anv: Add a ralloc context to anv_pipeline
[mesa.git] / src / intel / vulkan / genX_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_private.h"
25
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28
29 #include "common/gen_l3_config.h"
30 #include "common/gen_sample_positions.h"
31 #include "nir/nir_xfb_info.h"
32 #include "vk_util.h"
33 #include "vk_format_info.h"
34
35 static uint32_t
36 vertex_element_comp_control(enum isl_format format, unsigned comp)
37 {
38 uint8_t bits;
39 switch (comp) {
40 case 0: bits = isl_format_layouts[format].channels.r.bits; break;
41 case 1: bits = isl_format_layouts[format].channels.g.bits; break;
42 case 2: bits = isl_format_layouts[format].channels.b.bits; break;
43 case 3: bits = isl_format_layouts[format].channels.a.bits; break;
44 default: unreachable("Invalid component");
45 }
46
47 /*
48 * Take in account hardware restrictions when dealing with 64-bit floats.
49 *
50 * From Broadwell spec, command reference structures, page 586:
51 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
52 * 64-bit components are stored * in the URB without any conversion. In
53 * this case, vertex elements must be written as 128 or 256 bits, with
54 * VFCOMP_STORE_0 being used to pad the output as required. E.g., if
55 * R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
56 * Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
57 * set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
58 * Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
59 * a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
60 * Component 3 to be specified as VFCOMP_STORE_0 in order to output a
61 * 256-bit vertex element."
62 */
63 if (bits) {
64 return VFCOMP_STORE_SRC;
65 } else if (comp >= 2 &&
66 !isl_format_layouts[format].channels.b.bits &&
67 isl_format_layouts[format].channels.r.type == ISL_RAW) {
68 /* When emitting 64-bit attributes, we need to write either 128 or 256
69 * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
70 * VFCOMP_STORE_0 to pad the written chunk */
71 return VFCOMP_NOSTORE;
72 } else if (comp < 3 ||
73 isl_format_layouts[format].channels.r.type == ISL_RAW) {
74 /* Note we need to pad with value 0, not 1, due hardware restrictions
75 * (see comment above) */
76 return VFCOMP_STORE_0;
77 } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
78 isl_format_layouts[format].channels.r.type == ISL_SINT) {
79 assert(comp == 3);
80 return VFCOMP_STORE_1_INT;
81 } else {
82 assert(comp == 3);
83 return VFCOMP_STORE_1_FP;
84 }
85 }
86
87 static void
88 emit_vertex_input(struct anv_pipeline *pipeline,
89 const VkPipelineVertexInputStateCreateInfo *info)
90 {
91 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
92
93 /* Pull inputs_read out of the VS prog data */
94 const uint64_t inputs_read = vs_prog_data->inputs_read;
95 const uint64_t double_inputs_read =
96 vs_prog_data->double_inputs_read & inputs_read;
97 assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
98 const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
99 const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
100 const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
101 vs_prog_data->uses_instanceid ||
102 vs_prog_data->uses_firstvertex ||
103 vs_prog_data->uses_baseinstance;
104
105 uint32_t elem_count = __builtin_popcount(elements) -
106 __builtin_popcount(elements_double) / 2;
107
108 const uint32_t total_elems =
109 MAX2(1, elem_count + needs_svgs_elem + vs_prog_data->uses_drawid);
110
111 uint32_t *p;
112
113 const uint32_t num_dwords = 1 + total_elems * 2;
114 p = anv_batch_emitn(&pipeline->batch, num_dwords,
115 GENX(3DSTATE_VERTEX_ELEMENTS));
116 if (!p)
117 return;
118
119 for (uint32_t i = 0; i < total_elems; i++) {
120 /* The SKL docs for VERTEX_ELEMENT_STATE say:
121 *
122 * "All elements must be valid from Element[0] to the last valid
123 * element. (I.e. if Element[2] is valid then Element[1] and
124 * Element[0] must also be valid)."
125 *
126 * The SKL docs for 3D_Vertex_Component_Control say:
127 *
128 * "Don't store this component. (Not valid for Component 0, but can
129 * be used for Component 1-3)."
130 *
131 * So we can't just leave a vertex element blank and hope for the best.
132 * We have to tell the VF hardware to put something in it; so we just
133 * store a bunch of zero.
134 *
135 * TODO: Compact vertex elements so we never end up with holes.
136 */
137 struct GENX(VERTEX_ELEMENT_STATE) element = {
138 .Valid = true,
139 .Component0Control = VFCOMP_STORE_0,
140 .Component1Control = VFCOMP_STORE_0,
141 .Component2Control = VFCOMP_STORE_0,
142 .Component3Control = VFCOMP_STORE_0,
143 };
144 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
145 }
146
147 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
148 const VkVertexInputAttributeDescription *desc =
149 &info->pVertexAttributeDescriptions[i];
150 enum isl_format format = anv_get_isl_format(&pipeline->device->info,
151 desc->format,
152 VK_IMAGE_ASPECT_COLOR_BIT,
153 VK_IMAGE_TILING_LINEAR);
154
155 assert(desc->binding < MAX_VBS);
156
157 if ((elements & (1 << desc->location)) == 0)
158 continue; /* Binding unused */
159
160 uint32_t slot =
161 __builtin_popcount(elements & ((1 << desc->location) - 1)) -
162 DIV_ROUND_UP(__builtin_popcount(elements_double &
163 ((1 << desc->location) -1)), 2);
164
165 struct GENX(VERTEX_ELEMENT_STATE) element = {
166 .VertexBufferIndex = desc->binding,
167 .Valid = true,
168 .SourceElementFormat = format,
169 .EdgeFlagEnable = false,
170 .SourceElementOffset = desc->offset,
171 .Component0Control = vertex_element_comp_control(format, 0),
172 .Component1Control = vertex_element_comp_control(format, 1),
173 .Component2Control = vertex_element_comp_control(format, 2),
174 .Component3Control = vertex_element_comp_control(format, 3),
175 };
176 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
177
178 #if GEN_GEN >= 8
179 /* On Broadwell and later, we have a separate VF_INSTANCING packet
180 * that controls instancing. On Haswell and prior, that's part of
181 * VERTEX_BUFFER_STATE which we emit later.
182 */
183 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
184 vfi.InstancingEnable = pipeline->vb[desc->binding].instanced;
185 vfi.VertexElementIndex = slot;
186 vfi.InstanceDataStepRate =
187 pipeline->vb[desc->binding].instance_divisor;
188 }
189 #endif
190 }
191
192 const uint32_t id_slot = elem_count;
193 if (needs_svgs_elem) {
194 /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
195 * "Within a VERTEX_ELEMENT_STATE structure, if a Component
196 * Control field is set to something other than VFCOMP_STORE_SRC,
197 * no higher-numbered Component Control fields may be set to
198 * VFCOMP_STORE_SRC"
199 *
200 * This means, that if we have BaseInstance, we need BaseVertex as
201 * well. Just do all or nothing.
202 */
203 uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
204 vs_prog_data->uses_baseinstance) ?
205 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
206
207 struct GENX(VERTEX_ELEMENT_STATE) element = {
208 .VertexBufferIndex = ANV_SVGS_VB_INDEX,
209 .Valid = true,
210 .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
211 .Component0Control = base_ctrl,
212 .Component1Control = base_ctrl,
213 #if GEN_GEN >= 8
214 .Component2Control = VFCOMP_STORE_0,
215 .Component3Control = VFCOMP_STORE_0,
216 #else
217 .Component2Control = VFCOMP_STORE_VID,
218 .Component3Control = VFCOMP_STORE_IID,
219 #endif
220 };
221 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
222 }
223
224 #if GEN_GEN >= 8
225 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
226 sgvs.VertexIDEnable = vs_prog_data->uses_vertexid;
227 sgvs.VertexIDComponentNumber = 2;
228 sgvs.VertexIDElementOffset = id_slot;
229 sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid;
230 sgvs.InstanceIDComponentNumber = 3;
231 sgvs.InstanceIDElementOffset = id_slot;
232 }
233 #endif
234
235 const uint32_t drawid_slot = elem_count + needs_svgs_elem;
236 if (vs_prog_data->uses_drawid) {
237 struct GENX(VERTEX_ELEMENT_STATE) element = {
238 .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
239 .Valid = true,
240 .SourceElementFormat = ISL_FORMAT_R32_UINT,
241 .Component0Control = VFCOMP_STORE_SRC,
242 .Component1Control = VFCOMP_STORE_0,
243 .Component2Control = VFCOMP_STORE_0,
244 .Component3Control = VFCOMP_STORE_0,
245 };
246 GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
247 &p[1 + drawid_slot * 2],
248 &element);
249
250 #if GEN_GEN >= 8
251 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
252 vfi.VertexElementIndex = drawid_slot;
253 }
254 #endif
255 }
256 }
257
258 void
259 genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
260 const struct gen_l3_config *l3_config,
261 VkShaderStageFlags active_stages,
262 const unsigned entry_size[4])
263 {
264 const struct gen_device_info *devinfo = &device->info;
265 #if GEN_IS_HASWELL
266 const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
267 #else
268 const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
269 #endif
270
271 const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
272
273 unsigned entries[4];
274 unsigned start[4];
275 gen_get_urb_config(devinfo,
276 1024 * push_constant_kb, 1024 * urb_size_kb,
277 active_stages &
278 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
279 active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
280 entry_size, entries, start);
281
282 #if GEN_GEN == 7 && !GEN_IS_HASWELL
283 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
284 *
285 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
286 * needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
287 * 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
288 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
289 * needs to be sent before any combination of VS associated 3DSTATE."
290 */
291 anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
292 pc.DepthStallEnable = true;
293 pc.PostSyncOperation = WriteImmediateData;
294 pc.Address = (struct anv_address) { &device->workaround_bo, 0 };
295 }
296 #endif
297
298 for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
299 anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
300 urb._3DCommandSubOpcode += i;
301 urb.VSURBStartingAddress = start[i];
302 urb.VSURBEntryAllocationSize = entry_size[i] - 1;
303 urb.VSNumberofURBEntries = entries[i];
304 }
305 }
306 }
307
308 static void
309 emit_urb_setup(struct anv_pipeline *pipeline)
310 {
311 unsigned entry_size[4];
312 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
313 const struct brw_vue_prog_data *prog_data =
314 !anv_pipeline_has_stage(pipeline, i) ? NULL :
315 (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
316
317 entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
318 }
319
320 genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
321 pipeline->urb.l3_config,
322 pipeline->active_stages, entry_size);
323 }
324
325 static void
326 emit_3dstate_sbe(struct anv_pipeline *pipeline)
327 {
328 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
329
330 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
331 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
332 #if GEN_GEN >= 8
333 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
334 #endif
335 return;
336 }
337
338 const struct brw_vue_map *fs_input_map =
339 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
340
341 struct GENX(3DSTATE_SBE) sbe = {
342 GENX(3DSTATE_SBE_header),
343 .AttributeSwizzleEnable = true,
344 .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
345 .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
346 .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
347 };
348
349 #if GEN_GEN >= 9
350 for (unsigned i = 0; i < 32; i++)
351 sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
352 #endif
353
354 #if GEN_GEN >= 8
355 /* On Broadwell, they broke 3DSTATE_SBE into two packets */
356 struct GENX(3DSTATE_SBE_SWIZ) swiz = {
357 GENX(3DSTATE_SBE_SWIZ_header),
358 };
359 #else
360 # define swiz sbe
361 #endif
362
363 /* Skip the VUE header and position slots by default */
364 unsigned urb_entry_read_offset = 1;
365 int max_source_attr = 0;
366 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
367 int input_index = wm_prog_data->urb_setup[attr];
368
369 if (input_index < 0)
370 continue;
371
372 /* gl_Layer is stored in the VUE header */
373 if (attr == VARYING_SLOT_LAYER) {
374 urb_entry_read_offset = 0;
375 continue;
376 }
377
378 if (attr == VARYING_SLOT_PNTC) {
379 sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
380 continue;
381 }
382
383 const int slot = fs_input_map->varying_to_slot[attr];
384
385 if (input_index >= 16)
386 continue;
387
388 if (slot == -1) {
389 /* This attribute does not exist in the VUE--that means that the
390 * vertex shader did not write to it. It could be that it's a
391 * regular varying read by the fragment shader but not written by
392 * the vertex shader or it's gl_PrimitiveID. In the first case the
393 * value is undefined, in the second it needs to be
394 * gl_PrimitiveID.
395 */
396 swiz.Attribute[input_index].ConstantSource = PRIM_ID;
397 swiz.Attribute[input_index].ComponentOverrideX = true;
398 swiz.Attribute[input_index].ComponentOverrideY = true;
399 swiz.Attribute[input_index].ComponentOverrideZ = true;
400 swiz.Attribute[input_index].ComponentOverrideW = true;
401 } else {
402 /* We have to subtract two slots to accout for the URB entry output
403 * read offset in the VS and GS stages.
404 */
405 const int source_attr = slot - 2 * urb_entry_read_offset;
406 assert(source_attr >= 0 && source_attr < 32);
407 max_source_attr = MAX2(max_source_attr, source_attr);
408 swiz.Attribute[input_index].SourceAttribute = source_attr;
409 }
410 }
411
412 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
413 sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
414 #if GEN_GEN >= 8
415 sbe.ForceVertexURBEntryReadOffset = true;
416 sbe.ForceVertexURBEntryReadLength = true;
417 #endif
418
419 uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
420 GENX(3DSTATE_SBE_length));
421 if (!dw)
422 return;
423 GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
424
425 #if GEN_GEN >= 8
426 dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
427 if (!dw)
428 return;
429 GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
430 #endif
431 }
432
433 static const uint32_t vk_to_gen_cullmode[] = {
434 [VK_CULL_MODE_NONE] = CULLMODE_NONE,
435 [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
436 [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
437 [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
438 };
439
440 static const uint32_t vk_to_gen_fillmode[] = {
441 [VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
442 [VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
443 [VK_POLYGON_MODE_POINT] = FILL_MODE_POINT,
444 };
445
446 static const uint32_t vk_to_gen_front_face[] = {
447 [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
448 [VK_FRONT_FACE_CLOCKWISE] = 0
449 };
450
451 static VkLineRasterizationModeEXT
452 vk_line_rasterization_mode(const VkPipelineRasterizationLineStateCreateInfoEXT *line_info,
453 const VkPipelineMultisampleStateCreateInfo *ms_info)
454 {
455 VkLineRasterizationModeEXT line_mode =
456 line_info ? line_info->lineRasterizationMode :
457 VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT;
458
459 if (line_mode == VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT) {
460 if (ms_info && ms_info->rasterizationSamples > 1) {
461 return VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT;
462 } else {
463 return VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT;
464 }
465 }
466
467 return line_mode;
468 }
469
470 /** Returns the final polygon mode for rasterization
471 *
472 * This function takes into account polygon mode, primitive topology and the
473 * different shader stages which might generate their own type of primitives.
474 */
475 static VkPolygonMode
476 anv_raster_polygon_mode(struct anv_pipeline *pipeline,
477 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
478 const VkPipelineRasterizationStateCreateInfo *rs_info)
479 {
480 /* Points always override everything. This saves us from having to handle
481 * rs_info->polygonMode in all of the line cases below.
482 */
483 if (rs_info->polygonMode == VK_POLYGON_MODE_POINT)
484 return VK_POLYGON_MODE_POINT;
485
486 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
487 switch (get_gs_prog_data(pipeline)->output_topology) {
488 case _3DPRIM_POINTLIST:
489 return VK_POLYGON_MODE_POINT;
490
491 case _3DPRIM_LINELIST:
492 case _3DPRIM_LINESTRIP:
493 case _3DPRIM_LINELOOP:
494 return VK_POLYGON_MODE_LINE;
495
496 case _3DPRIM_TRILIST:
497 case _3DPRIM_TRIFAN:
498 case _3DPRIM_TRISTRIP:
499 case _3DPRIM_RECTLIST:
500 case _3DPRIM_QUADLIST:
501 case _3DPRIM_QUADSTRIP:
502 case _3DPRIM_POLYGON:
503 return rs_info->polygonMode;
504 }
505 unreachable("Unsupported GS output topology");
506 } else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
507 switch (get_tes_prog_data(pipeline)->output_topology) {
508 case BRW_TESS_OUTPUT_TOPOLOGY_POINT:
509 return VK_POLYGON_MODE_POINT;
510
511 case BRW_TESS_OUTPUT_TOPOLOGY_LINE:
512 return VK_POLYGON_MODE_LINE;
513
514 case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW:
515 case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW:
516 return rs_info->polygonMode;
517 }
518 unreachable("Unsupported TCS output topology");
519 } else {
520 switch (ia_info->topology) {
521 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
522 return VK_POLYGON_MODE_POINT;
523
524 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
525 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
526 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
527 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
528 return VK_POLYGON_MODE_LINE;
529
530 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
531 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
532 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
533 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
534 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
535 return rs_info->polygonMode;
536
537 default:
538 unreachable("Unsupported primitive topology");
539 }
540 }
541 }
542
543 #if GEN_GEN <= 7
544 static uint32_t
545 gen7_ms_rast_mode(struct anv_pipeline *pipeline,
546 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
547 const VkPipelineRasterizationStateCreateInfo *rs_info,
548 const VkPipelineMultisampleStateCreateInfo *ms_info)
549 {
550 const VkPipelineRasterizationLineStateCreateInfoEXT *line_info =
551 vk_find_struct_const(rs_info->pNext,
552 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
553
554 VkPolygonMode raster_mode =
555 anv_raster_polygon_mode(pipeline, ia_info, rs_info);
556 if (raster_mode == VK_POLYGON_MODE_LINE) {
557 switch (vk_line_rasterization_mode(line_info, ms_info)) {
558 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT:
559 return MSRASTMODE_ON_PATTERN;
560
561 case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT:
562 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT:
563 return MSRASTMODE_OFF_PIXEL;
564
565 default:
566 unreachable("Unsupported line rasterization mode");
567 }
568 } else {
569 return (ms_info && ms_info->rasterizationSamples > 1) ?
570 MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
571 }
572 }
573 #endif
574
575 static void
576 emit_rs_state(struct anv_pipeline *pipeline,
577 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
578 const VkPipelineRasterizationStateCreateInfo *rs_info,
579 const VkPipelineMultisampleStateCreateInfo *ms_info,
580 const VkPipelineRasterizationLineStateCreateInfoEXT *line_info,
581 const struct anv_render_pass *pass,
582 const struct anv_subpass *subpass)
583 {
584 struct GENX(3DSTATE_SF) sf = {
585 GENX(3DSTATE_SF_header),
586 };
587
588 sf.ViewportTransformEnable = true;
589 sf.StatisticsEnable = true;
590 sf.TriangleStripListProvokingVertexSelect = 0;
591 sf.LineStripListProvokingVertexSelect = 0;
592 sf.TriangleFanProvokingVertexSelect = 1;
593 sf.VertexSubPixelPrecisionSelect = _8Bit;
594 sf.AALineDistanceMode = true;
595
596 #if GEN_IS_HASWELL
597 sf.LineStippleEnable = line_info && line_info->stippledLineEnable;
598 #endif
599
600 const struct brw_vue_prog_data *last_vue_prog_data =
601 anv_pipeline_get_last_vue_prog_data(pipeline);
602
603 if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
604 sf.PointWidthSource = Vertex;
605 } else {
606 sf.PointWidthSource = State;
607 sf.PointWidth = 1.0;
608 }
609
610 #if GEN_GEN >= 8
611 struct GENX(3DSTATE_RASTER) raster = {
612 GENX(3DSTATE_RASTER_header),
613 };
614 #else
615 # define raster sf
616 #endif
617
618 VkPolygonMode raster_mode =
619 anv_raster_polygon_mode(pipeline, ia_info, rs_info);
620 VkLineRasterizationModeEXT line_mode =
621 vk_line_rasterization_mode(line_info, ms_info);
622
623 /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
624 * "Multisample Modes State".
625 */
626 #if GEN_GEN >= 8
627 if (raster_mode == VK_POLYGON_MODE_LINE) {
628 /* Unfortunately, configuring our line rasterization hardware on gen8
629 * and later is rather painful. Instead of giving us bits to tell the
630 * hardware what line mode to use like we had on gen7, we now have an
631 * arcane combination of API Mode and MSAA enable bits which do things
632 * in a table which are expected to magically put the hardware into the
633 * right mode for your API. Sadly, Vulkan isn't any of the APIs the
634 * hardware people thought of so nothing works the way you want it to.
635 *
636 * Look at the table titled "Multisample Rasterization Modes" in Vol 7
637 * of the Skylake PRM for more details.
638 */
639 switch (line_mode) {
640 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT:
641 raster.APIMode = DX100;
642 raster.DXMultisampleRasterizationEnable = true;
643 break;
644
645 case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT:
646 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT:
647 raster.APIMode = DX9OGL;
648 raster.DXMultisampleRasterizationEnable = false;
649 break;
650
651 default:
652 unreachable("Unsupported line rasterization mode");
653 }
654 } else {
655 raster.APIMode = DX100;
656 raster.DXMultisampleRasterizationEnable = true;
657 }
658
659 /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
660 * computations. If we ever set this bit to a different value, they will
661 * need to be updated accordingly.
662 */
663 raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
664 raster.ForceMultisampling = false;
665 #else
666 raster.MultisampleRasterizationMode =
667 gen7_ms_rast_mode(pipeline, ia_info, rs_info, ms_info);
668 #endif
669
670 if (raster_mode == VK_POLYGON_MODE_LINE &&
671 line_mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT)
672 raster.AntialiasingEnable = true;
673
674 raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
675 raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
676 raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
677 raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
678 raster.ScissorRectangleEnable = true;
679
680 #if GEN_GEN >= 9
681 /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
682 raster.ViewportZFarClipTestEnable = pipeline->depth_clip_enable;
683 raster.ViewportZNearClipTestEnable = pipeline->depth_clip_enable;
684 #elif GEN_GEN >= 8
685 raster.ViewportZClipTestEnable = pipeline->depth_clip_enable;
686 #endif
687
688 raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
689 raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
690 raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
691
692 #if GEN_GEN == 7
693 /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
694 * can get the depth offsets correct.
695 */
696 if (subpass->depth_stencil_attachment) {
697 VkFormat vk_format =
698 pass->attachments[subpass->depth_stencil_attachment->attachment].format;
699 assert(vk_format_is_depth_or_stencil(vk_format));
700 if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
701 enum isl_format isl_format =
702 anv_get_isl_format(&pipeline->device->info, vk_format,
703 VK_IMAGE_ASPECT_DEPTH_BIT,
704 VK_IMAGE_TILING_OPTIMAL);
705 sf.DepthBufferSurfaceFormat =
706 isl_format_get_depth_format(isl_format, false);
707 }
708 }
709 #endif
710
711 #if GEN_GEN >= 8
712 GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
713 GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
714 #else
715 # undef raster
716 GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
717 #endif
718 }
719
720 static void
721 emit_ms_state(struct anv_pipeline *pipeline,
722 const VkPipelineMultisampleStateCreateInfo *info)
723 {
724 uint32_t samples = 1;
725 uint32_t log2_samples = 0;
726
727 /* From the Vulkan 1.0 spec:
728 * If pSampleMask is NULL, it is treated as if the mask has all bits
729 * enabled, i.e. no coverage is removed from fragments.
730 *
731 * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
732 */
733 #if GEN_GEN >= 8
734 uint32_t sample_mask = 0xffff;
735 #else
736 uint32_t sample_mask = 0xff;
737 #endif
738
739 if (info) {
740 samples = info->rasterizationSamples;
741 log2_samples = __builtin_ffs(samples) - 1;
742 }
743
744 if (info && info->pSampleMask)
745 sample_mask &= info->pSampleMask[0];
746
747 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
748 ms.NumberofMultisamples = log2_samples;
749
750 ms.PixelLocation = CENTER;
751 #if GEN_GEN >= 8
752 /* The PRM says that this bit is valid only for DX9:
753 *
754 * SW can choose to set this bit only for DX9 API. DX10/OGL API's
755 * should not have any effect by setting or not setting this bit.
756 */
757 ms.PixelPositionOffsetEnable = false;
758 #else
759
760 switch (samples) {
761 case 1:
762 GEN_SAMPLE_POS_1X(ms.Sample);
763 break;
764 case 2:
765 GEN_SAMPLE_POS_2X(ms.Sample);
766 break;
767 case 4:
768 GEN_SAMPLE_POS_4X(ms.Sample);
769 break;
770 case 8:
771 GEN_SAMPLE_POS_8X(ms.Sample);
772 break;
773 default:
774 break;
775 }
776 #endif
777 }
778
779 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
780 sm.SampleMask = sample_mask;
781 }
782 }
783
784 static const uint32_t vk_to_gen_logic_op[] = {
785 [VK_LOGIC_OP_COPY] = LOGICOP_COPY,
786 [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
787 [VK_LOGIC_OP_AND] = LOGICOP_AND,
788 [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
789 [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
790 [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
791 [VK_LOGIC_OP_XOR] = LOGICOP_XOR,
792 [VK_LOGIC_OP_OR] = LOGICOP_OR,
793 [VK_LOGIC_OP_NOR] = LOGICOP_NOR,
794 [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
795 [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
796 [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
797 [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
798 [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
799 [VK_LOGIC_OP_NAND] = LOGICOP_NAND,
800 [VK_LOGIC_OP_SET] = LOGICOP_SET,
801 };
802
803 static const uint32_t vk_to_gen_blend[] = {
804 [VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
805 [VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
806 [VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
807 [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
808 [VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
809 [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
810 [VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
811 [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
812 [VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
813 [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
814 [VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
815 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
816 [VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
817 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
818 [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
819 [VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
820 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
821 [VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
822 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
823 };
824
825 static const uint32_t vk_to_gen_blend_op[] = {
826 [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
827 [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
828 [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
829 [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
830 [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
831 };
832
833 static const uint32_t vk_to_gen_compare_op[] = {
834 [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
835 [VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
836 [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
837 [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL,
838 [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
839 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
840 [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL,
841 [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
842 };
843
844 static const uint32_t vk_to_gen_stencil_op[] = {
845 [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
846 [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
847 [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
848 [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
849 [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
850 [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
851 [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
852 [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
853 };
854
855 /* This function sanitizes the VkStencilOpState by looking at the compare ops
856 * and trying to determine whether or not a given stencil op can ever actually
857 * occur. Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
858 * This function returns true if, after sanitation, any of the stencil ops are
859 * set to something other than VK_STENCIL_OP_KEEP.
860 */
861 static bool
862 sanitize_stencil_face(VkStencilOpState *face,
863 VkCompareOp depthCompareOp)
864 {
865 /* If compareOp is ALWAYS then the stencil test will never fail and failOp
866 * will never happen. Set failOp to KEEP in this case.
867 */
868 if (face->compareOp == VK_COMPARE_OP_ALWAYS)
869 face->failOp = VK_STENCIL_OP_KEEP;
870
871 /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
872 * or stencil tests will fail and passOp will never happen.
873 */
874 if (face->compareOp == VK_COMPARE_OP_NEVER ||
875 depthCompareOp == VK_COMPARE_OP_NEVER)
876 face->passOp = VK_STENCIL_OP_KEEP;
877
878 /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
879 * stencil test will fail or the depth test will pass. In either case,
880 * depthFailOp will never happen.
881 */
882 if (face->compareOp == VK_COMPARE_OP_NEVER ||
883 depthCompareOp == VK_COMPARE_OP_ALWAYS)
884 face->depthFailOp = VK_STENCIL_OP_KEEP;
885
886 return face->failOp != VK_STENCIL_OP_KEEP ||
887 face->depthFailOp != VK_STENCIL_OP_KEEP ||
888 face->passOp != VK_STENCIL_OP_KEEP;
889 }
890
891 /* Intel hardware is fairly sensitive to whether or not depth/stencil writes
892 * are enabled. In the presence of discards, it's fairly easy to get into the
893 * non-promoted case which means a fairly big performance hit. From the Iron
894 * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
895 *
896 * "Non-promoted depth (N) is active whenever the depth test can be done
897 * early but it cannot determine whether or not to write source depth to
898 * the depth buffer, therefore the depth write must be performed post pixel
899 * shader. This includes cases where the pixel shader can kill pixels,
900 * including via sampler chroma key, as well as cases where the alpha test
901 * function is enabled, which kills pixels based on a programmable alpha
902 * test. In this case, even if the depth test fails, the pixel cannot be
903 * killed if a stencil write is indicated. Whether or not the stencil write
904 * happens depends on whether or not the pixel is killed later. In these
905 * cases if stencil test fails and stencil writes are off, the pixels can
906 * also be killed early. If stencil writes are enabled, the pixels must be
907 * treated as Computed depth (described above)."
908 *
909 * The same thing as mentioned in the stencil case can happen in the depth
910 * case as well if it thinks it writes depth but, thanks to the depth test
911 * being GL_EQUAL, the write doesn't actually matter. A little extra work
912 * up-front to try and disable depth and stencil writes can make a big
913 * difference.
914 *
915 * Unfortunately, the way depth and stencil testing is specified, there are
916 * many case where, regardless of depth/stencil writes being enabled, nothing
917 * actually gets written due to some other bit of state being set. This
918 * function attempts to "sanitize" the depth stencil state and disable writes
919 * and sometimes even testing whenever possible.
920 */
921 static void
922 sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
923 bool *stencilWriteEnable,
924 VkImageAspectFlags ds_aspects)
925 {
926 *stencilWriteEnable = state->stencilTestEnable;
927
928 /* If the depth test is disabled, we won't be writing anything. Make sure we
929 * treat the test as always passing later on as well.
930 *
931 * Also, the Vulkan spec requires that if either depth or stencil is not
932 * present, the pipeline is to act as if the test silently passes. In that
933 * case we won't write either.
934 */
935 if (!state->depthTestEnable || !(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
936 state->depthWriteEnable = false;
937 state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
938 }
939
940 if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
941 *stencilWriteEnable = false;
942 state->front.compareOp = VK_COMPARE_OP_ALWAYS;
943 state->back.compareOp = VK_COMPARE_OP_ALWAYS;
944 }
945
946 /* If the stencil test is enabled and always fails, then we will never get
947 * to the depth test so we can just disable the depth test entirely.
948 */
949 if (state->stencilTestEnable &&
950 state->front.compareOp == VK_COMPARE_OP_NEVER &&
951 state->back.compareOp == VK_COMPARE_OP_NEVER) {
952 state->depthTestEnable = false;
953 state->depthWriteEnable = false;
954 }
955
956 /* If depthCompareOp is EQUAL then the value we would be writing to the
957 * depth buffer is the same as the value that's already there so there's no
958 * point in writing it.
959 */
960 if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
961 state->depthWriteEnable = false;
962
963 /* If the stencil ops are such that we don't actually ever modify the
964 * stencil buffer, we should disable writes.
965 */
966 if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
967 !sanitize_stencil_face(&state->back, state->depthCompareOp))
968 *stencilWriteEnable = false;
969
970 /* If the depth test always passes and we never write out depth, that's the
971 * same as if the depth test is disabled entirely.
972 */
973 if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
974 !state->depthWriteEnable)
975 state->depthTestEnable = false;
976
977 /* If the stencil test always passes and we never write out stencil, that's
978 * the same as if the stencil test is disabled entirely.
979 */
980 if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
981 state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
982 !*stencilWriteEnable)
983 state->stencilTestEnable = false;
984 }
985
986 static void
987 emit_ds_state(struct anv_pipeline *pipeline,
988 const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
989 const struct anv_render_pass *pass,
990 const struct anv_subpass *subpass)
991 {
992 #if GEN_GEN == 7
993 # define depth_stencil_dw pipeline->gen7.depth_stencil_state
994 #elif GEN_GEN == 8
995 # define depth_stencil_dw pipeline->gen8.wm_depth_stencil
996 #else
997 # define depth_stencil_dw pipeline->gen9.wm_depth_stencil
998 #endif
999
1000 if (pCreateInfo == NULL) {
1001 /* We're going to OR this together with the dynamic state. We need
1002 * to make sure it's initialized to something useful.
1003 */
1004 pipeline->writes_stencil = false;
1005 pipeline->stencil_test_enable = false;
1006 pipeline->writes_depth = false;
1007 pipeline->depth_test_enable = false;
1008 memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
1009 return;
1010 }
1011
1012 VkImageAspectFlags ds_aspects = 0;
1013 if (subpass->depth_stencil_attachment) {
1014 VkFormat depth_stencil_format =
1015 pass->attachments[subpass->depth_stencil_attachment->attachment].format;
1016 ds_aspects = vk_format_aspects(depth_stencil_format);
1017 }
1018
1019 VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
1020 sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
1021 pipeline->stencil_test_enable = info.stencilTestEnable;
1022 pipeline->writes_depth = info.depthWriteEnable;
1023 pipeline->depth_test_enable = info.depthTestEnable;
1024
1025 /* VkBool32 depthBoundsTestEnable; // optional (depth_bounds_test) */
1026
1027 #if GEN_GEN <= 7
1028 struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
1029 #else
1030 struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
1031 #endif
1032 .DepthTestEnable = info.depthTestEnable,
1033 .DepthBufferWriteEnable = info.depthWriteEnable,
1034 .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
1035 .DoubleSidedStencilEnable = true,
1036
1037 .StencilTestEnable = info.stencilTestEnable,
1038 .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
1039 .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
1040 .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
1041 .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
1042 .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
1043 .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
1044 .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
1045 .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
1046 };
1047
1048 #if GEN_GEN <= 7
1049 GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
1050 #else
1051 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
1052 #endif
1053 }
1054
1055 static bool
1056 is_dual_src_blend_factor(VkBlendFactor factor)
1057 {
1058 return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
1059 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
1060 factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
1061 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
1062 }
1063
1064 static void
1065 emit_cb_state(struct anv_pipeline *pipeline,
1066 const VkPipelineColorBlendStateCreateInfo *info,
1067 const VkPipelineMultisampleStateCreateInfo *ms_info)
1068 {
1069 struct anv_device *device = pipeline->device;
1070 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1071
1072 struct GENX(BLEND_STATE) blend_state = {
1073 #if GEN_GEN >= 8
1074 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
1075 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
1076 #endif
1077 };
1078
1079 uint32_t surface_count = 0;
1080 struct anv_pipeline_bind_map *map;
1081 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1082 map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
1083 surface_count = map->surface_count;
1084 }
1085
1086 const uint32_t num_dwords = GENX(BLEND_STATE_length) +
1087 GENX(BLEND_STATE_ENTRY_length) * surface_count;
1088 pipeline->blend_state =
1089 anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
1090
1091 bool has_writeable_rt = false;
1092 uint32_t *state_pos = pipeline->blend_state.map;
1093 state_pos += GENX(BLEND_STATE_length);
1094 #if GEN_GEN >= 8
1095 struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
1096 #endif
1097 for (unsigned i = 0; i < surface_count; i++) {
1098 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
1099
1100 /* All color attachments are at the beginning of the binding table */
1101 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1102 break;
1103
1104 /* We can have at most 8 attachments */
1105 assert(i < 8);
1106
1107 if (info == NULL || binding->index >= info->attachmentCount) {
1108 /* Default everything to disabled */
1109 struct GENX(BLEND_STATE_ENTRY) entry = {
1110 .WriteDisableAlpha = true,
1111 .WriteDisableRed = true,
1112 .WriteDisableGreen = true,
1113 .WriteDisableBlue = true,
1114 };
1115 GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1116 state_pos += GENX(BLEND_STATE_ENTRY_length);
1117 continue;
1118 }
1119
1120 assert(binding->binding == 0);
1121 const VkPipelineColorBlendAttachmentState *a =
1122 &info->pAttachments[binding->index];
1123
1124 struct GENX(BLEND_STATE_ENTRY) entry = {
1125 #if GEN_GEN < 8
1126 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
1127 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
1128 #endif
1129 .LogicOpEnable = info->logicOpEnable,
1130 .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
1131 .ColorBufferBlendEnable = a->blendEnable,
1132 .ColorClampRange = COLORCLAMP_RTFORMAT,
1133 .PreBlendColorClampEnable = true,
1134 .PostBlendColorClampEnable = true,
1135 .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
1136 .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
1137 .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
1138 .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
1139 .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
1140 .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
1141 .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
1142 .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
1143 .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
1144 .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
1145 };
1146
1147 if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
1148 a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
1149 a->colorBlendOp != a->alphaBlendOp) {
1150 #if GEN_GEN >= 8
1151 blend_state.IndependentAlphaBlendEnable = true;
1152 #else
1153 entry.IndependentAlphaBlendEnable = true;
1154 #endif
1155 }
1156
1157 /* The Dual Source Blending documentation says:
1158 *
1159 * "If SRC1 is included in a src/dst blend factor and
1160 * a DualSource RT Write message is not used, results
1161 * are UNDEFINED. (This reflects the same restriction in DX APIs,
1162 * where undefined results are produced if “o1” is not written
1163 * by a PS – there are no default values defined)."
1164 *
1165 * There is no way to gracefully fix this undefined situation
1166 * so we just disable the blending to prevent possible issues.
1167 */
1168 if (!wm_prog_data->dual_src_blend &&
1169 (is_dual_src_blend_factor(a->srcColorBlendFactor) ||
1170 is_dual_src_blend_factor(a->dstColorBlendFactor) ||
1171 is_dual_src_blend_factor(a->srcAlphaBlendFactor) ||
1172 is_dual_src_blend_factor(a->dstAlphaBlendFactor))) {
1173 vk_debug_report(&device->instance->debug_report_callbacks,
1174 VK_DEBUG_REPORT_WARNING_BIT_EXT,
1175 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
1176 (uint64_t)(uintptr_t)device,
1177 0, 0, "anv",
1178 "Enabled dual-src blend factors without writing both targets "
1179 "in the shader. Disabling blending to avoid GPU hangs.");
1180 entry.ColorBufferBlendEnable = false;
1181 }
1182
1183 if (a->colorWriteMask != 0)
1184 has_writeable_rt = true;
1185
1186 /* Our hardware applies the blend factor prior to the blend function
1187 * regardless of what function is used. Technically, this means the
1188 * hardware can do MORE than GL or Vulkan specify. However, it also
1189 * means that, for MIN and MAX, we have to stomp the blend factor to
1190 * ONE to make it a no-op.
1191 */
1192 if (a->colorBlendOp == VK_BLEND_OP_MIN ||
1193 a->colorBlendOp == VK_BLEND_OP_MAX) {
1194 entry.SourceBlendFactor = BLENDFACTOR_ONE;
1195 entry.DestinationBlendFactor = BLENDFACTOR_ONE;
1196 }
1197 if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
1198 a->alphaBlendOp == VK_BLEND_OP_MAX) {
1199 entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
1200 entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
1201 }
1202 GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1203 state_pos += GENX(BLEND_STATE_ENTRY_length);
1204 #if GEN_GEN >= 8
1205 if (i == 0)
1206 bs0 = entry;
1207 #endif
1208 }
1209
1210 #if GEN_GEN >= 8
1211 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
1212 blend.AlphaToCoverageEnable = blend_state.AlphaToCoverageEnable;
1213 blend.HasWriteableRT = has_writeable_rt;
1214 blend.ColorBufferBlendEnable = bs0.ColorBufferBlendEnable;
1215 blend.SourceAlphaBlendFactor = bs0.SourceAlphaBlendFactor;
1216 blend.DestinationAlphaBlendFactor = bs0.DestinationAlphaBlendFactor;
1217 blend.SourceBlendFactor = bs0.SourceBlendFactor;
1218 blend.DestinationBlendFactor = bs0.DestinationBlendFactor;
1219 blend.AlphaTestEnable = false;
1220 blend.IndependentAlphaBlendEnable =
1221 blend_state.IndependentAlphaBlendEnable;
1222 }
1223 #else
1224 (void)has_writeable_rt;
1225 #endif
1226
1227 GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
1228
1229 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
1230 bsp.BlendStatePointer = pipeline->blend_state.offset;
1231 #if GEN_GEN >= 8
1232 bsp.BlendStatePointerValid = true;
1233 #endif
1234 }
1235 }
1236
1237 static void
1238 emit_3dstate_clip(struct anv_pipeline *pipeline,
1239 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
1240 const VkPipelineViewportStateCreateInfo *vp_info,
1241 const VkPipelineRasterizationStateCreateInfo *rs_info)
1242 {
1243 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1244 (void) wm_prog_data;
1245 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
1246 clip.ClipEnable = true;
1247 clip.StatisticsEnable = true;
1248 clip.EarlyCullEnable = true;
1249 clip.APIMode = APIMODE_D3D;
1250 clip.GuardbandClipTestEnable = true;
1251
1252 /* Only enable the XY clip test when the final polygon rasterization
1253 * mode is VK_POLYGON_MODE_FILL. We want to leave it disabled for
1254 * points and lines so we get "pop-free" clipping.
1255 */
1256 VkPolygonMode raster_mode =
1257 anv_raster_polygon_mode(pipeline, ia_info, rs_info);
1258 clip.ViewportXYClipTestEnable = (raster_mode == VK_POLYGON_MODE_FILL);
1259
1260 #if GEN_GEN >= 8
1261 clip.VertexSubPixelPrecisionSelect = _8Bit;
1262 #endif
1263
1264 clip.ClipMode = CLIPMODE_NORMAL;
1265
1266 clip.TriangleStripListProvokingVertexSelect = 0;
1267 clip.LineStripListProvokingVertexSelect = 0;
1268 clip.TriangleFanProvokingVertexSelect = 1;
1269
1270 clip.MinimumPointWidth = 0.125;
1271 clip.MaximumPointWidth = 255.875;
1272
1273 const struct brw_vue_prog_data *last =
1274 anv_pipeline_get_last_vue_prog_data(pipeline);
1275
1276 /* From the Vulkan 1.0.45 spec:
1277 *
1278 * "If the last active vertex processing stage shader entry point's
1279 * interface does not include a variable decorated with
1280 * ViewportIndex, then the first viewport is used."
1281 */
1282 if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
1283 clip.MaximumVPIndex = vp_info->viewportCount - 1;
1284 } else {
1285 clip.MaximumVPIndex = 0;
1286 }
1287
1288 /* From the Vulkan 1.0.45 spec:
1289 *
1290 * "If the last active vertex processing stage shader entry point's
1291 * interface does not include a variable decorated with Layer, then
1292 * the first layer is used."
1293 */
1294 clip.ForceZeroRTAIndexEnable =
1295 !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
1296
1297 #if GEN_GEN == 7
1298 clip.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
1299 clip.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
1300 clip.ViewportZClipTestEnable = pipeline->depth_clip_enable;
1301 clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1302 clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1303 #else
1304 clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1305 (wm_prog_data->barycentric_interp_modes &
1306 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0 : 0;
1307 #endif
1308 }
1309 }
1310
1311 static void
1312 emit_3dstate_streamout(struct anv_pipeline *pipeline,
1313 const VkPipelineRasterizationStateCreateInfo *rs_info)
1314 {
1315 #if GEN_GEN >= 8
1316 const struct brw_vue_prog_data *prog_data =
1317 anv_pipeline_get_last_vue_prog_data(pipeline);
1318 const struct brw_vue_map *vue_map = &prog_data->vue_map;
1319 #endif
1320
1321 nir_xfb_info *xfb_info;
1322 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1323 xfb_info = pipeline->shaders[MESA_SHADER_GEOMETRY]->xfb_info;
1324 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1325 xfb_info = pipeline->shaders[MESA_SHADER_TESS_EVAL]->xfb_info;
1326 else
1327 xfb_info = pipeline->shaders[MESA_SHADER_VERTEX]->xfb_info;
1328
1329 pipeline->xfb_used = xfb_info ? xfb_info->buffers_written : 0;
1330
1331 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
1332 so.RenderingDisable = rs_info->rasterizerDiscardEnable;
1333
1334 #if GEN_GEN >= 8
1335 if (xfb_info) {
1336 so.SOFunctionEnable = true;
1337 so.SOStatisticsEnable = true;
1338
1339 const VkPipelineRasterizationStateStreamCreateInfoEXT *stream_info =
1340 vk_find_struct_const(rs_info, PIPELINE_RASTERIZATION_STATE_STREAM_CREATE_INFO_EXT);
1341 so.RenderStreamSelect = stream_info ?
1342 stream_info->rasterizationStream : 0;
1343
1344 so.Buffer0SurfacePitch = xfb_info->buffers[0].stride;
1345 so.Buffer1SurfacePitch = xfb_info->buffers[1].stride;
1346 so.Buffer2SurfacePitch = xfb_info->buffers[2].stride;
1347 so.Buffer3SurfacePitch = xfb_info->buffers[3].stride;
1348
1349 int urb_entry_read_offset = 0;
1350 int urb_entry_read_length =
1351 (prog_data->vue_map.num_slots + 1) / 2 - urb_entry_read_offset;
1352
1353 /* We always read the whole vertex. This could be reduced at some
1354 * point by reading less and offsetting the register index in the
1355 * SO_DECLs.
1356 */
1357 so.Stream0VertexReadOffset = urb_entry_read_offset;
1358 so.Stream0VertexReadLength = urb_entry_read_length - 1;
1359 so.Stream1VertexReadOffset = urb_entry_read_offset;
1360 so.Stream1VertexReadLength = urb_entry_read_length - 1;
1361 so.Stream2VertexReadOffset = urb_entry_read_offset;
1362 so.Stream2VertexReadLength = urb_entry_read_length - 1;
1363 so.Stream3VertexReadOffset = urb_entry_read_offset;
1364 so.Stream3VertexReadLength = urb_entry_read_length - 1;
1365 }
1366 #endif /* GEN_GEN >= 8 */
1367 }
1368
1369 #if GEN_GEN >= 8
1370 if (xfb_info) {
1371 struct GENX(SO_DECL) so_decl[MAX_XFB_STREAMS][128];
1372 int next_offset[MAX_XFB_BUFFERS] = {0, 0, 0, 0};
1373 int decls[MAX_XFB_STREAMS] = {0, 0, 0, 0};
1374
1375 memset(so_decl, 0, sizeof(so_decl));
1376
1377 for (unsigned i = 0; i < xfb_info->output_count; i++) {
1378 const nir_xfb_output_info *output = &xfb_info->outputs[i];
1379 unsigned buffer = output->buffer;
1380 unsigned stream = xfb_info->buffer_to_stream[buffer];
1381
1382 /* Our hardware is unusual in that it requires us to program SO_DECLs
1383 * for fake "hole" components, rather than simply taking the offset
1384 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
1385 * program as many size = 4 holes as we can, then a final hole to
1386 * accommodate the final 1, 2, or 3 remaining.
1387 */
1388 int hole_dwords = (output->offset - next_offset[buffer]) / 4;
1389 while (hole_dwords > 0) {
1390 so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1391 .HoleFlag = 1,
1392 .OutputBufferSlot = buffer,
1393 .ComponentMask = (1 << MIN2(hole_dwords, 4)) - 1,
1394 };
1395 hole_dwords -= 4;
1396 }
1397
1398 int varying = output->location;
1399 uint8_t component_mask = output->component_mask;
1400 /* VARYING_SLOT_PSIZ contains three scalar fields packed together:
1401 * - VARYING_SLOT_LAYER in VARYING_SLOT_PSIZ.y
1402 * - VARYING_SLOT_VIEWPORT in VARYING_SLOT_PSIZ.z
1403 * - VARYING_SLOT_PSIZ in VARYING_SLOT_PSIZ.w
1404 */
1405 if (varying == VARYING_SLOT_LAYER) {
1406 varying = VARYING_SLOT_PSIZ;
1407 component_mask = 1 << 1; // SO_DECL_COMPMASK_Y
1408 } else if (varying == VARYING_SLOT_VIEWPORT) {
1409 varying = VARYING_SLOT_PSIZ;
1410 component_mask = 1 << 2; // SO_DECL_COMPMASK_Z
1411 } else if (varying == VARYING_SLOT_PSIZ) {
1412 component_mask = 1 << 3; // SO_DECL_COMPMASK_W
1413 }
1414
1415 next_offset[buffer] = output->offset +
1416 __builtin_popcount(component_mask) * 4;
1417
1418 so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1419 .OutputBufferSlot = buffer,
1420 .RegisterIndex = vue_map->varying_to_slot[varying],
1421 .ComponentMask = component_mask,
1422 };
1423 }
1424
1425 int max_decls = 0;
1426 for (unsigned s = 0; s < MAX_XFB_STREAMS; s++)
1427 max_decls = MAX2(max_decls, decls[s]);
1428
1429 uint8_t sbs[MAX_XFB_STREAMS] = { };
1430 for (unsigned b = 0; b < MAX_XFB_BUFFERS; b++) {
1431 if (xfb_info->buffers_written & (1 << b))
1432 sbs[xfb_info->buffer_to_stream[b]] |= 1 << b;
1433 }
1434
1435 uint32_t *dw = anv_batch_emitn(&pipeline->batch, 3 + 2 * max_decls,
1436 GENX(3DSTATE_SO_DECL_LIST),
1437 .StreamtoBufferSelects0 = sbs[0],
1438 .StreamtoBufferSelects1 = sbs[1],
1439 .StreamtoBufferSelects2 = sbs[2],
1440 .StreamtoBufferSelects3 = sbs[3],
1441 .NumEntries0 = decls[0],
1442 .NumEntries1 = decls[1],
1443 .NumEntries2 = decls[2],
1444 .NumEntries3 = decls[3]);
1445
1446 for (int i = 0; i < max_decls; i++) {
1447 GENX(SO_DECL_ENTRY_pack)(NULL, dw + 3 + i * 2,
1448 &(struct GENX(SO_DECL_ENTRY)) {
1449 .Stream0Decl = so_decl[0][i],
1450 .Stream1Decl = so_decl[1][i],
1451 .Stream2Decl = so_decl[2][i],
1452 .Stream3Decl = so_decl[3][i],
1453 });
1454 }
1455 }
1456 #endif /* GEN_GEN >= 8 */
1457 }
1458
1459 static uint32_t
1460 get_sampler_count(const struct anv_shader_bin *bin)
1461 {
1462 uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1463
1464 /* We can potentially have way more than 32 samplers and that's ok.
1465 * However, the 3DSTATE_XS packets only have 3 bits to specify how
1466 * many to pre-fetch and all values above 4 are marked reserved.
1467 */
1468 return MIN2(count_by_4, 4);
1469 }
1470
1471 static uint32_t
1472 get_binding_table_entry_count(const struct anv_shader_bin *bin)
1473 {
1474 return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
1475 }
1476
1477 static struct anv_address
1478 get_scratch_address(struct anv_pipeline *pipeline,
1479 gl_shader_stage stage,
1480 const struct anv_shader_bin *bin)
1481 {
1482 return (struct anv_address) {
1483 .bo = anv_scratch_pool_alloc(pipeline->device,
1484 &pipeline->device->scratch_pool,
1485 stage, bin->prog_data->total_scratch),
1486 .offset = 0,
1487 };
1488 }
1489
1490 static uint32_t
1491 get_scratch_space(const struct anv_shader_bin *bin)
1492 {
1493 return ffs(bin->prog_data->total_scratch / 2048);
1494 }
1495
1496 static void
1497 emit_3dstate_vs(struct anv_pipeline *pipeline)
1498 {
1499 const struct gen_device_info *devinfo = &pipeline->device->info;
1500 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1501 const struct anv_shader_bin *vs_bin =
1502 pipeline->shaders[MESA_SHADER_VERTEX];
1503
1504 assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1505
1506 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
1507 vs.Enable = true;
1508 vs.StatisticsEnable = true;
1509 vs.KernelStartPointer = vs_bin->kernel.offset;
1510 #if GEN_GEN >= 8
1511 vs.SIMD8DispatchEnable =
1512 vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1513 #endif
1514
1515 assert(!vs_prog_data->base.base.use_alt_mode);
1516 #if GEN_GEN < 11
1517 vs.SingleVertexDispatch = false;
1518 #endif
1519 vs.VectorMaskEnable = false;
1520 /* WA_1606682166:
1521 * Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
1522 * Disable the Sampler state prefetch functionality in the SARB by
1523 * programming 0xB000[30] to '1'.
1524 */
1525 vs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(vs_bin);
1526 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable suggests to
1527 * disable prefetching of binding tables on A0 and B0 steppings.
1528 * TODO: Revisit this WA on newer steppings.
1529 */
1530 vs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(vs_bin);
1531 vs.FloatingPointMode = IEEE754;
1532 vs.IllegalOpcodeExceptionEnable = false;
1533 vs.SoftwareExceptionEnable = false;
1534 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1535
1536 if (GEN_GEN == 9 && devinfo->gt == 4 &&
1537 anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1538 /* On Sky Lake GT4, we have experienced some hangs related to the VS
1539 * cache and tessellation. It is unknown exactly what is happening
1540 * but the Haswell docs for the "VS Reference Count Full Force Miss
1541 * Enable" field of the "Thread Mode" register refer to a HSW bug in
1542 * which the VUE handle reference count would overflow resulting in
1543 * internal reference counting bugs. My (Jason's) best guess is that
1544 * this bug cropped back up on SKL GT4 when we suddenly had more
1545 * threads in play than any previous gen9 hardware.
1546 *
1547 * What we do know for sure is that setting this bit when
1548 * tessellation shaders are in use fixes a GPU hang in Batman: Arkham
1549 * City when playing with DXVK (https://bugs.freedesktop.org/107280).
1550 * Disabling the vertex cache with tessellation shaders should only
1551 * have a minor performance impact as the tessellation shaders are
1552 * likely generating and processing far more geometry than the vertex
1553 * stage.
1554 */
1555 vs.VertexCacheDisable = true;
1556 }
1557
1558 vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length;
1559 vs.VertexURBEntryReadOffset = 0;
1560 vs.DispatchGRFStartRegisterForURBData =
1561 vs_prog_data->base.base.dispatch_grf_start_reg;
1562
1563 #if GEN_GEN >= 8
1564 vs.UserClipDistanceClipTestEnableBitmask =
1565 vs_prog_data->base.clip_distance_mask;
1566 vs.UserClipDistanceCullTestEnableBitmask =
1567 vs_prog_data->base.cull_distance_mask;
1568 #endif
1569
1570 vs.PerThreadScratchSpace = get_scratch_space(vs_bin);
1571 vs.ScratchSpaceBasePointer =
1572 get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
1573 }
1574 }
1575
1576 static void
1577 emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline,
1578 const VkPipelineTessellationStateCreateInfo *tess_info)
1579 {
1580 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1581 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
1582 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
1583 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
1584 return;
1585 }
1586
1587 const struct gen_device_info *devinfo = &pipeline->device->info;
1588 const struct anv_shader_bin *tcs_bin =
1589 pipeline->shaders[MESA_SHADER_TESS_CTRL];
1590 const struct anv_shader_bin *tes_bin =
1591 pipeline->shaders[MESA_SHADER_TESS_EVAL];
1592
1593 const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1594 const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1595
1596 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
1597 hs.Enable = true;
1598 hs.StatisticsEnable = true;
1599 hs.KernelStartPointer = tcs_bin->kernel.offset;
1600 /* WA_1606682166 */
1601 hs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(tcs_bin);
1602 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1603 hs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tcs_bin);
1604 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1605 hs.IncludeVertexHandles = true;
1606 hs.InstanceCount = tcs_prog_data->instances - 1;
1607
1608 hs.VertexURBEntryReadLength = 0;
1609 hs.VertexURBEntryReadOffset = 0;
1610 hs.DispatchGRFStartRegisterForURBData =
1611 tcs_prog_data->base.base.dispatch_grf_start_reg;
1612
1613 hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1614 hs.ScratchSpaceBasePointer =
1615 get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
1616
1617 #if GEN_GEN >= 9
1618 hs.DispatchMode = tcs_prog_data->base.dispatch_mode;
1619 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
1620 #endif
1621 }
1622
1623 const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
1624 tess_info ? vk_find_struct_const(tess_info, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO) : NULL;
1625
1626 VkTessellationDomainOrigin uv_origin =
1627 domain_origin_state ? domain_origin_state->domainOrigin :
1628 VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
1629
1630 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
1631 te.Partitioning = tes_prog_data->partitioning;
1632
1633 if (uv_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT) {
1634 te.OutputTopology = tes_prog_data->output_topology;
1635 } else {
1636 /* When the origin is upper-left, we have to flip the winding order */
1637 if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
1638 te.OutputTopology = OUTPUT_TRI_CW;
1639 } else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
1640 te.OutputTopology = OUTPUT_TRI_CCW;
1641 } else {
1642 te.OutputTopology = tes_prog_data->output_topology;
1643 }
1644 }
1645
1646 te.TEDomain = tes_prog_data->domain;
1647 te.TEEnable = true;
1648 te.MaximumTessellationFactorOdd = 63.0;
1649 te.MaximumTessellationFactorNotOdd = 64.0;
1650 }
1651
1652 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
1653 ds.Enable = true;
1654 ds.StatisticsEnable = true;
1655 ds.KernelStartPointer = tes_bin->kernel.offset;
1656 /* WA_1606682166 */
1657 ds.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(tes_bin);
1658 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1659 ds.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(tes_bin);
1660 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1661
1662 ds.ComputeWCoordinateEnable =
1663 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1664
1665 ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1666 ds.PatchURBEntryReadOffset = 0;
1667 ds.DispatchGRFStartRegisterForURBData =
1668 tes_prog_data->base.base.dispatch_grf_start_reg;
1669
1670 #if GEN_GEN >= 8
1671 #if GEN_GEN < 11
1672 ds.DispatchMode =
1673 tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1674 DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1675 DISPATCH_MODE_SIMD4X2;
1676 #else
1677 assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
1678 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1679 #endif
1680
1681 ds.UserClipDistanceClipTestEnableBitmask =
1682 tes_prog_data->base.clip_distance_mask;
1683 ds.UserClipDistanceCullTestEnableBitmask =
1684 tes_prog_data->base.cull_distance_mask;
1685 #endif
1686
1687 ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1688 ds.ScratchSpaceBasePointer =
1689 get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
1690 }
1691 }
1692
1693 static void
1694 emit_3dstate_gs(struct anv_pipeline *pipeline)
1695 {
1696 const struct gen_device_info *devinfo = &pipeline->device->info;
1697 const struct anv_shader_bin *gs_bin =
1698 pipeline->shaders[MESA_SHADER_GEOMETRY];
1699
1700 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1701 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
1702 return;
1703 }
1704
1705 const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1706
1707 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
1708 gs.Enable = true;
1709 gs.StatisticsEnable = true;
1710 gs.KernelStartPointer = gs_bin->kernel.offset;
1711 gs.DispatchMode = gs_prog_data->base.dispatch_mode;
1712
1713 gs.SingleProgramFlow = false;
1714 gs.VectorMaskEnable = false;
1715 /* WA_1606682166 */
1716 gs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(gs_bin);
1717 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1718 gs.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(gs_bin);
1719 gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles;
1720 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
1721
1722 if (GEN_GEN == 8) {
1723 /* Broadwell is weird. It needs us to divide by 2. */
1724 gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1725 } else {
1726 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1727 }
1728
1729 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1730 gs.OutputTopology = gs_prog_data->output_topology;
1731 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1732 gs.ControlDataFormat = gs_prog_data->control_data_format;
1733 gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords;
1734 gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1;
1735 gs.ReorderMode = TRAILING;
1736
1737 #if GEN_GEN >= 8
1738 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
1739 gs.StaticOutput = gs_prog_data->static_vertex_count >= 0;
1740 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1741 gs_prog_data->static_vertex_count : 0;
1742 #endif
1743
1744 gs.VertexURBEntryReadOffset = 0;
1745 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1746 gs.DispatchGRFStartRegisterForURBData =
1747 gs_prog_data->base.base.dispatch_grf_start_reg;
1748
1749 #if GEN_GEN >= 8
1750 gs.UserClipDistanceClipTestEnableBitmask =
1751 gs_prog_data->base.clip_distance_mask;
1752 gs.UserClipDistanceCullTestEnableBitmask =
1753 gs_prog_data->base.cull_distance_mask;
1754 #endif
1755
1756 gs.PerThreadScratchSpace = get_scratch_space(gs_bin);
1757 gs.ScratchSpaceBasePointer =
1758 get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
1759 }
1760 }
1761
1762 static bool
1763 has_color_buffer_write_enabled(const struct anv_pipeline *pipeline,
1764 const VkPipelineColorBlendStateCreateInfo *blend)
1765 {
1766 const struct anv_shader_bin *shader_bin =
1767 pipeline->shaders[MESA_SHADER_FRAGMENT];
1768 if (!shader_bin)
1769 return false;
1770
1771 const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1772 for (int i = 0; i < bind_map->surface_count; i++) {
1773 struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[i];
1774
1775 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1776 continue;
1777
1778 if (binding->index == UINT32_MAX)
1779 continue;
1780
1781 if (blend && blend->pAttachments[binding->index].colorWriteMask != 0)
1782 return true;
1783 }
1784
1785 return false;
1786 }
1787
1788 static void
1789 emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
1790 const VkPipelineInputAssemblyStateCreateInfo *ia,
1791 const VkPipelineRasterizationStateCreateInfo *raster,
1792 const VkPipelineColorBlendStateCreateInfo *blend,
1793 const VkPipelineMultisampleStateCreateInfo *multisample,
1794 const VkPipelineRasterizationLineStateCreateInfoEXT *line)
1795 {
1796 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1797
1798 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
1799 wm.StatisticsEnable = true;
1800 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1801 wm.LineAntialiasingRegionWidth = _10pixels;
1802 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1803
1804 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1805 if (wm_prog_data->early_fragment_tests) {
1806 wm.EarlyDepthStencilControl = EDSC_PREPS;
1807 } else if (wm_prog_data->has_side_effects) {
1808 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1809 } else {
1810 wm.EarlyDepthStencilControl = EDSC_NORMAL;
1811 }
1812
1813 #if GEN_GEN >= 8
1814 /* Gen8 hardware tries to compute ThreadDispatchEnable for us but
1815 * doesn't take into account KillPixels when no depth or stencil
1816 * writes are enabled. In order for occlusion queries to work
1817 * correctly with no attachments, we need to force-enable PS thread
1818 * dispatch.
1819 *
1820 * The BDW docs are pretty clear that that this bit isn't validated
1821 * and probably shouldn't be used in production:
1822 *
1823 * "This must always be set to Normal. This field should not be
1824 * tested for functional validation."
1825 *
1826 * Unfortunately, however, the other mechanism we have for doing this
1827 * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
1828 * Given two bad options, we choose the one which works.
1829 */
1830 if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1831 !has_color_buffer_write_enabled(pipeline, blend))
1832 wm.ForceThreadDispatchEnable = ForceON;
1833 #endif
1834
1835 wm.BarycentricInterpolationMode =
1836 wm_prog_data->barycentric_interp_modes;
1837
1838 #if GEN_GEN < 8
1839 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1840 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1841 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1842 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1843
1844 /* If the subpass has a depth or stencil self-dependency, then we
1845 * need to force the hardware to do the depth/stencil write *after*
1846 * fragment shader execution. Otherwise, the writes may hit memory
1847 * before we get around to fetching from the input attachment and we
1848 * may get the depth or stencil value from the current draw rather
1849 * than the previous one.
1850 */
1851 wm.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1852 wm_prog_data->uses_kill;
1853
1854 if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1855 wm_prog_data->has_side_effects ||
1856 wm.PixelShaderKillsPixel ||
1857 has_color_buffer_write_enabled(pipeline, blend))
1858 wm.ThreadDispatchEnable = true;
1859
1860 if (multisample && multisample->rasterizationSamples > 1) {
1861 if (wm_prog_data->persample_dispatch) {
1862 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1863 } else {
1864 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1865 }
1866 } else {
1867 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1868 }
1869 wm.MultisampleRasterizationMode =
1870 gen7_ms_rast_mode(pipeline, ia, raster, multisample);
1871 #endif
1872
1873 wm.LineStippleEnable = line && line->stippledLineEnable;
1874 }
1875 }
1876 }
1877
1878 static void
1879 emit_3dstate_ps(struct anv_pipeline *pipeline,
1880 const VkPipelineColorBlendStateCreateInfo *blend,
1881 const VkPipelineMultisampleStateCreateInfo *multisample)
1882 {
1883 UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
1884 const struct anv_shader_bin *fs_bin =
1885 pipeline->shaders[MESA_SHADER_FRAGMENT];
1886
1887 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1888 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1889 #if GEN_GEN == 7
1890 /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1891 * we don't at least set the maximum number of threads.
1892 */
1893 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1894 #endif
1895 }
1896 return;
1897 }
1898
1899 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1900
1901 #if GEN_GEN < 8
1902 /* The hardware wedges if you have this bit set but don't turn on any dual
1903 * source blend factors.
1904 */
1905 bool dual_src_blend = false;
1906 if (wm_prog_data->dual_src_blend && blend) {
1907 for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1908 const VkPipelineColorBlendAttachmentState *bstate =
1909 &blend->pAttachments[i];
1910
1911 if (bstate->blendEnable &&
1912 (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1913 is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1914 is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1915 is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1916 dual_src_blend = true;
1917 break;
1918 }
1919 }
1920 }
1921 #endif
1922
1923 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1924 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1925 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1926 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
1927
1928 /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
1929 *
1930 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
1931 * Dispatch must not be enabled for PER_PIXEL dispatch mode."
1932 *
1933 * Since 16x MSAA is first introduced on SKL, we don't need to apply
1934 * the workaround on any older hardware.
1935 */
1936 if (GEN_GEN >= 9 && !wm_prog_data->persample_dispatch &&
1937 multisample && multisample->rasterizationSamples == 16) {
1938 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
1939 ps._32PixelDispatchEnable = false;
1940 }
1941
1942 ps.KernelStartPointer0 = fs_bin->kernel.offset +
1943 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
1944 ps.KernelStartPointer1 = fs_bin->kernel.offset +
1945 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
1946 ps.KernelStartPointer2 = fs_bin->kernel.offset +
1947 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
1948
1949 ps.SingleProgramFlow = false;
1950 ps.VectorMaskEnable = GEN_GEN >= 8;
1951 /* WA_1606682166 */
1952 ps.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(fs_bin);
1953 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable */
1954 ps.BindingTableEntryCount = GEN_GEN == 11 ? 0 : get_binding_table_entry_count(fs_bin);
1955 ps.PushConstantEnable = wm_prog_data->base.nr_params > 0 ||
1956 wm_prog_data->base.ubo_ranges[0].length;
1957 ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
1958 POSOFFSET_SAMPLE: POSOFFSET_NONE;
1959 #if GEN_GEN < 8
1960 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
1961 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1962 ps.DualSourceBlendEnable = dual_src_blend;
1963 #endif
1964
1965 #if GEN_IS_HASWELL
1966 /* Haswell requires the sample mask to be set in this packet as well
1967 * as in 3DSTATE_SAMPLE_MASK; the values should match.
1968 */
1969 ps.SampleMask = 0xff;
1970 #endif
1971
1972 #if GEN_GEN >= 9
1973 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
1974 #elif GEN_GEN >= 8
1975 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
1976 #else
1977 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1978 #endif
1979
1980 ps.DispatchGRFStartRegisterForConstantSetupData0 =
1981 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
1982 ps.DispatchGRFStartRegisterForConstantSetupData1 =
1983 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
1984 ps.DispatchGRFStartRegisterForConstantSetupData2 =
1985 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
1986
1987 ps.PerThreadScratchSpace = get_scratch_space(fs_bin);
1988 ps.ScratchSpaceBasePointer =
1989 get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
1990 }
1991 }
1992
1993 #if GEN_GEN >= 8
1994 static void
1995 emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
1996 struct anv_subpass *subpass,
1997 const VkPipelineColorBlendStateCreateInfo *blend)
1998 {
1999 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
2000
2001 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
2002 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
2003 return;
2004 }
2005
2006 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
2007 ps.PixelShaderValid = true;
2008 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
2009 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
2010 ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
2011 ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
2012 ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
2013 ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
2014
2015 /* If the subpass has a depth or stencil self-dependency, then we need
2016 * to force the hardware to do the depth/stencil write *after* fragment
2017 * shader execution. Otherwise, the writes may hit memory before we get
2018 * around to fetching from the input attachment and we may get the depth
2019 * or stencil value from the current draw rather than the previous one.
2020 */
2021 ps.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
2022 wm_prog_data->uses_kill;
2023
2024 #if GEN_GEN >= 9
2025 ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
2026 ps.PixelShaderPullsBary = wm_prog_data->pulls_bary;
2027
2028 ps.InputCoverageMaskState = ICMS_NONE;
2029 if (wm_prog_data->uses_sample_mask) {
2030 if (wm_prog_data->post_depth_coverage)
2031 ps.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
2032 else
2033 ps.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
2034 }
2035 #else
2036 ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
2037 #endif
2038 }
2039 }
2040
2041 static void
2042 emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
2043 {
2044 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
2045 vft.PrimitiveTopologyType = pipeline->topology;
2046 }
2047 }
2048 #endif
2049
2050 static void
2051 emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
2052 {
2053 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
2054 vfs.StatisticsEnable = true;
2055 }
2056 }
2057
2058 static void
2059 compute_kill_pixel(struct anv_pipeline *pipeline,
2060 const VkPipelineMultisampleStateCreateInfo *ms_info,
2061 const struct anv_subpass *subpass)
2062 {
2063 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
2064 pipeline->kill_pixel = false;
2065 return;
2066 }
2067
2068 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
2069
2070 /* This computes the KillPixel portion of the computation for whether or
2071 * not we want to enable the PMA fix on gen8 or gen9. It's given by this
2072 * chunk of the giant formula:
2073 *
2074 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
2075 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
2076 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
2077 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
2078 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
2079 *
2080 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
2081 * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
2082 * of an alpha test.
2083 */
2084 pipeline->kill_pixel =
2085 subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
2086 wm_prog_data->uses_omask ||
2087 (ms_info && ms_info->alphaToCoverageEnable);
2088 }
2089
2090 static VkResult
2091 genX(graphics_pipeline_create)(
2092 VkDevice _device,
2093 struct anv_pipeline_cache * cache,
2094 const VkGraphicsPipelineCreateInfo* pCreateInfo,
2095 const VkAllocationCallbacks* pAllocator,
2096 VkPipeline* pPipeline)
2097 {
2098 ANV_FROM_HANDLE(anv_device, device, _device);
2099 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
2100 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
2101 struct anv_pipeline *pipeline;
2102 VkResult result;
2103
2104 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
2105
2106 /* Use the default pipeline cache if none is specified */
2107 if (cache == NULL && device->instance->pipeline_cache_enabled)
2108 cache = &device->default_pipeline_cache;
2109
2110 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
2111 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2112 if (pipeline == NULL)
2113 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2114
2115 result = anv_pipeline_init(pipeline, device, cache,
2116 pCreateInfo, pAllocator);
2117 if (result != VK_SUCCESS) {
2118 vk_free2(&device->alloc, pAllocator, pipeline);
2119 return result;
2120 }
2121
2122 const VkPipelineRasterizationLineStateCreateInfoEXT *line_info =
2123 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
2124 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
2125
2126 assert(pCreateInfo->pVertexInputState);
2127 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
2128 assert(pCreateInfo->pRasterizationState);
2129 emit_rs_state(pipeline, pCreateInfo->pInputAssemblyState,
2130 pCreateInfo->pRasterizationState,
2131 pCreateInfo->pMultisampleState,
2132 line_info, pass, subpass);
2133 emit_ms_state(pipeline, pCreateInfo->pMultisampleState);
2134 emit_ds_state(pipeline, pCreateInfo->pDepthStencilState, pass, subpass);
2135 emit_cb_state(pipeline, pCreateInfo->pColorBlendState,
2136 pCreateInfo->pMultisampleState);
2137 compute_kill_pixel(pipeline, pCreateInfo->pMultisampleState, subpass);
2138
2139 emit_urb_setup(pipeline);
2140
2141 emit_3dstate_clip(pipeline,
2142 pCreateInfo->pInputAssemblyState,
2143 pCreateInfo->pViewportState,
2144 pCreateInfo->pRasterizationState);
2145 emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
2146
2147 #if 0
2148 /* From gen7_vs_state.c */
2149
2150 /**
2151 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2152 * Geometry > Geometry Shader > State:
2153 *
2154 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2155 * whole fixed function pipeline when the GS enable changes value in
2156 * the 3DSTATE_GS."
2157 *
2158 * The hardware architects have clarified that in this context "flush the
2159 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2160 * Stall" bit set.
2161 */
2162 if (!device->info.is_haswell && !device->info.is_baytrail)
2163 gen7_emit_vs_workaround_flush(brw);
2164 #endif
2165
2166 emit_3dstate_vs(pipeline);
2167 emit_3dstate_hs_te_ds(pipeline, pCreateInfo->pTessellationState);
2168 emit_3dstate_gs(pipeline);
2169 emit_3dstate_sbe(pipeline);
2170 emit_3dstate_wm(pipeline, subpass,
2171 pCreateInfo->pInputAssemblyState,
2172 pCreateInfo->pRasterizationState,
2173 pCreateInfo->pColorBlendState,
2174 pCreateInfo->pMultisampleState, line_info);
2175 emit_3dstate_ps(pipeline, pCreateInfo->pColorBlendState,
2176 pCreateInfo->pMultisampleState);
2177 #if GEN_GEN >= 8
2178 emit_3dstate_ps_extra(pipeline, subpass, pCreateInfo->pColorBlendState);
2179 emit_3dstate_vf_topology(pipeline);
2180 #endif
2181 emit_3dstate_vf_statistics(pipeline);
2182
2183 *pPipeline = anv_pipeline_to_handle(pipeline);
2184
2185 return pipeline->batch.status;
2186 }
2187
2188 static VkResult
2189 compute_pipeline_create(
2190 VkDevice _device,
2191 struct anv_pipeline_cache * cache,
2192 const VkComputePipelineCreateInfo* pCreateInfo,
2193 const VkAllocationCallbacks* pAllocator,
2194 VkPipeline* pPipeline)
2195 {
2196 ANV_FROM_HANDLE(anv_device, device, _device);
2197 const struct anv_physical_device *physical_device =
2198 &device->instance->physicalDevice;
2199 const struct gen_device_info *devinfo = &physical_device->info;
2200 struct anv_pipeline *pipeline;
2201 VkResult result;
2202
2203 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
2204
2205 /* Use the default pipeline cache if none is specified */
2206 if (cache == NULL && device->instance->pipeline_cache_enabled)
2207 cache = &device->default_pipeline_cache;
2208
2209 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
2210 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2211 if (pipeline == NULL)
2212 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2213
2214 pipeline->device = device;
2215
2216 pipeline->blend_state.map = NULL;
2217
2218 result = anv_reloc_list_init(&pipeline->batch_relocs,
2219 pAllocator ? pAllocator : &device->alloc);
2220 if (result != VK_SUCCESS) {
2221 vk_free2(&device->alloc, pAllocator, pipeline);
2222 return result;
2223 }
2224 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
2225 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
2226 pipeline->batch.relocs = &pipeline->batch_relocs;
2227 pipeline->batch.status = VK_SUCCESS;
2228
2229 pipeline->mem_ctx = ralloc_context(NULL);
2230 pipeline->flags = pCreateInfo->flags;
2231
2232 /* When we free the pipeline, we detect stages based on the NULL status
2233 * of various prog_data pointers. Make them NULL by default.
2234 */
2235 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
2236
2237 pipeline->needs_data_cache = false;
2238
2239 assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
2240 pipeline->active_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
2241 ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->stage.module);
2242 result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
2243 pCreateInfo->stage.pName,
2244 pCreateInfo->stage.pSpecializationInfo);
2245 if (result != VK_SUCCESS) {
2246 ralloc_free(pipeline->mem_ctx);
2247 vk_free2(&device->alloc, pAllocator, pipeline);
2248 return result;
2249 }
2250
2251 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
2252
2253 anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
2254
2255 uint32_t group_size = cs_prog_data->local_size[0] *
2256 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
2257 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
2258
2259 if (remainder > 0)
2260 pipeline->cs_right_mask = ~0u >> (32 - remainder);
2261 else
2262 pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
2263
2264 const uint32_t vfe_curbe_allocation =
2265 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
2266 cs_prog_data->push.cross_thread.regs, 2);
2267
2268 const uint32_t subslices = MAX2(physical_device->subslice_total, 1);
2269
2270 const struct anv_shader_bin *cs_bin =
2271 pipeline->shaders[MESA_SHADER_COMPUTE];
2272
2273 anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
2274 #if GEN_GEN > 7
2275 vfe.StackSize = 0;
2276 #else
2277 vfe.GPGPUMode = true;
2278 #endif
2279 vfe.MaximumNumberofThreads =
2280 devinfo->max_cs_threads * subslices - 1;
2281 vfe.NumberofURBEntries = GEN_GEN <= 7 ? 0 : 2;
2282 #if GEN_GEN < 11
2283 vfe.ResetGatewayTimer = true;
2284 #endif
2285 #if GEN_GEN <= 8
2286 vfe.BypassGatewayControl = true;
2287 #endif
2288 vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
2289 vfe.CURBEAllocationSize = vfe_curbe_allocation;
2290
2291 if (cs_bin->prog_data->total_scratch) {
2292 if (GEN_GEN >= 8) {
2293 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
2294 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
2295 */
2296 vfe.PerThreadScratchSpace =
2297 ffs(cs_bin->prog_data->total_scratch) - 11;
2298 } else if (GEN_IS_HASWELL) {
2299 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
2300 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
2301 */
2302 vfe.PerThreadScratchSpace =
2303 ffs(cs_bin->prog_data->total_scratch) - 12;
2304 } else {
2305 /* IVB and BYT use the range [0, 11] to mean [1kB, 12kB]
2306 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
2307 */
2308 vfe.PerThreadScratchSpace =
2309 cs_bin->prog_data->total_scratch / 1024 - 1;
2310 }
2311 vfe.ScratchSpaceBasePointer =
2312 get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
2313 }
2314 }
2315
2316 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2317 .KernelStartPointer = cs_bin->kernel.offset,
2318 /* WA_1606682166 */
2319 .SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(cs_bin),
2320 /* Gen 11 workarounds table #2056 WABTPPrefetchDisable
2321 *
2322 * We add 1 because the CS indirect parameters buffer isn't accounted
2323 * for in bind_map.surface_count.
2324 */
2325 .BindingTableEntryCount = GEN_GEN == 11 ? 0 : 1 + MIN2(cs_bin->bind_map.surface_count, 30),
2326 .BarrierEnable = cs_prog_data->uses_barrier,
2327 .SharedLocalMemorySize =
2328 encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
2329
2330 #if !GEN_IS_HASWELL
2331 .ConstantURBEntryReadOffset = 0,
2332 #endif
2333 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
2334 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2335 .CrossThreadConstantDataReadLength =
2336 cs_prog_data->push.cross_thread.regs,
2337 #endif
2338
2339 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
2340 };
2341 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
2342 pipeline->interface_descriptor_data,
2343 &desc);
2344
2345 *pPipeline = anv_pipeline_to_handle(pipeline);
2346
2347 return pipeline->batch.status;
2348 }
2349
2350 VkResult genX(CreateGraphicsPipelines)(
2351 VkDevice _device,
2352 VkPipelineCache pipelineCache,
2353 uint32_t count,
2354 const VkGraphicsPipelineCreateInfo* pCreateInfos,
2355 const VkAllocationCallbacks* pAllocator,
2356 VkPipeline* pPipelines)
2357 {
2358 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2359
2360 VkResult result = VK_SUCCESS;
2361
2362 unsigned i;
2363 for (i = 0; i < count; i++) {
2364 result = genX(graphics_pipeline_create)(_device,
2365 pipeline_cache,
2366 &pCreateInfos[i],
2367 pAllocator, &pPipelines[i]);
2368
2369 /* Bail out on the first error as it is not obvious what error should be
2370 * report upon 2 different failures. */
2371 if (result != VK_SUCCESS)
2372 break;
2373 }
2374
2375 for (; i < count; i++)
2376 pPipelines[i] = VK_NULL_HANDLE;
2377
2378 return result;
2379 }
2380
2381 VkResult genX(CreateComputePipelines)(
2382 VkDevice _device,
2383 VkPipelineCache pipelineCache,
2384 uint32_t count,
2385 const VkComputePipelineCreateInfo* pCreateInfos,
2386 const VkAllocationCallbacks* pAllocator,
2387 VkPipeline* pPipelines)
2388 {
2389 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2390
2391 VkResult result = VK_SUCCESS;
2392
2393 unsigned i;
2394 for (i = 0; i < count; i++) {
2395 result = compute_pipeline_create(_device, pipeline_cache,
2396 &pCreateInfos[i],
2397 pAllocator, &pPipelines[i]);
2398
2399 /* Bail out on the first error as it is not obvious what error should be
2400 * report upon 2 different failures. */
2401 if (result != VK_SUCCESS)
2402 break;
2403 }
2404
2405 for (; i < count; i++)
2406 pPipelines[i] = VK_NULL_HANDLE;
2407
2408 return result;
2409 }