5269 fb->layers);
5270 }
5271 }
5272 }
5273 #endif /* GEN_GEN == 7 */
5274
5275 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5276 const uint32_t a = subpass->attachments[i].attachment;
5277 if (a == VK_ATTACHMENT_UNUSED)
5278 continue;
5279
5280 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5281 continue;
5282
5283 assert(a < cmd_state->pass->attachment_count);
5284 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5285 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5286 const struct anv_image *image = iview->image;
5287
5288 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5289 image->vk_format != iview->vk_format) {
5290 enum anv_fast_clear_type fast_clear_type =
5291 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5292 image, VK_IMAGE_ASPECT_COLOR_BIT,
5293 att_state->current_layout);
5294
5295 /* If any clear color was used, flush it down the aux surfaces. If we
5296 * don't do it now using the view's format we might use the clear
5297 * color incorrectly in the following resolves (for example with an
5298 * SRGB view & a UNORM image).
5299 */
5300 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5301 anv_perf_warn(cmd_buffer->device, iview,
5302 "Doing a partial resolve to get rid of clear color at the "
5303 "end of a renderpass due to an image/view format mismatch");
5304
5305 uint32_t base_layer, layer_count;
5306 if (image->type == VK_IMAGE_TYPE_3D) {
5307 base_layer = 0;
5308 layer_count = anv_minify(iview->image->extent.depth,
5309 iview->planes[0].isl.base_level);
5310 } else {
5311 base_layer = iview->planes[0].isl.base_array_layer;
5312 layer_count = fb->layers;
5313 }
5314
5315 for (uint32_t a = 0; a < layer_count; a++) {
5316 uint32_t array_layer = base_layer + a;
5317 if (image->samples == 1) {
5318 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5319 iview->planes[0].isl.format,
5320 VK_IMAGE_ASPECT_COLOR_BIT,
5321 iview->planes[0].isl.base_level,
5322 array_layer,
5323 ISL_AUX_OP_PARTIAL_RESOLVE,
5324 ANV_FAST_CLEAR_NONE);
5325 } else {
5326 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5327 iview->planes[0].isl.format,
5328 VK_IMAGE_ASPECT_COLOR_BIT,
5329 base_layer,
5330 ISL_AUX_OP_PARTIAL_RESOLVE,
5331 ANV_FAST_CLEAR_NONE);
5332 }
5333 }
5334 }
5335 }
5336
5337 /* Transition the image into the final layout for this render pass */
5338 VkImageLayout target_layout =
5339 cmd_state->pass->attachments[a].final_layout;
5340 VkImageLayout target_stencil_layout =
5341 cmd_state->pass->attachments[a].stencil_final_layout;
5342
5343 uint32_t base_layer, layer_count;
5344 if (image->type == VK_IMAGE_TYPE_3D) {
5345 base_layer = 0;
5346 layer_count = anv_minify(iview->image->extent.depth,
5347 iview->planes[0].isl.base_level);
5348 } else {
5349 base_layer = iview->planes[0].isl.base_array_layer;
5350 layer_count = fb->layers;
5351 }
5352
5353 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5354 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5355 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5356 iview->planes[0].isl.base_level, 1,
5357 base_layer, layer_count,
5358 att_state->current_layout, target_layout);
5359 }
5360
5361 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5362 transition_depth_buffer(cmd_buffer, image,
5363 att_state->current_layout, target_layout);
5364 }
5365
5366 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5367 transition_stencil_buffer(cmd_buffer, image,
5368 iview->planes[0].isl.base_level, 1,
5369 base_layer, layer_count,
5370 att_state->current_stencil_layout,
5371 target_stencil_layout);
5372 }
5373 }
5374
5375 /* Accumulate any subpass flushes that need to happen after the subpass.
5376 * Yes, they do get accumulated twice in the NextSubpass case but since
5377 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5378 * ORing the bits in twice so it's harmless.
5379 */
5380 cmd_buffer->state.pending_pipe_bits |=
5381 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5382 }
5383
5384 void genX(CmdBeginRenderPass)(
5385 VkCommandBuffer commandBuffer,
5386 const VkRenderPassBeginInfo* pRenderPassBegin,
5387 VkSubpassContents contents)
5388 {
5389 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5390 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5391 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5392
5393 cmd_buffer->state.framebuffer = framebuffer;
5394 cmd_buffer->state.pass = pass;
5395 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5396 VkResult result =
5397 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5398
5399 /* If we failed to setup the attachments we should not try to go further */
5400 if (result != VK_SUCCESS) {
5401 assert(anv_batch_has_error(&cmd_buffer->batch));
5402 return;
5403 }
5404
5405 genX(flush_pipeline_select_3d)(cmd_buffer);
5406
5407 cmd_buffer_begin_subpass(cmd_buffer, 0);
5408 }
5409
5410 void genX(CmdBeginRenderPass2)(
5411 VkCommandBuffer commandBuffer,
5412 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5413 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5414 {
5415 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5416 pSubpassBeginInfo->contents);
5417 }
5418
5419 void genX(CmdNextSubpass)(
5420 VkCommandBuffer commandBuffer,
5421 VkSubpassContents contents)
5422 {
5423 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5424
5425 if (anv_batch_has_error(&cmd_buffer->batch))
5426 return;
5427
5428 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5429
5430 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5431 cmd_buffer_end_subpass(cmd_buffer);
5432 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5433 }
5434
5435 void genX(CmdNextSubpass2)(
5436 VkCommandBuffer commandBuffer,
5437 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5438 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5439 {
5440 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5441 }
5442
5443 void genX(CmdEndRenderPass)(
5444 VkCommandBuffer commandBuffer)
5445 {
5446 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5447
5448 if (anv_batch_has_error(&cmd_buffer->batch))
5449 return;
5450
5451 cmd_buffer_end_subpass(cmd_buffer);
5452
5453 cmd_buffer->state.hiz_enabled = false;
5454
5455 #ifndef NDEBUG
5456 anv_dump_add_attachments(cmd_buffer);
5457 #endif
5458
5459 /* Remove references to render pass specific state. This enables us to
5460 * detect whether or not we're in a renderpass.
5461 */
5462 cmd_buffer->state.framebuffer = NULL;
5463 cmd_buffer->state.pass = NULL;
5464 cmd_buffer->state.subpass = NULL;
5465 }
5466
5467 void genX(CmdEndRenderPass2)(
5468 VkCommandBuffer commandBuffer,
5469 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5470 {
5471 genX(CmdEndRenderPass)(commandBuffer);
5472 }
5473
5474 void
5475 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5476 {
5477 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5478 struct gen_mi_builder b;
5479 gen_mi_builder_init(&b, &cmd_buffer->batch);
5480
5481 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5482 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5483 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5484
5485 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5486 mip.LoadOperation = LOAD_LOADINV;
5487 mip.CombineOperation = COMBINE_SET;
5488 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5489 }
5490 #endif
5491 }
5492
5493 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5494 void genX(CmdBeginConditionalRenderingEXT)(
5495 VkCommandBuffer commandBuffer,
5496 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5497 {
5498 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5499 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5500 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5501 struct anv_address value_address =
5502 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5503
5504 const bool isInverted = pConditionalRenderingBegin->flags &
5505 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5506
5507 cmd_state->conditional_render_enabled = true;
5508
5509 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5510
5511 struct gen_mi_builder b;
5512 gen_mi_builder_init(&b, &cmd_buffer->batch);
5513
5514 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5515 *
5516 * If the value of the predicate in buffer memory changes
5517 * while conditional rendering is active, the rendering commands
5518 * may be discarded in an implementation-dependent way.
5519 * Some implementations may latch the value of the predicate
5520 * upon beginning conditional rendering while others
5521 * may read it before every rendering command.
5522 *
5523 * So it's perfectly fine to read a value from the buffer once.
5524 */
5525 struct gen_mi_value value = gen_mi_mem32(value_address);
5526
5527 /* Precompute predicate result, it is necessary to support secondary
5528 * command buffers since it is unknown if conditional rendering is
5529 * inverted when populating them.
5530 */
5531 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5532 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5533 gen_mi_ult(&b, gen_mi_imm(0), value));
5534 }
5535
5536 void genX(CmdEndConditionalRenderingEXT)(
5537 VkCommandBuffer commandBuffer)
5538 {
5539 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5540 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5541
5542 cmd_state->conditional_render_enabled = false;
5543 }
5544 #endif
5545
5546 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5547 * command streamer for later execution.
5548 */
5549 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5550 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5551 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5552 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5553 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5554 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5555 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5556 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5557 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5558 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5559 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5560 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5561 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5562 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5563 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5564
5565 void genX(CmdSetEvent)(
5566 VkCommandBuffer commandBuffer,
5567 VkEvent _event,
5568 VkPipelineStageFlags stageMask)
5569 {
5570 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5571 ANV_FROM_HANDLE(anv_event, event, _event);
5572
5573 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5574 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5575 pc.StallAtPixelScoreboard = true;
5576 pc.CommandStreamerStallEnable = true;
5577 }
5578
5579 pc.DestinationAddressType = DAT_PPGTT,
5580 pc.PostSyncOperation = WriteImmediateData,
5581 pc.Address = (struct anv_address) {
5582 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5583 event->state.offset
5584 };
5585 pc.ImmediateData = VK_EVENT_SET;
5586 }
5587 }
5588
5589 void genX(CmdResetEvent)(
5590 VkCommandBuffer commandBuffer,
5591 VkEvent _event,
5592 VkPipelineStageFlags stageMask)
5593 {
5594 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5595 ANV_FROM_HANDLE(anv_event, event, _event);
5596
5597 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5598 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5599 pc.StallAtPixelScoreboard = true;
5600 pc.CommandStreamerStallEnable = true;
5601 }
5602
5603 pc.DestinationAddressType = DAT_PPGTT;
5604 pc.PostSyncOperation = WriteImmediateData;
5605 pc.Address = (struct anv_address) {
5606 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5607 event->state.offset
5608 };
5609 pc.ImmediateData = VK_EVENT_RESET;
5610 }
5611 }
5612
5613 void genX(CmdWaitEvents)(
5614 VkCommandBuffer commandBuffer,
5615 uint32_t eventCount,
5616 const VkEvent* pEvents,
5617 VkPipelineStageFlags srcStageMask,
5618 VkPipelineStageFlags destStageMask,
5619 uint32_t memoryBarrierCount,
5620 const VkMemoryBarrier* pMemoryBarriers,
5621 uint32_t bufferMemoryBarrierCount,
5622 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5623 uint32_t imageMemoryBarrierCount,
5624 const VkImageMemoryBarrier* pImageMemoryBarriers)
5625 {
5626 #if GEN_GEN >= 8
5627 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5628
5629 for (uint32_t i = 0; i < eventCount; i++) {
5630 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5631
5632 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5633 sem.WaitMode = PollingMode,
5634 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5635 sem.SemaphoreDataDword = VK_EVENT_SET,
5636 sem.SemaphoreAddress = (struct anv_address) {
5637 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5638 event->state.offset
5639 };
5640 }
5641 }
5642 #else
5643 anv_finishme("Implement events on gen7");
5644 #endif
5645
5646 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5647 false, /* byRegion */
5648 memoryBarrierCount, pMemoryBarriers,
5649 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5650 imageMemoryBarrierCount, pImageMemoryBarriers);
5651 }
5652
5653 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5654 VkCommandBuffer commandBuffer,
5655 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5656 {
5657 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5658
5659 switch (pOverrideInfo->type) {
5660 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5661 uint32_t dw;
5662
5663 #if GEN_GEN >= 9
5664 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5665 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5666 .MediaInstructionDisable = pOverrideInfo->enable,
5667 ._3DRenderingInstructionDisableMask = true,
5668 .MediaInstructionDisableMask = true);
5669 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5670 #else
5671 anv_pack_struct(&dw, GENX(INSTPM),
5672 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5673 .MediaInstructionDisable = pOverrideInfo->enable,
5674 ._3DRenderingInstructionDisableMask = true,
5675 .MediaInstructionDisableMask = true);
5676 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5677 #endif
5678 break;
5679 }
5680
5681 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5682 if (pOverrideInfo->enable) {
5683 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5684 cmd_buffer->state.pending_pipe_bits |=
5685 ANV_PIPE_FLUSH_BITS |
5686 ANV_PIPE_INVALIDATE_BITS;
5687 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5688 }
5689 break;
5690
5691 default:
5692 unreachable("Invalid override");
5693 }
5694
5695 return VK_SUCCESS;
5696 }
5697
5698 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5699 VkCommandBuffer commandBuffer,
5700 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5701 {
5702 /* TODO: Waiting on the register to write, might depend on generation. */
5703
5704 return VK_SUCCESS;
5705 }