anv: Don't add dynamic state base address to push constants on Gen7
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30 #include "util/fast_idiv_by_const.h"
31
32 #include "common/gen_aux_map.h"
33 #include "common/gen_l3_config.h"
34 #include "genxml/gen_macros.h"
35 #include "genxml/genX_pack.h"
36
37 /* We reserve GPR 14 and 15 for conditional rendering */
38 #define GEN_MI_BUILDER_NUM_ALLOC_GPRS 14
39 #define __gen_get_batch_dwords anv_batch_emit_dwords
40 #define __gen_address_offset anv_address_add
41 #include "common/gen_mi_builder.h"
42
43 static void
44 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
45 {
46 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
47 lri.RegisterOffset = reg;
48 lri.DataDWord = imm;
49 }
50 }
51
52 void
53 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
54 {
55 struct anv_device *device = cmd_buffer->device;
56 uint32_t mocs = device->isl_dev.mocs.internal;
57
58 /* If we are emitting a new state base address we probably need to re-emit
59 * binding tables.
60 */
61 cmd_buffer->state.descriptors_dirty |= ~0;
62
63 /* Emit a render target cache flush.
64 *
65 * This isn't documented anywhere in the PRM. However, it seems to be
66 * necessary prior to changing the surface state base adress. Without
67 * this, we get GPU hangs when using multi-level command buffers which
68 * clear depth, reset state base address, and then go render stuff.
69 */
70 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
71 pc.DCFlushEnable = true;
72 pc.RenderTargetCacheFlushEnable = true;
73 pc.CommandStreamerStallEnable = true;
74 #if GEN_GEN >= 12
75 pc.TileCacheFlushEnable = true;
76 #endif
77 }
78
79 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
80 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
81 sba.GeneralStateMOCS = mocs;
82 sba.GeneralStateBaseAddressModifyEnable = true;
83
84 sba.StatelessDataPortAccessMOCS = mocs;
85
86 sba.SurfaceStateBaseAddress =
87 anv_cmd_buffer_surface_base_address(cmd_buffer);
88 sba.SurfaceStateMOCS = mocs;
89 sba.SurfaceStateBaseAddressModifyEnable = true;
90
91 sba.DynamicStateBaseAddress =
92 (struct anv_address) { device->dynamic_state_pool.block_pool.bo, 0 };
93 sba.DynamicStateMOCS = mocs;
94 sba.DynamicStateBaseAddressModifyEnable = true;
95
96 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
97 sba.IndirectObjectMOCS = mocs;
98 sba.IndirectObjectBaseAddressModifyEnable = true;
99
100 sba.InstructionBaseAddress =
101 (struct anv_address) { device->instruction_state_pool.block_pool.bo, 0 };
102 sba.InstructionMOCS = mocs;
103 sba.InstructionBaseAddressModifyEnable = true;
104
105 # if (GEN_GEN >= 8)
106 /* Broadwell requires that we specify a buffer size for a bunch of
107 * these fields. However, since we will be growing the BO's live, we
108 * just set them all to the maximum.
109 */
110 sba.GeneralStateBufferSize = 0xfffff;
111 sba.GeneralStateBufferSizeModifyEnable = true;
112 sba.DynamicStateBufferSize = 0xfffff;
113 sba.DynamicStateBufferSizeModifyEnable = true;
114 sba.IndirectObjectBufferSize = 0xfffff;
115 sba.IndirectObjectBufferSizeModifyEnable = true;
116 sba.InstructionBufferSize = 0xfffff;
117 sba.InstructionBuffersizeModifyEnable = true;
118 # else
119 /* On gen7, we have upper bounds instead. According to the docs,
120 * setting an upper bound of zero means that no bounds checking is
121 * performed so, in theory, we should be able to leave them zero.
122 * However, border color is broken and the GPU bounds-checks anyway.
123 * To avoid this and other potential problems, we may as well set it
124 * for everything.
125 */
126 sba.GeneralStateAccessUpperBound =
127 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
128 sba.GeneralStateAccessUpperBoundModifyEnable = true;
129 sba.DynamicStateAccessUpperBound =
130 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
131 sba.DynamicStateAccessUpperBoundModifyEnable = true;
132 sba.InstructionAccessUpperBound =
133 (struct anv_address) { .bo = NULL, .offset = 0xfffff000 };
134 sba.InstructionAccessUpperBoundModifyEnable = true;
135 # endif
136 # if (GEN_GEN >= 9)
137 if (cmd_buffer->device->instance->physicalDevice.use_softpin) {
138 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) {
139 .bo = device->surface_state_pool.block_pool.bo,
140 .offset = 0,
141 };
142 sba.BindlessSurfaceStateSize = (1 << 20) - 1;
143 } else {
144 sba.BindlessSurfaceStateBaseAddress = ANV_NULL_ADDRESS;
145 sba.BindlessSurfaceStateSize = 0;
146 }
147 sba.BindlessSurfaceStateMOCS = mocs;
148 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
149 # endif
150 # if (GEN_GEN >= 10)
151 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
152 sba.BindlessSamplerStateMOCS = mocs;
153 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
154 sba.BindlessSamplerStateBufferSize = 0;
155 # endif
156 }
157
158 /* After re-setting the surface state base address, we have to do some
159 * cache flusing so that the sampler engine will pick up the new
160 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
161 * Shared Function > 3D Sampler > State > State Caching (page 96):
162 *
163 * Coherency with system memory in the state cache, like the texture
164 * cache is handled partially by software. It is expected that the
165 * command stream or shader will issue Cache Flush operation or
166 * Cache_Flush sampler message to ensure that the L1 cache remains
167 * coherent with system memory.
168 *
169 * [...]
170 *
171 * Whenever the value of the Dynamic_State_Base_Addr,
172 * Surface_State_Base_Addr are altered, the L1 state cache must be
173 * invalidated to ensure the new surface or sampler state is fetched
174 * from system memory.
175 *
176 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
177 * which, according the PIPE_CONTROL instruction documentation in the
178 * Broadwell PRM:
179 *
180 * Setting this bit is independent of any other bit in this packet.
181 * This bit controls the invalidation of the L1 and L2 state caches
182 * at the top of the pipe i.e. at the parsing time.
183 *
184 * Unfortunately, experimentation seems to indicate that state cache
185 * invalidation through a PIPE_CONTROL does nothing whatsoever in
186 * regards to surface state and binding tables. In stead, it seems that
187 * invalidating the texture cache is what is actually needed.
188 *
189 * XXX: As far as we have been able to determine through
190 * experimentation, shows that flush the texture cache appears to be
191 * sufficient. The theory here is that all of the sampling/rendering
192 * units cache the binding table in the texture cache. However, we have
193 * yet to be able to actually confirm this.
194 */
195 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
196 pc.TextureCacheInvalidationEnable = true;
197 pc.ConstantCacheInvalidationEnable = true;
198 pc.StateCacheInvalidationEnable = true;
199 }
200 }
201
202 static void
203 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
204 struct anv_state state, struct anv_address addr)
205 {
206 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
207
208 VkResult result =
209 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
210 state.offset + isl_dev->ss.addr_offset,
211 addr.bo, addr.offset, NULL);
212 if (result != VK_SUCCESS)
213 anv_batch_set_error(&cmd_buffer->batch, result);
214 }
215
216 static void
217 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
218 struct anv_surface_state state)
219 {
220 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
221
222 assert(!anv_address_is_null(state.address));
223 add_surface_reloc(cmd_buffer, state.state, state.address);
224
225 if (!anv_address_is_null(state.aux_address)) {
226 VkResult result =
227 anv_reloc_list_add(&cmd_buffer->surface_relocs,
228 &cmd_buffer->pool->alloc,
229 state.state.offset + isl_dev->ss.aux_addr_offset,
230 state.aux_address.bo,
231 state.aux_address.offset,
232 NULL);
233 if (result != VK_SUCCESS)
234 anv_batch_set_error(&cmd_buffer->batch, result);
235 }
236
237 if (!anv_address_is_null(state.clear_address)) {
238 VkResult result =
239 anv_reloc_list_add(&cmd_buffer->surface_relocs,
240 &cmd_buffer->pool->alloc,
241 state.state.offset +
242 isl_dev->ss.clear_color_state_offset,
243 state.clear_address.bo,
244 state.clear_address.offset,
245 NULL);
246 if (result != VK_SUCCESS)
247 anv_batch_set_error(&cmd_buffer->batch, result);
248 }
249 }
250
251 static void
252 color_attachment_compute_aux_usage(struct anv_device * device,
253 struct anv_cmd_state * cmd_state,
254 uint32_t att, VkRect2D render_area,
255 union isl_color_value *fast_clear_color)
256 {
257 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
258 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
259
260 assert(iview->n_planes == 1);
261
262 if (iview->planes[0].isl.base_array_layer >=
263 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
264 iview->planes[0].isl.base_level)) {
265 /* There is no aux buffer which corresponds to the level and layer(s)
266 * being accessed.
267 */
268 att_state->aux_usage = ISL_AUX_USAGE_NONE;
269 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
270 att_state->fast_clear = false;
271 return;
272 }
273
274 att_state->aux_usage =
275 anv_layout_to_aux_usage(&device->info, iview->image,
276 VK_IMAGE_ASPECT_COLOR_BIT,
277 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
278
279 /* If we don't have aux, then we should have returned early in the layer
280 * check above. If we got here, we must have something.
281 */
282 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
283
284 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
285 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
286 att_state->input_aux_usage = att_state->aux_usage;
287 } else {
288 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
289 *
290 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
291 * setting is only allowed if Surface Format supported for Fast
292 * Clear. In addition, if the surface is bound to the sampling
293 * engine, Surface Format must be supported for Render Target
294 * Compression for surfaces bound to the sampling engine."
295 *
296 * In other words, we can only sample from a fast-cleared image if it
297 * also supports color compression.
298 */
299 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format) &&
300 isl_format_supports_ccs_d(&device->info, iview->planes[0].isl.format)) {
301 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
302
303 /* While fast-clear resolves and partial resolves are fairly cheap in the
304 * case where you render to most of the pixels, full resolves are not
305 * because they potentially involve reading and writing the entire
306 * framebuffer. If we can't texture with CCS_E, we should leave it off and
307 * limit ourselves to fast clears.
308 */
309 if (cmd_state->pass->attachments[att].first_subpass_layout ==
310 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
311 anv_perf_warn(device->instance, iview->image,
312 "Not temporarily enabling CCS_E.");
313 }
314 } else {
315 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
316 }
317 }
318
319 assert(iview->image->planes[0].aux_surface.isl.usage &
320 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
321
322 union isl_color_value clear_color = {};
323 anv_clear_color_from_att_state(&clear_color, att_state, iview);
324
325 att_state->clear_color_is_zero_one =
326 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
327 att_state->clear_color_is_zero =
328 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
329
330 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
331 /* Start by getting the fast clear type. We use the first subpass
332 * layout here because we don't want to fast-clear if the first subpass
333 * to use the attachment can't handle fast-clears.
334 */
335 enum anv_fast_clear_type fast_clear_type =
336 anv_layout_to_fast_clear_type(&device->info, iview->image,
337 VK_IMAGE_ASPECT_COLOR_BIT,
338 cmd_state->pass->attachments[att].first_subpass_layout);
339 switch (fast_clear_type) {
340 case ANV_FAST_CLEAR_NONE:
341 att_state->fast_clear = false;
342 break;
343 case ANV_FAST_CLEAR_DEFAULT_VALUE:
344 att_state->fast_clear = att_state->clear_color_is_zero;
345 break;
346 case ANV_FAST_CLEAR_ANY:
347 att_state->fast_clear = true;
348 break;
349 }
350
351 /* Potentially, we could do partial fast-clears but doing so has crazy
352 * alignment restrictions. It's easier to just restrict to full size
353 * fast clears for now.
354 */
355 if (render_area.offset.x != 0 ||
356 render_area.offset.y != 0 ||
357 render_area.extent.width != iview->extent.width ||
358 render_area.extent.height != iview->extent.height)
359 att_state->fast_clear = false;
360
361 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
362 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
363 att_state->fast_clear = false;
364
365 /* We only allow fast clears to the first slice of an image (level 0,
366 * layer 0) and only for the entire slice. This guarantees us that, at
367 * any given time, there is only one clear color on any given image at
368 * any given time. At the time of our testing (Jan 17, 2018), there
369 * were no known applications which would benefit from fast-clearing
370 * more than just the first slice.
371 */
372 if (att_state->fast_clear &&
373 (iview->planes[0].isl.base_level > 0 ||
374 iview->planes[0].isl.base_array_layer > 0)) {
375 anv_perf_warn(device->instance, iview->image,
376 "Rendering with multi-lod or multi-layer framebuffer "
377 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
378 "baseArrayLayer > 0. Not fast clearing.");
379 att_state->fast_clear = false;
380 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
381 anv_perf_warn(device->instance, iview->image,
382 "Rendering to a multi-layer framebuffer with "
383 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
384 }
385
386 if (att_state->fast_clear)
387 *fast_clear_color = clear_color;
388 } else {
389 att_state->fast_clear = false;
390 }
391 }
392
393 static void
394 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
395 struct anv_cmd_state *cmd_state,
396 uint32_t att, VkRect2D render_area)
397 {
398 struct anv_render_pass_attachment *pass_att =
399 &cmd_state->pass->attachments[att];
400 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
401 struct anv_image_view *iview = cmd_state->attachments[att].image_view;
402
403 /* These will be initialized after the first subpass transition. */
404 att_state->aux_usage = ISL_AUX_USAGE_NONE;
405 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
406
407 if (GEN_GEN == 7) {
408 /* We don't do any HiZ or depth fast-clears on gen7 yet */
409 att_state->fast_clear = false;
410 return;
411 }
412
413 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
414 /* If we're just clearing stencil, we can always HiZ clear */
415 att_state->fast_clear = true;
416 return;
417 }
418
419 /* Default to false for now */
420 att_state->fast_clear = false;
421
422 /* We must have depth in order to have HiZ */
423 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
424 return;
425
426 const enum isl_aux_usage first_subpass_aux_usage =
427 anv_layout_to_aux_usage(&device->info, iview->image,
428 VK_IMAGE_ASPECT_DEPTH_BIT,
429 pass_att->first_subpass_layout);
430 if (!blorp_can_hiz_clear_depth(&device->info,
431 &iview->image->planes[0].surface.isl,
432 first_subpass_aux_usage,
433 iview->planes[0].isl.base_level,
434 iview->planes[0].isl.base_array_layer,
435 render_area.offset.x,
436 render_area.offset.y,
437 render_area.offset.x +
438 render_area.extent.width,
439 render_area.offset.y +
440 render_area.extent.height))
441 return;
442
443 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
444 return;
445
446 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
447 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
448 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
449 * only supports returning 0.0f. Gens prior to gen8 do not support this
450 * feature at all.
451 */
452 return;
453 }
454
455 /* If we got here, then we can fast clear */
456 att_state->fast_clear = true;
457 }
458
459 static bool
460 need_input_attachment_state(const struct anv_render_pass_attachment *att)
461 {
462 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
463 return false;
464
465 /* We only allocate input attachment states for color surfaces. Compression
466 * is not yet enabled for depth textures and stencil doesn't allow
467 * compression so we can just use the texture surface state from the view.
468 */
469 return vk_format_is_color(att->format);
470 }
471
472 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
473 * the initial layout is undefined, the HiZ buffer and depth buffer will
474 * represent the same data at the end of this operation.
475 */
476 static void
477 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
478 const struct anv_image *image,
479 VkImageLayout initial_layout,
480 VkImageLayout final_layout)
481 {
482 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
483 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
484 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
485 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
486 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
487 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
488
489 enum isl_aux_op hiz_op;
490 if (hiz_enabled && !enable_hiz) {
491 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
492 } else if (!hiz_enabled && enable_hiz) {
493 hiz_op = ISL_AUX_OP_AMBIGUATE;
494 } else {
495 assert(hiz_enabled == enable_hiz);
496 /* If the same buffer will be used, no resolves are necessary. */
497 hiz_op = ISL_AUX_OP_NONE;
498 }
499
500 if (hiz_op != ISL_AUX_OP_NONE)
501 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
502 0, 0, 1, hiz_op);
503 }
504
505 static inline bool
506 vk_image_layout_stencil_write_optimal(VkImageLayout layout)
507 {
508 return layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
509 layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
510 layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR;
511 }
512
513 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
514 * the initial layout is undefined, the HiZ buffer and depth buffer will
515 * represent the same data at the end of this operation.
516 */
517 static void
518 transition_stencil_buffer(struct anv_cmd_buffer *cmd_buffer,
519 const struct anv_image *image,
520 uint32_t base_level, uint32_t level_count,
521 uint32_t base_layer, uint32_t layer_count,
522 VkImageLayout initial_layout,
523 VkImageLayout final_layout)
524 {
525 #if GEN_GEN == 7
526 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
527 VK_IMAGE_ASPECT_STENCIL_BIT);
528
529 /* On gen7, we have to store a texturable version of the stencil buffer in
530 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
531 * forth at strategic points. Stencil writes are only allowed in following
532 * layouts:
533 *
534 * - VK_IMAGE_LAYOUT_GENERAL
535 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
536 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
537 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
538 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
539 *
540 * For general, we have no nice opportunity to transition so we do the copy
541 * to the shadow unconditionally at the end of the subpass. For transfer
542 * destinations, we can update it as part of the transfer op. For the other
543 * layouts, we delay the copy until a transition into some other layout.
544 */
545 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
546 vk_image_layout_stencil_write_optimal(initial_layout) &&
547 !vk_image_layout_stencil_write_optimal(final_layout)) {
548 anv_image_copy_to_shadow(cmd_buffer, image,
549 VK_IMAGE_ASPECT_STENCIL_BIT,
550 base_level, level_count,
551 base_layer, layer_count);
552 }
553 #endif /* GEN_GEN == 7 */
554 }
555
556 #define MI_PREDICATE_SRC0 0x2400
557 #define MI_PREDICATE_SRC1 0x2408
558 #define MI_PREDICATE_RESULT 0x2418
559
560 static void
561 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
562 const struct anv_image *image,
563 VkImageAspectFlagBits aspect,
564 uint32_t level,
565 uint32_t base_layer, uint32_t layer_count,
566 bool compressed)
567 {
568 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
569
570 /* We only have compression tracking for CCS_E */
571 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
572 return;
573
574 for (uint32_t a = 0; a < layer_count; a++) {
575 uint32_t layer = base_layer + a;
576 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
577 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
578 image, aspect,
579 level, layer);
580 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
581 }
582 }
583 }
584
585 static void
586 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
587 const struct anv_image *image,
588 VkImageAspectFlagBits aspect,
589 enum anv_fast_clear_type fast_clear)
590 {
591 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
592 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
593 image, aspect);
594 sdi.ImmediateData = fast_clear;
595 }
596
597 /* Whenever we have fast-clear, we consider that slice to be compressed.
598 * This makes building predicates much easier.
599 */
600 if (fast_clear != ANV_FAST_CLEAR_NONE)
601 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
602 }
603
604 /* This is only really practical on haswell and above because it requires
605 * MI math in order to get it correct.
606 */
607 #if GEN_GEN >= 8 || GEN_IS_HASWELL
608 static void
609 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
610 const struct anv_image *image,
611 VkImageAspectFlagBits aspect,
612 uint32_t level, uint32_t array_layer,
613 enum isl_aux_op resolve_op,
614 enum anv_fast_clear_type fast_clear_supported)
615 {
616 struct gen_mi_builder b;
617 gen_mi_builder_init(&b, &cmd_buffer->batch);
618
619 const struct gen_mi_value fast_clear_type =
620 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
621 image, aspect));
622
623 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
624 /* In this case, we're doing a full resolve which means we want the
625 * resolve to happen if any compression (including fast-clears) is
626 * present.
627 *
628 * In order to simplify the logic a bit, we make the assumption that,
629 * if the first slice has been fast-cleared, it is also marked as
630 * compressed. See also set_image_fast_clear_state.
631 */
632 const struct gen_mi_value compression_state =
633 gen_mi_mem32(anv_image_get_compression_state_addr(cmd_buffer->device,
634 image, aspect,
635 level, array_layer));
636 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
637 compression_state);
638 gen_mi_store(&b, compression_state, gen_mi_imm(0));
639
640 if (level == 0 && array_layer == 0) {
641 /* If the predicate is true, we want to write 0 to the fast clear type
642 * and, if it's false, leave it alone. We can do this by writing
643 *
644 * clear_type = clear_type & ~predicate;
645 */
646 struct gen_mi_value new_fast_clear_type =
647 gen_mi_iand(&b, fast_clear_type,
648 gen_mi_inot(&b, gen_mi_reg64(MI_PREDICATE_SRC0)));
649 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
650 }
651 } else if (level == 0 && array_layer == 0) {
652 /* In this case, we are doing a partial resolve to get rid of fast-clear
653 * colors. We don't care about the compression state but we do care
654 * about how much fast clear is allowed by the final layout.
655 */
656 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
657 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
658
659 /* We need to compute (fast_clear_supported < image->fast_clear) */
660 struct gen_mi_value pred =
661 gen_mi_ult(&b, gen_mi_imm(fast_clear_supported), fast_clear_type);
662 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
663 gen_mi_value_ref(&b, pred));
664
665 /* If the predicate is true, we want to write 0 to the fast clear type
666 * and, if it's false, leave it alone. We can do this by writing
667 *
668 * clear_type = clear_type & ~predicate;
669 */
670 struct gen_mi_value new_fast_clear_type =
671 gen_mi_iand(&b, fast_clear_type, gen_mi_inot(&b, pred));
672 gen_mi_store(&b, fast_clear_type, new_fast_clear_type);
673 } else {
674 /* In this case, we're trying to do a partial resolve on a slice that
675 * doesn't have clear color. There's nothing to do.
676 */
677 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
678 return;
679 }
680
681 /* Set src1 to 0 and use a != condition */
682 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
683
684 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
685 mip.LoadOperation = LOAD_LOADINV;
686 mip.CombineOperation = COMBINE_SET;
687 mip.CompareOperation = COMPARE_SRCS_EQUAL;
688 }
689 }
690 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
691
692 #if GEN_GEN <= 8
693 static void
694 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
695 const struct anv_image *image,
696 VkImageAspectFlagBits aspect,
697 uint32_t level, uint32_t array_layer,
698 enum isl_aux_op resolve_op,
699 enum anv_fast_clear_type fast_clear_supported)
700 {
701 struct gen_mi_builder b;
702 gen_mi_builder_init(&b, &cmd_buffer->batch);
703
704 struct gen_mi_value fast_clear_type_mem =
705 gen_mi_mem32(anv_image_get_fast_clear_type_addr(cmd_buffer->device,
706 image, aspect));
707
708 /* This only works for partial resolves and only when the clear color is
709 * all or nothing. On the upside, this emits less command streamer code
710 * and works on Ivybridge and Bay Trail.
711 */
712 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
713 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
714
715 /* We don't support fast clears on anything other than the first slice. */
716 if (level > 0 || array_layer > 0)
717 return;
718
719 /* On gen8, we don't have a concept of default clear colors because we
720 * can't sample from CCS surfaces. It's enough to just load the fast clear
721 * state into the predicate register.
722 */
723 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), fast_clear_type_mem);
724 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
725 gen_mi_store(&b, fast_clear_type_mem, gen_mi_imm(0));
726
727 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
728 mip.LoadOperation = LOAD_LOADINV;
729 mip.CombineOperation = COMBINE_SET;
730 mip.CompareOperation = COMPARE_SRCS_EQUAL;
731 }
732 }
733 #endif /* GEN_GEN <= 8 */
734
735 static void
736 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
737 const struct anv_image *image,
738 enum isl_format format,
739 VkImageAspectFlagBits aspect,
740 uint32_t level, uint32_t array_layer,
741 enum isl_aux_op resolve_op,
742 enum anv_fast_clear_type fast_clear_supported)
743 {
744 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
745
746 #if GEN_GEN >= 9
747 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
748 aspect, level, array_layer,
749 resolve_op, fast_clear_supported);
750 #else /* GEN_GEN <= 8 */
751 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
752 aspect, level, array_layer,
753 resolve_op, fast_clear_supported);
754 #endif
755
756 /* CCS_D only supports full resolves and BLORP will assert on us if we try
757 * to do a partial resolve on a CCS_D surface.
758 */
759 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
760 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
761 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
762
763 anv_image_ccs_op(cmd_buffer, image, format, aspect, level,
764 array_layer, 1, resolve_op, NULL, true);
765 }
766
767 static void
768 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
769 const struct anv_image *image,
770 enum isl_format format,
771 VkImageAspectFlagBits aspect,
772 uint32_t array_layer,
773 enum isl_aux_op resolve_op,
774 enum anv_fast_clear_type fast_clear_supported)
775 {
776 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
777 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
778
779 #if GEN_GEN >= 8 || GEN_IS_HASWELL
780 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
781 aspect, 0, array_layer,
782 resolve_op, fast_clear_supported);
783
784 anv_image_mcs_op(cmd_buffer, image, format, aspect,
785 array_layer, 1, resolve_op, NULL, true);
786 #else
787 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
788 #endif
789 }
790
791 void
792 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
793 const struct anv_image *image,
794 VkImageAspectFlagBits aspect,
795 enum isl_aux_usage aux_usage,
796 uint32_t level,
797 uint32_t base_layer,
798 uint32_t layer_count)
799 {
800 /* The aspect must be exactly one of the image aspects. */
801 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
802
803 /* The only compression types with more than just fast-clears are MCS,
804 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
805 * track the current fast-clear and compression state. This leaves us
806 * with just MCS and CCS_E.
807 */
808 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
809 aux_usage != ISL_AUX_USAGE_MCS)
810 return;
811
812 set_image_compressed_bit(cmd_buffer, image, aspect,
813 level, base_layer, layer_count, true);
814 }
815
816 static void
817 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
818 const struct anv_image *image,
819 VkImageAspectFlagBits aspect)
820 {
821 assert(cmd_buffer && image);
822 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
823
824 set_image_fast_clear_state(cmd_buffer, image, aspect,
825 ANV_FAST_CLEAR_NONE);
826
827 /* Initialize the struct fields that are accessed for fast-clears so that
828 * the HW restrictions on the field values are satisfied.
829 */
830 struct anv_address addr =
831 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
832
833 if (GEN_GEN >= 9) {
834 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
835 const unsigned num_dwords = GEN_GEN >= 10 ?
836 isl_dev->ss.clear_color_state_size / 4 :
837 isl_dev->ss.clear_value_size / 4;
838 for (unsigned i = 0; i < num_dwords; i++) {
839 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
840 sdi.Address = addr;
841 sdi.Address.offset += i * 4;
842 sdi.ImmediateData = 0;
843 }
844 }
845 } else {
846 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
847 sdi.Address = addr;
848 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
849 /* Pre-SKL, the dword containing the clear values also contains
850 * other fields, so we need to initialize those fields to match the
851 * values that would be in a color attachment.
852 */
853 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
854 ISL_CHANNEL_SELECT_GREEN << 22 |
855 ISL_CHANNEL_SELECT_BLUE << 19 |
856 ISL_CHANNEL_SELECT_ALPHA << 16;
857 } else if (GEN_GEN == 7) {
858 /* On IVB, the dword containing the clear values also contains
859 * other fields that must be zero or can be zero.
860 */
861 sdi.ImmediateData = 0;
862 }
863 }
864 }
865 }
866
867 /* Copy the fast-clear value dword(s) between a surface state object and an
868 * image's fast clear state buffer.
869 */
870 static void
871 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
872 struct anv_state surface_state,
873 const struct anv_image *image,
874 VkImageAspectFlagBits aspect,
875 bool copy_from_surface_state)
876 {
877 assert(cmd_buffer && image);
878 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
879
880 struct anv_address ss_clear_addr = {
881 .bo = cmd_buffer->device->surface_state_pool.block_pool.bo,
882 .offset = surface_state.offset +
883 cmd_buffer->device->isl_dev.ss.clear_value_offset,
884 };
885 const struct anv_address entry_addr =
886 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
887 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
888
889 #if GEN_GEN == 7
890 /* On gen7, the combination of commands used here(MI_LOAD_REGISTER_MEM
891 * and MI_STORE_REGISTER_MEM) can cause GPU hangs if any rendering is
892 * in-flight when they are issued even if the memory touched is not
893 * currently active for rendering. The weird bit is that it is not the
894 * MI_LOAD/STORE_REGISTER_MEM commands which hang but rather the in-flight
895 * rendering hangs such that the next stalling command after the
896 * MI_LOAD/STORE_REGISTER_MEM commands will catch the hang.
897 *
898 * It is unclear exactly why this hang occurs. Both MI commands come with
899 * warnings about the 3D pipeline but that doesn't seem to fully explain
900 * it. My (Jason's) best theory is that it has something to do with the
901 * fact that we're using a GPU state register as our temporary and that
902 * something with reading/writing it is causing problems.
903 *
904 * In order to work around this issue, we emit a PIPE_CONTROL with the
905 * command streamer stall bit set.
906 */
907 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
908 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
909 #endif
910
911 struct gen_mi_builder b;
912 gen_mi_builder_init(&b, &cmd_buffer->batch);
913
914 if (copy_from_surface_state) {
915 gen_mi_memcpy(&b, entry_addr, ss_clear_addr, copy_size);
916 } else {
917 gen_mi_memcpy(&b, ss_clear_addr, entry_addr, copy_size);
918
919 /* Updating a surface state object may require that the state cache be
920 * invalidated. From the SKL PRM, Shared Functions -> State -> State
921 * Caching:
922 *
923 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
924 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
925 * modified [...], the L1 state cache must be invalidated to ensure
926 * the new surface or sampler state is fetched from system memory.
927 *
928 * In testing, SKL doesn't actually seem to need this, but HSW does.
929 */
930 cmd_buffer->state.pending_pipe_bits |=
931 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
932 }
933 }
934
935 /**
936 * @brief Transitions a color buffer from one layout to another.
937 *
938 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
939 * more information.
940 *
941 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
942 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
943 * this represents the maximum layers to transition at each
944 * specified miplevel.
945 */
946 static void
947 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
948 const struct anv_image *image,
949 VkImageAspectFlagBits aspect,
950 const uint32_t base_level, uint32_t level_count,
951 uint32_t base_layer, uint32_t layer_count,
952 VkImageLayout initial_layout,
953 VkImageLayout final_layout)
954 {
955 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
956 /* Validate the inputs. */
957 assert(cmd_buffer);
958 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
959 /* These values aren't supported for simplicity's sake. */
960 assert(level_count != VK_REMAINING_MIP_LEVELS &&
961 layer_count != VK_REMAINING_ARRAY_LAYERS);
962 /* Ensure the subresource range is valid. */
963 UNUSED uint64_t last_level_num = base_level + level_count;
964 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
965 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
966 assert((uint64_t)base_layer + layer_count <= image_layers);
967 assert(last_level_num <= image->levels);
968 /* The spec disallows these final layouts. */
969 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
970 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
971
972 /* No work is necessary if the layout stays the same or if this subresource
973 * range lacks auxiliary data.
974 */
975 if (initial_layout == final_layout)
976 return;
977
978 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
979
980 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
981 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
982 /* This surface is a linear compressed image with a tiled shadow surface
983 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
984 * we need to ensure the shadow copy is up-to-date.
985 */
986 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
987 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
988 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
989 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
990 assert(plane == 0);
991 anv_image_copy_to_shadow(cmd_buffer, image,
992 VK_IMAGE_ASPECT_COLOR_BIT,
993 base_level, level_count,
994 base_layer, layer_count);
995 }
996
997 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
998 return;
999
1000 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
1001
1002 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
1003 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
1004 /* A subresource in the undefined layout may have been aliased and
1005 * populated with any arrangement of bits. Therefore, we must initialize
1006 * the related aux buffer and clear buffer entry with desirable values.
1007 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
1008 * images with VK_IMAGE_TILING_OPTIMAL.
1009 *
1010 * Initialize the relevant clear buffer entries.
1011 */
1012 if (base_level == 0 && base_layer == 0)
1013 init_fast_clear_color(cmd_buffer, image, aspect);
1014
1015 /* Initialize the aux buffers to enable correct rendering. In order to
1016 * ensure that things such as storage images work correctly, aux buffers
1017 * need to be initialized to valid data.
1018 *
1019 * Having an aux buffer with invalid data is a problem for two reasons:
1020 *
1021 * 1) Having an invalid value in the buffer can confuse the hardware.
1022 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1023 * invalid and leads to the hardware doing strange things. It
1024 * doesn't hang as far as we can tell but rendering corruption can
1025 * occur.
1026 *
1027 * 2) If this transition is into the GENERAL layout and we then use the
1028 * image as a storage image, then we must have the aux buffer in the
1029 * pass-through state so that, if we then go to texture from the
1030 * image, we get the results of our storage image writes and not the
1031 * fast clear color or other random data.
1032 *
1033 * For CCS both of the problems above are real demonstrable issues. In
1034 * that case, the only thing we can do is to perform an ambiguate to
1035 * transition the aux surface into the pass-through state.
1036 *
1037 * For MCS, (2) is never an issue because we don't support multisampled
1038 * storage images. In theory, issue (1) is a problem with MCS but we've
1039 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1040 * theory, be interpreted as something but we don't know that all bit
1041 * patterns are actually valid. For 2x and 8x, you could easily end up
1042 * with the MCS referring to an invalid plane because not all bits of
1043 * the MCS value are actually used. Even though we've never seen issues
1044 * in the wild, it's best to play it safe and initialize the MCS. We
1045 * can use a fast-clear for MCS because we only ever touch from render
1046 * and texture (no image load store).
1047 */
1048 if (image->samples == 1) {
1049 for (uint32_t l = 0; l < level_count; l++) {
1050 const uint32_t level = base_level + l;
1051
1052 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1053 if (base_layer >= aux_layers)
1054 break; /* We will only get fewer layers as level increases */
1055 uint32_t level_layer_count =
1056 MIN2(layer_count, aux_layers - base_layer);
1057
1058 anv_image_ccs_op(cmd_buffer, image,
1059 image->planes[plane].surface.isl.format,
1060 aspect, level, base_layer, level_layer_count,
1061 ISL_AUX_OP_AMBIGUATE, NULL, false);
1062
1063 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1064 set_image_compressed_bit(cmd_buffer, image, aspect,
1065 level, base_layer, level_layer_count,
1066 false);
1067 }
1068 }
1069 } else {
1070 if (image->samples == 4 || image->samples == 16) {
1071 anv_perf_warn(cmd_buffer->device->instance, image,
1072 "Doing a potentially unnecessary fast-clear to "
1073 "define an MCS buffer.");
1074 }
1075
1076 assert(base_level == 0 && level_count == 1);
1077 anv_image_mcs_op(cmd_buffer, image,
1078 image->planes[plane].surface.isl.format,
1079 aspect, base_layer, layer_count,
1080 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1081 }
1082 return;
1083 }
1084
1085 const enum isl_aux_usage initial_aux_usage =
1086 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1087 const enum isl_aux_usage final_aux_usage =
1088 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1089
1090 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1091 * We can handle transitions between CCS_D/E to and from NONE. What we
1092 * don't yet handle is switching between CCS_E and CCS_D within a given
1093 * image. Doing so in a performant way requires more detailed aux state
1094 * tracking such as what is done in i965. For now, just assume that we
1095 * only have one type of compression.
1096 */
1097 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1098 final_aux_usage == ISL_AUX_USAGE_NONE ||
1099 initial_aux_usage == final_aux_usage);
1100
1101 /* If initial aux usage is NONE, there is nothing to resolve */
1102 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1103 return;
1104
1105 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1106
1107 /* If the initial layout supports more fast clear than the final layout
1108 * then we need at least a partial resolve.
1109 */
1110 const enum anv_fast_clear_type initial_fast_clear =
1111 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1112 const enum anv_fast_clear_type final_fast_clear =
1113 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1114 if (final_fast_clear < initial_fast_clear)
1115 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1116
1117 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1118 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1119 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1120
1121 if (resolve_op == ISL_AUX_OP_NONE)
1122 return;
1123
1124 /* Perform a resolve to synchronize data between the main and aux buffer.
1125 * Before we begin, we must satisfy the cache flushing requirement specified
1126 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1127 *
1128 * Any transition from any value in {Clear, Render, Resolve} to a
1129 * different value in {Clear, Render, Resolve} requires end of pipe
1130 * synchronization.
1131 *
1132 * We perform a flush of the write cache before and after the clear and
1133 * resolve operations to meet this requirement.
1134 *
1135 * Unlike other drawing, fast clear operations are not properly
1136 * synchronized. The first PIPE_CONTROL here likely ensures that the
1137 * contents of the previous render or clear hit the render target before we
1138 * resolve and the second likely ensures that the resolve is complete before
1139 * we do any more rendering or clearing.
1140 */
1141 cmd_buffer->state.pending_pipe_bits |=
1142 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1143
1144 for (uint32_t l = 0; l < level_count; l++) {
1145 uint32_t level = base_level + l;
1146
1147 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1148 if (base_layer >= aux_layers)
1149 break; /* We will only get fewer layers as level increases */
1150 uint32_t level_layer_count =
1151 MIN2(layer_count, aux_layers - base_layer);
1152
1153 for (uint32_t a = 0; a < level_layer_count; a++) {
1154 uint32_t array_layer = base_layer + a;
1155 if (image->samples == 1) {
1156 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
1157 image->planes[plane].surface.isl.format,
1158 aspect, level, array_layer, resolve_op,
1159 final_fast_clear);
1160 } else {
1161 /* We only support fast-clear on the first layer so partial
1162 * resolves should not be used on other layers as they will use
1163 * the clear color stored in memory that is only valid for layer0.
1164 */
1165 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1166 array_layer != 0)
1167 continue;
1168
1169 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
1170 image->planes[plane].surface.isl.format,
1171 aspect, array_layer, resolve_op,
1172 final_fast_clear);
1173 }
1174 }
1175 }
1176
1177 cmd_buffer->state.pending_pipe_bits |=
1178 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1179 }
1180
1181 /**
1182 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1183 */
1184 static VkResult
1185 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1186 struct anv_render_pass *pass,
1187 const VkRenderPassBeginInfo *begin)
1188 {
1189 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1190 struct anv_cmd_state *state = &cmd_buffer->state;
1191 struct anv_framebuffer *framebuffer = cmd_buffer->state.framebuffer;
1192
1193 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1194
1195 if (pass->attachment_count > 0) {
1196 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1197 pass->attachment_count *
1198 sizeof(state->attachments[0]),
1199 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1200 if (state->attachments == NULL) {
1201 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1202 return anv_batch_set_error(&cmd_buffer->batch,
1203 VK_ERROR_OUT_OF_HOST_MEMORY);
1204 }
1205 } else {
1206 state->attachments = NULL;
1207 }
1208
1209 /* Reserve one for the NULL state. */
1210 unsigned num_states = 1;
1211 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1212 if (vk_format_is_color(pass->attachments[i].format))
1213 num_states++;
1214
1215 if (need_input_attachment_state(&pass->attachments[i]))
1216 num_states++;
1217 }
1218
1219 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1220 state->render_pass_states =
1221 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1222 num_states * ss_stride, isl_dev->ss.align);
1223
1224 struct anv_state next_state = state->render_pass_states;
1225 next_state.alloc_size = isl_dev->ss.size;
1226
1227 state->null_surface_state = next_state;
1228 next_state.offset += ss_stride;
1229 next_state.map += ss_stride;
1230
1231 const VkRenderPassAttachmentBeginInfoKHR *begin_attachment =
1232 vk_find_struct_const(begin, RENDER_PASS_ATTACHMENT_BEGIN_INFO_KHR);
1233
1234 if (begin && !begin_attachment)
1235 assert(pass->attachment_count == framebuffer->attachment_count);
1236
1237 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1238 if (vk_format_is_color(pass->attachments[i].format)) {
1239 state->attachments[i].color.state = next_state;
1240 next_state.offset += ss_stride;
1241 next_state.map += ss_stride;
1242 }
1243
1244 if (need_input_attachment_state(&pass->attachments[i])) {
1245 state->attachments[i].input.state = next_state;
1246 next_state.offset += ss_stride;
1247 next_state.map += ss_stride;
1248 }
1249
1250 if (begin_attachment && begin_attachment->attachmentCount != 0) {
1251 assert(begin_attachment->attachmentCount == pass->attachment_count);
1252 ANV_FROM_HANDLE(anv_image_view, iview, begin_attachment->pAttachments[i]);
1253 cmd_buffer->state.attachments[i].image_view = iview;
1254 } else if (framebuffer && i < framebuffer->attachment_count) {
1255 cmd_buffer->state.attachments[i].image_view = framebuffer->attachments[i];
1256 }
1257 }
1258 assert(next_state.offset == state->render_pass_states.offset +
1259 state->render_pass_states.alloc_size);
1260
1261 if (begin) {
1262 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1263 isl_extent3d(framebuffer->width,
1264 framebuffer->height,
1265 framebuffer->layers));
1266
1267 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1268 struct anv_render_pass_attachment *att = &pass->attachments[i];
1269 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1270 VkImageAspectFlags clear_aspects = 0;
1271 VkImageAspectFlags load_aspects = 0;
1272
1273 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1274 /* color attachment */
1275 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1276 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1277 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1278 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1279 }
1280 } else {
1281 /* depthstencil attachment */
1282 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1283 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1284 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1285 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1286 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1287 }
1288 }
1289 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1290 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1291 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1292 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1293 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1294 }
1295 }
1296 }
1297
1298 state->attachments[i].current_layout = att->initial_layout;
1299 state->attachments[i].current_stencil_layout = att->stencil_initial_layout;
1300 state->attachments[i].pending_clear_aspects = clear_aspects;
1301 state->attachments[i].pending_load_aspects = load_aspects;
1302 if (clear_aspects)
1303 state->attachments[i].clear_value = begin->pClearValues[i];
1304
1305 struct anv_image_view *iview = cmd_buffer->state.attachments[i].image_view;
1306 anv_assert(iview->vk_format == att->format);
1307
1308 const uint32_t num_layers = iview->planes[0].isl.array_len;
1309 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1310
1311 union isl_color_value clear_color = { .u32 = { 0, } };
1312 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1313 anv_assert(iview->n_planes == 1);
1314 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1315 color_attachment_compute_aux_usage(cmd_buffer->device,
1316 state, i, begin->renderArea,
1317 &clear_color);
1318
1319 anv_image_fill_surface_state(cmd_buffer->device,
1320 iview->image,
1321 VK_IMAGE_ASPECT_COLOR_BIT,
1322 &iview->planes[0].isl,
1323 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1324 state->attachments[i].aux_usage,
1325 &clear_color,
1326 0,
1327 &state->attachments[i].color,
1328 NULL);
1329
1330 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1331 } else {
1332 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1333 state, i,
1334 begin->renderArea);
1335 }
1336
1337 if (need_input_attachment_state(&pass->attachments[i])) {
1338 anv_image_fill_surface_state(cmd_buffer->device,
1339 iview->image,
1340 VK_IMAGE_ASPECT_COLOR_BIT,
1341 &iview->planes[0].isl,
1342 ISL_SURF_USAGE_TEXTURE_BIT,
1343 state->attachments[i].input_aux_usage,
1344 &clear_color,
1345 0,
1346 &state->attachments[i].input,
1347 NULL);
1348
1349 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1350 }
1351 }
1352 }
1353
1354 return VK_SUCCESS;
1355 }
1356
1357 VkResult
1358 genX(BeginCommandBuffer)(
1359 VkCommandBuffer commandBuffer,
1360 const VkCommandBufferBeginInfo* pBeginInfo)
1361 {
1362 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1363
1364 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1365 * command buffer's state. Otherwise, we must *reset* its state. In both
1366 * cases we reset it.
1367 *
1368 * From the Vulkan 1.0 spec:
1369 *
1370 * If a command buffer is in the executable state and the command buffer
1371 * was allocated from a command pool with the
1372 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1373 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1374 * as if vkResetCommandBuffer had been called with
1375 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1376 * the command buffer in the recording state.
1377 */
1378 anv_cmd_buffer_reset(cmd_buffer);
1379
1380 cmd_buffer->usage_flags = pBeginInfo->flags;
1381
1382 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1383 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1384
1385 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1386
1387 /* We sometimes store vertex data in the dynamic state buffer for blorp
1388 * operations and our dynamic state stream may re-use data from previous
1389 * command buffers. In order to prevent stale cache data, we flush the VF
1390 * cache. We could do this on every blorp call but that's not really
1391 * needed as all of the data will get written by the CPU prior to the GPU
1392 * executing anything. The chances are fairly high that they will use
1393 * blorp at least once per primary command buffer so it shouldn't be
1394 * wasted.
1395 *
1396 * There is also a workaround on gen8 which requires us to invalidate the
1397 * VF cache occasionally. It's easier if we can assume we start with a
1398 * fresh cache (See also genX(cmd_buffer_set_binding_for_gen8_vb_flush).)
1399 */
1400 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1401
1402 /* We send an "Indirect State Pointers Disable" packet at
1403 * EndCommandBuffer, so all push contant packets are ignored during a
1404 * context restore. Documentation says after that command, we need to
1405 * emit push constants again before any rendering operation. So we
1406 * flag them dirty here to make sure they get emitted.
1407 */
1408 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1409
1410 VkResult result = VK_SUCCESS;
1411 if (cmd_buffer->usage_flags &
1412 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1413 assert(pBeginInfo->pInheritanceInfo);
1414 cmd_buffer->state.pass =
1415 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1416 cmd_buffer->state.subpass =
1417 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1418
1419 /* This is optional in the inheritance info. */
1420 cmd_buffer->state.framebuffer =
1421 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1422
1423 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1424 cmd_buffer->state.pass, NULL);
1425
1426 /* Record that HiZ is enabled if we can. */
1427 if (cmd_buffer->state.framebuffer) {
1428 const struct anv_image_view * const iview =
1429 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1430
1431 if (iview) {
1432 VkImageLayout layout =
1433 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1434
1435 enum isl_aux_usage aux_usage =
1436 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1437 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1438
1439 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1440 }
1441 }
1442
1443 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1444 }
1445
1446 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1447 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY) {
1448 const VkCommandBufferInheritanceConditionalRenderingInfoEXT *conditional_rendering_info =
1449 vk_find_struct_const(pBeginInfo->pInheritanceInfo->pNext, COMMAND_BUFFER_INHERITANCE_CONDITIONAL_RENDERING_INFO_EXT);
1450
1451 /* If secondary buffer supports conditional rendering
1452 * we should emit commands as if conditional rendering is enabled.
1453 */
1454 cmd_buffer->state.conditional_render_enabled =
1455 conditional_rendering_info && conditional_rendering_info->conditionalRenderingEnable;
1456 }
1457 #endif
1458
1459 return result;
1460 }
1461
1462 /* From the PRM, Volume 2a:
1463 *
1464 * "Indirect State Pointers Disable
1465 *
1466 * At the completion of the post-sync operation associated with this pipe
1467 * control packet, the indirect state pointers in the hardware are
1468 * considered invalid; the indirect pointers are not saved in the context.
1469 * If any new indirect state commands are executed in the command stream
1470 * while the pipe control is pending, the new indirect state commands are
1471 * preserved.
1472 *
1473 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1474 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1475 * commands are only considered as Indirect State Pointers. Once ISP is
1476 * issued in a context, SW must initialize by programming push constant
1477 * commands for all the shaders (at least to zero length) before attempting
1478 * any rendering operation for the same context."
1479 *
1480 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1481 * even though they point to a BO that has been already unreferenced at
1482 * the end of the previous batch buffer. This has been fine so far since
1483 * we are protected by these scratch page (every address not covered by
1484 * a BO should be pointing to the scratch page). But on CNL, it is
1485 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1486 * instruction.
1487 *
1488 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1489 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1490 * context restore, so the mentioned hang doesn't happen. However,
1491 * software must program push constant commands for all stages prior to
1492 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1493 *
1494 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1495 * constants have been loaded into the EUs prior to disable the push constants
1496 * so that it doesn't hang a previous 3DPRIMITIVE.
1497 */
1498 static void
1499 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1500 {
1501 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1502 pc.StallAtPixelScoreboard = true;
1503 pc.CommandStreamerStallEnable = true;
1504 }
1505 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1506 pc.IndirectStatePointersDisable = true;
1507 pc.CommandStreamerStallEnable = true;
1508 }
1509 }
1510
1511 VkResult
1512 genX(EndCommandBuffer)(
1513 VkCommandBuffer commandBuffer)
1514 {
1515 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1516
1517 if (anv_batch_has_error(&cmd_buffer->batch))
1518 return cmd_buffer->batch.status;
1519
1520 /* We want every command buffer to start with the PMA fix in a known state,
1521 * so we disable it at the end of the command buffer.
1522 */
1523 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1524
1525 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1526
1527 emit_isp_disable(cmd_buffer);
1528
1529 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1530
1531 return VK_SUCCESS;
1532 }
1533
1534 void
1535 genX(CmdExecuteCommands)(
1536 VkCommandBuffer commandBuffer,
1537 uint32_t commandBufferCount,
1538 const VkCommandBuffer* pCmdBuffers)
1539 {
1540 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1541
1542 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1543
1544 if (anv_batch_has_error(&primary->batch))
1545 return;
1546
1547 /* The secondary command buffers will assume that the PMA fix is disabled
1548 * when they begin executing. Make sure this is true.
1549 */
1550 genX(cmd_buffer_enable_pma_fix)(primary, false);
1551
1552 /* The secondary command buffer doesn't know which textures etc. have been
1553 * flushed prior to their execution. Apply those flushes now.
1554 */
1555 genX(cmd_buffer_apply_pipe_flushes)(primary);
1556
1557 for (uint32_t i = 0; i < commandBufferCount; i++) {
1558 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1559
1560 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1561 assert(!anv_batch_has_error(&secondary->batch));
1562
1563 #if GEN_GEN >= 8 || GEN_IS_HASWELL
1564 if (secondary->state.conditional_render_enabled) {
1565 if (!primary->state.conditional_render_enabled) {
1566 /* Secondary buffer is constructed as if it will be executed
1567 * with conditional rendering, we should satisfy this dependency
1568 * regardless of conditional rendering being enabled in primary.
1569 */
1570 struct gen_mi_builder b;
1571 gen_mi_builder_init(&b, &primary->batch);
1572 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
1573 gen_mi_imm(UINT64_MAX));
1574 }
1575 }
1576 #endif
1577
1578 if (secondary->usage_flags &
1579 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1580 /* If we're continuing a render pass from the primary, we need to
1581 * copy the surface states for the current subpass into the storage
1582 * we allocated for them in BeginCommandBuffer.
1583 */
1584 struct anv_bo *ss_bo =
1585 primary->device->surface_state_pool.block_pool.bo;
1586 struct anv_state src_state = primary->state.render_pass_states;
1587 struct anv_state dst_state = secondary->state.render_pass_states;
1588 assert(src_state.alloc_size == dst_state.alloc_size);
1589
1590 genX(cmd_buffer_so_memcpy)(primary,
1591 (struct anv_address) {
1592 .bo = ss_bo,
1593 .offset = dst_state.offset,
1594 },
1595 (struct anv_address) {
1596 .bo = ss_bo,
1597 .offset = src_state.offset,
1598 },
1599 src_state.alloc_size);
1600 }
1601
1602 anv_cmd_buffer_add_secondary(primary, secondary);
1603 }
1604
1605 /* The secondary isn't counted in our VF cache tracking so we need to
1606 * invalidate the whole thing.
1607 */
1608 if (GEN_GEN >= 8 && GEN_GEN <= 9) {
1609 primary->state.pending_pipe_bits |=
1610 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1611 }
1612
1613 /* The secondary may have selected a different pipeline (3D or compute) and
1614 * may have changed the current L3$ configuration. Reset our tracking
1615 * variables to invalid values to ensure that we re-emit these in the case
1616 * where we do any draws or compute dispatches from the primary after the
1617 * secondary has returned.
1618 */
1619 primary->state.current_pipeline = UINT32_MAX;
1620 primary->state.current_l3_config = NULL;
1621 primary->state.current_hash_scale = 0;
1622
1623 /* Each of the secondary command buffers will use its own state base
1624 * address. We need to re-emit state base address for the primary after
1625 * all of the secondaries are done.
1626 *
1627 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1628 * address calls?
1629 */
1630 genX(cmd_buffer_emit_state_base_address)(primary);
1631 }
1632
1633 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1634 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1635 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1636
1637 /**
1638 * Program the hardware to use the specified L3 configuration.
1639 */
1640 void
1641 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1642 const struct gen_l3_config *cfg)
1643 {
1644 assert(cfg);
1645 if (cfg == cmd_buffer->state.current_l3_config)
1646 return;
1647
1648 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1649 intel_logd("L3 config transition: ");
1650 gen_dump_l3_config(cfg, stderr);
1651 }
1652
1653 UNUSED const bool has_slm = cfg->n[GEN_L3P_SLM];
1654
1655 /* According to the hardware docs, the L3 partitioning can only be changed
1656 * while the pipeline is completely drained and the caches are flushed,
1657 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1658 */
1659 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1660 pc.DCFlushEnable = true;
1661 pc.PostSyncOperation = NoWrite;
1662 pc.CommandStreamerStallEnable = true;
1663 }
1664
1665 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1666 * invalidation of the relevant caches. Note that because RO invalidation
1667 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1668 * command is processed by the CS) we cannot combine it with the previous
1669 * stalling flush as the hardware documentation suggests, because that
1670 * would cause the CS to stall on previous rendering *after* RO
1671 * invalidation and wouldn't prevent the RO caches from being polluted by
1672 * concurrent rendering before the stall completes. This intentionally
1673 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1674 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1675 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1676 * already guarantee that there is no concurrent GPGPU kernel execution
1677 * (see SKL HSD 2132585).
1678 */
1679 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1680 pc.TextureCacheInvalidationEnable = true;
1681 pc.ConstantCacheInvalidationEnable = true;
1682 pc.InstructionCacheInvalidateEnable = true;
1683 pc.StateCacheInvalidationEnable = true;
1684 pc.PostSyncOperation = NoWrite;
1685 }
1686
1687 /* Now send a third stalling flush to make sure that invalidation is
1688 * complete when the L3 configuration registers are modified.
1689 */
1690 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1691 pc.DCFlushEnable = true;
1692 pc.PostSyncOperation = NoWrite;
1693 pc.CommandStreamerStallEnable = true;
1694 }
1695
1696 #if GEN_GEN >= 8
1697
1698 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1699
1700 #if GEN_GEN >= 12
1701 #define L3_ALLOCATION_REG GENX(L3ALLOC)
1702 #define L3_ALLOCATION_REG_num GENX(L3ALLOC_num)
1703 #else
1704 #define L3_ALLOCATION_REG GENX(L3CNTLREG)
1705 #define L3_ALLOCATION_REG_num GENX(L3CNTLREG_num)
1706 #endif
1707
1708 uint32_t l3cr;
1709 anv_pack_struct(&l3cr, L3_ALLOCATION_REG,
1710 #if GEN_GEN < 12
1711 .SLMEnable = has_slm,
1712 #endif
1713 #if GEN_GEN == 11
1714 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1715 * in L3CNTLREG register. The default setting of the bit is not the
1716 * desirable behavior.
1717 */
1718 .ErrorDetectionBehaviorControl = true,
1719 .UseFullWays = true,
1720 #endif
1721 .URBAllocation = cfg->n[GEN_L3P_URB],
1722 .ROAllocation = cfg->n[GEN_L3P_RO],
1723 .DCAllocation = cfg->n[GEN_L3P_DC],
1724 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1725
1726 /* Set up the L3 partitioning. */
1727 emit_lri(&cmd_buffer->batch, L3_ALLOCATION_REG_num, l3cr);
1728
1729 #else
1730
1731 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1732 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1733 cfg->n[GEN_L3P_ALL];
1734 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1735 cfg->n[GEN_L3P_ALL];
1736 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1737 cfg->n[GEN_L3P_ALL];
1738
1739 assert(!cfg->n[GEN_L3P_ALL]);
1740
1741 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1742 * the matching space on the remaining banks has to be allocated to a
1743 * client (URB for all validated configurations) set to the
1744 * lower-bandwidth 2-bank address hashing mode.
1745 */
1746 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1747 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1748 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1749
1750 /* Minimum number of ways that can be allocated to the URB. */
1751 const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1752 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1753
1754 uint32_t l3sqcr1, l3cr2, l3cr3;
1755 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1756 .ConvertDC_UC = !has_dc,
1757 .ConvertIS_UC = !has_is,
1758 .ConvertC_UC = !has_c,
1759 .ConvertT_UC = !has_t);
1760 l3sqcr1 |=
1761 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1762 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1763 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1764
1765 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1766 .SLMEnable = has_slm,
1767 .URBLowBandwidth = urb_low_bw,
1768 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1769 #if !GEN_IS_HASWELL
1770 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1771 #endif
1772 .ROAllocation = cfg->n[GEN_L3P_RO],
1773 .DCAllocation = cfg->n[GEN_L3P_DC]);
1774
1775 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1776 .ISAllocation = cfg->n[GEN_L3P_IS],
1777 .ISLowBandwidth = 0,
1778 .CAllocation = cfg->n[GEN_L3P_C],
1779 .CLowBandwidth = 0,
1780 .TAllocation = cfg->n[GEN_L3P_T],
1781 .TLowBandwidth = 0);
1782
1783 /* Set up the L3 partitioning. */
1784 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1785 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1786 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1787
1788 #if GEN_IS_HASWELL
1789 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1790 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1791 * them disabled to avoid crashing the system hard.
1792 */
1793 uint32_t scratch1, chicken3;
1794 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1795 .L3AtomicDisable = !has_dc);
1796 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1797 .L3AtomicDisableMask = true,
1798 .L3AtomicDisable = !has_dc);
1799 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1800 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1801 }
1802 #endif
1803
1804 #endif
1805
1806 cmd_buffer->state.current_l3_config = cfg;
1807 }
1808
1809 void
1810 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1811 {
1812 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1813
1814 if (cmd_buffer->device->instance->physicalDevice.always_flush_cache)
1815 bits |= ANV_PIPE_FLUSH_BITS | ANV_PIPE_INVALIDATE_BITS;
1816
1817 /* Flushes are pipelined while invalidations are handled immediately.
1818 * Therefore, if we're flushing anything then we need to schedule a stall
1819 * before any invalidations can happen.
1820 */
1821 if (bits & ANV_PIPE_FLUSH_BITS)
1822 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1823
1824 /* If we're going to do an invalidate and we have a pending CS stall that
1825 * has yet to be resolved, we do the CS stall now.
1826 */
1827 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1828 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1829 bits |= ANV_PIPE_CS_STALL_BIT;
1830 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1831 }
1832
1833 if (GEN_GEN >= 12 &&
1834 ((bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT) ||
1835 (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT))) {
1836 /* From the PIPE_CONTROL instruction table, bit 28 (Tile Cache Flush
1837 * Enable):
1838 *
1839 * Unified Cache (Tile Cache Disabled):
1840 *
1841 * When the Color and Depth (Z) streams are enabled to be cached in
1842 * the DC space of L2, Software must use "Render Target Cache Flush
1843 * Enable" and "Depth Cache Flush Enable" along with "Tile Cache
1844 * Flush" for getting the color and depth (Z) write data to be
1845 * globally observable. In this mode of operation it is not required
1846 * to set "CS Stall" upon setting "Tile Cache Flush" bit.
1847 */
1848 bits |= ANV_PIPE_TILE_CACHE_FLUSH_BIT;
1849 }
1850
1851 if ((GEN_GEN >= 8 && GEN_GEN <= 9) &&
1852 (bits & ANV_PIPE_CS_STALL_BIT) &&
1853 (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT)) {
1854 /* If we are doing a VF cache invalidate AND a CS stall (it must be
1855 * both) then we can reset our vertex cache tracking.
1856 */
1857 memset(cmd_buffer->state.gfx.vb_dirty_ranges, 0,
1858 sizeof(cmd_buffer->state.gfx.vb_dirty_ranges));
1859 memset(&cmd_buffer->state.gfx.ib_dirty_range, 0,
1860 sizeof(cmd_buffer->state.gfx.ib_dirty_range));
1861 }
1862
1863 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1864 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1865 #if GEN_GEN >= 12
1866 pipe.TileCacheFlushEnable = bits & ANV_PIPE_TILE_CACHE_FLUSH_BIT;
1867 #endif
1868 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1869 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1870 pipe.RenderTargetCacheFlushEnable =
1871 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1872
1873 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1874 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1875 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1876
1877 /*
1878 * According to the Broadwell documentation, any PIPE_CONTROL with the
1879 * "Command Streamer Stall" bit set must also have another bit set,
1880 * with five different options:
1881 *
1882 * - Render Target Cache Flush
1883 * - Depth Cache Flush
1884 * - Stall at Pixel Scoreboard
1885 * - Post-Sync Operation
1886 * - Depth Stall
1887 * - DC Flush Enable
1888 *
1889 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1890 * mesa and it seems to work fine. The choice is fairly arbitrary.
1891 */
1892 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1893 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1894 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1895 pipe.StallAtPixelScoreboard = true;
1896 }
1897
1898 /* If a render target flush was emitted, then we can toggle off the bit
1899 * saying that render target writes are ongoing.
1900 */
1901 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1902 bits &= ~(ANV_PIPE_RENDER_TARGET_BUFFER_WRITES);
1903
1904 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1905 }
1906
1907 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1908 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1909 *
1910 * "If the VF Cache Invalidation Enable is set to a 1 in a
1911 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
1912 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
1913 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
1914 * a 1."
1915 *
1916 * This appears to hang Broadwell, so we restrict it to just gen9.
1917 */
1918 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
1919 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
1920
1921 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1922 pipe.StateCacheInvalidationEnable =
1923 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1924 pipe.ConstantCacheInvalidationEnable =
1925 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1926 pipe.VFCacheInvalidationEnable =
1927 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1928 pipe.TextureCacheInvalidationEnable =
1929 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1930 pipe.InstructionCacheInvalidateEnable =
1931 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1932
1933 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1934 *
1935 * "When VF Cache Invalidate is set “Post Sync Operation” must be
1936 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
1937 * “Write Timestamp”.
1938 */
1939 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
1940 pipe.PostSyncOperation = WriteImmediateData;
1941 pipe.Address =
1942 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
1943 }
1944 }
1945
1946 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1947 }
1948
1949 cmd_buffer->state.pending_pipe_bits = bits;
1950 }
1951
1952 void genX(CmdPipelineBarrier)(
1953 VkCommandBuffer commandBuffer,
1954 VkPipelineStageFlags srcStageMask,
1955 VkPipelineStageFlags destStageMask,
1956 VkBool32 byRegion,
1957 uint32_t memoryBarrierCount,
1958 const VkMemoryBarrier* pMemoryBarriers,
1959 uint32_t bufferMemoryBarrierCount,
1960 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1961 uint32_t imageMemoryBarrierCount,
1962 const VkImageMemoryBarrier* pImageMemoryBarriers)
1963 {
1964 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1965
1966 /* XXX: Right now, we're really dumb and just flush whatever categories
1967 * the app asks for. One of these days we may make this a bit better
1968 * but right now that's all the hardware allows for in most areas.
1969 */
1970 VkAccessFlags src_flags = 0;
1971 VkAccessFlags dst_flags = 0;
1972
1973 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1974 src_flags |= pMemoryBarriers[i].srcAccessMask;
1975 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1976 }
1977
1978 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1979 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1980 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1981 }
1982
1983 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1984 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1985 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1986 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1987 const VkImageSubresourceRange *range =
1988 &pImageMemoryBarriers[i].subresourceRange;
1989
1990 uint32_t base_layer, layer_count;
1991 if (image->type == VK_IMAGE_TYPE_3D) {
1992 base_layer = 0;
1993 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1994 } else {
1995 base_layer = range->baseArrayLayer;
1996 layer_count = anv_get_layerCount(image, range);
1997 }
1998
1999 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
2000 transition_depth_buffer(cmd_buffer, image,
2001 pImageMemoryBarriers[i].oldLayout,
2002 pImageMemoryBarriers[i].newLayout);
2003 }
2004
2005 if (range->aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
2006 transition_stencil_buffer(cmd_buffer, image,
2007 range->baseMipLevel,
2008 anv_get_levelCount(image, range),
2009 base_layer, layer_count,
2010 pImageMemoryBarriers[i].oldLayout,
2011 pImageMemoryBarriers[i].newLayout);
2012 }
2013
2014 if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
2015 VkImageAspectFlags color_aspects =
2016 anv_image_expand_aspects(image, range->aspectMask);
2017 uint32_t aspect_bit;
2018 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
2019 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
2020 range->baseMipLevel,
2021 anv_get_levelCount(image, range),
2022 base_layer, layer_count,
2023 pImageMemoryBarriers[i].oldLayout,
2024 pImageMemoryBarriers[i].newLayout);
2025 }
2026 }
2027 }
2028
2029 cmd_buffer->state.pending_pipe_bits |=
2030 anv_pipe_flush_bits_for_access_flags(src_flags) |
2031 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
2032 }
2033
2034 static void
2035 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
2036 {
2037 VkShaderStageFlags stages =
2038 cmd_buffer->state.gfx.base.pipeline->active_stages;
2039
2040 /* In order to avoid thrash, we assume that vertex and fragment stages
2041 * always exist. In the rare case where one is missing *and* the other
2042 * uses push concstants, this may be suboptimal. However, avoiding stalls
2043 * seems more important.
2044 */
2045 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
2046
2047 if (stages == cmd_buffer->state.push_constant_stages)
2048 return;
2049
2050 #if GEN_GEN >= 8
2051 const unsigned push_constant_kb = 32;
2052 #elif GEN_IS_HASWELL
2053 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
2054 #else
2055 const unsigned push_constant_kb = 16;
2056 #endif
2057
2058 const unsigned num_stages =
2059 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
2060 unsigned size_per_stage = push_constant_kb / num_stages;
2061
2062 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
2063 * units of 2KB. Incidentally, these are the same platforms that have
2064 * 32KB worth of push constant space.
2065 */
2066 if (push_constant_kb == 32)
2067 size_per_stage &= ~1u;
2068
2069 uint32_t kb_used = 0;
2070 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
2071 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
2072 anv_batch_emit(&cmd_buffer->batch,
2073 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
2074 alloc._3DCommandSubOpcode = 18 + i;
2075 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
2076 alloc.ConstantBufferSize = push_size;
2077 }
2078 kb_used += push_size;
2079 }
2080
2081 anv_batch_emit(&cmd_buffer->batch,
2082 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
2083 alloc.ConstantBufferOffset = kb_used;
2084 alloc.ConstantBufferSize = push_constant_kb - kb_used;
2085 }
2086
2087 cmd_buffer->state.push_constant_stages = stages;
2088
2089 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
2090 *
2091 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
2092 * the next 3DPRIMITIVE command after programming the
2093 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
2094 *
2095 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
2096 * pipeline setup, we need to dirty push constants.
2097 */
2098 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
2099 }
2100
2101 static struct anv_address
2102 anv_descriptor_set_address(struct anv_cmd_buffer *cmd_buffer,
2103 struct anv_descriptor_set *set)
2104 {
2105 if (set->pool) {
2106 /* This is a normal descriptor set */
2107 return (struct anv_address) {
2108 .bo = set->pool->bo,
2109 .offset = set->desc_mem.offset,
2110 };
2111 } else {
2112 /* This is a push descriptor set. We have to flag it as used on the GPU
2113 * so that the next time we push descriptors, we grab a new memory.
2114 */
2115 struct anv_push_descriptor_set *push_set =
2116 (struct anv_push_descriptor_set *)set;
2117 push_set->set_used_on_gpu = true;
2118
2119 return (struct anv_address) {
2120 .bo = cmd_buffer->dynamic_state_stream.state_pool->block_pool.bo,
2121 .offset = set->desc_mem.offset,
2122 };
2123 }
2124 }
2125
2126 static VkResult
2127 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2128 gl_shader_stage stage,
2129 struct anv_state *bt_state)
2130 {
2131 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2132 struct anv_cmd_pipeline_state *pipe_state;
2133 struct anv_pipeline *pipeline;
2134 uint32_t state_offset;
2135
2136 switch (stage) {
2137 case MESA_SHADER_COMPUTE:
2138 pipe_state = &cmd_buffer->state.compute.base;
2139 break;
2140 default:
2141 pipe_state = &cmd_buffer->state.gfx.base;
2142 break;
2143 }
2144 pipeline = pipe_state->pipeline;
2145
2146 if (!anv_pipeline_has_stage(pipeline, stage)) {
2147 *bt_state = (struct anv_state) { 0, };
2148 return VK_SUCCESS;
2149 }
2150
2151 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2152 if (map->surface_count == 0) {
2153 *bt_state = (struct anv_state) { 0, };
2154 return VK_SUCCESS;
2155 }
2156
2157 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2158 map->surface_count,
2159 &state_offset);
2160 uint32_t *bt_map = bt_state->map;
2161
2162 if (bt_state->map == NULL)
2163 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2164
2165 /* We only need to emit relocs if we're not using softpin. If we are using
2166 * softpin then we always keep all user-allocated memory objects resident.
2167 */
2168 const bool need_client_mem_relocs =
2169 !cmd_buffer->device->instance->physicalDevice.use_softpin;
2170
2171 for (uint32_t s = 0; s < map->surface_count; s++) {
2172 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2173
2174 struct anv_state surface_state;
2175
2176 switch (binding->set) {
2177 case ANV_DESCRIPTOR_SET_NULL:
2178 bt_map[s] = 0;
2179 break;
2180
2181 case ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS:
2182 /* Color attachment binding */
2183 assert(stage == MESA_SHADER_FRAGMENT);
2184 if (binding->index < subpass->color_count) {
2185 const unsigned att =
2186 subpass->color_attachments[binding->index].attachment;
2187
2188 /* From the Vulkan 1.0.46 spec:
2189 *
2190 * "If any color or depth/stencil attachments are
2191 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2192 * attachments."
2193 */
2194 if (att == VK_ATTACHMENT_UNUSED) {
2195 surface_state = cmd_buffer->state.null_surface_state;
2196 } else {
2197 surface_state = cmd_buffer->state.attachments[att].color.state;
2198 }
2199 } else {
2200 surface_state = cmd_buffer->state.null_surface_state;
2201 }
2202
2203 bt_map[s] = surface_state.offset + state_offset;
2204 break;
2205
2206 case ANV_DESCRIPTOR_SET_SHADER_CONSTANTS: {
2207 struct anv_state surface_state =
2208 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2209
2210 struct anv_address constant_data = {
2211 .bo = pipeline->device->dynamic_state_pool.block_pool.bo,
2212 .offset = pipeline->shaders[stage]->constant_data.offset,
2213 };
2214 unsigned constant_data_size =
2215 pipeline->shaders[stage]->constant_data_size;
2216
2217 const enum isl_format format =
2218 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2219 anv_fill_buffer_surface_state(cmd_buffer->device,
2220 surface_state, format,
2221 constant_data, constant_data_size, 1);
2222
2223 bt_map[s] = surface_state.offset + state_offset;
2224 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2225 break;
2226 }
2227
2228 case ANV_DESCRIPTOR_SET_NUM_WORK_GROUPS: {
2229 /* This is always the first binding for compute shaders */
2230 assert(stage == MESA_SHADER_COMPUTE && s == 0);
2231
2232 struct anv_state surface_state =
2233 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2234
2235 const enum isl_format format =
2236 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2237 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2238 format,
2239 cmd_buffer->state.compute.num_workgroups,
2240 12, 1);
2241 bt_map[s] = surface_state.offset + state_offset;
2242 if (need_client_mem_relocs) {
2243 add_surface_reloc(cmd_buffer, surface_state,
2244 cmd_buffer->state.compute.num_workgroups);
2245 }
2246 break;
2247 }
2248
2249 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2250 /* This is a descriptor set buffer so the set index is actually
2251 * given by binding->binding. (Yes, that's confusing.)
2252 */
2253 struct anv_descriptor_set *set =
2254 pipe_state->descriptors[binding->index];
2255 assert(set->desc_mem.alloc_size);
2256 assert(set->desc_surface_state.alloc_size);
2257 bt_map[s] = set->desc_surface_state.offset + state_offset;
2258 add_surface_reloc(cmd_buffer, set->desc_surface_state,
2259 anv_descriptor_set_address(cmd_buffer, set));
2260 break;
2261 }
2262
2263 default: {
2264 assert(binding->set < MAX_SETS);
2265 const struct anv_descriptor *desc =
2266 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2267
2268 switch (desc->type) {
2269 case VK_DESCRIPTOR_TYPE_SAMPLER:
2270 /* Nothing for us to do here */
2271 continue;
2272
2273 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2274 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2275 struct anv_surface_state sstate =
2276 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2277 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2278 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2279 surface_state = sstate.state;
2280 assert(surface_state.alloc_size);
2281 if (need_client_mem_relocs)
2282 add_surface_state_relocs(cmd_buffer, sstate);
2283 break;
2284 }
2285 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2286 assert(stage == MESA_SHADER_FRAGMENT);
2287 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2288 /* For depth and stencil input attachments, we treat it like any
2289 * old texture that a user may have bound.
2290 */
2291 assert(desc->image_view->n_planes == 1);
2292 struct anv_surface_state sstate =
2293 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2294 desc->image_view->planes[0].general_sampler_surface_state :
2295 desc->image_view->planes[0].optimal_sampler_surface_state;
2296 surface_state = sstate.state;
2297 assert(surface_state.alloc_size);
2298 if (need_client_mem_relocs)
2299 add_surface_state_relocs(cmd_buffer, sstate);
2300 } else {
2301 /* For color input attachments, we create the surface state at
2302 * vkBeginRenderPass time so that we can include aux and clear
2303 * color information.
2304 */
2305 assert(binding->input_attachment_index < subpass->input_count);
2306 const unsigned subpass_att = binding->input_attachment_index;
2307 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2308 surface_state = cmd_buffer->state.attachments[att].input.state;
2309 }
2310 break;
2311
2312 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2313 struct anv_surface_state sstate = (binding->write_only)
2314 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2315 : desc->image_view->planes[binding->plane].storage_surface_state;
2316 surface_state = sstate.state;
2317 assert(surface_state.alloc_size);
2318 if (need_client_mem_relocs)
2319 add_surface_state_relocs(cmd_buffer, sstate);
2320 break;
2321 }
2322
2323 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2324 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2325 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2326 surface_state = desc->buffer_view->surface_state;
2327 assert(surface_state.alloc_size);
2328 if (need_client_mem_relocs) {
2329 add_surface_reloc(cmd_buffer, surface_state,
2330 desc->buffer_view->address);
2331 }
2332 break;
2333
2334 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2335 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2336 /* Compute the offset within the buffer */
2337 struct anv_push_constants *push =
2338 &cmd_buffer->state.push_constants[stage];
2339
2340 uint32_t dynamic_offset =
2341 push->dynamic_offsets[binding->dynamic_offset_index];
2342 uint64_t offset = desc->offset + dynamic_offset;
2343 /* Clamp to the buffer size */
2344 offset = MIN2(offset, desc->buffer->size);
2345 /* Clamp the range to the buffer size */
2346 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2347
2348 struct anv_address address =
2349 anv_address_add(desc->buffer->address, offset);
2350
2351 surface_state =
2352 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2353 enum isl_format format =
2354 anv_isl_format_for_descriptor_type(desc->type);
2355
2356 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2357 format, address, range, 1);
2358 if (need_client_mem_relocs)
2359 add_surface_reloc(cmd_buffer, surface_state, address);
2360 break;
2361 }
2362
2363 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2364 surface_state = (binding->write_only)
2365 ? desc->buffer_view->writeonly_storage_surface_state
2366 : desc->buffer_view->storage_surface_state;
2367 assert(surface_state.alloc_size);
2368 if (need_client_mem_relocs) {
2369 add_surface_reloc(cmd_buffer, surface_state,
2370 desc->buffer_view->address);
2371 }
2372 break;
2373
2374 default:
2375 assert(!"Invalid descriptor type");
2376 continue;
2377 }
2378 bt_map[s] = surface_state.offset + state_offset;
2379 break;
2380 }
2381 }
2382 }
2383
2384 return VK_SUCCESS;
2385 }
2386
2387 static VkResult
2388 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2389 gl_shader_stage stage,
2390 struct anv_state *state)
2391 {
2392 struct anv_cmd_pipeline_state *pipe_state =
2393 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2394 &cmd_buffer->state.gfx.base;
2395 struct anv_pipeline *pipeline = pipe_state->pipeline;
2396
2397 if (!anv_pipeline_has_stage(pipeline, stage)) {
2398 *state = (struct anv_state) { 0, };
2399 return VK_SUCCESS;
2400 }
2401
2402 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2403 if (map->sampler_count == 0) {
2404 *state = (struct anv_state) { 0, };
2405 return VK_SUCCESS;
2406 }
2407
2408 uint32_t size = map->sampler_count * 16;
2409 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2410
2411 if (state->map == NULL)
2412 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2413
2414 for (uint32_t s = 0; s < map->sampler_count; s++) {
2415 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2416 const struct anv_descriptor *desc =
2417 &pipe_state->descriptors[binding->set]->descriptors[binding->index];
2418
2419 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2420 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2421 continue;
2422
2423 struct anv_sampler *sampler = desc->sampler;
2424
2425 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2426 * happens to be zero.
2427 */
2428 if (sampler == NULL)
2429 continue;
2430
2431 memcpy(state->map + (s * 16),
2432 sampler->state[binding->plane], sizeof(sampler->state[0]));
2433 }
2434
2435 return VK_SUCCESS;
2436 }
2437
2438 static uint32_t
2439 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2440 {
2441 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2442
2443 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2444 pipeline->active_stages;
2445
2446 VkResult result = VK_SUCCESS;
2447 anv_foreach_stage(s, dirty) {
2448 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2449 if (result != VK_SUCCESS)
2450 break;
2451 result = emit_binding_table(cmd_buffer, s,
2452 &cmd_buffer->state.binding_tables[s]);
2453 if (result != VK_SUCCESS)
2454 break;
2455 }
2456
2457 if (result != VK_SUCCESS) {
2458 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2459
2460 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2461 if (result != VK_SUCCESS)
2462 return 0;
2463
2464 /* Re-emit state base addresses so we get the new surface state base
2465 * address before we start emitting binding tables etc.
2466 */
2467 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2468
2469 /* Re-emit all active binding tables */
2470 dirty |= pipeline->active_stages;
2471 anv_foreach_stage(s, dirty) {
2472 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2473 if (result != VK_SUCCESS) {
2474 anv_batch_set_error(&cmd_buffer->batch, result);
2475 return 0;
2476 }
2477 result = emit_binding_table(cmd_buffer, s,
2478 &cmd_buffer->state.binding_tables[s]);
2479 if (result != VK_SUCCESS) {
2480 anv_batch_set_error(&cmd_buffer->batch, result);
2481 return 0;
2482 }
2483 }
2484 }
2485
2486 cmd_buffer->state.descriptors_dirty &= ~dirty;
2487
2488 return dirty;
2489 }
2490
2491 static void
2492 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2493 uint32_t stages)
2494 {
2495 static const uint32_t sampler_state_opcodes[] = {
2496 [MESA_SHADER_VERTEX] = 43,
2497 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2498 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2499 [MESA_SHADER_GEOMETRY] = 46,
2500 [MESA_SHADER_FRAGMENT] = 47,
2501 [MESA_SHADER_COMPUTE] = 0,
2502 };
2503
2504 static const uint32_t binding_table_opcodes[] = {
2505 [MESA_SHADER_VERTEX] = 38,
2506 [MESA_SHADER_TESS_CTRL] = 39,
2507 [MESA_SHADER_TESS_EVAL] = 40,
2508 [MESA_SHADER_GEOMETRY] = 41,
2509 [MESA_SHADER_FRAGMENT] = 42,
2510 [MESA_SHADER_COMPUTE] = 0,
2511 };
2512
2513 anv_foreach_stage(s, stages) {
2514 assert(s < ARRAY_SIZE(binding_table_opcodes));
2515 assert(binding_table_opcodes[s] > 0);
2516
2517 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2518 anv_batch_emit(&cmd_buffer->batch,
2519 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2520 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2521 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2522 }
2523 }
2524
2525 /* Always emit binding table pointers if we're asked to, since on SKL
2526 * this is what flushes push constants. */
2527 anv_batch_emit(&cmd_buffer->batch,
2528 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2529 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2530 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2531 }
2532 }
2533 }
2534
2535 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2536 static struct anv_address
2537 get_push_range_address(struct anv_cmd_buffer *cmd_buffer,
2538 gl_shader_stage stage,
2539 const struct anv_push_range *range)
2540 {
2541 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2542 switch (range->set) {
2543 case ANV_DESCRIPTOR_SET_DESCRIPTORS: {
2544 /* This is a descriptor set buffer so the set index is
2545 * actually given by binding->binding. (Yes, that's
2546 * confusing.)
2547 */
2548 struct anv_descriptor_set *set =
2549 gfx_state->base.descriptors[range->index];
2550 return anv_descriptor_set_address(cmd_buffer, set);
2551 break;
2552 }
2553
2554 case ANV_DESCRIPTOR_SET_PUSH_CONSTANTS: {
2555 struct anv_state state =
2556 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2557 return (struct anv_address) {
2558 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2559 .offset = state.offset,
2560 };
2561 break;
2562 }
2563
2564 default: {
2565 assert(range->set < MAX_SETS);
2566 struct anv_descriptor_set *set =
2567 gfx_state->base.descriptors[range->set];
2568 const struct anv_descriptor *desc =
2569 &set->descriptors[range->index];
2570
2571 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2572 return desc->buffer_view->address;
2573 } else {
2574 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2575 struct anv_push_constants *push =
2576 &cmd_buffer->state.push_constants[stage];
2577 uint32_t dynamic_offset =
2578 push->dynamic_offsets[range->dynamic_offset_index];
2579 return anv_address_add(desc->buffer->address,
2580 desc->offset + dynamic_offset);
2581 }
2582 }
2583 }
2584 }
2585 #endif
2586
2587 static void
2588 cmd_buffer_emit_push_constant(struct anv_cmd_buffer *cmd_buffer,
2589 gl_shader_stage stage, unsigned buffer_count)
2590 {
2591 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2592 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2593
2594 static const uint32_t push_constant_opcodes[] = {
2595 [MESA_SHADER_VERTEX] = 21,
2596 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2597 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2598 [MESA_SHADER_GEOMETRY] = 22,
2599 [MESA_SHADER_FRAGMENT] = 23,
2600 [MESA_SHADER_COMPUTE] = 0,
2601 };
2602
2603 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2604 assert(push_constant_opcodes[stage] > 0);
2605
2606 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2607 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2608
2609 if (anv_pipeline_has_stage(pipeline, stage)) {
2610 const struct anv_pipeline_bind_map *bind_map =
2611 &pipeline->shaders[stage]->bind_map;
2612
2613 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2614 /* The Skylake PRM contains the following restriction:
2615 *
2616 * "The driver must ensure The following case does not occur
2617 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2618 * buffer 3 read length equal to zero committed followed by a
2619 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2620 * zero committed."
2621 *
2622 * To avoid this, we program the buffers in the highest slots.
2623 * This way, slot 0 is only used if slot 3 is also used.
2624 */
2625 assert(buffer_count <= 4);
2626 const unsigned shift = 4 - buffer_count;
2627 for (unsigned i = 0; i < buffer_count; i++) {
2628 const struct anv_push_range *range = &bind_map->push_ranges[i];
2629
2630 /* At this point we only have non-empty ranges */
2631 assert(range->length > 0);
2632
2633 /* For Ivy Bridge, make sure we only set the first range (actual
2634 * push constants)
2635 */
2636 assert((GEN_GEN >= 8 || GEN_IS_HASWELL) || i == 0);
2637
2638 const struct anv_address addr =
2639 get_push_range_address(cmd_buffer, stage, range);
2640 c.ConstantBody.ReadLength[i + shift] = range->length;
2641 c.ConstantBody.Buffer[i + shift] =
2642 anv_address_add(addr, range->start * 32);
2643 }
2644 #else
2645 /* For Ivy Bridge, push constants are relative to dynamic state
2646 * base address and we only ever push actual push constants.
2647 */
2648 if (bind_map->push_ranges[0].length > 0) {
2649 assert(bind_map->push_ranges[0].set ==
2650 ANV_DESCRIPTOR_SET_PUSH_CONSTANTS);
2651 struct anv_state state =
2652 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2653 c.ConstantBody.ReadLength[0] = bind_map->push_ranges[0].length;
2654 c.ConstantBody.Buffer[0].bo = NULL;
2655 c.ConstantBody.Buffer[0].offset = state.offset;
2656 }
2657 assert(bind_map->push_ranges[1].length == 0);
2658 assert(bind_map->push_ranges[2].length == 0);
2659 assert(bind_map->push_ranges[3].length == 0);
2660 #endif
2661 }
2662 }
2663 }
2664
2665 #if GEN_GEN >= 12
2666 static void
2667 cmd_buffer_emit_push_constant_all(struct anv_cmd_buffer *cmd_buffer,
2668 uint32_t shader_mask, uint32_t count)
2669 {
2670 if (count == 0) {
2671 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_ALL), c) {
2672 c.ShaderUpdateEnable = shader_mask;
2673 }
2674 return;
2675 }
2676
2677 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2678 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2679
2680 static const uint32_t push_constant_opcodes[] = {
2681 [MESA_SHADER_VERTEX] = 21,
2682 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2683 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2684 [MESA_SHADER_GEOMETRY] = 22,
2685 [MESA_SHADER_FRAGMENT] = 23,
2686 [MESA_SHADER_COMPUTE] = 0,
2687 };
2688
2689 gl_shader_stage stage = vk_to_mesa_shader_stage(shader_mask);
2690 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2691 assert(push_constant_opcodes[stage] > 0);
2692
2693 const struct anv_pipeline_bind_map *bind_map =
2694 &pipeline->shaders[stage]->bind_map;
2695
2696 uint32_t *dw;
2697 const uint32_t buffers = (1 << count) - 1;
2698 const uint32_t num_dwords = 2 + 2 * count;
2699
2700 dw = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2701 GENX(3DSTATE_CONSTANT_ALL),
2702 .ShaderUpdateEnable = shader_mask,
2703 .PointerBufferMask = buffers);
2704
2705 for (int i = 0; i < count; i++) {
2706 const struct anv_push_range *range = &bind_map->push_ranges[i];
2707 const struct anv_address addr =
2708 get_push_range_address(cmd_buffer, stage, range);
2709
2710 GENX(3DSTATE_CONSTANT_ALL_DATA_pack)(
2711 &cmd_buffer->batch, dw + 2 + i * 2,
2712 &(struct GENX(3DSTATE_CONSTANT_ALL_DATA)) {
2713 .PointerToConstantBuffer = anv_address_add(addr, range->start * 32),
2714 .ConstantBufferReadLength = range->length,
2715 });
2716 }
2717 }
2718 #endif
2719
2720 static void
2721 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2722 VkShaderStageFlags dirty_stages)
2723 {
2724 VkShaderStageFlags flushed = 0;
2725 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2726 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2727
2728 #if GEN_GEN >= 12
2729 uint32_t nobuffer_stages = 0;
2730 #endif
2731
2732 anv_foreach_stage(stage, dirty_stages) {
2733 unsigned buffer_count = 0;
2734 flushed |= mesa_to_vk_shader_stage(stage);
2735 uint32_t max_push_range = 0;
2736
2737 if (anv_pipeline_has_stage(pipeline, stage)) {
2738 const struct anv_pipeline_bind_map *bind_map =
2739 &pipeline->shaders[stage]->bind_map;
2740
2741 for (unsigned i = 0; i < 4; i++) {
2742 const struct anv_push_range *range = &bind_map->push_ranges[i];
2743 if (range->length > 0) {
2744 buffer_count++;
2745 if (GEN_GEN >= 12 && range->length > max_push_range)
2746 max_push_range = range->length;
2747 }
2748 }
2749 }
2750
2751 #if GEN_GEN >= 12
2752 /* If this stage doesn't have any push constants, emit it later in a
2753 * single CONSTANT_ALL packet.
2754 */
2755 if (buffer_count == 0) {
2756 nobuffer_stages |= 1 << stage;
2757 continue;
2758 }
2759
2760 /* The Constant Buffer Read Length field from 3DSTATE_CONSTANT_ALL
2761 * contains only 5 bits, so we can only use it for buffers smaller than
2762 * 32.
2763 */
2764 if (max_push_range < 32) {
2765 cmd_buffer_emit_push_constant_all(cmd_buffer, 1 << stage,
2766 buffer_count);
2767 continue;
2768 }
2769 #endif
2770
2771 cmd_buffer_emit_push_constant(cmd_buffer, stage, buffer_count);
2772 }
2773
2774 #if GEN_GEN >= 12
2775 if (nobuffer_stages)
2776 cmd_buffer_emit_push_constant_all(cmd_buffer, nobuffer_stages, 0);
2777 #endif
2778
2779 cmd_buffer->state.push_constants_dirty &= ~flushed;
2780 }
2781
2782 #if GEN_GEN >= 12
2783 void
2784 genX(cmd_buffer_aux_map_state)(struct anv_cmd_buffer *cmd_buffer)
2785 {
2786 void *aux_map_ctx = cmd_buffer->device->aux_map_ctx;
2787 if (!aux_map_ctx)
2788 return;
2789 uint32_t aux_map_state_num = gen_aux_map_get_state_num(aux_map_ctx);
2790 if (cmd_buffer->state.last_aux_map_state != aux_map_state_num) {
2791 /* If the aux-map state number increased, then we need to rewrite the
2792 * register. Rewriting the register is used to both set the aux-map
2793 * translation table address, and also to invalidate any previously
2794 * cached translations.
2795 */
2796 uint64_t base_addr = gen_aux_map_get_base(aux_map_ctx);
2797 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2798 lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num);
2799 lri.DataDWord = base_addr & 0xffffffff;
2800 }
2801 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
2802 lri.RegisterOffset = GENX(GFX_AUX_TABLE_BASE_ADDR_num) + 4;
2803 lri.DataDWord = base_addr >> 32;
2804 }
2805 cmd_buffer->state.last_aux_map_state = aux_map_state_num;
2806 }
2807 }
2808 #endif
2809
2810 void
2811 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2812 {
2813 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2814 uint32_t *p;
2815
2816 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2817 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2818 vb_emit |= pipeline->vb_used;
2819
2820 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2821
2822 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2823
2824 genX(cmd_buffer_emit_hashing_mode)(cmd_buffer, UINT_MAX, UINT_MAX, 1);
2825
2826 genX(flush_pipeline_select_3d)(cmd_buffer);
2827
2828 #if GEN_GEN >= 12
2829 genX(cmd_buffer_aux_map_state)(cmd_buffer);
2830 #endif
2831
2832 if (vb_emit) {
2833 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2834 const uint32_t num_dwords = 1 + num_buffers * 4;
2835
2836 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2837 GENX(3DSTATE_VERTEX_BUFFERS));
2838 uint32_t vb, i = 0;
2839 for_each_bit(vb, vb_emit) {
2840 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2841 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2842
2843 struct GENX(VERTEX_BUFFER_STATE) state = {
2844 .VertexBufferIndex = vb,
2845
2846 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
2847 #if GEN_GEN <= 7
2848 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
2849 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
2850 #endif
2851
2852 .AddressModifyEnable = true,
2853 .BufferPitch = pipeline->vb[vb].stride,
2854 .BufferStartingAddress = anv_address_add(buffer->address, offset),
2855
2856 #if GEN_GEN >= 8
2857 .BufferSize = buffer->size - offset
2858 #else
2859 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
2860 #endif
2861 };
2862
2863 #if GEN_GEN >= 8 && GEN_GEN <= 9
2864 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer, vb,
2865 state.BufferStartingAddress,
2866 state.BufferSize);
2867 #endif
2868
2869 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2870 i++;
2871 }
2872 }
2873
2874 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2875
2876 #if GEN_GEN >= 8
2877 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_XFB_ENABLE) {
2878 /* We don't need any per-buffer dirty tracking because you're not
2879 * allowed to bind different XFB buffers while XFB is enabled.
2880 */
2881 for (unsigned idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
2882 struct anv_xfb_binding *xfb = &cmd_buffer->state.xfb_bindings[idx];
2883 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_SO_BUFFER), sob) {
2884 #if GEN_GEN < 12
2885 sob.SOBufferIndex = idx;
2886 #else
2887 sob._3DCommandOpcode = 0;
2888 sob._3DCommandSubOpcode = SO_BUFFER_INDEX_0_CMD + idx;
2889 #endif
2890
2891 if (cmd_buffer->state.xfb_enabled && xfb->buffer && xfb->size != 0) {
2892 sob.SOBufferEnable = true;
2893 sob.MOCS = cmd_buffer->device->isl_dev.mocs.internal,
2894 sob.StreamOffsetWriteEnable = false;
2895 sob.SurfaceBaseAddress = anv_address_add(xfb->buffer->address,
2896 xfb->offset);
2897 /* Size is in DWords - 1 */
2898 sob.SurfaceSize = xfb->size / 4 - 1;
2899 }
2900 }
2901 }
2902
2903 /* CNL and later require a CS stall after 3DSTATE_SO_BUFFER */
2904 if (GEN_GEN >= 10)
2905 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
2906 }
2907 #endif
2908
2909 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2910 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2911
2912 /* If the pipeline changed, we may need to re-allocate push constant
2913 * space in the URB.
2914 */
2915 cmd_buffer_alloc_push_constants(cmd_buffer);
2916 }
2917
2918 #if GEN_GEN <= 7
2919 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2920 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2921 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2922 *
2923 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2924 * stall needs to be sent just prior to any 3DSTATE_VS,
2925 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2926 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2927 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2928 * PIPE_CONTROL needs to be sent before any combination of VS
2929 * associated 3DSTATE."
2930 */
2931 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2932 pc.DepthStallEnable = true;
2933 pc.PostSyncOperation = WriteImmediateData;
2934 pc.Address =
2935 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
2936 }
2937 }
2938 #endif
2939
2940 /* Render targets live in the same binding table as fragment descriptors */
2941 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2942 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2943
2944 /* We emit the binding tables and sampler tables first, then emit push
2945 * constants and then finally emit binding table and sampler table
2946 * pointers. It has to happen in this order, since emitting the binding
2947 * tables may change the push constants (in case of storage images). After
2948 * emitting push constants, on SKL+ we have to emit the corresponding
2949 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2950 */
2951 uint32_t dirty = 0;
2952 if (cmd_buffer->state.descriptors_dirty)
2953 dirty = flush_descriptor_sets(cmd_buffer);
2954
2955 if (dirty || cmd_buffer->state.push_constants_dirty) {
2956 /* Because we're pushing UBOs, we have to push whenever either
2957 * descriptors or push constants is dirty.
2958 */
2959 dirty |= cmd_buffer->state.push_constants_dirty;
2960 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2961 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2962 }
2963
2964 if (dirty)
2965 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2966
2967 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2968 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2969
2970 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2971 ANV_CMD_DIRTY_PIPELINE)) {
2972 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2973 pipeline->depth_clamp_enable);
2974 }
2975
2976 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
2977 ANV_CMD_DIRTY_RENDER_TARGETS))
2978 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2979
2980 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2981 }
2982
2983 static void
2984 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2985 struct anv_address addr,
2986 uint32_t size, uint32_t index)
2987 {
2988 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2989 GENX(3DSTATE_VERTEX_BUFFERS));
2990
2991 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2992 &(struct GENX(VERTEX_BUFFER_STATE)) {
2993 .VertexBufferIndex = index,
2994 .AddressModifyEnable = true,
2995 .BufferPitch = 0,
2996 .MOCS = addr.bo ? anv_mocs_for_bo(cmd_buffer->device, addr.bo) : 0,
2997 .NullVertexBuffer = size == 0,
2998 #if (GEN_GEN >= 8)
2999 .BufferStartingAddress = addr,
3000 .BufferSize = size
3001 #else
3002 .BufferStartingAddress = addr,
3003 .EndAddress = anv_address_add(addr, size),
3004 #endif
3005 });
3006
3007 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(cmd_buffer,
3008 index, addr, size);
3009 }
3010
3011 static void
3012 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
3013 struct anv_address addr)
3014 {
3015 emit_vertex_bo(cmd_buffer, addr, addr.bo ? 8 : 0, ANV_SVGS_VB_INDEX);
3016 }
3017
3018 static void
3019 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
3020 uint32_t base_vertex, uint32_t base_instance)
3021 {
3022 if (base_vertex == 0 && base_instance == 0) {
3023 emit_base_vertex_instance_bo(cmd_buffer, ANV_NULL_ADDRESS);
3024 } else {
3025 struct anv_state id_state =
3026 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
3027
3028 ((uint32_t *)id_state.map)[0] = base_vertex;
3029 ((uint32_t *)id_state.map)[1] = base_instance;
3030
3031 struct anv_address addr = {
3032 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3033 .offset = id_state.offset,
3034 };
3035
3036 emit_base_vertex_instance_bo(cmd_buffer, addr);
3037 }
3038 }
3039
3040 static void
3041 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
3042 {
3043 struct anv_state state =
3044 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
3045
3046 ((uint32_t *)state.map)[0] = draw_index;
3047
3048 struct anv_address addr = {
3049 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3050 .offset = state.offset,
3051 };
3052
3053 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
3054 }
3055
3056 static void
3057 update_dirty_vbs_for_gen8_vb_flush(struct anv_cmd_buffer *cmd_buffer,
3058 uint32_t access_type)
3059 {
3060 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3061 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3062
3063 uint64_t vb_used = pipeline->vb_used;
3064 if (vs_prog_data->uses_firstvertex ||
3065 vs_prog_data->uses_baseinstance)
3066 vb_used |= 1ull << ANV_SVGS_VB_INDEX;
3067 if (vs_prog_data->uses_drawid)
3068 vb_used |= 1ull << ANV_DRAWID_VB_INDEX;
3069
3070 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(cmd_buffer,
3071 access_type == RANDOM,
3072 vb_used);
3073 }
3074
3075 void genX(CmdDraw)(
3076 VkCommandBuffer commandBuffer,
3077 uint32_t vertexCount,
3078 uint32_t instanceCount,
3079 uint32_t firstVertex,
3080 uint32_t firstInstance)
3081 {
3082 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3083 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3084 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3085
3086 if (anv_batch_has_error(&cmd_buffer->batch))
3087 return;
3088
3089 genX(cmd_buffer_flush_state)(cmd_buffer);
3090
3091 if (cmd_buffer->state.conditional_render_enabled)
3092 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3093
3094 if (vs_prog_data->uses_firstvertex ||
3095 vs_prog_data->uses_baseinstance)
3096 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3097 if (vs_prog_data->uses_drawid)
3098 emit_draw_index(cmd_buffer, 0);
3099
3100 /* Emitting draw index or vertex index BOs may result in needing
3101 * additional VF cache flushes.
3102 */
3103 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3104
3105 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3106 * different views. We need to multiply instanceCount by the view count.
3107 */
3108 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3109
3110 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3111 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3112 prim.VertexAccessType = SEQUENTIAL;
3113 prim.PrimitiveTopologyType = pipeline->topology;
3114 prim.VertexCountPerInstance = vertexCount;
3115 prim.StartVertexLocation = firstVertex;
3116 prim.InstanceCount = instanceCount;
3117 prim.StartInstanceLocation = firstInstance;
3118 prim.BaseVertexLocation = 0;
3119 }
3120
3121 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3122 }
3123
3124 void genX(CmdDrawIndexed)(
3125 VkCommandBuffer commandBuffer,
3126 uint32_t indexCount,
3127 uint32_t instanceCount,
3128 uint32_t firstIndex,
3129 int32_t vertexOffset,
3130 uint32_t firstInstance)
3131 {
3132 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3133 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3134 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3135
3136 if (anv_batch_has_error(&cmd_buffer->batch))
3137 return;
3138
3139 genX(cmd_buffer_flush_state)(cmd_buffer);
3140
3141 if (cmd_buffer->state.conditional_render_enabled)
3142 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3143
3144 if (vs_prog_data->uses_firstvertex ||
3145 vs_prog_data->uses_baseinstance)
3146 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
3147 if (vs_prog_data->uses_drawid)
3148 emit_draw_index(cmd_buffer, 0);
3149
3150 /* Emitting draw index or vertex index BOs may result in needing
3151 * additional VF cache flushes.
3152 */
3153 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3154
3155 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3156 * different views. We need to multiply instanceCount by the view count.
3157 */
3158 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3159
3160 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3161 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3162 prim.VertexAccessType = RANDOM;
3163 prim.PrimitiveTopologyType = pipeline->topology;
3164 prim.VertexCountPerInstance = indexCount;
3165 prim.StartVertexLocation = firstIndex;
3166 prim.InstanceCount = instanceCount;
3167 prim.StartInstanceLocation = firstInstance;
3168 prim.BaseVertexLocation = vertexOffset;
3169 }
3170
3171 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3172 }
3173
3174 /* Auto-Draw / Indirect Registers */
3175 #define GEN7_3DPRIM_END_OFFSET 0x2420
3176 #define GEN7_3DPRIM_START_VERTEX 0x2430
3177 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
3178 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
3179 #define GEN7_3DPRIM_START_INSTANCE 0x243C
3180 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
3181
3182 void genX(CmdDrawIndirectByteCountEXT)(
3183 VkCommandBuffer commandBuffer,
3184 uint32_t instanceCount,
3185 uint32_t firstInstance,
3186 VkBuffer counterBuffer,
3187 VkDeviceSize counterBufferOffset,
3188 uint32_t counterOffset,
3189 uint32_t vertexStride)
3190 {
3191 #if GEN_IS_HASWELL || GEN_GEN >= 8
3192 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3193 ANV_FROM_HANDLE(anv_buffer, counter_buffer, counterBuffer);
3194 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3195 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3196
3197 /* firstVertex is always zero for this draw function */
3198 const uint32_t firstVertex = 0;
3199
3200 if (anv_batch_has_error(&cmd_buffer->batch))
3201 return;
3202
3203 genX(cmd_buffer_flush_state)(cmd_buffer);
3204
3205 if (vs_prog_data->uses_firstvertex ||
3206 vs_prog_data->uses_baseinstance)
3207 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
3208 if (vs_prog_data->uses_drawid)
3209 emit_draw_index(cmd_buffer, 0);
3210
3211 /* Emitting draw index or vertex index BOs may result in needing
3212 * additional VF cache flushes.
3213 */
3214 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3215
3216 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3217 * different views. We need to multiply instanceCount by the view count.
3218 */
3219 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
3220
3221 struct gen_mi_builder b;
3222 gen_mi_builder_init(&b, &cmd_buffer->batch);
3223 struct gen_mi_value count =
3224 gen_mi_mem32(anv_address_add(counter_buffer->address,
3225 counterBufferOffset));
3226 if (counterOffset)
3227 count = gen_mi_isub(&b, count, gen_mi_imm(counterOffset));
3228 count = gen_mi_udiv32_imm(&b, count, vertexStride);
3229 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT), count);
3230
3231 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3232 gen_mi_imm(firstVertex));
3233 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT),
3234 gen_mi_imm(instanceCount));
3235 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3236 gen_mi_imm(firstInstance));
3237 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3238
3239 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3240 prim.IndirectParameterEnable = true;
3241 prim.VertexAccessType = SEQUENTIAL;
3242 prim.PrimitiveTopologyType = pipeline->topology;
3243 }
3244
3245 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3246 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
3247 }
3248
3249 static void
3250 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
3251 struct anv_address addr,
3252 bool indexed)
3253 {
3254 struct gen_mi_builder b;
3255 gen_mi_builder_init(&b, &cmd_buffer->batch);
3256
3257 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_VERTEX_COUNT),
3258 gen_mi_mem32(anv_address_add(addr, 0)));
3259
3260 struct gen_mi_value instance_count = gen_mi_mem32(anv_address_add(addr, 4));
3261 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
3262 if (view_count > 1) {
3263 #if GEN_IS_HASWELL || GEN_GEN >= 8
3264 instance_count = gen_mi_imul_imm(&b, instance_count, view_count);
3265 #else
3266 anv_finishme("Multiview + indirect draw requires MI_MATH; "
3267 "MI_MATH is not supported on Ivy Bridge");
3268 #endif
3269 }
3270 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_INSTANCE_COUNT), instance_count);
3271
3272 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_VERTEX),
3273 gen_mi_mem32(anv_address_add(addr, 8)));
3274
3275 if (indexed) {
3276 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX),
3277 gen_mi_mem32(anv_address_add(addr, 12)));
3278 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3279 gen_mi_mem32(anv_address_add(addr, 16)));
3280 } else {
3281 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_START_INSTANCE),
3282 gen_mi_mem32(anv_address_add(addr, 12)));
3283 gen_mi_store(&b, gen_mi_reg32(GEN7_3DPRIM_BASE_VERTEX), gen_mi_imm(0));
3284 }
3285 }
3286
3287 void genX(CmdDrawIndirect)(
3288 VkCommandBuffer commandBuffer,
3289 VkBuffer _buffer,
3290 VkDeviceSize offset,
3291 uint32_t drawCount,
3292 uint32_t stride)
3293 {
3294 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3295 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3296 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3297 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3298
3299 if (anv_batch_has_error(&cmd_buffer->batch))
3300 return;
3301
3302 genX(cmd_buffer_flush_state)(cmd_buffer);
3303
3304 if (cmd_buffer->state.conditional_render_enabled)
3305 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3306
3307 for (uint32_t i = 0; i < drawCount; i++) {
3308 struct anv_address draw = anv_address_add(buffer->address, offset);
3309
3310 if (vs_prog_data->uses_firstvertex ||
3311 vs_prog_data->uses_baseinstance)
3312 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3313 if (vs_prog_data->uses_drawid)
3314 emit_draw_index(cmd_buffer, i);
3315
3316 /* Emitting draw index or vertex index BOs may result in needing
3317 * additional VF cache flushes.
3318 */
3319 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3320
3321 load_indirect_parameters(cmd_buffer, draw, false);
3322
3323 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3324 prim.IndirectParameterEnable = true;
3325 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3326 prim.VertexAccessType = SEQUENTIAL;
3327 prim.PrimitiveTopologyType = pipeline->topology;
3328 }
3329
3330 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3331
3332 offset += stride;
3333 }
3334 }
3335
3336 void genX(CmdDrawIndexedIndirect)(
3337 VkCommandBuffer commandBuffer,
3338 VkBuffer _buffer,
3339 VkDeviceSize offset,
3340 uint32_t drawCount,
3341 uint32_t stride)
3342 {
3343 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3344 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3345 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
3346 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3347
3348 if (anv_batch_has_error(&cmd_buffer->batch))
3349 return;
3350
3351 genX(cmd_buffer_flush_state)(cmd_buffer);
3352
3353 if (cmd_buffer->state.conditional_render_enabled)
3354 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3355
3356 for (uint32_t i = 0; i < drawCount; i++) {
3357 struct anv_address draw = anv_address_add(buffer->address, offset);
3358
3359 /* TODO: We need to stomp base vertex to 0 somehow */
3360 if (vs_prog_data->uses_firstvertex ||
3361 vs_prog_data->uses_baseinstance)
3362 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3363 if (vs_prog_data->uses_drawid)
3364 emit_draw_index(cmd_buffer, i);
3365
3366 /* Emitting draw index or vertex index BOs may result in needing
3367 * additional VF cache flushes.
3368 */
3369 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3370
3371 load_indirect_parameters(cmd_buffer, draw, true);
3372
3373 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3374 prim.IndirectParameterEnable = true;
3375 prim.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3376 prim.VertexAccessType = RANDOM;
3377 prim.PrimitiveTopologyType = pipeline->topology;
3378 }
3379
3380 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3381
3382 offset += stride;
3383 }
3384 }
3385
3386 #define TMP_DRAW_COUNT_REG 0x2670 /* MI_ALU_REG14 */
3387
3388 static void
3389 prepare_for_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3390 struct anv_address count_address,
3391 const bool conditional_render_enabled)
3392 {
3393 struct gen_mi_builder b;
3394 gen_mi_builder_init(&b, &cmd_buffer->batch);
3395
3396 if (conditional_render_enabled) {
3397 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3398 gen_mi_store(&b, gen_mi_reg64(TMP_DRAW_COUNT_REG),
3399 gen_mi_mem32(count_address));
3400 #endif
3401 } else {
3402 /* Upload the current draw count from the draw parameters buffer to
3403 * MI_PREDICATE_SRC0.
3404 */
3405 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
3406 gen_mi_mem32(count_address));
3407
3408 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1 + 4), gen_mi_imm(0));
3409 }
3410 }
3411
3412 static void
3413 emit_draw_count_predicate(struct anv_cmd_buffer *cmd_buffer,
3414 uint32_t draw_index)
3415 {
3416 struct gen_mi_builder b;
3417 gen_mi_builder_init(&b, &cmd_buffer->batch);
3418
3419 /* Upload the index of the current primitive to MI_PREDICATE_SRC1. */
3420 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC1), gen_mi_imm(draw_index));
3421
3422 if (draw_index == 0) {
3423 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3424 mip.LoadOperation = LOAD_LOADINV;
3425 mip.CombineOperation = COMBINE_SET;
3426 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3427 }
3428 } else {
3429 /* While draw_index < draw_count the predicate's result will be
3430 * (draw_index == draw_count) ^ TRUE = TRUE
3431 * When draw_index == draw_count the result is
3432 * (TRUE) ^ TRUE = FALSE
3433 * After this all results will be:
3434 * (FALSE) ^ FALSE = FALSE
3435 */
3436 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3437 mip.LoadOperation = LOAD_LOAD;
3438 mip.CombineOperation = COMBINE_XOR;
3439 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3440 }
3441 }
3442 }
3443
3444 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3445 static void
3446 emit_draw_count_predicate_with_conditional_render(
3447 struct anv_cmd_buffer *cmd_buffer,
3448 uint32_t draw_index)
3449 {
3450 struct gen_mi_builder b;
3451 gen_mi_builder_init(&b, &cmd_buffer->batch);
3452
3453 struct gen_mi_value pred = gen_mi_ult(&b, gen_mi_imm(draw_index),
3454 gen_mi_reg64(TMP_DRAW_COUNT_REG));
3455 pred = gen_mi_iand(&b, pred, gen_mi_reg64(ANV_PREDICATE_RESULT_REG));
3456
3457 #if GEN_GEN >= 8
3458 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_RESULT), pred);
3459 #else
3460 /* MI_PREDICATE_RESULT is not whitelisted in i915 command parser
3461 * so we emit MI_PREDICATE to set it.
3462 */
3463
3464 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), pred);
3465 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3466
3467 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
3468 mip.LoadOperation = LOAD_LOADINV;
3469 mip.CombineOperation = COMBINE_SET;
3470 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3471 }
3472 #endif
3473 }
3474 #endif
3475
3476 void genX(CmdDrawIndirectCountKHR)(
3477 VkCommandBuffer commandBuffer,
3478 VkBuffer _buffer,
3479 VkDeviceSize offset,
3480 VkBuffer _countBuffer,
3481 VkDeviceSize countBufferOffset,
3482 uint32_t maxDrawCount,
3483 uint32_t stride)
3484 {
3485 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3486 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3487 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3488 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3489 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3490 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3491
3492 if (anv_batch_has_error(&cmd_buffer->batch))
3493 return;
3494
3495 genX(cmd_buffer_flush_state)(cmd_buffer);
3496
3497 struct anv_address count_address =
3498 anv_address_add(count_buffer->address, countBufferOffset);
3499
3500 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3501 cmd_state->conditional_render_enabled);
3502
3503 for (uint32_t i = 0; i < maxDrawCount; i++) {
3504 struct anv_address draw = anv_address_add(buffer->address, offset);
3505
3506 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3507 if (cmd_state->conditional_render_enabled) {
3508 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3509 } else {
3510 emit_draw_count_predicate(cmd_buffer, i);
3511 }
3512 #else
3513 emit_draw_count_predicate(cmd_buffer, i);
3514 #endif
3515
3516 if (vs_prog_data->uses_firstvertex ||
3517 vs_prog_data->uses_baseinstance)
3518 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
3519 if (vs_prog_data->uses_drawid)
3520 emit_draw_index(cmd_buffer, i);
3521
3522 /* Emitting draw index or vertex index BOs may result in needing
3523 * additional VF cache flushes.
3524 */
3525 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3526
3527 load_indirect_parameters(cmd_buffer, draw, false);
3528
3529 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3530 prim.IndirectParameterEnable = true;
3531 prim.PredicateEnable = true;
3532 prim.VertexAccessType = SEQUENTIAL;
3533 prim.PrimitiveTopologyType = pipeline->topology;
3534 }
3535
3536 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, SEQUENTIAL);
3537
3538 offset += stride;
3539 }
3540 }
3541
3542 void genX(CmdDrawIndexedIndirectCountKHR)(
3543 VkCommandBuffer commandBuffer,
3544 VkBuffer _buffer,
3545 VkDeviceSize offset,
3546 VkBuffer _countBuffer,
3547 VkDeviceSize countBufferOffset,
3548 uint32_t maxDrawCount,
3549 uint32_t stride)
3550 {
3551 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3552 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3553 ANV_FROM_HANDLE(anv_buffer, count_buffer, _countBuffer);
3554 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3555 struct anv_pipeline *pipeline = cmd_state->gfx.base.pipeline;
3556 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
3557
3558 if (anv_batch_has_error(&cmd_buffer->batch))
3559 return;
3560
3561 genX(cmd_buffer_flush_state)(cmd_buffer);
3562
3563 struct anv_address count_address =
3564 anv_address_add(count_buffer->address, countBufferOffset);
3565
3566 prepare_for_draw_count_predicate(cmd_buffer, count_address,
3567 cmd_state->conditional_render_enabled);
3568
3569 for (uint32_t i = 0; i < maxDrawCount; i++) {
3570 struct anv_address draw = anv_address_add(buffer->address, offset);
3571
3572 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3573 if (cmd_state->conditional_render_enabled) {
3574 emit_draw_count_predicate_with_conditional_render(cmd_buffer, i);
3575 } else {
3576 emit_draw_count_predicate(cmd_buffer, i);
3577 }
3578 #else
3579 emit_draw_count_predicate(cmd_buffer, i);
3580 #endif
3581
3582 /* TODO: We need to stomp base vertex to 0 somehow */
3583 if (vs_prog_data->uses_firstvertex ||
3584 vs_prog_data->uses_baseinstance)
3585 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
3586 if (vs_prog_data->uses_drawid)
3587 emit_draw_index(cmd_buffer, i);
3588
3589 /* Emitting draw index or vertex index BOs may result in needing
3590 * additional VF cache flushes.
3591 */
3592 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3593
3594 load_indirect_parameters(cmd_buffer, draw, true);
3595
3596 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3597 prim.IndirectParameterEnable = true;
3598 prim.PredicateEnable = true;
3599 prim.VertexAccessType = RANDOM;
3600 prim.PrimitiveTopologyType = pipeline->topology;
3601 }
3602
3603 update_dirty_vbs_for_gen8_vb_flush(cmd_buffer, RANDOM);
3604
3605 offset += stride;
3606 }
3607 }
3608
3609 void genX(CmdBeginTransformFeedbackEXT)(
3610 VkCommandBuffer commandBuffer,
3611 uint32_t firstCounterBuffer,
3612 uint32_t counterBufferCount,
3613 const VkBuffer* pCounterBuffers,
3614 const VkDeviceSize* pCounterBufferOffsets)
3615 {
3616 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3617
3618 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3619 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3620 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3621
3622 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3623 *
3624 * "Ssoftware must ensure that no HW stream output operations can be in
3625 * process or otherwise pending at the point that the MI_LOAD/STORE
3626 * commands are processed. This will likely require a pipeline flush."
3627 */
3628 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3629 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3630
3631 for (uint32_t idx = 0; idx < MAX_XFB_BUFFERS; idx++) {
3632 /* If we have a counter buffer, this is a resume so we need to load the
3633 * value into the streamout offset register. Otherwise, this is a begin
3634 * and we need to reset it to zero.
3635 */
3636 if (pCounterBuffers &&
3637 idx >= firstCounterBuffer &&
3638 idx - firstCounterBuffer < counterBufferCount &&
3639 pCounterBuffers[idx - firstCounterBuffer] != VK_NULL_HANDLE) {
3640 uint32_t cb_idx = idx - firstCounterBuffer;
3641 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3642 uint64_t offset = pCounterBufferOffsets ?
3643 pCounterBufferOffsets[cb_idx] : 0;
3644
3645 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
3646 lrm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3647 lrm.MemoryAddress = anv_address_add(counter_buffer->address,
3648 offset);
3649 }
3650 } else {
3651 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
3652 lri.RegisterOffset = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3653 lri.DataDWord = 0;
3654 }
3655 }
3656 }
3657
3658 cmd_buffer->state.xfb_enabled = true;
3659 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3660 }
3661
3662 void genX(CmdEndTransformFeedbackEXT)(
3663 VkCommandBuffer commandBuffer,
3664 uint32_t firstCounterBuffer,
3665 uint32_t counterBufferCount,
3666 const VkBuffer* pCounterBuffers,
3667 const VkDeviceSize* pCounterBufferOffsets)
3668 {
3669 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3670
3671 assert(firstCounterBuffer < MAX_XFB_BUFFERS);
3672 assert(counterBufferCount <= MAX_XFB_BUFFERS);
3673 assert(firstCounterBuffer + counterBufferCount <= MAX_XFB_BUFFERS);
3674
3675 /* From the SKL PRM Vol. 2c, SO_WRITE_OFFSET:
3676 *
3677 * "Ssoftware must ensure that no HW stream output operations can be in
3678 * process or otherwise pending at the point that the MI_LOAD/STORE
3679 * commands are processed. This will likely require a pipeline flush."
3680 */
3681 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3682 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3683
3684 for (uint32_t cb_idx = 0; cb_idx < counterBufferCount; cb_idx++) {
3685 unsigned idx = firstCounterBuffer + cb_idx;
3686
3687 /* If we have a counter buffer, this is a resume so we need to load the
3688 * value into the streamout offset register. Otherwise, this is a begin
3689 * and we need to reset it to zero.
3690 */
3691 if (pCounterBuffers &&
3692 cb_idx < counterBufferCount &&
3693 pCounterBuffers[cb_idx] != VK_NULL_HANDLE) {
3694 ANV_FROM_HANDLE(anv_buffer, counter_buffer, pCounterBuffers[cb_idx]);
3695 uint64_t offset = pCounterBufferOffsets ?
3696 pCounterBufferOffsets[cb_idx] : 0;
3697
3698 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
3699 srm.MemoryAddress = anv_address_add(counter_buffer->address,
3700 offset);
3701 srm.RegisterAddress = GENX(SO_WRITE_OFFSET0_num) + idx * 4;
3702 }
3703 }
3704 }
3705
3706 cmd_buffer->state.xfb_enabled = false;
3707 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_XFB_ENABLE;
3708 }
3709
3710 static VkResult
3711 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
3712 {
3713 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3714 struct anv_state surfaces = { 0, }, samplers = { 0, };
3715 VkResult result;
3716
3717 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3718 if (result != VK_SUCCESS) {
3719 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
3720
3721 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
3722 if (result != VK_SUCCESS)
3723 return result;
3724
3725 /* Re-emit state base addresses so we get the new surface state base
3726 * address before we start emitting binding tables etc.
3727 */
3728 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
3729
3730 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3731 if (result != VK_SUCCESS) {
3732 anv_batch_set_error(&cmd_buffer->batch, result);
3733 return result;
3734 }
3735 }
3736
3737 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
3738 if (result != VK_SUCCESS) {
3739 anv_batch_set_error(&cmd_buffer->batch, result);
3740 return result;
3741 }
3742
3743 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3744 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3745 .BindingTablePointer = surfaces.offset,
3746 .SamplerStatePointer = samplers.offset,
3747 };
3748 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3749
3750 struct anv_state state =
3751 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3752 pipeline->interface_descriptor_data,
3753 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3754 64);
3755
3756 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3757 anv_batch_emit(&cmd_buffer->batch,
3758 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3759 mid.InterfaceDescriptorTotalLength = size;
3760 mid.InterfaceDescriptorDataStartAddress = state.offset;
3761 }
3762
3763 return VK_SUCCESS;
3764 }
3765
3766 void
3767 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3768 {
3769 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3770 VkResult result;
3771
3772 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3773
3774 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3775
3776 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3777
3778 #if GEN_GEN >= 12
3779 genX(cmd_buffer_aux_map_state)(cmd_buffer);
3780 #endif
3781
3782 if (cmd_buffer->state.compute.pipeline_dirty) {
3783 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3784 *
3785 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3786 * the only bits that are changed are scoreboard related: Scoreboard
3787 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3788 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3789 * sufficient."
3790 */
3791 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3792 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3793
3794 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3795
3796 /* The workgroup size of the pipeline affects our push constant layout
3797 * so flag push constants as dirty if we change the pipeline.
3798 */
3799 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3800 }
3801
3802 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3803 cmd_buffer->state.compute.pipeline_dirty) {
3804 /* FIXME: figure out descriptors for gen7 */
3805 result = flush_compute_descriptor_set(cmd_buffer);
3806 if (result != VK_SUCCESS)
3807 return;
3808
3809 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3810 }
3811
3812 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3813 struct anv_state push_state =
3814 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3815
3816 if (push_state.alloc_size) {
3817 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3818 curbe.CURBETotalDataLength = push_state.alloc_size;
3819 curbe.CURBEDataStartAddress = push_state.offset;
3820 }
3821 }
3822
3823 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3824 }
3825
3826 cmd_buffer->state.compute.pipeline_dirty = false;
3827
3828 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3829 }
3830
3831 #if GEN_GEN == 7
3832
3833 static VkResult
3834 verify_cmd_parser(const struct anv_device *device,
3835 int required_version,
3836 const char *function)
3837 {
3838 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3839 return vk_errorf(device->instance, device->instance,
3840 VK_ERROR_FEATURE_NOT_PRESENT,
3841 "cmd parser version %d is required for %s",
3842 required_version, function);
3843 } else {
3844 return VK_SUCCESS;
3845 }
3846 }
3847
3848 #endif
3849
3850 static void
3851 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3852 uint32_t baseGroupX,
3853 uint32_t baseGroupY,
3854 uint32_t baseGroupZ)
3855 {
3856 if (anv_batch_has_error(&cmd_buffer->batch))
3857 return;
3858
3859 struct anv_push_constants *push =
3860 &cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3861 if (push->cs.base_work_group_id[0] != baseGroupX ||
3862 push->cs.base_work_group_id[1] != baseGroupY ||
3863 push->cs.base_work_group_id[2] != baseGroupZ) {
3864 push->cs.base_work_group_id[0] = baseGroupX;
3865 push->cs.base_work_group_id[1] = baseGroupY;
3866 push->cs.base_work_group_id[2] = baseGroupZ;
3867
3868 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3869 }
3870 }
3871
3872 void genX(CmdDispatch)(
3873 VkCommandBuffer commandBuffer,
3874 uint32_t x,
3875 uint32_t y,
3876 uint32_t z)
3877 {
3878 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3879 }
3880
3881 void genX(CmdDispatchBase)(
3882 VkCommandBuffer commandBuffer,
3883 uint32_t baseGroupX,
3884 uint32_t baseGroupY,
3885 uint32_t baseGroupZ,
3886 uint32_t groupCountX,
3887 uint32_t groupCountY,
3888 uint32_t groupCountZ)
3889 {
3890 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3891 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3892 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3893
3894 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3895 baseGroupY, baseGroupZ);
3896
3897 if (anv_batch_has_error(&cmd_buffer->batch))
3898 return;
3899
3900 if (prog_data->uses_num_work_groups) {
3901 struct anv_state state =
3902 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3903 uint32_t *sizes = state.map;
3904 sizes[0] = groupCountX;
3905 sizes[1] = groupCountY;
3906 sizes[2] = groupCountZ;
3907 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3908 .bo = cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3909 .offset = state.offset,
3910 };
3911 }
3912
3913 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3914
3915 if (cmd_buffer->state.conditional_render_enabled)
3916 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
3917
3918 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3919 ggw.PredicateEnable = cmd_buffer->state.conditional_render_enabled;
3920 ggw.SIMDSize = prog_data->simd_size / 16;
3921 ggw.ThreadDepthCounterMaximum = 0;
3922 ggw.ThreadHeightCounterMaximum = 0;
3923 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3924 ggw.ThreadGroupIDXDimension = groupCountX;
3925 ggw.ThreadGroupIDYDimension = groupCountY;
3926 ggw.ThreadGroupIDZDimension = groupCountZ;
3927 ggw.RightExecutionMask = pipeline->cs_right_mask;
3928 ggw.BottomExecutionMask = 0xffffffff;
3929 }
3930
3931 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3932 }
3933
3934 #define GPGPU_DISPATCHDIMX 0x2500
3935 #define GPGPU_DISPATCHDIMY 0x2504
3936 #define GPGPU_DISPATCHDIMZ 0x2508
3937
3938 void genX(CmdDispatchIndirect)(
3939 VkCommandBuffer commandBuffer,
3940 VkBuffer _buffer,
3941 VkDeviceSize offset)
3942 {
3943 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3944 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3945 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3946 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3947 struct anv_address addr = anv_address_add(buffer->address, offset);
3948 struct anv_batch *batch = &cmd_buffer->batch;
3949
3950 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3951
3952 #if GEN_GEN == 7
3953 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3954 * indirect dispatch registers to be written.
3955 */
3956 if (verify_cmd_parser(cmd_buffer->device, 5,
3957 "vkCmdDispatchIndirect") != VK_SUCCESS)
3958 return;
3959 #endif
3960
3961 if (prog_data->uses_num_work_groups)
3962 cmd_buffer->state.compute.num_workgroups = addr;
3963
3964 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3965
3966 struct gen_mi_builder b;
3967 gen_mi_builder_init(&b, &cmd_buffer->batch);
3968
3969 struct gen_mi_value size_x = gen_mi_mem32(anv_address_add(addr, 0));
3970 struct gen_mi_value size_y = gen_mi_mem32(anv_address_add(addr, 4));
3971 struct gen_mi_value size_z = gen_mi_mem32(anv_address_add(addr, 8));
3972
3973 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMX), size_x);
3974 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMY), size_y);
3975 gen_mi_store(&b, gen_mi_reg32(GPGPU_DISPATCHDIMZ), size_z);
3976
3977 #if GEN_GEN <= 7
3978 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3979 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0), size_x);
3980 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
3981 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3982 mip.LoadOperation = LOAD_LOAD;
3983 mip.CombineOperation = COMBINE_SET;
3984 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3985 }
3986
3987 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3988 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_y);
3989 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3990 mip.LoadOperation = LOAD_LOAD;
3991 mip.CombineOperation = COMBINE_OR;
3992 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3993 }
3994
3995 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3996 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0), size_z);
3997 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3998 mip.LoadOperation = LOAD_LOAD;
3999 mip.CombineOperation = COMBINE_OR;
4000 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4001 }
4002
4003 /* predicate = !predicate; */
4004 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4005 mip.LoadOperation = LOAD_LOADINV;
4006 mip.CombineOperation = COMBINE_OR;
4007 mip.CompareOperation = COMPARE_FALSE;
4008 }
4009
4010 #if GEN_IS_HASWELL
4011 if (cmd_buffer->state.conditional_render_enabled) {
4012 /* predicate &= !(conditional_rendering_predicate == 0); */
4013 gen_mi_store(&b, gen_mi_reg32(MI_PREDICATE_SRC0),
4014 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
4015 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
4016 mip.LoadOperation = LOAD_LOADINV;
4017 mip.CombineOperation = COMBINE_AND;
4018 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4019 }
4020 }
4021 #endif
4022
4023 #else /* GEN_GEN > 7 */
4024 if (cmd_buffer->state.conditional_render_enabled)
4025 genX(cmd_emit_conditional_render_predicate)(cmd_buffer);
4026 #endif
4027
4028 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
4029 ggw.IndirectParameterEnable = true;
4030 ggw.PredicateEnable = GEN_GEN <= 7 ||
4031 cmd_buffer->state.conditional_render_enabled;
4032 ggw.SIMDSize = prog_data->simd_size / 16;
4033 ggw.ThreadDepthCounterMaximum = 0;
4034 ggw.ThreadHeightCounterMaximum = 0;
4035 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
4036 ggw.RightExecutionMask = pipeline->cs_right_mask;
4037 ggw.BottomExecutionMask = 0xffffffff;
4038 }
4039
4040 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
4041 }
4042
4043 static void
4044 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
4045 uint32_t pipeline)
4046 {
4047 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4048
4049 if (cmd_buffer->state.current_pipeline == pipeline)
4050 return;
4051
4052 #if GEN_GEN >= 8 && GEN_GEN < 10
4053 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
4054 *
4055 * Software must clear the COLOR_CALC_STATE Valid field in
4056 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
4057 * with Pipeline Select set to GPGPU.
4058 *
4059 * The internal hardware docs recommend the same workaround for Gen9
4060 * hardware too.
4061 */
4062 if (pipeline == GPGPU)
4063 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
4064 #endif
4065
4066 #if GEN_GEN == 9
4067 if (pipeline == _3D) {
4068 /* There is a mid-object preemption workaround which requires you to
4069 * re-emit MEDIA_VFE_STATE after switching from GPGPU to 3D. However,
4070 * even without preemption, we have issues with geometry flickering when
4071 * GPGPU and 3D are back-to-back and this seems to fix it. We don't
4072 * really know why.
4073 */
4074 const uint32_t subslices =
4075 MAX2(cmd_buffer->device->instance->physicalDevice.subslice_total, 1);
4076 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_VFE_STATE), vfe) {
4077 vfe.MaximumNumberofThreads =
4078 devinfo->max_cs_threads * subslices - 1;
4079 vfe.NumberofURBEntries = 2;
4080 vfe.URBEntryAllocationSize = 2;
4081 }
4082
4083 /* We just emitted a dummy MEDIA_VFE_STATE so now that packet is
4084 * invalid. Set the compute pipeline to dirty to force a re-emit of the
4085 * pipeline in case we get back-to-back dispatch calls with the same
4086 * pipeline and a PIPELINE_SELECT in between.
4087 */
4088 cmd_buffer->state.compute.pipeline_dirty = true;
4089 }
4090 #endif
4091
4092 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
4093 * PIPELINE_SELECT [DevBWR+]":
4094 *
4095 * Project: DEVSNB+
4096 *
4097 * Software must ensure all the write caches are flushed through a
4098 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
4099 * command to invalidate read only caches prior to programming
4100 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
4101 */
4102 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4103 pc.RenderTargetCacheFlushEnable = true;
4104 pc.DepthCacheFlushEnable = true;
4105 pc.DCFlushEnable = true;
4106 pc.PostSyncOperation = NoWrite;
4107 pc.CommandStreamerStallEnable = true;
4108 #if GEN_GEN >= 12
4109 pc.TileCacheFlushEnable = true;
4110 #endif
4111 }
4112
4113 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4114 pc.TextureCacheInvalidationEnable = true;
4115 pc.ConstantCacheInvalidationEnable = true;
4116 pc.StateCacheInvalidationEnable = true;
4117 pc.InstructionCacheInvalidateEnable = true;
4118 pc.PostSyncOperation = NoWrite;
4119 #if GEN_GEN >= 12
4120 pc.TileCacheFlushEnable = true;
4121 #endif
4122 }
4123
4124 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
4125 #if GEN_GEN >= 9
4126 ps.MaskBits = 3;
4127 #endif
4128 ps.PipelineSelection = pipeline;
4129 }
4130
4131 #if GEN_GEN == 9
4132 if (devinfo->is_geminilake) {
4133 /* Project: DevGLK
4134 *
4135 * "This chicken bit works around a hardware issue with barrier logic
4136 * encountered when switching between GPGPU and 3D pipelines. To
4137 * workaround the issue, this mode bit should be set after a pipeline
4138 * is selected."
4139 */
4140 uint32_t scec;
4141 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
4142 .GLKBarrierMode =
4143 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
4144 : GLK_BARRIER_MODE_3D_HULL,
4145 .GLKBarrierModeMask = 1);
4146 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
4147 }
4148 #endif
4149
4150 cmd_buffer->state.current_pipeline = pipeline;
4151 }
4152
4153 void
4154 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
4155 {
4156 genX(flush_pipeline_select)(cmd_buffer, _3D);
4157 }
4158
4159 void
4160 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
4161 {
4162 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
4163 }
4164
4165 void
4166 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
4167 {
4168 if (GEN_GEN >= 8)
4169 return;
4170
4171 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
4172 *
4173 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
4174 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
4175 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
4176 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
4177 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
4178 * Depth Flush Bit set, followed by another pipelined depth stall
4179 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
4180 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
4181 * via a preceding MI_FLUSH)."
4182 */
4183 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4184 pipe.DepthStallEnable = true;
4185 }
4186 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4187 pipe.DepthCacheFlushEnable = true;
4188 #if GEN_GEN >= 12
4189 pipe.TileCacheFlushEnable = true;
4190 #endif
4191 }
4192 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
4193 pipe.DepthStallEnable = true;
4194 }
4195 }
4196
4197 /* From the Skylake PRM, 3DSTATE_VERTEX_BUFFERS:
4198 *
4199 * "The VF cache needs to be invalidated before binding and then using
4200 * Vertex Buffers that overlap with any previously bound Vertex Buffer
4201 * (at a 64B granularity) since the last invalidation. A VF cache
4202 * invalidate is performed by setting the "VF Cache Invalidation Enable"
4203 * bit in PIPE_CONTROL."
4204 *
4205 * This is implemented by carefully tracking all vertex and index buffer
4206 * bindings and flushing if the cache ever ends up with a range in the cache
4207 * that would exceed 4 GiB. This is implemented in three parts:
4208 *
4209 * 1. genX(cmd_buffer_set_binding_for_gen8_vb_flush)() which must be called
4210 * every time a 3DSTATE_VERTEX_BUFFER packet is emitted and informs the
4211 * tracking code of the new binding. If this new binding would cause
4212 * the cache to have a too-large range on the next draw call, a pipeline
4213 * stall and VF cache invalidate are added to pending_pipeline_bits.
4214 *
4215 * 2. genX(cmd_buffer_apply_pipe_flushes)() resets the cache tracking to
4216 * empty whenever we emit a VF invalidate.
4217 *
4218 * 3. genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)() must be called
4219 * after every 3DPRIMITIVE and copies the bound range into the dirty
4220 * range for each used buffer. This has to be a separate step because
4221 * we don't always re-bind all buffers and so 1. can't know which
4222 * buffers are actually bound.
4223 */
4224 void
4225 genX(cmd_buffer_set_binding_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4226 int vb_index,
4227 struct anv_address vb_address,
4228 uint32_t vb_size)
4229 {
4230 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4231 !cmd_buffer->device->instance->physicalDevice.use_softpin)
4232 return;
4233
4234 struct anv_vb_cache_range *bound, *dirty;
4235 if (vb_index == -1) {
4236 bound = &cmd_buffer->state.gfx.ib_bound_range;
4237 dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4238 } else {
4239 assert(vb_index >= 0);
4240 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4241 assert(vb_index < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4242 bound = &cmd_buffer->state.gfx.vb_bound_ranges[vb_index];
4243 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[vb_index];
4244 }
4245
4246 if (vb_size == 0) {
4247 bound->start = 0;
4248 bound->end = 0;
4249 return;
4250 }
4251
4252 assert(vb_address.bo && (vb_address.bo->flags & EXEC_OBJECT_PINNED));
4253 bound->start = gen_48b_address(anv_address_physical(vb_address));
4254 bound->end = bound->start + vb_size;
4255 assert(bound->end > bound->start); /* No overflow */
4256
4257 /* Align everything to a cache line */
4258 bound->start &= ~(64ull - 1ull);
4259 bound->end = align_u64(bound->end, 64);
4260
4261 /* Compute the dirty range */
4262 dirty->start = MIN2(dirty->start, bound->start);
4263 dirty->end = MAX2(dirty->end, bound->end);
4264
4265 /* If our range is larger than 32 bits, we have to flush */
4266 assert(bound->end - bound->start <= (1ull << 32));
4267 if (dirty->end - dirty->start > (1ull << 32)) {
4268 cmd_buffer->state.pending_pipe_bits |=
4269 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
4270 }
4271 }
4272
4273 void
4274 genX(cmd_buffer_update_dirty_vbs_for_gen8_vb_flush)(struct anv_cmd_buffer *cmd_buffer,
4275 uint32_t access_type,
4276 uint64_t vb_used)
4277 {
4278 if (GEN_GEN < 8 || GEN_GEN > 9 ||
4279 !cmd_buffer->device->instance->physicalDevice.use_softpin)
4280 return;
4281
4282 if (access_type == RANDOM) {
4283 /* We have an index buffer */
4284 struct anv_vb_cache_range *bound = &cmd_buffer->state.gfx.ib_bound_range;
4285 struct anv_vb_cache_range *dirty = &cmd_buffer->state.gfx.ib_dirty_range;
4286
4287 if (bound->end > bound->start) {
4288 dirty->start = MIN2(dirty->start, bound->start);
4289 dirty->end = MAX2(dirty->end, bound->end);
4290 }
4291 }
4292
4293 uint64_t mask = vb_used;
4294 while (mask) {
4295 int i = u_bit_scan64(&mask);
4296 assert(i >= 0);
4297 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_bound_ranges));
4298 assert(i < ARRAY_SIZE(cmd_buffer->state.gfx.vb_dirty_ranges));
4299
4300 struct anv_vb_cache_range *bound, *dirty;
4301 bound = &cmd_buffer->state.gfx.vb_bound_ranges[i];
4302 dirty = &cmd_buffer->state.gfx.vb_dirty_ranges[i];
4303
4304 if (bound->end > bound->start) {
4305 dirty->start = MIN2(dirty->start, bound->start);
4306 dirty->end = MAX2(dirty->end, bound->end);
4307 }
4308 }
4309 }
4310
4311 /**
4312 * Update the pixel hashing modes that determine the balancing of PS threads
4313 * across subslices and slices.
4314 *
4315 * \param width Width bound of the rendering area (already scaled down if \p
4316 * scale is greater than 1).
4317 * \param height Height bound of the rendering area (already scaled down if \p
4318 * scale is greater than 1).
4319 * \param scale The number of framebuffer samples that could potentially be
4320 * affected by an individual channel of the PS thread. This is
4321 * typically one for single-sampled rendering, but for operations
4322 * like CCS resolves and fast clears a single PS invocation may
4323 * update a huge number of pixels, in which case a finer
4324 * balancing is desirable in order to maximally utilize the
4325 * bandwidth available. UINT_MAX can be used as shorthand for
4326 * "finest hashing mode available".
4327 */
4328 void
4329 genX(cmd_buffer_emit_hashing_mode)(struct anv_cmd_buffer *cmd_buffer,
4330 unsigned width, unsigned height,
4331 unsigned scale)
4332 {
4333 #if GEN_GEN == 9
4334 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
4335 const unsigned slice_hashing[] = {
4336 /* Because all Gen9 platforms with more than one slice require
4337 * three-way subslice hashing, a single "normal" 16x16 slice hashing
4338 * block is guaranteed to suffer from substantial imbalance, with one
4339 * subslice receiving twice as much work as the other two in the
4340 * slice.
4341 *
4342 * The performance impact of that would be particularly severe when
4343 * three-way hashing is also in use for slice balancing (which is the
4344 * case for all Gen9 GT4 platforms), because one of the slices
4345 * receives one every three 16x16 blocks in either direction, which
4346 * is roughly the periodicity of the underlying subslice imbalance
4347 * pattern ("roughly" because in reality the hardware's
4348 * implementation of three-way hashing doesn't do exact modulo 3
4349 * arithmetic, which somewhat decreases the magnitude of this effect
4350 * in practice). This leads to a systematic subslice imbalance
4351 * within that slice regardless of the size of the primitive. The
4352 * 32x32 hashing mode guarantees that the subslice imbalance within a
4353 * single slice hashing block is minimal, largely eliminating this
4354 * effect.
4355 */
4356 _32x32,
4357 /* Finest slice hashing mode available. */
4358 NORMAL
4359 };
4360 const unsigned subslice_hashing[] = {
4361 /* 16x16 would provide a slight cache locality benefit especially
4362 * visible in the sampler L1 cache efficiency of low-bandwidth
4363 * non-LLC platforms, but it comes at the cost of greater subslice
4364 * imbalance for primitives of dimensions approximately intermediate
4365 * between 16x4 and 16x16.
4366 */
4367 _16x4,
4368 /* Finest subslice hashing mode available. */
4369 _8x4
4370 };
4371 /* Dimensions of the smallest hashing block of a given hashing mode. If
4372 * the rendering area is smaller than this there can't possibly be any
4373 * benefit from switching to this mode, so we optimize out the
4374 * transition.
4375 */
4376 const unsigned min_size[][2] = {
4377 { 16, 4 },
4378 { 8, 4 }
4379 };
4380 const unsigned idx = scale > 1;
4381
4382 if (cmd_buffer->state.current_hash_scale != scale &&
4383 (width > min_size[idx][0] || height > min_size[idx][1])) {
4384 uint32_t gt_mode;
4385
4386 anv_pack_struct(&gt_mode, GENX(GT_MODE),
4387 .SliceHashing = (devinfo->num_slices > 1 ? slice_hashing[idx] : 0),
4388 .SliceHashingMask = (devinfo->num_slices > 1 ? -1 : 0),
4389 .SubsliceHashing = subslice_hashing[idx],
4390 .SubsliceHashingMask = -1);
4391
4392 cmd_buffer->state.pending_pipe_bits |=
4393 ANV_PIPE_CS_STALL_BIT | ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
4394 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
4395
4396 emit_lri(&cmd_buffer->batch, GENX(GT_MODE_num), gt_mode);
4397
4398 cmd_buffer->state.current_hash_scale = scale;
4399 }
4400 #endif
4401 }
4402
4403 static void
4404 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
4405 {
4406 struct anv_device *device = cmd_buffer->device;
4407 const struct anv_image_view *iview =
4408 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
4409 const struct anv_image *image = iview ? iview->image : NULL;
4410
4411 /* FIXME: Width and Height are wrong */
4412
4413 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
4414
4415 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
4416 device->isl_dev.ds.size / 4);
4417 if (dw == NULL)
4418 return;
4419
4420 struct isl_depth_stencil_hiz_emit_info info = { };
4421
4422 if (iview)
4423 info.view = &iview->planes[0].isl;
4424
4425 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
4426 uint32_t depth_plane =
4427 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
4428 const struct anv_surface *surface = &image->planes[depth_plane].surface;
4429
4430 info.depth_surf = &surface->isl;
4431
4432 info.depth_address =
4433 anv_batch_emit_reloc(&cmd_buffer->batch,
4434 dw + device->isl_dev.ds.depth_offset / 4,
4435 image->planes[depth_plane].address.bo,
4436 image->planes[depth_plane].address.offset +
4437 surface->offset);
4438 info.mocs =
4439 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
4440
4441 const uint32_t ds =
4442 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
4443 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
4444 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
4445 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
4446
4447 info.hiz_address =
4448 anv_batch_emit_reloc(&cmd_buffer->batch,
4449 dw + device->isl_dev.ds.hiz_offset / 4,
4450 image->planes[depth_plane].address.bo,
4451 image->planes[depth_plane].address.offset +
4452 image->planes[depth_plane].aux_surface.offset);
4453
4454 info.depth_clear_value = ANV_HZ_FC_VAL;
4455 }
4456 }
4457
4458 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
4459 uint32_t stencil_plane =
4460 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
4461 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
4462
4463 info.stencil_surf = &surface->isl;
4464
4465 info.stencil_address =
4466 anv_batch_emit_reloc(&cmd_buffer->batch,
4467 dw + device->isl_dev.ds.stencil_offset / 4,
4468 image->planes[stencil_plane].address.bo,
4469 image->planes[stencil_plane].address.offset +
4470 surface->offset);
4471 info.mocs =
4472 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
4473 }
4474
4475 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
4476
4477 if (GEN_GEN >= 12) {
4478 /* GEN:BUG:1408224581
4479 *
4480 * Workaround: Gen12LP Astep only An additional pipe control with
4481 * post-sync = store dword operation would be required.( w/a is to
4482 * have an additional pipe control after the stencil state whenever
4483 * the surface state bits of this state is changing).
4484 */
4485 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4486 pc.PostSyncOperation = WriteImmediateData;
4487 pc.Address =
4488 (struct anv_address) { cmd_buffer->device->workaround_bo, 0 };
4489 }
4490 }
4491 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
4492 }
4493
4494 /**
4495 * This ANDs the view mask of the current subpass with the pending clear
4496 * views in the attachment to get the mask of views active in the subpass
4497 * that still need to be cleared.
4498 */
4499 static inline uint32_t
4500 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
4501 const struct anv_attachment_state *att_state)
4502 {
4503 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
4504 }
4505
4506 static inline bool
4507 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
4508 const struct anv_attachment_state *att_state)
4509 {
4510 if (!cmd_state->subpass->view_mask)
4511 return true;
4512
4513 uint32_t pending_clear_mask =
4514 get_multiview_subpass_clear_mask(cmd_state, att_state);
4515
4516 return pending_clear_mask & 1;
4517 }
4518
4519 static inline bool
4520 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
4521 uint32_t att_idx)
4522 {
4523 const uint32_t last_subpass_idx =
4524 cmd_state->pass->attachments[att_idx].last_subpass_idx;
4525 const struct anv_subpass *last_subpass =
4526 &cmd_state->pass->subpasses[last_subpass_idx];
4527 return last_subpass == cmd_state->subpass;
4528 }
4529
4530 static void
4531 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
4532 uint32_t subpass_id)
4533 {
4534 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4535 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
4536 cmd_state->subpass = subpass;
4537
4538 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
4539
4540 /* Our implementation of VK_KHR_multiview uses instancing to draw the
4541 * different views. If the client asks for instancing, we need to use the
4542 * Instance Data Step Rate to ensure that we repeat the client's
4543 * per-instance data once for each view. Since this bit is in
4544 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
4545 * of each subpass.
4546 */
4547 if (GEN_GEN == 7)
4548 cmd_buffer->state.gfx.vb_dirty |= ~0;
4549
4550 /* It is possible to start a render pass with an old pipeline. Because the
4551 * render pass and subpass index are both baked into the pipeline, this is
4552 * highly unlikely. In order to do so, it requires that you have a render
4553 * pass with a single subpass and that you use that render pass twice
4554 * back-to-back and use the same pipeline at the start of the second render
4555 * pass as at the end of the first. In order to avoid unpredictable issues
4556 * with this edge case, we just dirty the pipeline at the start of every
4557 * subpass.
4558 */
4559 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
4560
4561 /* Accumulate any subpass flushes that need to happen before the subpass */
4562 cmd_buffer->state.pending_pipe_bits |=
4563 cmd_buffer->state.pass->subpass_flushes[subpass_id];
4564
4565 VkRect2D render_area = cmd_buffer->state.render_area;
4566 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4567
4568 bool is_multiview = subpass->view_mask != 0;
4569
4570 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
4571 const uint32_t a = subpass->attachments[i].attachment;
4572 if (a == VK_ATTACHMENT_UNUSED)
4573 continue;
4574
4575 assert(a < cmd_state->pass->attachment_count);
4576 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
4577
4578 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
4579 const struct anv_image *image = iview->image;
4580
4581 /* A resolve is necessary before use as an input attachment if the clear
4582 * color or auxiliary buffer usage isn't supported by the sampler.
4583 */
4584 const bool input_needs_resolve =
4585 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
4586 att_state->input_aux_usage != att_state->aux_usage;
4587
4588 VkImageLayout target_layout, target_stencil_layout;
4589 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
4590 !input_needs_resolve) {
4591 /* Layout transitions before the final only help to enable sampling
4592 * as an input attachment. If the input attachment supports sampling
4593 * using the auxiliary surface, we can skip such transitions by
4594 * making the target layout one that is CCS-aware.
4595 */
4596 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
4597 } else {
4598 target_layout = subpass->attachments[i].layout;
4599 target_stencil_layout = subpass->attachments[i].stencil_layout;
4600 }
4601
4602 uint32_t base_layer, layer_count;
4603 if (image->type == VK_IMAGE_TYPE_3D) {
4604 base_layer = 0;
4605 layer_count = anv_minify(iview->image->extent.depth,
4606 iview->planes[0].isl.base_level);
4607 } else {
4608 base_layer = iview->planes[0].isl.base_array_layer;
4609 layer_count = fb->layers;
4610 }
4611
4612 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
4613 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4614 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4615 iview->planes[0].isl.base_level, 1,
4616 base_layer, layer_count,
4617 att_state->current_layout, target_layout);
4618 }
4619
4620 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4621 transition_depth_buffer(cmd_buffer, image,
4622 att_state->current_layout, target_layout);
4623 att_state->aux_usage =
4624 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
4625 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
4626 }
4627
4628 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
4629 transition_stencil_buffer(cmd_buffer, image,
4630 iview->planes[0].isl.base_level, 1,
4631 base_layer, layer_count,
4632 att_state->current_stencil_layout,
4633 target_stencil_layout);
4634 }
4635 att_state->current_layout = target_layout;
4636 att_state->current_stencil_layout = target_stencil_layout;
4637
4638 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
4639 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4640
4641 /* Multi-planar images are not supported as attachments */
4642 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
4643 assert(image->n_planes == 1);
4644
4645 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
4646 uint32_t clear_layer_count = fb->layers;
4647
4648 if (att_state->fast_clear &&
4649 do_first_layer_clear(cmd_state, att_state)) {
4650 /* We only support fast-clears on the first layer */
4651 assert(iview->planes[0].isl.base_level == 0);
4652 assert(iview->planes[0].isl.base_array_layer == 0);
4653
4654 union isl_color_value clear_color = {};
4655 anv_clear_color_from_att_state(&clear_color, att_state, iview);
4656 if (iview->image->samples == 1) {
4657 anv_image_ccs_op(cmd_buffer, image,
4658 iview->planes[0].isl.format,
4659 VK_IMAGE_ASPECT_COLOR_BIT,
4660 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
4661 &clear_color,
4662 false);
4663 } else {
4664 anv_image_mcs_op(cmd_buffer, image,
4665 iview->planes[0].isl.format,
4666 VK_IMAGE_ASPECT_COLOR_BIT,
4667 0, 1, ISL_AUX_OP_FAST_CLEAR,
4668 &clear_color,
4669 false);
4670 }
4671 base_clear_layer++;
4672 clear_layer_count--;
4673 if (is_multiview)
4674 att_state->pending_clear_views &= ~1;
4675
4676 if (att_state->clear_color_is_zero) {
4677 /* This image has the auxiliary buffer enabled. We can mark the
4678 * subresource as not needing a resolve because the clear color
4679 * will match what's in every RENDER_SURFACE_STATE object when
4680 * it's being used for sampling.
4681 */
4682 set_image_fast_clear_state(cmd_buffer, iview->image,
4683 VK_IMAGE_ASPECT_COLOR_BIT,
4684 ANV_FAST_CLEAR_DEFAULT_VALUE);
4685 } else {
4686 set_image_fast_clear_state(cmd_buffer, iview->image,
4687 VK_IMAGE_ASPECT_COLOR_BIT,
4688 ANV_FAST_CLEAR_ANY);
4689 }
4690 }
4691
4692 /* From the VkFramebufferCreateInfo spec:
4693 *
4694 * "If the render pass uses multiview, then layers must be one and each
4695 * attachment requires a number of layers that is greater than the
4696 * maximum bit index set in the view mask in the subpasses in which it
4697 * is used."
4698 *
4699 * So if multiview is active we ignore the number of layers in the
4700 * framebuffer and instead we honor the view mask from the subpass.
4701 */
4702 if (is_multiview) {
4703 assert(image->n_planes == 1);
4704 uint32_t pending_clear_mask =
4705 get_multiview_subpass_clear_mask(cmd_state, att_state);
4706
4707 uint32_t layer_idx;
4708 for_each_bit(layer_idx, pending_clear_mask) {
4709 uint32_t layer =
4710 iview->planes[0].isl.base_array_layer + layer_idx;
4711
4712 anv_image_clear_color(cmd_buffer, image,
4713 VK_IMAGE_ASPECT_COLOR_BIT,
4714 att_state->aux_usage,
4715 iview->planes[0].isl.format,
4716 iview->planes[0].isl.swizzle,
4717 iview->planes[0].isl.base_level,
4718 layer, 1,
4719 render_area,
4720 vk_to_isl_color(att_state->clear_value.color));
4721 }
4722
4723 att_state->pending_clear_views &= ~pending_clear_mask;
4724 } else if (clear_layer_count > 0) {
4725 assert(image->n_planes == 1);
4726 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
4727 att_state->aux_usage,
4728 iview->planes[0].isl.format,
4729 iview->planes[0].isl.swizzle,
4730 iview->planes[0].isl.base_level,
4731 base_clear_layer, clear_layer_count,
4732 render_area,
4733 vk_to_isl_color(att_state->clear_value.color));
4734 }
4735 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
4736 VK_IMAGE_ASPECT_STENCIL_BIT)) {
4737 if (att_state->fast_clear && !is_multiview) {
4738 /* We currently only support HiZ for single-layer images */
4739 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
4740 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
4741 assert(iview->planes[0].isl.base_level == 0);
4742 assert(iview->planes[0].isl.base_array_layer == 0);
4743 assert(fb->layers == 1);
4744 }
4745
4746 anv_image_hiz_clear(cmd_buffer, image,
4747 att_state->pending_clear_aspects,
4748 iview->planes[0].isl.base_level,
4749 iview->planes[0].isl.base_array_layer,
4750 fb->layers, render_area,
4751 att_state->clear_value.depthStencil.stencil);
4752 } else if (is_multiview) {
4753 uint32_t pending_clear_mask =
4754 get_multiview_subpass_clear_mask(cmd_state, att_state);
4755
4756 uint32_t layer_idx;
4757 for_each_bit(layer_idx, pending_clear_mask) {
4758 uint32_t layer =
4759 iview->planes[0].isl.base_array_layer + layer_idx;
4760
4761 anv_image_clear_depth_stencil(cmd_buffer, image,
4762 att_state->pending_clear_aspects,
4763 att_state->aux_usage,
4764 iview->planes[0].isl.base_level,
4765 layer, 1,
4766 render_area,
4767 att_state->clear_value.depthStencil.depth,
4768 att_state->clear_value.depthStencil.stencil);
4769 }
4770
4771 att_state->pending_clear_views &= ~pending_clear_mask;
4772 } else {
4773 anv_image_clear_depth_stencil(cmd_buffer, image,
4774 att_state->pending_clear_aspects,
4775 att_state->aux_usage,
4776 iview->planes[0].isl.base_level,
4777 iview->planes[0].isl.base_array_layer,
4778 fb->layers, render_area,
4779 att_state->clear_value.depthStencil.depth,
4780 att_state->clear_value.depthStencil.stencil);
4781 }
4782 } else {
4783 assert(att_state->pending_clear_aspects == 0);
4784 }
4785
4786 if (GEN_GEN < 10 &&
4787 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
4788 image->planes[0].aux_surface.isl.size_B > 0 &&
4789 iview->planes[0].isl.base_level == 0 &&
4790 iview->planes[0].isl.base_array_layer == 0) {
4791 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
4792 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
4793 image, VK_IMAGE_ASPECT_COLOR_BIT,
4794 false /* copy to ss */);
4795 }
4796
4797 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
4798 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
4799 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
4800 image, VK_IMAGE_ASPECT_COLOR_BIT,
4801 false /* copy to ss */);
4802 }
4803 }
4804
4805 if (subpass->attachments[i].usage ==
4806 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
4807 /* We assume that if we're starting a subpass, we're going to do some
4808 * rendering so we may end up with compressed data.
4809 */
4810 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
4811 VK_IMAGE_ASPECT_COLOR_BIT,
4812 att_state->aux_usage,
4813 iview->planes[0].isl.base_level,
4814 iview->planes[0].isl.base_array_layer,
4815 fb->layers);
4816 } else if (subpass->attachments[i].usage ==
4817 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
4818 /* We may be writing depth or stencil so we need to mark the surface.
4819 * Unfortunately, there's no way to know at this point whether the
4820 * depth or stencil tests used will actually write to the surface.
4821 *
4822 * Even though stencil may be plane 1, it always shares a base_level
4823 * with depth.
4824 */
4825 const struct isl_view *ds_view = &iview->planes[0].isl;
4826 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
4827 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4828 VK_IMAGE_ASPECT_DEPTH_BIT,
4829 att_state->aux_usage,
4830 ds_view->base_level,
4831 ds_view->base_array_layer,
4832 fb->layers);
4833 }
4834 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
4835 /* Even though stencil may be plane 1, it always shares a
4836 * base_level with depth.
4837 */
4838 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
4839 VK_IMAGE_ASPECT_STENCIL_BIT,
4840 ISL_AUX_USAGE_NONE,
4841 ds_view->base_level,
4842 ds_view->base_array_layer,
4843 fb->layers);
4844 }
4845 }
4846
4847 /* If multiview is enabled, then we are only done clearing when we no
4848 * longer have pending layers to clear, or when we have processed the
4849 * last subpass that uses this attachment.
4850 */
4851 if (!is_multiview ||
4852 att_state->pending_clear_views == 0 ||
4853 current_subpass_is_last_for_attachment(cmd_state, a)) {
4854 att_state->pending_clear_aspects = 0;
4855 }
4856
4857 att_state->pending_load_aspects = 0;
4858 }
4859
4860 cmd_buffer_emit_depth_stencil(cmd_buffer);
4861
4862 #if GEN_GEN >= 11
4863 /* The PIPE_CONTROL command description says:
4864 *
4865 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
4866 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
4867 * Target Cache Flush by enabling this bit. When render target flush
4868 * is set due to new association of BTI, PS Scoreboard Stall bit must
4869 * be set in this packet."
4870 */
4871 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
4872 pc.RenderTargetCacheFlushEnable = true;
4873 pc.StallAtPixelScoreboard = true;
4874 #if GEN_GEN >= 12
4875 pc.TileCacheFlushEnable = true;
4876 #endif
4877 }
4878 #endif
4879 }
4880
4881 static enum blorp_filter
4882 vk_to_blorp_resolve_mode(VkResolveModeFlagBitsKHR vk_mode)
4883 {
4884 switch (vk_mode) {
4885 case VK_RESOLVE_MODE_SAMPLE_ZERO_BIT_KHR:
4886 return BLORP_FILTER_SAMPLE_0;
4887 case VK_RESOLVE_MODE_AVERAGE_BIT_KHR:
4888 return BLORP_FILTER_AVERAGE;
4889 case VK_RESOLVE_MODE_MIN_BIT_KHR:
4890 return BLORP_FILTER_MIN_SAMPLE;
4891 case VK_RESOLVE_MODE_MAX_BIT_KHR:
4892 return BLORP_FILTER_MAX_SAMPLE;
4893 default:
4894 return BLORP_FILTER_NONE;
4895 }
4896 }
4897
4898 static void
4899 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
4900 {
4901 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
4902 struct anv_subpass *subpass = cmd_state->subpass;
4903 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
4904 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
4905
4906 if (subpass->has_color_resolve) {
4907 /* We are about to do some MSAA resolves. We need to flush so that the
4908 * result of writes to the MSAA color attachments show up in the sampler
4909 * when we blit to the single-sampled resolve target.
4910 */
4911 cmd_buffer->state.pending_pipe_bits |=
4912 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4913 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
4914
4915 for (uint32_t i = 0; i < subpass->color_count; ++i) {
4916 uint32_t src_att = subpass->color_attachments[i].attachment;
4917 uint32_t dst_att = subpass->resolve_attachments[i].attachment;
4918
4919 if (dst_att == VK_ATTACHMENT_UNUSED)
4920 continue;
4921
4922 assert(src_att < cmd_buffer->state.pass->attachment_count);
4923 assert(dst_att < cmd_buffer->state.pass->attachment_count);
4924
4925 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
4926 /* From the Vulkan 1.0 spec:
4927 *
4928 * If the first use of an attachment in a render pass is as a
4929 * resolve attachment, then the loadOp is effectively ignored
4930 * as the resolve is guaranteed to overwrite all pixels in the
4931 * render area.
4932 */
4933 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
4934 }
4935
4936 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
4937 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
4938
4939 const VkRect2D render_area = cmd_buffer->state.render_area;
4940
4941 enum isl_aux_usage src_aux_usage =
4942 cmd_buffer->state.attachments[src_att].aux_usage;
4943 enum isl_aux_usage dst_aux_usage =
4944 cmd_buffer->state.attachments[dst_att].aux_usage;
4945
4946 assert(src_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT &&
4947 dst_iview->aspect_mask == VK_IMAGE_ASPECT_COLOR_BIT);
4948
4949 anv_image_msaa_resolve(cmd_buffer,
4950 src_iview->image, src_aux_usage,
4951 src_iview->planes[0].isl.base_level,
4952 src_iview->planes[0].isl.base_array_layer,
4953 dst_iview->image, dst_aux_usage,
4954 dst_iview->planes[0].isl.base_level,
4955 dst_iview->planes[0].isl.base_array_layer,
4956 VK_IMAGE_ASPECT_COLOR_BIT,
4957 render_area.offset.x, render_area.offset.y,
4958 render_area.offset.x, render_area.offset.y,
4959 render_area.extent.width,
4960 render_area.extent.height,
4961 fb->layers, BLORP_FILTER_NONE);
4962 }
4963 }
4964
4965 if (subpass->ds_resolve_attachment) {
4966 /* We are about to do some MSAA resolves. We need to flush so that the
4967 * result of writes to the MSAA depth attachments show up in the sampler
4968 * when we blit to the single-sampled resolve target.
4969 */
4970 cmd_buffer->state.pending_pipe_bits |=
4971 ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT |
4972 ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
4973
4974 uint32_t src_att = subpass->depth_stencil_attachment->attachment;
4975 uint32_t dst_att = subpass->ds_resolve_attachment->attachment;
4976
4977 assert(src_att < cmd_buffer->state.pass->attachment_count);
4978 assert(dst_att < cmd_buffer->state.pass->attachment_count);
4979
4980 if (cmd_buffer->state.attachments[dst_att].pending_clear_aspects) {
4981 /* From the Vulkan 1.0 spec:
4982 *
4983 * If the first use of an attachment in a render pass is as a
4984 * resolve attachment, then the loadOp is effectively ignored
4985 * as the resolve is guaranteed to overwrite all pixels in the
4986 * render area.
4987 */
4988 cmd_buffer->state.attachments[dst_att].pending_clear_aspects = 0;
4989 }
4990
4991 struct anv_image_view *src_iview = cmd_state->attachments[src_att].image_view;
4992 struct anv_image_view *dst_iview = cmd_state->attachments[dst_att].image_view;
4993
4994 const VkRect2D render_area = cmd_buffer->state.render_area;
4995
4996 struct anv_attachment_state *src_state =
4997 &cmd_state->attachments[src_att];
4998 struct anv_attachment_state *dst_state =
4999 &cmd_state->attachments[dst_att];
5000
5001 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) &&
5002 subpass->depth_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5003
5004 /* MSAA resolves sample from the source attachment. Transition the
5005 * depth attachment first to get rid of any HiZ that we may not be
5006 * able to handle.
5007 */
5008 transition_depth_buffer(cmd_buffer, src_iview->image,
5009 src_state->current_layout,
5010 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
5011 src_state->aux_usage =
5012 anv_layout_to_aux_usage(&cmd_buffer->device->info, src_iview->image,
5013 VK_IMAGE_ASPECT_DEPTH_BIT,
5014 VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
5015 src_state->current_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
5016
5017 /* MSAA resolves write to the resolve attachment as if it were any
5018 * other transfer op. Transition the resolve attachment accordingly.
5019 */
5020 VkImageLayout dst_initial_layout = dst_state->current_layout;
5021
5022 /* If our render area is the entire size of the image, we're going to
5023 * blow it all away so we can claim the initial layout is UNDEFINED
5024 * and we'll get a HiZ ambiguate instead of a resolve.
5025 */
5026 if (dst_iview->image->type != VK_IMAGE_TYPE_3D &&
5027 render_area.offset.x == 0 && render_area.offset.y == 0 &&
5028 render_area.extent.width == dst_iview->extent.width &&
5029 render_area.extent.height == dst_iview->extent.height)
5030 dst_initial_layout = VK_IMAGE_LAYOUT_UNDEFINED;
5031
5032 transition_depth_buffer(cmd_buffer, dst_iview->image,
5033 dst_initial_layout,
5034 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5035 dst_state->aux_usage =
5036 anv_layout_to_aux_usage(&cmd_buffer->device->info, dst_iview->image,
5037 VK_IMAGE_ASPECT_DEPTH_BIT,
5038 VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
5039 dst_state->current_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5040
5041 enum blorp_filter filter =
5042 vk_to_blorp_resolve_mode(subpass->depth_resolve_mode);
5043
5044 anv_image_msaa_resolve(cmd_buffer,
5045 src_iview->image, src_state->aux_usage,
5046 src_iview->planes[0].isl.base_level,
5047 src_iview->planes[0].isl.base_array_layer,
5048 dst_iview->image, dst_state->aux_usage,
5049 dst_iview->planes[0].isl.base_level,
5050 dst_iview->planes[0].isl.base_array_layer,
5051 VK_IMAGE_ASPECT_DEPTH_BIT,
5052 render_area.offset.x, render_area.offset.y,
5053 render_area.offset.x, render_area.offset.y,
5054 render_area.extent.width,
5055 render_area.extent.height,
5056 fb->layers, filter);
5057 }
5058
5059 if ((src_iview->image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) &&
5060 subpass->stencil_resolve_mode != VK_RESOLVE_MODE_NONE_KHR) {
5061
5062 src_state->current_stencil_layout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
5063 dst_state->current_stencil_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
5064
5065 enum isl_aux_usage src_aux_usage = ISL_AUX_USAGE_NONE;
5066 enum isl_aux_usage dst_aux_usage = ISL_AUX_USAGE_NONE;
5067
5068 enum blorp_filter filter =
5069 vk_to_blorp_resolve_mode(subpass->stencil_resolve_mode);
5070
5071 anv_image_msaa_resolve(cmd_buffer,
5072 src_iview->image, src_aux_usage,
5073 src_iview->planes[0].isl.base_level,
5074 src_iview->planes[0].isl.base_array_layer,
5075 dst_iview->image, dst_aux_usage,
5076 dst_iview->planes[0].isl.base_level,
5077 dst_iview->planes[0].isl.base_array_layer,
5078 VK_IMAGE_ASPECT_STENCIL_BIT,
5079 render_area.offset.x, render_area.offset.y,
5080 render_area.offset.x, render_area.offset.y,
5081 render_area.extent.width,
5082 render_area.extent.height,
5083 fb->layers, filter);
5084 }
5085 }
5086
5087 #if GEN_GEN == 7
5088 /* On gen7, we have to store a texturable version of the stencil buffer in
5089 * a shadow whenever VK_IMAGE_USAGE_SAMPLED_BIT is set and copy back and
5090 * forth at strategic points. Stencil writes are only allowed in following
5091 * layouts:
5092 *
5093 * - VK_IMAGE_LAYOUT_GENERAL
5094 * - VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL
5095 * - VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL
5096 * - VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL
5097 * - VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL_KHR
5098 *
5099 * For general, we have no nice opportunity to transition so we do the copy
5100 * to the shadow unconditionally at the end of the subpass. For transfer
5101 * destinations, we can update it as part of the transfer op. For the other
5102 * layouts, we delay the copy until a transition into some other layout.
5103 */
5104 if (subpass->depth_stencil_attachment) {
5105 uint32_t a = subpass->depth_stencil_attachment->attachment;
5106 assert(a != VK_ATTACHMENT_UNUSED);
5107
5108 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5109 struct anv_image_view *iview = cmd_state->attachments[a].image_view;;
5110 const struct anv_image *image = iview->image;
5111
5112 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5113 uint32_t plane = anv_image_aspect_to_plane(image->aspects,
5114 VK_IMAGE_ASPECT_STENCIL_BIT);
5115
5116 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
5117 att_state->current_stencil_layout == VK_IMAGE_LAYOUT_GENERAL) {
5118 assert(image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT);
5119 anv_image_copy_to_shadow(cmd_buffer, image,
5120 VK_IMAGE_ASPECT_STENCIL_BIT,
5121 iview->planes[plane].isl.base_level, 1,
5122 iview->planes[plane].isl.base_array_layer,
5123 fb->layers);
5124 }
5125 }
5126 }
5127 #endif /* GEN_GEN == 7 */
5128
5129 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
5130 const uint32_t a = subpass->attachments[i].attachment;
5131 if (a == VK_ATTACHMENT_UNUSED)
5132 continue;
5133
5134 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
5135 continue;
5136
5137 assert(a < cmd_state->pass->attachment_count);
5138 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
5139 struct anv_image_view *iview = cmd_state->attachments[a].image_view;
5140 const struct anv_image *image = iview->image;
5141
5142 if ((image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
5143 image->vk_format != iview->vk_format) {
5144 enum anv_fast_clear_type fast_clear_type =
5145 anv_layout_to_fast_clear_type(&cmd_buffer->device->info,
5146 image, VK_IMAGE_ASPECT_COLOR_BIT,
5147 att_state->current_layout);
5148
5149 /* If any clear color was used, flush it down the aux surfaces. If we
5150 * don't do it now using the view's format we might use the clear
5151 * color incorrectly in the following resolves (for example with an
5152 * SRGB view & a UNORM image).
5153 */
5154 if (fast_clear_type != ANV_FAST_CLEAR_NONE) {
5155 anv_perf_warn(cmd_buffer->device->instance, iview,
5156 "Doing a partial resolve to get rid of clear color at the "
5157 "end of a renderpass due to an image/view format mismatch");
5158
5159 uint32_t base_layer, layer_count;
5160 if (image->type == VK_IMAGE_TYPE_3D) {
5161 base_layer = 0;
5162 layer_count = anv_minify(iview->image->extent.depth,
5163 iview->planes[0].isl.base_level);
5164 } else {
5165 base_layer = iview->planes[0].isl.base_array_layer;
5166 layer_count = fb->layers;
5167 }
5168
5169 for (uint32_t a = 0; a < layer_count; a++) {
5170 uint32_t array_layer = base_layer + a;
5171 if (image->samples == 1) {
5172 anv_cmd_predicated_ccs_resolve(cmd_buffer, image,
5173 iview->planes[0].isl.format,
5174 VK_IMAGE_ASPECT_COLOR_BIT,
5175 iview->planes[0].isl.base_level,
5176 array_layer,
5177 ISL_AUX_OP_PARTIAL_RESOLVE,
5178 ANV_FAST_CLEAR_NONE);
5179 } else {
5180 anv_cmd_predicated_mcs_resolve(cmd_buffer, image,
5181 iview->planes[0].isl.format,
5182 VK_IMAGE_ASPECT_COLOR_BIT,
5183 base_layer,
5184 ISL_AUX_OP_PARTIAL_RESOLVE,
5185 ANV_FAST_CLEAR_NONE);
5186 }
5187 }
5188 }
5189 }
5190
5191 /* Transition the image into the final layout for this render pass */
5192 VkImageLayout target_layout =
5193 cmd_state->pass->attachments[a].final_layout;
5194 VkImageLayout target_stencil_layout =
5195 cmd_state->pass->attachments[a].stencil_final_layout;
5196
5197 uint32_t base_layer, layer_count;
5198 if (image->type == VK_IMAGE_TYPE_3D) {
5199 base_layer = 0;
5200 layer_count = anv_minify(iview->image->extent.depth,
5201 iview->planes[0].isl.base_level);
5202 } else {
5203 base_layer = iview->planes[0].isl.base_array_layer;
5204 layer_count = fb->layers;
5205 }
5206
5207 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
5208 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
5209 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
5210 iview->planes[0].isl.base_level, 1,
5211 base_layer, layer_count,
5212 att_state->current_layout, target_layout);
5213 }
5214
5215 if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
5216 transition_depth_buffer(cmd_buffer, image,
5217 att_state->current_layout, target_layout);
5218 }
5219
5220 if (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
5221 transition_stencil_buffer(cmd_buffer, image,
5222 iview->planes[0].isl.base_level, 1,
5223 base_layer, layer_count,
5224 att_state->current_stencil_layout,
5225 target_stencil_layout);
5226 }
5227 }
5228
5229 /* Accumulate any subpass flushes that need to happen after the subpass.
5230 * Yes, they do get accumulated twice in the NextSubpass case but since
5231 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
5232 * ORing the bits in twice so it's harmless.
5233 */
5234 cmd_buffer->state.pending_pipe_bits |=
5235 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
5236 }
5237
5238 void genX(CmdBeginRenderPass)(
5239 VkCommandBuffer commandBuffer,
5240 const VkRenderPassBeginInfo* pRenderPassBegin,
5241 VkSubpassContents contents)
5242 {
5243 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5244 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
5245 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
5246
5247 cmd_buffer->state.framebuffer = framebuffer;
5248 cmd_buffer->state.pass = pass;
5249 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
5250 VkResult result =
5251 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
5252
5253 /* If we failed to setup the attachments we should not try to go further */
5254 if (result != VK_SUCCESS) {
5255 assert(anv_batch_has_error(&cmd_buffer->batch));
5256 return;
5257 }
5258
5259 genX(flush_pipeline_select_3d)(cmd_buffer);
5260
5261 cmd_buffer_begin_subpass(cmd_buffer, 0);
5262 }
5263
5264 void genX(CmdBeginRenderPass2KHR)(
5265 VkCommandBuffer commandBuffer,
5266 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
5267 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
5268 {
5269 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
5270 pSubpassBeginInfo->contents);
5271 }
5272
5273 void genX(CmdNextSubpass)(
5274 VkCommandBuffer commandBuffer,
5275 VkSubpassContents contents)
5276 {
5277 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5278
5279 if (anv_batch_has_error(&cmd_buffer->batch))
5280 return;
5281
5282 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
5283
5284 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
5285 cmd_buffer_end_subpass(cmd_buffer);
5286 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
5287 }
5288
5289 void genX(CmdNextSubpass2KHR)(
5290 VkCommandBuffer commandBuffer,
5291 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
5292 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5293 {
5294 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
5295 }
5296
5297 void genX(CmdEndRenderPass)(
5298 VkCommandBuffer commandBuffer)
5299 {
5300 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5301
5302 if (anv_batch_has_error(&cmd_buffer->batch))
5303 return;
5304
5305 cmd_buffer_end_subpass(cmd_buffer);
5306
5307 cmd_buffer->state.hiz_enabled = false;
5308
5309 #ifndef NDEBUG
5310 anv_dump_add_attachments(cmd_buffer);
5311 #endif
5312
5313 /* Remove references to render pass specific state. This enables us to
5314 * detect whether or not we're in a renderpass.
5315 */
5316 cmd_buffer->state.framebuffer = NULL;
5317 cmd_buffer->state.pass = NULL;
5318 cmd_buffer->state.subpass = NULL;
5319 }
5320
5321 void genX(CmdEndRenderPass2KHR)(
5322 VkCommandBuffer commandBuffer,
5323 const VkSubpassEndInfoKHR* pSubpassEndInfo)
5324 {
5325 genX(CmdEndRenderPass)(commandBuffer);
5326 }
5327
5328 void
5329 genX(cmd_emit_conditional_render_predicate)(struct anv_cmd_buffer *cmd_buffer)
5330 {
5331 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5332 struct gen_mi_builder b;
5333 gen_mi_builder_init(&b, &cmd_buffer->batch);
5334
5335 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC0),
5336 gen_mi_reg32(ANV_PREDICATE_RESULT_REG));
5337 gen_mi_store(&b, gen_mi_reg64(MI_PREDICATE_SRC1), gen_mi_imm(0));
5338
5339 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
5340 mip.LoadOperation = LOAD_LOADINV;
5341 mip.CombineOperation = COMBINE_SET;
5342 mip.CompareOperation = COMPARE_SRCS_EQUAL;
5343 }
5344 #endif
5345 }
5346
5347 #if GEN_GEN >= 8 || GEN_IS_HASWELL
5348 void genX(CmdBeginConditionalRenderingEXT)(
5349 VkCommandBuffer commandBuffer,
5350 const VkConditionalRenderingBeginInfoEXT* pConditionalRenderingBegin)
5351 {
5352 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5353 ANV_FROM_HANDLE(anv_buffer, buffer, pConditionalRenderingBegin->buffer);
5354 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5355 struct anv_address value_address =
5356 anv_address_add(buffer->address, pConditionalRenderingBegin->offset);
5357
5358 const bool isInverted = pConditionalRenderingBegin->flags &
5359 VK_CONDITIONAL_RENDERING_INVERTED_BIT_EXT;
5360
5361 cmd_state->conditional_render_enabled = true;
5362
5363 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5364
5365 struct gen_mi_builder b;
5366 gen_mi_builder_init(&b, &cmd_buffer->batch);
5367
5368 /* Section 19.4 of the Vulkan 1.1.85 spec says:
5369 *
5370 * If the value of the predicate in buffer memory changes
5371 * while conditional rendering is active, the rendering commands
5372 * may be discarded in an implementation-dependent way.
5373 * Some implementations may latch the value of the predicate
5374 * upon beginning conditional rendering while others
5375 * may read it before every rendering command.
5376 *
5377 * So it's perfectly fine to read a value from the buffer once.
5378 */
5379 struct gen_mi_value value = gen_mi_mem32(value_address);
5380
5381 /* Precompute predicate result, it is necessary to support secondary
5382 * command buffers since it is unknown if conditional rendering is
5383 * inverted when populating them.
5384 */
5385 gen_mi_store(&b, gen_mi_reg64(ANV_PREDICATE_RESULT_REG),
5386 isInverted ? gen_mi_uge(&b, gen_mi_imm(0), value) :
5387 gen_mi_ult(&b, gen_mi_imm(0), value));
5388 }
5389
5390 void genX(CmdEndConditionalRenderingEXT)(
5391 VkCommandBuffer commandBuffer)
5392 {
5393 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5394 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
5395
5396 cmd_state->conditional_render_enabled = false;
5397 }
5398 #endif
5399
5400 /* Set of stage bits for which are pipelined, i.e. they get queued by the
5401 * command streamer for later execution.
5402 */
5403 #define ANV_PIPELINE_STAGE_PIPELINED_BITS \
5404 (VK_PIPELINE_STAGE_VERTEX_INPUT_BIT | \
5405 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | \
5406 VK_PIPELINE_STAGE_TESSELLATION_CONTROL_SHADER_BIT | \
5407 VK_PIPELINE_STAGE_TESSELLATION_EVALUATION_SHADER_BIT | \
5408 VK_PIPELINE_STAGE_GEOMETRY_SHADER_BIT | \
5409 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | \
5410 VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | \
5411 VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | \
5412 VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT | \
5413 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | \
5414 VK_PIPELINE_STAGE_TRANSFER_BIT | \
5415 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT | \
5416 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT | \
5417 VK_PIPELINE_STAGE_ALL_COMMANDS_BIT)
5418
5419 void genX(CmdSetEvent)(
5420 VkCommandBuffer commandBuffer,
5421 VkEvent _event,
5422 VkPipelineStageFlags stageMask)
5423 {
5424 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5425 ANV_FROM_HANDLE(anv_event, event, _event);
5426
5427 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5428 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5429 pc.StallAtPixelScoreboard = true;
5430 pc.CommandStreamerStallEnable = true;
5431 }
5432
5433 pc.DestinationAddressType = DAT_PPGTT,
5434 pc.PostSyncOperation = WriteImmediateData,
5435 pc.Address = (struct anv_address) {
5436 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5437 event->state.offset
5438 };
5439 pc.ImmediateData = VK_EVENT_SET;
5440 }
5441 }
5442
5443 void genX(CmdResetEvent)(
5444 VkCommandBuffer commandBuffer,
5445 VkEvent _event,
5446 VkPipelineStageFlags stageMask)
5447 {
5448 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5449 ANV_FROM_HANDLE(anv_event, event, _event);
5450
5451 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
5452 if (stageMask & ANV_PIPELINE_STAGE_PIPELINED_BITS) {
5453 pc.StallAtPixelScoreboard = true;
5454 pc.CommandStreamerStallEnable = true;
5455 }
5456
5457 pc.DestinationAddressType = DAT_PPGTT;
5458 pc.PostSyncOperation = WriteImmediateData;
5459 pc.Address = (struct anv_address) {
5460 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5461 event->state.offset
5462 };
5463 pc.ImmediateData = VK_EVENT_RESET;
5464 }
5465 }
5466
5467 void genX(CmdWaitEvents)(
5468 VkCommandBuffer commandBuffer,
5469 uint32_t eventCount,
5470 const VkEvent* pEvents,
5471 VkPipelineStageFlags srcStageMask,
5472 VkPipelineStageFlags destStageMask,
5473 uint32_t memoryBarrierCount,
5474 const VkMemoryBarrier* pMemoryBarriers,
5475 uint32_t bufferMemoryBarrierCount,
5476 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
5477 uint32_t imageMemoryBarrierCount,
5478 const VkImageMemoryBarrier* pImageMemoryBarriers)
5479 {
5480 #if GEN_GEN >= 8
5481 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5482
5483 for (uint32_t i = 0; i < eventCount; i++) {
5484 ANV_FROM_HANDLE(anv_event, event, pEvents[i]);
5485
5486 anv_batch_emit(&cmd_buffer->batch, GENX(MI_SEMAPHORE_WAIT), sem) {
5487 sem.WaitMode = PollingMode,
5488 sem.CompareOperation = COMPARE_SAD_EQUAL_SDD,
5489 sem.SemaphoreDataDword = VK_EVENT_SET,
5490 sem.SemaphoreAddress = (struct anv_address) {
5491 cmd_buffer->device->dynamic_state_pool.block_pool.bo,
5492 event->state.offset
5493 };
5494 }
5495 }
5496 #else
5497 anv_finishme("Implement events on gen7");
5498 #endif
5499
5500 genX(CmdPipelineBarrier)(commandBuffer, srcStageMask, destStageMask,
5501 false, /* byRegion */
5502 memoryBarrierCount, pMemoryBarriers,
5503 bufferMemoryBarrierCount, pBufferMemoryBarriers,
5504 imageMemoryBarrierCount, pImageMemoryBarriers);
5505 }
5506
5507 VkResult genX(CmdSetPerformanceOverrideINTEL)(
5508 VkCommandBuffer commandBuffer,
5509 const VkPerformanceOverrideInfoINTEL* pOverrideInfo)
5510 {
5511 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
5512
5513 switch (pOverrideInfo->type) {
5514 case VK_PERFORMANCE_OVERRIDE_TYPE_NULL_HARDWARE_INTEL: {
5515 uint32_t dw;
5516
5517 #if GEN_GEN >= 9
5518 anv_pack_struct(&dw, GENX(CS_DEBUG_MODE2),
5519 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5520 .MediaInstructionDisable = pOverrideInfo->enable,
5521 ._3DRenderingInstructionDisableMask = true,
5522 .MediaInstructionDisableMask = true);
5523 emit_lri(&cmd_buffer->batch, GENX(CS_DEBUG_MODE2_num), dw);
5524 #else
5525 anv_pack_struct(&dw, GENX(INSTPM),
5526 ._3DRenderingInstructionDisable = pOverrideInfo->enable,
5527 .MediaInstructionDisable = pOverrideInfo->enable,
5528 ._3DRenderingInstructionDisableMask = true,
5529 .MediaInstructionDisableMask = true);
5530 emit_lri(&cmd_buffer->batch, GENX(INSTPM_num), dw);
5531 #endif
5532 break;
5533 }
5534
5535 case VK_PERFORMANCE_OVERRIDE_TYPE_FLUSH_GPU_CACHES_INTEL:
5536 if (pOverrideInfo->enable) {
5537 /* FLUSH ALL THE THINGS! As requested by the MDAPI team. */
5538 cmd_buffer->state.pending_pipe_bits |=
5539 ANV_PIPE_FLUSH_BITS |
5540 ANV_PIPE_INVALIDATE_BITS;
5541 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
5542 }
5543 break;
5544
5545 default:
5546 unreachable("Invalid override");
5547 }
5548
5549 return VK_SUCCESS;
5550 }
5551
5552 VkResult genX(CmdSetPerformanceStreamMarkerINTEL)(
5553 VkCommandBuffer commandBuffer,
5554 const VkPerformanceStreamMarkerInfoINTEL* pMarkerInfo)
5555 {
5556 /* TODO: Waiting on the register to write, might depend on generation. */
5557
5558 return VK_SUCCESS;
5559 }