anv/cmd_buffer: Handle MCS identical to CCS_E in compute_aux_usage
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* Emit a render target cache flush.
71 *
72 * This isn't documented anywhere in the PRM. However, it seems to be
73 * necessary prior to changing the surface state base adress. Without
74 * this, we get GPU hangs when using multi-level command buffers which
75 * clear depth, reset state base address, and then go render stuff.
76 */
77 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
78 pc.DCFlushEnable = true;
79 pc.RenderTargetCacheFlushEnable = true;
80 pc.CommandStreamerStallEnable = true;
81 }
82
83 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
84 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
85 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
86 sba.GeneralStateBaseAddressModifyEnable = true;
87
88 sba.SurfaceStateBaseAddress =
89 anv_cmd_buffer_surface_base_address(cmd_buffer);
90 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
91 sba.SurfaceStateBaseAddressModifyEnable = true;
92
93 sba.DynamicStateBaseAddress =
94 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
95 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
96 sba.DynamicStateBaseAddressModifyEnable = true;
97
98 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
99 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
100 sba.IndirectObjectBaseAddressModifyEnable = true;
101
102 sba.InstructionBaseAddress =
103 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
104 sba.InstructionMemoryObjectControlState = GENX(MOCS);
105 sba.InstructionBaseAddressModifyEnable = true;
106
107 # if (GEN_GEN >= 8)
108 /* Broadwell requires that we specify a buffer size for a bunch of
109 * these fields. However, since we will be growing the BO's live, we
110 * just set them all to the maximum.
111 */
112 sba.GeneralStateBufferSize = 0xfffff;
113 sba.GeneralStateBufferSizeModifyEnable = true;
114 sba.DynamicStateBufferSize = 0xfffff;
115 sba.DynamicStateBufferSizeModifyEnable = true;
116 sba.IndirectObjectBufferSize = 0xfffff;
117 sba.IndirectObjectBufferSizeModifyEnable = true;
118 sba.InstructionBufferSize = 0xfffff;
119 sba.InstructionBuffersizeModifyEnable = true;
120 # endif
121 }
122
123 /* After re-setting the surface state base address, we have to do some
124 * cache flusing so that the sampler engine will pick up the new
125 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
126 * Shared Function > 3D Sampler > State > State Caching (page 96):
127 *
128 * Coherency with system memory in the state cache, like the texture
129 * cache is handled partially by software. It is expected that the
130 * command stream or shader will issue Cache Flush operation or
131 * Cache_Flush sampler message to ensure that the L1 cache remains
132 * coherent with system memory.
133 *
134 * [...]
135 *
136 * Whenever the value of the Dynamic_State_Base_Addr,
137 * Surface_State_Base_Addr are altered, the L1 state cache must be
138 * invalidated to ensure the new surface or sampler state is fetched
139 * from system memory.
140 *
141 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
142 * which, according the PIPE_CONTROL instruction documentation in the
143 * Broadwell PRM:
144 *
145 * Setting this bit is independent of any other bit in this packet.
146 * This bit controls the invalidation of the L1 and L2 state caches
147 * at the top of the pipe i.e. at the parsing time.
148 *
149 * Unfortunately, experimentation seems to indicate that state cache
150 * invalidation through a PIPE_CONTROL does nothing whatsoever in
151 * regards to surface state and binding tables. In stead, it seems that
152 * invalidating the texture cache is what is actually needed.
153 *
154 * XXX: As far as we have been able to determine through
155 * experimentation, shows that flush the texture cache appears to be
156 * sufficient. The theory here is that all of the sampling/rendering
157 * units cache the binding table in the texture cache. However, we have
158 * yet to be able to actually confirm this.
159 */
160 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
161 pc.TextureCacheInvalidationEnable = true;
162 pc.ConstantCacheInvalidationEnable = true;
163 pc.StateCacheInvalidationEnable = true;
164 }
165 }
166
167 static void
168 add_surface_state_reloc(struct anv_cmd_buffer *cmd_buffer,
169 struct anv_state state,
170 struct anv_bo *bo, uint32_t offset)
171 {
172 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
173
174 VkResult result =
175 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
176 state.offset + isl_dev->ss.addr_offset, bo, offset);
177 if (result != VK_SUCCESS)
178 anv_batch_set_error(&cmd_buffer->batch, result);
179 }
180
181 static void
182 add_image_view_relocs(struct anv_cmd_buffer *cmd_buffer,
183 const struct anv_image_view *image_view,
184 const uint32_t plane,
185 struct anv_surface_state state)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188 const struct anv_image *image = image_view->image;
189 uint32_t image_plane = image_view->planes[plane].image_plane;
190
191 add_surface_state_reloc(cmd_buffer, state.state,
192 image->planes[image_plane].bo, state.address);
193
194 if (state.aux_address) {
195 VkResult result =
196 anv_reloc_list_add(&cmd_buffer->surface_relocs,
197 &cmd_buffer->pool->alloc,
198 state.state.offset + isl_dev->ss.aux_addr_offset,
199 image->planes[image_plane].bo, state.aux_address);
200 if (result != VK_SUCCESS)
201 anv_batch_set_error(&cmd_buffer->batch, result);
202 }
203 }
204
205 static void
206 color_attachment_compute_aux_usage(struct anv_device * device,
207 struct anv_cmd_state * cmd_state,
208 uint32_t att, VkRect2D render_area,
209 union isl_color_value *fast_clear_color)
210 {
211 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
212 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
213
214 assert(iview->n_planes == 1);
215
216 if (iview->planes[0].isl.base_array_layer >=
217 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
218 iview->planes[0].isl.base_level)) {
219 /* There is no aux buffer which corresponds to the level and layer(s)
220 * being accessed.
221 */
222 att_state->aux_usage = ISL_AUX_USAGE_NONE;
223 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
224 att_state->fast_clear = false;
225 return;
226 }
227
228 att_state->aux_usage =
229 anv_layout_to_aux_usage(&device->info, iview->image,
230 VK_IMAGE_ASPECT_COLOR_BIT,
231 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
232
233 /* If we don't have aux, then we should have returned early in the layer
234 * check above. If we got here, we must have something.
235 */
236 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
237
238 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
239 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
240 att_state->input_aux_usage = att_state->aux_usage;
241 } else {
242 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
243 *
244 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
245 * setting is only allowed if Surface Format supported for Fast
246 * Clear. In addition, if the surface is bound to the sampling
247 * engine, Surface Format must be supported for Render Target
248 * Compression for surfaces bound to the sampling engine."
249 *
250 * In other words, we can only sample from a fast-cleared image if it
251 * also supports color compression.
252 */
253 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
254 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
255
256 /* While fast-clear resolves and partial resolves are fairly cheap in the
257 * case where you render to most of the pixels, full resolves are not
258 * because they potentially involve reading and writing the entire
259 * framebuffer. If we can't texture with CCS_E, we should leave it off and
260 * limit ourselves to fast clears.
261 */
262 if (cmd_state->pass->attachments[att].first_subpass_layout ==
263 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
264 anv_perf_warn(device->instance, iview->image,
265 "Not temporarily enabling CCS_E.");
266 }
267 } else {
268 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
269 }
270 }
271
272 assert(iview->image->planes[0].aux_surface.isl.usage &
273 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
274
275 const struct isl_format_layout *view_fmtl =
276 isl_format_get_layout(iview->planes[0].isl.format);
277 union isl_color_value clear_color = {};
278
279 #define COPY_CLEAR_COLOR_CHANNEL(c, i) \
280 if (view_fmtl->channels.c.bits) \
281 clear_color.u32[i] = att_state->clear_value.color.uint32[i]
282
283 COPY_CLEAR_COLOR_CHANNEL(r, 0);
284 COPY_CLEAR_COLOR_CHANNEL(g, 1);
285 COPY_CLEAR_COLOR_CHANNEL(b, 2);
286 COPY_CLEAR_COLOR_CHANNEL(a, 3);
287
288 #undef COPY_CLEAR_COLOR_CHANNEL
289
290 att_state->clear_color_is_zero_one =
291 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
292 att_state->clear_color_is_zero =
293 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
294
295 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
296 /* Start by getting the fast clear type. We use the first subpass
297 * layout here because we don't want to fast-clear if the first subpass
298 * to use the attachment can't handle fast-clears.
299 */
300 enum anv_fast_clear_type fast_clear_type =
301 anv_layout_to_fast_clear_type(&device->info, iview->image,
302 VK_IMAGE_ASPECT_COLOR_BIT,
303 cmd_state->pass->attachments[att].first_subpass_layout);
304 switch (fast_clear_type) {
305 case ANV_FAST_CLEAR_NONE:
306 att_state->fast_clear = false;
307 break;
308 case ANV_FAST_CLEAR_DEFAULT_VALUE:
309 att_state->fast_clear = att_state->clear_color_is_zero;
310 break;
311 case ANV_FAST_CLEAR_ANY:
312 att_state->fast_clear = true;
313 break;
314 }
315
316 /* Potentially, we could do partial fast-clears but doing so has crazy
317 * alignment restrictions. It's easier to just restrict to full size
318 * fast clears for now.
319 */
320 if (render_area.offset.x != 0 ||
321 render_area.offset.y != 0 ||
322 render_area.extent.width != iview->extent.width ||
323 render_area.extent.height != iview->extent.height)
324 att_state->fast_clear = false;
325
326 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
327 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
328 att_state->fast_clear = false;
329
330 /* We only allow fast clears to the first slice of an image (level 0,
331 * layer 0) and only for the entire slice. This guarantees us that, at
332 * any given time, there is only one clear color on any given image at
333 * any given time. At the time of our testing (Jan 17, 2018), there
334 * were no known applications which would benefit from fast-clearing
335 * more than just the first slice.
336 */
337 if (att_state->fast_clear &&
338 (iview->planes[0].isl.base_level > 0 ||
339 iview->planes[0].isl.base_array_layer > 0)) {
340 anv_perf_warn(device->instance, iview->image,
341 "Rendering with multi-lod or multi-layer framebuffer "
342 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
343 "baseArrayLayer > 0. Not fast clearing.");
344 att_state->fast_clear = false;
345 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
346 anv_perf_warn(device->instance, iview->image,
347 "Rendering to a multi-layer framebuffer with "
348 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
349 }
350
351 if (att_state->fast_clear)
352 *fast_clear_color = clear_color;
353 } else {
354 att_state->fast_clear = false;
355 }
356 }
357
358 static void
359 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
360 struct anv_cmd_state *cmd_state,
361 uint32_t att, VkRect2D render_area)
362 {
363 struct anv_render_pass_attachment *pass_att =
364 &cmd_state->pass->attachments[att];
365 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
366 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
367
368 /* These will be initialized after the first subpass transition. */
369 att_state->aux_usage = ISL_AUX_USAGE_NONE;
370 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
371
372 if (GEN_GEN == 7) {
373 /* We don't do any HiZ or depth fast-clears on gen7 yet */
374 att_state->fast_clear = false;
375 return;
376 }
377
378 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
379 /* If we're just clearing stencil, we can always HiZ clear */
380 att_state->fast_clear = true;
381 return;
382 }
383
384 /* Default to false for now */
385 att_state->fast_clear = false;
386
387 /* We must have depth in order to have HiZ */
388 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
389 return;
390
391 const enum isl_aux_usage first_subpass_aux_usage =
392 anv_layout_to_aux_usage(&device->info, iview->image,
393 VK_IMAGE_ASPECT_DEPTH_BIT,
394 pass_att->first_subpass_layout);
395 if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ)
396 return;
397
398 if (!blorp_can_hiz_clear_depth(GEN_GEN,
399 iview->planes[0].isl.format,
400 iview->image->samples,
401 render_area.offset.x,
402 render_area.offset.y,
403 render_area.offset.x +
404 render_area.extent.width,
405 render_area.offset.y +
406 render_area.extent.height))
407 return;
408
409 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
410 return;
411
412 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
413 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
414 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
415 * only supports returning 0.0f. Gens prior to gen8 do not support this
416 * feature at all.
417 */
418 return;
419 }
420
421 /* If we got here, then we can fast clear */
422 att_state->fast_clear = true;
423 }
424
425 static bool
426 need_input_attachment_state(const struct anv_render_pass_attachment *att)
427 {
428 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
429 return false;
430
431 /* We only allocate input attachment states for color surfaces. Compression
432 * is not yet enabled for depth textures and stencil doesn't allow
433 * compression so we can just use the texture surface state from the view.
434 */
435 return vk_format_is_color(att->format);
436 }
437
438 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
439 * the initial layout is undefined, the HiZ buffer and depth buffer will
440 * represent the same data at the end of this operation.
441 */
442 static void
443 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
444 const struct anv_image *image,
445 VkImageLayout initial_layout,
446 VkImageLayout final_layout)
447 {
448 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
449 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
450 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
451 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
452 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
453 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
454
455 enum isl_aux_op hiz_op;
456 if (hiz_enabled && !enable_hiz) {
457 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
458 } else if (!hiz_enabled && enable_hiz) {
459 hiz_op = ISL_AUX_OP_AMBIGUATE;
460 } else {
461 assert(hiz_enabled == enable_hiz);
462 /* If the same buffer will be used, no resolves are necessary. */
463 hiz_op = ISL_AUX_OP_NONE;
464 }
465
466 if (hiz_op != ISL_AUX_OP_NONE)
467 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
468 0, 0, 1, hiz_op);
469 }
470
471 #define MI_PREDICATE_SRC0 0x2400
472 #define MI_PREDICATE_SRC1 0x2408
473
474 static void
475 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
476 const struct anv_image *image,
477 VkImageAspectFlagBits aspect,
478 uint32_t level,
479 uint32_t base_layer, uint32_t layer_count,
480 bool compressed)
481 {
482 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
483
484 /* We only have compression tracking for CCS_E */
485 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
486 return;
487
488 for (uint32_t a = 0; a < layer_count; a++) {
489 uint32_t layer = base_layer + a;
490 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
491 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
492 image, aspect,
493 level, layer);
494 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
495 }
496 }
497 }
498
499 static void
500 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
501 const struct anv_image *image,
502 VkImageAspectFlagBits aspect,
503 enum anv_fast_clear_type fast_clear)
504 {
505 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
506 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
507 image, aspect);
508 sdi.ImmediateData = fast_clear;
509 }
510
511 /* Whenever we have fast-clear, we consider that slice to be compressed.
512 * This makes building predicates much easier.
513 */
514 if (fast_clear != ANV_FAST_CLEAR_NONE)
515 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
516 }
517
518 #if GEN_IS_HASWELL || GEN_GEN >= 8
519 static inline uint32_t
520 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
521 {
522 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
523 .ALUOpcode = opcode,
524 .Operand1 = operand1,
525 .Operand2 = operand2,
526 };
527
528 uint32_t dw;
529 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
530
531 return dw;
532 }
533 #endif
534
535 #define CS_GPR(n) (0x2600 + (n) * 8)
536
537 static void
538 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
539 const struct anv_image *image,
540 VkImageAspectFlagBits aspect,
541 uint32_t level, uint32_t array_layer,
542 enum isl_aux_op resolve_op,
543 enum anv_fast_clear_type fast_clear_supported)
544 {
545 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
546 struct anv_address fast_clear_type_addr =
547 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
548
549 #if GEN_GEN >= 9
550 /* Name some registers */
551 const int image_fc_reg = MI_ALU_REG0;
552 const int fc_imm_reg = MI_ALU_REG1;
553 const int pred_reg = MI_ALU_REG2;
554
555 uint32_t *dw;
556
557 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
558 /* In this case, we're doing a full resolve which means we want the
559 * resolve to happen if any compression (including fast-clears) is
560 * present.
561 *
562 * In order to simplify the logic a bit, we make the assumption that,
563 * if the first slice has been fast-cleared, it is also marked as
564 * compressed. See also set_image_fast_clear_state.
565 */
566 struct anv_address compression_state_addr =
567 anv_image_get_compression_state_addr(cmd_buffer->device, image,
568 aspect, level, array_layer);
569 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
570 lrm.RegisterAddress = MI_PREDICATE_SRC0;
571 lrm.MemoryAddress = compression_state_addr;
572 }
573 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
574 sdi.Address = compression_state_addr;
575 sdi.ImmediateData = 0;
576 }
577
578 if (level == 0 && array_layer == 0) {
579 /* If the predicate is true, we want to write 0 to the fast clear type
580 * and, if it's false, leave it alone. We can do this by writing
581 *
582 * clear_type = clear_type & ~predicate;
583 */
584 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
585 lrm.RegisterAddress = CS_GPR(image_fc_reg);
586 lrm.MemoryAddress = fast_clear_type_addr;
587 }
588 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
589 lrr.DestinationRegisterAddress = CS_GPR(pred_reg);
590 lrr.SourceRegisterAddress = MI_PREDICATE_SRC0;
591 }
592
593 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
594 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
595 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
596 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
597 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
598
599 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
600 srm.MemoryAddress = fast_clear_type_addr;
601 srm.RegisterAddress = CS_GPR(image_fc_reg);
602 }
603 }
604 } else if (level == 0 && array_layer == 0) {
605 /* In this case, we are doing a partial resolve to get rid of fast-clear
606 * colors. We don't care about the compression state but we do care
607 * about how much fast clear is allowed by the final layout.
608 */
609 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
610 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
611
612 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
613 lrm.RegisterAddress = CS_GPR(image_fc_reg);
614 lrm.MemoryAddress = fast_clear_type_addr;
615 }
616 emit_lri(&cmd_buffer->batch, CS_GPR(image_fc_reg) + 4, 0);
617
618 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg), fast_clear_supported);
619 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg) + 4, 0);
620
621 /* We need to compute (fast_clear_supported < image->fast_clear).
622 * We do this by subtracting and storing the carry bit.
623 */
624 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
625 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm_reg);
626 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc_reg);
627 dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
628 dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF);
629
630 /* Store the predicate */
631 emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg));
632
633 /* If the predicate is true, we want to write 0 to the fast clear type
634 * and, if it's false, leave it alone. We can do this by writing
635 *
636 * clear_type = clear_type & ~predicate;
637 */
638 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
639 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
640 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
641 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
642 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
643
644 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
645 srm.RegisterAddress = CS_GPR(image_fc_reg);
646 srm.MemoryAddress = fast_clear_type_addr;
647 }
648 } else {
649 /* In this case, we're trying to do a partial resolve on a slice that
650 * doesn't have clear color. There's nothing to do.
651 */
652 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
653 return;
654 }
655
656 #else /* GEN_GEN <= 8 */
657 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
658 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
659
660 /* We don't support fast clears on anything other than the first slice. */
661 if (level > 0 || array_layer > 0)
662 return;
663
664 /* On gen8, we don't have a concept of default clear colors because we
665 * can't sample from CCS surfaces. It's enough to just load the fast clear
666 * state into the predicate register.
667 */
668 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
669 lrm.RegisterAddress = MI_PREDICATE_SRC0;
670 lrm.MemoryAddress = fast_clear_type_addr;
671 }
672 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
673 sdi.Address = fast_clear_type_addr;
674 sdi.ImmediateData = 0;
675 }
676 #endif
677
678 /* We use the first half of src0 for the actual predicate. Set the second
679 * half of src0 and all of src1 to 0 as the predicate operation will be
680 * doing an implicit src0 != src1.
681 */
682 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
683 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
684 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
685
686 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
687 mip.LoadOperation = LOAD_LOADINV;
688 mip.CombineOperation = COMBINE_SET;
689 mip.CompareOperation = COMPARE_SRCS_EQUAL;
690 }
691
692 /* CCS_D only supports full resolves and BLORP will assert on us if we try
693 * to do a partial resolve on a CCS_D surface.
694 */
695 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
696 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
697 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
698
699 anv_image_ccs_op(cmd_buffer, image, aspect, level,
700 array_layer, 1, resolve_op, true);
701 }
702
703 void
704 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
705 const struct anv_image *image,
706 VkImageAspectFlagBits aspect,
707 enum isl_aux_usage aux_usage,
708 uint32_t level,
709 uint32_t base_layer,
710 uint32_t layer_count)
711 {
712 /* The aspect must be exactly one of the image aspects. */
713 assert(_mesa_bitcount(aspect) == 1 && (aspect & image->aspects));
714
715 /* The only compression types with more than just fast-clears are MCS,
716 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
717 * track the current fast-clear and compression state. This leaves us
718 * with just MCS and CCS_E.
719 */
720 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
721 aux_usage != ISL_AUX_USAGE_MCS)
722 return;
723
724 set_image_compressed_bit(cmd_buffer, image, aspect,
725 level, base_layer, layer_count, true);
726 }
727
728 static void
729 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
730 const struct anv_image *image,
731 VkImageAspectFlagBits aspect)
732 {
733 assert(cmd_buffer && image);
734 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
735
736 set_image_fast_clear_state(cmd_buffer, image, aspect,
737 ANV_FAST_CLEAR_NONE);
738
739 /* The fast clear value dword(s) will be copied into a surface state object.
740 * Ensure that the restrictions of the fields in the dword(s) are followed.
741 *
742 * CCS buffers on SKL+ can have any value set for the clear colors.
743 */
744 if (image->samples == 1 && GEN_GEN >= 9)
745 return;
746
747 /* Other combinations of auxiliary buffers and platforms require specific
748 * values in the clear value dword(s).
749 */
750 struct anv_address addr =
751 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
752 unsigned i = 0;
753 for (; i < cmd_buffer->device->isl_dev.ss.clear_value_size; i += 4) {
754 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
755 sdi.Address = addr;
756
757 if (GEN_GEN >= 9) {
758 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
759 assert(image->samples > 1);
760 sdi.ImmediateData = 0;
761 } else if (GEN_VERSIONx10 >= 75) {
762 /* Pre-SKL, the dword containing the clear values also contains
763 * other fields, so we need to initialize those fields to match the
764 * values that would be in a color attachment.
765 */
766 assert(i == 0);
767 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
768 ISL_CHANNEL_SELECT_GREEN << 22 |
769 ISL_CHANNEL_SELECT_BLUE << 19 |
770 ISL_CHANNEL_SELECT_ALPHA << 16;
771 } else if (GEN_VERSIONx10 == 70) {
772 /* On IVB, the dword containing the clear values also contains
773 * other fields that must be zero or can be zero.
774 */
775 assert(i == 0);
776 sdi.ImmediateData = 0;
777 }
778 }
779
780 addr.offset += 4;
781 }
782 }
783
784 /* Copy the fast-clear value dword(s) between a surface state object and an
785 * image's fast clear state buffer.
786 */
787 static void
788 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
789 struct anv_state surface_state,
790 const struct anv_image *image,
791 VkImageAspectFlagBits aspect,
792 bool copy_from_surface_state)
793 {
794 assert(cmd_buffer && image);
795 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
796
797 struct anv_bo *ss_bo =
798 &cmd_buffer->device->surface_state_pool.block_pool.bo;
799 uint32_t ss_clear_offset = surface_state.offset +
800 cmd_buffer->device->isl_dev.ss.clear_value_offset;
801 const struct anv_address entry_addr =
802 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
803 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
804
805 if (copy_from_surface_state) {
806 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
807 ss_bo, ss_clear_offset, copy_size);
808 } else {
809 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
810 entry_addr.bo, entry_addr.offset, copy_size);
811
812 /* Updating a surface state object may require that the state cache be
813 * invalidated. From the SKL PRM, Shared Functions -> State -> State
814 * Caching:
815 *
816 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
817 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
818 * modified [...], the L1 state cache must be invalidated to ensure
819 * the new surface or sampler state is fetched from system memory.
820 *
821 * In testing, SKL doesn't actually seem to need this, but HSW does.
822 */
823 cmd_buffer->state.pending_pipe_bits |=
824 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
825 }
826 }
827
828 /**
829 * @brief Transitions a color buffer from one layout to another.
830 *
831 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
832 * more information.
833 *
834 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
835 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
836 * this represents the maximum layers to transition at each
837 * specified miplevel.
838 */
839 static void
840 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
841 const struct anv_image *image,
842 VkImageAspectFlagBits aspect,
843 const uint32_t base_level, uint32_t level_count,
844 uint32_t base_layer, uint32_t layer_count,
845 VkImageLayout initial_layout,
846 VkImageLayout final_layout)
847 {
848 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
849 /* Validate the inputs. */
850 assert(cmd_buffer);
851 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
852 /* These values aren't supported for simplicity's sake. */
853 assert(level_count != VK_REMAINING_MIP_LEVELS &&
854 layer_count != VK_REMAINING_ARRAY_LAYERS);
855 /* Ensure the subresource range is valid. */
856 uint64_t last_level_num = base_level + level_count;
857 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
858 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
859 assert((uint64_t)base_layer + layer_count <= image_layers);
860 assert(last_level_num <= image->levels);
861 /* The spec disallows these final layouts. */
862 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
863 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
864
865 /* No work is necessary if the layout stays the same or if this subresource
866 * range lacks auxiliary data.
867 */
868 if (initial_layout == final_layout)
869 return;
870
871 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
872
873 if (image->planes[plane].shadow_surface.isl.size > 0 &&
874 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
875 /* This surface is a linear compressed image with a tiled shadow surface
876 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
877 * we need to ensure the shadow copy is up-to-date.
878 */
879 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
880 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
881 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
882 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
883 assert(plane == 0);
884 anv_image_copy_to_shadow(cmd_buffer, image,
885 base_level, level_count,
886 base_layer, layer_count);
887 }
888
889 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
890 return;
891
892 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
893
894 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
895 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
896 /* A subresource in the undefined layout may have been aliased and
897 * populated with any arrangement of bits. Therefore, we must initialize
898 * the related aux buffer and clear buffer entry with desirable values.
899 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
900 * images with VK_IMAGE_TILING_OPTIMAL.
901 *
902 * Initialize the relevant clear buffer entries.
903 */
904 if (base_level == 0 && base_layer == 0)
905 init_fast_clear_color(cmd_buffer, image, aspect);
906
907 /* Initialize the aux buffers to enable correct rendering. In order to
908 * ensure that things such as storage images work correctly, aux buffers
909 * need to be initialized to valid data.
910 *
911 * Having an aux buffer with invalid data is a problem for two reasons:
912 *
913 * 1) Having an invalid value in the buffer can confuse the hardware.
914 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
915 * invalid and leads to the hardware doing strange things. It
916 * doesn't hang as far as we can tell but rendering corruption can
917 * occur.
918 *
919 * 2) If this transition is into the GENERAL layout and we then use the
920 * image as a storage image, then we must have the aux buffer in the
921 * pass-through state so that, if we then go to texture from the
922 * image, we get the results of our storage image writes and not the
923 * fast clear color or other random data.
924 *
925 * For CCS both of the problems above are real demonstrable issues. In
926 * that case, the only thing we can do is to perform an ambiguate to
927 * transition the aux surface into the pass-through state.
928 *
929 * For MCS, (2) is never an issue because we don't support multisampled
930 * storage images. In theory, issue (1) is a problem with MCS but we've
931 * never seen it in the wild. For 4x and 16x, all bit patters could, in
932 * theory, be interpreted as something but we don't know that all bit
933 * patterns are actually valid. For 2x and 8x, you could easily end up
934 * with the MCS referring to an invalid plane because not all bits of
935 * the MCS value are actually used. Even though we've never seen issues
936 * in the wild, it's best to play it safe and initialize the MCS. We
937 * can use a fast-clear for MCS because we only ever touch from render
938 * and texture (no image load store).
939 */
940 if (image->samples == 1) {
941 for (uint32_t l = 0; l < level_count; l++) {
942 const uint32_t level = base_level + l;
943
944 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
945 if (base_layer >= aux_layers)
946 break; /* We will only get fewer layers as level increases */
947 uint32_t level_layer_count =
948 MIN2(layer_count, aux_layers - base_layer);
949
950 anv_image_ccs_op(cmd_buffer, image, aspect, level,
951 base_layer, level_layer_count,
952 ISL_AUX_OP_AMBIGUATE, false);
953
954 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
955 set_image_compressed_bit(cmd_buffer, image, aspect,
956 level, base_layer, level_layer_count,
957 false);
958 }
959 }
960 } else {
961 if (image->samples == 4 || image->samples == 16) {
962 anv_perf_warn(cmd_buffer->device->instance, image,
963 "Doing a potentially unnecessary fast-clear to "
964 "define an MCS buffer.");
965 }
966
967 assert(base_level == 0 && level_count == 1);
968 anv_image_mcs_op(cmd_buffer, image, aspect,
969 base_layer, layer_count,
970 ISL_AUX_OP_FAST_CLEAR, false);
971 }
972 return;
973 }
974
975 const enum isl_aux_usage initial_aux_usage =
976 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
977 const enum isl_aux_usage final_aux_usage =
978 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
979
980 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
981 * We can handle transitions between CCS_D/E to and from NONE. What we
982 * don't yet handle is switching between CCS_E and CCS_D within a given
983 * image. Doing so in a performant way requires more detailed aux state
984 * tracking such as what is done in i965. For now, just assume that we
985 * only have one type of compression.
986 */
987 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
988 final_aux_usage == ISL_AUX_USAGE_NONE ||
989 initial_aux_usage == final_aux_usage);
990
991 /* If initial aux usage is NONE, there is nothing to resolve */
992 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
993 return;
994
995 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
996
997 /* If the initial layout supports more fast clear than the final layout
998 * then we need at least a partial resolve.
999 */
1000 const enum anv_fast_clear_type initial_fast_clear =
1001 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1002 const enum anv_fast_clear_type final_fast_clear =
1003 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1004 if (final_fast_clear < initial_fast_clear)
1005 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1006
1007 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1008 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1009 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1010
1011 if (resolve_op == ISL_AUX_OP_NONE)
1012 return;
1013
1014 /* Perform a resolve to synchronize data between the main and aux buffer.
1015 * Before we begin, we must satisfy the cache flushing requirement specified
1016 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1017 *
1018 * Any transition from any value in {Clear, Render, Resolve} to a
1019 * different value in {Clear, Render, Resolve} requires end of pipe
1020 * synchronization.
1021 *
1022 * We perform a flush of the write cache before and after the clear and
1023 * resolve operations to meet this requirement.
1024 *
1025 * Unlike other drawing, fast clear operations are not properly
1026 * synchronized. The first PIPE_CONTROL here likely ensures that the
1027 * contents of the previous render or clear hit the render target before we
1028 * resolve and the second likely ensures that the resolve is complete before
1029 * we do any more rendering or clearing.
1030 */
1031 cmd_buffer->state.pending_pipe_bits |=
1032 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1033
1034 for (uint32_t l = 0; l < level_count; l++) {
1035 uint32_t level = base_level + l;
1036
1037 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1038 if (base_layer >= aux_layers)
1039 break; /* We will only get fewer layers as level increases */
1040 uint32_t level_layer_count =
1041 MIN2(layer_count, aux_layers - base_layer);
1042
1043 for (uint32_t a = 0; a < level_layer_count; a++) {
1044 uint32_t array_layer = base_layer + a;
1045 anv_cmd_predicated_ccs_resolve(cmd_buffer, image, aspect,
1046 level, array_layer, resolve_op,
1047 final_fast_clear);
1048 }
1049 }
1050
1051 cmd_buffer->state.pending_pipe_bits |=
1052 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1053 }
1054
1055 /**
1056 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1057 */
1058 static VkResult
1059 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1060 struct anv_render_pass *pass,
1061 const VkRenderPassBeginInfo *begin)
1062 {
1063 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1064 struct anv_cmd_state *state = &cmd_buffer->state;
1065
1066 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1067
1068 if (pass->attachment_count > 0) {
1069 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1070 pass->attachment_count *
1071 sizeof(state->attachments[0]),
1072 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1073 if (state->attachments == NULL) {
1074 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1075 return anv_batch_set_error(&cmd_buffer->batch,
1076 VK_ERROR_OUT_OF_HOST_MEMORY);
1077 }
1078 } else {
1079 state->attachments = NULL;
1080 }
1081
1082 /* Reserve one for the NULL state. */
1083 unsigned num_states = 1;
1084 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1085 if (vk_format_is_color(pass->attachments[i].format))
1086 num_states++;
1087
1088 if (need_input_attachment_state(&pass->attachments[i]))
1089 num_states++;
1090 }
1091
1092 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1093 state->render_pass_states =
1094 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1095 num_states * ss_stride, isl_dev->ss.align);
1096
1097 struct anv_state next_state = state->render_pass_states;
1098 next_state.alloc_size = isl_dev->ss.size;
1099
1100 state->null_surface_state = next_state;
1101 next_state.offset += ss_stride;
1102 next_state.map += ss_stride;
1103
1104 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1105 if (vk_format_is_color(pass->attachments[i].format)) {
1106 state->attachments[i].color.state = next_state;
1107 next_state.offset += ss_stride;
1108 next_state.map += ss_stride;
1109 }
1110
1111 if (need_input_attachment_state(&pass->attachments[i])) {
1112 state->attachments[i].input.state = next_state;
1113 next_state.offset += ss_stride;
1114 next_state.map += ss_stride;
1115 }
1116 }
1117 assert(next_state.offset == state->render_pass_states.offset +
1118 state->render_pass_states.alloc_size);
1119
1120 if (begin) {
1121 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
1122 assert(pass->attachment_count == framebuffer->attachment_count);
1123
1124 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1125 isl_extent3d(framebuffer->width,
1126 framebuffer->height,
1127 framebuffer->layers));
1128
1129 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1130 struct anv_render_pass_attachment *att = &pass->attachments[i];
1131 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1132 VkImageAspectFlags clear_aspects = 0;
1133 VkImageAspectFlags load_aspects = 0;
1134
1135 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1136 /* color attachment */
1137 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1138 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1139 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1140 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1141 }
1142 } else {
1143 /* depthstencil attachment */
1144 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1145 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1146 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1147 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1148 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1149 }
1150 }
1151 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1152 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1153 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1154 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1155 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1156 }
1157 }
1158 }
1159
1160 state->attachments[i].current_layout = att->initial_layout;
1161 state->attachments[i].pending_clear_aspects = clear_aspects;
1162 state->attachments[i].pending_load_aspects = load_aspects;
1163 if (clear_aspects)
1164 state->attachments[i].clear_value = begin->pClearValues[i];
1165
1166 struct anv_image_view *iview = framebuffer->attachments[i];
1167 anv_assert(iview->vk_format == att->format);
1168 anv_assert(iview->n_planes == 1);
1169
1170 union isl_color_value clear_color = { .u32 = { 0, } };
1171 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1172 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1173 color_attachment_compute_aux_usage(cmd_buffer->device,
1174 state, i, begin->renderArea,
1175 &clear_color);
1176
1177 anv_image_fill_surface_state(cmd_buffer->device,
1178 iview->image,
1179 VK_IMAGE_ASPECT_COLOR_BIT,
1180 &iview->planes[0].isl,
1181 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1182 state->attachments[i].aux_usage,
1183 &clear_color,
1184 0,
1185 &state->attachments[i].color,
1186 NULL);
1187
1188 add_image_view_relocs(cmd_buffer, iview, 0,
1189 state->attachments[i].color);
1190 } else {
1191 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1192 state, i,
1193 begin->renderArea);
1194 }
1195
1196 if (need_input_attachment_state(&pass->attachments[i])) {
1197 anv_image_fill_surface_state(cmd_buffer->device,
1198 iview->image,
1199 VK_IMAGE_ASPECT_COLOR_BIT,
1200 &iview->planes[0].isl,
1201 ISL_SURF_USAGE_TEXTURE_BIT,
1202 state->attachments[i].input_aux_usage,
1203 &clear_color,
1204 0,
1205 &state->attachments[i].input,
1206 NULL);
1207
1208 add_image_view_relocs(cmd_buffer, iview, 0,
1209 state->attachments[i].input);
1210 }
1211 }
1212 }
1213
1214 return VK_SUCCESS;
1215 }
1216
1217 VkResult
1218 genX(BeginCommandBuffer)(
1219 VkCommandBuffer commandBuffer,
1220 const VkCommandBufferBeginInfo* pBeginInfo)
1221 {
1222 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1223
1224 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1225 * command buffer's state. Otherwise, we must *reset* its state. In both
1226 * cases we reset it.
1227 *
1228 * From the Vulkan 1.0 spec:
1229 *
1230 * If a command buffer is in the executable state and the command buffer
1231 * was allocated from a command pool with the
1232 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1233 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1234 * as if vkResetCommandBuffer had been called with
1235 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1236 * the command buffer in the recording state.
1237 */
1238 anv_cmd_buffer_reset(cmd_buffer);
1239
1240 cmd_buffer->usage_flags = pBeginInfo->flags;
1241
1242 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1243 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1244
1245 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1246
1247 /* We sometimes store vertex data in the dynamic state buffer for blorp
1248 * operations and our dynamic state stream may re-use data from previous
1249 * command buffers. In order to prevent stale cache data, we flush the VF
1250 * cache. We could do this on every blorp call but that's not really
1251 * needed as all of the data will get written by the CPU prior to the GPU
1252 * executing anything. The chances are fairly high that they will use
1253 * blorp at least once per primary command buffer so it shouldn't be
1254 * wasted.
1255 */
1256 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1257 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1258
1259 /* We send an "Indirect State Pointers Disable" packet at
1260 * EndCommandBuffer, so all push contant packets are ignored during a
1261 * context restore. Documentation says after that command, we need to
1262 * emit push constants again before any rendering operation. So we
1263 * flag them dirty here to make sure they get emitted.
1264 */
1265 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1266
1267 VkResult result = VK_SUCCESS;
1268 if (cmd_buffer->usage_flags &
1269 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1270 assert(pBeginInfo->pInheritanceInfo);
1271 cmd_buffer->state.pass =
1272 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1273 cmd_buffer->state.subpass =
1274 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1275
1276 /* This is optional in the inheritance info. */
1277 cmd_buffer->state.framebuffer =
1278 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1279
1280 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1281 cmd_buffer->state.pass, NULL);
1282
1283 /* Record that HiZ is enabled if we can. */
1284 if (cmd_buffer->state.framebuffer) {
1285 const struct anv_image_view * const iview =
1286 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1287
1288 if (iview) {
1289 VkImageLayout layout =
1290 cmd_buffer->state.subpass->depth_stencil_attachment.layout;
1291
1292 enum isl_aux_usage aux_usage =
1293 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1294 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1295
1296 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1297 }
1298 }
1299
1300 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1301 }
1302
1303 return result;
1304 }
1305
1306 /* From the PRM, Volume 2a:
1307 *
1308 * "Indirect State Pointers Disable
1309 *
1310 * At the completion of the post-sync operation associated with this pipe
1311 * control packet, the indirect state pointers in the hardware are
1312 * considered invalid; the indirect pointers are not saved in the context.
1313 * If any new indirect state commands are executed in the command stream
1314 * while the pipe control is pending, the new indirect state commands are
1315 * preserved.
1316 *
1317 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1318 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1319 * commands are only considered as Indirect State Pointers. Once ISP is
1320 * issued in a context, SW must initialize by programming push constant
1321 * commands for all the shaders (at least to zero length) before attempting
1322 * any rendering operation for the same context."
1323 *
1324 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1325 * even though they point to a BO that has been already unreferenced at
1326 * the end of the previous batch buffer. This has been fine so far since
1327 * we are protected by these scratch page (every address not covered by
1328 * a BO should be pointing to the scratch page). But on CNL, it is
1329 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1330 * instruction.
1331 *
1332 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1333 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1334 * context restore, so the mentioned hang doesn't happen. However,
1335 * software must program push constant commands for all stages prior to
1336 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1337 */
1338 static void
1339 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1340 {
1341 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1342 pc.IndirectStatePointersDisable = true;
1343 pc.CommandStreamerStallEnable = true;
1344 }
1345 }
1346
1347 VkResult
1348 genX(EndCommandBuffer)(
1349 VkCommandBuffer commandBuffer)
1350 {
1351 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1352
1353 if (anv_batch_has_error(&cmd_buffer->batch))
1354 return cmd_buffer->batch.status;
1355
1356 /* We want every command buffer to start with the PMA fix in a known state,
1357 * so we disable it at the end of the command buffer.
1358 */
1359 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1360
1361 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1362
1363 emit_isp_disable(cmd_buffer);
1364
1365 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1366
1367 return VK_SUCCESS;
1368 }
1369
1370 void
1371 genX(CmdExecuteCommands)(
1372 VkCommandBuffer commandBuffer,
1373 uint32_t commandBufferCount,
1374 const VkCommandBuffer* pCmdBuffers)
1375 {
1376 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1377
1378 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1379
1380 if (anv_batch_has_error(&primary->batch))
1381 return;
1382
1383 /* The secondary command buffers will assume that the PMA fix is disabled
1384 * when they begin executing. Make sure this is true.
1385 */
1386 genX(cmd_buffer_enable_pma_fix)(primary, false);
1387
1388 /* The secondary command buffer doesn't know which textures etc. have been
1389 * flushed prior to their execution. Apply those flushes now.
1390 */
1391 genX(cmd_buffer_apply_pipe_flushes)(primary);
1392
1393 for (uint32_t i = 0; i < commandBufferCount; i++) {
1394 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1395
1396 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1397 assert(!anv_batch_has_error(&secondary->batch));
1398
1399 if (secondary->usage_flags &
1400 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1401 /* If we're continuing a render pass from the primary, we need to
1402 * copy the surface states for the current subpass into the storage
1403 * we allocated for them in BeginCommandBuffer.
1404 */
1405 struct anv_bo *ss_bo =
1406 &primary->device->surface_state_pool.block_pool.bo;
1407 struct anv_state src_state = primary->state.render_pass_states;
1408 struct anv_state dst_state = secondary->state.render_pass_states;
1409 assert(src_state.alloc_size == dst_state.alloc_size);
1410
1411 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1412 ss_bo, src_state.offset,
1413 src_state.alloc_size);
1414 }
1415
1416 anv_cmd_buffer_add_secondary(primary, secondary);
1417 }
1418
1419 /* The secondary may have selected a different pipeline (3D or compute) and
1420 * may have changed the current L3$ configuration. Reset our tracking
1421 * variables to invalid values to ensure that we re-emit these in the case
1422 * where we do any draws or compute dispatches from the primary after the
1423 * secondary has returned.
1424 */
1425 primary->state.current_pipeline = UINT32_MAX;
1426 primary->state.current_l3_config = NULL;
1427
1428 /* Each of the secondary command buffers will use its own state base
1429 * address. We need to re-emit state base address for the primary after
1430 * all of the secondaries are done.
1431 *
1432 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1433 * address calls?
1434 */
1435 genX(cmd_buffer_emit_state_base_address)(primary);
1436 }
1437
1438 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1439 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1440 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1441
1442 /**
1443 * Program the hardware to use the specified L3 configuration.
1444 */
1445 void
1446 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1447 const struct gen_l3_config *cfg)
1448 {
1449 assert(cfg);
1450 if (cfg == cmd_buffer->state.current_l3_config)
1451 return;
1452
1453 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1454 intel_logd("L3 config transition: ");
1455 gen_dump_l3_config(cfg, stderr);
1456 }
1457
1458 const bool has_slm = cfg->n[GEN_L3P_SLM];
1459
1460 /* According to the hardware docs, the L3 partitioning can only be changed
1461 * while the pipeline is completely drained and the caches are flushed,
1462 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1463 */
1464 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1465 pc.DCFlushEnable = true;
1466 pc.PostSyncOperation = NoWrite;
1467 pc.CommandStreamerStallEnable = true;
1468 }
1469
1470 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1471 * invalidation of the relevant caches. Note that because RO invalidation
1472 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1473 * command is processed by the CS) we cannot combine it with the previous
1474 * stalling flush as the hardware documentation suggests, because that
1475 * would cause the CS to stall on previous rendering *after* RO
1476 * invalidation and wouldn't prevent the RO caches from being polluted by
1477 * concurrent rendering before the stall completes. This intentionally
1478 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1479 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1480 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1481 * already guarantee that there is no concurrent GPGPU kernel execution
1482 * (see SKL HSD 2132585).
1483 */
1484 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1485 pc.TextureCacheInvalidationEnable = true;
1486 pc.ConstantCacheInvalidationEnable = true;
1487 pc.InstructionCacheInvalidateEnable = true;
1488 pc.StateCacheInvalidationEnable = true;
1489 pc.PostSyncOperation = NoWrite;
1490 }
1491
1492 /* Now send a third stalling flush to make sure that invalidation is
1493 * complete when the L3 configuration registers are modified.
1494 */
1495 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1496 pc.DCFlushEnable = true;
1497 pc.PostSyncOperation = NoWrite;
1498 pc.CommandStreamerStallEnable = true;
1499 }
1500
1501 #if GEN_GEN >= 8
1502
1503 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1504
1505 uint32_t l3cr;
1506 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1507 .SLMEnable = has_slm,
1508 .URBAllocation = cfg->n[GEN_L3P_URB],
1509 .ROAllocation = cfg->n[GEN_L3P_RO],
1510 .DCAllocation = cfg->n[GEN_L3P_DC],
1511 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1512
1513 /* Set up the L3 partitioning. */
1514 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1515
1516 #else
1517
1518 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1519 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1520 cfg->n[GEN_L3P_ALL];
1521 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1522 cfg->n[GEN_L3P_ALL];
1523 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1524 cfg->n[GEN_L3P_ALL];
1525
1526 assert(!cfg->n[GEN_L3P_ALL]);
1527
1528 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1529 * the matching space on the remaining banks has to be allocated to a
1530 * client (URB for all validated configurations) set to the
1531 * lower-bandwidth 2-bank address hashing mode.
1532 */
1533 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1534 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1535 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1536
1537 /* Minimum number of ways that can be allocated to the URB. */
1538 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1539 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1540
1541 uint32_t l3sqcr1, l3cr2, l3cr3;
1542 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1543 .ConvertDC_UC = !has_dc,
1544 .ConvertIS_UC = !has_is,
1545 .ConvertC_UC = !has_c,
1546 .ConvertT_UC = !has_t);
1547 l3sqcr1 |=
1548 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1549 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1550 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1551
1552 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1553 .SLMEnable = has_slm,
1554 .URBLowBandwidth = urb_low_bw,
1555 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1556 #if !GEN_IS_HASWELL
1557 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1558 #endif
1559 .ROAllocation = cfg->n[GEN_L3P_RO],
1560 .DCAllocation = cfg->n[GEN_L3P_DC]);
1561
1562 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1563 .ISAllocation = cfg->n[GEN_L3P_IS],
1564 .ISLowBandwidth = 0,
1565 .CAllocation = cfg->n[GEN_L3P_C],
1566 .CLowBandwidth = 0,
1567 .TAllocation = cfg->n[GEN_L3P_T],
1568 .TLowBandwidth = 0);
1569
1570 /* Set up the L3 partitioning. */
1571 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1572 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1573 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1574
1575 #if GEN_IS_HASWELL
1576 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1577 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1578 * them disabled to avoid crashing the system hard.
1579 */
1580 uint32_t scratch1, chicken3;
1581 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1582 .L3AtomicDisable = !has_dc);
1583 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1584 .L3AtomicDisableMask = true,
1585 .L3AtomicDisable = !has_dc);
1586 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1587 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1588 }
1589 #endif
1590
1591 #endif
1592
1593 cmd_buffer->state.current_l3_config = cfg;
1594 }
1595
1596 void
1597 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1598 {
1599 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1600
1601 /* Flushes are pipelined while invalidations are handled immediately.
1602 * Therefore, if we're flushing anything then we need to schedule a stall
1603 * before any invalidations can happen.
1604 */
1605 if (bits & ANV_PIPE_FLUSH_BITS)
1606 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1607
1608 /* If we're going to do an invalidate and we have a pending CS stall that
1609 * has yet to be resolved, we do the CS stall now.
1610 */
1611 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1612 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1613 bits |= ANV_PIPE_CS_STALL_BIT;
1614 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1615 }
1616
1617 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1618 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1619 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1620 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1621 pipe.RenderTargetCacheFlushEnable =
1622 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1623
1624 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1625 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1626 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1627
1628 /*
1629 * According to the Broadwell documentation, any PIPE_CONTROL with the
1630 * "Command Streamer Stall" bit set must also have another bit set,
1631 * with five different options:
1632 *
1633 * - Render Target Cache Flush
1634 * - Depth Cache Flush
1635 * - Stall at Pixel Scoreboard
1636 * - Post-Sync Operation
1637 * - Depth Stall
1638 * - DC Flush Enable
1639 *
1640 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1641 * mesa and it seems to work fine. The choice is fairly arbitrary.
1642 */
1643 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1644 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1645 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1646 pipe.StallAtPixelScoreboard = true;
1647 }
1648
1649 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1650 }
1651
1652 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1653 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1654 pipe.StateCacheInvalidationEnable =
1655 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1656 pipe.ConstantCacheInvalidationEnable =
1657 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1658 pipe.VFCacheInvalidationEnable =
1659 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1660 pipe.TextureCacheInvalidationEnable =
1661 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1662 pipe.InstructionCacheInvalidateEnable =
1663 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1664 }
1665
1666 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1667 }
1668
1669 cmd_buffer->state.pending_pipe_bits = bits;
1670 }
1671
1672 void genX(CmdPipelineBarrier)(
1673 VkCommandBuffer commandBuffer,
1674 VkPipelineStageFlags srcStageMask,
1675 VkPipelineStageFlags destStageMask,
1676 VkBool32 byRegion,
1677 uint32_t memoryBarrierCount,
1678 const VkMemoryBarrier* pMemoryBarriers,
1679 uint32_t bufferMemoryBarrierCount,
1680 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1681 uint32_t imageMemoryBarrierCount,
1682 const VkImageMemoryBarrier* pImageMemoryBarriers)
1683 {
1684 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1685
1686 /* XXX: Right now, we're really dumb and just flush whatever categories
1687 * the app asks for. One of these days we may make this a bit better
1688 * but right now that's all the hardware allows for in most areas.
1689 */
1690 VkAccessFlags src_flags = 0;
1691 VkAccessFlags dst_flags = 0;
1692
1693 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1694 src_flags |= pMemoryBarriers[i].srcAccessMask;
1695 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1696 }
1697
1698 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1699 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1700 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1701 }
1702
1703 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1704 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1705 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1706 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1707 const VkImageSubresourceRange *range =
1708 &pImageMemoryBarriers[i].subresourceRange;
1709
1710 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1711 transition_depth_buffer(cmd_buffer, image,
1712 pImageMemoryBarriers[i].oldLayout,
1713 pImageMemoryBarriers[i].newLayout);
1714 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1715 VkImageAspectFlags color_aspects =
1716 anv_image_expand_aspects(image, range->aspectMask);
1717 uint32_t aspect_bit;
1718
1719 uint32_t base_layer, layer_count;
1720 if (image->type == VK_IMAGE_TYPE_3D) {
1721 base_layer = 0;
1722 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1723 } else {
1724 base_layer = range->baseArrayLayer;
1725 layer_count = anv_get_layerCount(image, range);
1726 }
1727
1728 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1729 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1730 range->baseMipLevel,
1731 anv_get_levelCount(image, range),
1732 base_layer, layer_count,
1733 pImageMemoryBarriers[i].oldLayout,
1734 pImageMemoryBarriers[i].newLayout);
1735 }
1736 }
1737 }
1738
1739 cmd_buffer->state.pending_pipe_bits |=
1740 anv_pipe_flush_bits_for_access_flags(src_flags) |
1741 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1742 }
1743
1744 static void
1745 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1746 {
1747 VkShaderStageFlags stages =
1748 cmd_buffer->state.gfx.base.pipeline->active_stages;
1749
1750 /* In order to avoid thrash, we assume that vertex and fragment stages
1751 * always exist. In the rare case where one is missing *and* the other
1752 * uses push concstants, this may be suboptimal. However, avoiding stalls
1753 * seems more important.
1754 */
1755 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1756
1757 if (stages == cmd_buffer->state.push_constant_stages)
1758 return;
1759
1760 #if GEN_GEN >= 8
1761 const unsigned push_constant_kb = 32;
1762 #elif GEN_IS_HASWELL
1763 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1764 #else
1765 const unsigned push_constant_kb = 16;
1766 #endif
1767
1768 const unsigned num_stages =
1769 _mesa_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1770 unsigned size_per_stage = push_constant_kb / num_stages;
1771
1772 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1773 * units of 2KB. Incidentally, these are the same platforms that have
1774 * 32KB worth of push constant space.
1775 */
1776 if (push_constant_kb == 32)
1777 size_per_stage &= ~1u;
1778
1779 uint32_t kb_used = 0;
1780 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1781 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1782 anv_batch_emit(&cmd_buffer->batch,
1783 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1784 alloc._3DCommandSubOpcode = 18 + i;
1785 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1786 alloc.ConstantBufferSize = push_size;
1787 }
1788 kb_used += push_size;
1789 }
1790
1791 anv_batch_emit(&cmd_buffer->batch,
1792 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1793 alloc.ConstantBufferOffset = kb_used;
1794 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1795 }
1796
1797 cmd_buffer->state.push_constant_stages = stages;
1798
1799 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1800 *
1801 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1802 * the next 3DPRIMITIVE command after programming the
1803 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1804 *
1805 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1806 * pipeline setup, we need to dirty push constants.
1807 */
1808 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1809 }
1810
1811 static const struct anv_descriptor *
1812 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1813 const struct anv_pipeline_binding *binding)
1814 {
1815 assert(binding->set < MAX_SETS);
1816 const struct anv_descriptor_set *set =
1817 pipe_state->descriptors[binding->set];
1818 const uint32_t offset =
1819 set->layout->binding[binding->binding].descriptor_index;
1820 return &set->descriptors[offset + binding->index];
1821 }
1822
1823 static uint32_t
1824 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1825 const struct anv_pipeline_binding *binding)
1826 {
1827 assert(binding->set < MAX_SETS);
1828 const struct anv_descriptor_set *set =
1829 pipe_state->descriptors[binding->set];
1830
1831 uint32_t dynamic_offset_idx =
1832 pipe_state->layout->set[binding->set].dynamic_offset_start +
1833 set->layout->binding[binding->binding].dynamic_offset_index +
1834 binding->index;
1835
1836 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1837 }
1838
1839 static VkResult
1840 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1841 gl_shader_stage stage,
1842 struct anv_state *bt_state)
1843 {
1844 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1845 struct anv_cmd_pipeline_state *pipe_state;
1846 struct anv_pipeline *pipeline;
1847 uint32_t bias, state_offset;
1848
1849 switch (stage) {
1850 case MESA_SHADER_COMPUTE:
1851 pipe_state = &cmd_buffer->state.compute.base;
1852 bias = 1;
1853 break;
1854 default:
1855 pipe_state = &cmd_buffer->state.gfx.base;
1856 bias = 0;
1857 break;
1858 }
1859 pipeline = pipe_state->pipeline;
1860
1861 if (!anv_pipeline_has_stage(pipeline, stage)) {
1862 *bt_state = (struct anv_state) { 0, };
1863 return VK_SUCCESS;
1864 }
1865
1866 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1867 if (bias + map->surface_count == 0) {
1868 *bt_state = (struct anv_state) { 0, };
1869 return VK_SUCCESS;
1870 }
1871
1872 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1873 bias + map->surface_count,
1874 &state_offset);
1875 uint32_t *bt_map = bt_state->map;
1876
1877 if (bt_state->map == NULL)
1878 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1879
1880 if (stage == MESA_SHADER_COMPUTE &&
1881 get_cs_prog_data(pipeline)->uses_num_work_groups) {
1882 struct anv_bo *bo = cmd_buffer->state.compute.num_workgroups.bo;
1883 uint32_t bo_offset = cmd_buffer->state.compute.num_workgroups.offset;
1884
1885 struct anv_state surface_state;
1886 surface_state =
1887 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1888
1889 const enum isl_format format =
1890 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1891 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1892 format, bo_offset, 12, 1);
1893
1894 bt_map[0] = surface_state.offset + state_offset;
1895 add_surface_state_reloc(cmd_buffer, surface_state, bo, bo_offset);
1896 }
1897
1898 if (map->surface_count == 0)
1899 goto out;
1900
1901 if (map->image_count > 0) {
1902 VkResult result =
1903 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1904 if (result != VK_SUCCESS)
1905 return result;
1906
1907 cmd_buffer->state.push_constants_dirty |= 1 << stage;
1908 }
1909
1910 uint32_t image = 0;
1911 for (uint32_t s = 0; s < map->surface_count; s++) {
1912 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
1913
1914 struct anv_state surface_state;
1915
1916 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
1917 /* Color attachment binding */
1918 assert(stage == MESA_SHADER_FRAGMENT);
1919 assert(binding->binding == 0);
1920 if (binding->index < subpass->color_count) {
1921 const unsigned att =
1922 subpass->color_attachments[binding->index].attachment;
1923
1924 /* From the Vulkan 1.0.46 spec:
1925 *
1926 * "If any color or depth/stencil attachments are
1927 * VK_ATTACHMENT_UNUSED, then no writes occur for those
1928 * attachments."
1929 */
1930 if (att == VK_ATTACHMENT_UNUSED) {
1931 surface_state = cmd_buffer->state.null_surface_state;
1932 } else {
1933 surface_state = cmd_buffer->state.attachments[att].color.state;
1934 }
1935 } else {
1936 surface_state = cmd_buffer->state.null_surface_state;
1937 }
1938
1939 bt_map[bias + s] = surface_state.offset + state_offset;
1940 continue;
1941 }
1942
1943 const struct anv_descriptor *desc =
1944 anv_descriptor_for_binding(pipe_state, binding);
1945
1946 switch (desc->type) {
1947 case VK_DESCRIPTOR_TYPE_SAMPLER:
1948 /* Nothing for us to do here */
1949 continue;
1950
1951 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
1952 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
1953 struct anv_surface_state sstate =
1954 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1955 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1956 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1957 surface_state = sstate.state;
1958 assert(surface_state.alloc_size);
1959 add_image_view_relocs(cmd_buffer, desc->image_view,
1960 binding->plane, sstate);
1961 break;
1962 }
1963 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
1964 assert(stage == MESA_SHADER_FRAGMENT);
1965 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
1966 /* For depth and stencil input attachments, we treat it like any
1967 * old texture that a user may have bound.
1968 */
1969 struct anv_surface_state sstate =
1970 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
1971 desc->image_view->planes[binding->plane].general_sampler_surface_state :
1972 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
1973 surface_state = sstate.state;
1974 assert(surface_state.alloc_size);
1975 add_image_view_relocs(cmd_buffer, desc->image_view,
1976 binding->plane, sstate);
1977 } else {
1978 /* For color input attachments, we create the surface state at
1979 * vkBeginRenderPass time so that we can include aux and clear
1980 * color information.
1981 */
1982 assert(binding->input_attachment_index < subpass->input_count);
1983 const unsigned subpass_att = binding->input_attachment_index;
1984 const unsigned att = subpass->input_attachments[subpass_att].attachment;
1985 surface_state = cmd_buffer->state.attachments[att].input.state;
1986 }
1987 break;
1988
1989 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
1990 struct anv_surface_state sstate = (binding->write_only)
1991 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
1992 : desc->image_view->planes[binding->plane].storage_surface_state;
1993 surface_state = sstate.state;
1994 assert(surface_state.alloc_size);
1995 add_image_view_relocs(cmd_buffer, desc->image_view,
1996 binding->plane, sstate);
1997
1998 struct brw_image_param *image_param =
1999 &cmd_buffer->state.push_constants[stage]->images[image++];
2000
2001 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
2002 image_param->surface_idx = bias + s;
2003 break;
2004 }
2005
2006 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2007 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2008 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2009 surface_state = desc->buffer_view->surface_state;
2010 assert(surface_state.alloc_size);
2011 add_surface_state_reloc(cmd_buffer, surface_state,
2012 desc->buffer_view->bo,
2013 desc->buffer_view->offset);
2014 break;
2015
2016 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2017 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2018 /* Compute the offset within the buffer */
2019 uint32_t dynamic_offset =
2020 dynamic_offset_for_binding(pipe_state, binding);
2021 uint64_t offset = desc->offset + dynamic_offset;
2022 /* Clamp to the buffer size */
2023 offset = MIN2(offset, desc->buffer->size);
2024 /* Clamp the range to the buffer size */
2025 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2026
2027 surface_state =
2028 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2029 enum isl_format format =
2030 anv_isl_format_for_descriptor_type(desc->type);
2031
2032 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2033 format, offset, range, 1);
2034 add_surface_state_reloc(cmd_buffer, surface_state,
2035 desc->buffer->bo,
2036 desc->buffer->offset + offset);
2037 break;
2038 }
2039
2040 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2041 surface_state = (binding->write_only)
2042 ? desc->buffer_view->writeonly_storage_surface_state
2043 : desc->buffer_view->storage_surface_state;
2044 assert(surface_state.alloc_size);
2045 add_surface_state_reloc(cmd_buffer, surface_state,
2046 desc->buffer_view->bo,
2047 desc->buffer_view->offset);
2048
2049 struct brw_image_param *image_param =
2050 &cmd_buffer->state.push_constants[stage]->images[image++];
2051
2052 *image_param = desc->buffer_view->storage_image_param;
2053 image_param->surface_idx = bias + s;
2054 break;
2055
2056 default:
2057 assert(!"Invalid descriptor type");
2058 continue;
2059 }
2060
2061 bt_map[bias + s] = surface_state.offset + state_offset;
2062 }
2063 assert(image == map->image_count);
2064
2065 out:
2066 anv_state_flush(cmd_buffer->device, *bt_state);
2067
2068 #if GEN_GEN >= 11
2069 /* The PIPE_CONTROL command description says:
2070 *
2071 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
2072 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2073 * Target Cache Flush by enabling this bit. When render target flush
2074 * is set due to new association of BTI, PS Scoreboard Stall bit must
2075 * be set in this packet."
2076 *
2077 * FINISHME: Currently we shuffle around the surface states in the binding
2078 * table based on if they are getting used or not. So, we've to do below
2079 * pipe control flush for every binding table upload. Make changes so
2080 * that we do it only when we modify render target surface states.
2081 */
2082 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2083 pc.RenderTargetCacheFlushEnable = true;
2084 pc.StallAtPixelScoreboard = true;
2085 }
2086 #endif
2087
2088 return VK_SUCCESS;
2089 }
2090
2091 static VkResult
2092 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2093 gl_shader_stage stage,
2094 struct anv_state *state)
2095 {
2096 struct anv_cmd_pipeline_state *pipe_state =
2097 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2098 &cmd_buffer->state.gfx.base;
2099 struct anv_pipeline *pipeline = pipe_state->pipeline;
2100
2101 if (!anv_pipeline_has_stage(pipeline, stage)) {
2102 *state = (struct anv_state) { 0, };
2103 return VK_SUCCESS;
2104 }
2105
2106 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2107 if (map->sampler_count == 0) {
2108 *state = (struct anv_state) { 0, };
2109 return VK_SUCCESS;
2110 }
2111
2112 uint32_t size = map->sampler_count * 16;
2113 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2114
2115 if (state->map == NULL)
2116 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2117
2118 for (uint32_t s = 0; s < map->sampler_count; s++) {
2119 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2120 const struct anv_descriptor *desc =
2121 anv_descriptor_for_binding(pipe_state, binding);
2122
2123 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2124 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2125 continue;
2126
2127 struct anv_sampler *sampler = desc->sampler;
2128
2129 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2130 * happens to be zero.
2131 */
2132 if (sampler == NULL)
2133 continue;
2134
2135 memcpy(state->map + (s * 16),
2136 sampler->state[binding->plane], sizeof(sampler->state[0]));
2137 }
2138
2139 anv_state_flush(cmd_buffer->device, *state);
2140
2141 return VK_SUCCESS;
2142 }
2143
2144 static uint32_t
2145 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2146 {
2147 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2148
2149 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2150 pipeline->active_stages;
2151
2152 VkResult result = VK_SUCCESS;
2153 anv_foreach_stage(s, dirty) {
2154 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2155 if (result != VK_SUCCESS)
2156 break;
2157 result = emit_binding_table(cmd_buffer, s,
2158 &cmd_buffer->state.binding_tables[s]);
2159 if (result != VK_SUCCESS)
2160 break;
2161 }
2162
2163 if (result != VK_SUCCESS) {
2164 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2165
2166 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2167 if (result != VK_SUCCESS)
2168 return 0;
2169
2170 /* Re-emit state base addresses so we get the new surface state base
2171 * address before we start emitting binding tables etc.
2172 */
2173 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2174
2175 /* Re-emit all active binding tables */
2176 dirty |= pipeline->active_stages;
2177 anv_foreach_stage(s, dirty) {
2178 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2179 if (result != VK_SUCCESS) {
2180 anv_batch_set_error(&cmd_buffer->batch, result);
2181 return 0;
2182 }
2183 result = emit_binding_table(cmd_buffer, s,
2184 &cmd_buffer->state.binding_tables[s]);
2185 if (result != VK_SUCCESS) {
2186 anv_batch_set_error(&cmd_buffer->batch, result);
2187 return 0;
2188 }
2189 }
2190 }
2191
2192 cmd_buffer->state.descriptors_dirty &= ~dirty;
2193
2194 return dirty;
2195 }
2196
2197 static void
2198 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2199 uint32_t stages)
2200 {
2201 static const uint32_t sampler_state_opcodes[] = {
2202 [MESA_SHADER_VERTEX] = 43,
2203 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2204 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2205 [MESA_SHADER_GEOMETRY] = 46,
2206 [MESA_SHADER_FRAGMENT] = 47,
2207 [MESA_SHADER_COMPUTE] = 0,
2208 };
2209
2210 static const uint32_t binding_table_opcodes[] = {
2211 [MESA_SHADER_VERTEX] = 38,
2212 [MESA_SHADER_TESS_CTRL] = 39,
2213 [MESA_SHADER_TESS_EVAL] = 40,
2214 [MESA_SHADER_GEOMETRY] = 41,
2215 [MESA_SHADER_FRAGMENT] = 42,
2216 [MESA_SHADER_COMPUTE] = 0,
2217 };
2218
2219 anv_foreach_stage(s, stages) {
2220 assert(s < ARRAY_SIZE(binding_table_opcodes));
2221 assert(binding_table_opcodes[s] > 0);
2222
2223 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2224 anv_batch_emit(&cmd_buffer->batch,
2225 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2226 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2227 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2228 }
2229 }
2230
2231 /* Always emit binding table pointers if we're asked to, since on SKL
2232 * this is what flushes push constants. */
2233 anv_batch_emit(&cmd_buffer->batch,
2234 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2235 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2236 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2237 }
2238 }
2239 }
2240
2241 static void
2242 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2243 VkShaderStageFlags dirty_stages)
2244 {
2245 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2246 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2247
2248 static const uint32_t push_constant_opcodes[] = {
2249 [MESA_SHADER_VERTEX] = 21,
2250 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2251 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2252 [MESA_SHADER_GEOMETRY] = 22,
2253 [MESA_SHADER_FRAGMENT] = 23,
2254 [MESA_SHADER_COMPUTE] = 0,
2255 };
2256
2257 VkShaderStageFlags flushed = 0;
2258
2259 anv_foreach_stage(stage, dirty_stages) {
2260 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2261 assert(push_constant_opcodes[stage] > 0);
2262
2263 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2264 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2265
2266 if (anv_pipeline_has_stage(pipeline, stage)) {
2267 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2268 const struct brw_stage_prog_data *prog_data =
2269 pipeline->shaders[stage]->prog_data;
2270 const struct anv_pipeline_bind_map *bind_map =
2271 &pipeline->shaders[stage]->bind_map;
2272
2273 /* The Skylake PRM contains the following restriction:
2274 *
2275 * "The driver must ensure The following case does not occur
2276 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2277 * buffer 3 read length equal to zero committed followed by a
2278 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2279 * zero committed."
2280 *
2281 * To avoid this, we program the buffers in the highest slots.
2282 * This way, slot 0 is only used if slot 3 is also used.
2283 */
2284 int n = 3;
2285
2286 for (int i = 3; i >= 0; i--) {
2287 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2288 if (range->length == 0)
2289 continue;
2290
2291 const unsigned surface =
2292 prog_data->binding_table.ubo_start + range->block;
2293
2294 assert(surface <= bind_map->surface_count);
2295 const struct anv_pipeline_binding *binding =
2296 &bind_map->surface_to_descriptor[surface];
2297
2298 const struct anv_descriptor *desc =
2299 anv_descriptor_for_binding(&gfx_state->base, binding);
2300
2301 struct anv_address read_addr;
2302 uint32_t read_len;
2303 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2304 read_len = MIN2(range->length,
2305 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
2306 read_addr = (struct anv_address) {
2307 .bo = desc->buffer_view->bo,
2308 .offset = desc->buffer_view->offset +
2309 range->start * 32,
2310 };
2311 } else {
2312 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2313
2314 uint32_t dynamic_offset =
2315 dynamic_offset_for_binding(&gfx_state->base, binding);
2316 uint32_t buf_offset =
2317 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2318 uint32_t buf_range =
2319 MIN2(desc->range, desc->buffer->size - buf_offset);
2320
2321 read_len = MIN2(range->length,
2322 DIV_ROUND_UP(buf_range, 32) - range->start);
2323 read_addr = (struct anv_address) {
2324 .bo = desc->buffer->bo,
2325 .offset = desc->buffer->offset + buf_offset +
2326 range->start * 32,
2327 };
2328 }
2329
2330 if (read_len > 0) {
2331 c.ConstantBody.Buffer[n] = read_addr;
2332 c.ConstantBody.ReadLength[n] = read_len;
2333 n--;
2334 }
2335 }
2336
2337 struct anv_state state =
2338 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2339
2340 if (state.alloc_size > 0) {
2341 c.ConstantBody.Buffer[n] = (struct anv_address) {
2342 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2343 .offset = state.offset,
2344 };
2345 c.ConstantBody.ReadLength[n] =
2346 DIV_ROUND_UP(state.alloc_size, 32);
2347 }
2348 #else
2349 /* For Ivy Bridge, the push constants packets have a different
2350 * rule that would require us to iterate in the other direction
2351 * and possibly mess around with dynamic state base address.
2352 * Don't bother; just emit regular push constants at n = 0.
2353 */
2354 struct anv_state state =
2355 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2356
2357 if (state.alloc_size > 0) {
2358 c.ConstantBody.Buffer[0].offset = state.offset,
2359 c.ConstantBody.ReadLength[0] =
2360 DIV_ROUND_UP(state.alloc_size, 32);
2361 }
2362 #endif
2363 }
2364 }
2365
2366 flushed |= mesa_to_vk_shader_stage(stage);
2367 }
2368
2369 cmd_buffer->state.push_constants_dirty &= ~flushed;
2370 }
2371
2372 void
2373 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2374 {
2375 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2376 uint32_t *p;
2377
2378 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2379
2380 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2381
2382 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2383
2384 genX(flush_pipeline_select_3d)(cmd_buffer);
2385
2386 if (vb_emit) {
2387 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2388 const uint32_t num_dwords = 1 + num_buffers * 4;
2389
2390 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2391 GENX(3DSTATE_VERTEX_BUFFERS));
2392 uint32_t vb, i = 0;
2393 for_each_bit(vb, vb_emit) {
2394 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2395 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2396
2397 struct GENX(VERTEX_BUFFER_STATE) state = {
2398 .VertexBufferIndex = vb,
2399
2400 #if GEN_GEN >= 8
2401 .MemoryObjectControlState = GENX(MOCS),
2402 #else
2403 .BufferAccessType = pipeline->instancing_enable[vb] ? INSTANCEDATA : VERTEXDATA,
2404 /* Our implementation of VK_KHR_multiview uses instancing to draw
2405 * the different views. If the client asks for instancing, we
2406 * need to use the Instance Data Step Rate to ensure that we
2407 * repeat the client's per-instance data once for each view.
2408 */
2409 .InstanceDataStepRate = anv_subpass_view_count(pipeline->subpass),
2410 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2411 #endif
2412
2413 .AddressModifyEnable = true,
2414 .BufferPitch = pipeline->binding_stride[vb],
2415 .BufferStartingAddress = { buffer->bo, buffer->offset + offset },
2416
2417 #if GEN_GEN >= 8
2418 .BufferSize = buffer->size - offset
2419 #else
2420 .EndAddress = { buffer->bo, buffer->offset + buffer->size - 1},
2421 #endif
2422 };
2423
2424 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2425 i++;
2426 }
2427 }
2428
2429 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2430
2431 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2432 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2433
2434 /* The exact descriptor layout is pulled from the pipeline, so we need
2435 * to re-emit binding tables on every pipeline change.
2436 */
2437 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2438
2439 /* If the pipeline changed, we may need to re-allocate push constant
2440 * space in the URB.
2441 */
2442 cmd_buffer_alloc_push_constants(cmd_buffer);
2443 }
2444
2445 #if GEN_GEN <= 7
2446 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2447 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2448 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2449 *
2450 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2451 * stall needs to be sent just prior to any 3DSTATE_VS,
2452 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2453 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2454 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2455 * PIPE_CONTROL needs to be sent before any combination of VS
2456 * associated 3DSTATE."
2457 */
2458 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2459 pc.DepthStallEnable = true;
2460 pc.PostSyncOperation = WriteImmediateData;
2461 pc.Address =
2462 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2463 }
2464 }
2465 #endif
2466
2467 /* Render targets live in the same binding table as fragment descriptors */
2468 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2469 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2470
2471 /* We emit the binding tables and sampler tables first, then emit push
2472 * constants and then finally emit binding table and sampler table
2473 * pointers. It has to happen in this order, since emitting the binding
2474 * tables may change the push constants (in case of storage images). After
2475 * emitting push constants, on SKL+ we have to emit the corresponding
2476 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2477 */
2478 uint32_t dirty = 0;
2479 if (cmd_buffer->state.descriptors_dirty)
2480 dirty = flush_descriptor_sets(cmd_buffer);
2481
2482 if (dirty || cmd_buffer->state.push_constants_dirty) {
2483 /* Because we're pushing UBOs, we have to push whenever either
2484 * descriptors or push constants is dirty.
2485 */
2486 dirty |= cmd_buffer->state.push_constants_dirty;
2487 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2488 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2489 }
2490
2491 if (dirty)
2492 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2493
2494 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2495 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2496
2497 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2498 ANV_CMD_DIRTY_PIPELINE)) {
2499 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2500 pipeline->depth_clamp_enable);
2501 }
2502
2503 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2504 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2505
2506 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2507
2508 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2509 }
2510
2511 static void
2512 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2513 struct anv_bo *bo, uint32_t offset,
2514 uint32_t size, uint32_t index)
2515 {
2516 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2517 GENX(3DSTATE_VERTEX_BUFFERS));
2518
2519 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2520 &(struct GENX(VERTEX_BUFFER_STATE)) {
2521 .VertexBufferIndex = index,
2522 .AddressModifyEnable = true,
2523 .BufferPitch = 0,
2524 #if (GEN_GEN >= 8)
2525 .MemoryObjectControlState = GENX(MOCS),
2526 .BufferStartingAddress = { bo, offset },
2527 .BufferSize = size
2528 #else
2529 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2530 .BufferStartingAddress = { bo, offset },
2531 .EndAddress = { bo, offset + size },
2532 #endif
2533 });
2534 }
2535
2536 static void
2537 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2538 struct anv_bo *bo, uint32_t offset)
2539 {
2540 emit_vertex_bo(cmd_buffer, bo, offset, 8, ANV_SVGS_VB_INDEX);
2541 }
2542
2543 static void
2544 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2545 uint32_t base_vertex, uint32_t base_instance)
2546 {
2547 struct anv_state id_state =
2548 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2549
2550 ((uint32_t *)id_state.map)[0] = base_vertex;
2551 ((uint32_t *)id_state.map)[1] = base_instance;
2552
2553 anv_state_flush(cmd_buffer->device, id_state);
2554
2555 emit_base_vertex_instance_bo(cmd_buffer,
2556 &cmd_buffer->device->dynamic_state_pool.block_pool.bo, id_state.offset);
2557 }
2558
2559 static void
2560 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2561 {
2562 struct anv_state state =
2563 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2564
2565 ((uint32_t *)state.map)[0] = draw_index;
2566
2567 anv_state_flush(cmd_buffer->device, state);
2568
2569 emit_vertex_bo(cmd_buffer,
2570 &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2571 state.offset, 4, ANV_DRAWID_VB_INDEX);
2572 }
2573
2574 void genX(CmdDraw)(
2575 VkCommandBuffer commandBuffer,
2576 uint32_t vertexCount,
2577 uint32_t instanceCount,
2578 uint32_t firstVertex,
2579 uint32_t firstInstance)
2580 {
2581 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2582 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2583 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2584
2585 if (anv_batch_has_error(&cmd_buffer->batch))
2586 return;
2587
2588 genX(cmd_buffer_flush_state)(cmd_buffer);
2589
2590 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2591 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2592 if (vs_prog_data->uses_drawid)
2593 emit_draw_index(cmd_buffer, 0);
2594
2595 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2596 * different views. We need to multiply instanceCount by the view count.
2597 */
2598 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2599
2600 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2601 prim.VertexAccessType = SEQUENTIAL;
2602 prim.PrimitiveTopologyType = pipeline->topology;
2603 prim.VertexCountPerInstance = vertexCount;
2604 prim.StartVertexLocation = firstVertex;
2605 prim.InstanceCount = instanceCount;
2606 prim.StartInstanceLocation = firstInstance;
2607 prim.BaseVertexLocation = 0;
2608 }
2609 }
2610
2611 void genX(CmdDrawIndexed)(
2612 VkCommandBuffer commandBuffer,
2613 uint32_t indexCount,
2614 uint32_t instanceCount,
2615 uint32_t firstIndex,
2616 int32_t vertexOffset,
2617 uint32_t firstInstance)
2618 {
2619 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2620 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2621 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2622
2623 if (anv_batch_has_error(&cmd_buffer->batch))
2624 return;
2625
2626 genX(cmd_buffer_flush_state)(cmd_buffer);
2627
2628 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2629 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2630 if (vs_prog_data->uses_drawid)
2631 emit_draw_index(cmd_buffer, 0);
2632
2633 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2634 * different views. We need to multiply instanceCount by the view count.
2635 */
2636 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2637
2638 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2639 prim.VertexAccessType = RANDOM;
2640 prim.PrimitiveTopologyType = pipeline->topology;
2641 prim.VertexCountPerInstance = indexCount;
2642 prim.StartVertexLocation = firstIndex;
2643 prim.InstanceCount = instanceCount;
2644 prim.StartInstanceLocation = firstInstance;
2645 prim.BaseVertexLocation = vertexOffset;
2646 }
2647 }
2648
2649 /* Auto-Draw / Indirect Registers */
2650 #define GEN7_3DPRIM_END_OFFSET 0x2420
2651 #define GEN7_3DPRIM_START_VERTEX 0x2430
2652 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2653 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2654 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2655 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2656
2657 /* MI_MATH only exists on Haswell+ */
2658 #if GEN_IS_HASWELL || GEN_GEN >= 8
2659
2660 /* Emit dwords to multiply GPR0 by N */
2661 static void
2662 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2663 {
2664 VK_OUTARRAY_MAKE(out, dw, dw_count);
2665
2666 #define append_alu(opcode, operand1, operand2) \
2667 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2668
2669 assert(N > 0);
2670 unsigned top_bit = 31 - __builtin_clz(N);
2671 for (int i = top_bit - 1; i >= 0; i--) {
2672 /* We get our initial data in GPR0 and we write the final data out to
2673 * GPR0 but we use GPR1 as our scratch register.
2674 */
2675 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2676 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2677
2678 /* Shift the current value left by 1 */
2679 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2680 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2681 append_alu(MI_ALU_ADD, 0, 0);
2682
2683 if (N & (1 << i)) {
2684 /* Store ACCU to R1 and add R0 to R1 */
2685 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2686 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2687 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2688 append_alu(MI_ALU_ADD, 0, 0);
2689 }
2690
2691 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2692 }
2693
2694 #undef append_alu
2695 }
2696
2697 static void
2698 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2699 {
2700 uint32_t num_dwords;
2701 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2702
2703 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2704 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2705 }
2706
2707 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2708
2709 static void
2710 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2711 struct anv_buffer *buffer, uint64_t offset,
2712 bool indexed)
2713 {
2714 struct anv_batch *batch = &cmd_buffer->batch;
2715 struct anv_bo *bo = buffer->bo;
2716 uint32_t bo_offset = buffer->offset + offset;
2717
2718 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, bo, bo_offset);
2719
2720 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2721 if (view_count > 1) {
2722 #if GEN_IS_HASWELL || GEN_GEN >= 8
2723 emit_lrm(batch, CS_GPR(0), bo, bo_offset + 4);
2724 emit_mul_gpr0(batch, view_count);
2725 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2726 #else
2727 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2728 "MI_MATH is not supported on Ivy Bridge");
2729 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2730 #endif
2731 } else {
2732 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, bo, bo_offset + 4);
2733 }
2734
2735 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, bo, bo_offset + 8);
2736
2737 if (indexed) {
2738 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, bo, bo_offset + 12);
2739 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 16);
2740 } else {
2741 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, bo, bo_offset + 12);
2742 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2743 }
2744 }
2745
2746 void genX(CmdDrawIndirect)(
2747 VkCommandBuffer commandBuffer,
2748 VkBuffer _buffer,
2749 VkDeviceSize offset,
2750 uint32_t drawCount,
2751 uint32_t stride)
2752 {
2753 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2754 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2755 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2756 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2757
2758 if (anv_batch_has_error(&cmd_buffer->batch))
2759 return;
2760
2761 genX(cmd_buffer_flush_state)(cmd_buffer);
2762
2763 for (uint32_t i = 0; i < drawCount; i++) {
2764 struct anv_bo *bo = buffer->bo;
2765 uint32_t bo_offset = buffer->offset + offset;
2766
2767 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2768 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 8);
2769 if (vs_prog_data->uses_drawid)
2770 emit_draw_index(cmd_buffer, i);
2771
2772 load_indirect_parameters(cmd_buffer, buffer, offset, false);
2773
2774 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2775 prim.IndirectParameterEnable = true;
2776 prim.VertexAccessType = SEQUENTIAL;
2777 prim.PrimitiveTopologyType = pipeline->topology;
2778 }
2779
2780 offset += stride;
2781 }
2782 }
2783
2784 void genX(CmdDrawIndexedIndirect)(
2785 VkCommandBuffer commandBuffer,
2786 VkBuffer _buffer,
2787 VkDeviceSize offset,
2788 uint32_t drawCount,
2789 uint32_t stride)
2790 {
2791 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2792 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2793 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2794 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2795
2796 if (anv_batch_has_error(&cmd_buffer->batch))
2797 return;
2798
2799 genX(cmd_buffer_flush_state)(cmd_buffer);
2800
2801 for (uint32_t i = 0; i < drawCount; i++) {
2802 struct anv_bo *bo = buffer->bo;
2803 uint32_t bo_offset = buffer->offset + offset;
2804
2805 /* TODO: We need to stomp base vertex to 0 somehow */
2806 if (vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
2807 emit_base_vertex_instance_bo(cmd_buffer, bo, bo_offset + 12);
2808 if (vs_prog_data->uses_drawid)
2809 emit_draw_index(cmd_buffer, i);
2810
2811 load_indirect_parameters(cmd_buffer, buffer, offset, true);
2812
2813 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2814 prim.IndirectParameterEnable = true;
2815 prim.VertexAccessType = RANDOM;
2816 prim.PrimitiveTopologyType = pipeline->topology;
2817 }
2818
2819 offset += stride;
2820 }
2821 }
2822
2823 static VkResult
2824 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2825 {
2826 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2827 struct anv_state surfaces = { 0, }, samplers = { 0, };
2828 VkResult result;
2829
2830 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2831 if (result != VK_SUCCESS) {
2832 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2833
2834 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2835 if (result != VK_SUCCESS)
2836 return result;
2837
2838 /* Re-emit state base addresses so we get the new surface state base
2839 * address before we start emitting binding tables etc.
2840 */
2841 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2842
2843 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2844 if (result != VK_SUCCESS) {
2845 anv_batch_set_error(&cmd_buffer->batch, result);
2846 return result;
2847 }
2848 }
2849
2850 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2851 if (result != VK_SUCCESS) {
2852 anv_batch_set_error(&cmd_buffer->batch, result);
2853 return result;
2854 }
2855
2856 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2857 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2858 .BindingTablePointer = surfaces.offset,
2859 .SamplerStatePointer = samplers.offset,
2860 };
2861 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2862
2863 struct anv_state state =
2864 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2865 pipeline->interface_descriptor_data,
2866 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2867 64);
2868
2869 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2870 anv_batch_emit(&cmd_buffer->batch,
2871 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2872 mid.InterfaceDescriptorTotalLength = size;
2873 mid.InterfaceDescriptorDataStartAddress = state.offset;
2874 }
2875
2876 return VK_SUCCESS;
2877 }
2878
2879 void
2880 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
2881 {
2882 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2883 MAYBE_UNUSED VkResult result;
2884
2885 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
2886
2887 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2888
2889 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
2890
2891 if (cmd_buffer->state.compute.pipeline_dirty) {
2892 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
2893 *
2894 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
2895 * the only bits that are changed are scoreboard related: Scoreboard
2896 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
2897 * these scoreboard related states, a MEDIA_STATE_FLUSH is
2898 * sufficient."
2899 */
2900 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2901 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2902
2903 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2904 }
2905
2906 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
2907 cmd_buffer->state.compute.pipeline_dirty) {
2908 /* FIXME: figure out descriptors for gen7 */
2909 result = flush_compute_descriptor_set(cmd_buffer);
2910 if (result != VK_SUCCESS)
2911 return;
2912
2913 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
2914 }
2915
2916 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
2917 struct anv_state push_state =
2918 anv_cmd_buffer_cs_push_constants(cmd_buffer);
2919
2920 if (push_state.alloc_size) {
2921 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
2922 curbe.CURBETotalDataLength = push_state.alloc_size;
2923 curbe.CURBEDataStartAddress = push_state.offset;
2924 }
2925 }
2926 }
2927
2928 cmd_buffer->state.compute.pipeline_dirty = false;
2929
2930 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2931 }
2932
2933 #if GEN_GEN == 7
2934
2935 static VkResult
2936 verify_cmd_parser(const struct anv_device *device,
2937 int required_version,
2938 const char *function)
2939 {
2940 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
2941 return vk_errorf(device->instance, device->instance,
2942 VK_ERROR_FEATURE_NOT_PRESENT,
2943 "cmd parser version %d is required for %s",
2944 required_version, function);
2945 } else {
2946 return VK_SUCCESS;
2947 }
2948 }
2949
2950 #endif
2951
2952 void genX(CmdDispatch)(
2953 VkCommandBuffer commandBuffer,
2954 uint32_t x,
2955 uint32_t y,
2956 uint32_t z)
2957 {
2958 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2959 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2960 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
2961
2962 if (anv_batch_has_error(&cmd_buffer->batch))
2963 return;
2964
2965 if (prog_data->uses_num_work_groups) {
2966 struct anv_state state =
2967 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
2968 uint32_t *sizes = state.map;
2969 sizes[0] = x;
2970 sizes[1] = y;
2971 sizes[2] = z;
2972 anv_state_flush(cmd_buffer->device, state);
2973 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
2974 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2975 .offset = state.offset,
2976 };
2977 }
2978
2979 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
2980
2981 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
2982 ggw.SIMDSize = prog_data->simd_size / 16;
2983 ggw.ThreadDepthCounterMaximum = 0;
2984 ggw.ThreadHeightCounterMaximum = 0;
2985 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
2986 ggw.ThreadGroupIDXDimension = x;
2987 ggw.ThreadGroupIDYDimension = y;
2988 ggw.ThreadGroupIDZDimension = z;
2989 ggw.RightExecutionMask = pipeline->cs_right_mask;
2990 ggw.BottomExecutionMask = 0xffffffff;
2991 }
2992
2993 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
2994 }
2995
2996 #define GPGPU_DISPATCHDIMX 0x2500
2997 #define GPGPU_DISPATCHDIMY 0x2504
2998 #define GPGPU_DISPATCHDIMZ 0x2508
2999
3000 void genX(CmdDispatchIndirect)(
3001 VkCommandBuffer commandBuffer,
3002 VkBuffer _buffer,
3003 VkDeviceSize offset)
3004 {
3005 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3006 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3007 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3008 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3009 struct anv_bo *bo = buffer->bo;
3010 uint32_t bo_offset = buffer->offset + offset;
3011 struct anv_batch *batch = &cmd_buffer->batch;
3012
3013 #if GEN_GEN == 7
3014 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3015 * indirect dispatch registers to be written.
3016 */
3017 if (verify_cmd_parser(cmd_buffer->device, 5,
3018 "vkCmdDispatchIndirect") != VK_SUCCESS)
3019 return;
3020 #endif
3021
3022 if (prog_data->uses_num_work_groups) {
3023 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3024 .bo = bo,
3025 .offset = bo_offset,
3026 };
3027 }
3028
3029 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3030
3031 emit_lrm(batch, GPGPU_DISPATCHDIMX, bo, bo_offset);
3032 emit_lrm(batch, GPGPU_DISPATCHDIMY, bo, bo_offset + 4);
3033 emit_lrm(batch, GPGPU_DISPATCHDIMZ, bo, bo_offset + 8);
3034
3035 #if GEN_GEN <= 7
3036 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
3037 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
3038 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
3039 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
3040
3041 /* Load compute_dispatch_indirect_x_size into SRC0 */
3042 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 0);
3043
3044 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3045 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3046 mip.LoadOperation = LOAD_LOAD;
3047 mip.CombineOperation = COMBINE_SET;
3048 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3049 }
3050
3051 /* Load compute_dispatch_indirect_y_size into SRC0 */
3052 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 4);
3053
3054 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3055 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3056 mip.LoadOperation = LOAD_LOAD;
3057 mip.CombineOperation = COMBINE_OR;
3058 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3059 }
3060
3061 /* Load compute_dispatch_indirect_z_size into SRC0 */
3062 emit_lrm(batch, MI_PREDICATE_SRC0, bo, bo_offset + 8);
3063
3064 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3065 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3066 mip.LoadOperation = LOAD_LOAD;
3067 mip.CombineOperation = COMBINE_OR;
3068 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3069 }
3070
3071 /* predicate = !predicate; */
3072 #define COMPARE_FALSE 1
3073 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3074 mip.LoadOperation = LOAD_LOADINV;
3075 mip.CombineOperation = COMBINE_OR;
3076 mip.CompareOperation = COMPARE_FALSE;
3077 }
3078 #endif
3079
3080 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
3081 ggw.IndirectParameterEnable = true;
3082 ggw.PredicateEnable = GEN_GEN <= 7;
3083 ggw.SIMDSize = prog_data->simd_size / 16;
3084 ggw.ThreadDepthCounterMaximum = 0;
3085 ggw.ThreadHeightCounterMaximum = 0;
3086 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3087 ggw.RightExecutionMask = pipeline->cs_right_mask;
3088 ggw.BottomExecutionMask = 0xffffffff;
3089 }
3090
3091 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
3092 }
3093
3094 static void
3095 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
3096 uint32_t pipeline)
3097 {
3098 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3099
3100 if (cmd_buffer->state.current_pipeline == pipeline)
3101 return;
3102
3103 #if GEN_GEN >= 8 && GEN_GEN < 10
3104 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3105 *
3106 * Software must clear the COLOR_CALC_STATE Valid field in
3107 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3108 * with Pipeline Select set to GPGPU.
3109 *
3110 * The internal hardware docs recommend the same workaround for Gen9
3111 * hardware too.
3112 */
3113 if (pipeline == GPGPU)
3114 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
3115 #endif
3116
3117 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3118 * PIPELINE_SELECT [DevBWR+]":
3119 *
3120 * Project: DEVSNB+
3121 *
3122 * Software must ensure all the write caches are flushed through a
3123 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3124 * command to invalidate read only caches prior to programming
3125 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3126 */
3127 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3128 pc.RenderTargetCacheFlushEnable = true;
3129 pc.DepthCacheFlushEnable = true;
3130 pc.DCFlushEnable = true;
3131 pc.PostSyncOperation = NoWrite;
3132 pc.CommandStreamerStallEnable = true;
3133 }
3134
3135 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3136 pc.TextureCacheInvalidationEnable = true;
3137 pc.ConstantCacheInvalidationEnable = true;
3138 pc.StateCacheInvalidationEnable = true;
3139 pc.InstructionCacheInvalidateEnable = true;
3140 pc.PostSyncOperation = NoWrite;
3141 }
3142
3143 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
3144 #if GEN_GEN >= 9
3145 ps.MaskBits = 3;
3146 #endif
3147 ps.PipelineSelection = pipeline;
3148 }
3149
3150 #if GEN_GEN == 9
3151 if (devinfo->is_geminilake) {
3152 /* Project: DevGLK
3153 *
3154 * "This chicken bit works around a hardware issue with barrier logic
3155 * encountered when switching between GPGPU and 3D pipelines. To
3156 * workaround the issue, this mode bit should be set after a pipeline
3157 * is selected."
3158 */
3159 uint32_t scec;
3160 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
3161 .GLKBarrierMode =
3162 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
3163 : GLK_BARRIER_MODE_3D_HULL,
3164 .GLKBarrierModeMask = 1);
3165 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
3166 }
3167 #endif
3168
3169 cmd_buffer->state.current_pipeline = pipeline;
3170 }
3171
3172 void
3173 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
3174 {
3175 genX(flush_pipeline_select)(cmd_buffer, _3D);
3176 }
3177
3178 void
3179 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
3180 {
3181 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
3182 }
3183
3184 void
3185 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
3186 {
3187 if (GEN_GEN >= 8)
3188 return;
3189
3190 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3191 *
3192 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3193 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3194 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3195 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3196 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3197 * Depth Flush Bit set, followed by another pipelined depth stall
3198 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3199 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
3200 * via a preceding MI_FLUSH)."
3201 */
3202 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3203 pipe.DepthStallEnable = true;
3204 }
3205 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3206 pipe.DepthCacheFlushEnable = true;
3207 }
3208 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3209 pipe.DepthStallEnable = true;
3210 }
3211 }
3212
3213 static void
3214 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
3215 {
3216 struct anv_device *device = cmd_buffer->device;
3217 const struct anv_image_view *iview =
3218 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
3219 const struct anv_image *image = iview ? iview->image : NULL;
3220
3221 /* FIXME: Width and Height are wrong */
3222
3223 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
3224
3225 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
3226 device->isl_dev.ds.size / 4);
3227 if (dw == NULL)
3228 return;
3229
3230 struct isl_depth_stencil_hiz_emit_info info = {
3231 .mocs = device->default_mocs,
3232 };
3233
3234 if (iview)
3235 info.view = &iview->planes[0].isl;
3236
3237 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
3238 uint32_t depth_plane =
3239 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
3240 const struct anv_surface *surface = &image->planes[depth_plane].surface;
3241
3242 info.depth_surf = &surface->isl;
3243
3244 info.depth_address =
3245 anv_batch_emit_reloc(&cmd_buffer->batch,
3246 dw + device->isl_dev.ds.depth_offset / 4,
3247 image->planes[depth_plane].bo,
3248 image->planes[depth_plane].bo_offset +
3249 surface->offset);
3250
3251 const uint32_t ds =
3252 cmd_buffer->state.subpass->depth_stencil_attachment.attachment;
3253 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
3254 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
3255 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
3256
3257 info.hiz_address =
3258 anv_batch_emit_reloc(&cmd_buffer->batch,
3259 dw + device->isl_dev.ds.hiz_offset / 4,
3260 image->planes[depth_plane].bo,
3261 image->planes[depth_plane].bo_offset +
3262 image->planes[depth_plane].aux_surface.offset);
3263
3264 info.depth_clear_value = ANV_HZ_FC_VAL;
3265 }
3266 }
3267
3268 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
3269 uint32_t stencil_plane =
3270 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
3271 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
3272
3273 info.stencil_surf = &surface->isl;
3274
3275 info.stencil_address =
3276 anv_batch_emit_reloc(&cmd_buffer->batch,
3277 dw + device->isl_dev.ds.stencil_offset / 4,
3278 image->planes[stencil_plane].bo,
3279 image->planes[stencil_plane].bo_offset + surface->offset);
3280 }
3281
3282 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
3283
3284 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
3285 }
3286
3287 static void
3288 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
3289 uint32_t subpass_id)
3290 {
3291 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3292 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
3293 cmd_state->subpass = subpass;
3294
3295 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3296
3297 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3298 * different views. If the client asks for instancing, we need to use the
3299 * Instance Data Step Rate to ensure that we repeat the client's
3300 * per-instance data once for each view. Since this bit is in
3301 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3302 * of each subpass.
3303 */
3304 if (GEN_GEN == 7)
3305 cmd_buffer->state.gfx.vb_dirty |= ~0;
3306
3307 /* It is possible to start a render pass with an old pipeline. Because the
3308 * render pass and subpass index are both baked into the pipeline, this is
3309 * highly unlikely. In order to do so, it requires that you have a render
3310 * pass with a single subpass and that you use that render pass twice
3311 * back-to-back and use the same pipeline at the start of the second render
3312 * pass as at the end of the first. In order to avoid unpredictable issues
3313 * with this edge case, we just dirty the pipeline at the start of every
3314 * subpass.
3315 */
3316 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3317
3318 /* Accumulate any subpass flushes that need to happen before the subpass */
3319 cmd_buffer->state.pending_pipe_bits |=
3320 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3321
3322 VkRect2D render_area = cmd_buffer->state.render_area;
3323 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3324
3325 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3326 const uint32_t a = subpass->attachments[i].attachment;
3327 if (a == VK_ATTACHMENT_UNUSED)
3328 continue;
3329
3330 assert(a < cmd_state->pass->attachment_count);
3331 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3332
3333 struct anv_image_view *iview = fb->attachments[a];
3334 const struct anv_image *image = iview->image;
3335
3336 /* A resolve is necessary before use as an input attachment if the clear
3337 * color or auxiliary buffer usage isn't supported by the sampler.
3338 */
3339 const bool input_needs_resolve =
3340 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3341 att_state->input_aux_usage != att_state->aux_usage;
3342
3343 VkImageLayout target_layout;
3344 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3345 !input_needs_resolve) {
3346 /* Layout transitions before the final only help to enable sampling
3347 * as an input attachment. If the input attachment supports sampling
3348 * using the auxiliary surface, we can skip such transitions by
3349 * making the target layout one that is CCS-aware.
3350 */
3351 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3352 } else {
3353 target_layout = subpass->attachments[i].layout;
3354 }
3355
3356 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3357 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3358
3359 uint32_t base_layer, layer_count;
3360 if (image->type == VK_IMAGE_TYPE_3D) {
3361 base_layer = 0;
3362 layer_count = anv_minify(iview->image->extent.depth,
3363 iview->planes[0].isl.base_level);
3364 } else {
3365 base_layer = iview->planes[0].isl.base_array_layer;
3366 layer_count = fb->layers;
3367 }
3368
3369 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3370 iview->planes[0].isl.base_level, 1,
3371 base_layer, layer_count,
3372 att_state->current_layout, target_layout);
3373 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3374 transition_depth_buffer(cmd_buffer, image,
3375 att_state->current_layout, target_layout);
3376 att_state->aux_usage =
3377 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3378 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3379 }
3380 att_state->current_layout = target_layout;
3381
3382 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
3383 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3384
3385 /* Multi-planar images are not supported as attachments */
3386 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3387 assert(image->n_planes == 1);
3388
3389 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
3390 uint32_t clear_layer_count = fb->layers;
3391
3392 if (att_state->fast_clear) {
3393 /* We only support fast-clears on the first layer */
3394 assert(iview->planes[0].isl.base_level == 0);
3395 assert(iview->planes[0].isl.base_array_layer == 0);
3396
3397 anv_image_ccs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3398 0, 0, 1, ISL_AUX_OP_FAST_CLEAR, false);
3399 base_clear_layer++;
3400 clear_layer_count--;
3401
3402 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3403 image, VK_IMAGE_ASPECT_COLOR_BIT,
3404 true /* copy from ss */);
3405
3406 if (att_state->clear_color_is_zero) {
3407 /* This image has the auxiliary buffer enabled. We can mark the
3408 * subresource as not needing a resolve because the clear color
3409 * will match what's in every RENDER_SURFACE_STATE object when
3410 * it's being used for sampling.
3411 */
3412 set_image_fast_clear_state(cmd_buffer, iview->image,
3413 VK_IMAGE_ASPECT_COLOR_BIT,
3414 ANV_FAST_CLEAR_DEFAULT_VALUE);
3415 } else {
3416 set_image_fast_clear_state(cmd_buffer, iview->image,
3417 VK_IMAGE_ASPECT_COLOR_BIT,
3418 ANV_FAST_CLEAR_ANY);
3419 }
3420 }
3421
3422 if (clear_layer_count > 0) {
3423 assert(image->n_planes == 1);
3424 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3425 att_state->aux_usage,
3426 iview->planes[0].isl.format,
3427 iview->planes[0].isl.swizzle,
3428 iview->planes[0].isl.base_level,
3429 base_clear_layer, clear_layer_count,
3430 render_area,
3431 vk_to_isl_color(att_state->clear_value.color));
3432 }
3433 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
3434 VK_IMAGE_ASPECT_STENCIL_BIT)) {
3435 if (att_state->fast_clear) {
3436 /* We currently only support HiZ for single-layer images */
3437 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3438 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
3439 assert(iview->planes[0].isl.base_level == 0);
3440 assert(iview->planes[0].isl.base_array_layer == 0);
3441 assert(fb->layers == 1);
3442 }
3443
3444 anv_image_hiz_clear(cmd_buffer, image,
3445 att_state->pending_clear_aspects,
3446 iview->planes[0].isl.base_level,
3447 iview->planes[0].isl.base_array_layer,
3448 fb->layers, render_area,
3449 att_state->clear_value.depthStencil.stencil);
3450 } else {
3451 anv_image_clear_depth_stencil(cmd_buffer, image,
3452 att_state->pending_clear_aspects,
3453 att_state->aux_usage,
3454 iview->planes[0].isl.base_level,
3455 iview->planes[0].isl.base_array_layer,
3456 fb->layers, render_area,
3457 att_state->clear_value.depthStencil.depth,
3458 att_state->clear_value.depthStencil.stencil);
3459 }
3460 } else {
3461 assert(att_state->pending_clear_aspects == 0);
3462 }
3463
3464 if ((att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
3465 image->planes[0].aux_surface.isl.size > 0 &&
3466 iview->planes[0].isl.base_level == 0 &&
3467 iview->planes[0].isl.base_array_layer == 0) {
3468 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
3469 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3470 image, VK_IMAGE_ASPECT_COLOR_BIT,
3471 false /* copy to ss */);
3472 }
3473
3474 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
3475 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3476 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3477 image, VK_IMAGE_ASPECT_COLOR_BIT,
3478 false /* copy to ss */);
3479 }
3480 }
3481
3482 if (subpass->attachments[i].usage ==
3483 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
3484 /* We assume that if we're starting a subpass, we're going to do some
3485 * rendering so we may end up with compressed data.
3486 */
3487 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
3488 VK_IMAGE_ASPECT_COLOR_BIT,
3489 att_state->aux_usage,
3490 iview->planes[0].isl.base_level,
3491 iview->planes[0].isl.base_array_layer,
3492 fb->layers);
3493 } else if (subpass->attachments[i].usage ==
3494 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
3495 /* We may be writing depth or stencil so we need to mark the surface.
3496 * Unfortunately, there's no way to know at this point whether the
3497 * depth or stencil tests used will actually write to the surface.
3498 *
3499 * Even though stencil may be plane 1, it always shares a base_level
3500 * with depth.
3501 */
3502 const struct isl_view *ds_view = &iview->planes[0].isl;
3503 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
3504 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3505 VK_IMAGE_ASPECT_DEPTH_BIT,
3506 att_state->aux_usage,
3507 ds_view->base_level,
3508 ds_view->base_array_layer,
3509 fb->layers);
3510 }
3511 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
3512 /* Even though stencil may be plane 1, it always shares a
3513 * base_level with depth.
3514 */
3515 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3516 VK_IMAGE_ASPECT_STENCIL_BIT,
3517 ISL_AUX_USAGE_NONE,
3518 ds_view->base_level,
3519 ds_view->base_array_layer,
3520 fb->layers);
3521 }
3522 }
3523
3524 att_state->pending_clear_aspects = 0;
3525 att_state->pending_load_aspects = 0;
3526 }
3527
3528 cmd_buffer_emit_depth_stencil(cmd_buffer);
3529 }
3530
3531 static void
3532 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
3533 {
3534 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3535 struct anv_subpass *subpass = cmd_state->subpass;
3536 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3537
3538 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3539
3540 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3541 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3542 const uint32_t a = subpass->attachments[i].attachment;
3543 if (a == VK_ATTACHMENT_UNUSED)
3544 continue;
3545
3546 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
3547 continue;
3548
3549 assert(a < cmd_state->pass->attachment_count);
3550 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3551 struct anv_image_view *iview = fb->attachments[a];
3552 const struct anv_image *image = iview->image;
3553
3554 /* Transition the image into the final layout for this render pass */
3555 VkImageLayout target_layout =
3556 cmd_state->pass->attachments[a].final_layout;
3557
3558 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3559 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3560
3561 uint32_t base_layer, layer_count;
3562 if (image->type == VK_IMAGE_TYPE_3D) {
3563 base_layer = 0;
3564 layer_count = anv_minify(iview->image->extent.depth,
3565 iview->planes[0].isl.base_level);
3566 } else {
3567 base_layer = iview->planes[0].isl.base_array_layer;
3568 layer_count = fb->layers;
3569 }
3570
3571 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3572 iview->planes[0].isl.base_level, 1,
3573 base_layer, layer_count,
3574 att_state->current_layout, target_layout);
3575 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3576 transition_depth_buffer(cmd_buffer, image,
3577 att_state->current_layout, target_layout);
3578 }
3579 }
3580
3581 /* Accumulate any subpass flushes that need to happen after the subpass.
3582 * Yes, they do get accumulated twice in the NextSubpass case but since
3583 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
3584 * ORing the bits in twice so it's harmless.
3585 */
3586 cmd_buffer->state.pending_pipe_bits |=
3587 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
3588 }
3589
3590 void genX(CmdBeginRenderPass)(
3591 VkCommandBuffer commandBuffer,
3592 const VkRenderPassBeginInfo* pRenderPassBegin,
3593 VkSubpassContents contents)
3594 {
3595 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3596 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3597 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3598
3599 cmd_buffer->state.framebuffer = framebuffer;
3600 cmd_buffer->state.pass = pass;
3601 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3602 VkResult result =
3603 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3604
3605 /* If we failed to setup the attachments we should not try to go further */
3606 if (result != VK_SUCCESS) {
3607 assert(anv_batch_has_error(&cmd_buffer->batch));
3608 return;
3609 }
3610
3611 genX(flush_pipeline_select_3d)(cmd_buffer);
3612
3613 cmd_buffer_begin_subpass(cmd_buffer, 0);
3614 }
3615
3616 void genX(CmdNextSubpass)(
3617 VkCommandBuffer commandBuffer,
3618 VkSubpassContents contents)
3619 {
3620 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3621
3622 if (anv_batch_has_error(&cmd_buffer->batch))
3623 return;
3624
3625 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3626
3627 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
3628 cmd_buffer_end_subpass(cmd_buffer);
3629 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
3630 }
3631
3632 void genX(CmdEndRenderPass)(
3633 VkCommandBuffer commandBuffer)
3634 {
3635 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3636
3637 if (anv_batch_has_error(&cmd_buffer->batch))
3638 return;
3639
3640 cmd_buffer_end_subpass(cmd_buffer);
3641
3642 cmd_buffer->state.hiz_enabled = false;
3643
3644 #ifndef NDEBUG
3645 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3646 #endif
3647
3648 /* Remove references to render pass specific state. This enables us to
3649 * detect whether or not we're in a renderpass.
3650 */
3651 cmd_buffer->state.framebuffer = NULL;
3652 cmd_buffer->state.pass = NULL;
3653 cmd_buffer->state.subpass = NULL;
3654 }