80750eb2236cdb02fcd2d5610de95767c72db409
[mesa.git] / src / intel / vulkan / genX_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_private.h"
25
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28
29 #include "common/gen_l3_config.h"
30 #include "common/gen_sample_positions.h"
31 #include "nir/nir_xfb_info.h"
32 #include "vk_util.h"
33 #include "vk_format_info.h"
34
35 static uint32_t
36 vertex_element_comp_control(enum isl_format format, unsigned comp)
37 {
38 uint8_t bits;
39 switch (comp) {
40 case 0: bits = isl_format_layouts[format].channels.r.bits; break;
41 case 1: bits = isl_format_layouts[format].channels.g.bits; break;
42 case 2: bits = isl_format_layouts[format].channels.b.bits; break;
43 case 3: bits = isl_format_layouts[format].channels.a.bits; break;
44 default: unreachable("Invalid component");
45 }
46
47 /*
48 * Take in account hardware restrictions when dealing with 64-bit floats.
49 *
50 * From Broadwell spec, command reference structures, page 586:
51 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
52 * 64-bit components are stored * in the URB without any conversion. In
53 * this case, vertex elements must be written as 128 or 256 bits, with
54 * VFCOMP_STORE_0 being used to pad the output as required. E.g., if
55 * R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
56 * Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
57 * set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
58 * Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
59 * a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
60 * Component 3 to be specified as VFCOMP_STORE_0 in order to output a
61 * 256-bit vertex element."
62 */
63 if (bits) {
64 return VFCOMP_STORE_SRC;
65 } else if (comp >= 2 &&
66 !isl_format_layouts[format].channels.b.bits &&
67 isl_format_layouts[format].channels.r.type == ISL_RAW) {
68 /* When emitting 64-bit attributes, we need to write either 128 or 256
69 * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
70 * VFCOMP_STORE_0 to pad the written chunk */
71 return VFCOMP_NOSTORE;
72 } else if (comp < 3 ||
73 isl_format_layouts[format].channels.r.type == ISL_RAW) {
74 /* Note we need to pad with value 0, not 1, due hardware restrictions
75 * (see comment above) */
76 return VFCOMP_STORE_0;
77 } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
78 isl_format_layouts[format].channels.r.type == ISL_SINT) {
79 assert(comp == 3);
80 return VFCOMP_STORE_1_INT;
81 } else {
82 assert(comp == 3);
83 return VFCOMP_STORE_1_FP;
84 }
85 }
86
87 static void
88 emit_vertex_input(struct anv_graphics_pipeline *pipeline,
89 const VkPipelineVertexInputStateCreateInfo *info)
90 {
91 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
92
93 /* Pull inputs_read out of the VS prog data */
94 const uint64_t inputs_read = vs_prog_data->inputs_read;
95 const uint64_t double_inputs_read =
96 vs_prog_data->double_inputs_read & inputs_read;
97 assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
98 const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
99 const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
100 const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
101 vs_prog_data->uses_instanceid ||
102 vs_prog_data->uses_firstvertex ||
103 vs_prog_data->uses_baseinstance;
104
105 uint32_t elem_count = __builtin_popcount(elements) -
106 __builtin_popcount(elements_double) / 2;
107
108 const uint32_t total_elems =
109 MAX2(1, elem_count + needs_svgs_elem + vs_prog_data->uses_drawid);
110
111 uint32_t *p;
112
113 const uint32_t num_dwords = 1 + total_elems * 2;
114 p = anv_batch_emitn(&pipeline->base.batch, num_dwords,
115 GENX(3DSTATE_VERTEX_ELEMENTS));
116 if (!p)
117 return;
118
119 for (uint32_t i = 0; i < total_elems; i++) {
120 /* The SKL docs for VERTEX_ELEMENT_STATE say:
121 *
122 * "All elements must be valid from Element[0] to the last valid
123 * element. (I.e. if Element[2] is valid then Element[1] and
124 * Element[0] must also be valid)."
125 *
126 * The SKL docs for 3D_Vertex_Component_Control say:
127 *
128 * "Don't store this component. (Not valid for Component 0, but can
129 * be used for Component 1-3)."
130 *
131 * So we can't just leave a vertex element blank and hope for the best.
132 * We have to tell the VF hardware to put something in it; so we just
133 * store a bunch of zero.
134 *
135 * TODO: Compact vertex elements so we never end up with holes.
136 */
137 struct GENX(VERTEX_ELEMENT_STATE) element = {
138 .Valid = true,
139 .Component0Control = VFCOMP_STORE_0,
140 .Component1Control = VFCOMP_STORE_0,
141 .Component2Control = VFCOMP_STORE_0,
142 .Component3Control = VFCOMP_STORE_0,
143 };
144 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
145 }
146
147 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
148 const VkVertexInputAttributeDescription *desc =
149 &info->pVertexAttributeDescriptions[i];
150 enum isl_format format = anv_get_isl_format(&pipeline->base.device->info,
151 desc->format,
152 VK_IMAGE_ASPECT_COLOR_BIT,
153 VK_IMAGE_TILING_LINEAR);
154
155 assert(desc->binding < MAX_VBS);
156
157 if ((elements & (1 << desc->location)) == 0)
158 continue; /* Binding unused */
159
160 uint32_t slot =
161 __builtin_popcount(elements & ((1 << desc->location) - 1)) -
162 DIV_ROUND_UP(__builtin_popcount(elements_double &
163 ((1 << desc->location) -1)), 2);
164
165 struct GENX(VERTEX_ELEMENT_STATE) element = {
166 .VertexBufferIndex = desc->binding,
167 .Valid = true,
168 .SourceElementFormat = format,
169 .EdgeFlagEnable = false,
170 .SourceElementOffset = desc->offset,
171 .Component0Control = vertex_element_comp_control(format, 0),
172 .Component1Control = vertex_element_comp_control(format, 1),
173 .Component2Control = vertex_element_comp_control(format, 2),
174 .Component3Control = vertex_element_comp_control(format, 3),
175 };
176 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
177
178 #if GEN_GEN >= 8
179 /* On Broadwell and later, we have a separate VF_INSTANCING packet
180 * that controls instancing. On Haswell and prior, that's part of
181 * VERTEX_BUFFER_STATE which we emit later.
182 */
183 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
184 vfi.InstancingEnable = pipeline->vb[desc->binding].instanced;
185 vfi.VertexElementIndex = slot;
186 vfi.InstanceDataStepRate =
187 pipeline->vb[desc->binding].instance_divisor;
188 }
189 #endif
190 }
191
192 const uint32_t id_slot = elem_count;
193 if (needs_svgs_elem) {
194 /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
195 * "Within a VERTEX_ELEMENT_STATE structure, if a Component
196 * Control field is set to something other than VFCOMP_STORE_SRC,
197 * no higher-numbered Component Control fields may be set to
198 * VFCOMP_STORE_SRC"
199 *
200 * This means, that if we have BaseInstance, we need BaseVertex as
201 * well. Just do all or nothing.
202 */
203 uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
204 vs_prog_data->uses_baseinstance) ?
205 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
206
207 struct GENX(VERTEX_ELEMENT_STATE) element = {
208 .VertexBufferIndex = ANV_SVGS_VB_INDEX,
209 .Valid = true,
210 .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
211 .Component0Control = base_ctrl,
212 .Component1Control = base_ctrl,
213 #if GEN_GEN >= 8
214 .Component2Control = VFCOMP_STORE_0,
215 .Component3Control = VFCOMP_STORE_0,
216 #else
217 .Component2Control = VFCOMP_STORE_VID,
218 .Component3Control = VFCOMP_STORE_IID,
219 #endif
220 };
221 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
222
223 #if GEN_GEN >= 8
224 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
225 vfi.VertexElementIndex = id_slot;
226 }
227 #endif
228 }
229
230 #if GEN_GEN >= 8
231 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_SGVS), sgvs) {
232 sgvs.VertexIDEnable = vs_prog_data->uses_vertexid;
233 sgvs.VertexIDComponentNumber = 2;
234 sgvs.VertexIDElementOffset = id_slot;
235 sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid;
236 sgvs.InstanceIDComponentNumber = 3;
237 sgvs.InstanceIDElementOffset = id_slot;
238 }
239 #endif
240
241 const uint32_t drawid_slot = elem_count + needs_svgs_elem;
242 if (vs_prog_data->uses_drawid) {
243 struct GENX(VERTEX_ELEMENT_STATE) element = {
244 .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
245 .Valid = true,
246 .SourceElementFormat = ISL_FORMAT_R32_UINT,
247 .Component0Control = VFCOMP_STORE_SRC,
248 .Component1Control = VFCOMP_STORE_0,
249 .Component2Control = VFCOMP_STORE_0,
250 .Component3Control = VFCOMP_STORE_0,
251 };
252 GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
253 &p[1 + drawid_slot * 2],
254 &element);
255
256 #if GEN_GEN >= 8
257 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
258 vfi.VertexElementIndex = drawid_slot;
259 }
260 #endif
261 }
262 }
263
264 void
265 genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
266 const struct gen_l3_config *l3_config,
267 VkShaderStageFlags active_stages,
268 const unsigned entry_size[4],
269 enum gen_urb_deref_block_size *deref_block_size)
270 {
271 const struct gen_device_info *devinfo = &device->info;
272
273 unsigned entries[4];
274 unsigned start[4];
275 gen_get_urb_config(devinfo, l3_config,
276 active_stages &
277 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
278 active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
279 entry_size, entries, start, deref_block_size);
280
281 #if GEN_GEN == 7 && !GEN_IS_HASWELL
282 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
283 *
284 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
285 * needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
286 * 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
287 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
288 * needs to be sent before any combination of VS associated 3DSTATE."
289 */
290 anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
291 pc.DepthStallEnable = true;
292 pc.PostSyncOperation = WriteImmediateData;
293 pc.Address = device->workaround_address;
294 }
295 #endif
296
297 for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
298 anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
299 urb._3DCommandSubOpcode += i;
300 urb.VSURBStartingAddress = start[i];
301 urb.VSURBEntryAllocationSize = entry_size[i] - 1;
302 urb.VSNumberofURBEntries = entries[i];
303 }
304 }
305 }
306
307 static void
308 emit_urb_setup(struct anv_graphics_pipeline *pipeline,
309 enum gen_urb_deref_block_size *deref_block_size)
310 {
311 unsigned entry_size[4];
312 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
313 const struct brw_vue_prog_data *prog_data =
314 !anv_pipeline_has_stage(pipeline, i) ? NULL :
315 (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
316
317 entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
318 }
319
320 genX(emit_urb_setup)(pipeline->base.device, &pipeline->base.batch,
321 pipeline->base.l3_config,
322 pipeline->active_stages, entry_size,
323 deref_block_size);
324 }
325
326 static void
327 emit_3dstate_sbe(struct anv_graphics_pipeline *pipeline)
328 {
329 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
330
331 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
332 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SBE), sbe);
333 #if GEN_GEN >= 8
334 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SBE_SWIZ), sbe);
335 #endif
336 return;
337 }
338
339 const struct brw_vue_map *fs_input_map =
340 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
341
342 struct GENX(3DSTATE_SBE) sbe = {
343 GENX(3DSTATE_SBE_header),
344 .AttributeSwizzleEnable = true,
345 .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
346 .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
347 .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
348 };
349
350 #if GEN_GEN >= 9
351 for (unsigned i = 0; i < 32; i++)
352 sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
353 #endif
354
355 #if GEN_GEN >= 8
356 /* On Broadwell, they broke 3DSTATE_SBE into two packets */
357 struct GENX(3DSTATE_SBE_SWIZ) swiz = {
358 GENX(3DSTATE_SBE_SWIZ_header),
359 };
360 #else
361 # define swiz sbe
362 #endif
363
364 int first_slot = brw_compute_first_urb_slot_required(wm_prog_data->inputs,
365 fs_input_map);
366 assert(first_slot % 2 == 0);
367 unsigned urb_entry_read_offset = first_slot / 2;
368 int max_source_attr = 0;
369 for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
370 uint8_t attr = wm_prog_data->urb_setup_attribs[idx];
371 int input_index = wm_prog_data->urb_setup[attr];
372
373 assert(0 <= input_index);
374
375 /* gl_Viewport and gl_Layer are stored in the VUE header */
376 if (attr == VARYING_SLOT_VIEWPORT || attr == VARYING_SLOT_LAYER) {
377 continue;
378 }
379
380 if (attr == VARYING_SLOT_PNTC) {
381 sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
382 continue;
383 }
384
385 const int slot = fs_input_map->varying_to_slot[attr];
386
387 if (slot == -1) {
388 /* This attribute does not exist in the VUE--that means that the
389 * vertex shader did not write to it. It could be that it's a
390 * regular varying read by the fragment shader but not written by
391 * the vertex shader or it's gl_PrimitiveID. In the first case the
392 * value is undefined, in the second it needs to be
393 * gl_PrimitiveID.
394 */
395 swiz.Attribute[input_index].ConstantSource = PRIM_ID;
396 swiz.Attribute[input_index].ComponentOverrideX = true;
397 swiz.Attribute[input_index].ComponentOverrideY = true;
398 swiz.Attribute[input_index].ComponentOverrideZ = true;
399 swiz.Attribute[input_index].ComponentOverrideW = true;
400 continue;
401 }
402
403 /* We have to subtract two slots to accout for the URB entry output
404 * read offset in the VS and GS stages.
405 */
406 const int source_attr = slot - 2 * urb_entry_read_offset;
407 assert(source_attr >= 0 && source_attr < 32);
408 max_source_attr = MAX2(max_source_attr, source_attr);
409 /* The hardware can only do overrides on 16 overrides at a time, and the
410 * other up to 16 have to be lined up so that the input index = the
411 * output index. We'll need to do some tweaking to make sure that's the
412 * case.
413 */
414 if (input_index < 16)
415 swiz.Attribute[input_index].SourceAttribute = source_attr;
416 else
417 assert(source_attr == input_index);
418 }
419
420 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
421 sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
422 #if GEN_GEN >= 8
423 sbe.ForceVertexURBEntryReadOffset = true;
424 sbe.ForceVertexURBEntryReadLength = true;
425 #endif
426
427 uint32_t *dw = anv_batch_emit_dwords(&pipeline->base.batch,
428 GENX(3DSTATE_SBE_length));
429 if (!dw)
430 return;
431 GENX(3DSTATE_SBE_pack)(&pipeline->base.batch, dw, &sbe);
432
433 #if GEN_GEN >= 8
434 dw = anv_batch_emit_dwords(&pipeline->base.batch, GENX(3DSTATE_SBE_SWIZ_length));
435 if (!dw)
436 return;
437 GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->base.batch, dw, &swiz);
438 #endif
439 }
440
441 static const uint32_t vk_to_gen_cullmode[] = {
442 [VK_CULL_MODE_NONE] = CULLMODE_NONE,
443 [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
444 [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
445 [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
446 };
447
448 static const uint32_t vk_to_gen_fillmode[] = {
449 [VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
450 [VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
451 [VK_POLYGON_MODE_POINT] = FILL_MODE_POINT,
452 };
453
454 static const uint32_t vk_to_gen_front_face[] = {
455 [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
456 [VK_FRONT_FACE_CLOCKWISE] = 0
457 };
458
459 static VkLineRasterizationModeEXT
460 vk_line_rasterization_mode(const VkPipelineRasterizationLineStateCreateInfoEXT *line_info,
461 const VkPipelineMultisampleStateCreateInfo *ms_info)
462 {
463 VkLineRasterizationModeEXT line_mode =
464 line_info ? line_info->lineRasterizationMode :
465 VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT;
466
467 if (line_mode == VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT) {
468 if (ms_info && ms_info->rasterizationSamples > 1) {
469 return VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT;
470 } else {
471 return VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT;
472 }
473 }
474
475 return line_mode;
476 }
477
478 /** Returns the final polygon mode for rasterization
479 *
480 * This function takes into account polygon mode, primitive topology and the
481 * different shader stages which might generate their own type of primitives.
482 */
483 static VkPolygonMode
484 anv_raster_polygon_mode(struct anv_graphics_pipeline *pipeline,
485 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
486 const VkPipelineRasterizationStateCreateInfo *rs_info)
487 {
488 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
489 switch (get_gs_prog_data(pipeline)->output_topology) {
490 case _3DPRIM_POINTLIST:
491 return VK_POLYGON_MODE_POINT;
492
493 case _3DPRIM_LINELIST:
494 case _3DPRIM_LINESTRIP:
495 case _3DPRIM_LINELOOP:
496 return VK_POLYGON_MODE_LINE;
497
498 case _3DPRIM_TRILIST:
499 case _3DPRIM_TRIFAN:
500 case _3DPRIM_TRISTRIP:
501 case _3DPRIM_RECTLIST:
502 case _3DPRIM_QUADLIST:
503 case _3DPRIM_QUADSTRIP:
504 case _3DPRIM_POLYGON:
505 return rs_info->polygonMode;
506 }
507 unreachable("Unsupported GS output topology");
508 } else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
509 switch (get_tes_prog_data(pipeline)->output_topology) {
510 case BRW_TESS_OUTPUT_TOPOLOGY_POINT:
511 return VK_POLYGON_MODE_POINT;
512
513 case BRW_TESS_OUTPUT_TOPOLOGY_LINE:
514 return VK_POLYGON_MODE_LINE;
515
516 case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW:
517 case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW:
518 return rs_info->polygonMode;
519 }
520 unreachable("Unsupported TCS output topology");
521 } else {
522 switch (ia_info->topology) {
523 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
524 return VK_POLYGON_MODE_POINT;
525
526 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
527 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
528 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
529 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
530 return VK_POLYGON_MODE_LINE;
531
532 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
533 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
534 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
535 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
536 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
537 return rs_info->polygonMode;
538
539 default:
540 unreachable("Unsupported primitive topology");
541 }
542 }
543 }
544
545 #if GEN_GEN <= 7
546 static uint32_t
547 gen7_ms_rast_mode(struct anv_graphics_pipeline *pipeline,
548 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
549 const VkPipelineRasterizationStateCreateInfo *rs_info,
550 const VkPipelineMultisampleStateCreateInfo *ms_info)
551 {
552 const VkPipelineRasterizationLineStateCreateInfoEXT *line_info =
553 vk_find_struct_const(rs_info->pNext,
554 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
555
556 VkPolygonMode raster_mode =
557 anv_raster_polygon_mode(pipeline, ia_info, rs_info);
558 if (raster_mode == VK_POLYGON_MODE_LINE) {
559 switch (vk_line_rasterization_mode(line_info, ms_info)) {
560 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT:
561 return MSRASTMODE_ON_PATTERN;
562
563 case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT:
564 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT:
565 return MSRASTMODE_OFF_PIXEL;
566
567 default:
568 unreachable("Unsupported line rasterization mode");
569 }
570 } else {
571 return (ms_info && ms_info->rasterizationSamples > 1) ?
572 MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
573 }
574 }
575 #endif
576
577 static void
578 emit_rs_state(struct anv_graphics_pipeline *pipeline,
579 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
580 const VkPipelineRasterizationStateCreateInfo *rs_info,
581 const VkPipelineMultisampleStateCreateInfo *ms_info,
582 const VkPipelineRasterizationLineStateCreateInfoEXT *line_info,
583 const uint32_t dynamic_states,
584 const struct anv_render_pass *pass,
585 const struct anv_subpass *subpass,
586 enum gen_urb_deref_block_size urb_deref_block_size)
587 {
588 struct GENX(3DSTATE_SF) sf = {
589 GENX(3DSTATE_SF_header),
590 };
591
592 sf.ViewportTransformEnable = true;
593 sf.StatisticsEnable = true;
594 sf.TriangleStripListProvokingVertexSelect = 0;
595 sf.LineStripListProvokingVertexSelect = 0;
596 sf.TriangleFanProvokingVertexSelect = 1;
597 sf.VertexSubPixelPrecisionSelect = _8Bit;
598 sf.AALineDistanceMode = true;
599
600 #if GEN_IS_HASWELL
601 sf.LineStippleEnable = line_info && line_info->stippledLineEnable;
602 #endif
603
604 #if GEN_GEN >= 12
605 sf.DerefBlockSize = urb_deref_block_size;
606 #endif
607
608 const struct brw_vue_prog_data *last_vue_prog_data =
609 anv_pipeline_get_last_vue_prog_data(pipeline);
610
611 if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
612 sf.PointWidthSource = Vertex;
613 } else {
614 sf.PointWidthSource = State;
615 sf.PointWidth = 1.0;
616 }
617
618 #if GEN_GEN >= 8
619 struct GENX(3DSTATE_RASTER) raster = {
620 GENX(3DSTATE_RASTER_header),
621 };
622 #else
623 # define raster sf
624 #endif
625
626 VkPolygonMode raster_mode =
627 anv_raster_polygon_mode(pipeline, ia_info, rs_info);
628 VkLineRasterizationModeEXT line_mode =
629 vk_line_rasterization_mode(line_info, ms_info);
630
631 /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
632 * "Multisample Modes State".
633 */
634 #if GEN_GEN >= 8
635 if (raster_mode == VK_POLYGON_MODE_LINE) {
636 /* Unfortunately, configuring our line rasterization hardware on gen8
637 * and later is rather painful. Instead of giving us bits to tell the
638 * hardware what line mode to use like we had on gen7, we now have an
639 * arcane combination of API Mode and MSAA enable bits which do things
640 * in a table which are expected to magically put the hardware into the
641 * right mode for your API. Sadly, Vulkan isn't any of the APIs the
642 * hardware people thought of so nothing works the way you want it to.
643 *
644 * Look at the table titled "Multisample Rasterization Modes" in Vol 7
645 * of the Skylake PRM for more details.
646 */
647 switch (line_mode) {
648 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT:
649 raster.APIMode = DX100;
650 raster.DXMultisampleRasterizationEnable = true;
651 break;
652
653 case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT:
654 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT:
655 raster.APIMode = DX9OGL;
656 raster.DXMultisampleRasterizationEnable = false;
657 break;
658
659 default:
660 unreachable("Unsupported line rasterization mode");
661 }
662 } else {
663 raster.APIMode = DX100;
664 raster.DXMultisampleRasterizationEnable = true;
665 }
666
667 /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
668 * computations. If we ever set this bit to a different value, they will
669 * need to be updated accordingly.
670 */
671 raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
672 raster.ForceMultisampling = false;
673 #else
674 raster.MultisampleRasterizationMode =
675 gen7_ms_rast_mode(pipeline, ia_info, rs_info, ms_info);
676 #endif
677
678 if (raster_mode == VK_POLYGON_MODE_LINE &&
679 line_mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT)
680 raster.AntialiasingEnable = true;
681
682 raster.FrontWinding =
683 dynamic_states & ANV_CMD_DIRTY_DYNAMIC_FRONT_FACE ?
684 0 : vk_to_gen_front_face[rs_info->frontFace];
685 raster.CullMode =
686 dynamic_states & ANV_CMD_DIRTY_DYNAMIC_CULL_MODE ?
687 0 : vk_to_gen_cullmode[rs_info->cullMode];
688
689 raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
690 raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
691 raster.ScissorRectangleEnable = true;
692
693 #if GEN_GEN >= 9
694 /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
695 raster.ViewportZFarClipTestEnable = pipeline->depth_clip_enable;
696 raster.ViewportZNearClipTestEnable = pipeline->depth_clip_enable;
697 #elif GEN_GEN >= 8
698 raster.ViewportZClipTestEnable = pipeline->depth_clip_enable;
699 #endif
700
701 raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
702 raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
703 raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
704
705 #if GEN_GEN == 7
706 /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
707 * can get the depth offsets correct.
708 */
709 if (subpass->depth_stencil_attachment) {
710 VkFormat vk_format =
711 pass->attachments[subpass->depth_stencil_attachment->attachment].format;
712 assert(vk_format_is_depth_or_stencil(vk_format));
713 if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
714 enum isl_format isl_format =
715 anv_get_isl_format(&pipeline->base.device->info, vk_format,
716 VK_IMAGE_ASPECT_DEPTH_BIT,
717 VK_IMAGE_TILING_OPTIMAL);
718 sf.DepthBufferSurfaceFormat =
719 isl_format_get_depth_format(isl_format, false);
720 }
721 }
722 #endif
723
724 #if GEN_GEN >= 8
725 GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
726 GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
727 #else
728 # undef raster
729 GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
730 #endif
731 }
732
733 static void
734 emit_ms_state(struct anv_graphics_pipeline *pipeline,
735 const VkPipelineMultisampleStateCreateInfo *info)
736 {
737 uint32_t samples = 1;
738 uint32_t log2_samples = 0;
739
740 /* From the Vulkan 1.0 spec:
741 * If pSampleMask is NULL, it is treated as if the mask has all bits
742 * enabled, i.e. no coverage is removed from fragments.
743 *
744 * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
745 */
746 #if GEN_GEN >= 8
747 uint32_t sample_mask = 0xffff;
748 #else
749 uint32_t sample_mask = 0xff;
750 #endif
751
752 if (info) {
753 samples = info->rasterizationSamples;
754 log2_samples = __builtin_ffs(samples) - 1;
755 }
756
757 if (info && info->pSampleMask)
758 sample_mask &= info->pSampleMask[0];
759
760 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_MULTISAMPLE), ms) {
761 ms.NumberofMultisamples = log2_samples;
762
763 ms.PixelLocation = CENTER;
764 #if GEN_GEN >= 8
765 /* The PRM says that this bit is valid only for DX9:
766 *
767 * SW can choose to set this bit only for DX9 API. DX10/OGL API's
768 * should not have any effect by setting or not setting this bit.
769 */
770 ms.PixelPositionOffsetEnable = false;
771 #else
772
773 switch (samples) {
774 case 1:
775 GEN_SAMPLE_POS_1X(ms.Sample);
776 break;
777 case 2:
778 GEN_SAMPLE_POS_2X(ms.Sample);
779 break;
780 case 4:
781 GEN_SAMPLE_POS_4X(ms.Sample);
782 break;
783 case 8:
784 GEN_SAMPLE_POS_8X(ms.Sample);
785 break;
786 default:
787 break;
788 }
789 #endif
790 }
791
792 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
793 sm.SampleMask = sample_mask;
794 }
795 }
796
797 static const uint32_t vk_to_gen_logic_op[] = {
798 [VK_LOGIC_OP_COPY] = LOGICOP_COPY,
799 [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
800 [VK_LOGIC_OP_AND] = LOGICOP_AND,
801 [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
802 [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
803 [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
804 [VK_LOGIC_OP_XOR] = LOGICOP_XOR,
805 [VK_LOGIC_OP_OR] = LOGICOP_OR,
806 [VK_LOGIC_OP_NOR] = LOGICOP_NOR,
807 [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
808 [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
809 [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
810 [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
811 [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
812 [VK_LOGIC_OP_NAND] = LOGICOP_NAND,
813 [VK_LOGIC_OP_SET] = LOGICOP_SET,
814 };
815
816 static const uint32_t vk_to_gen_blend[] = {
817 [VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
818 [VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
819 [VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
820 [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
821 [VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
822 [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
823 [VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
824 [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
825 [VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
826 [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
827 [VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
828 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
829 [VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
830 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
831 [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
832 [VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
833 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
834 [VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
835 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
836 };
837
838 static const uint32_t vk_to_gen_blend_op[] = {
839 [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
840 [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
841 [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
842 [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
843 [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
844 };
845
846 static const uint32_t vk_to_gen_compare_op[] = {
847 [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
848 [VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
849 [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
850 [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL,
851 [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
852 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
853 [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL,
854 [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
855 };
856
857 static const uint32_t vk_to_gen_stencil_op[] = {
858 [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
859 [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
860 [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
861 [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
862 [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
863 [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
864 [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
865 [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
866 };
867
868 /* This function sanitizes the VkStencilOpState by looking at the compare ops
869 * and trying to determine whether or not a given stencil op can ever actually
870 * occur. Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
871 * This function returns true if, after sanitation, any of the stencil ops are
872 * set to something other than VK_STENCIL_OP_KEEP.
873 */
874 static bool
875 sanitize_stencil_face(VkStencilOpState *face,
876 VkCompareOp depthCompareOp)
877 {
878 /* If compareOp is ALWAYS then the stencil test will never fail and failOp
879 * will never happen. Set failOp to KEEP in this case.
880 */
881 if (face->compareOp == VK_COMPARE_OP_ALWAYS)
882 face->failOp = VK_STENCIL_OP_KEEP;
883
884 /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
885 * or stencil tests will fail and passOp will never happen.
886 */
887 if (face->compareOp == VK_COMPARE_OP_NEVER ||
888 depthCompareOp == VK_COMPARE_OP_NEVER)
889 face->passOp = VK_STENCIL_OP_KEEP;
890
891 /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
892 * stencil test will fail or the depth test will pass. In either case,
893 * depthFailOp will never happen.
894 */
895 if (face->compareOp == VK_COMPARE_OP_NEVER ||
896 depthCompareOp == VK_COMPARE_OP_ALWAYS)
897 face->depthFailOp = VK_STENCIL_OP_KEEP;
898
899 return face->failOp != VK_STENCIL_OP_KEEP ||
900 face->depthFailOp != VK_STENCIL_OP_KEEP ||
901 face->passOp != VK_STENCIL_OP_KEEP;
902 }
903
904 /* Intel hardware is fairly sensitive to whether or not depth/stencil writes
905 * are enabled. In the presence of discards, it's fairly easy to get into the
906 * non-promoted case which means a fairly big performance hit. From the Iron
907 * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
908 *
909 * "Non-promoted depth (N) is active whenever the depth test can be done
910 * early but it cannot determine whether or not to write source depth to
911 * the depth buffer, therefore the depth write must be performed post pixel
912 * shader. This includes cases where the pixel shader can kill pixels,
913 * including via sampler chroma key, as well as cases where the alpha test
914 * function is enabled, which kills pixels based on a programmable alpha
915 * test. In this case, even if the depth test fails, the pixel cannot be
916 * killed if a stencil write is indicated. Whether or not the stencil write
917 * happens depends on whether or not the pixel is killed later. In these
918 * cases if stencil test fails and stencil writes are off, the pixels can
919 * also be killed early. If stencil writes are enabled, the pixels must be
920 * treated as Computed depth (described above)."
921 *
922 * The same thing as mentioned in the stencil case can happen in the depth
923 * case as well if it thinks it writes depth but, thanks to the depth test
924 * being GL_EQUAL, the write doesn't actually matter. A little extra work
925 * up-front to try and disable depth and stencil writes can make a big
926 * difference.
927 *
928 * Unfortunately, the way depth and stencil testing is specified, there are
929 * many case where, regardless of depth/stencil writes being enabled, nothing
930 * actually gets written due to some other bit of state being set. This
931 * function attempts to "sanitize" the depth stencil state and disable writes
932 * and sometimes even testing whenever possible.
933 */
934 static void
935 sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
936 bool *stencilWriteEnable,
937 VkImageAspectFlags ds_aspects)
938 {
939 *stencilWriteEnable = state->stencilTestEnable;
940
941 /* If the depth test is disabled, we won't be writing anything. Make sure we
942 * treat the test as always passing later on as well.
943 *
944 * Also, the Vulkan spec requires that if either depth or stencil is not
945 * present, the pipeline is to act as if the test silently passes. In that
946 * case we won't write either.
947 */
948 if (!state->depthTestEnable || !(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
949 state->depthWriteEnable = false;
950 state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
951 }
952
953 if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
954 *stencilWriteEnable = false;
955 state->front.compareOp = VK_COMPARE_OP_ALWAYS;
956 state->back.compareOp = VK_COMPARE_OP_ALWAYS;
957 }
958
959 /* If the stencil test is enabled and always fails, then we will never get
960 * to the depth test so we can just disable the depth test entirely.
961 */
962 if (state->stencilTestEnable &&
963 state->front.compareOp == VK_COMPARE_OP_NEVER &&
964 state->back.compareOp == VK_COMPARE_OP_NEVER) {
965 state->depthTestEnable = false;
966 state->depthWriteEnable = false;
967 }
968
969 /* If depthCompareOp is EQUAL then the value we would be writing to the
970 * depth buffer is the same as the value that's already there so there's no
971 * point in writing it.
972 */
973 if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
974 state->depthWriteEnable = false;
975
976 /* If the stencil ops are such that we don't actually ever modify the
977 * stencil buffer, we should disable writes.
978 */
979 if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
980 !sanitize_stencil_face(&state->back, state->depthCompareOp))
981 *stencilWriteEnable = false;
982
983 /* If the depth test always passes and we never write out depth, that's the
984 * same as if the depth test is disabled entirely.
985 */
986 if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
987 !state->depthWriteEnable)
988 state->depthTestEnable = false;
989
990 /* If the stencil test always passes and we never write out stencil, that's
991 * the same as if the stencil test is disabled entirely.
992 */
993 if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
994 state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
995 !*stencilWriteEnable)
996 state->stencilTestEnable = false;
997 }
998
999 static void
1000 emit_ds_state(struct anv_graphics_pipeline *pipeline,
1001 const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
1002 const uint32_t dynamic_states,
1003 const struct anv_render_pass *pass,
1004 const struct anv_subpass *subpass)
1005 {
1006 #if GEN_GEN == 7
1007 # define depth_stencil_dw pipeline->gen7.depth_stencil_state
1008 #elif GEN_GEN == 8
1009 # define depth_stencil_dw pipeline->gen8.wm_depth_stencil
1010 #else
1011 # define depth_stencil_dw pipeline->gen9.wm_depth_stencil
1012 #endif
1013
1014 if (pCreateInfo == NULL) {
1015 /* We're going to OR this together with the dynamic state. We need
1016 * to make sure it's initialized to something useful.
1017 */
1018 pipeline->writes_stencil = false;
1019 pipeline->stencil_test_enable = false;
1020 pipeline->writes_depth = false;
1021 pipeline->depth_test_enable = false;
1022 pipeline->depth_bounds_test_enable = false;
1023 memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
1024 return;
1025 }
1026
1027 VkImageAspectFlags ds_aspects = 0;
1028 if (subpass->depth_stencil_attachment) {
1029 VkFormat depth_stencil_format =
1030 pass->attachments[subpass->depth_stencil_attachment->attachment].format;
1031 ds_aspects = vk_format_aspects(depth_stencil_format);
1032 }
1033
1034 VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
1035 sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
1036 pipeline->stencil_test_enable = info.stencilTestEnable;
1037 pipeline->writes_depth = info.depthWriteEnable;
1038 pipeline->depth_test_enable = info.depthTestEnable;
1039 pipeline->depth_bounds_test_enable = info.depthBoundsTestEnable;
1040
1041 bool dynamic_stencil_op =
1042 dynamic_states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_OP;
1043
1044 #if GEN_GEN <= 7
1045 struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
1046 #else
1047 struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
1048 #endif
1049 .DepthTestEnable =
1050 dynamic_states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_TEST_ENABLE ?
1051 0 : info.depthTestEnable,
1052
1053 .DepthBufferWriteEnable =
1054 dynamic_states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_WRITE_ENABLE ?
1055 0 : info.depthWriteEnable,
1056
1057 .DepthTestFunction =
1058 dynamic_states & ANV_CMD_DIRTY_DYNAMIC_DEPTH_COMPARE_OP ?
1059 0 : vk_to_gen_compare_op[info.depthCompareOp],
1060
1061 .DoubleSidedStencilEnable = true,
1062
1063 .StencilTestEnable =
1064 dynamic_states & ANV_CMD_DIRTY_DYNAMIC_STENCIL_TEST_ENABLE ?
1065 0 : info.stencilTestEnable,
1066
1067 .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
1068 .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
1069 .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
1070 .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
1071 .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
1072 .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
1073 .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
1074 .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
1075 };
1076
1077 if (dynamic_stencil_op) {
1078 depth_stencil.StencilFailOp = 0;
1079 depth_stencil.StencilPassDepthPassOp = 0;
1080 depth_stencil.StencilPassDepthFailOp = 0;
1081 depth_stencil.StencilTestFunction = 0;
1082 depth_stencil.BackfaceStencilFailOp = 0;
1083 depth_stencil.BackfaceStencilPassDepthPassOp = 0;
1084 depth_stencil.BackfaceStencilPassDepthFailOp = 0;
1085 depth_stencil.BackfaceStencilTestFunction = 0;
1086 }
1087
1088 #if GEN_GEN <= 7
1089 GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
1090 #else
1091 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
1092 #endif
1093 }
1094
1095 static bool
1096 is_dual_src_blend_factor(VkBlendFactor factor)
1097 {
1098 return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
1099 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
1100 factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
1101 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
1102 }
1103
1104 static void
1105 emit_cb_state(struct anv_graphics_pipeline *pipeline,
1106 const VkPipelineColorBlendStateCreateInfo *info,
1107 const VkPipelineMultisampleStateCreateInfo *ms_info)
1108 {
1109 struct anv_device *device = pipeline->base.device;
1110 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1111
1112 struct GENX(BLEND_STATE) blend_state = {
1113 #if GEN_GEN >= 8
1114 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
1115 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
1116 #endif
1117 };
1118
1119 uint32_t surface_count = 0;
1120 struct anv_pipeline_bind_map *map;
1121 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1122 map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
1123 surface_count = map->surface_count;
1124 }
1125
1126 const uint32_t num_dwords = GENX(BLEND_STATE_length) +
1127 GENX(BLEND_STATE_ENTRY_length) * surface_count;
1128 pipeline->blend_state =
1129 anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
1130
1131 bool has_writeable_rt = false;
1132 uint32_t *state_pos = pipeline->blend_state.map;
1133 state_pos += GENX(BLEND_STATE_length);
1134 #if GEN_GEN >= 8
1135 struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
1136 #endif
1137 for (unsigned i = 0; i < surface_count; i++) {
1138 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
1139
1140 /* All color attachments are at the beginning of the binding table */
1141 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1142 break;
1143
1144 /* We can have at most 8 attachments */
1145 assert(i < 8);
1146
1147 if (info == NULL || binding->index >= info->attachmentCount) {
1148 /* Default everything to disabled */
1149 struct GENX(BLEND_STATE_ENTRY) entry = {
1150 .WriteDisableAlpha = true,
1151 .WriteDisableRed = true,
1152 .WriteDisableGreen = true,
1153 .WriteDisableBlue = true,
1154 };
1155 GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1156 state_pos += GENX(BLEND_STATE_ENTRY_length);
1157 continue;
1158 }
1159
1160 const VkPipelineColorBlendAttachmentState *a =
1161 &info->pAttachments[binding->index];
1162
1163 struct GENX(BLEND_STATE_ENTRY) entry = {
1164 #if GEN_GEN < 8
1165 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
1166 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
1167 #endif
1168 .LogicOpEnable = info->logicOpEnable,
1169 .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
1170 .ColorBufferBlendEnable = a->blendEnable,
1171 .ColorClampRange = COLORCLAMP_RTFORMAT,
1172 .PreBlendColorClampEnable = true,
1173 .PostBlendColorClampEnable = true,
1174 .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
1175 .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
1176 .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
1177 .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
1178 .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
1179 .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
1180 .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
1181 .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
1182 .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
1183 .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
1184 };
1185
1186 if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
1187 a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
1188 a->colorBlendOp != a->alphaBlendOp) {
1189 #if GEN_GEN >= 8
1190 blend_state.IndependentAlphaBlendEnable = true;
1191 #else
1192 entry.IndependentAlphaBlendEnable = true;
1193 #endif
1194 }
1195
1196 /* The Dual Source Blending documentation says:
1197 *
1198 * "If SRC1 is included in a src/dst blend factor and
1199 * a DualSource RT Write message is not used, results
1200 * are UNDEFINED. (This reflects the same restriction in DX APIs,
1201 * where undefined results are produced if “o1” is not written
1202 * by a PS – there are no default values defined)."
1203 *
1204 * There is no way to gracefully fix this undefined situation
1205 * so we just disable the blending to prevent possible issues.
1206 */
1207 if (!wm_prog_data->dual_src_blend &&
1208 (is_dual_src_blend_factor(a->srcColorBlendFactor) ||
1209 is_dual_src_blend_factor(a->dstColorBlendFactor) ||
1210 is_dual_src_blend_factor(a->srcAlphaBlendFactor) ||
1211 is_dual_src_blend_factor(a->dstAlphaBlendFactor))) {
1212 vk_debug_report(&device->physical->instance->debug_report_callbacks,
1213 VK_DEBUG_REPORT_WARNING_BIT_EXT,
1214 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
1215 (uint64_t)(uintptr_t)device,
1216 0, 0, "anv",
1217 "Enabled dual-src blend factors without writing both targets "
1218 "in the shader. Disabling blending to avoid GPU hangs.");
1219 entry.ColorBufferBlendEnable = false;
1220 }
1221
1222 if (a->colorWriteMask != 0)
1223 has_writeable_rt = true;
1224
1225 /* Our hardware applies the blend factor prior to the blend function
1226 * regardless of what function is used. Technically, this means the
1227 * hardware can do MORE than GL or Vulkan specify. However, it also
1228 * means that, for MIN and MAX, we have to stomp the blend factor to
1229 * ONE to make it a no-op.
1230 */
1231 if (a->colorBlendOp == VK_BLEND_OP_MIN ||
1232 a->colorBlendOp == VK_BLEND_OP_MAX) {
1233 entry.SourceBlendFactor = BLENDFACTOR_ONE;
1234 entry.DestinationBlendFactor = BLENDFACTOR_ONE;
1235 }
1236 if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
1237 a->alphaBlendOp == VK_BLEND_OP_MAX) {
1238 entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
1239 entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
1240 }
1241 GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1242 state_pos += GENX(BLEND_STATE_ENTRY_length);
1243 #if GEN_GEN >= 8
1244 if (i == 0)
1245 bs0 = entry;
1246 #endif
1247 }
1248
1249 #if GEN_GEN >= 8
1250 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS_BLEND), blend) {
1251 blend.AlphaToCoverageEnable = blend_state.AlphaToCoverageEnable;
1252 blend.HasWriteableRT = has_writeable_rt;
1253 blend.ColorBufferBlendEnable = bs0.ColorBufferBlendEnable;
1254 blend.SourceAlphaBlendFactor = bs0.SourceAlphaBlendFactor;
1255 blend.DestinationAlphaBlendFactor = bs0.DestinationAlphaBlendFactor;
1256 blend.SourceBlendFactor = bs0.SourceBlendFactor;
1257 blend.DestinationBlendFactor = bs0.DestinationBlendFactor;
1258 blend.AlphaTestEnable = false;
1259 blend.IndependentAlphaBlendEnable =
1260 blend_state.IndependentAlphaBlendEnable;
1261 }
1262 #else
1263 (void)has_writeable_rt;
1264 #endif
1265
1266 GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
1267
1268 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
1269 bsp.BlendStatePointer = pipeline->blend_state.offset;
1270 #if GEN_GEN >= 8
1271 bsp.BlendStatePointerValid = true;
1272 #endif
1273 }
1274 }
1275
1276 static void
1277 emit_3dstate_clip(struct anv_graphics_pipeline *pipeline,
1278 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
1279 const VkPipelineViewportStateCreateInfo *vp_info,
1280 const VkPipelineRasterizationStateCreateInfo *rs_info)
1281 {
1282 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1283 (void) wm_prog_data;
1284 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_CLIP), clip) {
1285 clip.ClipEnable = true;
1286 clip.StatisticsEnable = true;
1287 clip.EarlyCullEnable = true;
1288 clip.APIMode = APIMODE_D3D;
1289 clip.GuardbandClipTestEnable = true;
1290
1291 /* Only enable the XY clip test when the final polygon rasterization
1292 * mode is VK_POLYGON_MODE_FILL. We want to leave it disabled for
1293 * points and lines so we get "pop-free" clipping.
1294 */
1295 VkPolygonMode raster_mode =
1296 anv_raster_polygon_mode(pipeline, ia_info, rs_info);
1297 clip.ViewportXYClipTestEnable = (raster_mode == VK_POLYGON_MODE_FILL);
1298
1299 #if GEN_GEN >= 8
1300 clip.VertexSubPixelPrecisionSelect = _8Bit;
1301 #endif
1302
1303 clip.ClipMode = CLIPMODE_NORMAL;
1304
1305 clip.TriangleStripListProvokingVertexSelect = 0;
1306 clip.LineStripListProvokingVertexSelect = 0;
1307 clip.TriangleFanProvokingVertexSelect = 1;
1308
1309 clip.MinimumPointWidth = 0.125;
1310 clip.MaximumPointWidth = 255.875;
1311
1312 const struct brw_vue_prog_data *last =
1313 anv_pipeline_get_last_vue_prog_data(pipeline);
1314
1315 /* From the Vulkan 1.0.45 spec:
1316 *
1317 * "If the last active vertex processing stage shader entry point's
1318 * interface does not include a variable decorated with
1319 * ViewportIndex, then the first viewport is used."
1320 */
1321 if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
1322 clip.MaximumVPIndex = vp_info->viewportCount - 1;
1323 } else {
1324 clip.MaximumVPIndex = 0;
1325 }
1326
1327 /* From the Vulkan 1.0.45 spec:
1328 *
1329 * "If the last active vertex processing stage shader entry point's
1330 * interface does not include a variable decorated with Layer, then
1331 * the first layer is used."
1332 */
1333 clip.ForceZeroRTAIndexEnable =
1334 !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
1335
1336 #if GEN_GEN == 7
1337 clip.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
1338 clip.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
1339 clip.ViewportZClipTestEnable = pipeline->depth_clip_enable;
1340 clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1341 clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1342 #else
1343 clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1344 (wm_prog_data->barycentric_interp_modes &
1345 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0 : 0;
1346 #endif
1347 }
1348 }
1349
1350 static void
1351 emit_3dstate_streamout(struct anv_graphics_pipeline *pipeline,
1352 const VkPipelineRasterizationStateCreateInfo *rs_info)
1353 {
1354 #if GEN_GEN >= 8
1355 const struct brw_vue_prog_data *prog_data =
1356 anv_pipeline_get_last_vue_prog_data(pipeline);
1357 const struct brw_vue_map *vue_map = &prog_data->vue_map;
1358
1359 nir_xfb_info *xfb_info;
1360 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1361 xfb_info = pipeline->shaders[MESA_SHADER_GEOMETRY]->xfb_info;
1362 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1363 xfb_info = pipeline->shaders[MESA_SHADER_TESS_EVAL]->xfb_info;
1364 else
1365 xfb_info = pipeline->shaders[MESA_SHADER_VERTEX]->xfb_info;
1366 #endif
1367
1368 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_STREAMOUT), so) {
1369 so.RenderingDisable = rs_info->rasterizerDiscardEnable;
1370
1371 #if GEN_GEN >= 8
1372 if (xfb_info) {
1373 so.SOFunctionEnable = true;
1374 so.SOStatisticsEnable = true;
1375
1376 const VkPipelineRasterizationStateStreamCreateInfoEXT *stream_info =
1377 vk_find_struct_const(rs_info, PIPELINE_RASTERIZATION_STATE_STREAM_CREATE_INFO_EXT);
1378 so.RenderStreamSelect = stream_info ?
1379 stream_info->rasterizationStream : 0;
1380
1381 so.Buffer0SurfacePitch = xfb_info->buffers[0].stride;
1382 so.Buffer1SurfacePitch = xfb_info->buffers[1].stride;
1383 so.Buffer2SurfacePitch = xfb_info->buffers[2].stride;
1384 so.Buffer3SurfacePitch = xfb_info->buffers[3].stride;
1385
1386 int urb_entry_read_offset = 0;
1387 int urb_entry_read_length =
1388 (prog_data->vue_map.num_slots + 1) / 2 - urb_entry_read_offset;
1389
1390 /* We always read the whole vertex. This could be reduced at some
1391 * point by reading less and offsetting the register index in the
1392 * SO_DECLs.
1393 */
1394 so.Stream0VertexReadOffset = urb_entry_read_offset;
1395 so.Stream0VertexReadLength = urb_entry_read_length - 1;
1396 so.Stream1VertexReadOffset = urb_entry_read_offset;
1397 so.Stream1VertexReadLength = urb_entry_read_length - 1;
1398 so.Stream2VertexReadOffset = urb_entry_read_offset;
1399 so.Stream2VertexReadLength = urb_entry_read_length - 1;
1400 so.Stream3VertexReadOffset = urb_entry_read_offset;
1401 so.Stream3VertexReadLength = urb_entry_read_length - 1;
1402 }
1403 #endif /* GEN_GEN >= 8 */
1404 }
1405
1406 #if GEN_GEN >= 8
1407 if (xfb_info) {
1408 struct GENX(SO_DECL) so_decl[MAX_XFB_STREAMS][128];
1409 int next_offset[MAX_XFB_BUFFERS] = {0, 0, 0, 0};
1410 int decls[MAX_XFB_STREAMS] = {0, 0, 0, 0};
1411
1412 memset(so_decl, 0, sizeof(so_decl));
1413
1414 for (unsigned i = 0; i < xfb_info->output_count; i++) {
1415 const nir_xfb_output_info *output = &xfb_info->outputs[i];
1416 unsigned buffer = output->buffer;
1417 unsigned stream = xfb_info->buffer_to_stream[buffer];
1418
1419 /* Our hardware is unusual in that it requires us to program SO_DECLs
1420 * for fake "hole" components, rather than simply taking the offset
1421 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
1422 * program as many size = 4 holes as we can, then a final hole to
1423 * accommodate the final 1, 2, or 3 remaining.
1424 */
1425 int hole_dwords = (output->offset - next_offset[buffer]) / 4;
1426 while (hole_dwords > 0) {
1427 so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1428 .HoleFlag = 1,
1429 .OutputBufferSlot = buffer,
1430 .ComponentMask = (1 << MIN2(hole_dwords, 4)) - 1,
1431 };
1432 hole_dwords -= 4;
1433 }
1434
1435 int varying = output->location;
1436 uint8_t component_mask = output->component_mask;
1437 /* VARYING_SLOT_PSIZ contains three scalar fields packed together:
1438 * - VARYING_SLOT_LAYER in VARYING_SLOT_PSIZ.y
1439 * - VARYING_SLOT_VIEWPORT in VARYING_SLOT_PSIZ.z
1440 * - VARYING_SLOT_PSIZ in VARYING_SLOT_PSIZ.w
1441 */
1442 if (varying == VARYING_SLOT_LAYER) {
1443 varying = VARYING_SLOT_PSIZ;
1444 component_mask = 1 << 1; // SO_DECL_COMPMASK_Y
1445 } else if (varying == VARYING_SLOT_VIEWPORT) {
1446 varying = VARYING_SLOT_PSIZ;
1447 component_mask = 1 << 2; // SO_DECL_COMPMASK_Z
1448 } else if (varying == VARYING_SLOT_PSIZ) {
1449 component_mask = 1 << 3; // SO_DECL_COMPMASK_W
1450 }
1451
1452 next_offset[buffer] = output->offset +
1453 __builtin_popcount(component_mask) * 4;
1454
1455 const int slot = vue_map->varying_to_slot[varying];
1456 if (slot < 0) {
1457 /* This can happen if the shader never writes to the varying.
1458 * Insert a hole instead of actual varying data.
1459 */
1460 so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1461 .HoleFlag = true,
1462 .OutputBufferSlot = buffer,
1463 .ComponentMask = component_mask,
1464 };
1465 } else {
1466 so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1467 .OutputBufferSlot = buffer,
1468 .RegisterIndex = slot,
1469 .ComponentMask = component_mask,
1470 };
1471 }
1472 }
1473
1474 int max_decls = 0;
1475 for (unsigned s = 0; s < MAX_XFB_STREAMS; s++)
1476 max_decls = MAX2(max_decls, decls[s]);
1477
1478 uint8_t sbs[MAX_XFB_STREAMS] = { };
1479 for (unsigned b = 0; b < MAX_XFB_BUFFERS; b++) {
1480 if (xfb_info->buffers_written & (1 << b))
1481 sbs[xfb_info->buffer_to_stream[b]] |= 1 << b;
1482 }
1483
1484 uint32_t *dw = anv_batch_emitn(&pipeline->base.batch, 3 + 2 * max_decls,
1485 GENX(3DSTATE_SO_DECL_LIST),
1486 .StreamtoBufferSelects0 = sbs[0],
1487 .StreamtoBufferSelects1 = sbs[1],
1488 .StreamtoBufferSelects2 = sbs[2],
1489 .StreamtoBufferSelects3 = sbs[3],
1490 .NumEntries0 = decls[0],
1491 .NumEntries1 = decls[1],
1492 .NumEntries2 = decls[2],
1493 .NumEntries3 = decls[3]);
1494
1495 for (int i = 0; i < max_decls; i++) {
1496 GENX(SO_DECL_ENTRY_pack)(NULL, dw + 3 + i * 2,
1497 &(struct GENX(SO_DECL_ENTRY)) {
1498 .Stream0Decl = so_decl[0][i],
1499 .Stream1Decl = so_decl[1][i],
1500 .Stream2Decl = so_decl[2][i],
1501 .Stream3Decl = so_decl[3][i],
1502 });
1503 }
1504 }
1505 #endif /* GEN_GEN >= 8 */
1506 }
1507
1508 static uint32_t
1509 get_sampler_count(const struct anv_shader_bin *bin)
1510 {
1511 uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1512
1513 /* We can potentially have way more than 32 samplers and that's ok.
1514 * However, the 3DSTATE_XS packets only have 3 bits to specify how
1515 * many to pre-fetch and all values above 4 are marked reserved.
1516 */
1517 return MIN2(count_by_4, 4);
1518 }
1519
1520 static uint32_t
1521 get_binding_table_entry_count(const struct anv_shader_bin *bin)
1522 {
1523 return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
1524 }
1525
1526 static struct anv_address
1527 get_scratch_address(struct anv_pipeline *pipeline,
1528 gl_shader_stage stage,
1529 const struct anv_shader_bin *bin)
1530 {
1531 return (struct anv_address) {
1532 .bo = anv_scratch_pool_alloc(pipeline->device,
1533 &pipeline->device->scratch_pool,
1534 stage, bin->prog_data->total_scratch),
1535 .offset = 0,
1536 };
1537 }
1538
1539 static uint32_t
1540 get_scratch_space(const struct anv_shader_bin *bin)
1541 {
1542 return ffs(bin->prog_data->total_scratch / 2048);
1543 }
1544
1545 static void
1546 emit_3dstate_vs(struct anv_graphics_pipeline *pipeline)
1547 {
1548 const struct gen_device_info *devinfo = &pipeline->base.device->info;
1549 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1550 const struct anv_shader_bin *vs_bin =
1551 pipeline->shaders[MESA_SHADER_VERTEX];
1552
1553 assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1554
1555 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VS), vs) {
1556 vs.Enable = true;
1557 vs.StatisticsEnable = true;
1558 vs.KernelStartPointer = vs_bin->kernel.offset;
1559 #if GEN_GEN >= 8
1560 vs.SIMD8DispatchEnable =
1561 vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1562 #endif
1563
1564 assert(!vs_prog_data->base.base.use_alt_mode);
1565 #if GEN_GEN < 11
1566 vs.SingleVertexDispatch = false;
1567 #endif
1568 vs.VectorMaskEnable = false;
1569 /* WA_1606682166:
1570 * Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
1571 * Disable the Sampler state prefetch functionality in the SARB by
1572 * programming 0xB000[30] to '1'.
1573 */
1574 vs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(vs_bin);
1575 vs.BindingTableEntryCount = get_binding_table_entry_count(vs_bin);
1576 vs.FloatingPointMode = IEEE754;
1577 vs.IllegalOpcodeExceptionEnable = false;
1578 vs.SoftwareExceptionEnable = false;
1579 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1580
1581 if (GEN_GEN == 9 && devinfo->gt == 4 &&
1582 anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1583 /* On Sky Lake GT4, we have experienced some hangs related to the VS
1584 * cache and tessellation. It is unknown exactly what is happening
1585 * but the Haswell docs for the "VS Reference Count Full Force Miss
1586 * Enable" field of the "Thread Mode" register refer to a HSW bug in
1587 * which the VUE handle reference count would overflow resulting in
1588 * internal reference counting bugs. My (Jason's) best guess is that
1589 * this bug cropped back up on SKL GT4 when we suddenly had more
1590 * threads in play than any previous gen9 hardware.
1591 *
1592 * What we do know for sure is that setting this bit when
1593 * tessellation shaders are in use fixes a GPU hang in Batman: Arkham
1594 * City when playing with DXVK (https://bugs.freedesktop.org/107280).
1595 * Disabling the vertex cache with tessellation shaders should only
1596 * have a minor performance impact as the tessellation shaders are
1597 * likely generating and processing far more geometry than the vertex
1598 * stage.
1599 */
1600 vs.VertexCacheDisable = true;
1601 }
1602
1603 vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length;
1604 vs.VertexURBEntryReadOffset = 0;
1605 vs.DispatchGRFStartRegisterForURBData =
1606 vs_prog_data->base.base.dispatch_grf_start_reg;
1607
1608 #if GEN_GEN >= 8
1609 vs.UserClipDistanceClipTestEnableBitmask =
1610 vs_prog_data->base.clip_distance_mask;
1611 vs.UserClipDistanceCullTestEnableBitmask =
1612 vs_prog_data->base.cull_distance_mask;
1613 #endif
1614
1615 vs.PerThreadScratchSpace = get_scratch_space(vs_bin);
1616 vs.ScratchSpaceBasePointer =
1617 get_scratch_address(&pipeline->base, MESA_SHADER_VERTEX, vs_bin);
1618 }
1619 }
1620
1621 static void
1622 emit_3dstate_hs_te_ds(struct anv_graphics_pipeline *pipeline,
1623 const VkPipelineTessellationStateCreateInfo *tess_info)
1624 {
1625 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1626 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_HS), hs);
1627 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TE), te);
1628 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_DS), ds);
1629 return;
1630 }
1631
1632 const struct gen_device_info *devinfo = &pipeline->base.device->info;
1633 const struct anv_shader_bin *tcs_bin =
1634 pipeline->shaders[MESA_SHADER_TESS_CTRL];
1635 const struct anv_shader_bin *tes_bin =
1636 pipeline->shaders[MESA_SHADER_TESS_EVAL];
1637
1638 const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1639 const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1640
1641 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_HS), hs) {
1642 hs.Enable = true;
1643 hs.StatisticsEnable = true;
1644 hs.KernelStartPointer = tcs_bin->kernel.offset;
1645 /* WA_1606682166 */
1646 hs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(tcs_bin);
1647 hs.BindingTableEntryCount = get_binding_table_entry_count(tcs_bin);
1648
1649 #if GEN_GEN >= 12
1650 /* GEN:BUG:1604578095:
1651 *
1652 * Hang occurs when the number of max threads is less than 2 times
1653 * the number of instance count. The number of max threads must be
1654 * more than 2 times the number of instance count.
1655 */
1656 assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
1657 #endif
1658
1659 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1660 hs.IncludeVertexHandles = true;
1661 hs.InstanceCount = tcs_prog_data->instances - 1;
1662
1663 hs.VertexURBEntryReadLength = 0;
1664 hs.VertexURBEntryReadOffset = 0;
1665 hs.DispatchGRFStartRegisterForURBData =
1666 tcs_prog_data->base.base.dispatch_grf_start_reg & 0x1f;
1667 #if GEN_GEN >= 12
1668 hs.DispatchGRFStartRegisterForURBData5 =
1669 tcs_prog_data->base.base.dispatch_grf_start_reg >> 5;
1670 #endif
1671
1672
1673 hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1674 hs.ScratchSpaceBasePointer =
1675 get_scratch_address(&pipeline->base, MESA_SHADER_TESS_CTRL, tcs_bin);
1676
1677 #if GEN_GEN == 12
1678 /* Patch Count threshold specifies the maximum number of patches that
1679 * will be accumulated before a thread dispatch is forced.
1680 */
1681 hs.PatchCountThreshold = tcs_prog_data->patch_count_threshold;
1682 #endif
1683
1684 #if GEN_GEN >= 9
1685 hs.DispatchMode = tcs_prog_data->base.dispatch_mode;
1686 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
1687 #endif
1688 }
1689
1690 const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
1691 tess_info ? vk_find_struct_const(tess_info, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO) : NULL;
1692
1693 VkTessellationDomainOrigin uv_origin =
1694 domain_origin_state ? domain_origin_state->domainOrigin :
1695 VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
1696
1697 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_TE), te) {
1698 te.Partitioning = tes_prog_data->partitioning;
1699
1700 if (uv_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT) {
1701 te.OutputTopology = tes_prog_data->output_topology;
1702 } else {
1703 /* When the origin is upper-left, we have to flip the winding order */
1704 if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
1705 te.OutputTopology = OUTPUT_TRI_CW;
1706 } else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
1707 te.OutputTopology = OUTPUT_TRI_CCW;
1708 } else {
1709 te.OutputTopology = tes_prog_data->output_topology;
1710 }
1711 }
1712
1713 te.TEDomain = tes_prog_data->domain;
1714 te.TEEnable = true;
1715 te.MaximumTessellationFactorOdd = 63.0;
1716 te.MaximumTessellationFactorNotOdd = 64.0;
1717 }
1718
1719 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_DS), ds) {
1720 ds.Enable = true;
1721 ds.StatisticsEnable = true;
1722 ds.KernelStartPointer = tes_bin->kernel.offset;
1723 /* WA_1606682166 */
1724 ds.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(tes_bin);
1725 ds.BindingTableEntryCount = get_binding_table_entry_count(tes_bin);
1726 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1727
1728 ds.ComputeWCoordinateEnable =
1729 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1730
1731 ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1732 ds.PatchURBEntryReadOffset = 0;
1733 ds.DispatchGRFStartRegisterForURBData =
1734 tes_prog_data->base.base.dispatch_grf_start_reg;
1735
1736 #if GEN_GEN >= 8
1737 #if GEN_GEN < 11
1738 ds.DispatchMode =
1739 tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1740 DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1741 DISPATCH_MODE_SIMD4X2;
1742 #else
1743 assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
1744 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1745 #endif
1746
1747 ds.UserClipDistanceClipTestEnableBitmask =
1748 tes_prog_data->base.clip_distance_mask;
1749 ds.UserClipDistanceCullTestEnableBitmask =
1750 tes_prog_data->base.cull_distance_mask;
1751 #endif
1752
1753 ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1754 ds.ScratchSpaceBasePointer =
1755 get_scratch_address(&pipeline->base, MESA_SHADER_TESS_EVAL, tes_bin);
1756 }
1757 }
1758
1759 static void
1760 emit_3dstate_gs(struct anv_graphics_pipeline *pipeline)
1761 {
1762 const struct gen_device_info *devinfo = &pipeline->base.device->info;
1763 const struct anv_shader_bin *gs_bin =
1764 pipeline->shaders[MESA_SHADER_GEOMETRY];
1765
1766 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1767 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_GS), gs);
1768 return;
1769 }
1770
1771 const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1772
1773 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_GS), gs) {
1774 gs.Enable = true;
1775 gs.StatisticsEnable = true;
1776 gs.KernelStartPointer = gs_bin->kernel.offset;
1777 gs.DispatchMode = gs_prog_data->base.dispatch_mode;
1778
1779 gs.SingleProgramFlow = false;
1780 gs.VectorMaskEnable = false;
1781 /* WA_1606682166 */
1782 gs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(gs_bin);
1783 gs.BindingTableEntryCount = get_binding_table_entry_count(gs_bin);
1784 gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles;
1785 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
1786
1787 if (GEN_GEN == 8) {
1788 /* Broadwell is weird. It needs us to divide by 2. */
1789 gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1790 } else {
1791 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1792 }
1793
1794 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1795 gs.OutputTopology = gs_prog_data->output_topology;
1796 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1797 gs.ControlDataFormat = gs_prog_data->control_data_format;
1798 gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords;
1799 gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1;
1800 gs.ReorderMode = TRAILING;
1801
1802 #if GEN_GEN >= 8
1803 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
1804 gs.StaticOutput = gs_prog_data->static_vertex_count >= 0;
1805 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1806 gs_prog_data->static_vertex_count : 0;
1807 #endif
1808
1809 gs.VertexURBEntryReadOffset = 0;
1810 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1811 gs.DispatchGRFStartRegisterForURBData =
1812 gs_prog_data->base.base.dispatch_grf_start_reg;
1813
1814 #if GEN_GEN >= 8
1815 gs.UserClipDistanceClipTestEnableBitmask =
1816 gs_prog_data->base.clip_distance_mask;
1817 gs.UserClipDistanceCullTestEnableBitmask =
1818 gs_prog_data->base.cull_distance_mask;
1819 #endif
1820
1821 gs.PerThreadScratchSpace = get_scratch_space(gs_bin);
1822 gs.ScratchSpaceBasePointer =
1823 get_scratch_address(&pipeline->base, MESA_SHADER_GEOMETRY, gs_bin);
1824 }
1825 }
1826
1827 static bool
1828 has_color_buffer_write_enabled(const struct anv_graphics_pipeline *pipeline,
1829 const VkPipelineColorBlendStateCreateInfo *blend)
1830 {
1831 const struct anv_shader_bin *shader_bin =
1832 pipeline->shaders[MESA_SHADER_FRAGMENT];
1833 if (!shader_bin)
1834 return false;
1835
1836 const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1837 for (int i = 0; i < bind_map->surface_count; i++) {
1838 struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[i];
1839
1840 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1841 continue;
1842
1843 if (binding->index == UINT32_MAX)
1844 continue;
1845
1846 if (blend && blend->pAttachments[binding->index].colorWriteMask != 0)
1847 return true;
1848 }
1849
1850 return false;
1851 }
1852
1853 static void
1854 emit_3dstate_wm(struct anv_graphics_pipeline *pipeline, struct anv_subpass *subpass,
1855 const VkPipelineInputAssemblyStateCreateInfo *ia,
1856 const VkPipelineRasterizationStateCreateInfo *raster,
1857 const VkPipelineColorBlendStateCreateInfo *blend,
1858 const VkPipelineMultisampleStateCreateInfo *multisample,
1859 const VkPipelineRasterizationLineStateCreateInfoEXT *line)
1860 {
1861 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1862
1863 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_WM), wm) {
1864 wm.StatisticsEnable = true;
1865 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1866 wm.LineAntialiasingRegionWidth = _10pixels;
1867 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1868
1869 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1870 if (wm_prog_data->early_fragment_tests) {
1871 wm.EarlyDepthStencilControl = EDSC_PREPS;
1872 } else if (wm_prog_data->has_side_effects) {
1873 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1874 } else {
1875 wm.EarlyDepthStencilControl = EDSC_NORMAL;
1876 }
1877
1878 #if GEN_GEN >= 8
1879 /* Gen8 hardware tries to compute ThreadDispatchEnable for us but
1880 * doesn't take into account KillPixels when no depth or stencil
1881 * writes are enabled. In order for occlusion queries to work
1882 * correctly with no attachments, we need to force-enable PS thread
1883 * dispatch.
1884 *
1885 * The BDW docs are pretty clear that that this bit isn't validated
1886 * and probably shouldn't be used in production:
1887 *
1888 * "This must always be set to Normal. This field should not be
1889 * tested for functional validation."
1890 *
1891 * Unfortunately, however, the other mechanism we have for doing this
1892 * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
1893 * Given two bad options, we choose the one which works.
1894 */
1895 if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1896 !has_color_buffer_write_enabled(pipeline, blend))
1897 wm.ForceThreadDispatchEnable = ForceON;
1898 #endif
1899
1900 wm.BarycentricInterpolationMode =
1901 wm_prog_data->barycentric_interp_modes;
1902
1903 #if GEN_GEN < 8
1904 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1905 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1906 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1907 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1908
1909 /* If the subpass has a depth or stencil self-dependency, then we
1910 * need to force the hardware to do the depth/stencil write *after*
1911 * fragment shader execution. Otherwise, the writes may hit memory
1912 * before we get around to fetching from the input attachment and we
1913 * may get the depth or stencil value from the current draw rather
1914 * than the previous one.
1915 */
1916 wm.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1917 wm_prog_data->uses_kill;
1918
1919 if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1920 wm_prog_data->has_side_effects ||
1921 wm.PixelShaderKillsPixel ||
1922 has_color_buffer_write_enabled(pipeline, blend))
1923 wm.ThreadDispatchEnable = true;
1924
1925 if (multisample && multisample->rasterizationSamples > 1) {
1926 if (wm_prog_data->persample_dispatch) {
1927 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1928 } else {
1929 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1930 }
1931 } else {
1932 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1933 }
1934 wm.MultisampleRasterizationMode =
1935 gen7_ms_rast_mode(pipeline, ia, raster, multisample);
1936 #endif
1937
1938 wm.LineStippleEnable = line && line->stippledLineEnable;
1939 }
1940 }
1941 }
1942
1943 static void
1944 emit_3dstate_ps(struct anv_graphics_pipeline *pipeline,
1945 const VkPipelineColorBlendStateCreateInfo *blend,
1946 const VkPipelineMultisampleStateCreateInfo *multisample)
1947 {
1948 UNUSED const struct gen_device_info *devinfo = &pipeline->base.device->info;
1949 const struct anv_shader_bin *fs_bin =
1950 pipeline->shaders[MESA_SHADER_FRAGMENT];
1951
1952 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1953 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS), ps) {
1954 #if GEN_GEN == 7
1955 /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1956 * we don't at least set the maximum number of threads.
1957 */
1958 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1959 #endif
1960 }
1961 return;
1962 }
1963
1964 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1965
1966 #if GEN_GEN < 8
1967 /* The hardware wedges if you have this bit set but don't turn on any dual
1968 * source blend factors.
1969 */
1970 bool dual_src_blend = false;
1971 if (wm_prog_data->dual_src_blend && blend) {
1972 for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1973 const VkPipelineColorBlendAttachmentState *bstate =
1974 &blend->pAttachments[i];
1975
1976 if (bstate->blendEnable &&
1977 (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1978 is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1979 is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1980 is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1981 dual_src_blend = true;
1982 break;
1983 }
1984 }
1985 }
1986 #endif
1987
1988 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS), ps) {
1989 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1990 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1991 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
1992
1993 /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
1994 *
1995 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
1996 * Dispatch must not be enabled for PER_PIXEL dispatch mode."
1997 *
1998 * Since 16x MSAA is first introduced on SKL, we don't need to apply
1999 * the workaround on any older hardware.
2000 */
2001 if (GEN_GEN >= 9 && !wm_prog_data->persample_dispatch &&
2002 multisample && multisample->rasterizationSamples == 16) {
2003 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
2004 ps._32PixelDispatchEnable = false;
2005 }
2006
2007 ps.KernelStartPointer0 = fs_bin->kernel.offset +
2008 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
2009 ps.KernelStartPointer1 = fs_bin->kernel.offset +
2010 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
2011 ps.KernelStartPointer2 = fs_bin->kernel.offset +
2012 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
2013
2014 ps.SingleProgramFlow = false;
2015 ps.VectorMaskEnable = GEN_GEN >= 8;
2016 /* WA_1606682166 */
2017 ps.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(fs_bin);
2018 ps.BindingTableEntryCount = get_binding_table_entry_count(fs_bin);
2019 ps.PushConstantEnable = wm_prog_data->base.nr_params > 0 ||
2020 wm_prog_data->base.ubo_ranges[0].length;
2021 ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
2022 POSOFFSET_SAMPLE: POSOFFSET_NONE;
2023 #if GEN_GEN < 8
2024 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
2025 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
2026 ps.DualSourceBlendEnable = dual_src_blend;
2027 #endif
2028
2029 #if GEN_IS_HASWELL
2030 /* Haswell requires the sample mask to be set in this packet as well
2031 * as in 3DSTATE_SAMPLE_MASK; the values should match.
2032 */
2033 ps.SampleMask = 0xff;
2034 #endif
2035
2036 #if GEN_GEN >= 9
2037 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
2038 #elif GEN_GEN >= 8
2039 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
2040 #else
2041 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
2042 #endif
2043
2044 ps.DispatchGRFStartRegisterForConstantSetupData0 =
2045 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
2046 ps.DispatchGRFStartRegisterForConstantSetupData1 =
2047 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
2048 ps.DispatchGRFStartRegisterForConstantSetupData2 =
2049 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
2050
2051 ps.PerThreadScratchSpace = get_scratch_space(fs_bin);
2052 ps.ScratchSpaceBasePointer =
2053 get_scratch_address(&pipeline->base, MESA_SHADER_FRAGMENT, fs_bin);
2054 }
2055 }
2056
2057 #if GEN_GEN >= 8
2058 static void
2059 emit_3dstate_ps_extra(struct anv_graphics_pipeline *pipeline,
2060 struct anv_subpass *subpass)
2061 {
2062 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
2063
2064 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
2065 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS_EXTRA), ps);
2066 return;
2067 }
2068
2069 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PS_EXTRA), ps) {
2070 ps.PixelShaderValid = true;
2071 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
2072 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
2073 ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
2074 ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
2075 ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
2076 ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
2077
2078 /* If the subpass has a depth or stencil self-dependency, then we need
2079 * to force the hardware to do the depth/stencil write *after* fragment
2080 * shader execution. Otherwise, the writes may hit memory before we get
2081 * around to fetching from the input attachment and we may get the depth
2082 * or stencil value from the current draw rather than the previous one.
2083 */
2084 ps.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
2085 wm_prog_data->uses_kill;
2086
2087 #if GEN_GEN >= 9
2088 ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
2089 ps.PixelShaderPullsBary = wm_prog_data->pulls_bary;
2090
2091 ps.InputCoverageMaskState = ICMS_NONE;
2092 if (wm_prog_data->uses_sample_mask) {
2093 if (wm_prog_data->post_depth_coverage)
2094 ps.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
2095 else
2096 ps.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
2097 }
2098 #else
2099 ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
2100 #endif
2101 }
2102 }
2103
2104 static void
2105 emit_3dstate_vf_topology(struct anv_graphics_pipeline *pipeline)
2106 {
2107 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
2108 vft.PrimitiveTopologyType = pipeline->topology;
2109 }
2110 }
2111 #endif
2112
2113 static void
2114 emit_3dstate_vf_statistics(struct anv_graphics_pipeline *pipeline)
2115 {
2116 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
2117 vfs.StatisticsEnable = true;
2118 }
2119 }
2120
2121 static void
2122 compute_kill_pixel(struct anv_graphics_pipeline *pipeline,
2123 const VkPipelineMultisampleStateCreateInfo *ms_info,
2124 const struct anv_subpass *subpass)
2125 {
2126 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
2127 pipeline->kill_pixel = false;
2128 return;
2129 }
2130
2131 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
2132
2133 /* This computes the KillPixel portion of the computation for whether or
2134 * not we want to enable the PMA fix on gen8 or gen9. It's given by this
2135 * chunk of the giant formula:
2136 *
2137 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
2138 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
2139 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
2140 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
2141 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
2142 *
2143 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
2144 * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
2145 * of an alpha test.
2146 */
2147 pipeline->kill_pixel =
2148 subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
2149 wm_prog_data->uses_omask ||
2150 (ms_info && ms_info->alphaToCoverageEnable);
2151 }
2152
2153 #if GEN_GEN == 12
2154 static void
2155 emit_3dstate_primitive_replication(struct anv_graphics_pipeline *pipeline)
2156 {
2157 if (!pipeline->use_primitive_replication) {
2158 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr);
2159 return;
2160 }
2161
2162 uint32_t view_mask = pipeline->subpass->view_mask;
2163 int view_count = util_bitcount(view_mask);
2164 assert(view_count > 1 && view_count <= MAX_VIEWS_FOR_PRIMITIVE_REPLICATION);
2165
2166 anv_batch_emit(&pipeline->base.batch, GENX(3DSTATE_PRIMITIVE_REPLICATION), pr) {
2167 pr.ReplicaMask = (1 << view_count) - 1;
2168 pr.ReplicationCount = view_count - 1;
2169
2170 int i = 0, view_index;
2171 for_each_bit(view_index, view_mask) {
2172 pr.RTAIOffset[i] = view_index;
2173 i++;
2174 }
2175 }
2176 }
2177 #endif
2178
2179 static VkResult
2180 genX(graphics_pipeline_create)(
2181 VkDevice _device,
2182 struct anv_pipeline_cache * cache,
2183 const VkGraphicsPipelineCreateInfo* pCreateInfo,
2184 const VkAllocationCallbacks* pAllocator,
2185 VkPipeline* pPipeline)
2186 {
2187 ANV_FROM_HANDLE(anv_device, device, _device);
2188 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
2189 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
2190 struct anv_graphics_pipeline *pipeline;
2191 VkResult result;
2192
2193 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
2194
2195 /* Use the default pipeline cache if none is specified */
2196 if (cache == NULL && device->physical->instance->pipeline_cache_enabled)
2197 cache = &device->default_pipeline_cache;
2198
2199 pipeline = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
2200 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2201 if (pipeline == NULL)
2202 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2203
2204 result = anv_graphics_pipeline_init(pipeline, device, cache,
2205 pCreateInfo, pAllocator);
2206 if (result != VK_SUCCESS) {
2207 vk_free2(&device->vk.alloc, pAllocator, pipeline);
2208 if (result == VK_PIPELINE_COMPILE_REQUIRED_EXT)
2209 *pPipeline = VK_NULL_HANDLE;
2210 return result;
2211 }
2212
2213 /* If rasterization is not enabled, various CreateInfo structs must be
2214 * ignored.
2215 */
2216 const bool raster_enabled =
2217 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable;
2218
2219 const VkPipelineViewportStateCreateInfo *vp_info =
2220 raster_enabled ? pCreateInfo->pViewportState : NULL;
2221
2222 const VkPipelineMultisampleStateCreateInfo *ms_info =
2223 raster_enabled ? pCreateInfo->pMultisampleState : NULL;
2224
2225 const VkPipelineDepthStencilStateCreateInfo *ds_info =
2226 raster_enabled ? pCreateInfo->pDepthStencilState : NULL;
2227
2228 const VkPipelineColorBlendStateCreateInfo *cb_info =
2229 raster_enabled ? pCreateInfo->pColorBlendState : NULL;
2230
2231 const VkPipelineRasterizationLineStateCreateInfoEXT *line_info =
2232 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
2233 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
2234
2235 /* Information on which states are considered dynamic. */
2236 const VkPipelineDynamicStateCreateInfo *dyn_info =
2237 pCreateInfo->pDynamicState;
2238 uint32_t dynamic_states = 0;
2239 if (dyn_info) {
2240 for (unsigned i = 0; i < dyn_info->dynamicStateCount; i++)
2241 dynamic_states |=
2242 anv_cmd_dirty_bit_for_vk_dynamic_state(dyn_info->pDynamicStates[i]);
2243 }
2244
2245 enum gen_urb_deref_block_size urb_deref_block_size;
2246 emit_urb_setup(pipeline, &urb_deref_block_size);
2247
2248 assert(pCreateInfo->pVertexInputState);
2249 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
2250 assert(pCreateInfo->pRasterizationState);
2251 emit_rs_state(pipeline, pCreateInfo->pInputAssemblyState,
2252 pCreateInfo->pRasterizationState,
2253 ms_info, line_info, dynamic_states, pass, subpass,
2254 urb_deref_block_size);
2255 emit_ms_state(pipeline, ms_info);
2256 emit_ds_state(pipeline, ds_info, dynamic_states, pass, subpass);
2257 emit_cb_state(pipeline, cb_info, ms_info);
2258 compute_kill_pixel(pipeline, ms_info, subpass);
2259
2260 emit_3dstate_clip(pipeline,
2261 pCreateInfo->pInputAssemblyState,
2262 vp_info,
2263 pCreateInfo->pRasterizationState);
2264 emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
2265
2266 #if GEN_GEN == 12
2267 emit_3dstate_primitive_replication(pipeline);
2268 #endif
2269
2270 #if 0
2271 /* From gen7_vs_state.c */
2272
2273 /**
2274 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2275 * Geometry > Geometry Shader > State:
2276 *
2277 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2278 * whole fixed function pipeline when the GS enable changes value in
2279 * the 3DSTATE_GS."
2280 *
2281 * The hardware architects have clarified that in this context "flush the
2282 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2283 * Stall" bit set.
2284 */
2285 if (!device->info.is_haswell && !device->info.is_baytrail)
2286 gen7_emit_vs_workaround_flush(brw);
2287 #endif
2288
2289 emit_3dstate_vs(pipeline);
2290 emit_3dstate_hs_te_ds(pipeline, pCreateInfo->pTessellationState);
2291 emit_3dstate_gs(pipeline);
2292 emit_3dstate_sbe(pipeline);
2293 emit_3dstate_wm(pipeline, subpass,
2294 pCreateInfo->pInputAssemblyState,
2295 pCreateInfo->pRasterizationState,
2296 cb_info, ms_info, line_info);
2297 emit_3dstate_ps(pipeline, cb_info, ms_info);
2298 #if GEN_GEN >= 8
2299 emit_3dstate_ps_extra(pipeline, subpass);
2300
2301 if (!(dynamic_states & ANV_CMD_DIRTY_DYNAMIC_PRIMITIVE_TOPOLOGY))
2302 emit_3dstate_vf_topology(pipeline);
2303 #endif
2304 emit_3dstate_vf_statistics(pipeline);
2305
2306 *pPipeline = anv_pipeline_to_handle(&pipeline->base);
2307
2308 return pipeline->base.batch.status;
2309 }
2310
2311 static void
2312 emit_media_cs_state(struct anv_compute_pipeline *pipeline,
2313 const struct anv_device *device)
2314 {
2315 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
2316
2317 anv_pipeline_setup_l3_config(&pipeline->base, cs_prog_data->base.total_shared > 0);
2318
2319 const struct anv_cs_parameters cs_params = anv_cs_parameters(pipeline);
2320
2321 pipeline->cs_right_mask = brw_cs_right_mask(cs_params.group_size, cs_params.simd_size);
2322
2323 const uint32_t vfe_curbe_allocation =
2324 ALIGN(cs_prog_data->push.per_thread.regs * cs_params.threads +
2325 cs_prog_data->push.cross_thread.regs, 2);
2326
2327 const uint32_t subslices = MAX2(device->physical->subslice_total, 1);
2328
2329 const struct anv_shader_bin *cs_bin = pipeline->cs;
2330 const struct gen_device_info *devinfo = &device->info;
2331
2332 anv_batch_emit(&pipeline->base.batch, GENX(MEDIA_VFE_STATE), vfe) {
2333 #if GEN_GEN > 7
2334 vfe.StackSize = 0;
2335 #else
2336 vfe.GPGPUMode = true;
2337 #endif
2338 vfe.MaximumNumberofThreads =
2339 devinfo->max_cs_threads * subslices - 1;
2340 vfe.NumberofURBEntries = GEN_GEN <= 7 ? 0 : 2;
2341 #if GEN_GEN < 11
2342 vfe.ResetGatewayTimer = true;
2343 #endif
2344 #if GEN_GEN <= 8
2345 vfe.BypassGatewayControl = true;
2346 #endif
2347 vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
2348 vfe.CURBEAllocationSize = vfe_curbe_allocation;
2349
2350 if (cs_bin->prog_data->total_scratch) {
2351 if (GEN_GEN >= 8) {
2352 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
2353 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
2354 */
2355 vfe.PerThreadScratchSpace =
2356 ffs(cs_bin->prog_data->total_scratch) - 11;
2357 } else if (GEN_IS_HASWELL) {
2358 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
2359 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
2360 */
2361 vfe.PerThreadScratchSpace =
2362 ffs(cs_bin->prog_data->total_scratch) - 12;
2363 } else {
2364 /* IVB and BYT use the range [0, 11] to mean [1kB, 12kB]
2365 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
2366 */
2367 vfe.PerThreadScratchSpace =
2368 cs_bin->prog_data->total_scratch / 1024 - 1;
2369 }
2370 vfe.ScratchSpaceBasePointer =
2371 get_scratch_address(&pipeline->base, MESA_SHADER_COMPUTE, cs_bin);
2372 }
2373 }
2374
2375 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2376 .KernelStartPointer =
2377 cs_bin->kernel.offset +
2378 brw_cs_prog_data_prog_offset(cs_prog_data, cs_params.simd_size),
2379
2380 /* WA_1606682166 */
2381 .SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(cs_bin),
2382 /* We add 1 because the CS indirect parameters buffer isn't accounted
2383 * for in bind_map.surface_count.
2384 */
2385 .BindingTableEntryCount = 1 + MIN2(cs_bin->bind_map.surface_count, 30),
2386 .BarrierEnable = cs_prog_data->uses_barrier,
2387 .SharedLocalMemorySize =
2388 encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
2389
2390 #if !GEN_IS_HASWELL
2391 .ConstantURBEntryReadOffset = 0,
2392 #endif
2393 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
2394 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2395 .CrossThreadConstantDataReadLength =
2396 cs_prog_data->push.cross_thread.regs,
2397 #endif
2398 #if GEN_GEN >= 12
2399 /* TODO: Check if we are missing workarounds and enable mid-thread
2400 * preemption.
2401 *
2402 * We still have issues with mid-thread preemption (it was already
2403 * disabled by the kernel on gen11, due to missing workarounds). It's
2404 * possible that we are just missing some workarounds, and could enable
2405 * it later, but for now let's disable it to fix a GPU in compute in Car
2406 * Chase (and possibly more).
2407 */
2408 .ThreadPreemptionDisable = true,
2409 #endif
2410
2411 .NumberofThreadsinGPGPUThreadGroup = cs_params.threads,
2412 };
2413 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
2414 pipeline->interface_descriptor_data,
2415 &desc);
2416 }
2417
2418 static VkResult
2419 compute_pipeline_create(
2420 VkDevice _device,
2421 struct anv_pipeline_cache * cache,
2422 const VkComputePipelineCreateInfo* pCreateInfo,
2423 const VkAllocationCallbacks* pAllocator,
2424 VkPipeline* pPipeline)
2425 {
2426 ANV_FROM_HANDLE(anv_device, device, _device);
2427 struct anv_compute_pipeline *pipeline;
2428 VkResult result;
2429
2430 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
2431
2432 /* Use the default pipeline cache if none is specified */
2433 if (cache == NULL && device->physical->instance->pipeline_cache_enabled)
2434 cache = &device->default_pipeline_cache;
2435
2436 pipeline = vk_alloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8,
2437 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2438 if (pipeline == NULL)
2439 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2440
2441 result = anv_pipeline_init(&pipeline->base, device,
2442 ANV_PIPELINE_COMPUTE, pCreateInfo->flags,
2443 pAllocator);
2444 if (result != VK_SUCCESS) {
2445 vk_free2(&device->vk.alloc, pAllocator, pipeline);
2446 return result;
2447 }
2448
2449 anv_batch_set_storage(&pipeline->base.batch, ANV_NULL_ADDRESS,
2450 pipeline->batch_data, sizeof(pipeline->batch_data));
2451
2452 pipeline->cs = NULL;
2453
2454 assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
2455 ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->stage.module);
2456 result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
2457 pCreateInfo->stage.pName,
2458 pCreateInfo->stage.pSpecializationInfo);
2459 if (result != VK_SUCCESS) {
2460 anv_pipeline_finish(&pipeline->base, device, pAllocator);
2461 vk_free2(&device->vk.alloc, pAllocator, pipeline);
2462 if (result == VK_PIPELINE_COMPILE_REQUIRED_EXT)
2463 *pPipeline = VK_NULL_HANDLE;
2464 return result;
2465 }
2466
2467 emit_media_cs_state(pipeline, device);
2468
2469 *pPipeline = anv_pipeline_to_handle(&pipeline->base);
2470
2471 return pipeline->base.batch.status;
2472 }
2473
2474 VkResult genX(CreateGraphicsPipelines)(
2475 VkDevice _device,
2476 VkPipelineCache pipelineCache,
2477 uint32_t count,
2478 const VkGraphicsPipelineCreateInfo* pCreateInfos,
2479 const VkAllocationCallbacks* pAllocator,
2480 VkPipeline* pPipelines)
2481 {
2482 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2483
2484 VkResult result = VK_SUCCESS;
2485
2486 unsigned i;
2487 for (i = 0; i < count; i++) {
2488 VkResult res = genX(graphics_pipeline_create)(_device,
2489 pipeline_cache,
2490 &pCreateInfos[i],
2491 pAllocator, &pPipelines[i]);
2492
2493 if (res == VK_SUCCESS)
2494 continue;
2495
2496 /* Bail out on the first error != VK_PIPELINE_COMPILE_REQUIRED_EX as it
2497 * is not obvious what error should be report upon 2 different failures.
2498 * */
2499 result = res;
2500 if (res != VK_PIPELINE_COMPILE_REQUIRED_EXT)
2501 break;
2502
2503 if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT_EXT)
2504 break;
2505 }
2506
2507 for (; i < count; i++)
2508 pPipelines[i] = VK_NULL_HANDLE;
2509
2510 return result;
2511 }
2512
2513 VkResult genX(CreateComputePipelines)(
2514 VkDevice _device,
2515 VkPipelineCache pipelineCache,
2516 uint32_t count,
2517 const VkComputePipelineCreateInfo* pCreateInfos,
2518 const VkAllocationCallbacks* pAllocator,
2519 VkPipeline* pPipelines)
2520 {
2521 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2522
2523 VkResult result = VK_SUCCESS;
2524
2525 unsigned i;
2526 for (i = 0; i < count; i++) {
2527 VkResult res = compute_pipeline_create(_device, pipeline_cache,
2528 &pCreateInfos[i],
2529 pAllocator, &pPipelines[i]);
2530
2531 if (res == VK_SUCCESS)
2532 continue;
2533
2534 /* Bail out on the first error != VK_PIPELINE_COMPILE_REQUIRED_EX as it
2535 * is not obvious what error should be report upon 2 different failures.
2536 * */
2537 result = res;
2538 if (res != VK_PIPELINE_COMPILE_REQUIRED_EXT)
2539 break;
2540
2541 if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT_EXT)
2542 break;
2543 }
2544
2545 for (; i < count; i++)
2546 pPipelines[i] = VK_NULL_HANDLE;
2547
2548 return result;
2549 }