anv: Insert holes for non-existant XFB varyings
[mesa.git] / src / intel / vulkan / genX_pipeline.c
1 /*
2 * Copyright © 2015 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "anv_private.h"
25
26 #include "genxml/gen_macros.h"
27 #include "genxml/genX_pack.h"
28
29 #include "common/gen_l3_config.h"
30 #include "common/gen_sample_positions.h"
31 #include "nir/nir_xfb_info.h"
32 #include "vk_util.h"
33 #include "vk_format_info.h"
34
35 static uint32_t
36 vertex_element_comp_control(enum isl_format format, unsigned comp)
37 {
38 uint8_t bits;
39 switch (comp) {
40 case 0: bits = isl_format_layouts[format].channels.r.bits; break;
41 case 1: bits = isl_format_layouts[format].channels.g.bits; break;
42 case 2: bits = isl_format_layouts[format].channels.b.bits; break;
43 case 3: bits = isl_format_layouts[format].channels.a.bits; break;
44 default: unreachable("Invalid component");
45 }
46
47 /*
48 * Take in account hardware restrictions when dealing with 64-bit floats.
49 *
50 * From Broadwell spec, command reference structures, page 586:
51 * "When SourceElementFormat is set to one of the *64*_PASSTHRU formats,
52 * 64-bit components are stored * in the URB without any conversion. In
53 * this case, vertex elements must be written as 128 or 256 bits, with
54 * VFCOMP_STORE_0 being used to pad the output as required. E.g., if
55 * R64_PASSTHRU is used to copy a 64-bit Red component into the URB,
56 * Component 1 must be specified as VFCOMP_STORE_0 (with Components 2,3
57 * set to VFCOMP_NOSTORE) in order to output a 128-bit vertex element, or
58 * Components 1-3 must be specified as VFCOMP_STORE_0 in order to output
59 * a 256-bit vertex element. Likewise, use of R64G64B64_PASSTHRU requires
60 * Component 3 to be specified as VFCOMP_STORE_0 in order to output a
61 * 256-bit vertex element."
62 */
63 if (bits) {
64 return VFCOMP_STORE_SRC;
65 } else if (comp >= 2 &&
66 !isl_format_layouts[format].channels.b.bits &&
67 isl_format_layouts[format].channels.r.type == ISL_RAW) {
68 /* When emitting 64-bit attributes, we need to write either 128 or 256
69 * bit chunks, using VFCOMP_NOSTORE when not writing the chunk, and
70 * VFCOMP_STORE_0 to pad the written chunk */
71 return VFCOMP_NOSTORE;
72 } else if (comp < 3 ||
73 isl_format_layouts[format].channels.r.type == ISL_RAW) {
74 /* Note we need to pad with value 0, not 1, due hardware restrictions
75 * (see comment above) */
76 return VFCOMP_STORE_0;
77 } else if (isl_format_layouts[format].channels.r.type == ISL_UINT ||
78 isl_format_layouts[format].channels.r.type == ISL_SINT) {
79 assert(comp == 3);
80 return VFCOMP_STORE_1_INT;
81 } else {
82 assert(comp == 3);
83 return VFCOMP_STORE_1_FP;
84 }
85 }
86
87 static void
88 emit_vertex_input(struct anv_pipeline *pipeline,
89 const VkPipelineVertexInputStateCreateInfo *info)
90 {
91 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
92
93 /* Pull inputs_read out of the VS prog data */
94 const uint64_t inputs_read = vs_prog_data->inputs_read;
95 const uint64_t double_inputs_read =
96 vs_prog_data->double_inputs_read & inputs_read;
97 assert((inputs_read & ((1 << VERT_ATTRIB_GENERIC0) - 1)) == 0);
98 const uint32_t elements = inputs_read >> VERT_ATTRIB_GENERIC0;
99 const uint32_t elements_double = double_inputs_read >> VERT_ATTRIB_GENERIC0;
100 const bool needs_svgs_elem = vs_prog_data->uses_vertexid ||
101 vs_prog_data->uses_instanceid ||
102 vs_prog_data->uses_firstvertex ||
103 vs_prog_data->uses_baseinstance;
104
105 uint32_t elem_count = __builtin_popcount(elements) -
106 __builtin_popcount(elements_double) / 2;
107
108 const uint32_t total_elems =
109 MAX2(1, elem_count + needs_svgs_elem + vs_prog_data->uses_drawid);
110
111 uint32_t *p;
112
113 const uint32_t num_dwords = 1 + total_elems * 2;
114 p = anv_batch_emitn(&pipeline->batch, num_dwords,
115 GENX(3DSTATE_VERTEX_ELEMENTS));
116 if (!p)
117 return;
118
119 for (uint32_t i = 0; i < total_elems; i++) {
120 /* The SKL docs for VERTEX_ELEMENT_STATE say:
121 *
122 * "All elements must be valid from Element[0] to the last valid
123 * element. (I.e. if Element[2] is valid then Element[1] and
124 * Element[0] must also be valid)."
125 *
126 * The SKL docs for 3D_Vertex_Component_Control say:
127 *
128 * "Don't store this component. (Not valid for Component 0, but can
129 * be used for Component 1-3)."
130 *
131 * So we can't just leave a vertex element blank and hope for the best.
132 * We have to tell the VF hardware to put something in it; so we just
133 * store a bunch of zero.
134 *
135 * TODO: Compact vertex elements so we never end up with holes.
136 */
137 struct GENX(VERTEX_ELEMENT_STATE) element = {
138 .Valid = true,
139 .Component0Control = VFCOMP_STORE_0,
140 .Component1Control = VFCOMP_STORE_0,
141 .Component2Control = VFCOMP_STORE_0,
142 .Component3Control = VFCOMP_STORE_0,
143 };
144 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + i * 2], &element);
145 }
146
147 for (uint32_t i = 0; i < info->vertexAttributeDescriptionCount; i++) {
148 const VkVertexInputAttributeDescription *desc =
149 &info->pVertexAttributeDescriptions[i];
150 enum isl_format format = anv_get_isl_format(&pipeline->device->info,
151 desc->format,
152 VK_IMAGE_ASPECT_COLOR_BIT,
153 VK_IMAGE_TILING_LINEAR);
154
155 assert(desc->binding < MAX_VBS);
156
157 if ((elements & (1 << desc->location)) == 0)
158 continue; /* Binding unused */
159
160 uint32_t slot =
161 __builtin_popcount(elements & ((1 << desc->location) - 1)) -
162 DIV_ROUND_UP(__builtin_popcount(elements_double &
163 ((1 << desc->location) -1)), 2);
164
165 struct GENX(VERTEX_ELEMENT_STATE) element = {
166 .VertexBufferIndex = desc->binding,
167 .Valid = true,
168 .SourceElementFormat = format,
169 .EdgeFlagEnable = false,
170 .SourceElementOffset = desc->offset,
171 .Component0Control = vertex_element_comp_control(format, 0),
172 .Component1Control = vertex_element_comp_control(format, 1),
173 .Component2Control = vertex_element_comp_control(format, 2),
174 .Component3Control = vertex_element_comp_control(format, 3),
175 };
176 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + slot * 2], &element);
177
178 #if GEN_GEN >= 8
179 /* On Broadwell and later, we have a separate VF_INSTANCING packet
180 * that controls instancing. On Haswell and prior, that's part of
181 * VERTEX_BUFFER_STATE which we emit later.
182 */
183 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
184 vfi.InstancingEnable = pipeline->vb[desc->binding].instanced;
185 vfi.VertexElementIndex = slot;
186 vfi.InstanceDataStepRate =
187 pipeline->vb[desc->binding].instance_divisor;
188 }
189 #endif
190 }
191
192 const uint32_t id_slot = elem_count;
193 if (needs_svgs_elem) {
194 /* From the Broadwell PRM for the 3D_Vertex_Component_Control enum:
195 * "Within a VERTEX_ELEMENT_STATE structure, if a Component
196 * Control field is set to something other than VFCOMP_STORE_SRC,
197 * no higher-numbered Component Control fields may be set to
198 * VFCOMP_STORE_SRC"
199 *
200 * This means, that if we have BaseInstance, we need BaseVertex as
201 * well. Just do all or nothing.
202 */
203 uint32_t base_ctrl = (vs_prog_data->uses_firstvertex ||
204 vs_prog_data->uses_baseinstance) ?
205 VFCOMP_STORE_SRC : VFCOMP_STORE_0;
206
207 struct GENX(VERTEX_ELEMENT_STATE) element = {
208 .VertexBufferIndex = ANV_SVGS_VB_INDEX,
209 .Valid = true,
210 .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
211 .Component0Control = base_ctrl,
212 .Component1Control = base_ctrl,
213 #if GEN_GEN >= 8
214 .Component2Control = VFCOMP_STORE_0,
215 .Component3Control = VFCOMP_STORE_0,
216 #else
217 .Component2Control = VFCOMP_STORE_VID,
218 .Component3Control = VFCOMP_STORE_IID,
219 #endif
220 };
221 GENX(VERTEX_ELEMENT_STATE_pack)(NULL, &p[1 + id_slot * 2], &element);
222 }
223
224 #if GEN_GEN >= 8
225 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_SGVS), sgvs) {
226 sgvs.VertexIDEnable = vs_prog_data->uses_vertexid;
227 sgvs.VertexIDComponentNumber = 2;
228 sgvs.VertexIDElementOffset = id_slot;
229 sgvs.InstanceIDEnable = vs_prog_data->uses_instanceid;
230 sgvs.InstanceIDComponentNumber = 3;
231 sgvs.InstanceIDElementOffset = id_slot;
232 }
233 #endif
234
235 const uint32_t drawid_slot = elem_count + needs_svgs_elem;
236 if (vs_prog_data->uses_drawid) {
237 struct GENX(VERTEX_ELEMENT_STATE) element = {
238 .VertexBufferIndex = ANV_DRAWID_VB_INDEX,
239 .Valid = true,
240 .SourceElementFormat = ISL_FORMAT_R32_UINT,
241 .Component0Control = VFCOMP_STORE_SRC,
242 .Component1Control = VFCOMP_STORE_0,
243 .Component2Control = VFCOMP_STORE_0,
244 .Component3Control = VFCOMP_STORE_0,
245 };
246 GENX(VERTEX_ELEMENT_STATE_pack)(NULL,
247 &p[1 + drawid_slot * 2],
248 &element);
249
250 #if GEN_GEN >= 8
251 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_INSTANCING), vfi) {
252 vfi.VertexElementIndex = drawid_slot;
253 }
254 #endif
255 }
256 }
257
258 void
259 genX(emit_urb_setup)(struct anv_device *device, struct anv_batch *batch,
260 const struct gen_l3_config *l3_config,
261 VkShaderStageFlags active_stages,
262 const unsigned entry_size[4])
263 {
264 const struct gen_device_info *devinfo = &device->info;
265 #if GEN_IS_HASWELL
266 const unsigned push_constant_kb = devinfo->gt == 3 ? 32 : 16;
267 #else
268 const unsigned push_constant_kb = GEN_GEN >= 8 ? 32 : 16;
269 #endif
270
271 const unsigned urb_size_kb = gen_get_l3_config_urb_size(devinfo, l3_config);
272
273 unsigned entries[4];
274 unsigned start[4];
275 gen_get_urb_config(devinfo,
276 1024 * push_constant_kb, 1024 * urb_size_kb,
277 active_stages &
278 VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT,
279 active_stages & VK_SHADER_STAGE_GEOMETRY_BIT,
280 entry_size, entries, start);
281
282 #if GEN_GEN == 7 && !GEN_IS_HASWELL
283 /* From the IVB PRM Vol. 2, Part 1, Section 3.2.1:
284 *
285 * "A PIPE_CONTROL with Post-Sync Operation set to 1h and a depth stall
286 * needs to be sent just prior to any 3DSTATE_VS, 3DSTATE_URB_VS,
287 * 3DSTATE_CONSTANT_VS, 3DSTATE_BINDING_TABLE_POINTER_VS,
288 * 3DSTATE_SAMPLER_STATE_POINTER_VS command. Only one PIPE_CONTROL
289 * needs to be sent before any combination of VS associated 3DSTATE."
290 */
291 anv_batch_emit(batch, GEN7_PIPE_CONTROL, pc) {
292 pc.DepthStallEnable = true;
293 pc.PostSyncOperation = WriteImmediateData;
294 pc.Address = (struct anv_address) { device->workaround_bo, 0 };
295 }
296 #endif
297
298 for (int i = 0; i <= MESA_SHADER_GEOMETRY; i++) {
299 anv_batch_emit(batch, GENX(3DSTATE_URB_VS), urb) {
300 urb._3DCommandSubOpcode += i;
301 urb.VSURBStartingAddress = start[i];
302 urb.VSURBEntryAllocationSize = entry_size[i] - 1;
303 urb.VSNumberofURBEntries = entries[i];
304 }
305 }
306 }
307
308 static void
309 emit_urb_setup(struct anv_pipeline *pipeline)
310 {
311 unsigned entry_size[4];
312 for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) {
313 const struct brw_vue_prog_data *prog_data =
314 !anv_pipeline_has_stage(pipeline, i) ? NULL :
315 (const struct brw_vue_prog_data *) pipeline->shaders[i]->prog_data;
316
317 entry_size[i] = prog_data ? prog_data->urb_entry_size : 1;
318 }
319
320 genX(emit_urb_setup)(pipeline->device, &pipeline->batch,
321 pipeline->urb.l3_config,
322 pipeline->active_stages, entry_size);
323 }
324
325 static void
326 emit_3dstate_sbe(struct anv_pipeline *pipeline)
327 {
328 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
329
330 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
331 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE), sbe);
332 #if GEN_GEN >= 8
333 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ), sbe);
334 #endif
335 return;
336 }
337
338 const struct brw_vue_map *fs_input_map =
339 &anv_pipeline_get_last_vue_prog_data(pipeline)->vue_map;
340
341 struct GENX(3DSTATE_SBE) sbe = {
342 GENX(3DSTATE_SBE_header),
343 .AttributeSwizzleEnable = true,
344 .PointSpriteTextureCoordinateOrigin = UPPERLEFT,
345 .NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs,
346 .ConstantInterpolationEnable = wm_prog_data->flat_inputs,
347 };
348
349 #if GEN_GEN >= 9
350 for (unsigned i = 0; i < 32; i++)
351 sbe.AttributeActiveComponentFormat[i] = ACF_XYZW;
352 #endif
353
354 #if GEN_GEN >= 8
355 /* On Broadwell, they broke 3DSTATE_SBE into two packets */
356 struct GENX(3DSTATE_SBE_SWIZ) swiz = {
357 GENX(3DSTATE_SBE_SWIZ_header),
358 };
359 #else
360 # define swiz sbe
361 #endif
362
363 /* Skip the VUE header and position slots by default */
364 unsigned urb_entry_read_offset = 1;
365 int max_source_attr = 0;
366 for (int attr = 0; attr < VARYING_SLOT_MAX; attr++) {
367 int input_index = wm_prog_data->urb_setup[attr];
368
369 if (input_index < 0)
370 continue;
371
372 /* gl_Viewport and gl_Layer are stored in the VUE header */
373 if (attr == VARYING_SLOT_VIEWPORT || attr == VARYING_SLOT_LAYER) {
374 urb_entry_read_offset = 0;
375 continue;
376 }
377
378 if (attr == VARYING_SLOT_PNTC) {
379 sbe.PointSpriteTextureCoordinateEnable = 1 << input_index;
380 continue;
381 }
382
383 const int slot = fs_input_map->varying_to_slot[attr];
384
385 if (input_index >= 16)
386 continue;
387
388 if (slot == -1) {
389 /* This attribute does not exist in the VUE--that means that the
390 * vertex shader did not write to it. It could be that it's a
391 * regular varying read by the fragment shader but not written by
392 * the vertex shader or it's gl_PrimitiveID. In the first case the
393 * value is undefined, in the second it needs to be
394 * gl_PrimitiveID.
395 */
396 swiz.Attribute[input_index].ConstantSource = PRIM_ID;
397 swiz.Attribute[input_index].ComponentOverrideX = true;
398 swiz.Attribute[input_index].ComponentOverrideY = true;
399 swiz.Attribute[input_index].ComponentOverrideZ = true;
400 swiz.Attribute[input_index].ComponentOverrideW = true;
401 } else {
402 /* We have to subtract two slots to accout for the URB entry output
403 * read offset in the VS and GS stages.
404 */
405 const int source_attr = slot - 2 * urb_entry_read_offset;
406 assert(source_attr >= 0 && source_attr < 32);
407 max_source_attr = MAX2(max_source_attr, source_attr);
408 swiz.Attribute[input_index].SourceAttribute = source_attr;
409 }
410 }
411
412 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
413 sbe.VertexURBEntryReadLength = DIV_ROUND_UP(max_source_attr + 1, 2);
414 #if GEN_GEN >= 8
415 sbe.ForceVertexURBEntryReadOffset = true;
416 sbe.ForceVertexURBEntryReadLength = true;
417 #endif
418
419 uint32_t *dw = anv_batch_emit_dwords(&pipeline->batch,
420 GENX(3DSTATE_SBE_length));
421 if (!dw)
422 return;
423 GENX(3DSTATE_SBE_pack)(&pipeline->batch, dw, &sbe);
424
425 #if GEN_GEN >= 8
426 dw = anv_batch_emit_dwords(&pipeline->batch, GENX(3DSTATE_SBE_SWIZ_length));
427 if (!dw)
428 return;
429 GENX(3DSTATE_SBE_SWIZ_pack)(&pipeline->batch, dw, &swiz);
430 #endif
431 }
432
433 static const uint32_t vk_to_gen_cullmode[] = {
434 [VK_CULL_MODE_NONE] = CULLMODE_NONE,
435 [VK_CULL_MODE_FRONT_BIT] = CULLMODE_FRONT,
436 [VK_CULL_MODE_BACK_BIT] = CULLMODE_BACK,
437 [VK_CULL_MODE_FRONT_AND_BACK] = CULLMODE_BOTH
438 };
439
440 static const uint32_t vk_to_gen_fillmode[] = {
441 [VK_POLYGON_MODE_FILL] = FILL_MODE_SOLID,
442 [VK_POLYGON_MODE_LINE] = FILL_MODE_WIREFRAME,
443 [VK_POLYGON_MODE_POINT] = FILL_MODE_POINT,
444 };
445
446 static const uint32_t vk_to_gen_front_face[] = {
447 [VK_FRONT_FACE_COUNTER_CLOCKWISE] = 1,
448 [VK_FRONT_FACE_CLOCKWISE] = 0
449 };
450
451 static VkLineRasterizationModeEXT
452 vk_line_rasterization_mode(const VkPipelineRasterizationLineStateCreateInfoEXT *line_info,
453 const VkPipelineMultisampleStateCreateInfo *ms_info)
454 {
455 VkLineRasterizationModeEXT line_mode =
456 line_info ? line_info->lineRasterizationMode :
457 VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT;
458
459 if (line_mode == VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT) {
460 if (ms_info && ms_info->rasterizationSamples > 1) {
461 return VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT;
462 } else {
463 return VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT;
464 }
465 }
466
467 return line_mode;
468 }
469
470 /** Returns the final polygon mode for rasterization
471 *
472 * This function takes into account polygon mode, primitive topology and the
473 * different shader stages which might generate their own type of primitives.
474 */
475 static VkPolygonMode
476 anv_raster_polygon_mode(struct anv_pipeline *pipeline,
477 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
478 const VkPipelineRasterizationStateCreateInfo *rs_info)
479 {
480 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
481 switch (get_gs_prog_data(pipeline)->output_topology) {
482 case _3DPRIM_POINTLIST:
483 return VK_POLYGON_MODE_POINT;
484
485 case _3DPRIM_LINELIST:
486 case _3DPRIM_LINESTRIP:
487 case _3DPRIM_LINELOOP:
488 return VK_POLYGON_MODE_LINE;
489
490 case _3DPRIM_TRILIST:
491 case _3DPRIM_TRIFAN:
492 case _3DPRIM_TRISTRIP:
493 case _3DPRIM_RECTLIST:
494 case _3DPRIM_QUADLIST:
495 case _3DPRIM_QUADSTRIP:
496 case _3DPRIM_POLYGON:
497 return rs_info->polygonMode;
498 }
499 unreachable("Unsupported GS output topology");
500 } else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
501 switch (get_tes_prog_data(pipeline)->output_topology) {
502 case BRW_TESS_OUTPUT_TOPOLOGY_POINT:
503 return VK_POLYGON_MODE_POINT;
504
505 case BRW_TESS_OUTPUT_TOPOLOGY_LINE:
506 return VK_POLYGON_MODE_LINE;
507
508 case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CW:
509 case BRW_TESS_OUTPUT_TOPOLOGY_TRI_CCW:
510 return rs_info->polygonMode;
511 }
512 unreachable("Unsupported TCS output topology");
513 } else {
514 switch (ia_info->topology) {
515 case VK_PRIMITIVE_TOPOLOGY_POINT_LIST:
516 return VK_POLYGON_MODE_POINT;
517
518 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST:
519 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP:
520 case VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY:
521 case VK_PRIMITIVE_TOPOLOGY_LINE_STRIP_WITH_ADJACENCY:
522 return VK_POLYGON_MODE_LINE;
523
524 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST:
525 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP:
526 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_FAN:
527 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST_WITH_ADJACENCY:
528 case VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP_WITH_ADJACENCY:
529 return rs_info->polygonMode;
530
531 default:
532 unreachable("Unsupported primitive topology");
533 }
534 }
535 }
536
537 #if GEN_GEN <= 7
538 static uint32_t
539 gen7_ms_rast_mode(struct anv_pipeline *pipeline,
540 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
541 const VkPipelineRasterizationStateCreateInfo *rs_info,
542 const VkPipelineMultisampleStateCreateInfo *ms_info)
543 {
544 const VkPipelineRasterizationLineStateCreateInfoEXT *line_info =
545 vk_find_struct_const(rs_info->pNext,
546 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
547
548 VkPolygonMode raster_mode =
549 anv_raster_polygon_mode(pipeline, ia_info, rs_info);
550 if (raster_mode == VK_POLYGON_MODE_LINE) {
551 switch (vk_line_rasterization_mode(line_info, ms_info)) {
552 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT:
553 return MSRASTMODE_ON_PATTERN;
554
555 case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT:
556 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT:
557 return MSRASTMODE_OFF_PIXEL;
558
559 default:
560 unreachable("Unsupported line rasterization mode");
561 }
562 } else {
563 return (ms_info && ms_info->rasterizationSamples > 1) ?
564 MSRASTMODE_ON_PATTERN : MSRASTMODE_OFF_PIXEL;
565 }
566 }
567 #endif
568
569 static void
570 emit_rs_state(struct anv_pipeline *pipeline,
571 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
572 const VkPipelineRasterizationStateCreateInfo *rs_info,
573 const VkPipelineMultisampleStateCreateInfo *ms_info,
574 const VkPipelineRasterizationLineStateCreateInfoEXT *line_info,
575 const struct anv_render_pass *pass,
576 const struct anv_subpass *subpass)
577 {
578 struct GENX(3DSTATE_SF) sf = {
579 GENX(3DSTATE_SF_header),
580 };
581
582 sf.ViewportTransformEnable = true;
583 sf.StatisticsEnable = true;
584 sf.TriangleStripListProvokingVertexSelect = 0;
585 sf.LineStripListProvokingVertexSelect = 0;
586 sf.TriangleFanProvokingVertexSelect = 1;
587 sf.VertexSubPixelPrecisionSelect = _8Bit;
588 sf.AALineDistanceMode = true;
589
590 #if GEN_IS_HASWELL
591 sf.LineStippleEnable = line_info && line_info->stippledLineEnable;
592 #endif
593
594 const struct brw_vue_prog_data *last_vue_prog_data =
595 anv_pipeline_get_last_vue_prog_data(pipeline);
596
597 if (last_vue_prog_data->vue_map.slots_valid & VARYING_BIT_PSIZ) {
598 sf.PointWidthSource = Vertex;
599 } else {
600 sf.PointWidthSource = State;
601 sf.PointWidth = 1.0;
602 }
603
604 #if GEN_GEN >= 8
605 struct GENX(3DSTATE_RASTER) raster = {
606 GENX(3DSTATE_RASTER_header),
607 };
608 #else
609 # define raster sf
610 #endif
611
612 VkPolygonMode raster_mode =
613 anv_raster_polygon_mode(pipeline, ia_info, rs_info);
614 VkLineRasterizationModeEXT line_mode =
615 vk_line_rasterization_mode(line_info, ms_info);
616
617 /* For details on 3DSTATE_RASTER multisample state, see the BSpec table
618 * "Multisample Modes State".
619 */
620 #if GEN_GEN >= 8
621 if (raster_mode == VK_POLYGON_MODE_LINE) {
622 /* Unfortunately, configuring our line rasterization hardware on gen8
623 * and later is rather painful. Instead of giving us bits to tell the
624 * hardware what line mode to use like we had on gen7, we now have an
625 * arcane combination of API Mode and MSAA enable bits which do things
626 * in a table which are expected to magically put the hardware into the
627 * right mode for your API. Sadly, Vulkan isn't any of the APIs the
628 * hardware people thought of so nothing works the way you want it to.
629 *
630 * Look at the table titled "Multisample Rasterization Modes" in Vol 7
631 * of the Skylake PRM for more details.
632 */
633 switch (line_mode) {
634 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_EXT:
635 raster.APIMode = DX100;
636 raster.DXMultisampleRasterizationEnable = true;
637 break;
638
639 case VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT:
640 case VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT:
641 raster.APIMode = DX9OGL;
642 raster.DXMultisampleRasterizationEnable = false;
643 break;
644
645 default:
646 unreachable("Unsupported line rasterization mode");
647 }
648 } else {
649 raster.APIMode = DX100;
650 raster.DXMultisampleRasterizationEnable = true;
651 }
652
653 /* NOTE: 3DSTATE_RASTER::ForcedSampleCount affects the BDW and SKL PMA fix
654 * computations. If we ever set this bit to a different value, they will
655 * need to be updated accordingly.
656 */
657 raster.ForcedSampleCount = FSC_NUMRASTSAMPLES_0;
658 raster.ForceMultisampling = false;
659 #else
660 raster.MultisampleRasterizationMode =
661 gen7_ms_rast_mode(pipeline, ia_info, rs_info, ms_info);
662 #endif
663
664 if (raster_mode == VK_POLYGON_MODE_LINE &&
665 line_mode == VK_LINE_RASTERIZATION_MODE_RECTANGULAR_SMOOTH_EXT)
666 raster.AntialiasingEnable = true;
667
668 raster.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
669 raster.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
670 raster.FrontFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
671 raster.BackFaceFillMode = vk_to_gen_fillmode[rs_info->polygonMode];
672 raster.ScissorRectangleEnable = true;
673
674 #if GEN_GEN >= 9
675 /* GEN9+ splits ViewportZClipTestEnable into near and far enable bits */
676 raster.ViewportZFarClipTestEnable = pipeline->depth_clip_enable;
677 raster.ViewportZNearClipTestEnable = pipeline->depth_clip_enable;
678 #elif GEN_GEN >= 8
679 raster.ViewportZClipTestEnable = pipeline->depth_clip_enable;
680 #endif
681
682 raster.GlobalDepthOffsetEnableSolid = rs_info->depthBiasEnable;
683 raster.GlobalDepthOffsetEnableWireframe = rs_info->depthBiasEnable;
684 raster.GlobalDepthOffsetEnablePoint = rs_info->depthBiasEnable;
685
686 #if GEN_GEN == 7
687 /* Gen7 requires that we provide the depth format in 3DSTATE_SF so that it
688 * can get the depth offsets correct.
689 */
690 if (subpass->depth_stencil_attachment) {
691 VkFormat vk_format =
692 pass->attachments[subpass->depth_stencil_attachment->attachment].format;
693 assert(vk_format_is_depth_or_stencil(vk_format));
694 if (vk_format_aspects(vk_format) & VK_IMAGE_ASPECT_DEPTH_BIT) {
695 enum isl_format isl_format =
696 anv_get_isl_format(&pipeline->device->info, vk_format,
697 VK_IMAGE_ASPECT_DEPTH_BIT,
698 VK_IMAGE_TILING_OPTIMAL);
699 sf.DepthBufferSurfaceFormat =
700 isl_format_get_depth_format(isl_format, false);
701 }
702 }
703 #endif
704
705 #if GEN_GEN >= 8
706 GENX(3DSTATE_SF_pack)(NULL, pipeline->gen8.sf, &sf);
707 GENX(3DSTATE_RASTER_pack)(NULL, pipeline->gen8.raster, &raster);
708 #else
709 # undef raster
710 GENX(3DSTATE_SF_pack)(NULL, &pipeline->gen7.sf, &sf);
711 #endif
712 }
713
714 static void
715 emit_ms_state(struct anv_pipeline *pipeline,
716 const VkPipelineMultisampleStateCreateInfo *info)
717 {
718 uint32_t samples = 1;
719 uint32_t log2_samples = 0;
720
721 /* From the Vulkan 1.0 spec:
722 * If pSampleMask is NULL, it is treated as if the mask has all bits
723 * enabled, i.e. no coverage is removed from fragments.
724 *
725 * 3DSTATE_SAMPLE_MASK.SampleMask is 16 bits.
726 */
727 #if GEN_GEN >= 8
728 uint32_t sample_mask = 0xffff;
729 #else
730 uint32_t sample_mask = 0xff;
731 #endif
732
733 if (info) {
734 samples = info->rasterizationSamples;
735 log2_samples = __builtin_ffs(samples) - 1;
736 }
737
738 if (info && info->pSampleMask)
739 sample_mask &= info->pSampleMask[0];
740
741 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_MULTISAMPLE), ms) {
742 ms.NumberofMultisamples = log2_samples;
743
744 ms.PixelLocation = CENTER;
745 #if GEN_GEN >= 8
746 /* The PRM says that this bit is valid only for DX9:
747 *
748 * SW can choose to set this bit only for DX9 API. DX10/OGL API's
749 * should not have any effect by setting or not setting this bit.
750 */
751 ms.PixelPositionOffsetEnable = false;
752 #else
753
754 switch (samples) {
755 case 1:
756 GEN_SAMPLE_POS_1X(ms.Sample);
757 break;
758 case 2:
759 GEN_SAMPLE_POS_2X(ms.Sample);
760 break;
761 case 4:
762 GEN_SAMPLE_POS_4X(ms.Sample);
763 break;
764 case 8:
765 GEN_SAMPLE_POS_8X(ms.Sample);
766 break;
767 default:
768 break;
769 }
770 #endif
771 }
772
773 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_SAMPLE_MASK), sm) {
774 sm.SampleMask = sample_mask;
775 }
776 }
777
778 static const uint32_t vk_to_gen_logic_op[] = {
779 [VK_LOGIC_OP_COPY] = LOGICOP_COPY,
780 [VK_LOGIC_OP_CLEAR] = LOGICOP_CLEAR,
781 [VK_LOGIC_OP_AND] = LOGICOP_AND,
782 [VK_LOGIC_OP_AND_REVERSE] = LOGICOP_AND_REVERSE,
783 [VK_LOGIC_OP_AND_INVERTED] = LOGICOP_AND_INVERTED,
784 [VK_LOGIC_OP_NO_OP] = LOGICOP_NOOP,
785 [VK_LOGIC_OP_XOR] = LOGICOP_XOR,
786 [VK_LOGIC_OP_OR] = LOGICOP_OR,
787 [VK_LOGIC_OP_NOR] = LOGICOP_NOR,
788 [VK_LOGIC_OP_EQUIVALENT] = LOGICOP_EQUIV,
789 [VK_LOGIC_OP_INVERT] = LOGICOP_INVERT,
790 [VK_LOGIC_OP_OR_REVERSE] = LOGICOP_OR_REVERSE,
791 [VK_LOGIC_OP_COPY_INVERTED] = LOGICOP_COPY_INVERTED,
792 [VK_LOGIC_OP_OR_INVERTED] = LOGICOP_OR_INVERTED,
793 [VK_LOGIC_OP_NAND] = LOGICOP_NAND,
794 [VK_LOGIC_OP_SET] = LOGICOP_SET,
795 };
796
797 static const uint32_t vk_to_gen_blend[] = {
798 [VK_BLEND_FACTOR_ZERO] = BLENDFACTOR_ZERO,
799 [VK_BLEND_FACTOR_ONE] = BLENDFACTOR_ONE,
800 [VK_BLEND_FACTOR_SRC_COLOR] = BLENDFACTOR_SRC_COLOR,
801 [VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR] = BLENDFACTOR_INV_SRC_COLOR,
802 [VK_BLEND_FACTOR_DST_COLOR] = BLENDFACTOR_DST_COLOR,
803 [VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR] = BLENDFACTOR_INV_DST_COLOR,
804 [VK_BLEND_FACTOR_SRC_ALPHA] = BLENDFACTOR_SRC_ALPHA,
805 [VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA] = BLENDFACTOR_INV_SRC_ALPHA,
806 [VK_BLEND_FACTOR_DST_ALPHA] = BLENDFACTOR_DST_ALPHA,
807 [VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA] = BLENDFACTOR_INV_DST_ALPHA,
808 [VK_BLEND_FACTOR_CONSTANT_COLOR] = BLENDFACTOR_CONST_COLOR,
809 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR]= BLENDFACTOR_INV_CONST_COLOR,
810 [VK_BLEND_FACTOR_CONSTANT_ALPHA] = BLENDFACTOR_CONST_ALPHA,
811 [VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA]= BLENDFACTOR_INV_CONST_ALPHA,
812 [VK_BLEND_FACTOR_SRC_ALPHA_SATURATE] = BLENDFACTOR_SRC_ALPHA_SATURATE,
813 [VK_BLEND_FACTOR_SRC1_COLOR] = BLENDFACTOR_SRC1_COLOR,
814 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR] = BLENDFACTOR_INV_SRC1_COLOR,
815 [VK_BLEND_FACTOR_SRC1_ALPHA] = BLENDFACTOR_SRC1_ALPHA,
816 [VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA] = BLENDFACTOR_INV_SRC1_ALPHA,
817 };
818
819 static const uint32_t vk_to_gen_blend_op[] = {
820 [VK_BLEND_OP_ADD] = BLENDFUNCTION_ADD,
821 [VK_BLEND_OP_SUBTRACT] = BLENDFUNCTION_SUBTRACT,
822 [VK_BLEND_OP_REVERSE_SUBTRACT] = BLENDFUNCTION_REVERSE_SUBTRACT,
823 [VK_BLEND_OP_MIN] = BLENDFUNCTION_MIN,
824 [VK_BLEND_OP_MAX] = BLENDFUNCTION_MAX,
825 };
826
827 static const uint32_t vk_to_gen_compare_op[] = {
828 [VK_COMPARE_OP_NEVER] = PREFILTEROPNEVER,
829 [VK_COMPARE_OP_LESS] = PREFILTEROPLESS,
830 [VK_COMPARE_OP_EQUAL] = PREFILTEROPEQUAL,
831 [VK_COMPARE_OP_LESS_OR_EQUAL] = PREFILTEROPLEQUAL,
832 [VK_COMPARE_OP_GREATER] = PREFILTEROPGREATER,
833 [VK_COMPARE_OP_NOT_EQUAL] = PREFILTEROPNOTEQUAL,
834 [VK_COMPARE_OP_GREATER_OR_EQUAL] = PREFILTEROPGEQUAL,
835 [VK_COMPARE_OP_ALWAYS] = PREFILTEROPALWAYS,
836 };
837
838 static const uint32_t vk_to_gen_stencil_op[] = {
839 [VK_STENCIL_OP_KEEP] = STENCILOP_KEEP,
840 [VK_STENCIL_OP_ZERO] = STENCILOP_ZERO,
841 [VK_STENCIL_OP_REPLACE] = STENCILOP_REPLACE,
842 [VK_STENCIL_OP_INCREMENT_AND_CLAMP] = STENCILOP_INCRSAT,
843 [VK_STENCIL_OP_DECREMENT_AND_CLAMP] = STENCILOP_DECRSAT,
844 [VK_STENCIL_OP_INVERT] = STENCILOP_INVERT,
845 [VK_STENCIL_OP_INCREMENT_AND_WRAP] = STENCILOP_INCR,
846 [VK_STENCIL_OP_DECREMENT_AND_WRAP] = STENCILOP_DECR,
847 };
848
849 /* This function sanitizes the VkStencilOpState by looking at the compare ops
850 * and trying to determine whether or not a given stencil op can ever actually
851 * occur. Stencil ops which can never occur are set to VK_STENCIL_OP_KEEP.
852 * This function returns true if, after sanitation, any of the stencil ops are
853 * set to something other than VK_STENCIL_OP_KEEP.
854 */
855 static bool
856 sanitize_stencil_face(VkStencilOpState *face,
857 VkCompareOp depthCompareOp)
858 {
859 /* If compareOp is ALWAYS then the stencil test will never fail and failOp
860 * will never happen. Set failOp to KEEP in this case.
861 */
862 if (face->compareOp == VK_COMPARE_OP_ALWAYS)
863 face->failOp = VK_STENCIL_OP_KEEP;
864
865 /* If compareOp is NEVER or depthCompareOp is NEVER then one of the depth
866 * or stencil tests will fail and passOp will never happen.
867 */
868 if (face->compareOp == VK_COMPARE_OP_NEVER ||
869 depthCompareOp == VK_COMPARE_OP_NEVER)
870 face->passOp = VK_STENCIL_OP_KEEP;
871
872 /* If compareOp is NEVER or depthCompareOp is ALWAYS then either the
873 * stencil test will fail or the depth test will pass. In either case,
874 * depthFailOp will never happen.
875 */
876 if (face->compareOp == VK_COMPARE_OP_NEVER ||
877 depthCompareOp == VK_COMPARE_OP_ALWAYS)
878 face->depthFailOp = VK_STENCIL_OP_KEEP;
879
880 return face->failOp != VK_STENCIL_OP_KEEP ||
881 face->depthFailOp != VK_STENCIL_OP_KEEP ||
882 face->passOp != VK_STENCIL_OP_KEEP;
883 }
884
885 /* Intel hardware is fairly sensitive to whether or not depth/stencil writes
886 * are enabled. In the presence of discards, it's fairly easy to get into the
887 * non-promoted case which means a fairly big performance hit. From the Iron
888 * Lake PRM, Vol 2, pt. 1, section 8.4.3.2, "Early Depth Test Cases":
889 *
890 * "Non-promoted depth (N) is active whenever the depth test can be done
891 * early but it cannot determine whether or not to write source depth to
892 * the depth buffer, therefore the depth write must be performed post pixel
893 * shader. This includes cases where the pixel shader can kill pixels,
894 * including via sampler chroma key, as well as cases where the alpha test
895 * function is enabled, which kills pixels based on a programmable alpha
896 * test. In this case, even if the depth test fails, the pixel cannot be
897 * killed if a stencil write is indicated. Whether or not the stencil write
898 * happens depends on whether or not the pixel is killed later. In these
899 * cases if stencil test fails and stencil writes are off, the pixels can
900 * also be killed early. If stencil writes are enabled, the pixels must be
901 * treated as Computed depth (described above)."
902 *
903 * The same thing as mentioned in the stencil case can happen in the depth
904 * case as well if it thinks it writes depth but, thanks to the depth test
905 * being GL_EQUAL, the write doesn't actually matter. A little extra work
906 * up-front to try and disable depth and stencil writes can make a big
907 * difference.
908 *
909 * Unfortunately, the way depth and stencil testing is specified, there are
910 * many case where, regardless of depth/stencil writes being enabled, nothing
911 * actually gets written due to some other bit of state being set. This
912 * function attempts to "sanitize" the depth stencil state and disable writes
913 * and sometimes even testing whenever possible.
914 */
915 static void
916 sanitize_ds_state(VkPipelineDepthStencilStateCreateInfo *state,
917 bool *stencilWriteEnable,
918 VkImageAspectFlags ds_aspects)
919 {
920 *stencilWriteEnable = state->stencilTestEnable;
921
922 /* If the depth test is disabled, we won't be writing anything. Make sure we
923 * treat the test as always passing later on as well.
924 *
925 * Also, the Vulkan spec requires that if either depth or stencil is not
926 * present, the pipeline is to act as if the test silently passes. In that
927 * case we won't write either.
928 */
929 if (!state->depthTestEnable || !(ds_aspects & VK_IMAGE_ASPECT_DEPTH_BIT)) {
930 state->depthWriteEnable = false;
931 state->depthCompareOp = VK_COMPARE_OP_ALWAYS;
932 }
933
934 if (!(ds_aspects & VK_IMAGE_ASPECT_STENCIL_BIT)) {
935 *stencilWriteEnable = false;
936 state->front.compareOp = VK_COMPARE_OP_ALWAYS;
937 state->back.compareOp = VK_COMPARE_OP_ALWAYS;
938 }
939
940 /* If the stencil test is enabled and always fails, then we will never get
941 * to the depth test so we can just disable the depth test entirely.
942 */
943 if (state->stencilTestEnable &&
944 state->front.compareOp == VK_COMPARE_OP_NEVER &&
945 state->back.compareOp == VK_COMPARE_OP_NEVER) {
946 state->depthTestEnable = false;
947 state->depthWriteEnable = false;
948 }
949
950 /* If depthCompareOp is EQUAL then the value we would be writing to the
951 * depth buffer is the same as the value that's already there so there's no
952 * point in writing it.
953 */
954 if (state->depthCompareOp == VK_COMPARE_OP_EQUAL)
955 state->depthWriteEnable = false;
956
957 /* If the stencil ops are such that we don't actually ever modify the
958 * stencil buffer, we should disable writes.
959 */
960 if (!sanitize_stencil_face(&state->front, state->depthCompareOp) &&
961 !sanitize_stencil_face(&state->back, state->depthCompareOp))
962 *stencilWriteEnable = false;
963
964 /* If the depth test always passes and we never write out depth, that's the
965 * same as if the depth test is disabled entirely.
966 */
967 if (state->depthCompareOp == VK_COMPARE_OP_ALWAYS &&
968 !state->depthWriteEnable)
969 state->depthTestEnable = false;
970
971 /* If the stencil test always passes and we never write out stencil, that's
972 * the same as if the stencil test is disabled entirely.
973 */
974 if (state->front.compareOp == VK_COMPARE_OP_ALWAYS &&
975 state->back.compareOp == VK_COMPARE_OP_ALWAYS &&
976 !*stencilWriteEnable)
977 state->stencilTestEnable = false;
978 }
979
980 static void
981 emit_ds_state(struct anv_pipeline *pipeline,
982 const VkPipelineDepthStencilStateCreateInfo *pCreateInfo,
983 const struct anv_render_pass *pass,
984 const struct anv_subpass *subpass)
985 {
986 #if GEN_GEN == 7
987 # define depth_stencil_dw pipeline->gen7.depth_stencil_state
988 #elif GEN_GEN == 8
989 # define depth_stencil_dw pipeline->gen8.wm_depth_stencil
990 #else
991 # define depth_stencil_dw pipeline->gen9.wm_depth_stencil
992 #endif
993
994 if (pCreateInfo == NULL) {
995 /* We're going to OR this together with the dynamic state. We need
996 * to make sure it's initialized to something useful.
997 */
998 pipeline->writes_stencil = false;
999 pipeline->stencil_test_enable = false;
1000 pipeline->writes_depth = false;
1001 pipeline->depth_test_enable = false;
1002 pipeline->depth_bounds_test_enable = false;
1003 memset(depth_stencil_dw, 0, sizeof(depth_stencil_dw));
1004 return;
1005 }
1006
1007 VkImageAspectFlags ds_aspects = 0;
1008 if (subpass->depth_stencil_attachment) {
1009 VkFormat depth_stencil_format =
1010 pass->attachments[subpass->depth_stencil_attachment->attachment].format;
1011 ds_aspects = vk_format_aspects(depth_stencil_format);
1012 }
1013
1014 VkPipelineDepthStencilStateCreateInfo info = *pCreateInfo;
1015 sanitize_ds_state(&info, &pipeline->writes_stencil, ds_aspects);
1016 pipeline->stencil_test_enable = info.stencilTestEnable;
1017 pipeline->writes_depth = info.depthWriteEnable;
1018 pipeline->depth_test_enable = info.depthTestEnable;
1019 pipeline->depth_bounds_test_enable = info.depthBoundsTestEnable;
1020
1021 #if GEN_GEN <= 7
1022 struct GENX(DEPTH_STENCIL_STATE) depth_stencil = {
1023 #else
1024 struct GENX(3DSTATE_WM_DEPTH_STENCIL) depth_stencil = {
1025 #endif
1026 .DepthTestEnable = info.depthTestEnable,
1027 .DepthBufferWriteEnable = info.depthWriteEnable,
1028 .DepthTestFunction = vk_to_gen_compare_op[info.depthCompareOp],
1029 .DoubleSidedStencilEnable = true,
1030
1031 .StencilTestEnable = info.stencilTestEnable,
1032 .StencilFailOp = vk_to_gen_stencil_op[info.front.failOp],
1033 .StencilPassDepthPassOp = vk_to_gen_stencil_op[info.front.passOp],
1034 .StencilPassDepthFailOp = vk_to_gen_stencil_op[info.front.depthFailOp],
1035 .StencilTestFunction = vk_to_gen_compare_op[info.front.compareOp],
1036 .BackfaceStencilFailOp = vk_to_gen_stencil_op[info.back.failOp],
1037 .BackfaceStencilPassDepthPassOp = vk_to_gen_stencil_op[info.back.passOp],
1038 .BackfaceStencilPassDepthFailOp =vk_to_gen_stencil_op[info.back.depthFailOp],
1039 .BackfaceStencilTestFunction = vk_to_gen_compare_op[info.back.compareOp],
1040 };
1041
1042 #if GEN_GEN <= 7
1043 GENX(DEPTH_STENCIL_STATE_pack)(NULL, depth_stencil_dw, &depth_stencil);
1044 #else
1045 GENX(3DSTATE_WM_DEPTH_STENCIL_pack)(NULL, depth_stencil_dw, &depth_stencil);
1046 #endif
1047 }
1048
1049 static bool
1050 is_dual_src_blend_factor(VkBlendFactor factor)
1051 {
1052 return factor == VK_BLEND_FACTOR_SRC1_COLOR ||
1053 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR ||
1054 factor == VK_BLEND_FACTOR_SRC1_ALPHA ||
1055 factor == VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA;
1056 }
1057
1058 static void
1059 emit_cb_state(struct anv_pipeline *pipeline,
1060 const VkPipelineColorBlendStateCreateInfo *info,
1061 const VkPipelineMultisampleStateCreateInfo *ms_info)
1062 {
1063 struct anv_device *device = pipeline->device;
1064 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1065
1066 struct GENX(BLEND_STATE) blend_state = {
1067 #if GEN_GEN >= 8
1068 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
1069 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
1070 #endif
1071 };
1072
1073 uint32_t surface_count = 0;
1074 struct anv_pipeline_bind_map *map;
1075 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1076 map = &pipeline->shaders[MESA_SHADER_FRAGMENT]->bind_map;
1077 surface_count = map->surface_count;
1078 }
1079
1080 const uint32_t num_dwords = GENX(BLEND_STATE_length) +
1081 GENX(BLEND_STATE_ENTRY_length) * surface_count;
1082 pipeline->blend_state =
1083 anv_state_pool_alloc(&device->dynamic_state_pool, num_dwords * 4, 64);
1084
1085 bool has_writeable_rt = false;
1086 uint32_t *state_pos = pipeline->blend_state.map;
1087 state_pos += GENX(BLEND_STATE_length);
1088 #if GEN_GEN >= 8
1089 struct GENX(BLEND_STATE_ENTRY) bs0 = { 0 };
1090 #endif
1091 for (unsigned i = 0; i < surface_count; i++) {
1092 struct anv_pipeline_binding *binding = &map->surface_to_descriptor[i];
1093
1094 /* All color attachments are at the beginning of the binding table */
1095 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1096 break;
1097
1098 /* We can have at most 8 attachments */
1099 assert(i < 8);
1100
1101 if (info == NULL || binding->index >= info->attachmentCount) {
1102 /* Default everything to disabled */
1103 struct GENX(BLEND_STATE_ENTRY) entry = {
1104 .WriteDisableAlpha = true,
1105 .WriteDisableRed = true,
1106 .WriteDisableGreen = true,
1107 .WriteDisableBlue = true,
1108 };
1109 GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1110 state_pos += GENX(BLEND_STATE_ENTRY_length);
1111 continue;
1112 }
1113
1114 const VkPipelineColorBlendAttachmentState *a =
1115 &info->pAttachments[binding->index];
1116
1117 struct GENX(BLEND_STATE_ENTRY) entry = {
1118 #if GEN_GEN < 8
1119 .AlphaToCoverageEnable = ms_info && ms_info->alphaToCoverageEnable,
1120 .AlphaToOneEnable = ms_info && ms_info->alphaToOneEnable,
1121 #endif
1122 .LogicOpEnable = info->logicOpEnable,
1123 .LogicOpFunction = vk_to_gen_logic_op[info->logicOp],
1124 .ColorBufferBlendEnable = a->blendEnable,
1125 .ColorClampRange = COLORCLAMP_RTFORMAT,
1126 .PreBlendColorClampEnable = true,
1127 .PostBlendColorClampEnable = true,
1128 .SourceBlendFactor = vk_to_gen_blend[a->srcColorBlendFactor],
1129 .DestinationBlendFactor = vk_to_gen_blend[a->dstColorBlendFactor],
1130 .ColorBlendFunction = vk_to_gen_blend_op[a->colorBlendOp],
1131 .SourceAlphaBlendFactor = vk_to_gen_blend[a->srcAlphaBlendFactor],
1132 .DestinationAlphaBlendFactor = vk_to_gen_blend[a->dstAlphaBlendFactor],
1133 .AlphaBlendFunction = vk_to_gen_blend_op[a->alphaBlendOp],
1134 .WriteDisableAlpha = !(a->colorWriteMask & VK_COLOR_COMPONENT_A_BIT),
1135 .WriteDisableRed = !(a->colorWriteMask & VK_COLOR_COMPONENT_R_BIT),
1136 .WriteDisableGreen = !(a->colorWriteMask & VK_COLOR_COMPONENT_G_BIT),
1137 .WriteDisableBlue = !(a->colorWriteMask & VK_COLOR_COMPONENT_B_BIT),
1138 };
1139
1140 if (a->srcColorBlendFactor != a->srcAlphaBlendFactor ||
1141 a->dstColorBlendFactor != a->dstAlphaBlendFactor ||
1142 a->colorBlendOp != a->alphaBlendOp) {
1143 #if GEN_GEN >= 8
1144 blend_state.IndependentAlphaBlendEnable = true;
1145 #else
1146 entry.IndependentAlphaBlendEnable = true;
1147 #endif
1148 }
1149
1150 /* The Dual Source Blending documentation says:
1151 *
1152 * "If SRC1 is included in a src/dst blend factor and
1153 * a DualSource RT Write message is not used, results
1154 * are UNDEFINED. (This reflects the same restriction in DX APIs,
1155 * where undefined results are produced if “o1” is not written
1156 * by a PS – there are no default values defined)."
1157 *
1158 * There is no way to gracefully fix this undefined situation
1159 * so we just disable the blending to prevent possible issues.
1160 */
1161 if (!wm_prog_data->dual_src_blend &&
1162 (is_dual_src_blend_factor(a->srcColorBlendFactor) ||
1163 is_dual_src_blend_factor(a->dstColorBlendFactor) ||
1164 is_dual_src_blend_factor(a->srcAlphaBlendFactor) ||
1165 is_dual_src_blend_factor(a->dstAlphaBlendFactor))) {
1166 vk_debug_report(&device->physical->instance->debug_report_callbacks,
1167 VK_DEBUG_REPORT_WARNING_BIT_EXT,
1168 VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT,
1169 (uint64_t)(uintptr_t)device,
1170 0, 0, "anv",
1171 "Enabled dual-src blend factors without writing both targets "
1172 "in the shader. Disabling blending to avoid GPU hangs.");
1173 entry.ColorBufferBlendEnable = false;
1174 }
1175
1176 if (a->colorWriteMask != 0)
1177 has_writeable_rt = true;
1178
1179 /* Our hardware applies the blend factor prior to the blend function
1180 * regardless of what function is used. Technically, this means the
1181 * hardware can do MORE than GL or Vulkan specify. However, it also
1182 * means that, for MIN and MAX, we have to stomp the blend factor to
1183 * ONE to make it a no-op.
1184 */
1185 if (a->colorBlendOp == VK_BLEND_OP_MIN ||
1186 a->colorBlendOp == VK_BLEND_OP_MAX) {
1187 entry.SourceBlendFactor = BLENDFACTOR_ONE;
1188 entry.DestinationBlendFactor = BLENDFACTOR_ONE;
1189 }
1190 if (a->alphaBlendOp == VK_BLEND_OP_MIN ||
1191 a->alphaBlendOp == VK_BLEND_OP_MAX) {
1192 entry.SourceAlphaBlendFactor = BLENDFACTOR_ONE;
1193 entry.DestinationAlphaBlendFactor = BLENDFACTOR_ONE;
1194 }
1195 GENX(BLEND_STATE_ENTRY_pack)(NULL, state_pos, &entry);
1196 state_pos += GENX(BLEND_STATE_ENTRY_length);
1197 #if GEN_GEN >= 8
1198 if (i == 0)
1199 bs0 = entry;
1200 #endif
1201 }
1202
1203 #if GEN_GEN >= 8
1204 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_BLEND), blend) {
1205 blend.AlphaToCoverageEnable = blend_state.AlphaToCoverageEnable;
1206 blend.HasWriteableRT = has_writeable_rt;
1207 blend.ColorBufferBlendEnable = bs0.ColorBufferBlendEnable;
1208 blend.SourceAlphaBlendFactor = bs0.SourceAlphaBlendFactor;
1209 blend.DestinationAlphaBlendFactor = bs0.DestinationAlphaBlendFactor;
1210 blend.SourceBlendFactor = bs0.SourceBlendFactor;
1211 blend.DestinationBlendFactor = bs0.DestinationBlendFactor;
1212 blend.AlphaTestEnable = false;
1213 blend.IndependentAlphaBlendEnable =
1214 blend_state.IndependentAlphaBlendEnable;
1215 }
1216 #else
1217 (void)has_writeable_rt;
1218 #endif
1219
1220 GENX(BLEND_STATE_pack)(NULL, pipeline->blend_state.map, &blend_state);
1221
1222 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_BLEND_STATE_POINTERS), bsp) {
1223 bsp.BlendStatePointer = pipeline->blend_state.offset;
1224 #if GEN_GEN >= 8
1225 bsp.BlendStatePointerValid = true;
1226 #endif
1227 }
1228 }
1229
1230 static void
1231 emit_3dstate_clip(struct anv_pipeline *pipeline,
1232 const VkPipelineInputAssemblyStateCreateInfo *ia_info,
1233 const VkPipelineViewportStateCreateInfo *vp_info,
1234 const VkPipelineRasterizationStateCreateInfo *rs_info)
1235 {
1236 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1237 (void) wm_prog_data;
1238 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_CLIP), clip) {
1239 clip.ClipEnable = true;
1240 clip.StatisticsEnable = true;
1241 clip.EarlyCullEnable = true;
1242 clip.APIMode = APIMODE_D3D;
1243 clip.GuardbandClipTestEnable = true;
1244
1245 /* Only enable the XY clip test when the final polygon rasterization
1246 * mode is VK_POLYGON_MODE_FILL. We want to leave it disabled for
1247 * points and lines so we get "pop-free" clipping.
1248 */
1249 VkPolygonMode raster_mode =
1250 anv_raster_polygon_mode(pipeline, ia_info, rs_info);
1251 clip.ViewportXYClipTestEnable = (raster_mode == VK_POLYGON_MODE_FILL);
1252
1253 #if GEN_GEN >= 8
1254 clip.VertexSubPixelPrecisionSelect = _8Bit;
1255 #endif
1256
1257 clip.ClipMode = CLIPMODE_NORMAL;
1258
1259 clip.TriangleStripListProvokingVertexSelect = 0;
1260 clip.LineStripListProvokingVertexSelect = 0;
1261 clip.TriangleFanProvokingVertexSelect = 1;
1262
1263 clip.MinimumPointWidth = 0.125;
1264 clip.MaximumPointWidth = 255.875;
1265
1266 const struct brw_vue_prog_data *last =
1267 anv_pipeline_get_last_vue_prog_data(pipeline);
1268
1269 /* From the Vulkan 1.0.45 spec:
1270 *
1271 * "If the last active vertex processing stage shader entry point's
1272 * interface does not include a variable decorated with
1273 * ViewportIndex, then the first viewport is used."
1274 */
1275 if (vp_info && (last->vue_map.slots_valid & VARYING_BIT_VIEWPORT)) {
1276 clip.MaximumVPIndex = vp_info->viewportCount - 1;
1277 } else {
1278 clip.MaximumVPIndex = 0;
1279 }
1280
1281 /* From the Vulkan 1.0.45 spec:
1282 *
1283 * "If the last active vertex processing stage shader entry point's
1284 * interface does not include a variable decorated with Layer, then
1285 * the first layer is used."
1286 */
1287 clip.ForceZeroRTAIndexEnable =
1288 !(last->vue_map.slots_valid & VARYING_BIT_LAYER);
1289
1290 #if GEN_GEN == 7
1291 clip.FrontWinding = vk_to_gen_front_face[rs_info->frontFace];
1292 clip.CullMode = vk_to_gen_cullmode[rs_info->cullMode];
1293 clip.ViewportZClipTestEnable = pipeline->depth_clip_enable;
1294 clip.UserClipDistanceClipTestEnableBitmask = last->clip_distance_mask;
1295 clip.UserClipDistanceCullTestEnableBitmask = last->cull_distance_mask;
1296 #else
1297 clip.NonPerspectiveBarycentricEnable = wm_prog_data ?
1298 (wm_prog_data->barycentric_interp_modes &
1299 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS) != 0 : 0;
1300 #endif
1301 }
1302 }
1303
1304 static void
1305 emit_3dstate_streamout(struct anv_pipeline *pipeline,
1306 const VkPipelineRasterizationStateCreateInfo *rs_info)
1307 {
1308 #if GEN_GEN >= 8
1309 const struct brw_vue_prog_data *prog_data =
1310 anv_pipeline_get_last_vue_prog_data(pipeline);
1311 const struct brw_vue_map *vue_map = &prog_data->vue_map;
1312 #endif
1313
1314 nir_xfb_info *xfb_info;
1315 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY))
1316 xfb_info = pipeline->shaders[MESA_SHADER_GEOMETRY]->xfb_info;
1317 else if (anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL))
1318 xfb_info = pipeline->shaders[MESA_SHADER_TESS_EVAL]->xfb_info;
1319 else
1320 xfb_info = pipeline->shaders[MESA_SHADER_VERTEX]->xfb_info;
1321
1322 pipeline->xfb_used = xfb_info ? xfb_info->buffers_written : 0;
1323
1324 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_STREAMOUT), so) {
1325 so.RenderingDisable = rs_info->rasterizerDiscardEnable;
1326
1327 #if GEN_GEN >= 8
1328 if (xfb_info) {
1329 so.SOFunctionEnable = true;
1330 so.SOStatisticsEnable = true;
1331
1332 const VkPipelineRasterizationStateStreamCreateInfoEXT *stream_info =
1333 vk_find_struct_const(rs_info, PIPELINE_RASTERIZATION_STATE_STREAM_CREATE_INFO_EXT);
1334 so.RenderStreamSelect = stream_info ?
1335 stream_info->rasterizationStream : 0;
1336
1337 so.Buffer0SurfacePitch = xfb_info->buffers[0].stride;
1338 so.Buffer1SurfacePitch = xfb_info->buffers[1].stride;
1339 so.Buffer2SurfacePitch = xfb_info->buffers[2].stride;
1340 so.Buffer3SurfacePitch = xfb_info->buffers[3].stride;
1341
1342 int urb_entry_read_offset = 0;
1343 int urb_entry_read_length =
1344 (prog_data->vue_map.num_slots + 1) / 2 - urb_entry_read_offset;
1345
1346 /* We always read the whole vertex. This could be reduced at some
1347 * point by reading less and offsetting the register index in the
1348 * SO_DECLs.
1349 */
1350 so.Stream0VertexReadOffset = urb_entry_read_offset;
1351 so.Stream0VertexReadLength = urb_entry_read_length - 1;
1352 so.Stream1VertexReadOffset = urb_entry_read_offset;
1353 so.Stream1VertexReadLength = urb_entry_read_length - 1;
1354 so.Stream2VertexReadOffset = urb_entry_read_offset;
1355 so.Stream2VertexReadLength = urb_entry_read_length - 1;
1356 so.Stream3VertexReadOffset = urb_entry_read_offset;
1357 so.Stream3VertexReadLength = urb_entry_read_length - 1;
1358 }
1359 #endif /* GEN_GEN >= 8 */
1360 }
1361
1362 #if GEN_GEN >= 8
1363 if (xfb_info) {
1364 struct GENX(SO_DECL) so_decl[MAX_XFB_STREAMS][128];
1365 int next_offset[MAX_XFB_BUFFERS] = {0, 0, 0, 0};
1366 int decls[MAX_XFB_STREAMS] = {0, 0, 0, 0};
1367
1368 memset(so_decl, 0, sizeof(so_decl));
1369
1370 for (unsigned i = 0; i < xfb_info->output_count; i++) {
1371 const nir_xfb_output_info *output = &xfb_info->outputs[i];
1372 unsigned buffer = output->buffer;
1373 unsigned stream = xfb_info->buffer_to_stream[buffer];
1374
1375 /* Our hardware is unusual in that it requires us to program SO_DECLs
1376 * for fake "hole" components, rather than simply taking the offset
1377 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
1378 * program as many size = 4 holes as we can, then a final hole to
1379 * accommodate the final 1, 2, or 3 remaining.
1380 */
1381 int hole_dwords = (output->offset - next_offset[buffer]) / 4;
1382 while (hole_dwords > 0) {
1383 so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1384 .HoleFlag = 1,
1385 .OutputBufferSlot = buffer,
1386 .ComponentMask = (1 << MIN2(hole_dwords, 4)) - 1,
1387 };
1388 hole_dwords -= 4;
1389 }
1390
1391 int varying = output->location;
1392 uint8_t component_mask = output->component_mask;
1393 /* VARYING_SLOT_PSIZ contains three scalar fields packed together:
1394 * - VARYING_SLOT_LAYER in VARYING_SLOT_PSIZ.y
1395 * - VARYING_SLOT_VIEWPORT in VARYING_SLOT_PSIZ.z
1396 * - VARYING_SLOT_PSIZ in VARYING_SLOT_PSIZ.w
1397 */
1398 if (varying == VARYING_SLOT_LAYER) {
1399 varying = VARYING_SLOT_PSIZ;
1400 component_mask = 1 << 1; // SO_DECL_COMPMASK_Y
1401 } else if (varying == VARYING_SLOT_VIEWPORT) {
1402 varying = VARYING_SLOT_PSIZ;
1403 component_mask = 1 << 2; // SO_DECL_COMPMASK_Z
1404 } else if (varying == VARYING_SLOT_PSIZ) {
1405 component_mask = 1 << 3; // SO_DECL_COMPMASK_W
1406 }
1407
1408 next_offset[buffer] = output->offset +
1409 __builtin_popcount(component_mask) * 4;
1410
1411 const int slot = vue_map->varying_to_slot[varying];
1412 if (slot < 0) {
1413 /* This can happen if the shader never writes to the varying.
1414 * Insert a hole instead of actual varying data.
1415 */
1416 so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1417 .HoleFlag = true,
1418 .OutputBufferSlot = buffer,
1419 .ComponentMask = component_mask,
1420 };
1421 } else {
1422 so_decl[stream][decls[stream]++] = (struct GENX(SO_DECL)) {
1423 .OutputBufferSlot = buffer,
1424 .RegisterIndex = slot,
1425 .ComponentMask = component_mask,
1426 };
1427 }
1428 }
1429
1430 int max_decls = 0;
1431 for (unsigned s = 0; s < MAX_XFB_STREAMS; s++)
1432 max_decls = MAX2(max_decls, decls[s]);
1433
1434 uint8_t sbs[MAX_XFB_STREAMS] = { };
1435 for (unsigned b = 0; b < MAX_XFB_BUFFERS; b++) {
1436 if (xfb_info->buffers_written & (1 << b))
1437 sbs[xfb_info->buffer_to_stream[b]] |= 1 << b;
1438 }
1439
1440 uint32_t *dw = anv_batch_emitn(&pipeline->batch, 3 + 2 * max_decls,
1441 GENX(3DSTATE_SO_DECL_LIST),
1442 .StreamtoBufferSelects0 = sbs[0],
1443 .StreamtoBufferSelects1 = sbs[1],
1444 .StreamtoBufferSelects2 = sbs[2],
1445 .StreamtoBufferSelects3 = sbs[3],
1446 .NumEntries0 = decls[0],
1447 .NumEntries1 = decls[1],
1448 .NumEntries2 = decls[2],
1449 .NumEntries3 = decls[3]);
1450
1451 for (int i = 0; i < max_decls; i++) {
1452 GENX(SO_DECL_ENTRY_pack)(NULL, dw + 3 + i * 2,
1453 &(struct GENX(SO_DECL_ENTRY)) {
1454 .Stream0Decl = so_decl[0][i],
1455 .Stream1Decl = so_decl[1][i],
1456 .Stream2Decl = so_decl[2][i],
1457 .Stream3Decl = so_decl[3][i],
1458 });
1459 }
1460 }
1461 #endif /* GEN_GEN >= 8 */
1462 }
1463
1464 static uint32_t
1465 get_sampler_count(const struct anv_shader_bin *bin)
1466 {
1467 uint32_t count_by_4 = DIV_ROUND_UP(bin->bind_map.sampler_count, 4);
1468
1469 /* We can potentially have way more than 32 samplers and that's ok.
1470 * However, the 3DSTATE_XS packets only have 3 bits to specify how
1471 * many to pre-fetch and all values above 4 are marked reserved.
1472 */
1473 return MIN2(count_by_4, 4);
1474 }
1475
1476 static uint32_t
1477 get_binding_table_entry_count(const struct anv_shader_bin *bin)
1478 {
1479 return DIV_ROUND_UP(bin->bind_map.surface_count, 32);
1480 }
1481
1482 static struct anv_address
1483 get_scratch_address(struct anv_pipeline *pipeline,
1484 gl_shader_stage stage,
1485 const struct anv_shader_bin *bin)
1486 {
1487 return (struct anv_address) {
1488 .bo = anv_scratch_pool_alloc(pipeline->device,
1489 &pipeline->device->scratch_pool,
1490 stage, bin->prog_data->total_scratch),
1491 .offset = 0,
1492 };
1493 }
1494
1495 static uint32_t
1496 get_scratch_space(const struct anv_shader_bin *bin)
1497 {
1498 return ffs(bin->prog_data->total_scratch / 2048);
1499 }
1500
1501 static void
1502 emit_3dstate_vs(struct anv_pipeline *pipeline)
1503 {
1504 const struct gen_device_info *devinfo = &pipeline->device->info;
1505 const struct brw_vs_prog_data *vs_prog_data = get_vs_prog_data(pipeline);
1506 const struct anv_shader_bin *vs_bin =
1507 pipeline->shaders[MESA_SHADER_VERTEX];
1508
1509 assert(anv_pipeline_has_stage(pipeline, MESA_SHADER_VERTEX));
1510
1511 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VS), vs) {
1512 vs.Enable = true;
1513 vs.StatisticsEnable = true;
1514 vs.KernelStartPointer = vs_bin->kernel.offset;
1515 #if GEN_GEN >= 8
1516 vs.SIMD8DispatchEnable =
1517 vs_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8;
1518 #endif
1519
1520 assert(!vs_prog_data->base.base.use_alt_mode);
1521 #if GEN_GEN < 11
1522 vs.SingleVertexDispatch = false;
1523 #endif
1524 vs.VectorMaskEnable = false;
1525 /* WA_1606682166:
1526 * Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
1527 * Disable the Sampler state prefetch functionality in the SARB by
1528 * programming 0xB000[30] to '1'.
1529 */
1530 vs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(vs_bin);
1531 vs.BindingTableEntryCount = get_binding_table_entry_count(vs_bin);
1532 vs.FloatingPointMode = IEEE754;
1533 vs.IllegalOpcodeExceptionEnable = false;
1534 vs.SoftwareExceptionEnable = false;
1535 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
1536
1537 if (GEN_GEN == 9 && devinfo->gt == 4 &&
1538 anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1539 /* On Sky Lake GT4, we have experienced some hangs related to the VS
1540 * cache and tessellation. It is unknown exactly what is happening
1541 * but the Haswell docs for the "VS Reference Count Full Force Miss
1542 * Enable" field of the "Thread Mode" register refer to a HSW bug in
1543 * which the VUE handle reference count would overflow resulting in
1544 * internal reference counting bugs. My (Jason's) best guess is that
1545 * this bug cropped back up on SKL GT4 when we suddenly had more
1546 * threads in play than any previous gen9 hardware.
1547 *
1548 * What we do know for sure is that setting this bit when
1549 * tessellation shaders are in use fixes a GPU hang in Batman: Arkham
1550 * City when playing with DXVK (https://bugs.freedesktop.org/107280).
1551 * Disabling the vertex cache with tessellation shaders should only
1552 * have a minor performance impact as the tessellation shaders are
1553 * likely generating and processing far more geometry than the vertex
1554 * stage.
1555 */
1556 vs.VertexCacheDisable = true;
1557 }
1558
1559 vs.VertexURBEntryReadLength = vs_prog_data->base.urb_read_length;
1560 vs.VertexURBEntryReadOffset = 0;
1561 vs.DispatchGRFStartRegisterForURBData =
1562 vs_prog_data->base.base.dispatch_grf_start_reg;
1563
1564 #if GEN_GEN >= 8
1565 vs.UserClipDistanceClipTestEnableBitmask =
1566 vs_prog_data->base.clip_distance_mask;
1567 vs.UserClipDistanceCullTestEnableBitmask =
1568 vs_prog_data->base.cull_distance_mask;
1569 #endif
1570
1571 vs.PerThreadScratchSpace = get_scratch_space(vs_bin);
1572 vs.ScratchSpaceBasePointer =
1573 get_scratch_address(pipeline, MESA_SHADER_VERTEX, vs_bin);
1574 }
1575 }
1576
1577 static void
1578 emit_3dstate_hs_te_ds(struct anv_pipeline *pipeline,
1579 const VkPipelineTessellationStateCreateInfo *tess_info)
1580 {
1581 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_EVAL)) {
1582 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs);
1583 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te);
1584 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds);
1585 return;
1586 }
1587
1588 const struct gen_device_info *devinfo = &pipeline->device->info;
1589 const struct anv_shader_bin *tcs_bin =
1590 pipeline->shaders[MESA_SHADER_TESS_CTRL];
1591 const struct anv_shader_bin *tes_bin =
1592 pipeline->shaders[MESA_SHADER_TESS_EVAL];
1593
1594 const struct brw_tcs_prog_data *tcs_prog_data = get_tcs_prog_data(pipeline);
1595 const struct brw_tes_prog_data *tes_prog_data = get_tes_prog_data(pipeline);
1596
1597 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_HS), hs) {
1598 hs.Enable = true;
1599 hs.StatisticsEnable = true;
1600 hs.KernelStartPointer = tcs_bin->kernel.offset;
1601 /* WA_1606682166 */
1602 hs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(tcs_bin);
1603 hs.BindingTableEntryCount = get_binding_table_entry_count(tcs_bin);
1604
1605 #if GEN_GEN >= 12
1606 /* GEN:BUG:1604578095:
1607 *
1608 * Hang occurs when the number of max threads is less than 2 times
1609 * the number of instance count. The number of max threads must be
1610 * more than 2 times the number of instance count.
1611 */
1612 assert((devinfo->max_tcs_threads / 2) > tcs_prog_data->instances);
1613 #endif
1614
1615 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
1616 hs.IncludeVertexHandles = true;
1617 hs.InstanceCount = tcs_prog_data->instances - 1;
1618
1619 hs.VertexURBEntryReadLength = 0;
1620 hs.VertexURBEntryReadOffset = 0;
1621 hs.DispatchGRFStartRegisterForURBData =
1622 tcs_prog_data->base.base.dispatch_grf_start_reg;
1623
1624 hs.PerThreadScratchSpace = get_scratch_space(tcs_bin);
1625 hs.ScratchSpaceBasePointer =
1626 get_scratch_address(pipeline, MESA_SHADER_TESS_CTRL, tcs_bin);
1627
1628 #if GEN_GEN >= 9
1629 hs.DispatchMode = tcs_prog_data->base.dispatch_mode;
1630 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
1631 #endif
1632 }
1633
1634 const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state =
1635 tess_info ? vk_find_struct_const(tess_info, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO) : NULL;
1636
1637 VkTessellationDomainOrigin uv_origin =
1638 domain_origin_state ? domain_origin_state->domainOrigin :
1639 VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT;
1640
1641 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_TE), te) {
1642 te.Partitioning = tes_prog_data->partitioning;
1643
1644 if (uv_origin == VK_TESSELLATION_DOMAIN_ORIGIN_LOWER_LEFT) {
1645 te.OutputTopology = tes_prog_data->output_topology;
1646 } else {
1647 /* When the origin is upper-left, we have to flip the winding order */
1648 if (tes_prog_data->output_topology == OUTPUT_TRI_CCW) {
1649 te.OutputTopology = OUTPUT_TRI_CW;
1650 } else if (tes_prog_data->output_topology == OUTPUT_TRI_CW) {
1651 te.OutputTopology = OUTPUT_TRI_CCW;
1652 } else {
1653 te.OutputTopology = tes_prog_data->output_topology;
1654 }
1655 }
1656
1657 te.TEDomain = tes_prog_data->domain;
1658 te.TEEnable = true;
1659 te.MaximumTessellationFactorOdd = 63.0;
1660 te.MaximumTessellationFactorNotOdd = 64.0;
1661 }
1662
1663 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_DS), ds) {
1664 ds.Enable = true;
1665 ds.StatisticsEnable = true;
1666 ds.KernelStartPointer = tes_bin->kernel.offset;
1667 /* WA_1606682166 */
1668 ds.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(tes_bin);
1669 ds.BindingTableEntryCount = get_binding_table_entry_count(tes_bin);
1670 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
1671
1672 ds.ComputeWCoordinateEnable =
1673 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
1674
1675 ds.PatchURBEntryReadLength = tes_prog_data->base.urb_read_length;
1676 ds.PatchURBEntryReadOffset = 0;
1677 ds.DispatchGRFStartRegisterForURBData =
1678 tes_prog_data->base.base.dispatch_grf_start_reg;
1679
1680 #if GEN_GEN >= 8
1681 #if GEN_GEN < 11
1682 ds.DispatchMode =
1683 tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8 ?
1684 DISPATCH_MODE_SIMD8_SINGLE_PATCH :
1685 DISPATCH_MODE_SIMD4X2;
1686 #else
1687 assert(tes_prog_data->base.dispatch_mode == DISPATCH_MODE_SIMD8);
1688 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
1689 #endif
1690
1691 ds.UserClipDistanceClipTestEnableBitmask =
1692 tes_prog_data->base.clip_distance_mask;
1693 ds.UserClipDistanceCullTestEnableBitmask =
1694 tes_prog_data->base.cull_distance_mask;
1695 #endif
1696
1697 ds.PerThreadScratchSpace = get_scratch_space(tes_bin);
1698 ds.ScratchSpaceBasePointer =
1699 get_scratch_address(pipeline, MESA_SHADER_TESS_EVAL, tes_bin);
1700 }
1701 }
1702
1703 static void
1704 emit_3dstate_gs(struct anv_pipeline *pipeline)
1705 {
1706 const struct gen_device_info *devinfo = &pipeline->device->info;
1707 const struct anv_shader_bin *gs_bin =
1708 pipeline->shaders[MESA_SHADER_GEOMETRY];
1709
1710 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) {
1711 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs);
1712 return;
1713 }
1714
1715 const struct brw_gs_prog_data *gs_prog_data = get_gs_prog_data(pipeline);
1716
1717 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_GS), gs) {
1718 gs.Enable = true;
1719 gs.StatisticsEnable = true;
1720 gs.KernelStartPointer = gs_bin->kernel.offset;
1721 gs.DispatchMode = gs_prog_data->base.dispatch_mode;
1722
1723 gs.SingleProgramFlow = false;
1724 gs.VectorMaskEnable = false;
1725 /* WA_1606682166 */
1726 gs.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(gs_bin);
1727 gs.BindingTableEntryCount = get_binding_table_entry_count(gs_bin);
1728 gs.IncludeVertexHandles = gs_prog_data->base.include_vue_handles;
1729 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
1730
1731 if (GEN_GEN == 8) {
1732 /* Broadwell is weird. It needs us to divide by 2. */
1733 gs.MaximumNumberofThreads = devinfo->max_gs_threads / 2 - 1;
1734 } else {
1735 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
1736 }
1737
1738 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
1739 gs.OutputTopology = gs_prog_data->output_topology;
1740 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1741 gs.ControlDataFormat = gs_prog_data->control_data_format;
1742 gs.ControlDataHeaderSize = gs_prog_data->control_data_header_size_hwords;
1743 gs.InstanceControl = MAX2(gs_prog_data->invocations, 1) - 1;
1744 gs.ReorderMode = TRAILING;
1745
1746 #if GEN_GEN >= 8
1747 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
1748 gs.StaticOutput = gs_prog_data->static_vertex_count >= 0;
1749 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count >= 0 ?
1750 gs_prog_data->static_vertex_count : 0;
1751 #endif
1752
1753 gs.VertexURBEntryReadOffset = 0;
1754 gs.VertexURBEntryReadLength = gs_prog_data->base.urb_read_length;
1755 gs.DispatchGRFStartRegisterForURBData =
1756 gs_prog_data->base.base.dispatch_grf_start_reg;
1757
1758 #if GEN_GEN >= 8
1759 gs.UserClipDistanceClipTestEnableBitmask =
1760 gs_prog_data->base.clip_distance_mask;
1761 gs.UserClipDistanceCullTestEnableBitmask =
1762 gs_prog_data->base.cull_distance_mask;
1763 #endif
1764
1765 gs.PerThreadScratchSpace = get_scratch_space(gs_bin);
1766 gs.ScratchSpaceBasePointer =
1767 get_scratch_address(pipeline, MESA_SHADER_GEOMETRY, gs_bin);
1768 }
1769 }
1770
1771 static bool
1772 has_color_buffer_write_enabled(const struct anv_pipeline *pipeline,
1773 const VkPipelineColorBlendStateCreateInfo *blend)
1774 {
1775 const struct anv_shader_bin *shader_bin =
1776 pipeline->shaders[MESA_SHADER_FRAGMENT];
1777 if (!shader_bin)
1778 return false;
1779
1780 const struct anv_pipeline_bind_map *bind_map = &shader_bin->bind_map;
1781 for (int i = 0; i < bind_map->surface_count; i++) {
1782 struct anv_pipeline_binding *binding = &bind_map->surface_to_descriptor[i];
1783
1784 if (binding->set != ANV_DESCRIPTOR_SET_COLOR_ATTACHMENTS)
1785 continue;
1786
1787 if (binding->index == UINT32_MAX)
1788 continue;
1789
1790 if (blend && blend->pAttachments[binding->index].colorWriteMask != 0)
1791 return true;
1792 }
1793
1794 return false;
1795 }
1796
1797 static void
1798 emit_3dstate_wm(struct anv_pipeline *pipeline, struct anv_subpass *subpass,
1799 const VkPipelineInputAssemblyStateCreateInfo *ia,
1800 const VkPipelineRasterizationStateCreateInfo *raster,
1801 const VkPipelineColorBlendStateCreateInfo *blend,
1802 const VkPipelineMultisampleStateCreateInfo *multisample,
1803 const VkPipelineRasterizationLineStateCreateInfoEXT *line)
1804 {
1805 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1806
1807 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_WM), wm) {
1808 wm.StatisticsEnable = true;
1809 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1810 wm.LineAntialiasingRegionWidth = _10pixels;
1811 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1812
1813 if (anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1814 if (wm_prog_data->early_fragment_tests) {
1815 wm.EarlyDepthStencilControl = EDSC_PREPS;
1816 } else if (wm_prog_data->has_side_effects) {
1817 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
1818 } else {
1819 wm.EarlyDepthStencilControl = EDSC_NORMAL;
1820 }
1821
1822 #if GEN_GEN >= 8
1823 /* Gen8 hardware tries to compute ThreadDispatchEnable for us but
1824 * doesn't take into account KillPixels when no depth or stencil
1825 * writes are enabled. In order for occlusion queries to work
1826 * correctly with no attachments, we need to force-enable PS thread
1827 * dispatch.
1828 *
1829 * The BDW docs are pretty clear that that this bit isn't validated
1830 * and probably shouldn't be used in production:
1831 *
1832 * "This must always be set to Normal. This field should not be
1833 * tested for functional validation."
1834 *
1835 * Unfortunately, however, the other mechanism we have for doing this
1836 * is 3DSTATE_PS_EXTRA::PixelShaderHasUAV which causes hangs on BDW.
1837 * Given two bad options, we choose the one which works.
1838 */
1839 if ((wm_prog_data->has_side_effects || wm_prog_data->uses_kill) &&
1840 !has_color_buffer_write_enabled(pipeline, blend))
1841 wm.ForceThreadDispatchEnable = ForceON;
1842 #endif
1843
1844 wm.BarycentricInterpolationMode =
1845 wm_prog_data->barycentric_interp_modes;
1846
1847 #if GEN_GEN < 8
1848 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
1849 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
1850 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1851 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
1852
1853 /* If the subpass has a depth or stencil self-dependency, then we
1854 * need to force the hardware to do the depth/stencil write *after*
1855 * fragment shader execution. Otherwise, the writes may hit memory
1856 * before we get around to fetching from the input attachment and we
1857 * may get the depth or stencil value from the current draw rather
1858 * than the previous one.
1859 */
1860 wm.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
1861 wm_prog_data->uses_kill;
1862
1863 if (wm.PixelShaderComputedDepthMode != PSCDEPTH_OFF ||
1864 wm_prog_data->has_side_effects ||
1865 wm.PixelShaderKillsPixel ||
1866 has_color_buffer_write_enabled(pipeline, blend))
1867 wm.ThreadDispatchEnable = true;
1868
1869 if (multisample && multisample->rasterizationSamples > 1) {
1870 if (wm_prog_data->persample_dispatch) {
1871 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1872 } else {
1873 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
1874 }
1875 } else {
1876 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
1877 }
1878 wm.MultisampleRasterizationMode =
1879 gen7_ms_rast_mode(pipeline, ia, raster, multisample);
1880 #endif
1881
1882 wm.LineStippleEnable = line && line->stippledLineEnable;
1883 }
1884 }
1885 }
1886
1887 static void
1888 emit_3dstate_ps(struct anv_pipeline *pipeline,
1889 const VkPipelineColorBlendStateCreateInfo *blend,
1890 const VkPipelineMultisampleStateCreateInfo *multisample)
1891 {
1892 UNUSED const struct gen_device_info *devinfo = &pipeline->device->info;
1893 const struct anv_shader_bin *fs_bin =
1894 pipeline->shaders[MESA_SHADER_FRAGMENT];
1895
1896 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
1897 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1898 #if GEN_GEN == 7
1899 /* Even if no fragments are ever dispatched, gen7 hardware hangs if
1900 * we don't at least set the maximum number of threads.
1901 */
1902 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1903 #endif
1904 }
1905 return;
1906 }
1907
1908 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
1909
1910 #if GEN_GEN < 8
1911 /* The hardware wedges if you have this bit set but don't turn on any dual
1912 * source blend factors.
1913 */
1914 bool dual_src_blend = false;
1915 if (wm_prog_data->dual_src_blend && blend) {
1916 for (uint32_t i = 0; i < blend->attachmentCount; i++) {
1917 const VkPipelineColorBlendAttachmentState *bstate =
1918 &blend->pAttachments[i];
1919
1920 if (bstate->blendEnable &&
1921 (is_dual_src_blend_factor(bstate->srcColorBlendFactor) ||
1922 is_dual_src_blend_factor(bstate->dstColorBlendFactor) ||
1923 is_dual_src_blend_factor(bstate->srcAlphaBlendFactor) ||
1924 is_dual_src_blend_factor(bstate->dstAlphaBlendFactor))) {
1925 dual_src_blend = true;
1926 break;
1927 }
1928 }
1929 }
1930 #endif
1931
1932 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS), ps) {
1933 ps._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1934 ps._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1935 ps._32PixelDispatchEnable = wm_prog_data->dispatch_32;
1936
1937 /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
1938 *
1939 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
1940 * Dispatch must not be enabled for PER_PIXEL dispatch mode."
1941 *
1942 * Since 16x MSAA is first introduced on SKL, we don't need to apply
1943 * the workaround on any older hardware.
1944 */
1945 if (GEN_GEN >= 9 && !wm_prog_data->persample_dispatch &&
1946 multisample && multisample->rasterizationSamples == 16) {
1947 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
1948 ps._32PixelDispatchEnable = false;
1949 }
1950
1951 ps.KernelStartPointer0 = fs_bin->kernel.offset +
1952 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 0);
1953 ps.KernelStartPointer1 = fs_bin->kernel.offset +
1954 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 1);
1955 ps.KernelStartPointer2 = fs_bin->kernel.offset +
1956 brw_wm_prog_data_prog_offset(wm_prog_data, ps, 2);
1957
1958 ps.SingleProgramFlow = false;
1959 ps.VectorMaskEnable = GEN_GEN >= 8;
1960 /* WA_1606682166 */
1961 ps.SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(fs_bin);
1962 ps.BindingTableEntryCount = get_binding_table_entry_count(fs_bin);
1963 ps.PushConstantEnable = wm_prog_data->base.nr_params > 0 ||
1964 wm_prog_data->base.ubo_ranges[0].length;
1965 ps.PositionXYOffsetSelect = wm_prog_data->uses_pos_offset ?
1966 POSOFFSET_SAMPLE: POSOFFSET_NONE;
1967 #if GEN_GEN < 8
1968 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
1969 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1970 ps.DualSourceBlendEnable = dual_src_blend;
1971 #endif
1972
1973 #if GEN_IS_HASWELL
1974 /* Haswell requires the sample mask to be set in this packet as well
1975 * as in 3DSTATE_SAMPLE_MASK; the values should match.
1976 */
1977 ps.SampleMask = 0xff;
1978 #endif
1979
1980 #if GEN_GEN >= 9
1981 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
1982 #elif GEN_GEN >= 8
1983 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
1984 #else
1985 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1986 #endif
1987
1988 ps.DispatchGRFStartRegisterForConstantSetupData0 =
1989 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 0);
1990 ps.DispatchGRFStartRegisterForConstantSetupData1 =
1991 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 1);
1992 ps.DispatchGRFStartRegisterForConstantSetupData2 =
1993 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, ps, 2);
1994
1995 ps.PerThreadScratchSpace = get_scratch_space(fs_bin);
1996 ps.ScratchSpaceBasePointer =
1997 get_scratch_address(pipeline, MESA_SHADER_FRAGMENT, fs_bin);
1998 }
1999 }
2000
2001 #if GEN_GEN >= 8
2002 static void
2003 emit_3dstate_ps_extra(struct anv_pipeline *pipeline,
2004 struct anv_subpass *subpass)
2005 {
2006 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
2007
2008 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
2009 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps);
2010 return;
2011 }
2012
2013 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_PS_EXTRA), ps) {
2014 ps.PixelShaderValid = true;
2015 ps.AttributeEnable = wm_prog_data->num_varying_inputs > 0;
2016 ps.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
2017 ps.PixelShaderIsPerSample = wm_prog_data->persample_dispatch;
2018 ps.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
2019 ps.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
2020 ps.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
2021
2022 /* If the subpass has a depth or stencil self-dependency, then we need
2023 * to force the hardware to do the depth/stencil write *after* fragment
2024 * shader execution. Otherwise, the writes may hit memory before we get
2025 * around to fetching from the input attachment and we may get the depth
2026 * or stencil value from the current draw rather than the previous one.
2027 */
2028 ps.PixelShaderKillsPixel = subpass->has_ds_self_dep ||
2029 wm_prog_data->uses_kill;
2030
2031 #if GEN_GEN >= 9
2032 ps.PixelShaderComputesStencil = wm_prog_data->computed_stencil;
2033 ps.PixelShaderPullsBary = wm_prog_data->pulls_bary;
2034
2035 ps.InputCoverageMaskState = ICMS_NONE;
2036 if (wm_prog_data->uses_sample_mask) {
2037 if (wm_prog_data->post_depth_coverage)
2038 ps.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
2039 else
2040 ps.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
2041 }
2042 #else
2043 ps.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
2044 #endif
2045 }
2046 }
2047
2048 static void
2049 emit_3dstate_vf_topology(struct anv_pipeline *pipeline)
2050 {
2051 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_TOPOLOGY), vft) {
2052 vft.PrimitiveTopologyType = pipeline->topology;
2053 }
2054 }
2055 #endif
2056
2057 static void
2058 emit_3dstate_vf_statistics(struct anv_pipeline *pipeline)
2059 {
2060 anv_batch_emit(&pipeline->batch, GENX(3DSTATE_VF_STATISTICS), vfs) {
2061 vfs.StatisticsEnable = true;
2062 }
2063 }
2064
2065 static void
2066 compute_kill_pixel(struct anv_pipeline *pipeline,
2067 const VkPipelineMultisampleStateCreateInfo *ms_info,
2068 const struct anv_subpass *subpass)
2069 {
2070 if (!anv_pipeline_has_stage(pipeline, MESA_SHADER_FRAGMENT)) {
2071 pipeline->kill_pixel = false;
2072 return;
2073 }
2074
2075 const struct brw_wm_prog_data *wm_prog_data = get_wm_prog_data(pipeline);
2076
2077 /* This computes the KillPixel portion of the computation for whether or
2078 * not we want to enable the PMA fix on gen8 or gen9. It's given by this
2079 * chunk of the giant formula:
2080 *
2081 * (3DSTATE_PS_EXTRA::PixelShaderKillsPixels ||
2082 * 3DSTATE_PS_EXTRA::oMask Present to RenderTarget ||
2083 * 3DSTATE_PS_BLEND::AlphaToCoverageEnable ||
2084 * 3DSTATE_PS_BLEND::AlphaTestEnable ||
2085 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable)
2086 *
2087 * 3DSTATE_WM_CHROMAKEY::ChromaKeyKillEnable is always false and so is
2088 * 3DSTATE_PS_BLEND::AlphaTestEnable since Vulkan doesn't have a concept
2089 * of an alpha test.
2090 */
2091 pipeline->kill_pixel =
2092 subpass->has_ds_self_dep || wm_prog_data->uses_kill ||
2093 wm_prog_data->uses_omask ||
2094 (ms_info && ms_info->alphaToCoverageEnable);
2095 }
2096
2097 static VkResult
2098 genX(graphics_pipeline_create)(
2099 VkDevice _device,
2100 struct anv_pipeline_cache * cache,
2101 const VkGraphicsPipelineCreateInfo* pCreateInfo,
2102 const VkAllocationCallbacks* pAllocator,
2103 VkPipeline* pPipeline)
2104 {
2105 ANV_FROM_HANDLE(anv_device, device, _device);
2106 ANV_FROM_HANDLE(anv_render_pass, pass, pCreateInfo->renderPass);
2107 struct anv_subpass *subpass = &pass->subpasses[pCreateInfo->subpass];
2108 struct anv_pipeline *pipeline;
2109 VkResult result;
2110
2111 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO);
2112
2113 /* Use the default pipeline cache if none is specified */
2114 if (cache == NULL && device->physical->instance->pipeline_cache_enabled)
2115 cache = &device->default_pipeline_cache;
2116
2117 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
2118 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2119 if (pipeline == NULL)
2120 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2121
2122 result = anv_pipeline_init(pipeline, device, cache,
2123 pCreateInfo, pAllocator);
2124 if (result != VK_SUCCESS) {
2125 vk_free2(&device->alloc, pAllocator, pipeline);
2126 return result;
2127 }
2128
2129 /* If rasterization is not enabled, various CreateInfo structs must be
2130 * ignored.
2131 */
2132 const bool raster_enabled =
2133 !pCreateInfo->pRasterizationState->rasterizerDiscardEnable;
2134
2135 const VkPipelineViewportStateCreateInfo *vp_info =
2136 raster_enabled ? pCreateInfo->pViewportState : NULL;
2137
2138 const VkPipelineMultisampleStateCreateInfo *ms_info =
2139 raster_enabled ? pCreateInfo->pMultisampleState : NULL;
2140
2141 const VkPipelineDepthStencilStateCreateInfo *ds_info =
2142 raster_enabled ? pCreateInfo->pDepthStencilState : NULL;
2143
2144 const VkPipelineColorBlendStateCreateInfo *cb_info =
2145 raster_enabled ? pCreateInfo->pColorBlendState : NULL;
2146
2147 const VkPipelineRasterizationLineStateCreateInfoEXT *line_info =
2148 vk_find_struct_const(pCreateInfo->pRasterizationState->pNext,
2149 PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT);
2150
2151 assert(pCreateInfo->pVertexInputState);
2152 emit_vertex_input(pipeline, pCreateInfo->pVertexInputState);
2153 assert(pCreateInfo->pRasterizationState);
2154 emit_rs_state(pipeline, pCreateInfo->pInputAssemblyState,
2155 pCreateInfo->pRasterizationState,
2156 ms_info, line_info, pass, subpass);
2157 emit_ms_state(pipeline, ms_info);
2158 emit_ds_state(pipeline, ds_info, pass, subpass);
2159 emit_cb_state(pipeline, cb_info, ms_info);
2160 compute_kill_pixel(pipeline, ms_info, subpass);
2161
2162 emit_urb_setup(pipeline);
2163
2164 emit_3dstate_clip(pipeline,
2165 pCreateInfo->pInputAssemblyState,
2166 vp_info,
2167 pCreateInfo->pRasterizationState);
2168 emit_3dstate_streamout(pipeline, pCreateInfo->pRasterizationState);
2169
2170 #if 0
2171 /* From gen7_vs_state.c */
2172
2173 /**
2174 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2175 * Geometry > Geometry Shader > State:
2176 *
2177 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2178 * whole fixed function pipeline when the GS enable changes value in
2179 * the 3DSTATE_GS."
2180 *
2181 * The hardware architects have clarified that in this context "flush the
2182 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2183 * Stall" bit set.
2184 */
2185 if (!device->info.is_haswell && !device->info.is_baytrail)
2186 gen7_emit_vs_workaround_flush(brw);
2187 #endif
2188
2189 emit_3dstate_vs(pipeline);
2190 emit_3dstate_hs_te_ds(pipeline, pCreateInfo->pTessellationState);
2191 emit_3dstate_gs(pipeline);
2192 emit_3dstate_sbe(pipeline);
2193 emit_3dstate_wm(pipeline, subpass,
2194 pCreateInfo->pInputAssemblyState,
2195 pCreateInfo->pRasterizationState,
2196 cb_info, ms_info, line_info);
2197 emit_3dstate_ps(pipeline, cb_info, ms_info);
2198 #if GEN_GEN >= 8
2199 emit_3dstate_ps_extra(pipeline, subpass);
2200 emit_3dstate_vf_topology(pipeline);
2201 #endif
2202 emit_3dstate_vf_statistics(pipeline);
2203
2204 *pPipeline = anv_pipeline_to_handle(pipeline);
2205
2206 return pipeline->batch.status;
2207 }
2208
2209 static VkResult
2210 compute_pipeline_create(
2211 VkDevice _device,
2212 struct anv_pipeline_cache * cache,
2213 const VkComputePipelineCreateInfo* pCreateInfo,
2214 const VkAllocationCallbacks* pAllocator,
2215 VkPipeline* pPipeline)
2216 {
2217 ANV_FROM_HANDLE(anv_device, device, _device);
2218 const struct gen_device_info *devinfo = &device->info;
2219 struct anv_pipeline *pipeline;
2220 VkResult result;
2221
2222 assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO);
2223
2224 /* Use the default pipeline cache if none is specified */
2225 if (cache == NULL && device->physical->instance->pipeline_cache_enabled)
2226 cache = &device->default_pipeline_cache;
2227
2228 pipeline = vk_alloc2(&device->alloc, pAllocator, sizeof(*pipeline), 8,
2229 VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
2230 if (pipeline == NULL)
2231 return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
2232
2233 pipeline->device = device;
2234
2235 pipeline->blend_state.map = NULL;
2236
2237 const VkAllocationCallbacks *alloc =
2238 pAllocator ? pAllocator : &device->alloc;
2239
2240 result = anv_reloc_list_init(&pipeline->batch_relocs, alloc);
2241 if (result != VK_SUCCESS) {
2242 vk_free2(&device->alloc, pAllocator, pipeline);
2243 return result;
2244 }
2245 pipeline->batch.alloc = alloc;
2246 pipeline->batch.next = pipeline->batch.start = pipeline->batch_data;
2247 pipeline->batch.end = pipeline->batch.start + sizeof(pipeline->batch_data);
2248 pipeline->batch.relocs = &pipeline->batch_relocs;
2249 pipeline->batch.status = VK_SUCCESS;
2250
2251 pipeline->mem_ctx = ralloc_context(NULL);
2252 pipeline->flags = pCreateInfo->flags;
2253
2254 /* When we free the pipeline, we detect stages based on the NULL status
2255 * of various prog_data pointers. Make them NULL by default.
2256 */
2257 memset(pipeline->shaders, 0, sizeof(pipeline->shaders));
2258 pipeline->num_executables = 0;
2259
2260 pipeline->needs_data_cache = false;
2261
2262 assert(pCreateInfo->stage.stage == VK_SHADER_STAGE_COMPUTE_BIT);
2263 pipeline->active_stages |= VK_SHADER_STAGE_COMPUTE_BIT;
2264 ANV_FROM_HANDLE(anv_shader_module, module, pCreateInfo->stage.module);
2265 result = anv_pipeline_compile_cs(pipeline, cache, pCreateInfo, module,
2266 pCreateInfo->stage.pName,
2267 pCreateInfo->stage.pSpecializationInfo);
2268 if (result != VK_SUCCESS) {
2269 ralloc_free(pipeline->mem_ctx);
2270 vk_free2(&device->alloc, pAllocator, pipeline);
2271 return result;
2272 }
2273
2274 const struct brw_cs_prog_data *cs_prog_data = get_cs_prog_data(pipeline);
2275
2276 anv_pipeline_setup_l3_config(pipeline, cs_prog_data->base.total_shared > 0);
2277
2278 uint32_t group_size = cs_prog_data->local_size[0] *
2279 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
2280 uint32_t remainder = group_size & (cs_prog_data->simd_size - 1);
2281
2282 if (remainder > 0)
2283 pipeline->cs_right_mask = ~0u >> (32 - remainder);
2284 else
2285 pipeline->cs_right_mask = ~0u >> (32 - cs_prog_data->simd_size);
2286
2287 const uint32_t vfe_curbe_allocation =
2288 ALIGN(cs_prog_data->push.per_thread.regs * cs_prog_data->threads +
2289 cs_prog_data->push.cross_thread.regs, 2);
2290
2291 const uint32_t subslices = MAX2(device->physical->subslice_total, 1);
2292
2293 const struct anv_shader_bin *cs_bin =
2294 pipeline->shaders[MESA_SHADER_COMPUTE];
2295
2296 anv_batch_emit(&pipeline->batch, GENX(MEDIA_VFE_STATE), vfe) {
2297 #if GEN_GEN > 7
2298 vfe.StackSize = 0;
2299 #else
2300 vfe.GPGPUMode = true;
2301 #endif
2302 vfe.MaximumNumberofThreads =
2303 devinfo->max_cs_threads * subslices - 1;
2304 vfe.NumberofURBEntries = GEN_GEN <= 7 ? 0 : 2;
2305 #if GEN_GEN < 11
2306 vfe.ResetGatewayTimer = true;
2307 #endif
2308 #if GEN_GEN <= 8
2309 vfe.BypassGatewayControl = true;
2310 #endif
2311 vfe.URBEntryAllocationSize = GEN_GEN <= 7 ? 0 : 2;
2312 vfe.CURBEAllocationSize = vfe_curbe_allocation;
2313
2314 if (cs_bin->prog_data->total_scratch) {
2315 if (GEN_GEN >= 8) {
2316 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
2317 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
2318 */
2319 vfe.PerThreadScratchSpace =
2320 ffs(cs_bin->prog_data->total_scratch) - 11;
2321 } else if (GEN_IS_HASWELL) {
2322 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
2323 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
2324 */
2325 vfe.PerThreadScratchSpace =
2326 ffs(cs_bin->prog_data->total_scratch) - 12;
2327 } else {
2328 /* IVB and BYT use the range [0, 11] to mean [1kB, 12kB]
2329 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
2330 */
2331 vfe.PerThreadScratchSpace =
2332 cs_bin->prog_data->total_scratch / 1024 - 1;
2333 }
2334 vfe.ScratchSpaceBasePointer =
2335 get_scratch_address(pipeline, MESA_SHADER_COMPUTE, cs_bin);
2336 }
2337 }
2338
2339 struct GENX(INTERFACE_DESCRIPTOR_DATA) desc = {
2340 .KernelStartPointer = cs_bin->kernel.offset,
2341 /* WA_1606682166 */
2342 .SamplerCount = GEN_GEN == 11 ? 0 : get_sampler_count(cs_bin),
2343 /* We add 1 because the CS indirect parameters buffer isn't accounted
2344 * for in bind_map.surface_count.
2345 */
2346 .BindingTableEntryCount = 1 + MIN2(cs_bin->bind_map.surface_count, 30),
2347 .BarrierEnable = cs_prog_data->uses_barrier,
2348 .SharedLocalMemorySize =
2349 encode_slm_size(GEN_GEN, cs_prog_data->base.total_shared),
2350
2351 #if !GEN_IS_HASWELL
2352 .ConstantURBEntryReadOffset = 0,
2353 #endif
2354 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
2355 #if GEN_GEN >= 8 || GEN_IS_HASWELL
2356 .CrossThreadConstantDataReadLength =
2357 cs_prog_data->push.cross_thread.regs,
2358 #endif
2359
2360 .NumberofThreadsinGPGPUThreadGroup = cs_prog_data->threads,
2361 };
2362 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(NULL,
2363 pipeline->interface_descriptor_data,
2364 &desc);
2365
2366 *pPipeline = anv_pipeline_to_handle(pipeline);
2367
2368 return pipeline->batch.status;
2369 }
2370
2371 VkResult genX(CreateGraphicsPipelines)(
2372 VkDevice _device,
2373 VkPipelineCache pipelineCache,
2374 uint32_t count,
2375 const VkGraphicsPipelineCreateInfo* pCreateInfos,
2376 const VkAllocationCallbacks* pAllocator,
2377 VkPipeline* pPipelines)
2378 {
2379 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2380
2381 VkResult result = VK_SUCCESS;
2382
2383 unsigned i;
2384 for (i = 0; i < count; i++) {
2385 result = genX(graphics_pipeline_create)(_device,
2386 pipeline_cache,
2387 &pCreateInfos[i],
2388 pAllocator, &pPipelines[i]);
2389
2390 /* Bail out on the first error as it is not obvious what error should be
2391 * report upon 2 different failures. */
2392 if (result != VK_SUCCESS)
2393 break;
2394 }
2395
2396 for (; i < count; i++)
2397 pPipelines[i] = VK_NULL_HANDLE;
2398
2399 return result;
2400 }
2401
2402 VkResult genX(CreateComputePipelines)(
2403 VkDevice _device,
2404 VkPipelineCache pipelineCache,
2405 uint32_t count,
2406 const VkComputePipelineCreateInfo* pCreateInfos,
2407 const VkAllocationCallbacks* pAllocator,
2408 VkPipeline* pPipelines)
2409 {
2410 ANV_FROM_HANDLE(anv_pipeline_cache, pipeline_cache, pipelineCache);
2411
2412 VkResult result = VK_SUCCESS;
2413
2414 unsigned i;
2415 for (i = 0; i < count; i++) {
2416 result = compute_pipeline_create(_device, pipeline_cache,
2417 &pCreateInfos[i],
2418 pAllocator, &pPipelines[i]);
2419
2420 /* Bail out on the first error as it is not obvious what error should be
2421 * report upon 2 different failures. */
2422 if (result != VK_SUCCESS)
2423 break;
2424 }
2425
2426 for (; i < count; i++)
2427 pPipelines[i] = VK_NULL_HANDLE;
2428
2429 return result;
2430 }