anv: Fix VK_EXT_transform_feedback working with varyings packed in PSIZ
[mesa.git] / src / intel / vulkan / genX_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_private.h"
25
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28
29 #include "common/gen_l3_config.h"
30 #include "common/gen_sample_positions.h"
31 #include "nir/nir_xfb_info.h"
32 #include "vk_util.h"
33 #include "vk_format_info.h"
34
35 static uint32_t
36 vertex_element_comp_control(enum isl_format format, unsigned comp)
37 {
38 uint8_t bits;
39 switch (comp) {
40 case 0: bits = isl_format_layouts[format].channels.r.bits; break;
41 case 1: bits = isl_format_layouts[format].channels.g.bits; break;
42 case 2: bits = isl_format_layouts[format].channels.b.bits; break;
43 case 3: bits = isl_format_layouts[format].channels.a.bits; break;
44 default: unreachable("Invalid component");
45 }
46
47 /*
48 * Take in account hardware restrictions when dealing with 64-bit floats.
49 *
50 * From Broadwell spec, command reference structures, page 586:
51 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
52 * 64-bit components are stored * in the URB without any conversion. In
53 * this case, vertex elements must be written as 128 or 256 bits, with
54 * VFCOMP_STORE_0 being used to pad the output as required. E.g., if
55 * R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
56 * Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
57 * set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
58 * Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
59 * a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
60 * Component 3 to be specified as VFCOMP_STORE_0 in order to output a
61 * 256-bit vertex element."
62 */
63 if (bits) {
64 return VFCOMP_STORE_SRC;
65 } else if (comp >= 2 &&
66 !isl_format_layouts[format].channels.b.bits &&
67 isl_format_layouts[format].channels.r.type == ISL_RAW) {
68 /* When emitting 64-bit attributes, we need to write either 128 or 256
69 * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
70 * VFCOMP_STORE_0 to pad the written chunk */
71 return VFCOMP_NOSTORE;
72 } else if (comp < 3 ||
73 isl_format_layouts[format].channels.r.type == ISL_RAW) {
74 /* Note we need to pad with value 0, not 1, due hardware restrictions
75 * (see comment above) */
76 return VFCOMP_STORE_0;
77 } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
78 isl_format_layouts[format].channels.r.type == ISL_SINT) {
79 assert(comp == 3);
80 return VFCOMP_STORE_1_INT;
81 } else {
82 assert(comp == 3);
83 return VFCOMP_STORE_1_FP;
84 }
85 }
86
87 static void
88 emit_vertex_input(struct anv_pipeline *pipeline,
89 const VkPipelineVertexInputStateCreateInfo *info)
90 {
91 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
92
93 /* Pull inputs_read out of the VS prog data */
94 const uint64_t inputs_read = vs_prog_data->inputs_read;
95 const uint64_t double_inputs_read =
96 vs_prog_data->double_inputs_read & inputs_read;
97 assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
98 const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
99 const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
100 const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
101 vs_prog_data->uses_instanceid ||
102 vs_prog_data->uses_firstvertex ||
103 vs_prog_data->uses_baseinstance;
104
105 uint32_t elem_count = __builtin_popcount(elements) -
106 __builtin_popcount(elements_double) / 2;
107
108 const uint32_t total_elems =
109 MAX2(1, elem_count + needs_svgs_elem + vs_prog_data->uses_drawid);
110
111 uint32_t *p;
112
113 const uint32_t num_dwords = 1 + total_elems * 2;
114 p = anv_batch_emitn(&pipeline->batch, num_dwords,
115 GENX(3DSTATE_VERTEX_ELEMENTS));
116 if (!p)
117 return;
118
119 for (uint32_t i = 0; i < total_elems; i++) {
120 /* The SKL docs for VERTEX_ELEMENT_STATE say:
121 *
122 * "All elements must be valid from Element[0] to the last valid
123 * element. (I.e. if Element[2] is valid then Element[1] and
124 * Element[0] must also be valid)."
125 *
126 * The SKL docs for 3D_Vertex_Component_Control say:
127 *
128 * "Don't store this component. (Not valid for Component 0, but can
129 * be used for Component 1-3)."
130 *
131 * So we can't just leave a vertex element blank and hope for the best.
132 * We have to tell the VF hardware to put something in it; so we just
133 * store a bunch of zero.
134 *
135 * TODO: Compact vertex elements so we never end up with holes.
136 */
137 struct GENX(VERTEX_ELEMENT_STATE) element = {
138 .Valid = true,
139 .Component0Control = VFCOMP_STORE_0,
140 .Component1Control = VFCOMP_STORE_0,
141 .Component2Control = VFCOMP_STORE_0,
142 .Component3Control = VFCOMP_STORE_0,
143 };
144 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
145 }
146
147 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
148 const VkVertexInputAttributeDescription *desc =
149 &info->pVertexAttributeDescriptions[i];
150 enum isl_format format = anv_get_isl_format(&pipeline->device->info,
151 desc->format,
152 VK_IMAGE_ASPECT_COLOR_BIT,
153 VK_IMAGE_TILING_LINEAR);
154
155 assert(desc->binding < MAX_VBS);
156
157 if ((elements & (1 << desc->location)) == 0)
158 continue; /* Binding unused */
159
160 uint32_t slot =
161 __builtin_popcount(elements & ((1 << desc->location) - 1)) -
162 DIV_ROUND_UP(__builtin_popcount(elements_double &
163 ((1 << desc->location) -1)), 2);
164
165 struct GENX(VERTEX_ELEMENT_STATE) element = {
166 .VertexBufferIndex = desc->binding,
167 .Valid = true,
168 .SourceElementFormat = format,
169 .EdgeFlagEnable = false,
170 .SourceElementOffset = desc->offset,
171 .Component0Control = vertex_element_comp_control(format, 0),
172 .Component1Control = vertex_element_comp_control(format, 1),
173 .Component2Control = vertex_element_comp_control(format, 2),
174 .Component3Control = vertex_element_comp_control(format, 3),
175 };
176 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
177
178 #if GEN_GEN >= 8
179 /* On Broadwell and later, we have a separate VF_INSTANCING packet
180 * that controls instancing. On Haswell and prior, that's part of
181 * VERTEX_BUFFER_STATE which we emit later.
182 */
183 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
184 vfi.InstancingEnable = pipeline->vb[desc->binding].instanced;
185 vfi.VertexElementIndex = slot;
186 vfi.InstanceDataStepRate =
187 pipeline->vb[desc->binding].instance_divisor;
188 }
189 #endif
190 }
191
192 const uint32_t id_slot = elem_count;
193 if (needs_svgs_elem) {
194 /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
195 * "Within a VERTEX_ELEMENT_STATE structure, if a Component
196 * Control field is set to something other than VFCOMP_STORE_SRC,
197 * no higher-numbered Component Control fields may be set to
198 * VFCOMP_STORE_SRC"
199 *
200 * This means, that if we have BaseInstance, we need BaseVertex as
201 * well. Just do all or nothing.
202 */
203 uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
204 vs_prog_data->uses_baseinstance) ?
205 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
206
207 struct GENX(VERTEX_ELEMENT_STATE) element = {
208 .VertexBufferIndex = ANV_SVGS_VB_INDEX,
209 .Valid = true,
210 .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
211 .Component0Control = base_ctrl,
212 .Component1Control = base_ctrl,
213 #if GEN_GEN >= 8
214 .Component2Control = VFCOMP_STORE_0,
215 .Component3Control = VFCOMP_STORE_0,
216 #else
217 .Component2Control = VFCOMP_STORE_VID,
218 .Component3Control = VFCOMP_STORE_IID,
219 #endif
220 };
221 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
222 }
223
224 #if GEN_GEN >= 8
225 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
226 sgvs.VertexIDEnable = vs_prog_data->uses_vertexid;
227 sgvs.VertexIDComponentNumber = 2;
228 sgvs.VertexIDElementOffset = id_slot;
229 sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid;
230 sgvs.InstanceIDComponentNumber = 3;
231 sgvs.InstanceIDElementOffset = id_slot;
232 }
233 #endif
234
235 const uint32_t drawid_slot = elem_count + needs_svgs_elem;
236 if (vs_prog_data->uses_drawid) {
237 struct GENX(VERTEX_ELEMENT_STATE) element = {
238 .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
239 .Valid = true,
240 .SourceElementFormat = ISL_FORMAT_R32_UINT,
241 .Component0Control = VFCOMP_STORE_SRC,
242 .Component1Control = VFCOMP_STORE_0,
243 .Component2Control = VFCOMP_STORE_0,
244 .Component3Control = VFCOMP_STORE_0,
245 };
246 GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
247 &p[1 + drawid_slot * 2],
248 &element);
249
250 #if GEN_GEN >= 8
251 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
252 vfi.VertexElementIndex = drawid_slot;
253 }
254 #endif
255 }
256 }
257
258 void
259 genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
260 const struct gen_l3_config *l3_config,
261 VkShaderStageFlags active_stages,
262 const unsigned entry_size[4])
263 {
264 const struct gen_device_info *devinfo = &device->info;
265 #if GEN_IS_HASWELL
266 const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
267 #else
268 const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
269 #endif
270
271 const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
272
273 unsigned entries[4];
274 unsigned start[4];
275 gen_get_urb_config(devinfo,
276 1024 * push_constant_kb, 1024 * urb_size_kb,
277 active_stages &
278 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
279 active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
280 entry_size, entries, start);
281
282 #if GEN_GEN == 7 && !GEN_IS_HASWELL
283 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
284 *
285 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
286 * needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
287 * 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
288 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
289 * needs to be sent before any combination of VS associated 3DSTATE."
290 */
291 anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
292 pc.DepthStallEnable = true;
293 pc.PostSyncOperation = WriteImmediateData;
294 pc.Address = (struct anv_address) { &device->workaround_bo, 0 };
295 }
296 #endif
297
298 for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
299 anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
300 urb._3DCommandSubOpcode += i;
301 urb.VSURBStartingAddress = start[i];
302 urb.VSURBEntryAllocationSize = entry_size[i] - 1;
303 urb.VSNumberofURBEntries = entries[i];
304 }
305 }
306 }
307
308 static void
309 emit_urb_setup(struct anv_pipeline *pipeline)
310 {
311 unsigned entry_size[4];
312 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
313 const struct brw_vue_prog_data *prog_data =
314 !anv_pipeline_has_stage(pipeline, i) ? NULL :
315 (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
316
317 entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
318 }
319
320 genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
321 pipeline->urb.l3_config,
322 pipeline->active_stages, entry_size);
323 }
324
325 static void
326 emit_3dstate_sbe(struct anv_pipeline *pipeline)
327 {
328 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
329
330 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
331 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
332 #if GEN_GEN >= 8
333 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
334 #endif
335 return;
336 }
337
338 const struct brw_vue_map *fs_input_map =
339 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
340
341 struct GENX(3DSTATE_SBE) sbe = {
342 GENX(3DSTATE_SBE_header),
343 .AttributeSwizzleEnable = true,
344 .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
345 .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
346 .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
347 };
348
349 #if GEN_GEN >= 9
350 for (unsigned i = 0; i < 32; i++)
351 sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
352 #endif
353
354 #if GEN_GEN >= 8
355 /* On Broadwell, they broke 3DSTATE_SBE into two packets */
356 struct GENX(3DSTATE_SBE_SWIZ) swiz = {
357 GENX(3DSTATE_SBE_SWIZ_header),
358 };
359 #else
360 # define swiz sbe
361 #endif
362
363 /* Skip the VUE header and position slots by default */
364 unsigned urb_entry_read_offset = 1;
365 int max_source_attr = 0;
366 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
367 int input_index = wm_prog_data->urb_setup[attr];
368
369 if (input_index < 0)
370 continue;
371
372 /* gl_Layer is stored in the VUE header */
373 if (attr == VARYING_SLOT_LAYER) {
374 urb_entry_read_offset = 0;
375 continue;
376 }
377
378 if (attr == VARYING_SLOT_PNTC) {
379 sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
380 continue;
381 }
382
383 const int slot = fs_input_map->varying_to_slot[attr];
384
385 if (input_index >= 16)
386 continue;
387
388 if (slot == -1) {
389 /* This attribute does not exist in the VUE--that means that the
390 * vertex shader did not write to it. It could be that it's a
391 * regular varying read by the fragment shader but not written by
392 * the vertex shader or it's gl_PrimitiveID. In the first case the
393 * value is undefined, in the second it needs to be
394 * gl_PrimitiveID.
395 */
396 swiz.Attribute[input_index].ConstantSource = PRIM_ID;
397 swiz.Attribute[input_index].ComponentOverrideX = true;
398 swiz.Attribute[input_index].ComponentOverrideY = true;
399 swiz.Attribute[input_index].ComponentOverrideZ = true;
400 swiz.Attribute[input_index].ComponentOverrideW = true;
401 } else {
402 /* We have to subtract two slots to accout for the URB entry output
403 * read offset in the VS and GS stages.
404 */
405 const int source_attr = slot - 2 * urb_entry_read_offset;
406 assert(source_attr >= 0 && source_attr < 32);
407 max_source_attr = MAX2(max_source_attr, source_attr);
408 swiz.Attribute[input_index].SourceAttribute = source_attr;
409 }
410 }
411
412 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
413 sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
414 #if GEN_GEN >= 8
415 sbe.ForceVertexURBEntryReadOffset = true;
416 sbe.ForceVertexURBEntryReadLength = true;
417 #endif
418
419 uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
420 GENX(3DSTATE_SBE_length));
421 if (!dw)
422 return;
423 GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
424
425 #if GEN_GEN >= 8
426 dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
427 if (!dw)
428 return;
429 GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
430 #endif
431 }
432
433 static const uint32_t vk_to_gen_cullmode[] = {
434 [VK_CULL_MODE_NONE] = CULLMODE_NONE,
435 [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
436 [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
437 [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
438 };
439
440 static const uint32_t vk_to_gen_fillmode[] = {
441 [VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
442 [VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
443 [VK_POLYGON_MODE_POINT] = FILL_MODE_POINT,
444 };
445
446 static const uint32_t vk_to_gen_front_face[] = {
447 [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
448 [VK_FRONT_FACE_CLOCKWISE] = 0
449 };
450
451 static void
452 emit_rs_state(struct anv_pipeline *pipeline,
453 const VkPipelineRasterizationStateCreateInfo *rs_info,
454 const VkPipelineMultisampleStateCreateInfo *ms_info,
455 const struct anv_render_pass *pass,
456 const struct anv_subpass *subpass)
457 {
458 struct GENX(3DSTATE_SF) sf = {
459 GENX(3DSTATE_SF_header),
460 };
461
462 sf.ViewportTransformEnable = true;
463 sf.StatisticsEnable = true;
464 sf.TriangleStripListProvokingVertexSelect = 0;
465 sf.LineStripListProvokingVertexSelect = 0;
466 sf.TriangleFanProvokingVertexSelect = 1;
467
468 const struct brw_vue_prog_data *last_vue_prog_data =
469 anv_pipeline_get_last_vue_prog_data(pipeline);
470
471 if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
472 sf.PointWidthSource = Vertex;
473 } else {
474 sf.PointWidthSource = State;
475 sf.PointWidth = 1.0;
476 }
477
478 #if GEN_GEN >= 8
479 struct GENX(3DSTATE_RASTER) raster = {
480 GENX(3DSTATE_RASTER_header),
481 };
482 #else
483 # define raster sf
484 #endif
485
486 /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
487 * "Multisample Modes State".
488 */
489 #if GEN_GEN >= 8
490 raster.DXMultisampleRasterizationEnable = true;
491 /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
492 * computations. If we ever set this bit to a different value, they will
493 * need to be updated accordingly.
494 */
495 raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
496 raster.ForceMultisampling = false;
497 #else
498 raster.MultisampleRasterizationMode =
499 (ms_info && ms_info->rasterizationSamples > 1) ?
500 MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
501 #endif
502
503 raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
504 raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
505 raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
506 raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
507 raster.ScissorRectangleEnable = true;
508
509 #if GEN_GEN >= 9
510 /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
511 raster.ViewportZFarClipTestEnable = !pipeline->depth_clamp_enable;
512 raster.ViewportZNearClipTestEnable = !pipeline->depth_clamp_enable;
513 #elif GEN_GEN >= 8
514 raster.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
515 #endif
516
517 raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
518 raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
519 raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
520
521 #if GEN_GEN == 7
522 /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
523 * can get the depth offsets correct.
524 */
525 if (subpass->depth_stencil_attachment) {
526 VkFormat vk_format =
527 pass->attachments[subpass->depth_stencil_attachment->attachment].format;
528 assert(vk_format_is_depth_or_stencil(vk_format));
529 if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
530 enum isl_format isl_format =
531 anv_get_isl_format(&pipeline->device->info, vk_format,
532 VK_IMAGE_ASPECT_DEPTH_BIT,
533 VK_IMAGE_TILING_OPTIMAL);
534 sf.DepthBufferSurfaceFormat =
535 isl_format_get_depth_format(isl_format, false);
536 }
537 }
538 #endif
539
540 #if GEN_GEN >= 8
541 GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
542 GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
543 #else
544 # undef raster
545 GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
546 #endif
547 }
548
549 static void
550 emit_ms_state(struct anv_pipeline *pipeline,
551 const VkPipelineMultisampleStateCreateInfo *info)
552 {
553 uint32_t samples = 1;
554 uint32_t log2_samples = 0;
555
556 /* From the Vulkan 1.0 spec:
557 * If pSampleMask is NULL, it is treated as if the mask has all bits
558 * enabled, i.e. no coverage is removed from fragments.
559 *
560 * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
561 */
562 #if GEN_GEN >= 8
563 uint32_t sample_mask = 0xffff;
564 #else
565 uint32_t sample_mask = 0xff;
566 #endif
567
568 if (info) {
569 samples = info->rasterizationSamples;
570 log2_samples = __builtin_ffs(samples) - 1;
571 }
572
573 if (info && info->pSampleMask)
574 sample_mask &= info->pSampleMask[0];
575
576 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
577 ms.NumberofMultisamples = log2_samples;
578
579 ms.PixelLocation = CENTER;
580 #if GEN_GEN >= 8
581 /* The PRM says that this bit is valid only for DX9:
582 *
583 * SW can choose to set this bit only for DX9 API. DX10/OGL API's
584 * should not have any effect by setting or not setting this bit.
585 */
586 ms.PixelPositionOffsetEnable = false;
587 #else
588
589 switch (samples) {
590 case 1:
591 GEN_SAMPLE_POS_1X(ms.Sample);
592 break;
593 case 2:
594 GEN_SAMPLE_POS_2X(ms.Sample);
595 break;
596 case 4:
597 GEN_SAMPLE_POS_4X(ms.Sample);
598 break;
599 case 8:
600 GEN_SAMPLE_POS_8X(ms.Sample);
601 break;
602 default:
603 break;
604 }
605 #endif
606 }
607
608 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
609 sm.SampleMask = sample_mask;
610 }
611 }
612
613 static const uint32_t vk_to_gen_logic_op[] = {
614 [VK_LOGIC_OP_COPY] = LOGICOP_COPY,
615 [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
616 [VK_LOGIC_OP_AND] = LOGICOP_AND,
617 [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
618 [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
619 [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
620 [VK_LOGIC_OP_XOR] = LOGICOP_XOR,
621 [VK_LOGIC_OP_OR] = LOGICOP_OR,
622 [VK_LOGIC_OP_NOR] = LOGICOP_NOR,
623 [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
624 [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
625 [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
626 [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
627 [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
628 [VK_LOGIC_OP_NAND] = LOGICOP_NAND,
629 [VK_LOGIC_OP_SET] = LOGICOP_SET,
630 };
631
632 static const uint32_t vk_to_gen_blend[] = {
633 [VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
634 [VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
635 [VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
636 [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
637 [VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
638 [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
639 [VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
640 [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
641 [VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
642 [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
643 [VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
644 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
645 [VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
646 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
647 [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
648 [VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
649 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
650 [VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
651 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
652 };
653
654 static const uint32_t vk_to_gen_blend_op[] = {
655 [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
656 [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
657 [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
658 [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
659 [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
660 };
661
662 static const uint32_t vk_to_gen_compare_op[] = {
663 [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
664 [VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
665 [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
666 [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL,
667 [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
668 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
669 [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL,
670 [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
671 };
672
673 static const uint32_t vk_to_gen_stencil_op[] = {
674 [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
675 [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
676 [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
677 [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
678 [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
679 [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
680 [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
681 [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
682 };
683
684 /* This function sanitizes the VkStencilOpState by looking at the compare ops
685 * and trying to determine whether or not a given stencil op can ever actually
686 * occur. Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
687 * This function returns true if, after sanitation, any of the stencil ops are
688 * set to something other than VK_STENCIL_OP_KEEP.
689 */
690 static bool
691 sanitize_stencil_face(VkStencilOpState *face,
692 VkCompareOp depthCompareOp)
693 {
694 /* If compareOp is ALWAYS then the stencil test will never fail and failOp
695 * will never happen. Set failOp to KEEP in this case.
696 */
697 if (face->compareOp == VK_COMPARE_OP_ALWAYS)
698 face->failOp = VK_STENCIL_OP_KEEP;
699
700 /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
701 * or stencil tests will fail and passOp will never happen.
702 */
703 if (face->compareOp == VK_COMPARE_OP_NEVER ||
704 depthCompareOp == VK_COMPARE_OP_NEVER)
705 face->passOp = VK_STENCIL_OP_KEEP;
706
707 /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
708 * stencil test will fail or the depth test will pass. In either case,
709 * depthFailOp will never happen.
710 */
711 if (face->compareOp == VK_COMPARE_OP_NEVER ||
712 depthCompareOp == VK_COMPARE_OP_ALWAYS)
713 face->depthFailOp = VK_STENCIL_OP_KEEP;
714
715 return face->failOp != VK_STENCIL_OP_KEEP ||
716 face->depthFailOp != VK_STENCIL_OP_KEEP ||
717 face->passOp != VK_STENCIL_OP_KEEP;
718 }
719
720 /* Intel hardware is fairly sensitive to whether or not depth/stencil writes
721 * are enabled. In the presence of discards, it's fairly easy to get into the
722 * non-promoted case which means a fairly big performance hit. From the Iron
723 * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
724 *
725 * "Non-promoted depth (N) is active whenever the depth test can be done
726 * early but it cannot determine whether or not to write source depth to
727 * the depth buffer, therefore the depth write must be performed post pixel
728 * shader. This includes cases where the pixel shader can kill pixels,
729 * including via sampler chroma key, as well as cases where the alpha test
730 * function is enabled, which kills pixels based on a programmable alpha
731 * test. In this case, even if the depth test fails, the pixel cannot be
732 * killed if a stencil write is indicated. Whether or not the stencil write
733 * happens depends on whether or not the pixel is killed later. In these
734 * cases if stencil test fails and stencil writes are off, the pixels can
735 * also be killed early. If stencil writes are enabled, the pixels must be
736 * treated as Computed depth (described above)."
737 *
738 * The same thing as mentioned in the stencil case can happen in the depth
739 * case as well if it thinks it writes depth but, thanks to the depth test
740 * being GL_EQUAL, the write doesn't actually matter. A little extra work
741 * up-front to try and disable depth and stencil writes can make a big
742 * difference.
743 *
744 * Unfortunately, the way depth and stencil testing is specified, there are
745 * many case where, regardless of depth/stencil writes being enabled, nothing
746 * actually gets written due to some other bit of state being set. This
747 * function attempts to "sanitize" the depth stencil state and disable writes
748 * and sometimes even testing whenever possible.
749 */
750 static void
751 sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
752 bool *stencilWriteEnable,
753 VkImageAspectFlags ds_aspects)
754 {
755 *stencilWriteEnable = state->stencilTestEnable;
756
757 /* If the depth test is disabled, we won't be writing anything. Make sure we
758 * treat the test as always passing later on as well.
759 *
760 * Also, the Vulkan spec requires that if either depth or stencil is not
761 * present, the pipeline is to act as if the test silently passes. In that
762 * case we won't write either.
763 */
764 if (!state->depthTestEnable || !(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
765 state->depthWriteEnable = false;
766 state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
767 }
768
769 if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
770 *stencilWriteEnable = false;
771 state->front.compareOp = VK_COMPARE_OP_ALWAYS;
772 state->back.compareOp = VK_COMPARE_OP_ALWAYS;
773 }
774
775 /* If the stencil test is enabled and always fails, then we will never get
776 * to the depth test so we can just disable the depth test entirely.
777 */
778 if (state->stencilTestEnable &&
779 state->front.compareOp == VK_COMPARE_OP_NEVER &&
780 state->back.compareOp == VK_COMPARE_OP_NEVER) {
781 state->depthTestEnable = false;
782 state->depthWriteEnable = false;
783 }
784
785 /* If depthCompareOp is EQUAL then the value we would be writing to the
786 * depth buffer is the same as the value that's already there so there's no
787 * point in writing it.
788 */
789 if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
790 state->depthWriteEnable = false;
791
792 /* If the stencil ops are such that we don't actually ever modify the
793 * stencil buffer, we should disable writes.
794 */
795 if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
796 !sanitize_stencil_face(&state->back, state->depthCompareOp))
797 *stencilWriteEnable = false;
798
799 /* If the depth test always passes and we never write out depth, that's the
800 * same as if the depth test is disabled entirely.
801 */
802 if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
803 !state->depthWriteEnable)
804 state->depthTestEnable = false;
805
806 /* If the stencil test always passes and we never write out stencil, that's
807 * the same as if the stencil test is disabled entirely.
808 */
809 if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
810 state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
811 !*stencilWriteEnable)
812 state->stencilTestEnable = false;
813 }
814
815 static void
816 emit_ds_state(struct anv_pipeline *pipeline,
817 const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
818 const struct anv_render_pass *pass,
819 const struct anv_subpass *subpass)
820 {
821 #if GEN_GEN == 7
822 # define depth_stencil_dw pipeline->gen7.depth_stencil_state
823 #elif GEN_GEN == 8
824 # define depth_stencil_dw pipeline->gen8.wm_depth_stencil
825 #else
826 # define depth_stencil_dw pipeline->gen9.wm_depth_stencil
827 #endif
828
829 if (pCreateInfo == NULL) {
830 /* We're going to OR this together with the dynamic state. We need
831 * to make sure it's initialized to something useful.
832 */
833 pipeline->writes_stencil = false;
834 pipeline->stencil_test_enable = false;
835 pipeline->writes_depth = false;
836 pipeline->depth_test_enable = false;
837 memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
838 return;
839 }
840
841 VkImageAspectFlags ds_aspects = 0;
842 if (subpass->depth_stencil_attachment) {
843 VkFormat depth_stencil_format =
844 pass->attachments[subpass->depth_stencil_attachment->attachment].format;
845 ds_aspects = vk_format_aspects(depth_stencil_format);
846 }
847
848 VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
849 sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
850 pipeline->stencil_test_enable = info.stencilTestEnable;
851 pipeline->writes_depth = info.depthWriteEnable;
852 pipeline->depth_test_enable = info.depthTestEnable;
853
854 /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
855
856 #if GEN_GEN <= 7
857 struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
858 #else
859 struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
860 #endif
861 .DepthTestEnable = info.depthTestEnable,
862 .DepthBufferWriteEnable = info.depthWriteEnable,
863 .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
864 .DoubleSidedStencilEnable = true,
865
866 .StencilTestEnable = info.stencilTestEnable,
867 .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
868 .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
869 .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
870 .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
871 .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
872 .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
873 .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
874 .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
875 };
876
877 #if GEN_GEN <= 7
878 GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
879 #else
880 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
881 #endif
882 }
883
884 MAYBE_UNUSED static bool
885 is_dual_src_blend_factor(VkBlendFactor factor)
886 {
887 return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
888 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
889 factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
890 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
891 }
892
893 static void
894 emit_cb_state(struct anv_pipeline *pipeline,
895 const VkPipelineColorBlendStateCreateInfo *info,
896 const VkPipelineMultisampleStateCreateInfo *ms_info)
897 {
898 struct anv_device *device = pipeline->device;
899 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
900
901 struct GENX(BLEND_STATE) blend_state = {
902 #if GEN_GEN >= 8
903 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
904 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
905 #endif
906 };
907
908 uint32_t surface_count = 0;
909 struct anv_pipeline_bind_map *map;
910 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
911 map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
912 surface_count = map->surface_count;
913 }
914
915 const uint32_t num_dwords = GENX(BLEND_STATE_length) +
916 GENX(BLEND_STATE_ENTRY_length) * surface_count;
917 pipeline->blend_state =
918 anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
919
920 bool has_writeable_rt = false;
921 uint32_t *state_pos = pipeline->blend_state.map;
922 state_pos += GENX(BLEND_STATE_length);
923 #if GEN_GEN >= 8
924 struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
925 #endif
926 for (unsigned i = 0; i < surface_count; i++) {
927 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
928
929 /* All color attachments are at the beginning of the binding table */
930 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
931 break;
932
933 /* We can have at most 8 attachments */
934 assert(i < 8);
935
936 if (info == NULL || binding->index >= info->attachmentCount) {
937 /* Default everything to disabled */
938 struct GENX(BLEND_STATE_ENTRY) entry = {
939 .WriteDisableAlpha = true,
940 .WriteDisableRed = true,
941 .WriteDisableGreen = true,
942 .WriteDisableBlue = true,
943 };
944 GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
945 state_pos += GENX(BLEND_STATE_ENTRY_length);
946 continue;
947 }
948
949 assert(binding->binding == 0);
950 const VkPipelineColorBlendAttachmentState *a =
951 &info->pAttachments[binding->index];
952
953 struct GENX(BLEND_STATE_ENTRY) entry = {
954 #if GEN_GEN < 8
955 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
956 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
957 #endif
958 .LogicOpEnable = info->logicOpEnable,
959 .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
960 .ColorBufferBlendEnable = a->blendEnable,
961 .ColorClampRange = COLORCLAMP_RTFORMAT,
962 .PreBlendColorClampEnable = true,
963 .PostBlendColorClampEnable = true,
964 .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
965 .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
966 .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
967 .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
968 .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
969 .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
970 .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
971 .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
972 .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
973 .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
974 };
975
976 if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
977 a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
978 a->colorBlendOp != a->alphaBlendOp) {
979 #if GEN_GEN >= 8
980 blend_state.IndependentAlphaBlendEnable = true;
981 #else
982 entry.IndependentAlphaBlendEnable = true;
983 #endif
984 }
985
986 /* The Dual Source Blending documentation says:
987 *
988 * "If SRC1 is included in a src/dst blend factor and
989 * a DualSource RT Write message is not used, results
990 * are UNDEFINED. (This reflects the same restriction in DX APIs,
991 * where undefined results are produced if “o1” is not written
992 * by a PS – there are no default values defined)."
993 *
994 * There is no way to gracefully fix this undefined situation
995 * so we just disable the blending to prevent possible issues.
996 */
997 if (!wm_prog_data->dual_src_blend &&
998 (is_dual_src_blend_factor(a->srcColorBlendFactor) ||
999 is_dual_src_blend_factor(a->dstColorBlendFactor) ||
1000 is_dual_src_blend_factor(a->srcAlphaBlendFactor) ||
1001 is_dual_src_blend_factor(a->dstAlphaBlendFactor))) {
1002 vk_debug_report(&device->instance->debug_report_callbacks,
1003 VK_DEBUG_REPORT_WARNING_BIT_EXT,
1004 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
1005 (uint64_t)(uintptr_t)device,
1006 0, 0, "anv",
1007 "Enabled dual-src blend factors without writing both targets "
1008 "in the shader. Disabling blending to avoid GPU hangs.");
1009 entry.ColorBufferBlendEnable = false;
1010 }
1011
1012 if (a->colorWriteMask != 0)
1013 has_writeable_rt = true;
1014
1015 /* Our hardware applies the blend factor prior to the blend function
1016 * regardless of what function is used. Technically, this means the
1017 * hardware can do MORE than GL or Vulkan specify. However, it also
1018 * means that, for MIN and MAX, we have to stomp the blend factor to
1019 * ONE to make it a no-op.
1020 */
1021 if (a->colorBlendOp == VK_BLEND_OP_MIN ||
1022 a->colorBlendOp == VK_BLEND_OP_MAX) {
1023 entry.SourceBlendFactor = BLENDFACTOR_ONE;
1024 entry.DestinationBlendFactor = BLENDFACTOR_ONE;
1025 }
1026 if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
1027 a->alphaBlendOp == VK_BLEND_OP_MAX) {
1028 entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
1029 entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
1030 }
1031 GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1032 state_pos += GENX(BLEND_STATE_ENTRY_length);
1033 #if GEN_GEN >= 8
1034 if (i == 0)
1035 bs0 = entry;
1036 #endif
1037 }
1038
1039 #if GEN_GEN >= 8
1040 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
1041 blend.AlphaToCoverageEnable = blend_state.AlphaToCoverageEnable;
1042 blend.HasWriteableRT = has_writeable_rt;
1043 blend.ColorBufferBlendEnable = bs0.ColorBufferBlendEnable;
1044 blend.SourceAlphaBlendFactor = bs0.SourceAlphaBlendFactor;
1045 blend.DestinationAlphaBlendFactor = bs0.DestinationAlphaBlendFactor;
1046 blend.SourceBlendFactor = bs0.SourceBlendFactor;
1047 blend.DestinationBlendFactor = bs0.DestinationBlendFactor;
1048 blend.AlphaTestEnable = false;
1049 blend.IndependentAlphaBlendEnable =
1050 blend_state.IndependentAlphaBlendEnable;
1051 }
1052 #else
1053 (void)has_writeable_rt;
1054 #endif
1055
1056 GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
1057
1058 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
1059 bsp.BlendStatePointer = pipeline->blend_state.offset;
1060 #if GEN_GEN >= 8
1061 bsp.BlendStatePointerValid = true;
1062 #endif
1063 }
1064 }
1065
1066 static void
1067 emit_3dstate_clip(struct anv_pipeline *pipeline,
1068 const VkPipelineViewportStateCreateInfo *vp_info,
1069 const VkPipelineRasterizationStateCreateInfo *rs_info)
1070 {
1071 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1072 (void) wm_prog_data;
1073 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
1074 clip.ClipEnable = true;
1075 clip.StatisticsEnable = true;
1076 clip.EarlyCullEnable = true;
1077 clip.APIMode = APIMODE_D3D,
1078 clip.ViewportXYClipTestEnable = true;
1079
1080 clip.ClipMode = CLIPMODE_NORMAL;
1081
1082 clip.TriangleStripListProvokingVertexSelect = 0;
1083 clip.LineStripListProvokingVertexSelect = 0;
1084 clip.TriangleFanProvokingVertexSelect = 1;
1085
1086 clip.MinimumPointWidth = 0.125;
1087 clip.MaximumPointWidth = 255.875;
1088
1089 const struct brw_vue_prog_data *last =
1090 anv_pipeline_get_last_vue_prog_data(pipeline);
1091
1092 /* From the Vulkan 1.0.45 spec:
1093 *
1094 * "If the last active vertex processing stage shader entry point's
1095 * interface does not include a variable decorated with
1096 * ViewportIndex, then the first viewport is used."
1097 */
1098 if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
1099 clip.MaximumVPIndex = vp_info->viewportCount - 1;
1100 } else {
1101 clip.MaximumVPIndex = 0;
1102 }
1103
1104 /* From the Vulkan 1.0.45 spec:
1105 *
1106 * "If the last active vertex processing stage shader entry point's
1107 * interface does not include a variable decorated with Layer, then
1108 * the first layer is used."
1109 */
1110 clip.ForceZeroRTAIndexEnable =
1111 !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
1112
1113 #if GEN_GEN == 7
1114 clip.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
1115 clip.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
1116 clip.ViewportZClipTestEnable = !pipeline->depth_clamp_enable;
1117 clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1118 clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1119 #else
1120 clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1121 (wm_prog_data->barycentric_interp_modes &
1122 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0 : 0;
1123 #endif
1124 }
1125 }
1126
1127 static void
1128 emit_3dstate_streamout(struct anv_pipeline *pipeline,
1129 const VkPipelineRasterizationStateCreateInfo *rs_info)
1130 {
1131 #if GEN_GEN >= 8
1132 const struct brw_vue_prog_data *prog_data =
1133 anv_pipeline_get_last_vue_prog_data(pipeline);
1134 const struct brw_vue_map *vue_map = &prog_data->vue_map;
1135 #endif
1136
1137 nir_xfb_info *xfb_info;
1138 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1139 xfb_info = pipeline->shaders[MESA_SHADER_GEOMETRY]->xfb_info;
1140 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1141 xfb_info = pipeline->shaders[MESA_SHADER_TESS_EVAL]->xfb_info;
1142 else
1143 xfb_info = pipeline->shaders[MESA_SHADER_VERTEX]->xfb_info;
1144
1145 pipeline->xfb_used = xfb_info ? xfb_info->buffers_written : 0;
1146
1147 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
1148 so.RenderingDisable = rs_info->rasterizerDiscardEnable;
1149
1150 #if GEN_GEN >= 8
1151 if (xfb_info) {
1152 so.SOFunctionEnable = true;
1153 so.SOStatisticsEnable = true;
1154
1155 const VkPipelineRasterizationStateStreamCreateInfoEXT *stream_info =
1156 vk_find_struct_const(rs_info, PIPELINE_RASTERIZATION_STATE_STREAM_CREATE_INFO_EXT);
1157 so.RenderStreamSelect = stream_info ?
1158 stream_info->rasterizationStream : 0;
1159
1160 so.Buffer0SurfacePitch = xfb_info->strides[0];
1161 so.Buffer1SurfacePitch = xfb_info->strides[1];
1162 so.Buffer2SurfacePitch = xfb_info->strides[2];
1163 so.Buffer3SurfacePitch = xfb_info->strides[3];
1164
1165 int urb_entry_read_offset = 0;
1166 int urb_entry_read_length =
1167 (prog_data->vue_map.num_slots + 1) / 2 - urb_entry_read_offset;
1168
1169 /* We always read the whole vertex. This could be reduced at some
1170 * point by reading less and offsetting the register index in the
1171 * SO_DECLs.
1172 */
1173 so.Stream0VertexReadOffset = urb_entry_read_offset;
1174 so.Stream0VertexReadLength = urb_entry_read_length - 1;
1175 so.Stream1VertexReadOffset = urb_entry_read_offset;
1176 so.Stream1VertexReadLength = urb_entry_read_length - 1;
1177 so.Stream2VertexReadOffset = urb_entry_read_offset;
1178 so.Stream2VertexReadLength = urb_entry_read_length - 1;
1179 so.Stream3VertexReadOffset = urb_entry_read_offset;
1180 so.Stream3VertexReadLength = urb_entry_read_length - 1;
1181 }
1182 #endif /* GEN_GEN >= 8 */
1183 }
1184
1185 #if GEN_GEN >= 8
1186 if (xfb_info) {
1187 struct GENX(SO_DECL) so_decl[MAX_XFB_STREAMS][128];
1188 int next_offset[MAX_XFB_BUFFERS] = {0, 0, 0, 0};
1189 int decls[MAX_XFB_STREAMS] = {0, 0, 0, 0};
1190
1191 memset(so_decl, 0, sizeof(so_decl));
1192
1193 for (unsigned i = 0; i < xfb_info->output_count; i++) {
1194 const nir_xfb_output_info *output = &xfb_info->outputs[i];
1195 unsigned buffer = output->buffer;
1196 unsigned stream = xfb_info->buffer_to_stream[buffer];
1197
1198 /* Our hardware is unusual in that it requires us to program SO_DECLs
1199 * for fake "hole" components, rather than simply taking the offset
1200 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
1201 * program as many size = 4 holes as we can, then a final hole to
1202 * accommodate the final 1, 2, or 3 remaining.
1203 */
1204 int hole_dwords = (output->offset - next_offset[buffer]) / 4;
1205 while (hole_dwords > 0) {
1206 so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1207 .HoleFlag = 1,
1208 .OutputBufferSlot = buffer,
1209 .ComponentMask = (1 << MIN2(hole_dwords, 4)) - 1,
1210 };
1211 hole_dwords -= 4;
1212 }
1213
1214 int varying = output->location;
1215 uint8_t component_mask = output->component_mask;
1216 /* VARYING_SLOT_PSIZ contains three scalar fields packed together:
1217 * - VARYING_SLOT_LAYER in VARYING_SLOT_PSIZ.y
1218 * - VARYING_SLOT_VIEWPORT in VARYING_SLOT_PSIZ.z
1219 * - VARYING_SLOT_PSIZ in VARYING_SLOT_PSIZ.w
1220 */
1221 if (varying == VARYING_SLOT_LAYER) {
1222 varying = VARYING_SLOT_PSIZ;
1223 component_mask = 1 << 1; // SO_DECL_COMPMASK_Y
1224 } else if (varying == VARYING_SLOT_VIEWPORT) {
1225 varying = VARYING_SLOT_PSIZ;
1226 component_mask = 1 << 2; // SO_DECL_COMPMASK_Z
1227 } else if (varying == VARYING_SLOT_PSIZ) {
1228 component_mask = 1 << 3; // SO_DECL_COMPMASK_W
1229 }
1230
1231 next_offset[buffer] = output->offset +
1232 __builtin_popcount(component_mask) * 4;
1233
1234 so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1235 .OutputBufferSlot = buffer,
1236 .RegisterIndex = vue_map->varying_to_slot[varying],
1237 .ComponentMask = component_mask,
1238 };
1239 }
1240
1241 int max_decls = 0;
1242 for (unsigned s = 0; s < MAX_XFB_STREAMS; s++)
1243 max_decls = MAX2(max_decls, decls[s]);
1244
1245 uint8_t sbs[MAX_XFB_STREAMS] = { };
1246 for (unsigned b = 0; b < MAX_XFB_BUFFERS; b++) {
1247 if (xfb_info->buffers_written & (1 << b))
1248 sbs[xfb_info->buffer_to_stream[b]] |= 1 << b;
1249 }
1250
1251 uint32_t *dw = anv_batch_emitn(&pipeline->batch, 3 + 2 * max_decls,
1252 GENX(3DSTATE_SO_DECL_LIST),
1253 .StreamtoBufferSelects0 = sbs[0],
1254 .StreamtoBufferSelects1 = sbs[1],
1255 .StreamtoBufferSelects2 = sbs[2],
1256 .StreamtoBufferSelects3 = sbs[3],
1257 .NumEntries0 = decls[0],
1258 .NumEntries1 = decls[1],
1259 .NumEntries2 = decls[2],
1260 .NumEntries3 = decls[3]);
1261
1262 for (int i = 0; i < max_decls; i++) {
1263 GENX(SO_DECL_ENTRY_pack)(NULL, dw + 3 + i * 2,
1264 &(struct GENX(SO_DECL_ENTRY)) {
1265 .Stream0Decl = so_decl[0][i],
1266 .Stream1Decl = so_decl[1][i],
1267 .Stream2Decl = so_decl[2][i],
1268 .Stream3Decl = so_decl[3][i],
1269 });
1270 }
1271 }
1272 #endif /* GEN_GEN >= 8 */
1273 }
1274
1275 static uint32_t
1276 get_sampler_count(const struct anv_shader_bin *bin)
1277 {
1278 uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1279
1280 /* We can potentially have way more than 32 samplers and that's ok.
1281 * However, the 3DSTATE_XS packets only have 3 bits to specify how
1282 * many to pre-fetch and all values above 4 are marked reserved.
1283 */
1284 return MIN2(count_by_4, 4);
1285 }
1286
1287 static uint32_t
1288 get_binding_table_entry_count(const struct anv_shader_bin *bin)
1289 {
1290 return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
1291 }
1292
1293 static struct anv_address
1294 get_scratch_address(struct anv_pipeline *pipeline,
1295 gl_shader_stage stage,
1296 const struct anv_shader_bin *bin)
1297 {
1298 return (struct anv_address) {
1299 .bo = anv_scratch_pool_alloc(pipeline->device,
1300 &pipeline->device->scratch_pool,
1301 stage, bin->prog_data->total_scratch),
1302 .offset = 0,
1303 };
1304 }
1305
1306 static uint32_t
1307 get_scratch_space(const struct anv_shader_bin *bin)
1308 {
1309 return ffs(bin->prog_data->total_scratch / 2048);
1310 }
1311
1312 static void
1313 emit_3dstate_vs(struct anv_pipeline *pipeline)
1314 {
1315 const struct gen_device_info *devinfo = &pipeline->device->info;
1316 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1317 const struct anv_shader_bin *vs_bin =
1318 pipeline->shaders[MESA_SHADER_VERTEX];
1319
1320 assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1321
1322 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
1323 vs.Enable = true;
1324 vs.StatisticsEnable = true;
1325 vs.KernelStartPointer = vs_bin->kernel.offset;
1326 #if GEN_GEN >= 8
1327 vs.SIMD8DispatchEnable =
1328 vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1329 #endif
1330
1331 assert(!vs_prog_data->base.base.use_alt_mode);
1332 #if GEN_GEN < 11
1333 vs.SingleVertexDispatch = false;
1334 #endif
1335 vs.VectorMaskEnable = false;
1336 /* WA_1606682166:
1337 * Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
1338 * Disable the Sampler state prefetch functionality in the SARB by
1339 * programming 0xB000[30] to '1'.
1340 */
1341 vs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(vs_bin);
1342 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable suggests to
1343 * disable prefetching of binding tables on A0 and B0 steppings.
1344 * TODO: Revisit this WA on newer steppings.
1345 */
1346 vs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(vs_bin);
1347 vs.FloatingPointMode = IEEE754;
1348 vs.IllegalOpcodeExceptionEnable = false;
1349 vs.SoftwareExceptionEnable = false;
1350 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1351
1352 if (GEN_GEN == 9 && devinfo->gt == 4 &&
1353 anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1354 /* On Sky Lake GT4, we have experienced some hangs related to the VS
1355 * cache and tessellation. It is unknown exactly what is happening
1356 * but the Haswell docs for the "VS Reference Count Full Force Miss
1357 * Enable" field of the "Thread Mode" register refer to a HSW bug in
1358 * which the VUE handle reference count would overflow resulting in
1359 * internal reference counting bugs. My (Jason's) best guess is that
1360 * this bug cropped back up on SKL GT4 when we suddenly had more
1361 * threads in play than any previous gen9 hardware.
1362 *
1363 * What we do know for sure is that setting this bit when
1364 * tessellation shaders are in use fixes a GPU hang in Batman: Arkham
1365 * City when playing with DXVK (https://bugs.freedesktop.org/107280).
1366 * Disabling the vertex cache with tessellation shaders should only
1367 * have a minor performance impact as the tessellation shaders are
1368 * likely generating and processing far more geometry than the vertex
1369 * stage.
1370 */
1371 vs.VertexCacheDisable = true;
1372 }
1373
1374 vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length;
1375 vs.VertexURBEntryReadOffset = 0;
1376 vs.DispatchGRFStartRegisterForURBData =
1377 vs_prog_data->base.base.dispatch_grf_start_reg;
1378
1379 #if GEN_GEN >= 8
1380 vs.UserClipDistanceClipTestEnableBitmask =
1381 vs_prog_data->base.clip_distance_mask;
1382 vs.UserClipDistanceCullTestEnableBitmask =
1383 vs_prog_data->base.cull_distance_mask;
1384 #endif
1385
1386 vs.PerThreadScratchSpace = get_scratch_space(vs_bin);
1387 vs.ScratchSpaceBasePointer =
1388 get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
1389 }
1390 }
1391
1392 static void
1393 emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline,
1394 const VkPipelineTessellationStateCreateInfo *tess_info)
1395 {
1396 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1397 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
1398 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
1399 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
1400 return;
1401 }
1402
1403 const struct gen_device_info *devinfo = &pipeline->device->info;
1404 const struct anv_shader_bin *tcs_bin =
1405 pipeline->shaders[MESA_SHADER_TESS_CTRL];
1406 const struct anv_shader_bin *tes_bin =
1407 pipeline->shaders[MESA_SHADER_TESS_EVAL];
1408
1409 const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1410 const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1411
1412 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
1413 hs.Enable = true;
1414 hs.StatisticsEnable = true;
1415 hs.KernelStartPointer = tcs_bin->kernel.offset;
1416 /* WA_1606682166 */
1417 hs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(tcs_bin);
1418 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1419 hs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tcs_bin);
1420 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1421 hs.IncludeVertexHandles = true;
1422 hs.InstanceCount = tcs_prog_data->instances - 1;
1423
1424 hs.VertexURBEntryReadLength = 0;
1425 hs.VertexURBEntryReadOffset = 0;
1426 hs.DispatchGRFStartRegisterForURBData =
1427 tcs_prog_data->base.base.dispatch_grf_start_reg;
1428
1429 hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1430 hs.ScratchSpaceBasePointer =
1431 get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
1432 }
1433
1434 const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
1435 tess_info ? vk_find_struct_const(tess_info, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO) : NULL;
1436
1437 VkTessellationDomainOrigin uv_origin =
1438 domain_origin_state ? domain_origin_state->domainOrigin :
1439 VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
1440
1441 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
1442 te.Partitioning = tes_prog_data->partitioning;
1443
1444 if (uv_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT) {
1445 te.OutputTopology = tes_prog_data->output_topology;
1446 } else {
1447 /* When the origin is upper-left, we have to flip the winding order */
1448 if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
1449 te.OutputTopology = OUTPUT_TRI_CW;
1450 } else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
1451 te.OutputTopology = OUTPUT_TRI_CCW;
1452 } else {
1453 te.OutputTopology = tes_prog_data->output_topology;
1454 }
1455 }
1456
1457 te.TEDomain = tes_prog_data->domain;
1458 te.TEEnable = true;
1459 te.MaximumTessellationFactorOdd = 63.0;
1460 te.MaximumTessellationFactorNotOdd = 64.0;
1461 }
1462
1463 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
1464 ds.Enable = true;
1465 ds.StatisticsEnable = true;
1466 ds.KernelStartPointer = tes_bin->kernel.offset;
1467 /* WA_1606682166 */
1468 ds.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(tes_bin);
1469 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1470 ds.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tes_bin);
1471 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1472
1473 ds.ComputeWCoordinateEnable =
1474 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1475
1476 ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1477 ds.PatchURBEntryReadOffset = 0;
1478 ds.DispatchGRFStartRegisterForURBData =
1479 tes_prog_data->base.base.dispatch_grf_start_reg;
1480
1481 #if GEN_GEN >= 8
1482 #if GEN_GEN < 11
1483 ds.DispatchMode =
1484 tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1485 DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1486 DISPATCH_MODE_SIMD4X2;
1487 #else
1488 assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
1489 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1490 #endif
1491
1492 ds.UserClipDistanceClipTestEnableBitmask =
1493 tes_prog_data->base.clip_distance_mask;
1494 ds.UserClipDistanceCullTestEnableBitmask =
1495 tes_prog_data->base.cull_distance_mask;
1496 #endif
1497
1498 ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1499 ds.ScratchSpaceBasePointer =
1500 get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
1501 }
1502 }
1503
1504 static void
1505 emit_3dstate_gs(struct anv_pipeline *pipeline)
1506 {
1507 const struct gen_device_info *devinfo = &pipeline->device->info;
1508 const struct anv_shader_bin *gs_bin =
1509 pipeline->shaders[MESA_SHADER_GEOMETRY];
1510
1511 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1512 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
1513 return;
1514 }
1515
1516 const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1517
1518 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
1519 gs.Enable = true;
1520 gs.StatisticsEnable = true;
1521 gs.KernelStartPointer = gs_bin->kernel.offset;
1522 gs.DispatchMode = gs_prog_data->base.dispatch_mode;
1523
1524 gs.SingleProgramFlow = false;
1525 gs.VectorMaskEnable = false;
1526 /* WA_1606682166 */
1527 gs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(gs_bin);
1528 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1529 gs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(gs_bin);
1530 gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles;
1531 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
1532
1533 if (GEN_GEN == 8) {
1534 /* Broadwell is weird. It needs us to divide by 2. */
1535 gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1536 } else {
1537 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1538 }
1539
1540 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1541 gs.OutputTopology = gs_prog_data->output_topology;
1542 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1543 gs.ControlDataFormat = gs_prog_data->control_data_format;
1544 gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords;
1545 gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1;
1546 gs.ReorderMode = TRAILING;
1547
1548 #if GEN_GEN >= 8
1549 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
1550 gs.StaticOutput = gs_prog_data->static_vertex_count >= 0;
1551 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1552 gs_prog_data->static_vertex_count : 0;
1553 #endif
1554
1555 gs.VertexURBEntryReadOffset = 0;
1556 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1557 gs.DispatchGRFStartRegisterForURBData =
1558 gs_prog_data->base.base.dispatch_grf_start_reg;
1559
1560 #if GEN_GEN >= 8
1561 gs.UserClipDistanceClipTestEnableBitmask =
1562 gs_prog_data->base.clip_distance_mask;
1563 gs.UserClipDistanceCullTestEnableBitmask =
1564 gs_prog_data->base.cull_distance_mask;
1565 #endif
1566
1567 gs.PerThreadScratchSpace = get_scratch_space(gs_bin);
1568 gs.ScratchSpaceBasePointer =
1569 get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
1570 }
1571 }
1572
1573 static bool
1574 has_color_buffer_write_enabled(const struct anv_pipeline *pipeline,
1575 const VkPipelineColorBlendStateCreateInfo *blend)
1576 {
1577 const struct anv_shader_bin *shader_bin =
1578 pipeline->shaders[MESA_SHADER_FRAGMENT];
1579 if (!shader_bin)
1580 return false;
1581
1582 const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1583 for (int i = 0; i < bind_map->surface_count; i++) {
1584 struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[i];
1585
1586 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1587 continue;
1588
1589 if (binding->index == UINT32_MAX)
1590 continue;
1591
1592 if (blend && blend->pAttachments[binding->index].colorWriteMask != 0)
1593 return true;
1594 }
1595
1596 return false;
1597 }
1598
1599 static void
1600 emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
1601 const VkPipelineColorBlendStateCreateInfo *blend,
1602 const VkPipelineMultisampleStateCreateInfo *multisample)
1603 {
1604 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1605
1606 MAYBE_UNUSED uint32_t samples =
1607 multisample ? multisample->rasterizationSamples : 1;
1608
1609 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
1610 wm.StatisticsEnable = true;
1611 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1612 wm.LineAntialiasingRegionWidth = _10pixels;
1613 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1614
1615 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1616 if (wm_prog_data->early_fragment_tests) {
1617 wm.EarlyDepthStencilControl = EDSC_PREPS;
1618 } else if (wm_prog_data->has_side_effects) {
1619 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1620 } else {
1621 wm.EarlyDepthStencilControl = EDSC_NORMAL;
1622 }
1623
1624 #if GEN_GEN >= 8
1625 /* Gen8 hardware tries to compute ThreadDispatchEnable for us but
1626 * doesn't take into account KillPixels when no depth or stencil
1627 * writes are enabled. In order for occlusion queries to work
1628 * correctly with no attachments, we need to force-enable PS thread
1629 * dispatch.
1630 *
1631 * The BDW docs are pretty clear that that this bit isn't validated
1632 * and probably shouldn't be used in production:
1633 *
1634 * "This must always be set to Normal. This field should not be
1635 * tested for functional validation."
1636 *
1637 * Unfortunately, however, the other mechanism we have for doing this
1638 * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
1639 * Given two bad options, we choose the one which works.
1640 */
1641 if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1642 !has_color_buffer_write_enabled(pipeline, blend))
1643 wm.ForceThreadDispatchEnable = ForceON;
1644 #endif
1645
1646 wm.BarycentricInterpolationMode =
1647 wm_prog_data->barycentric_interp_modes;
1648
1649 #if GEN_GEN < 8
1650 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1651 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1652 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1653 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1654
1655 /* If the subpass has a depth or stencil self-dependency, then we
1656 * need to force the hardware to do the depth/stencil write *after*
1657 * fragment shader execution. Otherwise, the writes may hit memory
1658 * before we get around to fetching from the input attachment and we
1659 * may get the depth or stencil value from the current draw rather
1660 * than the previous one.
1661 */
1662 wm.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1663 wm_prog_data->uses_kill;
1664
1665 if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1666 wm_prog_data->has_side_effects ||
1667 wm.PixelShaderKillsPixel ||
1668 has_color_buffer_write_enabled(pipeline, blend))
1669 wm.ThreadDispatchEnable = true;
1670
1671 if (samples > 1) {
1672 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1673 if (wm_prog_data->persample_dispatch) {
1674 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1675 } else {
1676 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1677 }
1678 } else {
1679 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1680 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1681 }
1682 #endif
1683 }
1684 }
1685 }
1686
1687 static void
1688 emit_3dstate_ps(struct anv_pipeline *pipeline,
1689 const VkPipelineColorBlendStateCreateInfo *blend,
1690 const VkPipelineMultisampleStateCreateInfo *multisample)
1691 {
1692 MAYBE_UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
1693 const struct anv_shader_bin *fs_bin =
1694 pipeline->shaders[MESA_SHADER_FRAGMENT];
1695
1696 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1697 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1698 #if GEN_GEN == 7
1699 /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1700 * we don't at least set the maximum number of threads.
1701 */
1702 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1703 #endif
1704 }
1705 return;
1706 }
1707
1708 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1709
1710 #if GEN_GEN < 8
1711 /* The hardware wedges if you have this bit set but don't turn on any dual
1712 * source blend factors.
1713 */
1714 bool dual_src_blend = false;
1715 if (wm_prog_data->dual_src_blend && blend) {
1716 for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1717 const VkPipelineColorBlendAttachmentState *bstate =
1718 &blend->pAttachments[i];
1719
1720 if (bstate->blendEnable &&
1721 (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1722 is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1723 is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1724 is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1725 dual_src_blend = true;
1726 break;
1727 }
1728 }
1729 }
1730 #endif
1731
1732 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1733 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1734 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1735 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
1736
1737 /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
1738 *
1739 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
1740 * Dispatch must not be enabled for PER_PIXEL dispatch mode."
1741 *
1742 * Since 16x MSAA is first introduced on SKL, we don't need to apply
1743 * the workaround on any older hardware.
1744 */
1745 if (GEN_GEN >= 9 && !wm_prog_data->persample_dispatch &&
1746 multisample && multisample->rasterizationSamples == 16) {
1747 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
1748 ps._32PixelDispatchEnable = false;
1749 }
1750
1751 ps.KernelStartPointer0 = fs_bin->kernel.offset +
1752 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
1753 ps.KernelStartPointer1 = fs_bin->kernel.offset +
1754 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
1755 ps.KernelStartPointer2 = fs_bin->kernel.offset +
1756 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
1757
1758 ps.SingleProgramFlow = false;
1759 ps.VectorMaskEnable = true;
1760 /* WA_1606682166 */
1761 ps.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(fs_bin);
1762 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1763 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(fs_bin);
1764 ps.PushConstantEnable = wm_prog_data->base.nr_params > 0 ||
1765 wm_prog_data->base.ubo_ranges[0].length;
1766 ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
1767 POSOFFSET_SAMPLE: POSOFFSET_NONE;
1768 #if GEN_GEN < 8
1769 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
1770 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1771 ps.DualSourceBlendEnable = dual_src_blend;
1772 #endif
1773
1774 #if GEN_IS_HASWELL
1775 /* Haswell requires the sample mask to be set in this packet as well
1776 * as in 3DSTATE_SAMPLE_MASK; the values should match.
1777 */
1778 ps.SampleMask = 0xff;
1779 #endif
1780
1781 #if GEN_GEN >= 9
1782 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
1783 #elif GEN_GEN >= 8
1784 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
1785 #else
1786 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1787 #endif
1788
1789 ps.DispatchGRFStartRegisterForConstantSetupData0 =
1790 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
1791 ps.DispatchGRFStartRegisterForConstantSetupData1 =
1792 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
1793 ps.DispatchGRFStartRegisterForConstantSetupData2 =
1794 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
1795
1796 ps.PerThreadScratchSpace = get_scratch_space(fs_bin);
1797 ps.ScratchSpaceBasePointer =
1798 get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
1799 }
1800 }
1801
1802 #if GEN_GEN >= 8
1803 static void
1804 emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
1805 struct anv_subpass *subpass,
1806 const VkPipelineColorBlendStateCreateInfo *blend)
1807 {
1808 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1809
1810 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1811 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
1812 return;
1813 }
1814
1815 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
1816 ps.PixelShaderValid = true;
1817 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
1818 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1819 ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
1820 ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1821 ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1822 ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1823
1824 /* If the subpass has a depth or stencil self-dependency, then we need
1825 * to force the hardware to do the depth/stencil write *after* fragment
1826 * shader execution. Otherwise, the writes may hit memory before we get
1827 * around to fetching from the input attachment and we may get the depth
1828 * or stencil value from the current draw rather than the previous one.
1829 */
1830 ps.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1831 wm_prog_data->uses_kill;
1832
1833 #if GEN_GEN >= 9
1834 ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
1835 ps.PixelShaderPullsBary = wm_prog_data->pulls_bary;
1836
1837 ps.InputCoverageMaskState = ICMS_NONE;
1838 if (wm_prog_data->uses_sample_mask) {
1839 if (wm_prog_data->post_depth_coverage)
1840 ps.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
1841 else
1842 ps.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
1843 }
1844 #else
1845 ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1846 #endif
1847 }
1848 }
1849
1850 static void
1851 emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
1852 {
1853 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
1854 vft.PrimitiveTopologyType = pipeline->topology;
1855 }
1856 }
1857 #endif
1858
1859 static void
1860 emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
1861 {
1862 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
1863 vfs.StatisticsEnable = true;
1864 }
1865 }
1866
1867 static void
1868 compute_kill_pixel(struct anv_pipeline *pipeline,
1869 const VkPipelineMultisampleStateCreateInfo *ms_info,
1870 const struct anv_subpass *subpass)
1871 {
1872 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1873 pipeline->kill_pixel = false;
1874 return;
1875 }
1876
1877 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1878
1879 /* This computes the KillPixel portion of the computation for whether or
1880 * not we want to enable the PMA fix on gen8 or gen9. It's given by this
1881 * chunk of the giant formula:
1882 *
1883 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
1884 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
1885 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
1886 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
1887 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
1888 *
1889 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
1890 * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
1891 * of an alpha test.
1892 */
1893 pipeline->kill_pixel =
1894 subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
1895 wm_prog_data->uses_omask ||
1896 (ms_info && ms_info->alphaToCoverageEnable);
1897 }
1898
1899 static VkResult
1900 genX(graphics_pipeline_create)(
1901 VkDevice _device,
1902 struct anv_pipeline_cache * cache,
1903 const VkGraphicsPipelineCreateInfo* pCreateInfo,
1904 const VkAllocationCallbacks* pAllocator,
1905 VkPipeline* pPipeline)
1906 {
1907 ANV_FROM_HANDLE(anv_device, device, _device);
1908 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
1909 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
1910 struct anv_pipeline *pipeline;
1911 VkResult result;
1912
1913 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
1914
1915 /* Use the default pipeline cache if none is specified */
1916 if (cache == NULL && device->instance->pipeline_cache_enabled)
1917 cache = &device->default_pipeline_cache;
1918
1919 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
1920 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
1921 if (pipeline == NULL)
1922 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
1923
1924 result = anv_pipeline_init(pipeline, device, cache,
1925 pCreateInfo, pAllocator);
1926 if (result != VK_SUCCESS) {
1927 vk_free2(&device->alloc, pAllocator, pipeline);
1928 return result;
1929 }
1930
1931 assert(pCreateInfo->pVertexInputState);
1932 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
1933 assert(pCreateInfo->pRasterizationState);
1934 emit_rs_state(pipeline, pCreateInfo->pRasterizationState,
1935 pCreateInfo->pMultisampleState, pass, subpass);
1936 emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
1937 emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
1938 emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
1939 pCreateInfo->pMultisampleState);
1940 compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);
1941
1942 emit_urb_setup(pipeline);
1943
1944 emit_3dstate_clip(pipeline, pCreateInfo->pViewportState,
1945 pCreateInfo->pRasterizationState);
1946 emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
1947
1948 #if 0
1949 /* From gen7_vs_state.c */
1950
1951 /**
1952 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
1953 * Geometry > Geometry Shader > State:
1954 *
1955 * "Note: Because of corruption in IVB:GT2, software needs to flush the
1956 * whole fixed function pipeline when the GS enable changes value in
1957 * the 3DSTATE_GS."
1958 *
1959 * The hardware architects have clarified that in this context "flush the
1960 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
1961 * Stall" bit set.
1962 */
1963 if (!device->info.is_haswell && !device->info.is_baytrail)
1964 gen7_emit_vs_workaround_flush(brw);
1965 #endif
1966
1967 emit_3dstate_vs(pipeline);
1968 emit_3dstate_hs_te_ds(pipeline, pCreateInfo->pTessellationState);
1969 emit_3dstate_gs(pipeline);
1970 emit_3dstate_sbe(pipeline);
1971 emit_3dstate_wm(pipeline, subpass, pCreateInfo->pColorBlendState,
1972 pCreateInfo->pMultisampleState);
1973 emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState,
1974 pCreateInfo->pMultisampleState);
1975 #if GEN_GEN >= 8
1976 emit_3dstate_ps_extra(pipeline, subpass, pCreateInfo->pColorBlendState);
1977 emit_3dstate_vf_topology(pipeline);
1978 #endif
1979 emit_3dstate_vf_statistics(pipeline);
1980
1981 *pPipeline = anv_pipeline_to_handle(pipeline);
1982
1983 return pipeline->batch.status;
1984 }
1985
1986 static VkResult
1987 compute_pipeline_create(
1988 VkDevice _device,
1989 struct anv_pipeline_cache * cache,
1990 const VkComputePipelineCreateInfo* pCreateInfo,
1991 const VkAllocationCallbacks* pAllocator,
1992 VkPipeline* pPipeline)
1993 {
1994 ANV_FROM_HANDLE(anv_device, device, _device);
1995 const struct anv_physical_device *physical_device =
1996 &device->instance->physicalDevice;
1997 const struct gen_device_info *devinfo = &physical_device->info;
1998 struct anv_pipeline *pipeline;
1999 VkResult result;
2000
2001 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
2002
2003 /* Use the default pipeline cache if none is specified */
2004 if (cache == NULL && device->instance->pipeline_cache_enabled)
2005 cache = &device->default_pipeline_cache;
2006
2007 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
2008 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2009 if (pipeline == NULL)
2010 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2011
2012 pipeline->device = device;
2013
2014 pipeline->blend_state.map = NULL;
2015
2016 result = anv_reloc_list_init(&pipeline->batch_relocs,
2017 pAllocator ? pAllocator : &device->alloc);
2018 if (result != VK_SUCCESS) {
2019 vk_free2(&device->alloc, pAllocator, pipeline);
2020 return result;
2021 }
2022 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
2023 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
2024 pipeline->batch.relocs = &pipeline->batch_relocs;
2025 pipeline->batch.status = VK_SUCCESS;
2026
2027 /* When we free the pipeline, we detect stages based on the NULL status
2028 * of various prog_data pointers. Make them NULL by default.
2029 */
2030 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
2031
2032 pipeline->needs_data_cache = false;
2033
2034 assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
2035 pipeline->active_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
2036 ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->stage.module);
2037 result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
2038 pCreateInfo->stage.pName,
2039 pCreateInfo->stage.pSpecializationInfo);
2040 if (result != VK_SUCCESS) {
2041 vk_free2(&device->alloc, pAllocator, pipeline);
2042 return result;
2043 }
2044
2045 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
2046
2047 anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
2048
2049 uint32_t group_size = cs_prog_data->local_size[0] *
2050 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
2051 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
2052
2053 if (remainder > 0)
2054 pipeline->cs_right_mask = ~0u >> (32 - remainder);
2055 else
2056 pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
2057
2058 const uint32_t vfe_curbe_allocation =
2059 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
2060 cs_prog_data->push.cross_thread.regs, 2);
2061
2062 const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
2063
2064 const struct anv_shader_bin *cs_bin =
2065 pipeline->shaders[MESA_SHADER_COMPUTE];
2066
2067 anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
2068 #if GEN_GEN > 7
2069 vfe.StackSize = 0;
2070 #else
2071 vfe.GPGPUMode = true;
2072 #endif
2073 vfe.MaximumNumberofThreads =
2074 devinfo->max_cs_threads * subslices - 1;
2075 vfe.NumberofURBEntries = GEN_GEN <= 7 ? 0 : 2;
2076 #if GEN_GEN < 11
2077 vfe.ResetGatewayTimer = true;
2078 #endif
2079 #if GEN_GEN <= 8
2080 vfe.BypassGatewayControl = true;
2081 #endif
2082 vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
2083 vfe.CURBEAllocationSize = vfe_curbe_allocation;
2084
2085 vfe.PerThreadScratchSpace = get_scratch_space(cs_bin);
2086 vfe.ScratchSpaceBasePointer =
2087 get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
2088 }
2089
2090 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2091 .KernelStartPointer = cs_bin->kernel.offset,
2092 /* WA_1606682166 */
2093 .SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(cs_bin),
2094 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable
2095 *
2096 * We add 1 because the CS indirect parameters buffer isn't accounted
2097 * for in bind_map.surface_count.
2098 */
2099 .BindingTableEntryCount = GEN_GEN == 11 ? 0 : 1 + MIN2(cs_bin->bind_map.surface_count, 30),
2100 .BarrierEnable = cs_prog_data->uses_barrier,
2101 .SharedLocalMemorySize =
2102 encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
2103
2104 #if !GEN_IS_HASWELL
2105 .ConstantURBEntryReadOffset = 0,
2106 #endif
2107 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
2108 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2109 .CrossThreadConstantDataReadLength =
2110 cs_prog_data->push.cross_thread.regs,
2111 #endif
2112
2113 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
2114 };
2115 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
2116 pipeline->interface_descriptor_data,
2117 &desc);
2118
2119 *pPipeline = anv_pipeline_to_handle(pipeline);
2120
2121 return pipeline->batch.status;
2122 }
2123
2124 VkResult genX(CreateGraphicsPipelines)(
2125 VkDevice _device,
2126 VkPipelineCache pipelineCache,
2127 uint32_t count,
2128 const VkGraphicsPipelineCreateInfo* pCreateInfos,
2129 const VkAllocationCallbacks* pAllocator,
2130 VkPipeline* pPipelines)
2131 {
2132 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2133
2134 VkResult result = VK_SUCCESS;
2135
2136 unsigned i;
2137 for (i = 0; i < count; i++) {
2138 result = genX(graphics_pipeline_create)(_device,
2139 pipeline_cache,
2140 &pCreateInfos[i],
2141 pAllocator, &pPipelines[i]);
2142
2143 /* Bail out on the first error as it is not obvious what error should be
2144 * report upon 2 different failures. */
2145 if (result != VK_SUCCESS)
2146 break;
2147 }
2148
2149 for (; i < count; i++)
2150 pPipelines[i] = VK_NULL_HANDLE;
2151
2152 return result;
2153 }
2154
2155 VkResult genX(CreateComputePipelines)(
2156 VkDevice _device,
2157 VkPipelineCache pipelineCache,
2158 uint32_t count,
2159 const VkComputePipelineCreateInfo* pCreateInfos,
2160 const VkAllocationCallbacks* pAllocator,
2161 VkPipeline* pPipelines)
2162 {
2163 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2164
2165 VkResult result = VK_SUCCESS;
2166
2167 unsigned i;
2168 for (i = 0; i < count; i++) {
2169 result = compute_pipeline_create(_device, pipeline_cache,
2170 &pCreateInfos[i],
2171 pAllocator, &pPipelines[i]);
2172
2173 /* Bail out on the first error as it is not obvious what error should be
2174 * report upon 2 different failures. */
2175 if (result != VK_SUCCESS)
2176 break;
2177 }
2178
2179 for (; i < count; i++)
2180 pPipelines[i] = VK_NULL_HANDLE;
2181
2182 return result;
2183 }