anv: don't do partial resolve on layer > 0
[mesa.git] / src / intel / vulkan / genX_cmd_buffer.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25 #include <stdbool.h>
26
27 #include "anv_private.h"
28 #include "vk_format_info.h"
29 #include "vk_util.h"
30
31 #include "common/gen_l3_config.h"
32 #include "genxml/gen_macros.h"
33 #include "genxml/genX_pack.h"
34
35 static void
36 emit_lrm(struct anv_batch *batch, uint32_t reg, struct anv_address addr)
37 {
38 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
39 lrm.RegisterAddress = reg;
40 lrm.MemoryAddress = addr;
41 }
42 }
43
44 static void
45 emit_lri(struct anv_batch *batch, uint32_t reg, uint32_t imm)
46 {
47 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_IMM), lri) {
48 lri.RegisterOffset = reg;
49 lri.DataDWord = imm;
50 }
51 }
52
53 #if GEN_IS_HASWELL || GEN_GEN >= 8
54 static void
55 emit_lrr(struct anv_batch *batch, uint32_t dst, uint32_t src)
56 {
57 anv_batch_emit(batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
58 lrr.SourceRegisterAddress = src;
59 lrr.DestinationRegisterAddress = dst;
60 }
61 }
62 #endif
63
64 void
65 genX(cmd_buffer_emit_state_base_address)(struct anv_cmd_buffer *cmd_buffer)
66 {
67 struct anv_device *device = cmd_buffer->device;
68
69 /* If we are emitting a new state base address we probably need to re-emit
70 * binding tables.
71 */
72 cmd_buffer->state.descriptors_dirty |= ~0;
73
74 /* Emit a render target cache flush.
75 *
76 * This isn't documented anywhere in the PRM. However, it seems to be
77 * necessary prior to changing the surface state base adress. Without
78 * this, we get GPU hangs when using multi-level command buffers which
79 * clear depth, reset state base address, and then go render stuff.
80 */
81 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
82 pc.DCFlushEnable = true;
83 pc.RenderTargetCacheFlushEnable = true;
84 pc.CommandStreamerStallEnable = true;
85 }
86
87 anv_batch_emit(&cmd_buffer->batch, GENX(STATE_BASE_ADDRESS), sba) {
88 sba.GeneralStateBaseAddress = (struct anv_address) { NULL, 0 };
89 sba.GeneralStateMOCS = GENX(MOCS);
90 sba.GeneralStateBaseAddressModifyEnable = true;
91
92 sba.SurfaceStateBaseAddress =
93 anv_cmd_buffer_surface_base_address(cmd_buffer);
94 sba.SurfaceStateMOCS = GENX(MOCS);
95 sba.SurfaceStateBaseAddressModifyEnable = true;
96
97 sba.DynamicStateBaseAddress =
98 (struct anv_address) { &device->dynamic_state_pool.block_pool.bo, 0 };
99 sba.DynamicStateMOCS = GENX(MOCS);
100 sba.DynamicStateBaseAddressModifyEnable = true;
101
102 sba.IndirectObjectBaseAddress = (struct anv_address) { NULL, 0 };
103 sba.IndirectObjectMOCS = GENX(MOCS);
104 sba.IndirectObjectBaseAddressModifyEnable = true;
105
106 sba.InstructionBaseAddress =
107 (struct anv_address) { &device->instruction_state_pool.block_pool.bo, 0 };
108 sba.InstructionMOCS = GENX(MOCS);
109 sba.InstructionBaseAddressModifyEnable = true;
110
111 # if (GEN_GEN >= 8)
112 /* Broadwell requires that we specify a buffer size for a bunch of
113 * these fields. However, since we will be growing the BO's live, we
114 * just set them all to the maximum.
115 */
116 sba.GeneralStateBufferSize = 0xfffff;
117 sba.GeneralStateBufferSizeModifyEnable = true;
118 sba.DynamicStateBufferSize = 0xfffff;
119 sba.DynamicStateBufferSizeModifyEnable = true;
120 sba.IndirectObjectBufferSize = 0xfffff;
121 sba.IndirectObjectBufferSizeModifyEnable = true;
122 sba.InstructionBufferSize = 0xfffff;
123 sba.InstructionBuffersizeModifyEnable = true;
124 # endif
125 # if (GEN_GEN >= 9)
126 sba.BindlessSurfaceStateBaseAddress = (struct anv_address) { NULL, 0 };
127 sba.BindlessSurfaceStateMOCS = GENX(MOCS);
128 sba.BindlessSurfaceStateBaseAddressModifyEnable = true;
129 sba.BindlessSurfaceStateSize = 0;
130 # endif
131 # if (GEN_GEN >= 10)
132 sba.BindlessSamplerStateBaseAddress = (struct anv_address) { NULL, 0 };
133 sba.BindlessSamplerStateMOCS = GENX(MOCS);
134 sba.BindlessSamplerStateBaseAddressModifyEnable = true;
135 sba.BindlessSamplerStateBufferSize = 0;
136 # endif
137 }
138
139 /* After re-setting the surface state base address, we have to do some
140 * cache flusing so that the sampler engine will pick up the new
141 * SURFACE_STATE objects and binding tables. From the Broadwell PRM,
142 * Shared Function > 3D Sampler > State > State Caching (page 96):
143 *
144 * Coherency with system memory in the state cache, like the texture
145 * cache is handled partially by software. It is expected that the
146 * command stream or shader will issue Cache Flush operation or
147 * Cache_Flush sampler message to ensure that the L1 cache remains
148 * coherent with system memory.
149 *
150 * [...]
151 *
152 * Whenever the value of the Dynamic_State_Base_Addr,
153 * Surface_State_Base_Addr are altered, the L1 state cache must be
154 * invalidated to ensure the new surface or sampler state is fetched
155 * from system memory.
156 *
157 * The PIPE_CONTROL command has a "State Cache Invalidation Enable" bit
158 * which, according the PIPE_CONTROL instruction documentation in the
159 * Broadwell PRM:
160 *
161 * Setting this bit is independent of any other bit in this packet.
162 * This bit controls the invalidation of the L1 and L2 state caches
163 * at the top of the pipe i.e. at the parsing time.
164 *
165 * Unfortunately, experimentation seems to indicate that state cache
166 * invalidation through a PIPE_CONTROL does nothing whatsoever in
167 * regards to surface state and binding tables. In stead, it seems that
168 * invalidating the texture cache is what is actually needed.
169 *
170 * XXX: As far as we have been able to determine through
171 * experimentation, shows that flush the texture cache appears to be
172 * sufficient. The theory here is that all of the sampling/rendering
173 * units cache the binding table in the texture cache. However, we have
174 * yet to be able to actually confirm this.
175 */
176 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
177 pc.TextureCacheInvalidationEnable = true;
178 pc.ConstantCacheInvalidationEnable = true;
179 pc.StateCacheInvalidationEnable = true;
180 }
181 }
182
183 static void
184 add_surface_reloc(struct anv_cmd_buffer *cmd_buffer,
185 struct anv_state state, struct anv_address addr)
186 {
187 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
188
189 VkResult result =
190 anv_reloc_list_add(&cmd_buffer->surface_relocs, &cmd_buffer->pool->alloc,
191 state.offset + isl_dev->ss.addr_offset,
192 addr.bo, addr.offset);
193 if (result != VK_SUCCESS)
194 anv_batch_set_error(&cmd_buffer->batch, result);
195 }
196
197 static void
198 add_surface_state_relocs(struct anv_cmd_buffer *cmd_buffer,
199 struct anv_surface_state state)
200 {
201 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
202
203 assert(!anv_address_is_null(state.address));
204 add_surface_reloc(cmd_buffer, state.state, state.address);
205
206 if (!anv_address_is_null(state.aux_address)) {
207 VkResult result =
208 anv_reloc_list_add(&cmd_buffer->surface_relocs,
209 &cmd_buffer->pool->alloc,
210 state.state.offset + isl_dev->ss.aux_addr_offset,
211 state.aux_address.bo, state.aux_address.offset);
212 if (result != VK_SUCCESS)
213 anv_batch_set_error(&cmd_buffer->batch, result);
214 }
215
216 if (!anv_address_is_null(state.clear_address)) {
217 VkResult result =
218 anv_reloc_list_add(&cmd_buffer->surface_relocs,
219 &cmd_buffer->pool->alloc,
220 state.state.offset +
221 isl_dev->ss.clear_color_state_offset,
222 state.clear_address.bo, state.clear_address.offset);
223 if (result != VK_SUCCESS)
224 anv_batch_set_error(&cmd_buffer->batch, result);
225 }
226 }
227
228 static void
229 color_attachment_compute_aux_usage(struct anv_device * device,
230 struct anv_cmd_state * cmd_state,
231 uint32_t att, VkRect2D render_area,
232 union isl_color_value *fast_clear_color)
233 {
234 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
235 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
236
237 assert(iview->n_planes == 1);
238
239 if (iview->planes[0].isl.base_array_layer >=
240 anv_image_aux_layers(iview->image, VK_IMAGE_ASPECT_COLOR_BIT,
241 iview->planes[0].isl.base_level)) {
242 /* There is no aux buffer which corresponds to the level and layer(s)
243 * being accessed.
244 */
245 att_state->aux_usage = ISL_AUX_USAGE_NONE;
246 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
247 att_state->fast_clear = false;
248 return;
249 }
250
251 att_state->aux_usage =
252 anv_layout_to_aux_usage(&device->info, iview->image,
253 VK_IMAGE_ASPECT_COLOR_BIT,
254 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
255
256 /* If we don't have aux, then we should have returned early in the layer
257 * check above. If we got here, we must have something.
258 */
259 assert(att_state->aux_usage != ISL_AUX_USAGE_NONE);
260
261 if (att_state->aux_usage == ISL_AUX_USAGE_CCS_E ||
262 att_state->aux_usage == ISL_AUX_USAGE_MCS) {
263 att_state->input_aux_usage = att_state->aux_usage;
264 } else {
265 /* From the Sky Lake PRM, RENDER_SURFACE_STATE::AuxiliarySurfaceMode:
266 *
267 * "If Number of Multisamples is MULTISAMPLECOUNT_1, AUX_CCS_D
268 * setting is only allowed if Surface Format supported for Fast
269 * Clear. In addition, if the surface is bound to the sampling
270 * engine, Surface Format must be supported for Render Target
271 * Compression for surfaces bound to the sampling engine."
272 *
273 * In other words, we can only sample from a fast-cleared image if it
274 * also supports color compression.
275 */
276 if (isl_format_supports_ccs_e(&device->info, iview->planes[0].isl.format)) {
277 att_state->input_aux_usage = ISL_AUX_USAGE_CCS_D;
278
279 /* While fast-clear resolves and partial resolves are fairly cheap in the
280 * case where you render to most of the pixels, full resolves are not
281 * because they potentially involve reading and writing the entire
282 * framebuffer. If we can't texture with CCS_E, we should leave it off and
283 * limit ourselves to fast clears.
284 */
285 if (cmd_state->pass->attachments[att].first_subpass_layout ==
286 VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL) {
287 anv_perf_warn(device->instance, iview->image,
288 "Not temporarily enabling CCS_E.");
289 }
290 } else {
291 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
292 }
293 }
294
295 assert(iview->image->planes[0].aux_surface.isl.usage &
296 (ISL_SURF_USAGE_CCS_BIT | ISL_SURF_USAGE_MCS_BIT));
297
298 union isl_color_value clear_color = {};
299 anv_clear_color_from_att_state(&clear_color, att_state, iview);
300
301 att_state->clear_color_is_zero_one =
302 isl_color_value_is_zero_one(clear_color, iview->planes[0].isl.format);
303 att_state->clear_color_is_zero =
304 isl_color_value_is_zero(clear_color, iview->planes[0].isl.format);
305
306 if (att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT) {
307 /* Start by getting the fast clear type. We use the first subpass
308 * layout here because we don't want to fast-clear if the first subpass
309 * to use the attachment can't handle fast-clears.
310 */
311 enum anv_fast_clear_type fast_clear_type =
312 anv_layout_to_fast_clear_type(&device->info, iview->image,
313 VK_IMAGE_ASPECT_COLOR_BIT,
314 cmd_state->pass->attachments[att].first_subpass_layout);
315 switch (fast_clear_type) {
316 case ANV_FAST_CLEAR_NONE:
317 att_state->fast_clear = false;
318 break;
319 case ANV_FAST_CLEAR_DEFAULT_VALUE:
320 att_state->fast_clear = att_state->clear_color_is_zero;
321 break;
322 case ANV_FAST_CLEAR_ANY:
323 att_state->fast_clear = true;
324 break;
325 }
326
327 /* Potentially, we could do partial fast-clears but doing so has crazy
328 * alignment restrictions. It's easier to just restrict to full size
329 * fast clears for now.
330 */
331 if (render_area.offset.x != 0 ||
332 render_area.offset.y != 0 ||
333 render_area.extent.width != iview->extent.width ||
334 render_area.extent.height != iview->extent.height)
335 att_state->fast_clear = false;
336
337 /* On Broadwell and earlier, we can only handle 0/1 clear colors */
338 if (GEN_GEN <= 8 && !att_state->clear_color_is_zero_one)
339 att_state->fast_clear = false;
340
341 /* We only allow fast clears to the first slice of an image (level 0,
342 * layer 0) and only for the entire slice. This guarantees us that, at
343 * any given time, there is only one clear color on any given image at
344 * any given time. At the time of our testing (Jan 17, 2018), there
345 * were no known applications which would benefit from fast-clearing
346 * more than just the first slice.
347 */
348 if (att_state->fast_clear &&
349 (iview->planes[0].isl.base_level > 0 ||
350 iview->planes[0].isl.base_array_layer > 0)) {
351 anv_perf_warn(device->instance, iview->image,
352 "Rendering with multi-lod or multi-layer framebuffer "
353 "with LOAD_OP_LOAD and baseMipLevel > 0 or "
354 "baseArrayLayer > 0. Not fast clearing.");
355 att_state->fast_clear = false;
356 } else if (att_state->fast_clear && cmd_state->framebuffer->layers > 1) {
357 anv_perf_warn(device->instance, iview->image,
358 "Rendering to a multi-layer framebuffer with "
359 "LOAD_OP_CLEAR. Only fast-clearing the first slice");
360 }
361
362 if (att_state->fast_clear)
363 *fast_clear_color = clear_color;
364 } else {
365 att_state->fast_clear = false;
366 }
367 }
368
369 static void
370 depth_stencil_attachment_compute_aux_usage(struct anv_device *device,
371 struct anv_cmd_state *cmd_state,
372 uint32_t att, VkRect2D render_area)
373 {
374 struct anv_render_pass_attachment *pass_att =
375 &cmd_state->pass->attachments[att];
376 struct anv_attachment_state *att_state = &cmd_state->attachments[att];
377 struct anv_image_view *iview = cmd_state->framebuffer->attachments[att];
378
379 /* These will be initialized after the first subpass transition. */
380 att_state->aux_usage = ISL_AUX_USAGE_NONE;
381 att_state->input_aux_usage = ISL_AUX_USAGE_NONE;
382
383 if (GEN_GEN == 7) {
384 /* We don't do any HiZ or depth fast-clears on gen7 yet */
385 att_state->fast_clear = false;
386 return;
387 }
388
389 if (!(att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
390 /* If we're just clearing stencil, we can always HiZ clear */
391 att_state->fast_clear = true;
392 return;
393 }
394
395 /* Default to false for now */
396 att_state->fast_clear = false;
397
398 /* We must have depth in order to have HiZ */
399 if (!(iview->image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT))
400 return;
401
402 const enum isl_aux_usage first_subpass_aux_usage =
403 anv_layout_to_aux_usage(&device->info, iview->image,
404 VK_IMAGE_ASPECT_DEPTH_BIT,
405 pass_att->first_subpass_layout);
406 if (first_subpass_aux_usage != ISL_AUX_USAGE_HIZ)
407 return;
408
409 if (!blorp_can_hiz_clear_depth(GEN_GEN,
410 iview->planes[0].isl.format,
411 iview->image->samples,
412 render_area.offset.x,
413 render_area.offset.y,
414 render_area.offset.x +
415 render_area.extent.width,
416 render_area.offset.y +
417 render_area.extent.height))
418 return;
419
420 if (att_state->clear_value.depthStencil.depth != ANV_HZ_FC_VAL)
421 return;
422
423 if (GEN_GEN == 8 && anv_can_sample_with_hiz(&device->info, iview->image)) {
424 /* Only gen9+ supports returning ANV_HZ_FC_VAL when sampling a
425 * fast-cleared portion of a HiZ buffer. Testing has revealed that Gen8
426 * only supports returning 0.0f. Gens prior to gen8 do not support this
427 * feature at all.
428 */
429 return;
430 }
431
432 /* If we got here, then we can fast clear */
433 att_state->fast_clear = true;
434 }
435
436 static bool
437 need_input_attachment_state(const struct anv_render_pass_attachment *att)
438 {
439 if (!(att->usage & VK_IMAGE_USAGE_INPUT_ATTACHMENT_BIT))
440 return false;
441
442 /* We only allocate input attachment states for color surfaces. Compression
443 * is not yet enabled for depth textures and stencil doesn't allow
444 * compression so we can just use the texture surface state from the view.
445 */
446 return vk_format_is_color(att->format);
447 }
448
449 /* Transitions a HiZ-enabled depth buffer from one layout to another. Unless
450 * the initial layout is undefined, the HiZ buffer and depth buffer will
451 * represent the same data at the end of this operation.
452 */
453 static void
454 transition_depth_buffer(struct anv_cmd_buffer *cmd_buffer,
455 const struct anv_image *image,
456 VkImageLayout initial_layout,
457 VkImageLayout final_layout)
458 {
459 const bool hiz_enabled = ISL_AUX_USAGE_HIZ ==
460 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
461 VK_IMAGE_ASPECT_DEPTH_BIT, initial_layout);
462 const bool enable_hiz = ISL_AUX_USAGE_HIZ ==
463 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
464 VK_IMAGE_ASPECT_DEPTH_BIT, final_layout);
465
466 enum isl_aux_op hiz_op;
467 if (hiz_enabled && !enable_hiz) {
468 hiz_op = ISL_AUX_OP_FULL_RESOLVE;
469 } else if (!hiz_enabled && enable_hiz) {
470 hiz_op = ISL_AUX_OP_AMBIGUATE;
471 } else {
472 assert(hiz_enabled == enable_hiz);
473 /* If the same buffer will be used, no resolves are necessary. */
474 hiz_op = ISL_AUX_OP_NONE;
475 }
476
477 if (hiz_op != ISL_AUX_OP_NONE)
478 anv_image_hiz_op(cmd_buffer, image, VK_IMAGE_ASPECT_DEPTH_BIT,
479 0, 0, 1, hiz_op);
480 }
481
482 #define MI_PREDICATE_SRC0 0x2400
483 #define MI_PREDICATE_SRC1 0x2408
484
485 static void
486 set_image_compressed_bit(struct anv_cmd_buffer *cmd_buffer,
487 const struct anv_image *image,
488 VkImageAspectFlagBits aspect,
489 uint32_t level,
490 uint32_t base_layer, uint32_t layer_count,
491 bool compressed)
492 {
493 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
494
495 /* We only have compression tracking for CCS_E */
496 if (image->planes[plane].aux_usage != ISL_AUX_USAGE_CCS_E)
497 return;
498
499 for (uint32_t a = 0; a < layer_count; a++) {
500 uint32_t layer = base_layer + a;
501 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
502 sdi.Address = anv_image_get_compression_state_addr(cmd_buffer->device,
503 image, aspect,
504 level, layer);
505 sdi.ImmediateData = compressed ? UINT32_MAX : 0;
506 }
507 }
508 }
509
510 static void
511 set_image_fast_clear_state(struct anv_cmd_buffer *cmd_buffer,
512 const struct anv_image *image,
513 VkImageAspectFlagBits aspect,
514 enum anv_fast_clear_type fast_clear)
515 {
516 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
517 sdi.Address = anv_image_get_fast_clear_type_addr(cmd_buffer->device,
518 image, aspect);
519 sdi.ImmediateData = fast_clear;
520 }
521
522 /* Whenever we have fast-clear, we consider that slice to be compressed.
523 * This makes building predicates much easier.
524 */
525 if (fast_clear != ANV_FAST_CLEAR_NONE)
526 set_image_compressed_bit(cmd_buffer, image, aspect, 0, 0, 1, true);
527 }
528
529 #if GEN_IS_HASWELL || GEN_GEN >= 8
530 static inline uint32_t
531 mi_alu(uint32_t opcode, uint32_t operand1, uint32_t operand2)
532 {
533 struct GENX(MI_MATH_ALU_INSTRUCTION) instr = {
534 .ALUOpcode = opcode,
535 .Operand1 = operand1,
536 .Operand2 = operand2,
537 };
538
539 uint32_t dw;
540 GENX(MI_MATH_ALU_INSTRUCTION_pack)(NULL, &dw, &instr);
541
542 return dw;
543 }
544 #endif
545
546 #define CS_GPR(n) (0x2600 + (n) * 8)
547
548 /* This is only really practical on haswell and above because it requires
549 * MI math in order to get it correct.
550 */
551 #if GEN_GEN >= 8 || GEN_IS_HASWELL
552 static void
553 anv_cmd_compute_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
554 const struct anv_image *image,
555 VkImageAspectFlagBits aspect,
556 uint32_t level, uint32_t array_layer,
557 enum isl_aux_op resolve_op,
558 enum anv_fast_clear_type fast_clear_supported)
559 {
560 struct anv_address fast_clear_type_addr =
561 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
562
563 /* Name some registers */
564 const int image_fc_reg = MI_ALU_REG0;
565 const int fc_imm_reg = MI_ALU_REG1;
566 const int pred_reg = MI_ALU_REG2;
567
568 uint32_t *dw;
569
570 if (resolve_op == ISL_AUX_OP_FULL_RESOLVE) {
571 /* In this case, we're doing a full resolve which means we want the
572 * resolve to happen if any compression (including fast-clears) is
573 * present.
574 *
575 * In order to simplify the logic a bit, we make the assumption that,
576 * if the first slice has been fast-cleared, it is also marked as
577 * compressed. See also set_image_fast_clear_state.
578 */
579 struct anv_address compression_state_addr =
580 anv_image_get_compression_state_addr(cmd_buffer->device, image,
581 aspect, level, array_layer);
582 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
583 lrm.RegisterAddress = MI_PREDICATE_SRC0;
584 lrm.MemoryAddress = compression_state_addr;
585 }
586 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
587 sdi.Address = compression_state_addr;
588 sdi.ImmediateData = 0;
589 }
590
591 if (level == 0 && array_layer == 0) {
592 /* If the predicate is true, we want to write 0 to the fast clear type
593 * and, if it's false, leave it alone. We can do this by writing
594 *
595 * clear_type = clear_type & ~predicate;
596 */
597 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
598 lrm.RegisterAddress = CS_GPR(image_fc_reg);
599 lrm.MemoryAddress = fast_clear_type_addr;
600 }
601 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_REG), lrr) {
602 lrr.DestinationRegisterAddress = CS_GPR(pred_reg);
603 lrr.SourceRegisterAddress = MI_PREDICATE_SRC0;
604 }
605
606 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
607 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
608 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
609 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
610 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
611
612 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
613 srm.MemoryAddress = fast_clear_type_addr;
614 srm.RegisterAddress = CS_GPR(image_fc_reg);
615 }
616 }
617 } else if (level == 0 && array_layer == 0) {
618 /* In this case, we are doing a partial resolve to get rid of fast-clear
619 * colors. We don't care about the compression state but we do care
620 * about how much fast clear is allowed by the final layout.
621 */
622 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
623 assert(fast_clear_supported < ANV_FAST_CLEAR_ANY);
624
625 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
626 lrm.RegisterAddress = CS_GPR(image_fc_reg);
627 lrm.MemoryAddress = fast_clear_type_addr;
628 }
629 emit_lri(&cmd_buffer->batch, CS_GPR(image_fc_reg) + 4, 0);
630
631 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg), fast_clear_supported);
632 emit_lri(&cmd_buffer->batch, CS_GPR(fc_imm_reg) + 4, 0);
633
634 /* We need to compute (fast_clear_supported < image->fast_clear).
635 * We do this by subtracting and storing the carry bit.
636 */
637 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
638 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, fc_imm_reg);
639 dw[2] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCB, image_fc_reg);
640 dw[3] = mi_alu(MI_ALU_SUB, 0, 0);
641 dw[4] = mi_alu(MI_ALU_STORE, pred_reg, MI_ALU_CF);
642
643 /* Store the predicate */
644 emit_lrr(&cmd_buffer->batch, MI_PREDICATE_SRC0, CS_GPR(pred_reg));
645
646 /* If the predicate is true, we want to write 0 to the fast clear type
647 * and, if it's false, leave it alone. We can do this by writing
648 *
649 * clear_type = clear_type & ~predicate;
650 */
651 dw = anv_batch_emitn(&cmd_buffer->batch, 5, GENX(MI_MATH));
652 dw[1] = mi_alu(MI_ALU_LOAD, MI_ALU_SRCA, image_fc_reg);
653 dw[2] = mi_alu(MI_ALU_LOADINV, MI_ALU_SRCB, pred_reg);
654 dw[3] = mi_alu(MI_ALU_AND, 0, 0);
655 dw[4] = mi_alu(MI_ALU_STORE, image_fc_reg, MI_ALU_ACCU);
656
657 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_REGISTER_MEM), srm) {
658 srm.RegisterAddress = CS_GPR(image_fc_reg);
659 srm.MemoryAddress = fast_clear_type_addr;
660 }
661 } else {
662 /* In this case, we're trying to do a partial resolve on a slice that
663 * doesn't have clear color. There's nothing to do.
664 */
665 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
666 return;
667 }
668
669 /* We use the first half of src0 for the actual predicate. Set the second
670 * half of src0 and all of src1 to 0 as the predicate operation will be
671 * doing an implicit src0 != src1.
672 */
673 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
674 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
675 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
676
677 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
678 mip.LoadOperation = LOAD_LOADINV;
679 mip.CombineOperation = COMBINE_SET;
680 mip.CompareOperation = COMPARE_SRCS_EQUAL;
681 }
682 }
683 #endif /* GEN_GEN >= 8 || GEN_IS_HASWELL */
684
685 #if GEN_GEN <= 8
686 static void
687 anv_cmd_simple_resolve_predicate(struct anv_cmd_buffer *cmd_buffer,
688 const struct anv_image *image,
689 VkImageAspectFlagBits aspect,
690 uint32_t level, uint32_t array_layer,
691 enum isl_aux_op resolve_op,
692 enum anv_fast_clear_type fast_clear_supported)
693 {
694 struct anv_address fast_clear_type_addr =
695 anv_image_get_fast_clear_type_addr(cmd_buffer->device, image, aspect);
696
697 /* This only works for partial resolves and only when the clear color is
698 * all or nothing. On the upside, this emits less command streamer code
699 * and works on Ivybridge and Bay Trail.
700 */
701 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
702 assert(fast_clear_supported != ANV_FAST_CLEAR_ANY);
703
704 /* We don't support fast clears on anything other than the first slice. */
705 if (level > 0 || array_layer > 0)
706 return;
707
708 /* On gen8, we don't have a concept of default clear colors because we
709 * can't sample from CCS surfaces. It's enough to just load the fast clear
710 * state into the predicate register.
711 */
712 anv_batch_emit(&cmd_buffer->batch, GENX(MI_LOAD_REGISTER_MEM), lrm) {
713 lrm.RegisterAddress = MI_PREDICATE_SRC0;
714 lrm.MemoryAddress = fast_clear_type_addr;
715 }
716 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
717 sdi.Address = fast_clear_type_addr;
718 sdi.ImmediateData = 0;
719 }
720
721 /* We use the first half of src0 for the actual predicate. Set the second
722 * half of src0 and all of src1 to 0 as the predicate operation will be
723 * doing an implicit src0 != src1.
724 */
725 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC0 + 4, 0);
726 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 , 0);
727 emit_lri(&cmd_buffer->batch, MI_PREDICATE_SRC1 + 4, 0);
728
729 anv_batch_emit(&cmd_buffer->batch, GENX(MI_PREDICATE), mip) {
730 mip.LoadOperation = LOAD_LOADINV;
731 mip.CombineOperation = COMBINE_SET;
732 mip.CompareOperation = COMPARE_SRCS_EQUAL;
733 }
734 }
735 #endif /* GEN_GEN <= 8 */
736
737 static void
738 anv_cmd_predicated_ccs_resolve(struct anv_cmd_buffer *cmd_buffer,
739 const struct anv_image *image,
740 VkImageAspectFlagBits aspect,
741 uint32_t level, uint32_t array_layer,
742 enum isl_aux_op resolve_op,
743 enum anv_fast_clear_type fast_clear_supported)
744 {
745 const uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
746
747 #if GEN_GEN >= 9
748 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
749 aspect, level, array_layer,
750 resolve_op, fast_clear_supported);
751 #else /* GEN_GEN <= 8 */
752 anv_cmd_simple_resolve_predicate(cmd_buffer, image,
753 aspect, level, array_layer,
754 resolve_op, fast_clear_supported);
755 #endif
756
757 /* CCS_D only supports full resolves and BLORP will assert on us if we try
758 * to do a partial resolve on a CCS_D surface.
759 */
760 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
761 image->planes[plane].aux_usage == ISL_AUX_USAGE_NONE)
762 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
763
764 anv_image_ccs_op(cmd_buffer, image, aspect, level,
765 array_layer, 1, resolve_op, NULL, true);
766 }
767
768 static void
769 anv_cmd_predicated_mcs_resolve(struct anv_cmd_buffer *cmd_buffer,
770 const struct anv_image *image,
771 VkImageAspectFlagBits aspect,
772 uint32_t array_layer,
773 enum isl_aux_op resolve_op,
774 enum anv_fast_clear_type fast_clear_supported)
775 {
776 assert(aspect == VK_IMAGE_ASPECT_COLOR_BIT);
777 assert(resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE);
778
779 #if GEN_GEN >= 8 || GEN_IS_HASWELL
780 anv_cmd_compute_resolve_predicate(cmd_buffer, image,
781 aspect, 0, array_layer,
782 resolve_op, fast_clear_supported);
783
784 anv_image_mcs_op(cmd_buffer, image, aspect,
785 array_layer, 1, resolve_op, NULL, true);
786 #else
787 unreachable("MCS resolves are unsupported on Ivybridge and Bay Trail");
788 #endif
789 }
790
791 void
792 genX(cmd_buffer_mark_image_written)(struct anv_cmd_buffer *cmd_buffer,
793 const struct anv_image *image,
794 VkImageAspectFlagBits aspect,
795 enum isl_aux_usage aux_usage,
796 uint32_t level,
797 uint32_t base_layer,
798 uint32_t layer_count)
799 {
800 /* The aspect must be exactly one of the image aspects. */
801 assert(util_bitcount(aspect) == 1 && (aspect & image->aspects));
802
803 /* The only compression types with more than just fast-clears are MCS,
804 * CCS_E, and HiZ. With HiZ we just trust the layout and don't actually
805 * track the current fast-clear and compression state. This leaves us
806 * with just MCS and CCS_E.
807 */
808 if (aux_usage != ISL_AUX_USAGE_CCS_E &&
809 aux_usage != ISL_AUX_USAGE_MCS)
810 return;
811
812 set_image_compressed_bit(cmd_buffer, image, aspect,
813 level, base_layer, layer_count, true);
814 }
815
816 static void
817 init_fast_clear_color(struct anv_cmd_buffer *cmd_buffer,
818 const struct anv_image *image,
819 VkImageAspectFlagBits aspect)
820 {
821 assert(cmd_buffer && image);
822 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
823
824 set_image_fast_clear_state(cmd_buffer, image, aspect,
825 ANV_FAST_CLEAR_NONE);
826
827 /* The fast clear value dword(s) will be copied into a surface state object.
828 * Ensure that the restrictions of the fields in the dword(s) are followed.
829 *
830 * CCS buffers on SKL+ can have any value set for the clear colors.
831 */
832 if (image->samples == 1 && GEN_GEN >= 9)
833 return;
834
835 /* Other combinations of auxiliary buffers and platforms require specific
836 * values in the clear value dword(s).
837 */
838 struct anv_address addr =
839 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
840
841 if (GEN_GEN >= 9) {
842 for (unsigned i = 0; i < 4; i++) {
843 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
844 sdi.Address = addr;
845 sdi.Address.offset += i * 4;
846 /* MCS buffers on SKL+ can only have 1/0 clear colors. */
847 assert(image->samples > 1);
848 sdi.ImmediateData = 0;
849 }
850 }
851 } else {
852 anv_batch_emit(&cmd_buffer->batch, GENX(MI_STORE_DATA_IMM), sdi) {
853 sdi.Address = addr;
854 if (GEN_GEN >= 8 || GEN_IS_HASWELL) {
855 /* Pre-SKL, the dword containing the clear values also contains
856 * other fields, so we need to initialize those fields to match the
857 * values that would be in a color attachment.
858 */
859 sdi.ImmediateData = ISL_CHANNEL_SELECT_RED << 25 |
860 ISL_CHANNEL_SELECT_GREEN << 22 |
861 ISL_CHANNEL_SELECT_BLUE << 19 |
862 ISL_CHANNEL_SELECT_ALPHA << 16;
863 } else if (GEN_GEN == 7) {
864 /* On IVB, the dword containing the clear values also contains
865 * other fields that must be zero or can be zero.
866 */
867 sdi.ImmediateData = 0;
868 }
869 }
870 }
871 }
872
873 /* Copy the fast-clear value dword(s) between a surface state object and an
874 * image's fast clear state buffer.
875 */
876 static void
877 genX(copy_fast_clear_dwords)(struct anv_cmd_buffer *cmd_buffer,
878 struct anv_state surface_state,
879 const struct anv_image *image,
880 VkImageAspectFlagBits aspect,
881 bool copy_from_surface_state)
882 {
883 assert(cmd_buffer && image);
884 assert(image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
885
886 struct anv_address ss_clear_addr = {
887 .bo = &cmd_buffer->device->surface_state_pool.block_pool.bo,
888 .offset = surface_state.offset +
889 cmd_buffer->device->isl_dev.ss.clear_value_offset,
890 };
891 const struct anv_address entry_addr =
892 anv_image_get_clear_color_addr(cmd_buffer->device, image, aspect);
893 unsigned copy_size = cmd_buffer->device->isl_dev.ss.clear_value_size;
894
895 if (copy_from_surface_state) {
896 genX(cmd_buffer_mi_memcpy)(cmd_buffer, entry_addr,
897 ss_clear_addr, copy_size);
898 } else {
899 genX(cmd_buffer_mi_memcpy)(cmd_buffer, ss_clear_addr,
900 entry_addr, copy_size);
901
902 /* Updating a surface state object may require that the state cache be
903 * invalidated. From the SKL PRM, Shared Functions -> State -> State
904 * Caching:
905 *
906 * Whenever the RENDER_SURFACE_STATE object in memory pointed to by
907 * the Binding Table Pointer (BTP) and Binding Table Index (BTI) is
908 * modified [...], the L1 state cache must be invalidated to ensure
909 * the new surface or sampler state is fetched from system memory.
910 *
911 * In testing, SKL doesn't actually seem to need this, but HSW does.
912 */
913 cmd_buffer->state.pending_pipe_bits |=
914 ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
915 }
916 }
917
918 /**
919 * @brief Transitions a color buffer from one layout to another.
920 *
921 * See section 6.1.1. Image Layout Transitions of the Vulkan 1.0.50 spec for
922 * more information.
923 *
924 * @param level_count VK_REMAINING_MIP_LEVELS isn't supported.
925 * @param layer_count VK_REMAINING_ARRAY_LAYERS isn't supported. For 3D images,
926 * this represents the maximum layers to transition at each
927 * specified miplevel.
928 */
929 static void
930 transition_color_buffer(struct anv_cmd_buffer *cmd_buffer,
931 const struct anv_image *image,
932 VkImageAspectFlagBits aspect,
933 const uint32_t base_level, uint32_t level_count,
934 uint32_t base_layer, uint32_t layer_count,
935 VkImageLayout initial_layout,
936 VkImageLayout final_layout)
937 {
938 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
939 /* Validate the inputs. */
940 assert(cmd_buffer);
941 assert(image && image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV);
942 /* These values aren't supported for simplicity's sake. */
943 assert(level_count != VK_REMAINING_MIP_LEVELS &&
944 layer_count != VK_REMAINING_ARRAY_LAYERS);
945 /* Ensure the subresource range is valid. */
946 uint64_t last_level_num = base_level + level_count;
947 const uint32_t max_depth = anv_minify(image->extent.depth, base_level);
948 UNUSED const uint32_t image_layers = MAX2(image->array_size, max_depth);
949 assert((uint64_t)base_layer + layer_count <= image_layers);
950 assert(last_level_num <= image->levels);
951 /* The spec disallows these final layouts. */
952 assert(final_layout != VK_IMAGE_LAYOUT_UNDEFINED &&
953 final_layout != VK_IMAGE_LAYOUT_PREINITIALIZED);
954
955 /* No work is necessary if the layout stays the same or if this subresource
956 * range lacks auxiliary data.
957 */
958 if (initial_layout == final_layout)
959 return;
960
961 uint32_t plane = anv_image_aspect_to_plane(image->aspects, aspect);
962
963 if (image->planes[plane].shadow_surface.isl.size_B > 0 &&
964 final_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
965 /* This surface is a linear compressed image with a tiled shadow surface
966 * for texturing. The client is about to use it in READ_ONLY_OPTIMAL so
967 * we need to ensure the shadow copy is up-to-date.
968 */
969 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
970 assert(image->planes[plane].surface.isl.tiling == ISL_TILING_LINEAR);
971 assert(image->planes[plane].shadow_surface.isl.tiling != ISL_TILING_LINEAR);
972 assert(isl_format_is_compressed(image->planes[plane].surface.isl.format));
973 assert(plane == 0);
974 anv_image_copy_to_shadow(cmd_buffer, image,
975 base_level, level_count,
976 base_layer, layer_count);
977 }
978
979 if (base_layer >= anv_image_aux_layers(image, aspect, base_level))
980 return;
981
982 assert(image->tiling == VK_IMAGE_TILING_OPTIMAL);
983
984 if (initial_layout == VK_IMAGE_LAYOUT_UNDEFINED ||
985 initial_layout == VK_IMAGE_LAYOUT_PREINITIALIZED) {
986 /* A subresource in the undefined layout may have been aliased and
987 * populated with any arrangement of bits. Therefore, we must initialize
988 * the related aux buffer and clear buffer entry with desirable values.
989 * An initial layout of PREINITIALIZED is the same as UNDEFINED for
990 * images with VK_IMAGE_TILING_OPTIMAL.
991 *
992 * Initialize the relevant clear buffer entries.
993 */
994 if (base_level == 0 && base_layer == 0)
995 init_fast_clear_color(cmd_buffer, image, aspect);
996
997 /* Initialize the aux buffers to enable correct rendering. In order to
998 * ensure that things such as storage images work correctly, aux buffers
999 * need to be initialized to valid data.
1000 *
1001 * Having an aux buffer with invalid data is a problem for two reasons:
1002 *
1003 * 1) Having an invalid value in the buffer can confuse the hardware.
1004 * For instance, with CCS_E on SKL, a two-bit CCS value of 2 is
1005 * invalid and leads to the hardware doing strange things. It
1006 * doesn't hang as far as we can tell but rendering corruption can
1007 * occur.
1008 *
1009 * 2) If this transition is into the GENERAL layout and we then use the
1010 * image as a storage image, then we must have the aux buffer in the
1011 * pass-through state so that, if we then go to texture from the
1012 * image, we get the results of our storage image writes and not the
1013 * fast clear color or other random data.
1014 *
1015 * For CCS both of the problems above are real demonstrable issues. In
1016 * that case, the only thing we can do is to perform an ambiguate to
1017 * transition the aux surface into the pass-through state.
1018 *
1019 * For MCS, (2) is never an issue because we don't support multisampled
1020 * storage images. In theory, issue (1) is a problem with MCS but we've
1021 * never seen it in the wild. For 4x and 16x, all bit patters could, in
1022 * theory, be interpreted as something but we don't know that all bit
1023 * patterns are actually valid. For 2x and 8x, you could easily end up
1024 * with the MCS referring to an invalid plane because not all bits of
1025 * the MCS value are actually used. Even though we've never seen issues
1026 * in the wild, it's best to play it safe and initialize the MCS. We
1027 * can use a fast-clear for MCS because we only ever touch from render
1028 * and texture (no image load store).
1029 */
1030 if (image->samples == 1) {
1031 for (uint32_t l = 0; l < level_count; l++) {
1032 const uint32_t level = base_level + l;
1033
1034 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1035 if (base_layer >= aux_layers)
1036 break; /* We will only get fewer layers as level increases */
1037 uint32_t level_layer_count =
1038 MIN2(layer_count, aux_layers - base_layer);
1039
1040 anv_image_ccs_op(cmd_buffer, image, aspect, level,
1041 base_layer, level_layer_count,
1042 ISL_AUX_OP_AMBIGUATE, NULL, false);
1043
1044 if (image->planes[plane].aux_usage == ISL_AUX_USAGE_CCS_E) {
1045 set_image_compressed_bit(cmd_buffer, image, aspect,
1046 level, base_layer, level_layer_count,
1047 false);
1048 }
1049 }
1050 } else {
1051 if (image->samples == 4 || image->samples == 16) {
1052 anv_perf_warn(cmd_buffer->device->instance, image,
1053 "Doing a potentially unnecessary fast-clear to "
1054 "define an MCS buffer.");
1055 }
1056
1057 assert(base_level == 0 && level_count == 1);
1058 anv_image_mcs_op(cmd_buffer, image, aspect,
1059 base_layer, layer_count,
1060 ISL_AUX_OP_FAST_CLEAR, NULL, false);
1061 }
1062 return;
1063 }
1064
1065 const enum isl_aux_usage initial_aux_usage =
1066 anv_layout_to_aux_usage(devinfo, image, aspect, initial_layout);
1067 const enum isl_aux_usage final_aux_usage =
1068 anv_layout_to_aux_usage(devinfo, image, aspect, final_layout);
1069
1070 /* The current code assumes that there is no mixing of CCS_E and CCS_D.
1071 * We can handle transitions between CCS_D/E to and from NONE. What we
1072 * don't yet handle is switching between CCS_E and CCS_D within a given
1073 * image. Doing so in a performant way requires more detailed aux state
1074 * tracking such as what is done in i965. For now, just assume that we
1075 * only have one type of compression.
1076 */
1077 assert(initial_aux_usage == ISL_AUX_USAGE_NONE ||
1078 final_aux_usage == ISL_AUX_USAGE_NONE ||
1079 initial_aux_usage == final_aux_usage);
1080
1081 /* If initial aux usage is NONE, there is nothing to resolve */
1082 if (initial_aux_usage == ISL_AUX_USAGE_NONE)
1083 return;
1084
1085 enum isl_aux_op resolve_op = ISL_AUX_OP_NONE;
1086
1087 /* If the initial layout supports more fast clear than the final layout
1088 * then we need at least a partial resolve.
1089 */
1090 const enum anv_fast_clear_type initial_fast_clear =
1091 anv_layout_to_fast_clear_type(devinfo, image, aspect, initial_layout);
1092 const enum anv_fast_clear_type final_fast_clear =
1093 anv_layout_to_fast_clear_type(devinfo, image, aspect, final_layout);
1094 if (final_fast_clear < initial_fast_clear)
1095 resolve_op = ISL_AUX_OP_PARTIAL_RESOLVE;
1096
1097 if (initial_aux_usage == ISL_AUX_USAGE_CCS_E &&
1098 final_aux_usage != ISL_AUX_USAGE_CCS_E)
1099 resolve_op = ISL_AUX_OP_FULL_RESOLVE;
1100
1101 if (resolve_op == ISL_AUX_OP_NONE)
1102 return;
1103
1104 /* Perform a resolve to synchronize data between the main and aux buffer.
1105 * Before we begin, we must satisfy the cache flushing requirement specified
1106 * in the Sky Lake PRM Vol. 7, "MCS Buffer for Render Target(s)":
1107 *
1108 * Any transition from any value in {Clear, Render, Resolve} to a
1109 * different value in {Clear, Render, Resolve} requires end of pipe
1110 * synchronization.
1111 *
1112 * We perform a flush of the write cache before and after the clear and
1113 * resolve operations to meet this requirement.
1114 *
1115 * Unlike other drawing, fast clear operations are not properly
1116 * synchronized. The first PIPE_CONTROL here likely ensures that the
1117 * contents of the previous render or clear hit the render target before we
1118 * resolve and the second likely ensures that the resolve is complete before
1119 * we do any more rendering or clearing.
1120 */
1121 cmd_buffer->state.pending_pipe_bits |=
1122 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1123
1124 for (uint32_t l = 0; l < level_count; l++) {
1125 uint32_t level = base_level + l;
1126
1127 uint32_t aux_layers = anv_image_aux_layers(image, aspect, level);
1128 if (base_layer >= aux_layers)
1129 break; /* We will only get fewer layers as level increases */
1130 uint32_t level_layer_count =
1131 MIN2(layer_count, aux_layers - base_layer);
1132
1133 for (uint32_t a = 0; a < level_layer_count; a++) {
1134 uint32_t array_layer = base_layer + a;
1135 if (image->samples == 1) {
1136 anv_cmd_predicated_ccs_resolve(cmd_buffer, image, aspect,
1137 level, array_layer, resolve_op,
1138 final_fast_clear);
1139 } else {
1140 /* We only support fast-clear on the first layer so partial
1141 * resolves should not be used on other layers as they will use
1142 * the clear color stored in memory that is only valid for layer0.
1143 */
1144 if (resolve_op == ISL_AUX_OP_PARTIAL_RESOLVE &&
1145 array_layer != 0)
1146 continue;
1147
1148 anv_cmd_predicated_mcs_resolve(cmd_buffer, image, aspect,
1149 array_layer, resolve_op,
1150 final_fast_clear);
1151 }
1152 }
1153 }
1154
1155 cmd_buffer->state.pending_pipe_bits |=
1156 ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT | ANV_PIPE_CS_STALL_BIT;
1157 }
1158
1159 /**
1160 * Setup anv_cmd_state::attachments for vkCmdBeginRenderPass.
1161 */
1162 static VkResult
1163 genX(cmd_buffer_setup_attachments)(struct anv_cmd_buffer *cmd_buffer,
1164 struct anv_render_pass *pass,
1165 const VkRenderPassBeginInfo *begin)
1166 {
1167 const struct isl_device *isl_dev = &cmd_buffer->device->isl_dev;
1168 struct anv_cmd_state *state = &cmd_buffer->state;
1169
1170 vk_free(&cmd_buffer->pool->alloc, state->attachments);
1171
1172 if (pass->attachment_count > 0) {
1173 state->attachments = vk_alloc(&cmd_buffer->pool->alloc,
1174 pass->attachment_count *
1175 sizeof(state->attachments[0]),
1176 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1177 if (state->attachments == NULL) {
1178 /* Propagate VK_ERROR_OUT_OF_HOST_MEMORY to vkEndCommandBuffer */
1179 return anv_batch_set_error(&cmd_buffer->batch,
1180 VK_ERROR_OUT_OF_HOST_MEMORY);
1181 }
1182 } else {
1183 state->attachments = NULL;
1184 }
1185
1186 /* Reserve one for the NULL state. */
1187 unsigned num_states = 1;
1188 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1189 if (vk_format_is_color(pass->attachments[i].format))
1190 num_states++;
1191
1192 if (need_input_attachment_state(&pass->attachments[i]))
1193 num_states++;
1194 }
1195
1196 const uint32_t ss_stride = align_u32(isl_dev->ss.size, isl_dev->ss.align);
1197 state->render_pass_states =
1198 anv_state_stream_alloc(&cmd_buffer->surface_state_stream,
1199 num_states * ss_stride, isl_dev->ss.align);
1200
1201 struct anv_state next_state = state->render_pass_states;
1202 next_state.alloc_size = isl_dev->ss.size;
1203
1204 state->null_surface_state = next_state;
1205 next_state.offset += ss_stride;
1206 next_state.map += ss_stride;
1207
1208 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1209 if (vk_format_is_color(pass->attachments[i].format)) {
1210 state->attachments[i].color.state = next_state;
1211 next_state.offset += ss_stride;
1212 next_state.map += ss_stride;
1213 }
1214
1215 if (need_input_attachment_state(&pass->attachments[i])) {
1216 state->attachments[i].input.state = next_state;
1217 next_state.offset += ss_stride;
1218 next_state.map += ss_stride;
1219 }
1220 }
1221 assert(next_state.offset == state->render_pass_states.offset +
1222 state->render_pass_states.alloc_size);
1223
1224 if (begin) {
1225 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, begin->framebuffer);
1226 assert(pass->attachment_count == framebuffer->attachment_count);
1227
1228 isl_null_fill_state(isl_dev, state->null_surface_state.map,
1229 isl_extent3d(framebuffer->width,
1230 framebuffer->height,
1231 framebuffer->layers));
1232
1233 for (uint32_t i = 0; i < pass->attachment_count; ++i) {
1234 struct anv_render_pass_attachment *att = &pass->attachments[i];
1235 VkImageAspectFlags att_aspects = vk_format_aspects(att->format);
1236 VkImageAspectFlags clear_aspects = 0;
1237 VkImageAspectFlags load_aspects = 0;
1238
1239 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1240 /* color attachment */
1241 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1242 clear_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1243 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1244 load_aspects |= VK_IMAGE_ASPECT_COLOR_BIT;
1245 }
1246 } else {
1247 /* depthstencil attachment */
1248 if (att_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
1249 if (att->load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1250 clear_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1251 } else if (att->load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1252 load_aspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
1253 }
1254 }
1255 if (att_aspects & VK_IMAGE_ASPECT_STENCIL_BIT) {
1256 if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) {
1257 clear_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1258 } else if (att->stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD) {
1259 load_aspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
1260 }
1261 }
1262 }
1263
1264 state->attachments[i].current_layout = att->initial_layout;
1265 state->attachments[i].pending_clear_aspects = clear_aspects;
1266 state->attachments[i].pending_load_aspects = load_aspects;
1267 if (clear_aspects)
1268 state->attachments[i].clear_value = begin->pClearValues[i];
1269
1270 struct anv_image_view *iview = framebuffer->attachments[i];
1271 anv_assert(iview->vk_format == att->format);
1272
1273 const uint32_t num_layers = iview->planes[0].isl.array_len;
1274 state->attachments[i].pending_clear_views = (1 << num_layers) - 1;
1275
1276 union isl_color_value clear_color = { .u32 = { 0, } };
1277 if (att_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1278 anv_assert(iview->n_planes == 1);
1279 assert(att_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
1280 color_attachment_compute_aux_usage(cmd_buffer->device,
1281 state, i, begin->renderArea,
1282 &clear_color);
1283
1284 anv_image_fill_surface_state(cmd_buffer->device,
1285 iview->image,
1286 VK_IMAGE_ASPECT_COLOR_BIT,
1287 &iview->planes[0].isl,
1288 ISL_SURF_USAGE_RENDER_TARGET_BIT,
1289 state->attachments[i].aux_usage,
1290 &clear_color,
1291 0,
1292 &state->attachments[i].color,
1293 NULL);
1294
1295 add_surface_state_relocs(cmd_buffer, state->attachments[i].color);
1296 } else {
1297 depth_stencil_attachment_compute_aux_usage(cmd_buffer->device,
1298 state, i,
1299 begin->renderArea);
1300 }
1301
1302 if (need_input_attachment_state(&pass->attachments[i])) {
1303 anv_image_fill_surface_state(cmd_buffer->device,
1304 iview->image,
1305 VK_IMAGE_ASPECT_COLOR_BIT,
1306 &iview->planes[0].isl,
1307 ISL_SURF_USAGE_TEXTURE_BIT,
1308 state->attachments[i].input_aux_usage,
1309 &clear_color,
1310 0,
1311 &state->attachments[i].input,
1312 NULL);
1313
1314 add_surface_state_relocs(cmd_buffer, state->attachments[i].input);
1315 }
1316 }
1317 }
1318
1319 return VK_SUCCESS;
1320 }
1321
1322 VkResult
1323 genX(BeginCommandBuffer)(
1324 VkCommandBuffer commandBuffer,
1325 const VkCommandBufferBeginInfo* pBeginInfo)
1326 {
1327 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1328
1329 /* If this is the first vkBeginCommandBuffer, we must *initialize* the
1330 * command buffer's state. Otherwise, we must *reset* its state. In both
1331 * cases we reset it.
1332 *
1333 * From the Vulkan 1.0 spec:
1334 *
1335 * If a command buffer is in the executable state and the command buffer
1336 * was allocated from a command pool with the
1337 * VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT flag set, then
1338 * vkBeginCommandBuffer implicitly resets the command buffer, behaving
1339 * as if vkResetCommandBuffer had been called with
1340 * VK_COMMAND_BUFFER_RESET_RELEASE_RESOURCES_BIT not set. It then puts
1341 * the command buffer in the recording state.
1342 */
1343 anv_cmd_buffer_reset(cmd_buffer);
1344
1345 cmd_buffer->usage_flags = pBeginInfo->flags;
1346
1347 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY ||
1348 !(cmd_buffer->usage_flags & VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT));
1349
1350 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
1351
1352 /* We sometimes store vertex data in the dynamic state buffer for blorp
1353 * operations and our dynamic state stream may re-use data from previous
1354 * command buffers. In order to prevent stale cache data, we flush the VF
1355 * cache. We could do this on every blorp call but that's not really
1356 * needed as all of the data will get written by the CPU prior to the GPU
1357 * executing anything. The chances are fairly high that they will use
1358 * blorp at least once per primary command buffer so it shouldn't be
1359 * wasted.
1360 */
1361 if (cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY)
1362 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1363
1364 /* We send an "Indirect State Pointers Disable" packet at
1365 * EndCommandBuffer, so all push contant packets are ignored during a
1366 * context restore. Documentation says after that command, we need to
1367 * emit push constants again before any rendering operation. So we
1368 * flag them dirty here to make sure they get emitted.
1369 */
1370 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1371
1372 VkResult result = VK_SUCCESS;
1373 if (cmd_buffer->usage_flags &
1374 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1375 assert(pBeginInfo->pInheritanceInfo);
1376 cmd_buffer->state.pass =
1377 anv_render_pass_from_handle(pBeginInfo->pInheritanceInfo->renderPass);
1378 cmd_buffer->state.subpass =
1379 &cmd_buffer->state.pass->subpasses[pBeginInfo->pInheritanceInfo->subpass];
1380
1381 /* This is optional in the inheritance info. */
1382 cmd_buffer->state.framebuffer =
1383 anv_framebuffer_from_handle(pBeginInfo->pInheritanceInfo->framebuffer);
1384
1385 result = genX(cmd_buffer_setup_attachments)(cmd_buffer,
1386 cmd_buffer->state.pass, NULL);
1387
1388 /* Record that HiZ is enabled if we can. */
1389 if (cmd_buffer->state.framebuffer) {
1390 const struct anv_image_view * const iview =
1391 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
1392
1393 if (iview) {
1394 VkImageLayout layout =
1395 cmd_buffer->state.subpass->depth_stencil_attachment->layout;
1396
1397 enum isl_aux_usage aux_usage =
1398 anv_layout_to_aux_usage(&cmd_buffer->device->info, iview->image,
1399 VK_IMAGE_ASPECT_DEPTH_BIT, layout);
1400
1401 cmd_buffer->state.hiz_enabled = aux_usage == ISL_AUX_USAGE_HIZ;
1402 }
1403 }
1404
1405 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
1406 }
1407
1408 return result;
1409 }
1410
1411 /* From the PRM, Volume 2a:
1412 *
1413 * "Indirect State Pointers Disable
1414 *
1415 * At the completion of the post-sync operation associated with this pipe
1416 * control packet, the indirect state pointers in the hardware are
1417 * considered invalid; the indirect pointers are not saved in the context.
1418 * If any new indirect state commands are executed in the command stream
1419 * while the pipe control is pending, the new indirect state commands are
1420 * preserved.
1421 *
1422 * [DevIVB+]: Using Invalidate State Pointer (ISP) only inhibits context
1423 * restoring of Push Constant (3DSTATE_CONSTANT_*) commands. Push Constant
1424 * commands are only considered as Indirect State Pointers. Once ISP is
1425 * issued in a context, SW must initialize by programming push constant
1426 * commands for all the shaders (at least to zero length) before attempting
1427 * any rendering operation for the same context."
1428 *
1429 * 3DSTATE_CONSTANT_* packets are restored during a context restore,
1430 * even though they point to a BO that has been already unreferenced at
1431 * the end of the previous batch buffer. This has been fine so far since
1432 * we are protected by these scratch page (every address not covered by
1433 * a BO should be pointing to the scratch page). But on CNL, it is
1434 * causing a GPU hang during context restore at the 3DSTATE_CONSTANT_*
1435 * instruction.
1436 *
1437 * The flag "Indirect State Pointers Disable" in PIPE_CONTROL tells the
1438 * hardware to ignore previous 3DSTATE_CONSTANT_* packets during a
1439 * context restore, so the mentioned hang doesn't happen. However,
1440 * software must program push constant commands for all stages prior to
1441 * rendering anything. So we flag them dirty in BeginCommandBuffer.
1442 *
1443 * Finally, we also make sure to stall at pixel scoreboard to make sure the
1444 * constants have been loaded into the EUs prior to disable the push constants
1445 * so that it doesn't hang a previous 3DPRIMITIVE.
1446 */
1447 static void
1448 emit_isp_disable(struct anv_cmd_buffer *cmd_buffer)
1449 {
1450 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1451 pc.StallAtPixelScoreboard = true;
1452 pc.CommandStreamerStallEnable = true;
1453 }
1454 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1455 pc.IndirectStatePointersDisable = true;
1456 pc.CommandStreamerStallEnable = true;
1457 }
1458 }
1459
1460 VkResult
1461 genX(EndCommandBuffer)(
1462 VkCommandBuffer commandBuffer)
1463 {
1464 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1465
1466 if (anv_batch_has_error(&cmd_buffer->batch))
1467 return cmd_buffer->batch.status;
1468
1469 /* We want every command buffer to start with the PMA fix in a known state,
1470 * so we disable it at the end of the command buffer.
1471 */
1472 genX(cmd_buffer_enable_pma_fix)(cmd_buffer, false);
1473
1474 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
1475
1476 emit_isp_disable(cmd_buffer);
1477
1478 anv_cmd_buffer_end_batch_buffer(cmd_buffer);
1479
1480 return VK_SUCCESS;
1481 }
1482
1483 void
1484 genX(CmdExecuteCommands)(
1485 VkCommandBuffer commandBuffer,
1486 uint32_t commandBufferCount,
1487 const VkCommandBuffer* pCmdBuffers)
1488 {
1489 ANV_FROM_HANDLE(anv_cmd_buffer, primary, commandBuffer);
1490
1491 assert(primary->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
1492
1493 if (anv_batch_has_error(&primary->batch))
1494 return;
1495
1496 /* The secondary command buffers will assume that the PMA fix is disabled
1497 * when they begin executing. Make sure this is true.
1498 */
1499 genX(cmd_buffer_enable_pma_fix)(primary, false);
1500
1501 /* The secondary command buffer doesn't know which textures etc. have been
1502 * flushed prior to their execution. Apply those flushes now.
1503 */
1504 genX(cmd_buffer_apply_pipe_flushes)(primary);
1505
1506 for (uint32_t i = 0; i < commandBufferCount; i++) {
1507 ANV_FROM_HANDLE(anv_cmd_buffer, secondary, pCmdBuffers[i]);
1508
1509 assert(secondary->level == VK_COMMAND_BUFFER_LEVEL_SECONDARY);
1510 assert(!anv_batch_has_error(&secondary->batch));
1511
1512 if (secondary->usage_flags &
1513 VK_COMMAND_BUFFER_USAGE_RENDER_PASS_CONTINUE_BIT) {
1514 /* If we're continuing a render pass from the primary, we need to
1515 * copy the surface states for the current subpass into the storage
1516 * we allocated for them in BeginCommandBuffer.
1517 */
1518 struct anv_bo *ss_bo =
1519 &primary->device->surface_state_pool.block_pool.bo;
1520 struct anv_state src_state = primary->state.render_pass_states;
1521 struct anv_state dst_state = secondary->state.render_pass_states;
1522 assert(src_state.alloc_size == dst_state.alloc_size);
1523
1524 genX(cmd_buffer_so_memcpy)(primary,
1525 (struct anv_address) {
1526 .bo = ss_bo,
1527 .offset = dst_state.offset,
1528 },
1529 (struct anv_address) {
1530 .bo = ss_bo,
1531 .offset = src_state.offset,
1532 },
1533 src_state.alloc_size);
1534 }
1535
1536 anv_cmd_buffer_add_secondary(primary, secondary);
1537 }
1538
1539 /* The secondary may have selected a different pipeline (3D or compute) and
1540 * may have changed the current L3$ configuration. Reset our tracking
1541 * variables to invalid values to ensure that we re-emit these in the case
1542 * where we do any draws or compute dispatches from the primary after the
1543 * secondary has returned.
1544 */
1545 primary->state.current_pipeline = UINT32_MAX;
1546 primary->state.current_l3_config = NULL;
1547
1548 /* Each of the secondary command buffers will use its own state base
1549 * address. We need to re-emit state base address for the primary after
1550 * all of the secondaries are done.
1551 *
1552 * TODO: Maybe we want to make this a dirty bit to avoid extra state base
1553 * address calls?
1554 */
1555 genX(cmd_buffer_emit_state_base_address)(primary);
1556 }
1557
1558 #define IVB_L3SQCREG1_SQGHPCI_DEFAULT 0x00730000
1559 #define VLV_L3SQCREG1_SQGHPCI_DEFAULT 0x00d30000
1560 #define HSW_L3SQCREG1_SQGHPCI_DEFAULT 0x00610000
1561
1562 /**
1563 * Program the hardware to use the specified L3 configuration.
1564 */
1565 void
1566 genX(cmd_buffer_config_l3)(struct anv_cmd_buffer *cmd_buffer,
1567 const struct gen_l3_config *cfg)
1568 {
1569 assert(cfg);
1570 if (cfg == cmd_buffer->state.current_l3_config)
1571 return;
1572
1573 if (unlikely(INTEL_DEBUG & DEBUG_L3)) {
1574 intel_logd("L3 config transition: ");
1575 gen_dump_l3_config(cfg, stderr);
1576 }
1577
1578 const bool has_slm = cfg->n[GEN_L3P_SLM];
1579
1580 /* According to the hardware docs, the L3 partitioning can only be changed
1581 * while the pipeline is completely drained and the caches are flushed,
1582 * which involves a first PIPE_CONTROL flush which stalls the pipeline...
1583 */
1584 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1585 pc.DCFlushEnable = true;
1586 pc.PostSyncOperation = NoWrite;
1587 pc.CommandStreamerStallEnable = true;
1588 }
1589
1590 /* ...followed by a second pipelined PIPE_CONTROL that initiates
1591 * invalidation of the relevant caches. Note that because RO invalidation
1592 * happens at the top of the pipeline (i.e. right away as the PIPE_CONTROL
1593 * command is processed by the CS) we cannot combine it with the previous
1594 * stalling flush as the hardware documentation suggests, because that
1595 * would cause the CS to stall on previous rendering *after* RO
1596 * invalidation and wouldn't prevent the RO caches from being polluted by
1597 * concurrent rendering before the stall completes. This intentionally
1598 * doesn't implement the SKL+ hardware workaround suggesting to enable CS
1599 * stall on PIPE_CONTROLs with the texture cache invalidation bit set for
1600 * GPGPU workloads because the previous and subsequent PIPE_CONTROLs
1601 * already guarantee that there is no concurrent GPGPU kernel execution
1602 * (see SKL HSD 2132585).
1603 */
1604 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1605 pc.TextureCacheInvalidationEnable = true;
1606 pc.ConstantCacheInvalidationEnable = true;
1607 pc.InstructionCacheInvalidateEnable = true;
1608 pc.StateCacheInvalidationEnable = true;
1609 pc.PostSyncOperation = NoWrite;
1610 }
1611
1612 /* Now send a third stalling flush to make sure that invalidation is
1613 * complete when the L3 configuration registers are modified.
1614 */
1615 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
1616 pc.DCFlushEnable = true;
1617 pc.PostSyncOperation = NoWrite;
1618 pc.CommandStreamerStallEnable = true;
1619 }
1620
1621 #if GEN_GEN >= 8
1622
1623 assert(!cfg->n[GEN_L3P_IS] && !cfg->n[GEN_L3P_C] && !cfg->n[GEN_L3P_T]);
1624
1625 uint32_t l3cr;
1626 anv_pack_struct(&l3cr, GENX(L3CNTLREG),
1627 .SLMEnable = has_slm,
1628 #if GEN_GEN == 11
1629 /* WA_1406697149: Bit 9 "Error Detection Behavior Control" must be set
1630 * in L3CNTLREG register. The default setting of the bit is not the
1631 * desirable behavior.
1632 */
1633 .ErrorDetectionBehaviorControl = true,
1634 .UseFullWays = true,
1635 #endif
1636 .URBAllocation = cfg->n[GEN_L3P_URB],
1637 .ROAllocation = cfg->n[GEN_L3P_RO],
1638 .DCAllocation = cfg->n[GEN_L3P_DC],
1639 .AllAllocation = cfg->n[GEN_L3P_ALL]);
1640
1641 /* Set up the L3 partitioning. */
1642 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG_num), l3cr);
1643
1644 #else
1645
1646 const bool has_dc = cfg->n[GEN_L3P_DC] || cfg->n[GEN_L3P_ALL];
1647 const bool has_is = cfg->n[GEN_L3P_IS] || cfg->n[GEN_L3P_RO] ||
1648 cfg->n[GEN_L3P_ALL];
1649 const bool has_c = cfg->n[GEN_L3P_C] || cfg->n[GEN_L3P_RO] ||
1650 cfg->n[GEN_L3P_ALL];
1651 const bool has_t = cfg->n[GEN_L3P_T] || cfg->n[GEN_L3P_RO] ||
1652 cfg->n[GEN_L3P_ALL];
1653
1654 assert(!cfg->n[GEN_L3P_ALL]);
1655
1656 /* When enabled SLM only uses a portion of the L3 on half of the banks,
1657 * the matching space on the remaining banks has to be allocated to a
1658 * client (URB for all validated configurations) set to the
1659 * lower-bandwidth 2-bank address hashing mode.
1660 */
1661 const struct gen_device_info *devinfo = &cmd_buffer->device->info;
1662 const bool urb_low_bw = has_slm && !devinfo->is_baytrail;
1663 assert(!urb_low_bw || cfg->n[GEN_L3P_URB] == cfg->n[GEN_L3P_SLM]);
1664
1665 /* Minimum number of ways that can be allocated to the URB. */
1666 MAYBE_UNUSED const unsigned n0_urb = devinfo->is_baytrail ? 32 : 0;
1667 assert(cfg->n[GEN_L3P_URB] >= n0_urb);
1668
1669 uint32_t l3sqcr1, l3cr2, l3cr3;
1670 anv_pack_struct(&l3sqcr1, GENX(L3SQCREG1),
1671 .ConvertDC_UC = !has_dc,
1672 .ConvertIS_UC = !has_is,
1673 .ConvertC_UC = !has_c,
1674 .ConvertT_UC = !has_t);
1675 l3sqcr1 |=
1676 GEN_IS_HASWELL ? HSW_L3SQCREG1_SQGHPCI_DEFAULT :
1677 devinfo->is_baytrail ? VLV_L3SQCREG1_SQGHPCI_DEFAULT :
1678 IVB_L3SQCREG1_SQGHPCI_DEFAULT;
1679
1680 anv_pack_struct(&l3cr2, GENX(L3CNTLREG2),
1681 .SLMEnable = has_slm,
1682 .URBLowBandwidth = urb_low_bw,
1683 .URBAllocation = cfg->n[GEN_L3P_URB] - n0_urb,
1684 #if !GEN_IS_HASWELL
1685 .ALLAllocation = cfg->n[GEN_L3P_ALL],
1686 #endif
1687 .ROAllocation = cfg->n[GEN_L3P_RO],
1688 .DCAllocation = cfg->n[GEN_L3P_DC]);
1689
1690 anv_pack_struct(&l3cr3, GENX(L3CNTLREG3),
1691 .ISAllocation = cfg->n[GEN_L3P_IS],
1692 .ISLowBandwidth = 0,
1693 .CAllocation = cfg->n[GEN_L3P_C],
1694 .CLowBandwidth = 0,
1695 .TAllocation = cfg->n[GEN_L3P_T],
1696 .TLowBandwidth = 0);
1697
1698 /* Set up the L3 partitioning. */
1699 emit_lri(&cmd_buffer->batch, GENX(L3SQCREG1_num), l3sqcr1);
1700 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG2_num), l3cr2);
1701 emit_lri(&cmd_buffer->batch, GENX(L3CNTLREG3_num), l3cr3);
1702
1703 #if GEN_IS_HASWELL
1704 if (cmd_buffer->device->instance->physicalDevice.cmd_parser_version >= 4) {
1705 /* Enable L3 atomics on HSW if we have a DC partition, otherwise keep
1706 * them disabled to avoid crashing the system hard.
1707 */
1708 uint32_t scratch1, chicken3;
1709 anv_pack_struct(&scratch1, GENX(SCRATCH1),
1710 .L3AtomicDisable = !has_dc);
1711 anv_pack_struct(&chicken3, GENX(CHICKEN3),
1712 .L3AtomicDisableMask = true,
1713 .L3AtomicDisable = !has_dc);
1714 emit_lri(&cmd_buffer->batch, GENX(SCRATCH1_num), scratch1);
1715 emit_lri(&cmd_buffer->batch, GENX(CHICKEN3_num), chicken3);
1716 }
1717 #endif
1718
1719 #endif
1720
1721 cmd_buffer->state.current_l3_config = cfg;
1722 }
1723
1724 void
1725 genX(cmd_buffer_apply_pipe_flushes)(struct anv_cmd_buffer *cmd_buffer)
1726 {
1727 enum anv_pipe_bits bits = cmd_buffer->state.pending_pipe_bits;
1728
1729 /* Flushes are pipelined while invalidations are handled immediately.
1730 * Therefore, if we're flushing anything then we need to schedule a stall
1731 * before any invalidations can happen.
1732 */
1733 if (bits & ANV_PIPE_FLUSH_BITS)
1734 bits |= ANV_PIPE_NEEDS_CS_STALL_BIT;
1735
1736 /* If we're going to do an invalidate and we have a pending CS stall that
1737 * has yet to be resolved, we do the CS stall now.
1738 */
1739 if ((bits & ANV_PIPE_INVALIDATE_BITS) &&
1740 (bits & ANV_PIPE_NEEDS_CS_STALL_BIT)) {
1741 bits |= ANV_PIPE_CS_STALL_BIT;
1742 bits &= ~ANV_PIPE_NEEDS_CS_STALL_BIT;
1743 }
1744
1745 if (bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT)) {
1746 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1747 pipe.DepthCacheFlushEnable = bits & ANV_PIPE_DEPTH_CACHE_FLUSH_BIT;
1748 pipe.DCFlushEnable = bits & ANV_PIPE_DATA_CACHE_FLUSH_BIT;
1749 pipe.RenderTargetCacheFlushEnable =
1750 bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT;
1751
1752 pipe.DepthStallEnable = bits & ANV_PIPE_DEPTH_STALL_BIT;
1753 pipe.CommandStreamerStallEnable = bits & ANV_PIPE_CS_STALL_BIT;
1754 pipe.StallAtPixelScoreboard = bits & ANV_PIPE_STALL_AT_SCOREBOARD_BIT;
1755
1756 /*
1757 * According to the Broadwell documentation, any PIPE_CONTROL with the
1758 * "Command Streamer Stall" bit set must also have another bit set,
1759 * with five different options:
1760 *
1761 * - Render Target Cache Flush
1762 * - Depth Cache Flush
1763 * - Stall at Pixel Scoreboard
1764 * - Post-Sync Operation
1765 * - Depth Stall
1766 * - DC Flush Enable
1767 *
1768 * I chose "Stall at Pixel Scoreboard" since that's what we use in
1769 * mesa and it seems to work fine. The choice is fairly arbitrary.
1770 */
1771 if ((bits & ANV_PIPE_CS_STALL_BIT) &&
1772 !(bits & (ANV_PIPE_FLUSH_BITS | ANV_PIPE_DEPTH_STALL_BIT |
1773 ANV_PIPE_STALL_AT_SCOREBOARD_BIT)))
1774 pipe.StallAtPixelScoreboard = true;
1775 }
1776
1777 /* If a render target flush was emitted, then we can toggle off the bit
1778 * saying that render target writes are ongoing.
1779 */
1780 if (bits & ANV_PIPE_RENDER_TARGET_CACHE_FLUSH_BIT)
1781 bits &= ~(ANV_PIPE_RENDER_TARGET_WRITES);
1782
1783 bits &= ~(ANV_PIPE_FLUSH_BITS | ANV_PIPE_CS_STALL_BIT);
1784 }
1785
1786 if (bits & ANV_PIPE_INVALIDATE_BITS) {
1787 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1788 *
1789 * "If the VF Cache Invalidation Enable is set to a 1 in a
1790 * PIPE_CONTROL, a separate Null PIPE_CONTROL, all bitfields sets to
1791 * 0, with the VF Cache Invalidation Enable set to 0 needs to be sent
1792 * prior to the PIPE_CONTROL with VF Cache Invalidation Enable set to
1793 * a 1."
1794 *
1795 * This appears to hang Broadwell, so we restrict it to just gen9.
1796 */
1797 if (GEN_GEN == 9 && (bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT))
1798 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe);
1799
1800 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
1801 pipe.StateCacheInvalidationEnable =
1802 bits & ANV_PIPE_STATE_CACHE_INVALIDATE_BIT;
1803 pipe.ConstantCacheInvalidationEnable =
1804 bits & ANV_PIPE_CONSTANT_CACHE_INVALIDATE_BIT;
1805 pipe.VFCacheInvalidationEnable =
1806 bits & ANV_PIPE_VF_CACHE_INVALIDATE_BIT;
1807 pipe.TextureCacheInvalidationEnable =
1808 bits & ANV_PIPE_TEXTURE_CACHE_INVALIDATE_BIT;
1809 pipe.InstructionCacheInvalidateEnable =
1810 bits & ANV_PIPE_INSTRUCTION_CACHE_INVALIDATE_BIT;
1811
1812 /* From the SKL PRM, Vol. 2a, "PIPE_CONTROL",
1813 *
1814 * "When VF Cache Invalidate is set “Post Sync Operation” must be
1815 * enabled to “Write Immediate Data” or “Write PS Depth Count” or
1816 * “Write Timestamp”.
1817 */
1818 if (GEN_GEN == 9 && pipe.VFCacheInvalidationEnable) {
1819 pipe.PostSyncOperation = WriteImmediateData;
1820 pipe.Address =
1821 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
1822 }
1823 }
1824
1825 bits &= ~ANV_PIPE_INVALIDATE_BITS;
1826 }
1827
1828 cmd_buffer->state.pending_pipe_bits = bits;
1829 }
1830
1831 void genX(CmdPipelineBarrier)(
1832 VkCommandBuffer commandBuffer,
1833 VkPipelineStageFlags srcStageMask,
1834 VkPipelineStageFlags destStageMask,
1835 VkBool32 byRegion,
1836 uint32_t memoryBarrierCount,
1837 const VkMemoryBarrier* pMemoryBarriers,
1838 uint32_t bufferMemoryBarrierCount,
1839 const VkBufferMemoryBarrier* pBufferMemoryBarriers,
1840 uint32_t imageMemoryBarrierCount,
1841 const VkImageMemoryBarrier* pImageMemoryBarriers)
1842 {
1843 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
1844
1845 /* XXX: Right now, we're really dumb and just flush whatever categories
1846 * the app asks for. One of these days we may make this a bit better
1847 * but right now that's all the hardware allows for in most areas.
1848 */
1849 VkAccessFlags src_flags = 0;
1850 VkAccessFlags dst_flags = 0;
1851
1852 for (uint32_t i = 0; i < memoryBarrierCount; i++) {
1853 src_flags |= pMemoryBarriers[i].srcAccessMask;
1854 dst_flags |= pMemoryBarriers[i].dstAccessMask;
1855 }
1856
1857 for (uint32_t i = 0; i < bufferMemoryBarrierCount; i++) {
1858 src_flags |= pBufferMemoryBarriers[i].srcAccessMask;
1859 dst_flags |= pBufferMemoryBarriers[i].dstAccessMask;
1860 }
1861
1862 for (uint32_t i = 0; i < imageMemoryBarrierCount; i++) {
1863 src_flags |= pImageMemoryBarriers[i].srcAccessMask;
1864 dst_flags |= pImageMemoryBarriers[i].dstAccessMask;
1865 ANV_FROM_HANDLE(anv_image, image, pImageMemoryBarriers[i].image);
1866 const VkImageSubresourceRange *range =
1867 &pImageMemoryBarriers[i].subresourceRange;
1868
1869 if (range->aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
1870 transition_depth_buffer(cmd_buffer, image,
1871 pImageMemoryBarriers[i].oldLayout,
1872 pImageMemoryBarriers[i].newLayout);
1873 } else if (range->aspectMask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
1874 VkImageAspectFlags color_aspects =
1875 anv_image_expand_aspects(image, range->aspectMask);
1876 uint32_t aspect_bit;
1877
1878 uint32_t base_layer, layer_count;
1879 if (image->type == VK_IMAGE_TYPE_3D) {
1880 base_layer = 0;
1881 layer_count = anv_minify(image->extent.depth, range->baseMipLevel);
1882 } else {
1883 base_layer = range->baseArrayLayer;
1884 layer_count = anv_get_layerCount(image, range);
1885 }
1886
1887 anv_foreach_image_aspect_bit(aspect_bit, image, color_aspects) {
1888 transition_color_buffer(cmd_buffer, image, 1UL << aspect_bit,
1889 range->baseMipLevel,
1890 anv_get_levelCount(image, range),
1891 base_layer, layer_count,
1892 pImageMemoryBarriers[i].oldLayout,
1893 pImageMemoryBarriers[i].newLayout);
1894 }
1895 }
1896 }
1897
1898 cmd_buffer->state.pending_pipe_bits |=
1899 anv_pipe_flush_bits_for_access_flags(src_flags) |
1900 anv_pipe_invalidate_bits_for_access_flags(dst_flags);
1901 }
1902
1903 static void
1904 cmd_buffer_alloc_push_constants(struct anv_cmd_buffer *cmd_buffer)
1905 {
1906 VkShaderStageFlags stages =
1907 cmd_buffer->state.gfx.base.pipeline->active_stages;
1908
1909 /* In order to avoid thrash, we assume that vertex and fragment stages
1910 * always exist. In the rare case where one is missing *and* the other
1911 * uses push concstants, this may be suboptimal. However, avoiding stalls
1912 * seems more important.
1913 */
1914 stages |= VK_SHADER_STAGE_FRAGMENT_BIT | VK_SHADER_STAGE_VERTEX_BIT;
1915
1916 if (stages == cmd_buffer->state.push_constant_stages)
1917 return;
1918
1919 #if GEN_GEN >= 8
1920 const unsigned push_constant_kb = 32;
1921 #elif GEN_IS_HASWELL
1922 const unsigned push_constant_kb = cmd_buffer->device->info.gt == 3 ? 32 : 16;
1923 #else
1924 const unsigned push_constant_kb = 16;
1925 #endif
1926
1927 const unsigned num_stages =
1928 util_bitcount(stages & VK_SHADER_STAGE_ALL_GRAPHICS);
1929 unsigned size_per_stage = push_constant_kb / num_stages;
1930
1931 /* Broadwell+ and Haswell gt3 require that the push constant sizes be in
1932 * units of 2KB. Incidentally, these are the same platforms that have
1933 * 32KB worth of push constant space.
1934 */
1935 if (push_constant_kb == 32)
1936 size_per_stage &= ~1u;
1937
1938 uint32_t kb_used = 0;
1939 for (int i = MESA_SHADER_VERTEX; i < MESA_SHADER_FRAGMENT; i++) {
1940 unsigned push_size = (stages & (1 << i)) ? size_per_stage : 0;
1941 anv_batch_emit(&cmd_buffer->batch,
1942 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_VS), alloc) {
1943 alloc._3DCommandSubOpcode = 18 + i;
1944 alloc.ConstantBufferOffset = (push_size > 0) ? kb_used : 0;
1945 alloc.ConstantBufferSize = push_size;
1946 }
1947 kb_used += push_size;
1948 }
1949
1950 anv_batch_emit(&cmd_buffer->batch,
1951 GENX(3DSTATE_PUSH_CONSTANT_ALLOC_PS), alloc) {
1952 alloc.ConstantBufferOffset = kb_used;
1953 alloc.ConstantBufferSize = push_constant_kb - kb_used;
1954 }
1955
1956 cmd_buffer->state.push_constant_stages = stages;
1957
1958 /* From the BDW PRM for 3DSTATE_PUSH_CONSTANT_ALLOC_VS:
1959 *
1960 * "The 3DSTATE_CONSTANT_VS must be reprogrammed prior to
1961 * the next 3DPRIMITIVE command after programming the
1962 * 3DSTATE_PUSH_CONSTANT_ALLOC_VS"
1963 *
1964 * Since 3DSTATE_PUSH_CONSTANT_ALLOC_VS is programmed as part of
1965 * pipeline setup, we need to dirty push constants.
1966 */
1967 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_ALL_GRAPHICS;
1968 }
1969
1970 static const struct anv_descriptor *
1971 anv_descriptor_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1972 const struct anv_pipeline_binding *binding)
1973 {
1974 assert(binding->set < MAX_SETS);
1975 const struct anv_descriptor_set *set =
1976 pipe_state->descriptors[binding->set];
1977 const uint32_t offset =
1978 set->layout->binding[binding->binding].descriptor_index;
1979 return &set->descriptors[offset + binding->index];
1980 }
1981
1982 static uint32_t
1983 dynamic_offset_for_binding(const struct anv_cmd_pipeline_state *pipe_state,
1984 const struct anv_pipeline_binding *binding)
1985 {
1986 assert(binding->set < MAX_SETS);
1987 const struct anv_descriptor_set *set =
1988 pipe_state->descriptors[binding->set];
1989
1990 uint32_t dynamic_offset_idx =
1991 pipe_state->layout->set[binding->set].dynamic_offset_start +
1992 set->layout->binding[binding->binding].dynamic_offset_index +
1993 binding->index;
1994
1995 return pipe_state->dynamic_offsets[dynamic_offset_idx];
1996 }
1997
1998 static VkResult
1999 emit_binding_table(struct anv_cmd_buffer *cmd_buffer,
2000 gl_shader_stage stage,
2001 struct anv_state *bt_state)
2002 {
2003 struct anv_subpass *subpass = cmd_buffer->state.subpass;
2004 struct anv_cmd_pipeline_state *pipe_state;
2005 struct anv_pipeline *pipeline;
2006 uint32_t bias, state_offset;
2007
2008 switch (stage) {
2009 case MESA_SHADER_COMPUTE:
2010 pipe_state = &cmd_buffer->state.compute.base;
2011 bias = 1;
2012 break;
2013 default:
2014 pipe_state = &cmd_buffer->state.gfx.base;
2015 bias = 0;
2016 break;
2017 }
2018 pipeline = pipe_state->pipeline;
2019
2020 if (!anv_pipeline_has_stage(pipeline, stage)) {
2021 *bt_state = (struct anv_state) { 0, };
2022 return VK_SUCCESS;
2023 }
2024
2025 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2026 if (bias + map->surface_count == 0) {
2027 *bt_state = (struct anv_state) { 0, };
2028 return VK_SUCCESS;
2029 }
2030
2031 *bt_state = anv_cmd_buffer_alloc_binding_table(cmd_buffer,
2032 bias + map->surface_count,
2033 &state_offset);
2034 uint32_t *bt_map = bt_state->map;
2035
2036 if (bt_state->map == NULL)
2037 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2038
2039 if (stage == MESA_SHADER_COMPUTE &&
2040 get_cs_prog_data(pipeline)->uses_num_work_groups) {
2041 struct anv_state surface_state;
2042 surface_state =
2043 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2044
2045 const enum isl_format format =
2046 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
2047 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2048 format,
2049 cmd_buffer->state.compute.num_workgroups,
2050 12, 1);
2051
2052 bt_map[0] = surface_state.offset + state_offset;
2053 add_surface_reloc(cmd_buffer, surface_state,
2054 cmd_buffer->state.compute.num_workgroups);
2055 }
2056
2057 if (map->surface_count == 0)
2058 goto out;
2059
2060 if (map->image_count > 0) {
2061 VkResult result =
2062 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, stage, images);
2063 if (result != VK_SUCCESS)
2064 return result;
2065
2066 cmd_buffer->state.push_constants_dirty |= 1 << stage;
2067 }
2068
2069 uint32_t image = 0;
2070 for (uint32_t s = 0; s < map->surface_count; s++) {
2071 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[s];
2072
2073 struct anv_state surface_state;
2074
2075 if (binding->set == ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS) {
2076 /* Color attachment binding */
2077 assert(stage == MESA_SHADER_FRAGMENT);
2078 assert(binding->binding == 0);
2079 if (binding->index < subpass->color_count) {
2080 const unsigned att =
2081 subpass->color_attachments[binding->index].attachment;
2082
2083 /* From the Vulkan 1.0.46 spec:
2084 *
2085 * "If any color or depth/stencil attachments are
2086 * VK_ATTACHMENT_UNUSED, then no writes occur for those
2087 * attachments."
2088 */
2089 if (att == VK_ATTACHMENT_UNUSED) {
2090 surface_state = cmd_buffer->state.null_surface_state;
2091 } else {
2092 surface_state = cmd_buffer->state.attachments[att].color.state;
2093 }
2094 } else {
2095 surface_state = cmd_buffer->state.null_surface_state;
2096 }
2097
2098 bt_map[bias + s] = surface_state.offset + state_offset;
2099 continue;
2100 } else if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2101 struct anv_state surface_state =
2102 anv_cmd_buffer_alloc_surface_state(cmd_buffer);
2103
2104 struct anv_address constant_data = {
2105 .bo = &pipeline->device->dynamic_state_pool.block_pool.bo,
2106 .offset = pipeline->shaders[stage]->constant_data.offset,
2107 };
2108 unsigned constant_data_size =
2109 pipeline->shaders[stage]->constant_data_size;
2110
2111 const enum isl_format format =
2112 anv_isl_format_for_descriptor_type(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
2113 anv_fill_buffer_surface_state(cmd_buffer->device,
2114 surface_state, format,
2115 constant_data, constant_data_size, 1);
2116
2117 bt_map[bias + s] = surface_state.offset + state_offset;
2118 add_surface_reloc(cmd_buffer, surface_state, constant_data);
2119 continue;
2120 }
2121
2122 const struct anv_descriptor *desc =
2123 anv_descriptor_for_binding(pipe_state, binding);
2124
2125 switch (desc->type) {
2126 case VK_DESCRIPTOR_TYPE_SAMPLER:
2127 /* Nothing for us to do here */
2128 continue;
2129
2130 case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
2131 case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE: {
2132 struct anv_surface_state sstate =
2133 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2134 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2135 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2136 surface_state = sstate.state;
2137 assert(surface_state.alloc_size);
2138 add_surface_state_relocs(cmd_buffer, sstate);
2139 break;
2140 }
2141 case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
2142 assert(stage == MESA_SHADER_FRAGMENT);
2143 if ((desc->image_view->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) == 0) {
2144 /* For depth and stencil input attachments, we treat it like any
2145 * old texture that a user may have bound.
2146 */
2147 struct anv_surface_state sstate =
2148 (desc->layout == VK_IMAGE_LAYOUT_GENERAL) ?
2149 desc->image_view->planes[binding->plane].general_sampler_surface_state :
2150 desc->image_view->planes[binding->plane].optimal_sampler_surface_state;
2151 surface_state = sstate.state;
2152 assert(surface_state.alloc_size);
2153 add_surface_state_relocs(cmd_buffer, sstate);
2154 } else {
2155 /* For color input attachments, we create the surface state at
2156 * vkBeginRenderPass time so that we can include aux and clear
2157 * color information.
2158 */
2159 assert(binding->input_attachment_index < subpass->input_count);
2160 const unsigned subpass_att = binding->input_attachment_index;
2161 const unsigned att = subpass->input_attachments[subpass_att].attachment;
2162 surface_state = cmd_buffer->state.attachments[att].input.state;
2163 }
2164 break;
2165
2166 case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE: {
2167 struct anv_surface_state sstate = (binding->write_only)
2168 ? desc->image_view->planes[binding->plane].writeonly_storage_surface_state
2169 : desc->image_view->planes[binding->plane].storage_surface_state;
2170 surface_state = sstate.state;
2171 assert(surface_state.alloc_size);
2172 add_surface_state_relocs(cmd_buffer, sstate);
2173
2174 struct brw_image_param *image_param =
2175 &cmd_buffer->state.push_constants[stage]->images[image++];
2176
2177 *image_param = desc->image_view->planes[binding->plane].storage_image_param;
2178 break;
2179 }
2180
2181 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
2182 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
2183 case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
2184 surface_state = desc->buffer_view->surface_state;
2185 assert(surface_state.alloc_size);
2186 add_surface_reloc(cmd_buffer, surface_state,
2187 desc->buffer_view->address);
2188 break;
2189
2190 case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
2191 case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC: {
2192 /* Compute the offset within the buffer */
2193 uint32_t dynamic_offset =
2194 dynamic_offset_for_binding(pipe_state, binding);
2195 uint64_t offset = desc->offset + dynamic_offset;
2196 /* Clamp to the buffer size */
2197 offset = MIN2(offset, desc->buffer->size);
2198 /* Clamp the range to the buffer size */
2199 uint32_t range = MIN2(desc->range, desc->buffer->size - offset);
2200
2201 struct anv_address address =
2202 anv_address_add(desc->buffer->address, offset);
2203
2204 surface_state =
2205 anv_state_stream_alloc(&cmd_buffer->surface_state_stream, 64, 64);
2206 enum isl_format format =
2207 anv_isl_format_for_descriptor_type(desc->type);
2208
2209 anv_fill_buffer_surface_state(cmd_buffer->device, surface_state,
2210 format, address, range, 1);
2211 add_surface_reloc(cmd_buffer, surface_state, address);
2212 break;
2213 }
2214
2215 case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
2216 surface_state = (binding->write_only)
2217 ? desc->buffer_view->writeonly_storage_surface_state
2218 : desc->buffer_view->storage_surface_state;
2219 assert(surface_state.alloc_size);
2220 add_surface_reloc(cmd_buffer, surface_state,
2221 desc->buffer_view->address);
2222
2223 struct brw_image_param *image_param =
2224 &cmd_buffer->state.push_constants[stage]->images[image++];
2225
2226 *image_param = desc->buffer_view->storage_image_param;
2227 break;
2228
2229 default:
2230 assert(!"Invalid descriptor type");
2231 continue;
2232 }
2233
2234 bt_map[bias + s] = surface_state.offset + state_offset;
2235 }
2236 assert(image == map->image_count);
2237
2238 out:
2239 anv_state_flush(cmd_buffer->device, *bt_state);
2240
2241 #if GEN_GEN >= 11
2242 /* The PIPE_CONTROL command description says:
2243 *
2244 * "Whenever a Binding Table Index (BTI) used by a Render Taget Message
2245 * points to a different RENDER_SURFACE_STATE, SW must issue a Render
2246 * Target Cache Flush by enabling this bit. When render target flush
2247 * is set due to new association of BTI, PS Scoreboard Stall bit must
2248 * be set in this packet."
2249 *
2250 * FINISHME: Currently we shuffle around the surface states in the binding
2251 * table based on if they are getting used or not. So, we've to do below
2252 * pipe control flush for every binding table upload. Make changes so
2253 * that we do it only when we modify render target surface states.
2254 */
2255 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2256 pc.RenderTargetCacheFlushEnable = true;
2257 pc.StallAtPixelScoreboard = true;
2258 }
2259 #endif
2260
2261 return VK_SUCCESS;
2262 }
2263
2264 static VkResult
2265 emit_samplers(struct anv_cmd_buffer *cmd_buffer,
2266 gl_shader_stage stage,
2267 struct anv_state *state)
2268 {
2269 struct anv_cmd_pipeline_state *pipe_state =
2270 stage == MESA_SHADER_COMPUTE ? &cmd_buffer->state.compute.base :
2271 &cmd_buffer->state.gfx.base;
2272 struct anv_pipeline *pipeline = pipe_state->pipeline;
2273
2274 if (!anv_pipeline_has_stage(pipeline, stage)) {
2275 *state = (struct anv_state) { 0, };
2276 return VK_SUCCESS;
2277 }
2278
2279 struct anv_pipeline_bind_map *map = &pipeline->shaders[stage]->bind_map;
2280 if (map->sampler_count == 0) {
2281 *state = (struct anv_state) { 0, };
2282 return VK_SUCCESS;
2283 }
2284
2285 uint32_t size = map->sampler_count * 16;
2286 *state = anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, size, 32);
2287
2288 if (state->map == NULL)
2289 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
2290
2291 for (uint32_t s = 0; s < map->sampler_count; s++) {
2292 struct anv_pipeline_binding *binding = &map->sampler_to_descriptor[s];
2293 const struct anv_descriptor *desc =
2294 anv_descriptor_for_binding(pipe_state, binding);
2295
2296 if (desc->type != VK_DESCRIPTOR_TYPE_SAMPLER &&
2297 desc->type != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
2298 continue;
2299
2300 struct anv_sampler *sampler = desc->sampler;
2301
2302 /* This can happen if we have an unfilled slot since TYPE_SAMPLER
2303 * happens to be zero.
2304 */
2305 if (sampler == NULL)
2306 continue;
2307
2308 memcpy(state->map + (s * 16),
2309 sampler->state[binding->plane], sizeof(sampler->state[0]));
2310 }
2311
2312 anv_state_flush(cmd_buffer->device, *state);
2313
2314 return VK_SUCCESS;
2315 }
2316
2317 static uint32_t
2318 flush_descriptor_sets(struct anv_cmd_buffer *cmd_buffer)
2319 {
2320 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2321
2322 VkShaderStageFlags dirty = cmd_buffer->state.descriptors_dirty &
2323 pipeline->active_stages;
2324
2325 VkResult result = VK_SUCCESS;
2326 anv_foreach_stage(s, dirty) {
2327 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2328 if (result != VK_SUCCESS)
2329 break;
2330 result = emit_binding_table(cmd_buffer, s,
2331 &cmd_buffer->state.binding_tables[s]);
2332 if (result != VK_SUCCESS)
2333 break;
2334 }
2335
2336 if (result != VK_SUCCESS) {
2337 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
2338
2339 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
2340 if (result != VK_SUCCESS)
2341 return 0;
2342
2343 /* Re-emit state base addresses so we get the new surface state base
2344 * address before we start emitting binding tables etc.
2345 */
2346 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
2347
2348 /* Re-emit all active binding tables */
2349 dirty |= pipeline->active_stages;
2350 anv_foreach_stage(s, dirty) {
2351 result = emit_samplers(cmd_buffer, s, &cmd_buffer->state.samplers[s]);
2352 if (result != VK_SUCCESS) {
2353 anv_batch_set_error(&cmd_buffer->batch, result);
2354 return 0;
2355 }
2356 result = emit_binding_table(cmd_buffer, s,
2357 &cmd_buffer->state.binding_tables[s]);
2358 if (result != VK_SUCCESS) {
2359 anv_batch_set_error(&cmd_buffer->batch, result);
2360 return 0;
2361 }
2362 }
2363 }
2364
2365 cmd_buffer->state.descriptors_dirty &= ~dirty;
2366
2367 return dirty;
2368 }
2369
2370 static void
2371 cmd_buffer_emit_descriptor_pointers(struct anv_cmd_buffer *cmd_buffer,
2372 uint32_t stages)
2373 {
2374 static const uint32_t sampler_state_opcodes[] = {
2375 [MESA_SHADER_VERTEX] = 43,
2376 [MESA_SHADER_TESS_CTRL] = 44, /* HS */
2377 [MESA_SHADER_TESS_EVAL] = 45, /* DS */
2378 [MESA_SHADER_GEOMETRY] = 46,
2379 [MESA_SHADER_FRAGMENT] = 47,
2380 [MESA_SHADER_COMPUTE] = 0,
2381 };
2382
2383 static const uint32_t binding_table_opcodes[] = {
2384 [MESA_SHADER_VERTEX] = 38,
2385 [MESA_SHADER_TESS_CTRL] = 39,
2386 [MESA_SHADER_TESS_EVAL] = 40,
2387 [MESA_SHADER_GEOMETRY] = 41,
2388 [MESA_SHADER_FRAGMENT] = 42,
2389 [MESA_SHADER_COMPUTE] = 0,
2390 };
2391
2392 anv_foreach_stage(s, stages) {
2393 assert(s < ARRAY_SIZE(binding_table_opcodes));
2394 assert(binding_table_opcodes[s] > 0);
2395
2396 if (cmd_buffer->state.samplers[s].alloc_size > 0) {
2397 anv_batch_emit(&cmd_buffer->batch,
2398 GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ssp) {
2399 ssp._3DCommandSubOpcode = sampler_state_opcodes[s];
2400 ssp.PointertoVSSamplerState = cmd_buffer->state.samplers[s].offset;
2401 }
2402 }
2403
2404 /* Always emit binding table pointers if we're asked to, since on SKL
2405 * this is what flushes push constants. */
2406 anv_batch_emit(&cmd_buffer->batch,
2407 GENX(3DSTATE_BINDING_TABLE_POINTERS_VS), btp) {
2408 btp._3DCommandSubOpcode = binding_table_opcodes[s];
2409 btp.PointertoVSBindingTable = cmd_buffer->state.binding_tables[s].offset;
2410 }
2411 }
2412 }
2413
2414 static void
2415 cmd_buffer_flush_push_constants(struct anv_cmd_buffer *cmd_buffer,
2416 VkShaderStageFlags dirty_stages)
2417 {
2418 const struct anv_cmd_graphics_state *gfx_state = &cmd_buffer->state.gfx;
2419 const struct anv_pipeline *pipeline = gfx_state->base.pipeline;
2420
2421 static const uint32_t push_constant_opcodes[] = {
2422 [MESA_SHADER_VERTEX] = 21,
2423 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
2424 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
2425 [MESA_SHADER_GEOMETRY] = 22,
2426 [MESA_SHADER_FRAGMENT] = 23,
2427 [MESA_SHADER_COMPUTE] = 0,
2428 };
2429
2430 VkShaderStageFlags flushed = 0;
2431
2432 anv_foreach_stage(stage, dirty_stages) {
2433 assert(stage < ARRAY_SIZE(push_constant_opcodes));
2434 assert(push_constant_opcodes[stage] > 0);
2435
2436 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CONSTANT_VS), c) {
2437 c._3DCommandSubOpcode = push_constant_opcodes[stage];
2438
2439 if (anv_pipeline_has_stage(pipeline, stage)) {
2440 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2441 const struct brw_stage_prog_data *prog_data =
2442 pipeline->shaders[stage]->prog_data;
2443 const struct anv_pipeline_bind_map *bind_map =
2444 &pipeline->shaders[stage]->bind_map;
2445
2446 /* The Skylake PRM contains the following restriction:
2447 *
2448 * "The driver must ensure The following case does not occur
2449 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
2450 * buffer 3 read length equal to zero committed followed by a
2451 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
2452 * zero committed."
2453 *
2454 * To avoid this, we program the buffers in the highest slots.
2455 * This way, slot 0 is only used if slot 3 is also used.
2456 */
2457 int n = 3;
2458
2459 for (int i = 3; i >= 0; i--) {
2460 const struct brw_ubo_range *range = &prog_data->ubo_ranges[i];
2461 if (range->length == 0)
2462 continue;
2463
2464 const unsigned surface =
2465 prog_data->binding_table.ubo_start + range->block;
2466
2467 assert(surface <= bind_map->surface_count);
2468 const struct anv_pipeline_binding *binding =
2469 &bind_map->surface_to_descriptor[surface];
2470
2471 struct anv_address read_addr;
2472 uint32_t read_len;
2473 if (binding->set == ANV_DESCRIPTOR_SET_SHADER_CONSTANTS) {
2474 struct anv_address constant_data = {
2475 .bo = &pipeline->device->dynamic_state_pool.block_pool.bo,
2476 .offset = pipeline->shaders[stage]->constant_data.offset,
2477 };
2478 unsigned constant_data_size =
2479 pipeline->shaders[stage]->constant_data_size;
2480
2481 read_len = MIN2(range->length,
2482 DIV_ROUND_UP(constant_data_size, 32) - range->start);
2483 read_addr = anv_address_add(constant_data,
2484 range->start * 32);
2485 } else {
2486 const struct anv_descriptor *desc =
2487 anv_descriptor_for_binding(&gfx_state->base, binding);
2488
2489 if (desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER) {
2490 read_len = MIN2(range->length,
2491 DIV_ROUND_UP(desc->buffer_view->range, 32) - range->start);
2492 read_addr = anv_address_add(desc->buffer_view->address,
2493 range->start * 32);
2494 } else {
2495 assert(desc->type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
2496
2497 uint32_t dynamic_offset =
2498 dynamic_offset_for_binding(&gfx_state->base, binding);
2499 uint32_t buf_offset =
2500 MIN2(desc->offset + dynamic_offset, desc->buffer->size);
2501 uint32_t buf_range =
2502 MIN2(desc->range, desc->buffer->size - buf_offset);
2503
2504 read_len = MIN2(range->length,
2505 DIV_ROUND_UP(buf_range, 32) - range->start);
2506 read_addr = anv_address_add(desc->buffer->address,
2507 buf_offset + range->start * 32);
2508 }
2509 }
2510
2511 if (read_len > 0) {
2512 c.ConstantBody.Buffer[n] = read_addr;
2513 c.ConstantBody.ReadLength[n] = read_len;
2514 n--;
2515 }
2516 }
2517
2518 struct anv_state state =
2519 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2520
2521 if (state.alloc_size > 0) {
2522 c.ConstantBody.Buffer[n] = (struct anv_address) {
2523 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2524 .offset = state.offset,
2525 };
2526 c.ConstantBody.ReadLength[n] =
2527 DIV_ROUND_UP(state.alloc_size, 32);
2528 }
2529 #else
2530 /* For Ivy Bridge, the push constants packets have a different
2531 * rule that would require us to iterate in the other direction
2532 * and possibly mess around with dynamic state base address.
2533 * Don't bother; just emit regular push constants at n = 0.
2534 */
2535 struct anv_state state =
2536 anv_cmd_buffer_push_constants(cmd_buffer, stage);
2537
2538 if (state.alloc_size > 0) {
2539 c.ConstantBody.Buffer[0].offset = state.offset,
2540 c.ConstantBody.ReadLength[0] =
2541 DIV_ROUND_UP(state.alloc_size, 32);
2542 }
2543 #endif
2544 }
2545 }
2546
2547 flushed |= mesa_to_vk_shader_stage(stage);
2548 }
2549
2550 cmd_buffer->state.push_constants_dirty &= ~flushed;
2551 }
2552
2553 void
2554 genX(cmd_buffer_flush_state)(struct anv_cmd_buffer *cmd_buffer)
2555 {
2556 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2557 uint32_t *p;
2558
2559 uint32_t vb_emit = cmd_buffer->state.gfx.vb_dirty & pipeline->vb_used;
2560 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE)
2561 vb_emit |= pipeline->vb_used;
2562
2563 assert((pipeline->active_stages & VK_SHADER_STAGE_COMPUTE_BIT) == 0);
2564
2565 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
2566
2567 genX(flush_pipeline_select_3d)(cmd_buffer);
2568
2569 if (vb_emit) {
2570 const uint32_t num_buffers = __builtin_popcount(vb_emit);
2571 const uint32_t num_dwords = 1 + num_buffers * 4;
2572
2573 p = anv_batch_emitn(&cmd_buffer->batch, num_dwords,
2574 GENX(3DSTATE_VERTEX_BUFFERS));
2575 uint32_t vb, i = 0;
2576 for_each_bit(vb, vb_emit) {
2577 struct anv_buffer *buffer = cmd_buffer->state.vertex_bindings[vb].buffer;
2578 uint32_t offset = cmd_buffer->state.vertex_bindings[vb].offset;
2579
2580 struct GENX(VERTEX_BUFFER_STATE) state = {
2581 .VertexBufferIndex = vb,
2582
2583 .MOCS = anv_mocs_for_bo(cmd_buffer->device, buffer->address.bo),
2584 #if GEN_GEN <= 7
2585 .BufferAccessType = pipeline->vb[vb].instanced ? INSTANCEDATA : VERTEXDATA,
2586 .InstanceDataStepRate = pipeline->vb[vb].instance_divisor,
2587 #endif
2588
2589 .AddressModifyEnable = true,
2590 .BufferPitch = pipeline->vb[vb].stride,
2591 .BufferStartingAddress = anv_address_add(buffer->address, offset),
2592
2593 #if GEN_GEN >= 8
2594 .BufferSize = buffer->size - offset
2595 #else
2596 .EndAddress = anv_address_add(buffer->address, buffer->size - 1),
2597 #endif
2598 };
2599
2600 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, &p[1 + i * 4], &state);
2601 i++;
2602 }
2603 }
2604
2605 cmd_buffer->state.gfx.vb_dirty &= ~vb_emit;
2606
2607 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_PIPELINE) {
2608 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
2609
2610 /* The exact descriptor layout is pulled from the pipeline, so we need
2611 * to re-emit binding tables on every pipeline change.
2612 */
2613 cmd_buffer->state.descriptors_dirty |= pipeline->active_stages;
2614
2615 /* If the pipeline changed, we may need to re-allocate push constant
2616 * space in the URB.
2617 */
2618 cmd_buffer_alloc_push_constants(cmd_buffer);
2619 }
2620
2621 #if GEN_GEN <= 7
2622 if (cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_VERTEX_BIT ||
2623 cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_VERTEX_BIT) {
2624 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
2625 *
2626 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth
2627 * stall needs to be sent just prior to any 3DSTATE_VS,
2628 * 3DSTATE_URB_VS, 3DSTATE_CONSTANT_VS,
2629 * 3DSTATE_BINDING_TABLE_POINTER_VS,
2630 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one
2631 * PIPE_CONTROL needs to be sent before any combination of VS
2632 * associated 3DSTATE."
2633 */
2634 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
2635 pc.DepthStallEnable = true;
2636 pc.PostSyncOperation = WriteImmediateData;
2637 pc.Address =
2638 (struct anv_address) { &cmd_buffer->device->workaround_bo, 0 };
2639 }
2640 }
2641 #endif
2642
2643 /* Render targets live in the same binding table as fragment descriptors */
2644 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_RENDER_TARGETS)
2645 cmd_buffer->state.descriptors_dirty |= VK_SHADER_STAGE_FRAGMENT_BIT;
2646
2647 /* We emit the binding tables and sampler tables first, then emit push
2648 * constants and then finally emit binding table and sampler table
2649 * pointers. It has to happen in this order, since emitting the binding
2650 * tables may change the push constants (in case of storage images). After
2651 * emitting push constants, on SKL+ we have to emit the corresponding
2652 * 3DSTATE_BINDING_TABLE_POINTER_* for the push constants to take effect.
2653 */
2654 uint32_t dirty = 0;
2655 if (cmd_buffer->state.descriptors_dirty)
2656 dirty = flush_descriptor_sets(cmd_buffer);
2657
2658 if (dirty || cmd_buffer->state.push_constants_dirty) {
2659 /* Because we're pushing UBOs, we have to push whenever either
2660 * descriptors or push constants is dirty.
2661 */
2662 dirty |= cmd_buffer->state.push_constants_dirty;
2663 dirty &= ANV_STAGE_MASK & VK_SHADER_STAGE_ALL_GRAPHICS;
2664 cmd_buffer_flush_push_constants(cmd_buffer, dirty);
2665 }
2666
2667 if (dirty)
2668 cmd_buffer_emit_descriptor_pointers(cmd_buffer, dirty);
2669
2670 if (cmd_buffer->state.gfx.dirty & ANV_CMD_DIRTY_DYNAMIC_VIEWPORT)
2671 gen8_cmd_buffer_emit_viewport(cmd_buffer);
2672
2673 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_VIEWPORT |
2674 ANV_CMD_DIRTY_PIPELINE)) {
2675 gen8_cmd_buffer_emit_depth_viewport(cmd_buffer,
2676 pipeline->depth_clamp_enable);
2677 }
2678
2679 if (cmd_buffer->state.gfx.dirty & (ANV_CMD_DIRTY_DYNAMIC_SCISSOR |
2680 ANV_CMD_DIRTY_RENDER_TARGETS))
2681 gen7_cmd_buffer_emit_scissor(cmd_buffer);
2682
2683 genX(cmd_buffer_flush_dynamic_state)(cmd_buffer);
2684
2685 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
2686 }
2687
2688 static void
2689 emit_vertex_bo(struct anv_cmd_buffer *cmd_buffer,
2690 struct anv_address addr,
2691 uint32_t size, uint32_t index)
2692 {
2693 uint32_t *p = anv_batch_emitn(&cmd_buffer->batch, 5,
2694 GENX(3DSTATE_VERTEX_BUFFERS));
2695
2696 GENX(VERTEX_BUFFER_STATE_pack)(&cmd_buffer->batch, p + 1,
2697 &(struct GENX(VERTEX_BUFFER_STATE)) {
2698 .VertexBufferIndex = index,
2699 .AddressModifyEnable = true,
2700 .BufferPitch = 0,
2701 .MOCS = anv_mocs_for_bo(cmd_buffer->device, addr.bo),
2702 #if (GEN_GEN >= 8)
2703 .BufferStartingAddress = addr,
2704 .BufferSize = size
2705 #else
2706 .BufferStartingAddress = addr,
2707 .EndAddress = anv_address_add(addr, size),
2708 #endif
2709 });
2710 }
2711
2712 static void
2713 emit_base_vertex_instance_bo(struct anv_cmd_buffer *cmd_buffer,
2714 struct anv_address addr)
2715 {
2716 emit_vertex_bo(cmd_buffer, addr, 8, ANV_SVGS_VB_INDEX);
2717 }
2718
2719 static void
2720 emit_base_vertex_instance(struct anv_cmd_buffer *cmd_buffer,
2721 uint32_t base_vertex, uint32_t base_instance)
2722 {
2723 struct anv_state id_state =
2724 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 8, 4);
2725
2726 ((uint32_t *)id_state.map)[0] = base_vertex;
2727 ((uint32_t *)id_state.map)[1] = base_instance;
2728
2729 anv_state_flush(cmd_buffer->device, id_state);
2730
2731 struct anv_address addr = {
2732 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2733 .offset = id_state.offset,
2734 };
2735
2736 emit_base_vertex_instance_bo(cmd_buffer, addr);
2737 }
2738
2739 static void
2740 emit_draw_index(struct anv_cmd_buffer *cmd_buffer, uint32_t draw_index)
2741 {
2742 struct anv_state state =
2743 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 4, 4);
2744
2745 ((uint32_t *)state.map)[0] = draw_index;
2746
2747 anv_state_flush(cmd_buffer->device, state);
2748
2749 struct anv_address addr = {
2750 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
2751 .offset = state.offset,
2752 };
2753
2754 emit_vertex_bo(cmd_buffer, addr, 4, ANV_DRAWID_VB_INDEX);
2755 }
2756
2757 void genX(CmdDraw)(
2758 VkCommandBuffer commandBuffer,
2759 uint32_t vertexCount,
2760 uint32_t instanceCount,
2761 uint32_t firstVertex,
2762 uint32_t firstInstance)
2763 {
2764 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2765 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2766 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2767
2768 if (anv_batch_has_error(&cmd_buffer->batch))
2769 return;
2770
2771 genX(cmd_buffer_flush_state)(cmd_buffer);
2772
2773 if (vs_prog_data->uses_firstvertex ||
2774 vs_prog_data->uses_baseinstance)
2775 emit_base_vertex_instance(cmd_buffer, firstVertex, firstInstance);
2776 if (vs_prog_data->uses_drawid)
2777 emit_draw_index(cmd_buffer, 0);
2778
2779 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2780 * different views. We need to multiply instanceCount by the view count.
2781 */
2782 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2783
2784 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2785 prim.VertexAccessType = SEQUENTIAL;
2786 prim.PrimitiveTopologyType = pipeline->topology;
2787 prim.VertexCountPerInstance = vertexCount;
2788 prim.StartVertexLocation = firstVertex;
2789 prim.InstanceCount = instanceCount;
2790 prim.StartInstanceLocation = firstInstance;
2791 prim.BaseVertexLocation = 0;
2792 }
2793
2794 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
2795 }
2796
2797 void genX(CmdDrawIndexed)(
2798 VkCommandBuffer commandBuffer,
2799 uint32_t indexCount,
2800 uint32_t instanceCount,
2801 uint32_t firstIndex,
2802 int32_t vertexOffset,
2803 uint32_t firstInstance)
2804 {
2805 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2806 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2807 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2808
2809 if (anv_batch_has_error(&cmd_buffer->batch))
2810 return;
2811
2812 genX(cmd_buffer_flush_state)(cmd_buffer);
2813
2814 if (vs_prog_data->uses_firstvertex ||
2815 vs_prog_data->uses_baseinstance)
2816 emit_base_vertex_instance(cmd_buffer, vertexOffset, firstInstance);
2817 if (vs_prog_data->uses_drawid)
2818 emit_draw_index(cmd_buffer, 0);
2819
2820 /* Our implementation of VK_KHR_multiview uses instancing to draw the
2821 * different views. We need to multiply instanceCount by the view count.
2822 */
2823 instanceCount *= anv_subpass_view_count(cmd_buffer->state.subpass);
2824
2825 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2826 prim.VertexAccessType = RANDOM;
2827 prim.PrimitiveTopologyType = pipeline->topology;
2828 prim.VertexCountPerInstance = indexCount;
2829 prim.StartVertexLocation = firstIndex;
2830 prim.InstanceCount = instanceCount;
2831 prim.StartInstanceLocation = firstInstance;
2832 prim.BaseVertexLocation = vertexOffset;
2833 }
2834
2835 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
2836 }
2837
2838 /* Auto-Draw / Indirect Registers */
2839 #define GEN7_3DPRIM_END_OFFSET 0x2420
2840 #define GEN7_3DPRIM_START_VERTEX 0x2430
2841 #define GEN7_3DPRIM_VERTEX_COUNT 0x2434
2842 #define GEN7_3DPRIM_INSTANCE_COUNT 0x2438
2843 #define GEN7_3DPRIM_START_INSTANCE 0x243C
2844 #define GEN7_3DPRIM_BASE_VERTEX 0x2440
2845
2846 /* MI_MATH only exists on Haswell+ */
2847 #if GEN_IS_HASWELL || GEN_GEN >= 8
2848
2849 /* Emit dwords to multiply GPR0 by N */
2850 static void
2851 build_alu_multiply_gpr0(uint32_t *dw, unsigned *dw_count, uint32_t N)
2852 {
2853 VK_OUTARRAY_MAKE(out, dw, dw_count);
2854
2855 #define append_alu(opcode, operand1, operand2) \
2856 vk_outarray_append(&out, alu_dw) *alu_dw = mi_alu(opcode, operand1, operand2)
2857
2858 assert(N > 0);
2859 unsigned top_bit = 31 - __builtin_clz(N);
2860 for (int i = top_bit - 1; i >= 0; i--) {
2861 /* We get our initial data in GPR0 and we write the final data out to
2862 * GPR0 but we use GPR1 as our scratch register.
2863 */
2864 unsigned src_reg = i == top_bit - 1 ? MI_ALU_REG0 : MI_ALU_REG1;
2865 unsigned dst_reg = i == 0 ? MI_ALU_REG0 : MI_ALU_REG1;
2866
2867 /* Shift the current value left by 1 */
2868 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, src_reg);
2869 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, src_reg);
2870 append_alu(MI_ALU_ADD, 0, 0);
2871
2872 if (N & (1 << i)) {
2873 /* Store ACCU to R1 and add R0 to R1 */
2874 append_alu(MI_ALU_STORE, MI_ALU_REG1, MI_ALU_ACCU);
2875 append_alu(MI_ALU_LOAD, MI_ALU_SRCA, MI_ALU_REG0);
2876 append_alu(MI_ALU_LOAD, MI_ALU_SRCB, MI_ALU_REG1);
2877 append_alu(MI_ALU_ADD, 0, 0);
2878 }
2879
2880 append_alu(MI_ALU_STORE, dst_reg, MI_ALU_ACCU);
2881 }
2882
2883 #undef append_alu
2884 }
2885
2886 static void
2887 emit_mul_gpr0(struct anv_batch *batch, uint32_t N)
2888 {
2889 uint32_t num_dwords;
2890 build_alu_multiply_gpr0(NULL, &num_dwords, N);
2891
2892 uint32_t *dw = anv_batch_emitn(batch, 1 + num_dwords, GENX(MI_MATH));
2893 build_alu_multiply_gpr0(dw + 1, &num_dwords, N);
2894 }
2895
2896 #endif /* GEN_IS_HASWELL || GEN_GEN >= 8 */
2897
2898 static void
2899 load_indirect_parameters(struct anv_cmd_buffer *cmd_buffer,
2900 struct anv_address addr,
2901 bool indexed)
2902 {
2903 struct anv_batch *batch = &cmd_buffer->batch;
2904
2905 emit_lrm(batch, GEN7_3DPRIM_VERTEX_COUNT, anv_address_add(addr, 0));
2906
2907 unsigned view_count = anv_subpass_view_count(cmd_buffer->state.subpass);
2908 if (view_count > 1) {
2909 #if GEN_IS_HASWELL || GEN_GEN >= 8
2910 emit_lrm(batch, CS_GPR(0), anv_address_add(addr, 4));
2911 emit_mul_gpr0(batch, view_count);
2912 emit_lrr(batch, GEN7_3DPRIM_INSTANCE_COUNT, CS_GPR(0));
2913 #else
2914 anv_finishme("Multiview + indirect draw requires MI_MATH; "
2915 "MI_MATH is not supported on Ivy Bridge");
2916 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4));
2917 #endif
2918 } else {
2919 emit_lrm(batch, GEN7_3DPRIM_INSTANCE_COUNT, anv_address_add(addr, 4));
2920 }
2921
2922 emit_lrm(batch, GEN7_3DPRIM_START_VERTEX, anv_address_add(addr, 8));
2923
2924 if (indexed) {
2925 emit_lrm(batch, GEN7_3DPRIM_BASE_VERTEX, anv_address_add(addr, 12));
2926 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 16));
2927 } else {
2928 emit_lrm(batch, GEN7_3DPRIM_START_INSTANCE, anv_address_add(addr, 12));
2929 emit_lri(batch, GEN7_3DPRIM_BASE_VERTEX, 0);
2930 }
2931 }
2932
2933 void genX(CmdDrawIndirect)(
2934 VkCommandBuffer commandBuffer,
2935 VkBuffer _buffer,
2936 VkDeviceSize offset,
2937 uint32_t drawCount,
2938 uint32_t stride)
2939 {
2940 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2941 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2942 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2943 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2944
2945 if (anv_batch_has_error(&cmd_buffer->batch))
2946 return;
2947
2948 genX(cmd_buffer_flush_state)(cmd_buffer);
2949
2950 for (uint32_t i = 0; i < drawCount; i++) {
2951 struct anv_address draw = anv_address_add(buffer->address, offset);
2952
2953 if (vs_prog_data->uses_firstvertex ||
2954 vs_prog_data->uses_baseinstance)
2955 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 8));
2956 if (vs_prog_data->uses_drawid)
2957 emit_draw_index(cmd_buffer, i);
2958
2959 load_indirect_parameters(cmd_buffer, draw, false);
2960
2961 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
2962 prim.IndirectParameterEnable = true;
2963 prim.VertexAccessType = SEQUENTIAL;
2964 prim.PrimitiveTopologyType = pipeline->topology;
2965 }
2966
2967 offset += stride;
2968 }
2969
2970 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
2971 }
2972
2973 void genX(CmdDrawIndexedIndirect)(
2974 VkCommandBuffer commandBuffer,
2975 VkBuffer _buffer,
2976 VkDeviceSize offset,
2977 uint32_t drawCount,
2978 uint32_t stride)
2979 {
2980 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
2981 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
2982 struct anv_pipeline *pipeline = cmd_buffer->state.gfx.base.pipeline;
2983 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
2984
2985 if (anv_batch_has_error(&cmd_buffer->batch))
2986 return;
2987
2988 genX(cmd_buffer_flush_state)(cmd_buffer);
2989
2990 for (uint32_t i = 0; i < drawCount; i++) {
2991 struct anv_address draw = anv_address_add(buffer->address, offset);
2992
2993 /* TODO: We need to stomp base vertex to 0 somehow */
2994 if (vs_prog_data->uses_firstvertex ||
2995 vs_prog_data->uses_baseinstance)
2996 emit_base_vertex_instance_bo(cmd_buffer, anv_address_add(draw, 12));
2997 if (vs_prog_data->uses_drawid)
2998 emit_draw_index(cmd_buffer, i);
2999
3000 load_indirect_parameters(cmd_buffer, draw, true);
3001
3002 anv_batch_emit(&cmd_buffer->batch, GENX(3DPRIMITIVE), prim) {
3003 prim.IndirectParameterEnable = true;
3004 prim.VertexAccessType = RANDOM;
3005 prim.PrimitiveTopologyType = pipeline->topology;
3006 }
3007
3008 offset += stride;
3009 }
3010
3011 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_RENDER_TARGET_WRITES;
3012 }
3013
3014 static VkResult
3015 flush_compute_descriptor_set(struct anv_cmd_buffer *cmd_buffer)
3016 {
3017 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3018 struct anv_state surfaces = { 0, }, samplers = { 0, };
3019 VkResult result;
3020
3021 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3022 if (result != VK_SUCCESS) {
3023 assert(result == VK_ERROR_OUT_OF_DEVICE_MEMORY);
3024
3025 result = anv_cmd_buffer_new_binding_table_block(cmd_buffer);
3026 if (result != VK_SUCCESS)
3027 return result;
3028
3029 /* Re-emit state base addresses so we get the new surface state base
3030 * address before we start emitting binding tables etc.
3031 */
3032 genX(cmd_buffer_emit_state_base_address)(cmd_buffer);
3033
3034 result = emit_binding_table(cmd_buffer, MESA_SHADER_COMPUTE, &surfaces);
3035 if (result != VK_SUCCESS) {
3036 anv_batch_set_error(&cmd_buffer->batch, result);
3037 return result;
3038 }
3039 }
3040
3041 result = emit_samplers(cmd_buffer, MESA_SHADER_COMPUTE, &samplers);
3042 if (result != VK_SUCCESS) {
3043 anv_batch_set_error(&cmd_buffer->batch, result);
3044 return result;
3045 }
3046
3047 uint32_t iface_desc_data_dw[GENX(INTERFACE_DESCRIPTOR_DATA_length)];
3048 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
3049 .BindingTablePointer = surfaces.offset,
3050 .SamplerStatePointer = samplers.offset,
3051 };
3052 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL, iface_desc_data_dw, &desc);
3053
3054 struct anv_state state =
3055 anv_cmd_buffer_merge_dynamic(cmd_buffer, iface_desc_data_dw,
3056 pipeline->interface_descriptor_data,
3057 GENX(INTERFACE_DESCRIPTOR_DATA_length),
3058 64);
3059
3060 uint32_t size = GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
3061 anv_batch_emit(&cmd_buffer->batch,
3062 GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), mid) {
3063 mid.InterfaceDescriptorTotalLength = size;
3064 mid.InterfaceDescriptorDataStartAddress = state.offset;
3065 }
3066
3067 return VK_SUCCESS;
3068 }
3069
3070 void
3071 genX(cmd_buffer_flush_compute_state)(struct anv_cmd_buffer *cmd_buffer)
3072 {
3073 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3074 MAYBE_UNUSED VkResult result;
3075
3076 assert(pipeline->active_stages == VK_SHADER_STAGE_COMPUTE_BIT);
3077
3078 genX(cmd_buffer_config_l3)(cmd_buffer, pipeline->urb.l3_config);
3079
3080 genX(flush_pipeline_select_gpgpu)(cmd_buffer);
3081
3082 if (cmd_buffer->state.compute.pipeline_dirty) {
3083 /* From the Sky Lake PRM Vol 2a, MEDIA_VFE_STATE:
3084 *
3085 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
3086 * the only bits that are changed are scoreboard related: Scoreboard
3087 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
3088 * these scoreboard related states, a MEDIA_STATE_FLUSH is
3089 * sufficient."
3090 */
3091 cmd_buffer->state.pending_pipe_bits |= ANV_PIPE_CS_STALL_BIT;
3092 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3093
3094 anv_batch_emit_batch(&cmd_buffer->batch, &pipeline->batch);
3095 }
3096
3097 if ((cmd_buffer->state.descriptors_dirty & VK_SHADER_STAGE_COMPUTE_BIT) ||
3098 cmd_buffer->state.compute.pipeline_dirty) {
3099 /* FIXME: figure out descriptors for gen7 */
3100 result = flush_compute_descriptor_set(cmd_buffer);
3101 if (result != VK_SUCCESS)
3102 return;
3103
3104 cmd_buffer->state.descriptors_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3105 }
3106
3107 if (cmd_buffer->state.push_constants_dirty & VK_SHADER_STAGE_COMPUTE_BIT) {
3108 struct anv_state push_state =
3109 anv_cmd_buffer_cs_push_constants(cmd_buffer);
3110
3111 if (push_state.alloc_size) {
3112 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_CURBE_LOAD), curbe) {
3113 curbe.CURBETotalDataLength = push_state.alloc_size;
3114 curbe.CURBEDataStartAddress = push_state.offset;
3115 }
3116 }
3117
3118 cmd_buffer->state.push_constants_dirty &= ~VK_SHADER_STAGE_COMPUTE_BIT;
3119 }
3120
3121 cmd_buffer->state.compute.pipeline_dirty = false;
3122
3123 genX(cmd_buffer_apply_pipe_flushes)(cmd_buffer);
3124 }
3125
3126 #if GEN_GEN == 7
3127
3128 static VkResult
3129 verify_cmd_parser(const struct anv_device *device,
3130 int required_version,
3131 const char *function)
3132 {
3133 if (device->instance->physicalDevice.cmd_parser_version < required_version) {
3134 return vk_errorf(device->instance, device->instance,
3135 VK_ERROR_FEATURE_NOT_PRESENT,
3136 "cmd parser version %d is required for %s",
3137 required_version, function);
3138 } else {
3139 return VK_SUCCESS;
3140 }
3141 }
3142
3143 #endif
3144
3145 static void
3146 anv_cmd_buffer_push_base_group_id(struct anv_cmd_buffer *cmd_buffer,
3147 uint32_t baseGroupX,
3148 uint32_t baseGroupY,
3149 uint32_t baseGroupZ)
3150 {
3151 if (anv_batch_has_error(&cmd_buffer->batch))
3152 return;
3153
3154 VkResult result =
3155 anv_cmd_buffer_ensure_push_constant_field(cmd_buffer, MESA_SHADER_COMPUTE,
3156 base_work_group_id);
3157 if (result != VK_SUCCESS) {
3158 cmd_buffer->batch.status = result;
3159 return;
3160 }
3161
3162 struct anv_push_constants *push =
3163 cmd_buffer->state.push_constants[MESA_SHADER_COMPUTE];
3164 if (push->base_work_group_id[0] != baseGroupX ||
3165 push->base_work_group_id[1] != baseGroupY ||
3166 push->base_work_group_id[2] != baseGroupZ) {
3167 push->base_work_group_id[0] = baseGroupX;
3168 push->base_work_group_id[1] = baseGroupY;
3169 push->base_work_group_id[2] = baseGroupZ;
3170
3171 cmd_buffer->state.push_constants_dirty |= VK_SHADER_STAGE_COMPUTE_BIT;
3172 }
3173 }
3174
3175 void genX(CmdDispatch)(
3176 VkCommandBuffer commandBuffer,
3177 uint32_t x,
3178 uint32_t y,
3179 uint32_t z)
3180 {
3181 genX(CmdDispatchBase)(commandBuffer, 0, 0, 0, x, y, z);
3182 }
3183
3184 void genX(CmdDispatchBase)(
3185 VkCommandBuffer commandBuffer,
3186 uint32_t baseGroupX,
3187 uint32_t baseGroupY,
3188 uint32_t baseGroupZ,
3189 uint32_t groupCountX,
3190 uint32_t groupCountY,
3191 uint32_t groupCountZ)
3192 {
3193 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3194 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3195 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3196
3197 anv_cmd_buffer_push_base_group_id(cmd_buffer, baseGroupX,
3198 baseGroupY, baseGroupZ);
3199
3200 if (anv_batch_has_error(&cmd_buffer->batch))
3201 return;
3202
3203 if (prog_data->uses_num_work_groups) {
3204 struct anv_state state =
3205 anv_cmd_buffer_alloc_dynamic_state(cmd_buffer, 12, 4);
3206 uint32_t *sizes = state.map;
3207 sizes[0] = groupCountX;
3208 sizes[1] = groupCountY;
3209 sizes[2] = groupCountZ;
3210 anv_state_flush(cmd_buffer->device, state);
3211 cmd_buffer->state.compute.num_workgroups = (struct anv_address) {
3212 .bo = &cmd_buffer->device->dynamic_state_pool.block_pool.bo,
3213 .offset = state.offset,
3214 };
3215 }
3216
3217 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3218
3219 anv_batch_emit(&cmd_buffer->batch, GENX(GPGPU_WALKER), ggw) {
3220 ggw.SIMDSize = prog_data->simd_size / 16;
3221 ggw.ThreadDepthCounterMaximum = 0;
3222 ggw.ThreadHeightCounterMaximum = 0;
3223 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3224 ggw.ThreadGroupIDXDimension = groupCountX;
3225 ggw.ThreadGroupIDYDimension = groupCountY;
3226 ggw.ThreadGroupIDZDimension = groupCountZ;
3227 ggw.RightExecutionMask = pipeline->cs_right_mask;
3228 ggw.BottomExecutionMask = 0xffffffff;
3229 }
3230
3231 anv_batch_emit(&cmd_buffer->batch, GENX(MEDIA_STATE_FLUSH), msf);
3232 }
3233
3234 #define GPGPU_DISPATCHDIMX 0x2500
3235 #define GPGPU_DISPATCHDIMY 0x2504
3236 #define GPGPU_DISPATCHDIMZ 0x2508
3237
3238 void genX(CmdDispatchIndirect)(
3239 VkCommandBuffer commandBuffer,
3240 VkBuffer _buffer,
3241 VkDeviceSize offset)
3242 {
3243 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3244 ANV_FROM_HANDLE(anv_buffer, buffer, _buffer);
3245 struct anv_pipeline *pipeline = cmd_buffer->state.compute.base.pipeline;
3246 const struct brw_cs_prog_data *prog_data = get_cs_prog_data(pipeline);
3247 struct anv_address addr = anv_address_add(buffer->address, offset);
3248 struct anv_batch *batch = &cmd_buffer->batch;
3249
3250 anv_cmd_buffer_push_base_group_id(cmd_buffer, 0, 0, 0);
3251
3252 #if GEN_GEN == 7
3253 /* Linux 4.4 added command parser version 5 which allows the GPGPU
3254 * indirect dispatch registers to be written.
3255 */
3256 if (verify_cmd_parser(cmd_buffer->device, 5,
3257 "vkCmdDispatchIndirect") != VK_SUCCESS)
3258 return;
3259 #endif
3260
3261 if (prog_data->uses_num_work_groups)
3262 cmd_buffer->state.compute.num_workgroups = addr;
3263
3264 genX(cmd_buffer_flush_compute_state)(cmd_buffer);
3265
3266 emit_lrm(batch, GPGPU_DISPATCHDIMX, anv_address_add(addr, 0));
3267 emit_lrm(batch, GPGPU_DISPATCHDIMY, anv_address_add(addr, 4));
3268 emit_lrm(batch, GPGPU_DISPATCHDIMZ, anv_address_add(addr, 8));
3269
3270 #if GEN_GEN <= 7
3271 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
3272 emit_lri(batch, MI_PREDICATE_SRC0 + 4, 0);
3273 emit_lri(batch, MI_PREDICATE_SRC1 + 0, 0);
3274 emit_lri(batch, MI_PREDICATE_SRC1 + 4, 0);
3275
3276 /* Load compute_dispatch_indirect_x_size into SRC0 */
3277 emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 0));
3278
3279 /* predicate = (compute_dispatch_indirect_x_size == 0); */
3280 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3281 mip.LoadOperation = LOAD_LOAD;
3282 mip.CombineOperation = COMBINE_SET;
3283 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3284 }
3285
3286 /* Load compute_dispatch_indirect_y_size into SRC0 */
3287 emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 4));
3288
3289 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
3290 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3291 mip.LoadOperation = LOAD_LOAD;
3292 mip.CombineOperation = COMBINE_OR;
3293 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3294 }
3295
3296 /* Load compute_dispatch_indirect_z_size into SRC0 */
3297 emit_lrm(batch, MI_PREDICATE_SRC0, anv_address_add(addr, 8));
3298
3299 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
3300 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3301 mip.LoadOperation = LOAD_LOAD;
3302 mip.CombineOperation = COMBINE_OR;
3303 mip.CompareOperation = COMPARE_SRCS_EQUAL;
3304 }
3305
3306 /* predicate = !predicate; */
3307 #define COMPARE_FALSE 1
3308 anv_batch_emit(batch, GENX(MI_PREDICATE), mip) {
3309 mip.LoadOperation = LOAD_LOADINV;
3310 mip.CombineOperation = COMBINE_OR;
3311 mip.CompareOperation = COMPARE_FALSE;
3312 }
3313 #endif
3314
3315 anv_batch_emit(batch, GENX(GPGPU_WALKER), ggw) {
3316 ggw.IndirectParameterEnable = true;
3317 ggw.PredicateEnable = GEN_GEN <= 7;
3318 ggw.SIMDSize = prog_data->simd_size / 16;
3319 ggw.ThreadDepthCounterMaximum = 0;
3320 ggw.ThreadHeightCounterMaximum = 0;
3321 ggw.ThreadWidthCounterMaximum = prog_data->threads - 1;
3322 ggw.RightExecutionMask = pipeline->cs_right_mask;
3323 ggw.BottomExecutionMask = 0xffffffff;
3324 }
3325
3326 anv_batch_emit(batch, GENX(MEDIA_STATE_FLUSH), msf);
3327 }
3328
3329 static void
3330 genX(flush_pipeline_select)(struct anv_cmd_buffer *cmd_buffer,
3331 uint32_t pipeline)
3332 {
3333 UNUSED const struct gen_device_info *devinfo = &cmd_buffer->device->info;
3334
3335 if (cmd_buffer->state.current_pipeline == pipeline)
3336 return;
3337
3338 #if GEN_GEN >= 8 && GEN_GEN < 10
3339 /* From the Broadwell PRM, Volume 2a: Instructions, PIPELINE_SELECT:
3340 *
3341 * Software must clear the COLOR_CALC_STATE Valid field in
3342 * 3DSTATE_CC_STATE_POINTERS command prior to send a PIPELINE_SELECT
3343 * with Pipeline Select set to GPGPU.
3344 *
3345 * The internal hardware docs recommend the same workaround for Gen9
3346 * hardware too.
3347 */
3348 if (pipeline == GPGPU)
3349 anv_batch_emit(&cmd_buffer->batch, GENX(3DSTATE_CC_STATE_POINTERS), t);
3350 #endif
3351
3352 /* From "BXML » GT » MI » vol1a GPU Overview » [Instruction]
3353 * PIPELINE_SELECT [DevBWR+]":
3354 *
3355 * Project: DEVSNB+
3356 *
3357 * Software must ensure all the write caches are flushed through a
3358 * stalling PIPE_CONTROL command followed by another PIPE_CONTROL
3359 * command to invalidate read only caches prior to programming
3360 * MI_PIPELINE_SELECT command to change the Pipeline Select Mode.
3361 */
3362 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3363 pc.RenderTargetCacheFlushEnable = true;
3364 pc.DepthCacheFlushEnable = true;
3365 pc.DCFlushEnable = true;
3366 pc.PostSyncOperation = NoWrite;
3367 pc.CommandStreamerStallEnable = true;
3368 }
3369
3370 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pc) {
3371 pc.TextureCacheInvalidationEnable = true;
3372 pc.ConstantCacheInvalidationEnable = true;
3373 pc.StateCacheInvalidationEnable = true;
3374 pc.InstructionCacheInvalidateEnable = true;
3375 pc.PostSyncOperation = NoWrite;
3376 }
3377
3378 anv_batch_emit(&cmd_buffer->batch, GENX(PIPELINE_SELECT), ps) {
3379 #if GEN_GEN >= 9
3380 ps.MaskBits = 3;
3381 #endif
3382 ps.PipelineSelection = pipeline;
3383 }
3384
3385 #if GEN_GEN == 9
3386 if (devinfo->is_geminilake) {
3387 /* Project: DevGLK
3388 *
3389 * "This chicken bit works around a hardware issue with barrier logic
3390 * encountered when switching between GPGPU and 3D pipelines. To
3391 * workaround the issue, this mode bit should be set after a pipeline
3392 * is selected."
3393 */
3394 uint32_t scec;
3395 anv_pack_struct(&scec, GENX(SLICE_COMMON_ECO_CHICKEN1),
3396 .GLKBarrierMode =
3397 pipeline == GPGPU ? GLK_BARRIER_MODE_GPGPU
3398 : GLK_BARRIER_MODE_3D_HULL,
3399 .GLKBarrierModeMask = 1);
3400 emit_lri(&cmd_buffer->batch, GENX(SLICE_COMMON_ECO_CHICKEN1_num), scec);
3401 }
3402 #endif
3403
3404 cmd_buffer->state.current_pipeline = pipeline;
3405 }
3406
3407 void
3408 genX(flush_pipeline_select_3d)(struct anv_cmd_buffer *cmd_buffer)
3409 {
3410 genX(flush_pipeline_select)(cmd_buffer, _3D);
3411 }
3412
3413 void
3414 genX(flush_pipeline_select_gpgpu)(struct anv_cmd_buffer *cmd_buffer)
3415 {
3416 genX(flush_pipeline_select)(cmd_buffer, GPGPU);
3417 }
3418
3419 void
3420 genX(cmd_buffer_emit_gen7_depth_flush)(struct anv_cmd_buffer *cmd_buffer)
3421 {
3422 if (GEN_GEN >= 8)
3423 return;
3424
3425 /* From the Haswell PRM, documentation for 3DSTATE_DEPTH_BUFFER:
3426 *
3427 * "Restriction: Prior to changing Depth/Stencil Buffer state (i.e., any
3428 * combination of 3DSTATE_DEPTH_BUFFER, 3DSTATE_CLEAR_PARAMS,
3429 * 3DSTATE_STENCIL_BUFFER, 3DSTATE_HIER_DEPTH_BUFFER) SW must first
3430 * issue a pipelined depth stall (PIPE_CONTROL with Depth Stall bit
3431 * set), followed by a pipelined depth cache flush (PIPE_CONTROL with
3432 * Depth Flush Bit set, followed by another pipelined depth stall
3433 * (PIPE_CONTROL with Depth Stall Bit set), unless SW can otherwise
3434 * guarantee that the pipeline from WM onwards is already flushed (e.g.,
3435 * via a preceding MI_FLUSH)."
3436 */
3437 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3438 pipe.DepthStallEnable = true;
3439 }
3440 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3441 pipe.DepthCacheFlushEnable = true;
3442 }
3443 anv_batch_emit(&cmd_buffer->batch, GENX(PIPE_CONTROL), pipe) {
3444 pipe.DepthStallEnable = true;
3445 }
3446 }
3447
3448 static void
3449 cmd_buffer_emit_depth_stencil(struct anv_cmd_buffer *cmd_buffer)
3450 {
3451 struct anv_device *device = cmd_buffer->device;
3452 const struct anv_image_view *iview =
3453 anv_cmd_buffer_get_depth_stencil_view(cmd_buffer);
3454 const struct anv_image *image = iview ? iview->image : NULL;
3455
3456 /* FIXME: Width and Height are wrong */
3457
3458 genX(cmd_buffer_emit_gen7_depth_flush)(cmd_buffer);
3459
3460 uint32_t *dw = anv_batch_emit_dwords(&cmd_buffer->batch,
3461 device->isl_dev.ds.size / 4);
3462 if (dw == NULL)
3463 return;
3464
3465 struct isl_depth_stencil_hiz_emit_info info = { };
3466
3467 if (iview)
3468 info.view = &iview->planes[0].isl;
3469
3470 if (image && (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
3471 uint32_t depth_plane =
3472 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_DEPTH_BIT);
3473 const struct anv_surface *surface = &image->planes[depth_plane].surface;
3474
3475 info.depth_surf = &surface->isl;
3476
3477 info.depth_address =
3478 anv_batch_emit_reloc(&cmd_buffer->batch,
3479 dw + device->isl_dev.ds.depth_offset / 4,
3480 image->planes[depth_plane].address.bo,
3481 image->planes[depth_plane].address.offset +
3482 surface->offset);
3483 info.mocs =
3484 anv_mocs_for_bo(device, image->planes[depth_plane].address.bo);
3485
3486 const uint32_t ds =
3487 cmd_buffer->state.subpass->depth_stencil_attachment->attachment;
3488 info.hiz_usage = cmd_buffer->state.attachments[ds].aux_usage;
3489 if (info.hiz_usage == ISL_AUX_USAGE_HIZ) {
3490 info.hiz_surf = &image->planes[depth_plane].aux_surface.isl;
3491
3492 info.hiz_address =
3493 anv_batch_emit_reloc(&cmd_buffer->batch,
3494 dw + device->isl_dev.ds.hiz_offset / 4,
3495 image->planes[depth_plane].address.bo,
3496 image->planes[depth_plane].address.offset +
3497 image->planes[depth_plane].aux_surface.offset);
3498
3499 info.depth_clear_value = ANV_HZ_FC_VAL;
3500 }
3501 }
3502
3503 if (image && (image->aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
3504 uint32_t stencil_plane =
3505 anv_image_aspect_to_plane(image->aspects, VK_IMAGE_ASPECT_STENCIL_BIT);
3506 const struct anv_surface *surface = &image->planes[stencil_plane].surface;
3507
3508 info.stencil_surf = &surface->isl;
3509
3510 info.stencil_address =
3511 anv_batch_emit_reloc(&cmd_buffer->batch,
3512 dw + device->isl_dev.ds.stencil_offset / 4,
3513 image->planes[stencil_plane].address.bo,
3514 image->planes[stencil_plane].address.offset +
3515 surface->offset);
3516 info.mocs =
3517 anv_mocs_for_bo(device, image->planes[stencil_plane].address.bo);
3518 }
3519
3520 isl_emit_depth_stencil_hiz_s(&device->isl_dev, dw, &info);
3521
3522 cmd_buffer->state.hiz_enabled = info.hiz_usage == ISL_AUX_USAGE_HIZ;
3523 }
3524
3525 /**
3526 * This ANDs the view mask of the current subpass with the pending clear
3527 * views in the attachment to get the mask of views active in the subpass
3528 * that still need to be cleared.
3529 */
3530 static inline uint32_t
3531 get_multiview_subpass_clear_mask(const struct anv_cmd_state *cmd_state,
3532 const struct anv_attachment_state *att_state)
3533 {
3534 return cmd_state->subpass->view_mask & att_state->pending_clear_views;
3535 }
3536
3537 static inline bool
3538 do_first_layer_clear(const struct anv_cmd_state *cmd_state,
3539 const struct anv_attachment_state *att_state)
3540 {
3541 if (!cmd_state->subpass->view_mask)
3542 return true;
3543
3544 uint32_t pending_clear_mask =
3545 get_multiview_subpass_clear_mask(cmd_state, att_state);
3546
3547 return pending_clear_mask & 1;
3548 }
3549
3550 static inline bool
3551 current_subpass_is_last_for_attachment(const struct anv_cmd_state *cmd_state,
3552 uint32_t att_idx)
3553 {
3554 const uint32_t last_subpass_idx =
3555 cmd_state->pass->attachments[att_idx].last_subpass_idx;
3556 const struct anv_subpass *last_subpass =
3557 &cmd_state->pass->subpasses[last_subpass_idx];
3558 return last_subpass == cmd_state->subpass;
3559 }
3560
3561 static void
3562 cmd_buffer_begin_subpass(struct anv_cmd_buffer *cmd_buffer,
3563 uint32_t subpass_id)
3564 {
3565 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3566 struct anv_subpass *subpass = &cmd_state->pass->subpasses[subpass_id];
3567 cmd_state->subpass = subpass;
3568
3569 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_RENDER_TARGETS;
3570
3571 /* Our implementation of VK_KHR_multiview uses instancing to draw the
3572 * different views. If the client asks for instancing, we need to use the
3573 * Instance Data Step Rate to ensure that we repeat the client's
3574 * per-instance data once for each view. Since this bit is in
3575 * VERTEX_BUFFER_STATE on gen7, we need to dirty vertex buffers at the top
3576 * of each subpass.
3577 */
3578 if (GEN_GEN == 7)
3579 cmd_buffer->state.gfx.vb_dirty |= ~0;
3580
3581 /* It is possible to start a render pass with an old pipeline. Because the
3582 * render pass and subpass index are both baked into the pipeline, this is
3583 * highly unlikely. In order to do so, it requires that you have a render
3584 * pass with a single subpass and that you use that render pass twice
3585 * back-to-back and use the same pipeline at the start of the second render
3586 * pass as at the end of the first. In order to avoid unpredictable issues
3587 * with this edge case, we just dirty the pipeline at the start of every
3588 * subpass.
3589 */
3590 cmd_buffer->state.gfx.dirty |= ANV_CMD_DIRTY_PIPELINE;
3591
3592 /* Accumulate any subpass flushes that need to happen before the subpass */
3593 cmd_buffer->state.pending_pipe_bits |=
3594 cmd_buffer->state.pass->subpass_flushes[subpass_id];
3595
3596 VkRect2D render_area = cmd_buffer->state.render_area;
3597 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3598
3599 bool is_multiview = subpass->view_mask != 0;
3600
3601 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3602 const uint32_t a = subpass->attachments[i].attachment;
3603 if (a == VK_ATTACHMENT_UNUSED)
3604 continue;
3605
3606 assert(a < cmd_state->pass->attachment_count);
3607 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3608
3609 struct anv_image_view *iview = fb->attachments[a];
3610 const struct anv_image *image = iview->image;
3611
3612 /* A resolve is necessary before use as an input attachment if the clear
3613 * color or auxiliary buffer usage isn't supported by the sampler.
3614 */
3615 const bool input_needs_resolve =
3616 (att_state->fast_clear && !att_state->clear_color_is_zero_one) ||
3617 att_state->input_aux_usage != att_state->aux_usage;
3618
3619 VkImageLayout target_layout;
3620 if (iview->aspect_mask & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV &&
3621 !input_needs_resolve) {
3622 /* Layout transitions before the final only help to enable sampling
3623 * as an input attachment. If the input attachment supports sampling
3624 * using the auxiliary surface, we can skip such transitions by
3625 * making the target layout one that is CCS-aware.
3626 */
3627 target_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
3628 } else {
3629 target_layout = subpass->attachments[i].layout;
3630 }
3631
3632 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3633 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3634
3635 uint32_t base_layer, layer_count;
3636 if (image->type == VK_IMAGE_TYPE_3D) {
3637 base_layer = 0;
3638 layer_count = anv_minify(iview->image->extent.depth,
3639 iview->planes[0].isl.base_level);
3640 } else {
3641 base_layer = iview->planes[0].isl.base_array_layer;
3642 layer_count = fb->layers;
3643 }
3644
3645 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3646 iview->planes[0].isl.base_level, 1,
3647 base_layer, layer_count,
3648 att_state->current_layout, target_layout);
3649 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3650 transition_depth_buffer(cmd_buffer, image,
3651 att_state->current_layout, target_layout);
3652 att_state->aux_usage =
3653 anv_layout_to_aux_usage(&cmd_buffer->device->info, image,
3654 VK_IMAGE_ASPECT_DEPTH_BIT, target_layout);
3655 }
3656 att_state->current_layout = target_layout;
3657
3658 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_COLOR_BIT) {
3659 assert(att_state->pending_clear_aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3660
3661 /* Multi-planar images are not supported as attachments */
3662 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3663 assert(image->n_planes == 1);
3664
3665 uint32_t base_clear_layer = iview->planes[0].isl.base_array_layer;
3666 uint32_t clear_layer_count = fb->layers;
3667
3668 if (att_state->fast_clear &&
3669 do_first_layer_clear(cmd_state, att_state)) {
3670 /* We only support fast-clears on the first layer */
3671 assert(iview->planes[0].isl.base_level == 0);
3672 assert(iview->planes[0].isl.base_array_layer == 0);
3673
3674 union isl_color_value clear_color = {};
3675 anv_clear_color_from_att_state(&clear_color, att_state, iview);
3676 if (iview->image->samples == 1) {
3677 anv_image_ccs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3678 0, 0, 1, ISL_AUX_OP_FAST_CLEAR,
3679 &clear_color,
3680 false);
3681 } else {
3682 anv_image_mcs_op(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3683 0, 1, ISL_AUX_OP_FAST_CLEAR,
3684 &clear_color,
3685 false);
3686 }
3687 base_clear_layer++;
3688 clear_layer_count--;
3689 if (is_multiview)
3690 att_state->pending_clear_views &= ~1;
3691
3692 if (att_state->clear_color_is_zero) {
3693 /* This image has the auxiliary buffer enabled. We can mark the
3694 * subresource as not needing a resolve because the clear color
3695 * will match what's in every RENDER_SURFACE_STATE object when
3696 * it's being used for sampling.
3697 */
3698 set_image_fast_clear_state(cmd_buffer, iview->image,
3699 VK_IMAGE_ASPECT_COLOR_BIT,
3700 ANV_FAST_CLEAR_DEFAULT_VALUE);
3701 } else {
3702 set_image_fast_clear_state(cmd_buffer, iview->image,
3703 VK_IMAGE_ASPECT_COLOR_BIT,
3704 ANV_FAST_CLEAR_ANY);
3705 }
3706 }
3707
3708 /* From the VkFramebufferCreateInfo spec:
3709 *
3710 * "If the render pass uses multiview, then layers must be one and each
3711 * attachment requires a number of layers that is greater than the
3712 * maximum bit index set in the view mask in the subpasses in which it
3713 * is used."
3714 *
3715 * So if multiview is active we ignore the number of layers in the
3716 * framebuffer and instead we honor the view mask from the subpass.
3717 */
3718 if (is_multiview) {
3719 assert(image->n_planes == 1);
3720 uint32_t pending_clear_mask =
3721 get_multiview_subpass_clear_mask(cmd_state, att_state);
3722
3723 uint32_t layer_idx;
3724 for_each_bit(layer_idx, pending_clear_mask) {
3725 uint32_t layer =
3726 iview->planes[0].isl.base_array_layer + layer_idx;
3727
3728 anv_image_clear_color(cmd_buffer, image,
3729 VK_IMAGE_ASPECT_COLOR_BIT,
3730 att_state->aux_usage,
3731 iview->planes[0].isl.format,
3732 iview->planes[0].isl.swizzle,
3733 iview->planes[0].isl.base_level,
3734 layer, 1,
3735 render_area,
3736 vk_to_isl_color(att_state->clear_value.color));
3737 }
3738
3739 att_state->pending_clear_views &= ~pending_clear_mask;
3740 } else if (clear_layer_count > 0) {
3741 assert(image->n_planes == 1);
3742 anv_image_clear_color(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3743 att_state->aux_usage,
3744 iview->planes[0].isl.format,
3745 iview->planes[0].isl.swizzle,
3746 iview->planes[0].isl.base_level,
3747 base_clear_layer, clear_layer_count,
3748 render_area,
3749 vk_to_isl_color(att_state->clear_value.color));
3750 }
3751 } else if (att_state->pending_clear_aspects & (VK_IMAGE_ASPECT_DEPTH_BIT |
3752 VK_IMAGE_ASPECT_STENCIL_BIT)) {
3753 if (att_state->fast_clear && !is_multiview) {
3754 /* We currently only support HiZ for single-layer images */
3755 if (att_state->pending_clear_aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3756 assert(iview->image->planes[0].aux_usage == ISL_AUX_USAGE_HIZ);
3757 assert(iview->planes[0].isl.base_level == 0);
3758 assert(iview->planes[0].isl.base_array_layer == 0);
3759 assert(fb->layers == 1);
3760 }
3761
3762 anv_image_hiz_clear(cmd_buffer, image,
3763 att_state->pending_clear_aspects,
3764 iview->planes[0].isl.base_level,
3765 iview->planes[0].isl.base_array_layer,
3766 fb->layers, render_area,
3767 att_state->clear_value.depthStencil.stencil);
3768 } else if (is_multiview) {
3769 uint32_t pending_clear_mask =
3770 get_multiview_subpass_clear_mask(cmd_state, att_state);
3771
3772 uint32_t layer_idx;
3773 for_each_bit(layer_idx, pending_clear_mask) {
3774 uint32_t layer =
3775 iview->planes[0].isl.base_array_layer + layer_idx;
3776
3777 anv_image_clear_depth_stencil(cmd_buffer, image,
3778 att_state->pending_clear_aspects,
3779 att_state->aux_usage,
3780 iview->planes[0].isl.base_level,
3781 layer, 1,
3782 render_area,
3783 att_state->clear_value.depthStencil.depth,
3784 att_state->clear_value.depthStencil.stencil);
3785 }
3786
3787 att_state->pending_clear_views &= ~pending_clear_mask;
3788 } else {
3789 anv_image_clear_depth_stencil(cmd_buffer, image,
3790 att_state->pending_clear_aspects,
3791 att_state->aux_usage,
3792 iview->planes[0].isl.base_level,
3793 iview->planes[0].isl.base_array_layer,
3794 fb->layers, render_area,
3795 att_state->clear_value.depthStencil.depth,
3796 att_state->clear_value.depthStencil.stencil);
3797 }
3798 } else {
3799 assert(att_state->pending_clear_aspects == 0);
3800 }
3801
3802 if (GEN_GEN < 10 &&
3803 (att_state->pending_load_aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) &&
3804 image->planes[0].aux_surface.isl.size_B > 0 &&
3805 iview->planes[0].isl.base_level == 0 &&
3806 iview->planes[0].isl.base_array_layer == 0) {
3807 if (att_state->aux_usage != ISL_AUX_USAGE_NONE) {
3808 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->color.state,
3809 image, VK_IMAGE_ASPECT_COLOR_BIT,
3810 false /* copy to ss */);
3811 }
3812
3813 if (need_input_attachment_state(&cmd_state->pass->attachments[a]) &&
3814 att_state->input_aux_usage != ISL_AUX_USAGE_NONE) {
3815 genX(copy_fast_clear_dwords)(cmd_buffer, att_state->input.state,
3816 image, VK_IMAGE_ASPECT_COLOR_BIT,
3817 false /* copy to ss */);
3818 }
3819 }
3820
3821 if (subpass->attachments[i].usage ==
3822 VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
3823 /* We assume that if we're starting a subpass, we're going to do some
3824 * rendering so we may end up with compressed data.
3825 */
3826 genX(cmd_buffer_mark_image_written)(cmd_buffer, iview->image,
3827 VK_IMAGE_ASPECT_COLOR_BIT,
3828 att_state->aux_usage,
3829 iview->planes[0].isl.base_level,
3830 iview->planes[0].isl.base_array_layer,
3831 fb->layers);
3832 } else if (subpass->attachments[i].usage ==
3833 VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
3834 /* We may be writing depth or stencil so we need to mark the surface.
3835 * Unfortunately, there's no way to know at this point whether the
3836 * depth or stencil tests used will actually write to the surface.
3837 *
3838 * Even though stencil may be plane 1, it always shares a base_level
3839 * with depth.
3840 */
3841 const struct isl_view *ds_view = &iview->planes[0].isl;
3842 if (iview->aspect_mask & VK_IMAGE_ASPECT_DEPTH_BIT) {
3843 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3844 VK_IMAGE_ASPECT_DEPTH_BIT,
3845 att_state->aux_usage,
3846 ds_view->base_level,
3847 ds_view->base_array_layer,
3848 fb->layers);
3849 }
3850 if (iview->aspect_mask & VK_IMAGE_ASPECT_STENCIL_BIT) {
3851 /* Even though stencil may be plane 1, it always shares a
3852 * base_level with depth.
3853 */
3854 genX(cmd_buffer_mark_image_written)(cmd_buffer, image,
3855 VK_IMAGE_ASPECT_STENCIL_BIT,
3856 ISL_AUX_USAGE_NONE,
3857 ds_view->base_level,
3858 ds_view->base_array_layer,
3859 fb->layers);
3860 }
3861 }
3862
3863 /* If multiview is enabled, then we are only done clearing when we no
3864 * longer have pending layers to clear, or when we have processed the
3865 * last subpass that uses this attachment.
3866 */
3867 if (!is_multiview ||
3868 att_state->pending_clear_views == 0 ||
3869 current_subpass_is_last_for_attachment(cmd_state, a)) {
3870 att_state->pending_clear_aspects = 0;
3871 }
3872
3873 att_state->pending_load_aspects = 0;
3874 }
3875
3876 cmd_buffer_emit_depth_stencil(cmd_buffer);
3877 }
3878
3879 static void
3880 cmd_buffer_end_subpass(struct anv_cmd_buffer *cmd_buffer)
3881 {
3882 struct anv_cmd_state *cmd_state = &cmd_buffer->state;
3883 struct anv_subpass *subpass = cmd_state->subpass;
3884 uint32_t subpass_id = anv_get_subpass_id(&cmd_buffer->state);
3885
3886 anv_cmd_buffer_resolve_subpass(cmd_buffer);
3887
3888 struct anv_framebuffer *fb = cmd_buffer->state.framebuffer;
3889 for (uint32_t i = 0; i < subpass->attachment_count; ++i) {
3890 const uint32_t a = subpass->attachments[i].attachment;
3891 if (a == VK_ATTACHMENT_UNUSED)
3892 continue;
3893
3894 if (cmd_state->pass->attachments[a].last_subpass_idx != subpass_id)
3895 continue;
3896
3897 assert(a < cmd_state->pass->attachment_count);
3898 struct anv_attachment_state *att_state = &cmd_state->attachments[a];
3899 struct anv_image_view *iview = fb->attachments[a];
3900 const struct anv_image *image = iview->image;
3901
3902 /* Transition the image into the final layout for this render pass */
3903 VkImageLayout target_layout =
3904 cmd_state->pass->attachments[a].final_layout;
3905
3906 if (image->aspects & VK_IMAGE_ASPECT_ANY_COLOR_BIT_ANV) {
3907 assert(image->aspects == VK_IMAGE_ASPECT_COLOR_BIT);
3908
3909 uint32_t base_layer, layer_count;
3910 if (image->type == VK_IMAGE_TYPE_3D) {
3911 base_layer = 0;
3912 layer_count = anv_minify(iview->image->extent.depth,
3913 iview->planes[0].isl.base_level);
3914 } else {
3915 base_layer = iview->planes[0].isl.base_array_layer;
3916 layer_count = fb->layers;
3917 }
3918
3919 transition_color_buffer(cmd_buffer, image, VK_IMAGE_ASPECT_COLOR_BIT,
3920 iview->planes[0].isl.base_level, 1,
3921 base_layer, layer_count,
3922 att_state->current_layout, target_layout);
3923 } else if (image->aspects & VK_IMAGE_ASPECT_DEPTH_BIT) {
3924 transition_depth_buffer(cmd_buffer, image,
3925 att_state->current_layout, target_layout);
3926 }
3927 }
3928
3929 /* Accumulate any subpass flushes that need to happen after the subpass.
3930 * Yes, they do get accumulated twice in the NextSubpass case but since
3931 * genX_CmdNextSubpass just calls end/begin back-to-back, we just end up
3932 * ORing the bits in twice so it's harmless.
3933 */
3934 cmd_buffer->state.pending_pipe_bits |=
3935 cmd_buffer->state.pass->subpass_flushes[subpass_id + 1];
3936 }
3937
3938 void genX(CmdBeginRenderPass)(
3939 VkCommandBuffer commandBuffer,
3940 const VkRenderPassBeginInfo* pRenderPassBegin,
3941 VkSubpassContents contents)
3942 {
3943 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3944 ANV_FROM_HANDLE(anv_render_pass, pass, pRenderPassBegin->renderPass);
3945 ANV_FROM_HANDLE(anv_framebuffer, framebuffer, pRenderPassBegin->framebuffer);
3946
3947 cmd_buffer->state.framebuffer = framebuffer;
3948 cmd_buffer->state.pass = pass;
3949 cmd_buffer->state.render_area = pRenderPassBegin->renderArea;
3950 VkResult result =
3951 genX(cmd_buffer_setup_attachments)(cmd_buffer, pass, pRenderPassBegin);
3952
3953 /* If we failed to setup the attachments we should not try to go further */
3954 if (result != VK_SUCCESS) {
3955 assert(anv_batch_has_error(&cmd_buffer->batch));
3956 return;
3957 }
3958
3959 genX(flush_pipeline_select_3d)(cmd_buffer);
3960
3961 cmd_buffer_begin_subpass(cmd_buffer, 0);
3962 }
3963
3964 void genX(CmdBeginRenderPass2KHR)(
3965 VkCommandBuffer commandBuffer,
3966 const VkRenderPassBeginInfo* pRenderPassBeginInfo,
3967 const VkSubpassBeginInfoKHR* pSubpassBeginInfo)
3968 {
3969 genX(CmdBeginRenderPass)(commandBuffer, pRenderPassBeginInfo,
3970 pSubpassBeginInfo->contents);
3971 }
3972
3973 void genX(CmdNextSubpass)(
3974 VkCommandBuffer commandBuffer,
3975 VkSubpassContents contents)
3976 {
3977 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
3978
3979 if (anv_batch_has_error(&cmd_buffer->batch))
3980 return;
3981
3982 assert(cmd_buffer->level == VK_COMMAND_BUFFER_LEVEL_PRIMARY);
3983
3984 uint32_t prev_subpass = anv_get_subpass_id(&cmd_buffer->state);
3985 cmd_buffer_end_subpass(cmd_buffer);
3986 cmd_buffer_begin_subpass(cmd_buffer, prev_subpass + 1);
3987 }
3988
3989 void genX(CmdNextSubpass2KHR)(
3990 VkCommandBuffer commandBuffer,
3991 const VkSubpassBeginInfoKHR* pSubpassBeginInfo,
3992 const VkSubpassEndInfoKHR* pSubpassEndInfo)
3993 {
3994 genX(CmdNextSubpass)(commandBuffer, pSubpassBeginInfo->contents);
3995 }
3996
3997 void genX(CmdEndRenderPass)(
3998 VkCommandBuffer commandBuffer)
3999 {
4000 ANV_FROM_HANDLE(anv_cmd_buffer, cmd_buffer, commandBuffer);
4001
4002 if (anv_batch_has_error(&cmd_buffer->batch))
4003 return;
4004
4005 cmd_buffer_end_subpass(cmd_buffer);
4006
4007 cmd_buffer->state.hiz_enabled = false;
4008
4009 #ifndef NDEBUG
4010 anv_dump_add_framebuffer(cmd_buffer, cmd_buffer->state.framebuffer);
4011 #endif
4012
4013 /* Remove references to render pass specific state. This enables us to
4014 * detect whether or not we're in a renderpass.
4015 */
4016 cmd_buffer->state.framebuffer = NULL;
4017 cmd_buffer->state.pass = NULL;
4018 cmd_buffer->state.subpass = NULL;
4019 }
4020
4021 void genX(CmdEndRenderPass2KHR)(
4022 VkCommandBuffer commandBuffer,
4023 const VkSubpassEndInfoKHR* pSubpassEndInfo)
4024 {
4025 genX(CmdEndRenderPass)(commandBuffer);
4026 }