anv: Re-emit vertex buffers when the pipeline changes
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch,
37 uint32_t reg, struct anv_bo *bo, uint32_t offset)
38 {
39 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
40 lrm.RegisterAddress = reg;
41 lrm.MemoryAddress = (struct anv_address) { bo, offset };
42 }
43 }
44
45 static void
46 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
47 {
48 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
49 lri.RegisterOffset = reg;
50 lri.DataDWord = imm;
51 }
52 }
53
54 #if GEN_IS_HASWELL || GEN_GEN >= 8
55 static void
56 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
57 {
58 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
59 lrr.SourceRegisterAddress = src;
60 lrr.DestinationRegisterAddress = dst;
61 }
62 }
63 #endif
64
65 void
66 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
67 {
68 struct anv_device *device = cmd_buffer->device;
69
70 /* If we are emitting a new state base address we probably need to re-emit
71 * binding tables.
72 */
73 cmd_buffer->state.descriptors_dirty |= ~0;
74
75 /* Emit a render target cache flush.
76 *
77 * This isn't documented anywhere in the PRM. However, it seems to be
78 * necessary prior to changing the surface state base adress. Without
79 * this, we get GPU hangs when using multi-level command buffers which
80 * clear depth, reset state base address, and then go render stuff.
81 */
82 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
83 pc.DCFlushEnable = true;
84 pc.RenderTargetCacheFlushEnable = true;
85 pc.CommandStreamerStallEnable = true;
86 }
87
88 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
89 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
90 sba.GeneralStateMemoryObjectControlState = GENX(MOCS);
91 sba.GeneralStateBaseAddressModifyEnable = true;
92
93 sba.SurfaceStateBaseAddress =
94 anv_cmd_buffer_surface_base_address(cmd_buffer);
95 sba.SurfaceStateMemoryObjectControlState = GENX(MOCS);
96 sba.SurfaceStateBaseAddressModifyEnable = true;
97
98 sba.DynamicStateBaseAddress =
99 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
100 sba.DynamicStateMemoryObjectControlState = GENX(MOCS);
101 sba.DynamicStateBaseAddressModifyEnable = true;
102
103 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
104 sba.IndirectObjectMemoryObjectControlState = GENX(MOCS);
105 sba.IndirectObjectBaseAddressModifyEnable = true;
106
107 sba.InstructionBaseAddress =
108 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
109 sba.InstructionMemoryObjectControlState = GENX(MOCS);
110 sba.InstructionBaseAddressModifyEnable = true;
111
112 # if (GEN_GEN >= 8)
113 /* Broadwell requires that we specify a buffer size for a bunch of
114 * these fields. However, since we will be growing the BO's live, we
115 * just set them all to the maximum.
116 */
117 sba.GeneralStateBufferSize = 0xfffff;
118 sba.GeneralStateBufferSizeModifyEnable = true;
119 sba.DynamicStateBufferSize = 0xfffff;
120 sba.DynamicStateBufferSizeModifyEnable = true;
121 sba.IndirectObjectBufferSize = 0xfffff;
122 sba.IndirectObjectBufferSizeModifyEnable = true;
123 sba.InstructionBufferSize = 0xfffff;
124 sba.InstructionBuffersizeModifyEnable = true;
125 # endif
126 }
127
128 /* After re-setting the surface state base address, we have to do some
129 * cache flusing so that the sampler engine will pick up the new
130 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
131 * Shared Function > 3D Sampler > State > State Caching (page 96):
132 *
133 * Coherency with system memory in the state cache, like the texture
134 * cache is handled partially by software. It is expected that the
135 * command stream or shader will issue Cache Flush operation or
136 * Cache_Flush sampler message to ensure that the L1 cache remains
137 * coherent with system memory.
138 *
139 * [...]
140 *
141 * Whenever the value of the Dynamic_State_Base_Addr,
142 * Surface_State_Base_Addr are altered, the L1 state cache must be
143 * invalidated to ensure the new surface or sampler state is fetched
144 * from system memory.
145 *
146 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
147 * which, according the PIPE_CONTROL instruction documentation in the
148 * Broadwell PRM:
149 *
150 * Setting this bit is independent of any other bit in this packet.
151 * This bit controls the invalidation of the L1 and L2 state caches
152 * at the top of the pipe i.e. at the parsing time.
153 *
154 * Unfortunately, experimentation seems to indicate that state cache
155 * invalidation through a PIPE_CONTROL does nothing whatsoever in
156 * regards to surface state and binding tables. In stead, it seems that
157 * invalidating the texture cache is what is actually needed.
158 *
159 * XXX: As far as we have been able to determine through
160 * experimentation, shows that flush the texture cache appears to be
161 * sufficient. The theory here is that all of the sampling/rendering
162 * units cache the binding table in the texture cache. However, we have
163 * yet to be able to actually confirm this.
164 */
165 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
166 pc.TextureCacheInvalidationEnable = true;
167 pc.ConstantCacheInvalidationEnable = true;
168 pc.StateCacheInvalidationEnable = true;
169 }
170 }
171
172 static void
173 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
174 struct anv_state state, struct anv_address addr)
175 {
176 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
177
178 VkResult result =
179 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
180 state.offset + isl_dev->ss.addr_offset,
181 addr.bo, addr.offset);
182 if (result != VK_SUCCESS)
183 anv_batch_set_error(&cmd_buffer->batch, result);
184 }
185
186 static void
187 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
188 struct anv_surface_state state)
189 {
190 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
191
192 assert(!anv_address_is_null(state.address));
193 add_surface_reloc(cmd_buffer, state.state, state.address);
194
195 if (!anv_address_is_null(state.aux_address)) {
196 VkResult result =
197 anv_reloc_list_add(&cmd_buffer->surface_relocs,
198 &cmd_buffer->pool->alloc,
199 state.state.offset + isl_dev->ss.aux_addr_offset,
200 state.aux_address.bo, state.aux_address.offset);
201 if (result != VK_SUCCESS)
202 anv_batch_set_error(&cmd_buffer->batch, result);
203 }
204
205 if (!anv_address_is_null(state.clear_address)) {
206 VkResult result =
207 anv_reloc_list_add(&cmd_buffer->surface_relocs,
208 &cmd_buffer->pool->alloc,
209 state.state.offset +
210 isl_dev->ss.clear_color_state_offset,
211 state.clear_address.bo, state.clear_address.offset);
212 if (result != VK_SUCCESS)
213 anv_batch_set_error(&cmd_buffer->batch, result);
214 }
215 }
216
217 static void
218 color_attachment_compute_aux_usage(struct anv_device * device,
219 struct anv_cmd_state * cmd_state,
220 uint32_t att, VkRect2D render_area,
221 union isl_color_value *fast_clear_color)
222 {
223 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
224 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
225
226 assert(iview->n_planes == 1);
227
228 if (iview->planes[0].isl.base_array_layer >=
229 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
230 iview->planes[0].isl.base_level)) {
231 /* There is no aux buffer which corresponds to the level and layer(s)
232 * being accessed.
233 */
234 att_state->aux_usage = ISL_AUX_USAGE_NONE;
235 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
236 att_state->fast_clear = false;
237 return;
238 }
239
240 att_state->aux_usage =
241 anv_layout_to_aux_usage(&device->info, iview->image,
242 VK_IMAGE_ASPECT_COLOR_BIT,
243 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
244
245 /* If we don't have aux, then we should have returned early in the layer
246 * check above. If we got here, we must have something.
247 */
248 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
249
250 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
251 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
252 att_state->input_aux_usage = att_state->aux_usage;
253 } else {
254 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
255 *
256 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
257 * setting is only allowed if Surface Format supported for Fast
258 * Clear. In addition, if the surface is bound to the sampling
259 * engine, Surface Format must be supported for Render Target
260 * Compression for surfaces bound to the sampling engine."
261 *
262 * In other words, we can only sample from a fast-cleared image if it
263 * also supports color compression.
264 */
265 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
266 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
267
268 /* While fast-clear resolves and partial resolves are fairly cheap in the
269 * case where you render to most of the pixels, full resolves are not
270 * because they potentially involve reading and writing the entire
271 * framebuffer. If we can't texture with CCS_E, we should leave it off and
272 * limit ourselves to fast clears.
273 */
274 if (cmd_state->pass->attachments[att].first_subpass_layout ==
275 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
276 anv_perf_warn(device->instance, iview->image,
277 "Not temporarily enabling CCS_E.");
278 }
279 } else {
280 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
281 }
282 }
283
284 assert(iview->image->planes[0].aux_surface.isl.usage &
285 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
286
287 union isl_color_value clear_color = {};
288 anv_clear_color_from_att_state(&clear_color, att_state, iview);
289
290 att_state->clear_color_is_zero_one =
291 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
292 att_state->clear_color_is_zero =
293 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
294
295 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
296 /* Start by getting the fast clear type. We use the first subpass
297 * layout here because we don't want to fast-clear if the first subpass
298 * to use the attachment can't handle fast-clears.
299 */
300 enum anv_fast_clear_type fast_clear_type =
301 anv_layout_to_fast_clear_type(&device->info, iview->image,
302 VK_IMAGE_ASPECT_COLOR_BIT,
303 cmd_state->pass->attachments[att].first_subpass_layout);
304 switch (fast_clear_type) {
305 case ANV_FAST_CLEAR_NONE:
306 att_state->fast_clear = false;
307 break;
308 case ANV_FAST_CLEAR_DEFAULT_VALUE:
309 att_state->fast_clear = att_state->clear_color_is_zero;
310 break;
311 case ANV_FAST_CLEAR_ANY:
312 att_state->fast_clear = true;
313 break;
314 }
315
316 /* Potentially, we could do partial fast-clears but doing so has crazy
317 * alignment restrictions. It's easier to just restrict to full size
318 * fast clears for now.
319 */
320 if (render_area.offset.x != 0 ||
321 render_area.offset.y != 0 ||
322 render_area.extent.width != iview->extent.width ||
323 render_area.extent.height != iview->extent.height)
324 att_state->fast_clear = false;
325
326 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
327 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
328 att_state->fast_clear = false;
329
330 /* We only allow fast clears to the first slice of an image (level 0,
331 * layer 0) and only for the entire slice. This guarantees us that, at
332 * any given time, there is only one clear color on any given image at
333 * any given time. At the time of our testing (Jan 17, 2018), there
334 * were no known applications which would benefit from fast-clearing
335 * more than just the first slice.
336 */
337 if (att_state->fast_clear &&
338 (iview->planes[0].isl.base_level > 0 ||
339 iview->planes[0].isl.base_array_layer > 0)) {
340 anv_perf_warn(device->instance, iview->image,
341 "Rendering with multi-lod or multi-layer framebuffer "
342 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
343 "baseArrayLayer > 0. Not fast clearing.");
344 att_state->fast_clear = false;
345 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
346 anv_perf_warn(device->instance, iview->image,
347 "Rendering to a multi-layer framebuffer with "
348 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
349 }
350
351 if (att_state->fast_clear)
352 *fast_clear_color = clear_color;
353 } else {
354 att_state->fast_clear = false;
355 }
356 }
357
358 static void
359 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
360 struct anv_cmd_state *cmd_state,
361 uint32_t att, VkRect2D render_area)
362 {
363 struct anv_render_pass_attachment *pass_att =
364 &cmd_state->pass->attachments[att];
365 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
366 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
367
368 /* These will be initialized after the first subpass transition. */
369 att_state->aux_usage = ISL_AUX_USAGE_NONE;
370 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
371
372 if (GEN_GEN == 7) {
373 /* We don't do any HiZ or depth fast-clears on gen7 yet */
374 att_state->fast_clear = false;
375 return;
376 }
377
378 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
379 /* If we're just clearing stencil, we can always HiZ clear */
380 att_state->fast_clear = true;
381 return;
382 }
383
384 /* Default to false for now */
385 att_state->fast_clear = false;
386
387 /* We must have depth in order to have HiZ */
388 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
389 return;
390
391 const enum isl_aux_usage first_subpass_aux_usage =
392 anv_layout_to_aux_usage(&device->info, iview->image,
393 VK_IMAGE_ASPECT_DEPTH_BIT,
394 pass_att->first_subpass_layout);
395 if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ)
396 return;
397
398 if (!blorp_can_hiz_clear_depth(GEN_GEN,
399 iview->planes[0].isl.format,
400 iview->image->samples,
401 render_area.offset.x,
402 render_area.offset.y,
403 render_area.offset.x +
404 render_area.extent.width,
405 render_area.offset.y +
406 render_area.extent.height))
407 return;
408
409 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
410 return;
411
412 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
413 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
414 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
415 * only supports returning 0.0f. Gens prior to gen8 do not support this
416 * feature at all.
417 */
418 return;
419 }
420
421 /* If we got here, then we can fast clear */
422 att_state->fast_clear = true;
423 }
424
425 static bool
426 need_input_attachment_state(const struct anv_render_pass_attachment *att)
427 {
428 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
429 return false;
430
431 /* We only allocate input attachment states for color surfaces. Compression
432 * is not yet enabled for depth textures and stencil doesn't allow
433 * compression so we can just use the texture surface state from the view.
434 */
435 return vk_format_is_color(att->format);
436 }
437
438 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
439 * the initial layout is undefined, the HiZ buffer and depth buffer will
440 * represent the same data at the end of this operation.
441 */
442 static void
443 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
444 const struct anv_image *image,
445 VkImageLayout initial_layout,
446 VkImageLayout final_layout)
447 {
448 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
449 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
450 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
451 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
452 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
453 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
454
455 enum isl_aux_op hiz_op;
456 if (hiz_enabled && !enable_hiz) {
457 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
458 } else if (!hiz_enabled && enable_hiz) {
459 hiz_op = ISL_AUX_OP_AMBIGUATE;
460 } else {
461 assert(hiz_enabled == enable_hiz);
462 /* If the same buffer will be used, no resolves are necessary. */
463 hiz_op = ISL_AUX_OP_NONE;
464 }
465
466 if (hiz_op != ISL_AUX_OP_NONE)
467 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
468 0, 0, 1, hiz_op);
469 }
470
471 #define MI_PREDICATE_SRC0 0x2400
472 #define MI_PREDICATE_SRC1 0x2408
473
474 static void
475 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
476 const struct anv_image *image,
477 VkImageAspectFlagBits aspect,
478 uint32_t level,
479 uint32_t base_layer, uint32_t layer_count,
480 bool compressed)
481 {
482 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
483
484 /* We only have compression tracking for CCS_E */
485 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
486 return;
487
488 for (uint32_t a = 0; a < layer_count; a++) {
489 uint32_t layer = base_layer + a;
490 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
491 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
492 image, aspect,
493 level, layer);
494 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
495 }
496 }
497 }
498
499 static void
500 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
501 const struct anv_image *image,
502 VkImageAspectFlagBits aspect,
503 enum anv_fast_clear_type fast_clear)
504 {
505 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
506 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
507 image, aspect);
508 sdi.ImmediateData = fast_clear;
509 }
510
511 /* Whenever we have fast-clear, we consider that slice to be compressed.
512 * This makes building predicates much easier.
513 */
514 if (fast_clear != ANV_FAST_CLEAR_NONE)
515 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
516 }
517
518 #if GEN_IS_HASWELL || GEN_GEN >= 8
519 static inline uint32_t
520 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
521 {
522 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
523 .ALUOpcode = opcode,
524 .Operand1 = operand1,
525 .Operand2 = operand2,
526 };
527
528 uint32_t dw;
529 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
530
531 return dw;
532 }
533 #endif
534
535 #define CS_GPR(n) (0x2600 + (n) * 8)
536
537 /* This is only really practical on haswell and above because it requires
538 * MI math in order to get it correct.
539 */
540 #if GEN_GEN >= 8 || GEN_IS_HASWELL
541 static void
542 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
543 const struct anv_image *image,
544 VkImageAspectFlagBits aspect,
545 uint32_t level, uint32_t array_layer,
546 enum isl_aux_op resolve_op,
547 enum anv_fast_clear_type fast_clear_supported)
548 {
549 struct anv_address fast_clear_type_addr =
550 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
551
552 /* Name some registers */
553 const int image_fc_reg = MI_ALU_REG0;
554 const int fc_imm_reg = MI_ALU_REG1;
555 const int pred_reg = MI_ALU_REG2;
556
557 uint32_t *dw;
558
559 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
560 /* In this case, we're doing a full resolve which means we want the
561 * resolve to happen if any compression (including fast-clears) is
562 * present.
563 *
564 * In order to simplify the logic a bit, we make the assumption that,
565 * if the first slice has been fast-cleared, it is also marked as
566 * compressed. See also set_image_fast_clear_state.
567 */
568 struct anv_address compression_state_addr =
569 anv_image_get_compression_state_addr(cmd_buffer->device, image,
570 aspect, level, array_layer);
571 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
572 lrm.RegisterAddress = MI_PREDICATE_SRC0;
573 lrm.MemoryAddress = compression_state_addr;
574 }
575 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
576 sdi.Address = compression_state_addr;
577 sdi.ImmediateData = 0;
578 }
579
580 if (level == 0 && array_layer == 0) {
581 /* If the predicate is true, we want to write 0 to the fast clear type
582 * and, if it's false, leave it alone. We can do this by writing
583 *
584 * clear_type = clear_type & ~predicate;
585 */
586 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
587 lrm.RegisterAddress = CS_GPR(image_fc_reg);
588 lrm.MemoryAddress = fast_clear_type_addr;
589 }
590 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
591 lrr.DestinationRegisterAddress = CS_GPR(pred_reg);
592 lrr.SourceRegisterAddress = MI_PREDICATE_SRC0;
593 }
594
595 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
596 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
597 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
598 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
599 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
600
601 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
602 srm.MemoryAddress = fast_clear_type_addr;
603 srm.RegisterAddress = CS_GPR(image_fc_reg);
604 }
605 }
606 } else if (level == 0 && array_layer == 0) {
607 /* In this case, we are doing a partial resolve to get rid of fast-clear
608 * colors. We don't care about the compression state but we do care
609 * about how much fast clear is allowed by the final layout.
610 */
611 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
612 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
613
614 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
615 lrm.RegisterAddress = CS_GPR(image_fc_reg);
616 lrm.MemoryAddress = fast_clear_type_addr;
617 }
618 emit_lri(&cmd_buffer->batch, CS_GPR(image_fc_reg) + 4, 0);
619
620 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg), fast_clear_supported);
621 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg) + 4, 0);
622
623 /* We need to compute (fast_clear_supported < image->fast_clear).
624 * We do this by subtracting and storing the carry bit.
625 */
626 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
627 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm_reg);
628 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc_reg);
629 dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
630 dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF);
631
632 /* Store the predicate */
633 emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg));
634
635 /* If the predicate is true, we want to write 0 to the fast clear type
636 * and, if it's false, leave it alone. We can do this by writing
637 *
638 * clear_type = clear_type & ~predicate;
639 */
640 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
641 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
642 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
643 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
644 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
645
646 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
647 srm.RegisterAddress = CS_GPR(image_fc_reg);
648 srm.MemoryAddress = fast_clear_type_addr;
649 }
650 } else {
651 /* In this case, we're trying to do a partial resolve on a slice that
652 * doesn't have clear color. There's nothing to do.
653 */
654 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
655 return;
656 }
657
658 /* We use the first half of src0 for the actual predicate. Set the second
659 * half of src0 and all of src1 to 0 as the predicate operation will be
660 * doing an implicit src0 != src1.
661 */
662 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
663 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
664 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
665
666 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
667 mip.LoadOperation = LOAD_LOADINV;
668 mip.CombineOperation = COMBINE_SET;
669 mip.CompareOperation = COMPARE_SRCS_EQUAL;
670 }
671 }
672 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
673
674 #if GEN_GEN <= 8
675 static void
676 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
677 const struct anv_image *image,
678 VkImageAspectFlagBits aspect,
679 uint32_t level, uint32_t array_layer,
680 enum isl_aux_op resolve_op,
681 enum anv_fast_clear_type fast_clear_supported)
682 {
683 struct anv_address fast_clear_type_addr =
684 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
685
686 /* This only works for partial resolves and only when the clear color is
687 * all or nothing. On the upside, this emits less command streamer code
688 * and works on Ivybridge and Bay Trail.
689 */
690 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
691 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
692
693 /* We don't support fast clears on anything other than the first slice. */
694 if (level > 0 || array_layer > 0)
695 return;
696
697 /* On gen8, we don't have a concept of default clear colors because we
698 * can't sample from CCS surfaces. It's enough to just load the fast clear
699 * state into the predicate register.
700 */
701 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
702 lrm.RegisterAddress = MI_PREDICATE_SRC0;
703 lrm.MemoryAddress = fast_clear_type_addr;
704 }
705 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
706 sdi.Address = fast_clear_type_addr;
707 sdi.ImmediateData = 0;
708 }
709
710 /* We use the first half of src0 for the actual predicate. Set the second
711 * half of src0 and all of src1 to 0 as the predicate operation will be
712 * doing an implicit src0 != src1.
713 */
714 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
715 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
716 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
717
718 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
719 mip.LoadOperation = LOAD_LOADINV;
720 mip.CombineOperation = COMBINE_SET;
721 mip.CompareOperation = COMPARE_SRCS_EQUAL;
722 }
723 }
724 #endif /* GEN_GEN <= 8 */
725
726 static void
727 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
728 const struct anv_image *image,
729 VkImageAspectFlagBits aspect,
730 uint32_t level, uint32_t array_layer,
731 enum isl_aux_op resolve_op,
732 enum anv_fast_clear_type fast_clear_supported)
733 {
734 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
735
736 #if GEN_GEN >= 9
737 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
738 aspect, level, array_layer,
739 resolve_op, fast_clear_supported);
740 #else /* GEN_GEN <= 8 */
741 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
742 aspect, level, array_layer,
743 resolve_op, fast_clear_supported);
744 #endif
745
746 /* CCS_D only supports full resolves and BLORP will assert on us if we try
747 * to do a partial resolve on a CCS_D surface.
748 */
749 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
750 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
751 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
752
753 anv_image_ccs_op(cmd_buffer, image, aspect, level,
754 array_layer, 1, resolve_op, NULL, true);
755 }
756
757 static void
758 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
759 const struct anv_image *image,
760 VkImageAspectFlagBits aspect,
761 uint32_t array_layer,
762 enum isl_aux_op resolve_op,
763 enum anv_fast_clear_type fast_clear_supported)
764 {
765 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
766 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
767
768 #if GEN_GEN >= 8 || GEN_IS_HASWELL
769 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
770 aspect, 0, array_layer,
771 resolve_op, fast_clear_supported);
772
773 anv_image_mcs_op(cmd_buffer, image, aspect,
774 array_layer, 1, resolve_op, NULL, true);
775 #else
776 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
777 #endif
778 }
779
780 void
781 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
782 const struct anv_image *image,
783 VkImageAspectFlagBits aspect,
784 enum isl_aux_usage aux_usage,
785 uint32_t level,
786 uint32_t base_layer,
787 uint32_t layer_count)
788 {
789 /* The aspect must be exactly one of the image aspects. */
790 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
791
792 /* The only compression types with more than just fast-clears are MCS,
793 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
794 * track the current fast-clear and compression state. This leaves us
795 * with just MCS and CCS_E.
796 */
797 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
798 aux_usage != ISL_AUX_USAGE_MCS)
799 return;
800
801 set_image_compressed_bit(cmd_buffer, image, aspect,
802 level, base_layer, layer_count, true);
803 }
804
805 static void
806 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
807 const struct anv_image *image,
808 VkImageAspectFlagBits aspect)
809 {
810 assert(cmd_buffer && image);
811 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
812
813 set_image_fast_clear_state(cmd_buffer, image, aspect,
814 ANV_FAST_CLEAR_NONE);
815
816 /* The fast clear value dword(s) will be copied into a surface state object.
817 * Ensure that the restrictions of the fields in the dword(s) are followed.
818 *
819 * CCS buffers on SKL+ can have any value set for the clear colors.
820 */
821 if (image->samples == 1 && GEN_GEN >= 9)
822 return;
823
824 /* Other combinations of auxiliary buffers and platforms require specific
825 * values in the clear value dword(s).
826 */
827 struct anv_address addr =
828 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
829
830 if (GEN_GEN >= 9) {
831 for (unsigned i = 0; i < 4; i++) {
832 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
833 sdi.Address = addr;
834 sdi.Address.offset += i * 4;
835 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
836 assert(image->samples > 1);
837 sdi.ImmediateData = 0;
838 }
839 }
840 } else {
841 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
842 sdi.Address = addr;
843 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
844 /* Pre-SKL, the dword containing the clear values also contains
845 * other fields, so we need to initialize those fields to match the
846 * values that would be in a color attachment.
847 */
848 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
849 ISL_CHANNEL_SELECT_GREEN << 22 |
850 ISL_CHANNEL_SELECT_BLUE << 19 |
851 ISL_CHANNEL_SELECT_ALPHA << 16;
852 } else if (GEN_GEN == 7) {
853 /* On IVB, the dword containing the clear values also contains
854 * other fields that must be zero or can be zero.
855 */
856 sdi.ImmediateData = 0;
857 }
858 }
859 }
860 }
861
862 /* Copy the fast-clear value dword(s) between a surface state object and an
863 * image's fast clear state buffer.
864 */
865 static void
866 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
867 struct anv_state surface_state,
868 const struct anv_image *image,
869 VkImageAspectFlagBits aspect,
870 bool copy_from_surface_state)
871 {
872 assert(cmd_buffer && image);
873 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
874
875 struct anv_bo *ss_bo =
876 &cmd_buffer->device->surface_state_pool.block_pool.bo;
877 uint32_t ss_clear_offset = surface_state.offset +
878 cmd_buffer->device->isl_dev.ss.clear_value_offset;
879 const struct anv_address entry_addr =
880 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
881 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
882
883 if (copy_from_surface_state) {
884 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr.bo, entry_addr.offset,
885 ss_bo, ss_clear_offset, copy_size);
886 } else {
887 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_bo, ss_clear_offset,
888 entry_addr.bo, entry_addr.offset, copy_size);
889
890 /* Updating a surface state object may require that the state cache be
891 * invalidated. From the SKL PRM, Shared Functions -> State -> State
892 * Caching:
893 *
894 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
895 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
896 * modified [...], the L1 state cache must be invalidated to ensure
897 * the new surface or sampler state is fetched from system memory.
898 *
899 * In testing, SKL doesn't actually seem to need this, but HSW does.
900 */
901 cmd_buffer->state.pending_pipe_bits |=
902 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
903 }
904 }
905
906 /**
907 * @brief Transitions a color buffer from one layout to another.
908 *
909 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
910 * more information.
911 *
912 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
913 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
914 * this represents the maximum layers to transition at each
915 * specified miplevel.
916 */
917 static void
918 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
919 const struct anv_image *image,
920 VkImageAspectFlagBits aspect,
921 const uint32_t base_level, uint32_t level_count,
922 uint32_t base_layer, uint32_t layer_count,
923 VkImageLayout initial_layout,
924 VkImageLayout final_layout)
925 {
926 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
927 /* Validate the inputs. */
928 assert(cmd_buffer);
929 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
930 /* These values aren't supported for simplicity's sake. */
931 assert(level_count != VK_REMAINING_MIP_LEVELS &&
932 layer_count != VK_REMAINING_ARRAY_LAYERS);
933 /* Ensure the subresource range is valid. */
934 uint64_t last_level_num = base_level + level_count;
935 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
936 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
937 assert((uint64_t)base_layer + layer_count <= image_layers);
938 assert(last_level_num <= image->levels);
939 /* The spec disallows these final layouts. */
940 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
941 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
942
943 /* No work is necessary if the layout stays the same or if this subresource
944 * range lacks auxiliary data.
945 */
946 if (initial_layout == final_layout)
947 return;
948
949 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
950
951 if (image->planes[plane].shadow_surface.isl.size > 0 &&
952 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
953 /* This surface is a linear compressed image with a tiled shadow surface
954 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
955 * we need to ensure the shadow copy is up-to-date.
956 */
957 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
958 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
959 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
960 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
961 assert(plane == 0);
962 anv_image_copy_to_shadow(cmd_buffer, image,
963 base_level, level_count,
964 base_layer, layer_count);
965 }
966
967 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
968 return;
969
970 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
971
972 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
973 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
974 /* A subresource in the undefined layout may have been aliased and
975 * populated with any arrangement of bits. Therefore, we must initialize
976 * the related aux buffer and clear buffer entry with desirable values.
977 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
978 * images with VK_IMAGE_TILING_OPTIMAL.
979 *
980 * Initialize the relevant clear buffer entries.
981 */
982 if (base_level == 0 && base_layer == 0)
983 init_fast_clear_color(cmd_buffer, image, aspect);
984
985 /* Initialize the aux buffers to enable correct rendering. In order to
986 * ensure that things such as storage images work correctly, aux buffers
987 * need to be initialized to valid data.
988 *
989 * Having an aux buffer with invalid data is a problem for two reasons:
990 *
991 * 1) Having an invalid value in the buffer can confuse the hardware.
992 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
993 * invalid and leads to the hardware doing strange things. It
994 * doesn't hang as far as we can tell but rendering corruption can
995 * occur.
996 *
997 * 2) If this transition is into the GENERAL layout and we then use the
998 * image as a storage image, then we must have the aux buffer in the
999 * pass-through state so that, if we then go to texture from the
1000 * image, we get the results of our storage image writes and not the
1001 * fast clear color or other random data.
1002 *
1003 * For CCS both of the problems above are real demonstrable issues. In
1004 * that case, the only thing we can do is to perform an ambiguate to
1005 * transition the aux surface into the pass-through state.
1006 *
1007 * For MCS, (2) is never an issue because we don't support multisampled
1008 * storage images. In theory, issue (1) is a problem with MCS but we've
1009 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1010 * theory, be interpreted as something but we don't know that all bit
1011 * patterns are actually valid. For 2x and 8x, you could easily end up
1012 * with the MCS referring to an invalid plane because not all bits of
1013 * the MCS value are actually used. Even though we've never seen issues
1014 * in the wild, it's best to play it safe and initialize the MCS. We
1015 * can use a fast-clear for MCS because we only ever touch from render
1016 * and texture (no image load store).
1017 */
1018 if (image->samples == 1) {
1019 for (uint32_t l = 0; l < level_count; l++) {
1020 const uint32_t level = base_level + l;
1021
1022 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1023 if (base_layer >= aux_layers)
1024 break; /* We will only get fewer layers as level increases */
1025 uint32_t level_layer_count =
1026 MIN2(layer_count, aux_layers - base_layer);
1027
1028 anv_image_ccs_op(cmd_buffer, image, aspect, level,
1029 base_layer, level_layer_count,
1030 ISL_AUX_OP_AMBIGUATE, NULL, false);
1031
1032 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1033 set_image_compressed_bit(cmd_buffer, image, aspect,
1034 level, base_layer, level_layer_count,
1035 false);
1036 }
1037 }
1038 } else {
1039 if (image->samples == 4 || image->samples == 16) {
1040 anv_perf_warn(cmd_buffer->device->instance, image,
1041 "Doing a potentially unnecessary fast-clear to "
1042 "define an MCS buffer.");
1043 }
1044
1045 assert(base_level == 0 && level_count == 1);
1046 anv_image_mcs_op(cmd_buffer, image, aspect,
1047 base_layer, layer_count,
1048 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1049 }
1050 return;
1051 }
1052
1053 const enum isl_aux_usage initial_aux_usage =
1054 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1055 const enum isl_aux_usage final_aux_usage =
1056 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1057
1058 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1059 * We can handle transitions between CCS_D/E to and from NONE. What we
1060 * don't yet handle is switching between CCS_E and CCS_D within a given
1061 * image. Doing so in a performant way requires more detailed aux state
1062 * tracking such as what is done in i965. For now, just assume that we
1063 * only have one type of compression.
1064 */
1065 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1066 final_aux_usage == ISL_AUX_USAGE_NONE ||
1067 initial_aux_usage == final_aux_usage);
1068
1069 /* If initial aux usage is NONE, there is nothing to resolve */
1070 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1071 return;
1072
1073 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1074
1075 /* If the initial layout supports more fast clear than the final layout
1076 * then we need at least a partial resolve.
1077 */
1078 const enum anv_fast_clear_type initial_fast_clear =
1079 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1080 const enum anv_fast_clear_type final_fast_clear =
1081 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1082 if (final_fast_clear < initial_fast_clear)
1083 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1084
1085 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1086 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1087 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1088
1089 if (resolve_op == ISL_AUX_OP_NONE)
1090 return;
1091
1092 /* Perform a resolve to synchronize data between the main and aux buffer.
1093 * Before we begin, we must satisfy the cache flushing requirement specified
1094 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1095 *
1096 * Any transition from any value in {Clear, Render, Resolve} to a
1097 * different value in {Clear, Render, Resolve} requires end of pipe
1098 * synchronization.
1099 *
1100 * We perform a flush of the write cache before and after the clear and
1101 * resolve operations to meet this requirement.
1102 *
1103 * Unlike other drawing, fast clear operations are not properly
1104 * synchronized. The first PIPE_CONTROL here likely ensures that the
1105 * contents of the previous render or clear hit the render target before we
1106 * resolve and the second likely ensures that the resolve is complete before
1107 * we do any more rendering or clearing.
1108 */
1109 cmd_buffer->state.pending_pipe_bits |=
1110 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1111
1112 for (uint32_t l = 0; l < level_count; l++) {
1113 uint32_t level = base_level + l;
1114
1115 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1116 if (base_layer >= aux_layers)
1117 break; /* We will only get fewer layers as level increases */
1118 uint32_t level_layer_count =
1119 MIN2(layer_count, aux_layers - base_layer);
1120
1121 for (uint32_t a = 0; a < level_layer_count; a++) {
1122 uint32_t array_layer = base_layer + a;
1123 if (image->samples == 1) {
1124 anv_cmd_predicated_ccs_resolve(cmd_buffer, image, aspect,
1125 level, array_layer, resolve_op,
1126 final_fast_clear);
1127 } else {
1128 anv_cmd_predicated_mcs_resolve(cmd_buffer, image, aspect,
1129 array_layer, resolve_op,
1130 final_fast_clear);
1131 }
1132 }
1133 }
1134
1135 cmd_buffer->state.pending_pipe_bits |=
1136 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1137 }
1138
1139 /**
1140 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1141 */
1142 static VkResult
1143 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1144 struct anv_render_pass *pass,
1145 const VkRenderPassBeginInfo *begin)
1146 {
1147 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1148 struct anv_cmd_state *state = &cmd_buffer->state;
1149
1150 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1151
1152 if (pass->attachment_count > 0) {
1153 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1154 pass->attachment_count *
1155 sizeof(state->attachments[0]),
1156 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1157 if (state->attachments == NULL) {
1158 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1159 return anv_batch_set_error(&cmd_buffer->batch,
1160 VK_ERROR_OUT_OF_HOST_MEMORY);
1161 }
1162 } else {
1163 state->attachments = NULL;
1164 }
1165
1166 /* Reserve one for the NULL state. */
1167 unsigned num_states = 1;
1168 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1169 if (vk_format_is_color(pass->attachments[i].format))
1170 num_states++;
1171
1172 if (need_input_attachment_state(&pass->attachments[i]))
1173 num_states++;
1174 }
1175
1176 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1177 state->render_pass_states =
1178 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1179 num_states * ss_stride, isl_dev->ss.align);
1180
1181 struct anv_state next_state = state->render_pass_states;
1182 next_state.alloc_size = isl_dev->ss.size;
1183
1184 state->null_surface_state = next_state;
1185 next_state.offset += ss_stride;
1186 next_state.map += ss_stride;
1187
1188 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1189 if (vk_format_is_color(pass->attachments[i].format)) {
1190 state->attachments[i].color.state = next_state;
1191 next_state.offset += ss_stride;
1192 next_state.map += ss_stride;
1193 }
1194
1195 if (need_input_attachment_state(&pass->attachments[i])) {
1196 state->attachments[i].input.state = next_state;
1197 next_state.offset += ss_stride;
1198 next_state.map += ss_stride;
1199 }
1200 }
1201 assert(next_state.offset == state->render_pass_states.offset +
1202 state->render_pass_states.alloc_size);
1203
1204 if (begin) {
1205 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
1206 assert(pass->attachment_count == framebuffer->attachment_count);
1207
1208 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1209 isl_extent3d(framebuffer->width,
1210 framebuffer->height,
1211 framebuffer->layers));
1212
1213 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1214 struct anv_render_pass_attachment *att = &pass->attachments[i];
1215 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1216 VkImageAspectFlags clear_aspects = 0;
1217 VkImageAspectFlags load_aspects = 0;
1218
1219 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1220 /* color attachment */
1221 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1222 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1223 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1224 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1225 }
1226 } else {
1227 /* depthstencil attachment */
1228 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1229 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1230 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1231 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1232 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1233 }
1234 }
1235 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1236 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1237 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1238 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1239 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1240 }
1241 }
1242 }
1243
1244 state->attachments[i].current_layout = att->initial_layout;
1245 state->attachments[i].pending_clear_aspects = clear_aspects;
1246 state->attachments[i].pending_load_aspects = load_aspects;
1247 if (clear_aspects)
1248 state->attachments[i].clear_value = begin->pClearValues[i];
1249
1250 struct anv_image_view *iview = framebuffer->attachments[i];
1251 anv_assert(iview->vk_format == att->format);
1252
1253 const uint32_t num_layers = iview->planes[0].isl.array_len;
1254 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1255
1256 union isl_color_value clear_color = { .u32 = { 0, } };
1257 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1258 anv_assert(iview->n_planes == 1);
1259 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1260 color_attachment_compute_aux_usage(cmd_buffer->device,
1261 state, i, begin->renderArea,
1262 &clear_color);
1263
1264 anv_image_fill_surface_state(cmd_buffer->device,
1265 iview->image,
1266 VK_IMAGE_ASPECT_COLOR_BIT,
1267 &iview->planes[0].isl,
1268 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1269 state->attachments[i].aux_usage,
1270 &clear_color,
1271 0,
1272 &state->attachments[i].color,
1273 NULL);
1274
1275 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1276 } else {
1277 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1278 state, i,
1279 begin->renderArea);
1280 }
1281
1282 if (need_input_attachment_state(&pass->attachments[i])) {
1283 anv_image_fill_surface_state(cmd_buffer->device,
1284 iview->image,
1285 VK_IMAGE_ASPECT_COLOR_BIT,
1286 &iview->planes[0].isl,
1287 ISL_SURF_USAGE_TEXTURE_BIT,
1288 state->attachments[i].input_aux_usage,
1289 &clear_color,
1290 0,
1291 &state->attachments[i].input,
1292 NULL);
1293
1294 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1295 }
1296 }
1297 }
1298
1299 return VK_SUCCESS;
1300 }
1301
1302 VkResult
1303 genX(BeginCommandBuffer)(
1304 VkCommandBuffer commandBuffer,
1305 const VkCommandBufferBeginInfo* pBeginInfo)
1306 {
1307 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1308
1309 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1310 * command buffer's state. Otherwise, we must *reset* its state. In both
1311 * cases we reset it.
1312 *
1313 * From the Vulkan 1.0 spec:
1314 *
1315 * If a command buffer is in the executable state and the command buffer
1316 * was allocated from a command pool with the
1317 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1318 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1319 * as if vkResetCommandBuffer had been called with
1320 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1321 * the command buffer in the recording state.
1322 */
1323 anv_cmd_buffer_reset(cmd_buffer);
1324
1325 cmd_buffer->usage_flags = pBeginInfo->flags;
1326
1327 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1328 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1329
1330 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1331
1332 /* We sometimes store vertex data in the dynamic state buffer for blorp
1333 * operations and our dynamic state stream may re-use data from previous
1334 * command buffers. In order to prevent stale cache data, we flush the VF
1335 * cache. We could do this on every blorp call but that's not really
1336 * needed as all of the data will get written by the CPU prior to the GPU
1337 * executing anything. The chances are fairly high that they will use
1338 * blorp at least once per primary command buffer so it shouldn't be
1339 * wasted.
1340 */
1341 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1342 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1343
1344 /* We send an "Indirect State Pointers Disable" packet at
1345 * EndCommandBuffer, so all push contant packets are ignored during a
1346 * context restore. Documentation says after that command, we need to
1347 * emit push constants again before any rendering operation. So we
1348 * flag them dirty here to make sure they get emitted.
1349 */
1350 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1351
1352 VkResult result = VK_SUCCESS;
1353 if (cmd_buffer->usage_flags &
1354 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1355 assert(pBeginInfo->pInheritanceInfo);
1356 cmd_buffer->state.pass =
1357 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1358 cmd_buffer->state.subpass =
1359 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1360
1361 /* This is optional in the inheritance info. */
1362 cmd_buffer->state.framebuffer =
1363 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1364
1365 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1366 cmd_buffer->state.pass, NULL);
1367
1368 /* Record that HiZ is enabled if we can. */
1369 if (cmd_buffer->state.framebuffer) {
1370 const struct anv_image_view * const iview =
1371 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1372
1373 if (iview) {
1374 VkImageLayout layout =
1375 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1376
1377 enum isl_aux_usage aux_usage =
1378 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1379 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1380
1381 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1382 }
1383 }
1384
1385 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1386 }
1387
1388 return result;
1389 }
1390
1391 /* From the PRM, Volume 2a:
1392 *
1393 * "Indirect State Pointers Disable
1394 *
1395 * At the completion of the post-sync operation associated with this pipe
1396 * control packet, the indirect state pointers in the hardware are
1397 * considered invalid; the indirect pointers are not saved in the context.
1398 * If any new indirect state commands are executed in the command stream
1399 * while the pipe control is pending, the new indirect state commands are
1400 * preserved.
1401 *
1402 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1403 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1404 * commands are only considered as Indirect State Pointers. Once ISP is
1405 * issued in a context, SW must initialize by programming push constant
1406 * commands for all the shaders (at least to zero length) before attempting
1407 * any rendering operation for the same context."
1408 *
1409 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1410 * even though they point to a BO that has been already unreferenced at
1411 * the end of the previous batch buffer. This has been fine so far since
1412 * we are protected by these scratch page (every address not covered by
1413 * a BO should be pointing to the scratch page). But on CNL, it is
1414 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1415 * instruction.
1416 *
1417 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1418 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1419 * context restore, so the mentioned hang doesn't happen. However,
1420 * software must program push constant commands for all stages prior to
1421 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1422 *
1423 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1424 * constants have been loaded into the EUs prior to disable the push constants
1425 * so that it doesn't hang a previous 3DPRIMITIVE.
1426 */
1427 static void
1428 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1429 {
1430 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1431 pc.StallAtPixelScoreboard = true;
1432 pc.CommandStreamerStallEnable = true;
1433 }
1434 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1435 pc.IndirectStatePointersDisable = true;
1436 pc.CommandStreamerStallEnable = true;
1437 }
1438 }
1439
1440 VkResult
1441 genX(EndCommandBuffer)(
1442 VkCommandBuffer commandBuffer)
1443 {
1444 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1445
1446 if (anv_batch_has_error(&cmd_buffer->batch))
1447 return cmd_buffer->batch.status;
1448
1449 /* We want every command buffer to start with the PMA fix in a known state,
1450 * so we disable it at the end of the command buffer.
1451 */
1452 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1453
1454 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1455
1456 emit_isp_disable(cmd_buffer);
1457
1458 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1459
1460 return VK_SUCCESS;
1461 }
1462
1463 void
1464 genX(CmdExecuteCommands)(
1465 VkCommandBuffer commandBuffer,
1466 uint32_t commandBufferCount,
1467 const VkCommandBuffer* pCmdBuffers)
1468 {
1469 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1470
1471 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1472
1473 if (anv_batch_has_error(&primary->batch))
1474 return;
1475
1476 /* The secondary command buffers will assume that the PMA fix is disabled
1477 * when they begin executing. Make sure this is true.
1478 */
1479 genX(cmd_buffer_enable_pma_fix)(primary, false);
1480
1481 /* The secondary command buffer doesn't know which textures etc. have been
1482 * flushed prior to their execution. Apply those flushes now.
1483 */
1484 genX(cmd_buffer_apply_pipe_flushes)(primary);
1485
1486 for (uint32_t i = 0; i < commandBufferCount; i++) {
1487 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1488
1489 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1490 assert(!anv_batch_has_error(&secondary->batch));
1491
1492 if (secondary->usage_flags &
1493 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1494 /* If we're continuing a render pass from the primary, we need to
1495 * copy the surface states for the current subpass into the storage
1496 * we allocated for them in BeginCommandBuffer.
1497 */
1498 struct anv_bo *ss_bo =
1499 &primary->device->surface_state_pool.block_pool.bo;
1500 struct anv_state src_state = primary->state.render_pass_states;
1501 struct anv_state dst_state = secondary->state.render_pass_states;
1502 assert(src_state.alloc_size == dst_state.alloc_size);
1503
1504 genX(cmd_buffer_so_memcpy)(primary, ss_bo, dst_state.offset,
1505 ss_bo, src_state.offset,
1506 src_state.alloc_size);
1507 }
1508
1509 anv_cmd_buffer_add_secondary(primary, secondary);
1510 }
1511
1512 /* The secondary may have selected a different pipeline (3D or compute) and
1513 * may have changed the current L3$ configuration. Reset our tracking
1514 * variables to invalid values to ensure that we re-emit these in the case
1515 * where we do any draws or compute dispatches from the primary after the
1516 * secondary has returned.
1517 */
1518 primary->state.current_pipeline = UINT32_MAX;
1519 primary->state.current_l3_config = NULL;
1520
1521 /* Each of the secondary command buffers will use its own state base
1522 * address. We need to re-emit state base address for the primary after
1523 * all of the secondaries are done.
1524 *
1525 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1526 * address calls?
1527 */
1528 genX(cmd_buffer_emit_state_base_address)(primary);
1529 }
1530
1531 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1532 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1533 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1534
1535 /**
1536 * Program the hardware to use the specified L3 configuration.
1537 */
1538 void
1539 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1540 const struct gen_l3_config *cfg)
1541 {
1542 assert(cfg);
1543 if (cfg == cmd_buffer->state.current_l3_config)
1544 return;
1545
1546 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1547 intel_logd("L3 config transition: ");
1548 gen_dump_l3_config(cfg, stderr);
1549 }
1550
1551 const bool has_slm = cfg->n[GEN_L3P_SLM];
1552
1553 /* According to the hardware docs, the L3 partitioning can only be changed
1554 * while the pipeline is completely drained and the caches are flushed,
1555 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1556 */
1557 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1558 pc.DCFlushEnable = true;
1559 pc.PostSyncOperation = NoWrite;
1560 pc.CommandStreamerStallEnable = true;
1561 }
1562
1563 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1564 * invalidation of the relevant caches. Note that because RO invalidation
1565 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1566 * command is processed by the CS) we cannot combine it with the previous
1567 * stalling flush as the hardware documentation suggests, because that
1568 * would cause the CS to stall on previous rendering *after* RO
1569 * invalidation and wouldn't prevent the RO caches from being polluted by
1570 * concurrent rendering before the stall completes. This intentionally
1571 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1572 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1573 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1574 * already guarantee that there is no concurrent GPGPU kernel execution
1575 * (see SKL HSD 2132585).
1576 */
1577 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1578 pc.TextureCacheInvalidationEnable = true;
1579 pc.ConstantCacheInvalidationEnable = true;
1580 pc.InstructionCacheInvalidateEnable = true;
1581 pc.StateCacheInvalidationEnable = true;
1582 pc.PostSyncOperation = NoWrite;
1583 }
1584
1585 /* Now send a third stalling flush to make sure that invalidation is
1586 * complete when the L3 configuration registers are modified.
1587 */
1588 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1589 pc.DCFlushEnable = true;
1590 pc.PostSyncOperation = NoWrite;
1591 pc.CommandStreamerStallEnable = true;
1592 }
1593
1594 #if GEN_GEN >= 8
1595
1596 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1597
1598 uint32_t l3cr;
1599 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1600 .SLMEnable = has_slm,
1601 .URBAllocation = cfg->n[GEN_L3P_URB],
1602 .ROAllocation = cfg->n[GEN_L3P_RO],
1603 .DCAllocation = cfg->n[GEN_L3P_DC],
1604 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1605
1606 /* Set up the L3 partitioning. */
1607 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1608
1609 #else
1610
1611 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1612 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1613 cfg->n[GEN_L3P_ALL];
1614 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1615 cfg->n[GEN_L3P_ALL];
1616 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1617 cfg->n[GEN_L3P_ALL];
1618
1619 assert(!cfg->n[GEN_L3P_ALL]);
1620
1621 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1622 * the matching space on the remaining banks has to be allocated to a
1623 * client (URB for all validated configurations) set to the
1624 * lower-bandwidth 2-bank address hashing mode.
1625 */
1626 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1627 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1628 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1629
1630 /* Minimum number of ways that can be allocated to the URB. */
1631 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1632 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1633
1634 uint32_t l3sqcr1, l3cr2, l3cr3;
1635 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1636 .ConvertDC_UC = !has_dc,
1637 .ConvertIS_UC = !has_is,
1638 .ConvertC_UC = !has_c,
1639 .ConvertT_UC = !has_t);
1640 l3sqcr1 |=
1641 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1642 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1643 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1644
1645 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1646 .SLMEnable = has_slm,
1647 .URBLowBandwidth = urb_low_bw,
1648 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1649 #if !GEN_IS_HASWELL
1650 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1651 #endif
1652 .ROAllocation = cfg->n[GEN_L3P_RO],
1653 .DCAllocation = cfg->n[GEN_L3P_DC]);
1654
1655 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1656 .ISAllocation = cfg->n[GEN_L3P_IS],
1657 .ISLowBandwidth = 0,
1658 .CAllocation = cfg->n[GEN_L3P_C],
1659 .CLowBandwidth = 0,
1660 .TAllocation = cfg->n[GEN_L3P_T],
1661 .TLowBandwidth = 0);
1662
1663 /* Set up the L3 partitioning. */
1664 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1665 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1666 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1667
1668 #if GEN_IS_HASWELL
1669 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1670 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1671 * them disabled to avoid crashing the system hard.
1672 */
1673 uint32_t scratch1, chicken3;
1674 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1675 .L3AtomicDisable = !has_dc);
1676 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1677 .L3AtomicDisableMask = true,
1678 .L3AtomicDisable = !has_dc);
1679 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1680 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1681 }
1682 #endif
1683
1684 #endif
1685
1686 cmd_buffer->state.current_l3_config = cfg;
1687 }
1688
1689 void
1690 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1691 {
1692 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1693
1694 /* Flushes are pipelined while invalidations are handled immediately.
1695 * Therefore, if we're flushing anything then we need to schedule a stall
1696 * before any invalidations can happen.
1697 */
1698 if (bits & ANV_PIPE_FLUSH_BITS)
1699 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1700
1701 /* If we're going to do an invalidate and we have a pending CS stall that
1702 * has yet to be resolved, we do the CS stall now.
1703 */
1704 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1705 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1706 bits |= ANV_PIPE_CS_STALL_BIT;
1707 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1708 }
1709
1710 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1711 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1712 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1713 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1714 pipe.RenderTargetCacheFlushEnable =
1715 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1716
1717 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1718 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1719 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1720
1721 /*
1722 * According to the Broadwell documentation, any PIPE_CONTROL with the
1723 * "Command Streamer Stall" bit set must also have another bit set,
1724 * with five different options:
1725 *
1726 * - Render Target Cache Flush
1727 * - Depth Cache Flush
1728 * - Stall at Pixel Scoreboard
1729 * - Post-Sync Operation
1730 * - Depth Stall
1731 * - DC Flush Enable
1732 *
1733 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1734 * mesa and it seems to work fine. The choice is fairly arbitrary.
1735 */
1736 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1737 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1738 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1739 pipe.StallAtPixelScoreboard = true;
1740 }
1741
1742 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1743 }
1744
1745 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1746 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1747 pipe.StateCacheInvalidationEnable =
1748 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1749 pipe.ConstantCacheInvalidationEnable =
1750 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1751 pipe.VFCacheInvalidationEnable =
1752 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1753 pipe.TextureCacheInvalidationEnable =
1754 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1755 pipe.InstructionCacheInvalidateEnable =
1756 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1757 }
1758
1759 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1760 }
1761
1762 cmd_buffer->state.pending_pipe_bits = bits;
1763 }
1764
1765 void genX(CmdPipelineBarrier)(
1766 VkCommandBuffer commandBuffer,
1767 VkPipelineStageFlags srcStageMask,
1768 VkPipelineStageFlags destStageMask,
1769 VkBool32 byRegion,
1770 uint32_t memoryBarrierCount,
1771 const VkMemoryBarrier* pMemoryBarriers,
1772 uint32_t bufferMemoryBarrierCount,
1773 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1774 uint32_t imageMemoryBarrierCount,
1775 const VkImageMemoryBarrier* pImageMemoryBarriers)
1776 {
1777 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1778
1779 /* XXX: Right now, we're really dumb and just flush whatever categories
1780 * the app asks for. One of these days we may make this a bit better
1781 * but right now that's all the hardware allows for in most areas.
1782 */
1783 VkAccessFlags src_flags = 0;
1784 VkAccessFlags dst_flags = 0;
1785
1786 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1787 src_flags |= pMemoryBarriers[i].srcAccessMask;
1788 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1789 }
1790
1791 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1792 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1793 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1794 }
1795
1796 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1797 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1798 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1799 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1800 const VkImageSubresourceRange *range =
1801 &pImageMemoryBarriers[i].subresourceRange;
1802
1803 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1804 transition_depth_buffer(cmd_buffer, image,
1805 pImageMemoryBarriers[i].oldLayout,
1806 pImageMemoryBarriers[i].newLayout);
1807 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1808 VkImageAspectFlags color_aspects =
1809 anv_image_expand_aspects(image, range->aspectMask);
1810 uint32_t aspect_bit;
1811
1812 uint32_t base_layer, layer_count;
1813 if (image->type == VK_IMAGE_TYPE_3D) {
1814 base_layer = 0;
1815 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1816 } else {
1817 base_layer = range->baseArrayLayer;
1818 layer_count = anv_get_layerCount(image, range);
1819 }
1820
1821 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1822 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1823 range->baseMipLevel,
1824 anv_get_levelCount(image, range),
1825 base_layer, layer_count,
1826 pImageMemoryBarriers[i].oldLayout,
1827 pImageMemoryBarriers[i].newLayout);
1828 }
1829 }
1830 }
1831
1832 cmd_buffer->state.pending_pipe_bits |=
1833 anv_pipe_flush_bits_for_access_flags(src_flags) |
1834 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1835 }
1836
1837 static void
1838 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1839 {
1840 VkShaderStageFlags stages =
1841 cmd_buffer->state.gfx.base.pipeline->active_stages;
1842
1843 /* In order to avoid thrash, we assume that vertex and fragment stages
1844 * always exist. In the rare case where one is missing *and* the other
1845 * uses push concstants, this may be suboptimal. However, avoiding stalls
1846 * seems more important.
1847 */
1848 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1849
1850 if (stages == cmd_buffer->state.push_constant_stages)
1851 return;
1852
1853 #if GEN_GEN >= 8
1854 const unsigned push_constant_kb = 32;
1855 #elif GEN_IS_HASWELL
1856 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1857 #else
1858 const unsigned push_constant_kb = 16;
1859 #endif
1860
1861 const unsigned num_stages =
1862 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1863 unsigned size_per_stage = push_constant_kb / num_stages;
1864
1865 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1866 * units of 2KB. Incidentally, these are the same platforms that have
1867 * 32KB worth of push constant space.
1868 */
1869 if (push_constant_kb == 32)
1870 size_per_stage &= ~1u;
1871
1872 uint32_t kb_used = 0;
1873 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1874 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1875 anv_batch_emit(&cmd_buffer->batch,
1876 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1877 alloc._3DCommandSubOpcode = 18 + i;
1878 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1879 alloc.ConstantBufferSize = push_size;
1880 }
1881 kb_used += push_size;
1882 }
1883
1884 anv_batch_emit(&cmd_buffer->batch,
1885 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1886 alloc.ConstantBufferOffset = kb_used;
1887 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1888 }
1889
1890 cmd_buffer->state.push_constant_stages = stages;
1891
1892 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1893 *
1894 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1895 * the next 3DPRIMITIVE command after programming the
1896 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1897 *
1898 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1899 * pipeline setup, we need to dirty push constants.
1900 */
1901 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1902 }
1903
1904 static const struct anv_descriptor *
1905 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1906 const struct anv_pipeline_binding *binding)
1907 {
1908 assert(binding->set < MAX_SETS);
1909 const struct anv_descriptor_set *set =
1910 pipe_state->descriptors[binding->set];
1911 const uint32_t offset =
1912 set->layout->binding[binding->binding].descriptor_index;
1913 return &set->descriptors[offset + binding->index];
1914 }
1915
1916 static uint32_t
1917 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1918 const struct anv_pipeline_binding *binding)
1919 {
1920 assert(binding->set < MAX_SETS);
1921 const struct anv_descriptor_set *set =
1922 pipe_state->descriptors[binding->set];
1923
1924 uint32_t dynamic_offset_idx =
1925 pipe_state->layout->set[binding->set].dynamic_offset_start +
1926 set->layout->binding[binding->binding].dynamic_offset_index +
1927 binding->index;
1928
1929 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1930 }
1931
1932 static VkResult
1933 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
1934 gl_shader_stage stage,
1935 struct anv_state *bt_state)
1936 {
1937 struct anv_subpass *subpass = cmd_buffer->state.subpass;
1938 struct anv_cmd_pipeline_state *pipe_state;
1939 struct anv_pipeline *pipeline;
1940 uint32_t bias, state_offset;
1941
1942 switch (stage) {
1943 case MESA_SHADER_COMPUTE:
1944 pipe_state = &cmd_buffer->state.compute.base;
1945 bias = 1;
1946 break;
1947 default:
1948 pipe_state = &cmd_buffer->state.gfx.base;
1949 bias = 0;
1950 break;
1951 }
1952 pipeline = pipe_state->pipeline;
1953
1954 if (!anv_pipeline_has_stage(pipeline, stage)) {
1955 *bt_state = (struct anv_state) { 0, };
1956 return VK_SUCCESS;
1957 }
1958
1959 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
1960 if (bias + map->surface_count == 0) {
1961 *bt_state = (struct anv_state) { 0, };
1962 return VK_SUCCESS;
1963 }
1964
1965 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
1966 bias + map->surface_count,
1967 &state_offset);
1968 uint32_t *bt_map = bt_state->map;
1969
1970 if (bt_state->map == NULL)
1971 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
1972
1973 if (stage == MESA_SHADER_COMPUTE &&
1974 get_cs_prog_data(pipeline)->uses_num_work_groups) {
1975 struct anv_state surface_state;
1976 surface_state =
1977 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
1978
1979 const enum isl_format format =
1980 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
1981 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
1982 format,
1983 cmd_buffer->state.compute.num_workgroups,
1984 12, 1);
1985
1986 bt_map[0] = surface_state.offset + state_offset;
1987 add_surface_reloc(cmd_buffer, surface_state,
1988 cmd_buffer->state.compute.num_workgroups);
1989 }
1990
1991 if (map->surface_count == 0)
1992 goto out;
1993
1994 if (map->image_count > 0) {
1995 VkResult result =
1996 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
1997 if (result != VK_SUCCESS)
1998 return result;
1999
2000 cmd_buffer->state.push_constants_dirty |= 1 << stage;
2001 }
2002
2003 uint32_t image = 0;
2004 for (uint32_t s = 0; s < map->surface_count; s++) {
2005 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2006
2007 struct anv_state surface_state;
2008
2009 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
2010 /* Color attachment binding */
2011 assert(stage == MESA_SHADER_FRAGMENT);
2012 assert(binding->binding == 0);
2013 if (binding->index < subpass->color_count) {
2014 const unsigned att =
2015 subpass->color_attachments[binding->index].attachment;
2016
2017 /* From the Vulkan 1.0.46 spec:
2018 *
2019 * "If any color or depth/stencil attachments are
2020 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2021 * attachments."
2022 */
2023 if (att == VK_ATTACHMENT_UNUSED) {
2024 surface_state = cmd_buffer->state.null_surface_state;
2025 } else {
2026 surface_state = cmd_buffer->state.attachments[att].color.state;
2027 }
2028 } else {
2029 surface_state = cmd_buffer->state.null_surface_state;
2030 }
2031
2032 bt_map[bias + s] = surface_state.offset + state_offset;
2033 continue;
2034 } else if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2035 struct anv_state surface_state =
2036 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2037
2038 struct anv_address constant_data = {
2039 .bo = &pipeline->device->dynamic_state_pool.block_pool.bo,
2040 .offset = pipeline->shaders[stage]->constant_data.offset,
2041 };
2042 unsigned constant_data_size =
2043 pipeline->shaders[stage]->constant_data_size;
2044
2045 const enum isl_format format =
2046 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2047 anv_fill_buffer_surface_state(cmd_buffer->device,
2048 surface_state, format,
2049 constant_data, constant_data_size, 1);
2050
2051 bt_map[bias + s] = surface_state.offset + state_offset;
2052 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2053 continue;
2054 }
2055
2056 const struct anv_descriptor *desc =
2057 anv_descriptor_for_binding(pipe_state, binding);
2058
2059 switch (desc->type) {
2060 case VK_DESCRIPTOR_TYPE_SAMPLER:
2061 /* Nothing for us to do here */
2062 continue;
2063
2064 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2065 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2066 struct anv_surface_state sstate =
2067 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2068 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2069 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2070 surface_state = sstate.state;
2071 assert(surface_state.alloc_size);
2072 add_surface_state_relocs(cmd_buffer, sstate);
2073 break;
2074 }
2075 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2076 assert(stage == MESA_SHADER_FRAGMENT);
2077 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2078 /* For depth and stencil input attachments, we treat it like any
2079 * old texture that a user may have bound.
2080 */
2081 struct anv_surface_state sstate =
2082 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2083 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2084 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2085 surface_state = sstate.state;
2086 assert(surface_state.alloc_size);
2087 add_surface_state_relocs(cmd_buffer, sstate);
2088 } else {
2089 /* For color input attachments, we create the surface state at
2090 * vkBeginRenderPass time so that we can include aux and clear
2091 * color information.
2092 */
2093 assert(binding->input_attachment_index < subpass->input_count);
2094 const unsigned subpass_att = binding->input_attachment_index;
2095 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2096 surface_state = cmd_buffer->state.attachments[att].input.state;
2097 }
2098 break;
2099
2100 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2101 struct anv_surface_state sstate = (binding->write_only)
2102 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2103 : desc->image_view->planes[binding->plane].storage_surface_state;
2104 surface_state = sstate.state;
2105 assert(surface_state.alloc_size);
2106 add_surface_state_relocs(cmd_buffer, sstate);
2107
2108 struct brw_image_param *image_param =
2109 &cmd_buffer->state.push_constants[stage]->images[image++];
2110
2111 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
2112 break;
2113 }
2114
2115 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2116 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2117 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2118 surface_state = desc->buffer_view->surface_state;
2119 assert(surface_state.alloc_size);
2120 add_surface_reloc(cmd_buffer, surface_state,
2121 desc->buffer_view->address);
2122 break;
2123
2124 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2125 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2126 /* Compute the offset within the buffer */
2127 uint32_t dynamic_offset =
2128 dynamic_offset_for_binding(pipe_state, binding);
2129 uint64_t offset = desc->offset + dynamic_offset;
2130 /* Clamp to the buffer size */
2131 offset = MIN2(offset, desc->buffer->size);
2132 /* Clamp the range to the buffer size */
2133 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2134
2135 struct anv_address address =
2136 anv_address_add(desc->buffer->address, offset);
2137
2138 surface_state =
2139 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2140 enum isl_format format =
2141 anv_isl_format_for_descriptor_type(desc->type);
2142
2143 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2144 format, address, range, 1);
2145 add_surface_reloc(cmd_buffer, surface_state, address);
2146 break;
2147 }
2148
2149 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2150 surface_state = (binding->write_only)
2151 ? desc->buffer_view->writeonly_storage_surface_state
2152 : desc->buffer_view->storage_surface_state;
2153 assert(surface_state.alloc_size);
2154 add_surface_reloc(cmd_buffer, surface_state,
2155 desc->buffer_view->address);
2156
2157 struct brw_image_param *image_param =
2158 &cmd_buffer->state.push_constants[stage]->images[image++];
2159
2160 *image_param = desc->buffer_view->storage_image_param;
2161 break;
2162
2163 default:
2164 assert(!"Invalid descriptor type");
2165 continue;
2166 }
2167
2168 bt_map[bias + s] = surface_state.offset + state_offset;
2169 }
2170 assert(image == map->image_count);
2171
2172 out:
2173 anv_state_flush(cmd_buffer->device, *bt_state);
2174
2175 #if GEN_GEN >= 11
2176 /* The PIPE_CONTROL command description says:
2177 *
2178 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
2179 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2180 * Target Cache Flush by enabling this bit. When render target flush
2181 * is set due to new association of BTI, PS Scoreboard Stall bit must
2182 * be set in this packet."
2183 *
2184 * FINISHME: Currently we shuffle around the surface states in the binding
2185 * table based on if they are getting used or not. So, we've to do below
2186 * pipe control flush for every binding table upload. Make changes so
2187 * that we do it only when we modify render target surface states.
2188 */
2189 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2190 pc.RenderTargetCacheFlushEnable = true;
2191 pc.StallAtPixelScoreboard = true;
2192 }
2193 #endif
2194
2195 return VK_SUCCESS;
2196 }
2197
2198 static VkResult
2199 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2200 gl_shader_stage stage,
2201 struct anv_state *state)
2202 {
2203 struct anv_cmd_pipeline_state *pipe_state =
2204 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2205 &cmd_buffer->state.gfx.base;
2206 struct anv_pipeline *pipeline = pipe_state->pipeline;
2207
2208 if (!anv_pipeline_has_stage(pipeline, stage)) {
2209 *state = (struct anv_state) { 0, };
2210 return VK_SUCCESS;
2211 }
2212
2213 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2214 if (map->sampler_count == 0) {
2215 *state = (struct anv_state) { 0, };
2216 return VK_SUCCESS;
2217 }
2218
2219 uint32_t size = map->sampler_count * 16;
2220 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2221
2222 if (state->map == NULL)
2223 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2224
2225 for (uint32_t s = 0; s < map->sampler_count; s++) {
2226 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2227 const struct anv_descriptor *desc =
2228 anv_descriptor_for_binding(pipe_state, binding);
2229
2230 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2231 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2232 continue;
2233
2234 struct anv_sampler *sampler = desc->sampler;
2235
2236 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2237 * happens to be zero.
2238 */
2239 if (sampler == NULL)
2240 continue;
2241
2242 memcpy(state->map + (s * 16),
2243 sampler->state[binding->plane], sizeof(sampler->state[0]));
2244 }
2245
2246 anv_state_flush(cmd_buffer->device, *state);
2247
2248 return VK_SUCCESS;
2249 }
2250
2251 static uint32_t
2252 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2253 {
2254 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2255
2256 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2257 pipeline->active_stages;
2258
2259 VkResult result = VK_SUCCESS;
2260 anv_foreach_stage(s, dirty) {
2261 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2262 if (result != VK_SUCCESS)
2263 break;
2264 result = emit_binding_table(cmd_buffer, s,
2265 &cmd_buffer->state.binding_tables[s]);
2266 if (result != VK_SUCCESS)
2267 break;
2268 }
2269
2270 if (result != VK_SUCCESS) {
2271 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2272
2273 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2274 if (result != VK_SUCCESS)
2275 return 0;
2276
2277 /* Re-emit state base addresses so we get the new surface state base
2278 * address before we start emitting binding tables etc.
2279 */
2280 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2281
2282 /* Re-emit all active binding tables */
2283 dirty |= pipeline->active_stages;
2284 anv_foreach_stage(s, dirty) {
2285 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2286 if (result != VK_SUCCESS) {
2287 anv_batch_set_error(&cmd_buffer->batch, result);
2288 return 0;
2289 }
2290 result = emit_binding_table(cmd_buffer, s,
2291 &cmd_buffer->state.binding_tables[s]);
2292 if (result != VK_SUCCESS) {
2293 anv_batch_set_error(&cmd_buffer->batch, result);
2294 return 0;
2295 }
2296 }
2297 }
2298
2299 cmd_buffer->state.descriptors_dirty &= ~dirty;
2300
2301 return dirty;
2302 }
2303
2304 static void
2305 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2306 uint32_t stages)
2307 {
2308 static const uint32_t sampler_state_opcodes[] = {
2309 [MESA_SHADER_VERTEX] = 43,
2310 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2311 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2312 [MESA_SHADER_GEOMETRY] = 46,
2313 [MESA_SHADER_FRAGMENT] = 47,
2314 [MESA_SHADER_COMPUTE] = 0,
2315 };
2316
2317 static const uint32_t binding_table_opcodes[] = {
2318 [MESA_SHADER_VERTEX] = 38,
2319 [MESA_SHADER_TESS_CTRL] = 39,
2320 [MESA_SHADER_TESS_EVAL] = 40,
2321 [MESA_SHADER_GEOMETRY] = 41,
2322 [MESA_SHADER_FRAGMENT] = 42,
2323 [MESA_SHADER_COMPUTE] = 0,
2324 };
2325
2326 anv_foreach_stage(s, stages) {
2327 assert(s < ARRAY_SIZE(binding_table_opcodes));
2328 assert(binding_table_opcodes[s] > 0);
2329
2330 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2331 anv_batch_emit(&cmd_buffer->batch,
2332 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2333 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2334 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2335 }
2336 }
2337
2338 /* Always emit binding table pointers if we're asked to, since on SKL
2339 * this is what flushes push constants. */
2340 anv_batch_emit(&cmd_buffer->batch,
2341 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2342 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2343 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2344 }
2345 }
2346 }
2347
2348 static void
2349 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2350 VkShaderStageFlags dirty_stages)
2351 {
2352 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2353 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2354
2355 static const uint32_t push_constant_opcodes[] = {
2356 [MESA_SHADER_VERTEX] = 21,
2357 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2358 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2359 [MESA_SHADER_GEOMETRY] = 22,
2360 [MESA_SHADER_FRAGMENT] = 23,
2361 [MESA_SHADER_COMPUTE] = 0,
2362 };
2363
2364 VkShaderStageFlags flushed = 0;
2365
2366 anv_foreach_stage(stage, dirty_stages) {
2367 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2368 assert(push_constant_opcodes[stage] > 0);
2369
2370 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2371 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2372
2373 if (anv_pipeline_has_stage(pipeline, stage)) {
2374 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2375 const struct brw_stage_prog_data *prog_data =
2376 pipeline->shaders[stage]->prog_data;
2377 const struct anv_pipeline_bind_map *bind_map =
2378 &pipeline->shaders[stage]->bind_map;
2379
2380 /* The Skylake PRM contains the following restriction:
2381 *
2382 * "The driver must ensure The following case does not occur
2383 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2384 * buffer 3 read length equal to zero committed followed by a
2385 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2386 * zero committed."
2387 *
2388 * To avoid this, we program the buffers in the highest slots.
2389 * This way, slot 0 is only used if slot 3 is also used.
2390 */
2391 int n = 3;
2392
2393 for (int i = 3; i >= 0; i--) {
2394 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2395 if (range->length == 0)
2396 continue;
2397
2398 const unsigned surface =
2399 prog_data->binding_table.ubo_start + range->block;
2400
2401 assert(surface <= bind_map->surface_count);
2402 const struct anv_pipeline_binding *binding =
2403 &bind_map->surface_to_descriptor[surface];
2404
2405 struct anv_address read_addr;
2406 uint32_t read_len;
2407 if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2408 struct anv_address constant_data = {
2409 .bo = &pipeline->device->dynamic_state_pool.block_pool.bo,
2410 .offset = pipeline->shaders[stage]->constant_data.offset,
2411 };
2412 unsigned constant_data_size =
2413 pipeline->shaders[stage]->constant_data_size;
2414
2415 read_len = MIN2(range->length,
2416 DIV_ROUND_UP(constant_data_size, 32) - range->start);
2417 read_addr = anv_address_add(constant_data,
2418 range->start * 32);
2419 } else {
2420 const struct anv_descriptor *desc =
2421 anv_descriptor_for_binding(&gfx_state->base, binding);
2422
2423 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2424 read_len = MIN2(range->length,
2425 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
2426 read_addr = anv_address_add(desc->buffer_view->address,
2427 range->start * 32);
2428 } else {
2429 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2430
2431 uint32_t dynamic_offset =
2432 dynamic_offset_for_binding(&gfx_state->base, binding);
2433 uint32_t buf_offset =
2434 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2435 uint32_t buf_range =
2436 MIN2(desc->range, desc->buffer->size - buf_offset);
2437
2438 read_len = MIN2(range->length,
2439 DIV_ROUND_UP(buf_range, 32) - range->start);
2440 read_addr = anv_address_add(desc->buffer->address,
2441 buf_offset + range->start * 32);
2442 }
2443 }
2444
2445 if (read_len > 0) {
2446 c.ConstantBody.Buffer[n] = read_addr;
2447 c.ConstantBody.ReadLength[n] = read_len;
2448 n--;
2449 }
2450 }
2451
2452 struct anv_state state =
2453 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2454
2455 if (state.alloc_size > 0) {
2456 c.ConstantBody.Buffer[n] = (struct anv_address) {
2457 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2458 .offset = state.offset,
2459 };
2460 c.ConstantBody.ReadLength[n] =
2461 DIV_ROUND_UP(state.alloc_size, 32);
2462 }
2463 #else
2464 /* For Ivy Bridge, the push constants packets have a different
2465 * rule that would require us to iterate in the other direction
2466 * and possibly mess around with dynamic state base address.
2467 * Don't bother; just emit regular push constants at n = 0.
2468 */
2469 struct anv_state state =
2470 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2471
2472 if (state.alloc_size > 0) {
2473 c.ConstantBody.Buffer[0].offset = state.offset,
2474 c.ConstantBody.ReadLength[0] =
2475 DIV_ROUND_UP(state.alloc_size, 32);
2476 }
2477 #endif
2478 }
2479 }
2480
2481 flushed |= mesa_to_vk_shader_stage(stage);
2482 }
2483
2484 cmd_buffer->state.push_constants_dirty &= ~flushed;
2485 }
2486
2487 void
2488 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2489 {
2490 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2491 uint32_t *p;
2492
2493 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2494 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2495 vb_emit |= pipeline->vb_used;
2496
2497 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2498
2499 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2500
2501 genX(flush_pipeline_select_3d)(cmd_buffer);
2502
2503 if (vb_emit) {
2504 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2505 const uint32_t num_dwords = 1 + num_buffers * 4;
2506
2507 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2508 GENX(3DSTATE_VERTEX_BUFFERS));
2509 uint32_t vb, i = 0;
2510 for_each_bit(vb, vb_emit) {
2511 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2512 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2513
2514 struct GENX(VERTEX_BUFFER_STATE) state = {
2515 .VertexBufferIndex = vb,
2516
2517 #if GEN_GEN >= 8
2518 .MemoryObjectControlState = GENX(MOCS),
2519 #else
2520 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
2521 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
2522 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2523 #endif
2524
2525 .AddressModifyEnable = true,
2526 .BufferPitch = pipeline->vb[vb].stride,
2527 .BufferStartingAddress = anv_address_add(buffer->address, offset),
2528
2529 #if GEN_GEN >= 8
2530 .BufferSize = buffer->size - offset
2531 #else
2532 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
2533 #endif
2534 };
2535
2536 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2537 i++;
2538 }
2539 }
2540
2541 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2542
2543 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2544 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2545
2546 /* The exact descriptor layout is pulled from the pipeline, so we need
2547 * to re-emit binding tables on every pipeline change.
2548 */
2549 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2550
2551 /* If the pipeline changed, we may need to re-allocate push constant
2552 * space in the URB.
2553 */
2554 cmd_buffer_alloc_push_constants(cmd_buffer);
2555 }
2556
2557 #if GEN_GEN <= 7
2558 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2559 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2560 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2561 *
2562 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2563 * stall needs to be sent just prior to any 3DSTATE_VS,
2564 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2565 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2566 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2567 * PIPE_CONTROL needs to be sent before any combination of VS
2568 * associated 3DSTATE."
2569 */
2570 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2571 pc.DepthStallEnable = true;
2572 pc.PostSyncOperation = WriteImmediateData;
2573 pc.Address =
2574 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2575 }
2576 }
2577 #endif
2578
2579 /* Render targets live in the same binding table as fragment descriptors */
2580 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2581 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2582
2583 /* We emit the binding tables and sampler tables first, then emit push
2584 * constants and then finally emit binding table and sampler table
2585 * pointers. It has to happen in this order, since emitting the binding
2586 * tables may change the push constants (in case of storage images). After
2587 * emitting push constants, on SKL+ we have to emit the corresponding
2588 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2589 */
2590 uint32_t dirty = 0;
2591 if (cmd_buffer->state.descriptors_dirty)
2592 dirty = flush_descriptor_sets(cmd_buffer);
2593
2594 if (dirty || cmd_buffer->state.push_constants_dirty) {
2595 /* Because we're pushing UBOs, we have to push whenever either
2596 * descriptors or push constants is dirty.
2597 */
2598 dirty |= cmd_buffer->state.push_constants_dirty;
2599 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2600 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2601 }
2602
2603 if (dirty)
2604 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2605
2606 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2607 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2608
2609 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2610 ANV_CMD_DIRTY_PIPELINE)) {
2611 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2612 pipeline->depth_clamp_enable);
2613 }
2614
2615 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_SCISSOR)
2616 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2617
2618 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2619
2620 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2621 }
2622
2623 static void
2624 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2625 struct anv_address addr,
2626 uint32_t size, uint32_t index)
2627 {
2628 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2629 GENX(3DSTATE_VERTEX_BUFFERS));
2630
2631 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2632 &(struct GENX(VERTEX_BUFFER_STATE)) {
2633 .VertexBufferIndex = index,
2634 .AddressModifyEnable = true,
2635 .BufferPitch = 0,
2636 #if (GEN_GEN >= 8)
2637 .MemoryObjectControlState = GENX(MOCS),
2638 .BufferStartingAddress = addr,
2639 .BufferSize = size
2640 #else
2641 .VertexBufferMemoryObjectControlState = GENX(MOCS),
2642 .BufferStartingAddress = addr,
2643 .EndAddress = anv_address_add(addr, size),
2644 #endif
2645 });
2646 }
2647
2648 static void
2649 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2650 struct anv_address addr)
2651 {
2652 emit_vertex_bo(cmd_buffer, addr, 8, ANV_SVGS_VB_INDEX);
2653 }
2654
2655 static void
2656 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2657 uint32_t base_vertex, uint32_t base_instance)
2658 {
2659 struct anv_state id_state =
2660 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2661
2662 ((uint32_t *)id_state.map)[0] = base_vertex;
2663 ((uint32_t *)id_state.map)[1] = base_instance;
2664
2665 anv_state_flush(cmd_buffer->device, id_state);
2666
2667 struct anv_address addr = {
2668 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2669 .offset = id_state.offset,
2670 };
2671
2672 emit_base_vertex_instance_bo(cmd_buffer, addr);
2673 }
2674
2675 static void
2676 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2677 {
2678 struct anv_state state =
2679 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2680
2681 ((uint32_t *)state.map)[0] = draw_index;
2682
2683 anv_state_flush(cmd_buffer->device, state);
2684
2685 struct anv_address addr = {
2686 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2687 .offset = state.offset,
2688 };
2689
2690 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
2691 }
2692
2693 void genX(CmdDraw)(
2694 VkCommandBuffer commandBuffer,
2695 uint32_t vertexCount,
2696 uint32_t instanceCount,
2697 uint32_t firstVertex,
2698 uint32_t firstInstance)
2699 {
2700 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2701 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2702 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2703
2704 if (anv_batch_has_error(&cmd_buffer->batch))
2705 return;
2706
2707 genX(cmd_buffer_flush_state)(cmd_buffer);
2708
2709 if (vs_prog_data->uses_firstvertex ||
2710 vs_prog_data->uses_baseinstance)
2711 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2712 if (vs_prog_data->uses_drawid)
2713 emit_draw_index(cmd_buffer, 0);
2714
2715 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2716 * different views. We need to multiply instanceCount by the view count.
2717 */
2718 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2719
2720 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2721 prim.VertexAccessType = SEQUENTIAL;
2722 prim.PrimitiveTopologyType = pipeline->topology;
2723 prim.VertexCountPerInstance = vertexCount;
2724 prim.StartVertexLocation = firstVertex;
2725 prim.InstanceCount = instanceCount;
2726 prim.StartInstanceLocation = firstInstance;
2727 prim.BaseVertexLocation = 0;
2728 }
2729 }
2730
2731 void genX(CmdDrawIndexed)(
2732 VkCommandBuffer commandBuffer,
2733 uint32_t indexCount,
2734 uint32_t instanceCount,
2735 uint32_t firstIndex,
2736 int32_t vertexOffset,
2737 uint32_t firstInstance)
2738 {
2739 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2740 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2741 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2742
2743 if (anv_batch_has_error(&cmd_buffer->batch))
2744 return;
2745
2746 genX(cmd_buffer_flush_state)(cmd_buffer);
2747
2748 if (vs_prog_data->uses_firstvertex ||
2749 vs_prog_data->uses_baseinstance)
2750 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2751 if (vs_prog_data->uses_drawid)
2752 emit_draw_index(cmd_buffer, 0);
2753
2754 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2755 * different views. We need to multiply instanceCount by the view count.
2756 */
2757 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2758
2759 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2760 prim.VertexAccessType = RANDOM;
2761 prim.PrimitiveTopologyType = pipeline->topology;
2762 prim.VertexCountPerInstance = indexCount;
2763 prim.StartVertexLocation = firstIndex;
2764 prim.InstanceCount = instanceCount;
2765 prim.StartInstanceLocation = firstInstance;
2766 prim.BaseVertexLocation = vertexOffset;
2767 }
2768 }
2769
2770 /* Auto-Draw / Indirect Registers */
2771 #define GEN7_3DPRIM_END_OFFSET 0x2420
2772 #define GEN7_3DPRIM_START_VERTEX 0x2430
2773 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2774 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2775 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2776 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2777
2778 /* MI_MATH only exists on Haswell+ */
2779 #if GEN_IS_HASWELL || GEN_GEN >= 8
2780
2781 /* Emit dwords to multiply GPR0 by N */
2782 static void
2783 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2784 {
2785 VK_OUTARRAY_MAKE(out, dw, dw_count);
2786
2787 #define append_alu(opcode, operand1, operand2) \
2788 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2789
2790 assert(N > 0);
2791 unsigned top_bit = 31 - __builtin_clz(N);
2792 for (int i = top_bit - 1; i >= 0; i--) {
2793 /* We get our initial data in GPR0 and we write the final data out to
2794 * GPR0 but we use GPR1 as our scratch register.
2795 */
2796 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2797 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2798
2799 /* Shift the current value left by 1 */
2800 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2801 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2802 append_alu(MI_ALU_ADD, 0, 0);
2803
2804 if (N & (1 << i)) {
2805 /* Store ACCU to R1 and add R0 to R1 */
2806 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2807 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2808 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2809 append_alu(MI_ALU_ADD, 0, 0);
2810 }
2811
2812 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2813 }
2814
2815 #undef append_alu
2816 }
2817
2818 static void
2819 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2820 {
2821 uint32_t num_dwords;
2822 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2823
2824 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2825 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2826 }
2827
2828 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2829
2830 static void
2831 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2832 struct anv_address addr,
2833 bool indexed)
2834 {
2835 struct anv_batch *batch = &cmd_buffer->batch;
2836
2837 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, addr.bo, addr.offset);
2838
2839 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2840 if (view_count > 1) {
2841 #if GEN_IS_HASWELL || GEN_GEN >= 8
2842 emit_lrm(batch, CS_GPR(0), addr.bo, addr.offset + 4);
2843 emit_mul_gpr0(batch, view_count);
2844 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2845 #else
2846 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2847 "MI_MATH is not supported on Ivy Bridge");
2848 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, addr.bo, addr.offset + 4);
2849 #endif
2850 } else {
2851 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, addr.bo, addr.offset + 4);
2852 }
2853
2854 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, addr.bo, addr.offset + 8);
2855
2856 if (indexed) {
2857 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, addr.bo, addr.offset + 12);
2858 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, addr.bo, addr.offset + 16);
2859 } else {
2860 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, addr.bo, addr.offset + 12);
2861 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2862 }
2863 }
2864
2865 void genX(CmdDrawIndirect)(
2866 VkCommandBuffer commandBuffer,
2867 VkBuffer _buffer,
2868 VkDeviceSize offset,
2869 uint32_t drawCount,
2870 uint32_t stride)
2871 {
2872 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2873 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2874 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2875 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2876
2877 if (anv_batch_has_error(&cmd_buffer->batch))
2878 return;
2879
2880 genX(cmd_buffer_flush_state)(cmd_buffer);
2881
2882 for (uint32_t i = 0; i < drawCount; i++) {
2883 struct anv_address draw = anv_address_add(buffer->address, offset);
2884
2885 if (vs_prog_data->uses_firstvertex ||
2886 vs_prog_data->uses_baseinstance)
2887 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
2888 if (vs_prog_data->uses_drawid)
2889 emit_draw_index(cmd_buffer, i);
2890
2891 load_indirect_parameters(cmd_buffer, draw, false);
2892
2893 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2894 prim.IndirectParameterEnable = true;
2895 prim.VertexAccessType = SEQUENTIAL;
2896 prim.PrimitiveTopologyType = pipeline->topology;
2897 }
2898
2899 offset += stride;
2900 }
2901 }
2902
2903 void genX(CmdDrawIndexedIndirect)(
2904 VkCommandBuffer commandBuffer,
2905 VkBuffer _buffer,
2906 VkDeviceSize offset,
2907 uint32_t drawCount,
2908 uint32_t stride)
2909 {
2910 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2911 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2912 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2913 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2914
2915 if (anv_batch_has_error(&cmd_buffer->batch))
2916 return;
2917
2918 genX(cmd_buffer_flush_state)(cmd_buffer);
2919
2920 for (uint32_t i = 0; i < drawCount; i++) {
2921 struct anv_address draw = anv_address_add(buffer->address, offset);
2922
2923 /* TODO: We need to stomp base vertex to 0 somehow */
2924 if (vs_prog_data->uses_firstvertex ||
2925 vs_prog_data->uses_baseinstance)
2926 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
2927 if (vs_prog_data->uses_drawid)
2928 emit_draw_index(cmd_buffer, i);
2929
2930 load_indirect_parameters(cmd_buffer, draw, true);
2931
2932 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2933 prim.IndirectParameterEnable = true;
2934 prim.VertexAccessType = RANDOM;
2935 prim.PrimitiveTopologyType = pipeline->topology;
2936 }
2937
2938 offset += stride;
2939 }
2940 }
2941
2942 static VkResult
2943 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
2944 {
2945 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
2946 struct anv_state surfaces = { 0, }, samplers = { 0, };
2947 VkResult result;
2948
2949 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2950 if (result != VK_SUCCESS) {
2951 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2952
2953 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2954 if (result != VK_SUCCESS)
2955 return result;
2956
2957 /* Re-emit state base addresses so we get the new surface state base
2958 * address before we start emitting binding tables etc.
2959 */
2960 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2961
2962 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
2963 if (result != VK_SUCCESS) {
2964 anv_batch_set_error(&cmd_buffer->batch, result);
2965 return result;
2966 }
2967 }
2968
2969 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
2970 if (result != VK_SUCCESS) {
2971 anv_batch_set_error(&cmd_buffer->batch, result);
2972 return result;
2973 }
2974
2975 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
2976 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2977 .BindingTablePointer = surfaces.offset,
2978 .SamplerStatePointer = samplers.offset,
2979 };
2980 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
2981
2982 struct anv_state state =
2983 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
2984 pipeline->interface_descriptor_data,
2985 GENX(INTERFACE_DESCRIPTOR_DATA_length),
2986 64);
2987
2988 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
2989 anv_batch_emit(&cmd_buffer->batch,
2990 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
2991 mid.InterfaceDescriptorTotalLength = size;
2992 mid.InterfaceDescriptorDataStartAddress = state.offset;
2993 }
2994
2995 return VK_SUCCESS;
2996 }
2997
2998 void
2999 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3000 {
3001 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3002 MAYBE_UNUSED VkResult result;
3003
3004 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3005
3006 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3007
3008 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3009
3010 if (cmd_buffer->state.compute.pipeline_dirty) {
3011 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3012 *
3013 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3014 * the only bits that are changed are scoreboard related: Scoreboard
3015 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3016 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3017 * sufficient."
3018 */
3019 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3020 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3021
3022 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3023 }
3024
3025 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3026 cmd_buffer->state.compute.pipeline_dirty) {
3027 /* FIXME: figure out descriptors for gen7 */
3028 result = flush_compute_descriptor_set(cmd_buffer);
3029 if (result != VK_SUCCESS)
3030 return;
3031
3032 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3033 }
3034
3035 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3036 struct anv_state push_state =
3037 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3038
3039 if (push_state.alloc_size) {
3040 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3041 curbe.CURBETotalDataLength = push_state.alloc_size;
3042 curbe.CURBEDataStartAddress = push_state.offset;
3043 }
3044 }
3045
3046 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3047 }
3048
3049 cmd_buffer->state.compute.pipeline_dirty = false;
3050
3051 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3052 }
3053
3054 #if GEN_GEN == 7
3055
3056 static VkResult
3057 verify_cmd_parser(const struct anv_device *device,
3058 int required_version,
3059 const char *function)
3060 {
3061 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3062 return vk_errorf(device->instance, device->instance,
3063 VK_ERROR_FEATURE_NOT_PRESENT,
3064 "cmd parser version %d is required for %s",
3065 required_version, function);
3066 } else {
3067 return VK_SUCCESS;
3068 }
3069 }
3070
3071 #endif
3072
3073 static void
3074 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3075 uint32_t baseGroupX,
3076 uint32_t baseGroupY,
3077 uint32_t baseGroupZ)
3078 {
3079 if (anv_batch_has_error(&cmd_buffer->batch))
3080 return;
3081
3082 VkResult result =
3083 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, MESA_SHADER_COMPUTE,
3084 base_work_group_id);
3085 if (result != VK_SUCCESS) {
3086 cmd_buffer->batch.status = result;
3087 return;
3088 }
3089
3090 struct anv_push_constants *push =
3091 cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3092 if (push->base_work_group_id[0] != baseGroupX ||
3093 push->base_work_group_id[1] != baseGroupY ||
3094 push->base_work_group_id[2] != baseGroupZ) {
3095 push->base_work_group_id[0] = baseGroupX;
3096 push->base_work_group_id[1] = baseGroupY;
3097 push->base_work_group_id[2] = baseGroupZ;
3098
3099 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3100 }
3101 }
3102
3103 void genX(CmdDispatch)(
3104 VkCommandBuffer commandBuffer,
3105 uint32_t x,
3106 uint32_t y,
3107 uint32_t z)
3108 {
3109 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3110 }
3111
3112 void genX(CmdDispatchBase)(
3113 VkCommandBuffer commandBuffer,
3114 uint32_t baseGroupX,
3115 uint32_t baseGroupY,
3116 uint32_t baseGroupZ,
3117 uint32_t groupCountX,
3118 uint32_t groupCountY,
3119 uint32_t groupCountZ)
3120 {
3121 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3122 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3123 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3124
3125 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3126 baseGroupY, baseGroupZ);
3127
3128 if (anv_batch_has_error(&cmd_buffer->batch))
3129 return;
3130
3131 if (prog_data->uses_num_work_groups) {
3132 struct anv_state state =
3133 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3134 uint32_t *sizes = state.map;
3135 sizes[0] = groupCountX;
3136 sizes[1] = groupCountY;
3137 sizes[2] = groupCountZ;
3138 anv_state_flush(cmd_buffer->device, state);
3139 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3140 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3141 .offset = state.offset,
3142 };
3143 }
3144
3145 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3146
3147 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3148 ggw.SIMDSize = prog_data->simd_size / 16;
3149 ggw.ThreadDepthCounterMaximum = 0;
3150 ggw.ThreadHeightCounterMaximum = 0;
3151 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3152 ggw.ThreadGroupIDXDimension = groupCountX;
3153 ggw.ThreadGroupIDYDimension = groupCountY;
3154 ggw.ThreadGroupIDZDimension = groupCountZ;
3155 ggw.RightExecutionMask = pipeline->cs_right_mask;
3156 ggw.BottomExecutionMask = 0xffffffff;
3157 }
3158
3159 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3160 }
3161
3162 #define GPGPU_DISPATCHDIMX 0x2500
3163 #define GPGPU_DISPATCHDIMY 0x2504
3164 #define GPGPU_DISPATCHDIMZ 0x2508
3165
3166 void genX(CmdDispatchIndirect)(
3167 VkCommandBuffer commandBuffer,
3168 VkBuffer _buffer,
3169 VkDeviceSize offset)
3170 {
3171 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3172 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3173 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3174 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3175 struct anv_address addr = anv_address_add(buffer->address, offset);
3176 struct anv_batch *batch = &cmd_buffer->batch;
3177
3178 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3179
3180 #if GEN_GEN == 7
3181 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3182 * indirect dispatch registers to be written.
3183 */
3184 if (verify_cmd_parser(cmd_buffer->device, 5,
3185 "vkCmdDispatchIndirect") != VK_SUCCESS)
3186 return;
3187 #endif
3188
3189 if (prog_data->uses_num_work_groups)
3190 cmd_buffer->state.compute.num_workgroups = addr;
3191
3192 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3193
3194 emit_lrm(batch, GPGPU_DISPATCHDIMX, addr.bo, addr.offset);
3195 emit_lrm(batch, GPGPU_DISPATCHDIMY, addr.bo, addr.offset + 4);
3196 emit_lrm(batch, GPGPU_DISPATCHDIMZ, addr.bo, addr.offset + 8);
3197
3198 #if GEN_GEN <= 7
3199 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
3200 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
3201 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
3202 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
3203
3204 /* Load compute_dispatch_indirect_x_size into SRC0 */
3205 emit_lrm(batch, MI_PREDICATE_SRC0, addr.bo, addr.offset + 0);
3206
3207 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3208 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3209 mip.LoadOperation = LOAD_LOAD;
3210 mip.CombineOperation = COMBINE_SET;
3211 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3212 }
3213
3214 /* Load compute_dispatch_indirect_y_size into SRC0 */
3215 emit_lrm(batch, MI_PREDICATE_SRC0, addr.bo, addr.offset + 4);
3216
3217 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3218 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3219 mip.LoadOperation = LOAD_LOAD;
3220 mip.CombineOperation = COMBINE_OR;
3221 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3222 }
3223
3224 /* Load compute_dispatch_indirect_z_size into SRC0 */
3225 emit_lrm(batch, MI_PREDICATE_SRC0, addr.bo, addr.offset + 8);
3226
3227 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3228 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3229 mip.LoadOperation = LOAD_LOAD;
3230 mip.CombineOperation = COMBINE_OR;
3231 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3232 }
3233
3234 /* predicate = !predicate; */
3235 #define COMPARE_FALSE 1
3236 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3237 mip.LoadOperation = LOAD_LOADINV;
3238 mip.CombineOperation = COMBINE_OR;
3239 mip.CompareOperation = COMPARE_FALSE;
3240 }
3241 #endif
3242
3243 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
3244 ggw.IndirectParameterEnable = true;
3245 ggw.PredicateEnable = GEN_GEN <= 7;
3246 ggw.SIMDSize = prog_data->simd_size / 16;
3247 ggw.ThreadDepthCounterMaximum = 0;
3248 ggw.ThreadHeightCounterMaximum = 0;
3249 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3250 ggw.RightExecutionMask = pipeline->cs_right_mask;
3251 ggw.BottomExecutionMask = 0xffffffff;
3252 }
3253
3254 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
3255 }
3256
3257 static void
3258 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
3259 uint32_t pipeline)
3260 {
3261 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3262
3263 if (cmd_buffer->state.current_pipeline == pipeline)
3264 return;
3265
3266 #if GEN_GEN >= 8 && GEN_GEN < 10
3267 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3268 *
3269 * Software must clear the COLOR_CALC_STATE Valid field in
3270 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3271 * with Pipeline Select set to GPGPU.
3272 *
3273 * The internal hardware docs recommend the same workaround for Gen9
3274 * hardware too.
3275 */
3276 if (pipeline == GPGPU)
3277 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
3278 #endif
3279
3280 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3281 * PIPELINE_SELECT [DevBWR+]":
3282 *
3283 * Project: DEVSNB+
3284 *
3285 * Software must ensure all the write caches are flushed through a
3286 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3287 * command to invalidate read only caches prior to programming
3288 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3289 */
3290 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3291 pc.RenderTargetCacheFlushEnable = true;
3292 pc.DepthCacheFlushEnable = true;
3293 pc.DCFlushEnable = true;
3294 pc.PostSyncOperation = NoWrite;
3295 pc.CommandStreamerStallEnable = true;
3296 }
3297
3298 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3299 pc.TextureCacheInvalidationEnable = true;
3300 pc.ConstantCacheInvalidationEnable = true;
3301 pc.StateCacheInvalidationEnable = true;
3302 pc.InstructionCacheInvalidateEnable = true;
3303 pc.PostSyncOperation = NoWrite;
3304 }
3305
3306 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
3307 #if GEN_GEN >= 9
3308 ps.MaskBits = 3;
3309 #endif
3310 ps.PipelineSelection = pipeline;
3311 }
3312
3313 #if GEN_GEN == 9
3314 if (devinfo->is_geminilake) {
3315 /* Project: DevGLK
3316 *
3317 * "This chicken bit works around a hardware issue with barrier logic
3318 * encountered when switching between GPGPU and 3D pipelines. To
3319 * workaround the issue, this mode bit should be set after a pipeline
3320 * is selected."
3321 */
3322 uint32_t scec;
3323 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
3324 .GLKBarrierMode =
3325 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
3326 : GLK_BARRIER_MODE_3D_HULL,
3327 .GLKBarrierModeMask = 1);
3328 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
3329 }
3330 #endif
3331
3332 cmd_buffer->state.current_pipeline = pipeline;
3333 }
3334
3335 void
3336 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
3337 {
3338 genX(flush_pipeline_select)(cmd_buffer, _3D);
3339 }
3340
3341 void
3342 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
3343 {
3344 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
3345 }
3346
3347 void
3348 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
3349 {
3350 if (GEN_GEN >= 8)
3351 return;
3352
3353 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3354 *
3355 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3356 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3357 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3358 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3359 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3360 * Depth Flush Bit set, followed by another pipelined depth stall
3361 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3362 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
3363 * via a preceding MI_FLUSH)."
3364 */
3365 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3366 pipe.DepthStallEnable = true;
3367 }
3368 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3369 pipe.DepthCacheFlushEnable = true;
3370 }
3371 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3372 pipe.DepthStallEnable = true;
3373 }
3374 }
3375
3376 static void
3377 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
3378 {
3379 struct anv_device *device = cmd_buffer->device;
3380 const struct anv_image_view *iview =
3381 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
3382 const struct anv_image *image = iview ? iview->image : NULL;
3383
3384 /* FIXME: Width and Height are wrong */
3385
3386 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
3387
3388 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
3389 device->isl_dev.ds.size / 4);
3390 if (dw == NULL)
3391 return;
3392
3393 struct isl_depth_stencil_hiz_emit_info info = {
3394 .mocs = device->default_mocs,
3395 };
3396
3397 if (iview)
3398 info.view = &iview->planes[0].isl;
3399
3400 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
3401 uint32_t depth_plane =
3402 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
3403 const struct anv_surface *surface = &image->planes[depth_plane].surface;
3404
3405 info.depth_surf = &surface->isl;
3406
3407 info.depth_address =
3408 anv_batch_emit_reloc(&cmd_buffer->batch,
3409 dw + device->isl_dev.ds.depth_offset / 4,
3410 image->planes[depth_plane].address.bo,
3411 image->planes[depth_plane].address.offset +
3412 surface->offset);
3413
3414 const uint32_t ds =
3415 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
3416 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
3417 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
3418 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
3419
3420 info.hiz_address =
3421 anv_batch_emit_reloc(&cmd_buffer->batch,
3422 dw + device->isl_dev.ds.hiz_offset / 4,
3423 image->planes[depth_plane].address.bo,
3424 image->planes[depth_plane].address.offset +
3425 image->planes[depth_plane].aux_surface.offset);
3426
3427 info.depth_clear_value = ANV_HZ_FC_VAL;
3428 }
3429 }
3430
3431 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
3432 uint32_t stencil_plane =
3433 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
3434 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
3435
3436 info.stencil_surf = &surface->isl;
3437
3438 info.stencil_address =
3439 anv_batch_emit_reloc(&cmd_buffer->batch,
3440 dw + device->isl_dev.ds.stencil_offset / 4,
3441 image->planes[stencil_plane].address.bo,
3442 image->planes[stencil_plane].address.offset +
3443 surface->offset);
3444 }
3445
3446 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
3447
3448 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
3449 }
3450
3451 /**
3452 * This ANDs the view mask of the current subpass with the pending clear
3453 * views in the attachment to get the mask of views active in the subpass
3454 * that still need to be cleared.
3455 */
3456 static inline uint32_t
3457 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
3458 const struct anv_attachment_state *att_state)
3459 {
3460 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
3461 }
3462
3463 static inline bool
3464 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
3465 const struct anv_attachment_state *att_state)
3466 {
3467 if (!cmd_state->subpass->view_mask)
3468 return true;
3469
3470 uint32_t pending_clear_mask =
3471 get_multiview_subpass_clear_mask(cmd_state, att_state);
3472
3473 return pending_clear_mask & 1;
3474 }
3475
3476 static inline bool
3477 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
3478 uint32_t att_idx)
3479 {
3480 const uint32_t last_subpass_idx =
3481 cmd_state->pass->attachments[att_idx].last_subpass_idx;
3482 const struct anv_subpass *last_subpass =
3483 &cmd_state->pass->subpasses[last_subpass_idx];
3484 return last_subpass == cmd_state->subpass;
3485 }
3486
3487 static void
3488 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
3489 uint32_t subpass_id)
3490 {
3491 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3492 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
3493 cmd_state->subpass = subpass;
3494
3495 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3496
3497 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3498 * different views. If the client asks for instancing, we need to use the
3499 * Instance Data Step Rate to ensure that we repeat the client's
3500 * per-instance data once for each view. Since this bit is in
3501 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3502 * of each subpass.
3503 */
3504 if (GEN_GEN == 7)
3505 cmd_buffer->state.gfx.vb_dirty |= ~0;
3506
3507 /* It is possible to start a render pass with an old pipeline. Because the
3508 * render pass and subpass index are both baked into the pipeline, this is
3509 * highly unlikely. In order to do so, it requires that you have a render
3510 * pass with a single subpass and that you use that render pass twice
3511 * back-to-back and use the same pipeline at the start of the second render
3512 * pass as at the end of the first. In order to avoid unpredictable issues
3513 * with this edge case, we just dirty the pipeline at the start of every
3514 * subpass.
3515 */
3516 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3517
3518 /* Accumulate any subpass flushes that need to happen before the subpass */
3519 cmd_buffer->state.pending_pipe_bits |=
3520 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3521
3522 VkRect2D render_area = cmd_buffer->state.render_area;
3523 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3524
3525 bool is_multiview = subpass->view_mask != 0;
3526
3527 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3528 const uint32_t a = subpass->attachments[i].attachment;
3529 if (a == VK_ATTACHMENT_UNUSED)
3530 continue;
3531
3532 assert(a < cmd_state->pass->attachment_count);
3533 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3534
3535 struct anv_image_view *iview = fb->attachments[a];
3536 const struct anv_image *image = iview->image;
3537
3538 /* A resolve is necessary before use as an input attachment if the clear
3539 * color or auxiliary buffer usage isn't supported by the sampler.
3540 */
3541 const bool input_needs_resolve =
3542 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3543 att_state->input_aux_usage != att_state->aux_usage;
3544
3545 VkImageLayout target_layout;
3546 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3547 !input_needs_resolve) {
3548 /* Layout transitions before the final only help to enable sampling
3549 * as an input attachment. If the input attachment supports sampling
3550 * using the auxiliary surface, we can skip such transitions by
3551 * making the target layout one that is CCS-aware.
3552 */
3553 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3554 } else {
3555 target_layout = subpass->attachments[i].layout;
3556 }
3557
3558 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3559 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3560
3561 uint32_t base_layer, layer_count;
3562 if (image->type == VK_IMAGE_TYPE_3D) {
3563 base_layer = 0;
3564 layer_count = anv_minify(iview->image->extent.depth,
3565 iview->planes[0].isl.base_level);
3566 } else {
3567 base_layer = iview->planes[0].isl.base_array_layer;
3568 layer_count = fb->layers;
3569 }
3570
3571 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3572 iview->planes[0].isl.base_level, 1,
3573 base_layer, layer_count,
3574 att_state->current_layout, target_layout);
3575 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3576 transition_depth_buffer(cmd_buffer, image,
3577 att_state->current_layout, target_layout);
3578 att_state->aux_usage =
3579 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3580 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3581 }
3582 att_state->current_layout = target_layout;
3583
3584 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
3585 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3586
3587 /* Multi-planar images are not supported as attachments */
3588 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3589 assert(image->n_planes == 1);
3590
3591 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
3592 uint32_t clear_layer_count = fb->layers;
3593
3594 if (att_state->fast_clear &&
3595 do_first_layer_clear(cmd_state, att_state)) {
3596 /* We only support fast-clears on the first layer */
3597 assert(iview->planes[0].isl.base_level == 0);
3598 assert(iview->planes[0].isl.base_array_layer == 0);
3599
3600 union isl_color_value clear_color = {};
3601 anv_clear_color_from_att_state(&clear_color, att_state, iview);
3602 if (iview->image->samples == 1) {
3603 anv_image_ccs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3604 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
3605 &clear_color,
3606 false);
3607 } else {
3608 anv_image_mcs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3609 0, 1, ISL_AUX_OP_FAST_CLEAR,
3610 &clear_color,
3611 false);
3612 }
3613 base_clear_layer++;
3614 clear_layer_count--;
3615 if (is_multiview)
3616 att_state->pending_clear_views &= ~1;
3617
3618 if (att_state->clear_color_is_zero) {
3619 /* This image has the auxiliary buffer enabled. We can mark the
3620 * subresource as not needing a resolve because the clear color
3621 * will match what's in every RENDER_SURFACE_STATE object when
3622 * it's being used for sampling.
3623 */
3624 set_image_fast_clear_state(cmd_buffer, iview->image,
3625 VK_IMAGE_ASPECT_COLOR_BIT,
3626 ANV_FAST_CLEAR_DEFAULT_VALUE);
3627 } else {
3628 set_image_fast_clear_state(cmd_buffer, iview->image,
3629 VK_IMAGE_ASPECT_COLOR_BIT,
3630 ANV_FAST_CLEAR_ANY);
3631 }
3632 }
3633
3634 /* From the VkFramebufferCreateInfo spec:
3635 *
3636 * "If the render pass uses multiview, then layers must be one and each
3637 * attachment requires a number of layers that is greater than the
3638 * maximum bit index set in the view mask in the subpasses in which it
3639 * is used."
3640 *
3641 * So if multiview is active we ignore the number of layers in the
3642 * framebuffer and instead we honor the view mask from the subpass.
3643 */
3644 if (is_multiview) {
3645 assert(image->n_planes == 1);
3646 uint32_t pending_clear_mask =
3647 get_multiview_subpass_clear_mask(cmd_state, att_state);
3648
3649 uint32_t layer_idx;
3650 for_each_bit(layer_idx, pending_clear_mask) {
3651 uint32_t layer =
3652 iview->planes[0].isl.base_array_layer + layer_idx;
3653
3654 anv_image_clear_color(cmd_buffer, image,
3655 VK_IMAGE_ASPECT_COLOR_BIT,
3656 att_state->aux_usage,
3657 iview->planes[0].isl.format,
3658 iview->planes[0].isl.swizzle,
3659 iview->planes[0].isl.base_level,
3660 layer, 1,
3661 render_area,
3662 vk_to_isl_color(att_state->clear_value.color));
3663 }
3664
3665 att_state->pending_clear_views &= ~pending_clear_mask;
3666 } else if (clear_layer_count > 0) {
3667 assert(image->n_planes == 1);
3668 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3669 att_state->aux_usage,
3670 iview->planes[0].isl.format,
3671 iview->planes[0].isl.swizzle,
3672 iview->planes[0].isl.base_level,
3673 base_clear_layer, clear_layer_count,
3674 render_area,
3675 vk_to_isl_color(att_state->clear_value.color));
3676 }
3677 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
3678 VK_IMAGE_ASPECT_STENCIL_BIT)) {
3679 if (att_state->fast_clear && !is_multiview) {
3680 /* We currently only support HiZ for single-layer images */
3681 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3682 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
3683 assert(iview->planes[0].isl.base_level == 0);
3684 assert(iview->planes[0].isl.base_array_layer == 0);
3685 assert(fb->layers == 1);
3686 }
3687
3688 anv_image_hiz_clear(cmd_buffer, image,
3689 att_state->pending_clear_aspects,
3690 iview->planes[0].isl.base_level,
3691 iview->planes[0].isl.base_array_layer,
3692 fb->layers, render_area,
3693 att_state->clear_value.depthStencil.stencil);
3694 } else if (is_multiview) {
3695 uint32_t pending_clear_mask =
3696 get_multiview_subpass_clear_mask(cmd_state, att_state);
3697
3698 uint32_t layer_idx;
3699 for_each_bit(layer_idx, pending_clear_mask) {
3700 uint32_t layer =
3701 iview->planes[0].isl.base_array_layer + layer_idx;
3702
3703 anv_image_clear_depth_stencil(cmd_buffer, image,
3704 att_state->pending_clear_aspects,
3705 att_state->aux_usage,
3706 iview->planes[0].isl.base_level,
3707 layer, 1,
3708 render_area,
3709 att_state->clear_value.depthStencil.depth,
3710 att_state->clear_value.depthStencil.stencil);
3711 }
3712
3713 att_state->pending_clear_views &= ~pending_clear_mask;
3714 } else {
3715 anv_image_clear_depth_stencil(cmd_buffer, image,
3716 att_state->pending_clear_aspects,
3717 att_state->aux_usage,
3718 iview->planes[0].isl.base_level,
3719 iview->planes[0].isl.base_array_layer,
3720 fb->layers, render_area,
3721 att_state->clear_value.depthStencil.depth,
3722 att_state->clear_value.depthStencil.stencil);
3723 }
3724 } else {
3725 assert(att_state->pending_clear_aspects == 0);
3726 }
3727
3728 if (GEN_GEN < 10 &&
3729 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
3730 image->planes[0].aux_surface.isl.size > 0 &&
3731 iview->planes[0].isl.base_level == 0 &&
3732 iview->planes[0].isl.base_array_layer == 0) {
3733 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
3734 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3735 image, VK_IMAGE_ASPECT_COLOR_BIT,
3736 false /* copy to ss */);
3737 }
3738
3739 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
3740 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3741 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3742 image, VK_IMAGE_ASPECT_COLOR_BIT,
3743 false /* copy to ss */);
3744 }
3745 }
3746
3747 if (subpass->attachments[i].usage ==
3748 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
3749 /* We assume that if we're starting a subpass, we're going to do some
3750 * rendering so we may end up with compressed data.
3751 */
3752 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
3753 VK_IMAGE_ASPECT_COLOR_BIT,
3754 att_state->aux_usage,
3755 iview->planes[0].isl.base_level,
3756 iview->planes[0].isl.base_array_layer,
3757 fb->layers);
3758 } else if (subpass->attachments[i].usage ==
3759 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
3760 /* We may be writing depth or stencil so we need to mark the surface.
3761 * Unfortunately, there's no way to know at this point whether the
3762 * depth or stencil tests used will actually write to the surface.
3763 *
3764 * Even though stencil may be plane 1, it always shares a base_level
3765 * with depth.
3766 */
3767 const struct isl_view *ds_view = &iview->planes[0].isl;
3768 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
3769 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3770 VK_IMAGE_ASPECT_DEPTH_BIT,
3771 att_state->aux_usage,
3772 ds_view->base_level,
3773 ds_view->base_array_layer,
3774 fb->layers);
3775 }
3776 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
3777 /* Even though stencil may be plane 1, it always shares a
3778 * base_level with depth.
3779 */
3780 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3781 VK_IMAGE_ASPECT_STENCIL_BIT,
3782 ISL_AUX_USAGE_NONE,
3783 ds_view->base_level,
3784 ds_view->base_array_layer,
3785 fb->layers);
3786 }
3787 }
3788
3789 /* If multiview is enabled, then we are only done clearing when we no
3790 * longer have pending layers to clear, or when we have processed the
3791 * last subpass that uses this attachment.
3792 */
3793 if (!is_multiview ||
3794 att_state->pending_clear_views == 0 ||
3795 current_subpass_is_last_for_attachment(cmd_state, a)) {
3796 att_state->pending_clear_aspects = 0;
3797 }
3798
3799 att_state->pending_load_aspects = 0;
3800 }
3801
3802 cmd_buffer_emit_depth_stencil(cmd_buffer);
3803 }
3804
3805 static void
3806 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
3807 {
3808 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3809 struct anv_subpass *subpass = cmd_state->subpass;
3810 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3811
3812 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3813
3814 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3815 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3816 const uint32_t a = subpass->attachments[i].attachment;
3817 if (a == VK_ATTACHMENT_UNUSED)
3818 continue;
3819
3820 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
3821 continue;
3822
3823 assert(a < cmd_state->pass->attachment_count);
3824 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3825 struct anv_image_view *iview = fb->attachments[a];
3826 const struct anv_image *image = iview->image;
3827
3828 /* Transition the image into the final layout for this render pass */
3829 VkImageLayout target_layout =
3830 cmd_state->pass->attachments[a].final_layout;
3831
3832 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3833 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3834
3835 uint32_t base_layer, layer_count;
3836 if (image->type == VK_IMAGE_TYPE_3D) {
3837 base_layer = 0;
3838 layer_count = anv_minify(iview->image->extent.depth,
3839 iview->planes[0].isl.base_level);
3840 } else {
3841 base_layer = iview->planes[0].isl.base_array_layer;
3842 layer_count = fb->layers;
3843 }
3844
3845 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3846 iview->planes[0].isl.base_level, 1,
3847 base_layer, layer_count,
3848 att_state->current_layout, target_layout);
3849 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3850 transition_depth_buffer(cmd_buffer, image,
3851 att_state->current_layout, target_layout);
3852 }
3853 }
3854
3855 /* Accumulate any subpass flushes that need to happen after the subpass.
3856 * Yes, they do get accumulated twice in the NextSubpass case but since
3857 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
3858 * ORing the bits in twice so it's harmless.
3859 */
3860 cmd_buffer->state.pending_pipe_bits |=
3861 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
3862 }
3863
3864 void genX(CmdBeginRenderPass)(
3865 VkCommandBuffer commandBuffer,
3866 const VkRenderPassBeginInfo* pRenderPassBegin,
3867 VkSubpassContents contents)
3868 {
3869 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3870 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3871 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3872
3873 cmd_buffer->state.framebuffer = framebuffer;
3874 cmd_buffer->state.pass = pass;
3875 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3876 VkResult result =
3877 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3878
3879 /* If we failed to setup the attachments we should not try to go further */
3880 if (result != VK_SUCCESS) {
3881 assert(anv_batch_has_error(&cmd_buffer->batch));
3882 return;
3883 }
3884
3885 genX(flush_pipeline_select_3d)(cmd_buffer);
3886
3887 cmd_buffer_begin_subpass(cmd_buffer, 0);
3888 }
3889
3890 void genX(CmdBeginRenderPass2KHR)(
3891 VkCommandBuffer commandBuffer,
3892 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
3893 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
3894 {
3895 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
3896 pSubpassBeginInfo->contents);
3897 }
3898
3899 void genX(CmdNextSubpass)(
3900 VkCommandBuffer commandBuffer,
3901 VkSubpassContents contents)
3902 {
3903 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3904
3905 if (anv_batch_has_error(&cmd_buffer->batch))
3906 return;
3907
3908 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3909
3910 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
3911 cmd_buffer_end_subpass(cmd_buffer);
3912 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
3913 }
3914
3915 void genX(CmdNextSubpass2KHR)(
3916 VkCommandBuffer commandBuffer,
3917 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
3918 const VkSubpassEndInfoKHR* pSubpassEndInfo)
3919 {
3920 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
3921 }
3922
3923 void genX(CmdEndRenderPass)(
3924 VkCommandBuffer commandBuffer)
3925 {
3926 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3927
3928 if (anv_batch_has_error(&cmd_buffer->batch))
3929 return;
3930
3931 cmd_buffer_end_subpass(cmd_buffer);
3932
3933 cmd_buffer->state.hiz_enabled = false;
3934
3935 #ifndef NDEBUG
3936 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
3937 #endif
3938
3939 /* Remove references to render pass specific state. This enables us to
3940 * detect whether or not we're in a renderpass.
3941 */
3942 cmd_buffer->state.framebuffer = NULL;
3943 cmd_buffer->state.pass = NULL;
3944 cmd_buffer->state.subpass = NULL;
3945 }
3946
3947 void genX(CmdEndRenderPass2KHR)(
3948 VkCommandBuffer commandBuffer,
3949 const VkSubpassEndInfoKHR* pSubpassEndInfo)
3950 {
3951 genX(CmdEndRenderPass)(commandBuffer);
3952 }