Merge branch 'mesa_7_7_branch'
[mesa.git] / src / mesa / drivers / dri / i965 / brw_clip_util.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32
33 #include "main/glheader.h"
34 #include "main/macros.h"
35 #include "main/enums.h"
36 #include "shader/program.h"
37
38 #include "intel_batchbuffer.h"
39
40 #include "brw_defines.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_clip.h"
44
45
46
47
48 struct brw_reg get_tmp( struct brw_clip_compile *c )
49 {
50 struct brw_reg tmp = brw_vec4_grf(c->last_tmp, 0);
51
52 if (++c->last_tmp > c->prog_data.total_grf)
53 c->prog_data.total_grf = c->last_tmp;
54
55 return tmp;
56 }
57
58 static void release_tmp( struct brw_clip_compile *c, struct brw_reg tmp )
59 {
60 if (tmp.nr == c->last_tmp-1)
61 c->last_tmp--;
62 }
63
64
65 static struct brw_reg make_plane_ud(GLuint x, GLuint y, GLuint z, GLuint w)
66 {
67 return brw_imm_ud((w<<24) | (z<<16) | (y<<8) | x);
68 }
69
70
71 void brw_clip_init_planes( struct brw_clip_compile *c )
72 {
73 struct brw_compile *p = &c->func;
74
75 if (!c->key.nr_userclip) {
76 brw_MOV(p, get_element_ud(c->reg.fixed_planes, 0), make_plane_ud( 0, 0, 0xff, 1));
77 brw_MOV(p, get_element_ud(c->reg.fixed_planes, 1), make_plane_ud( 0, 0, 1, 1));
78 brw_MOV(p, get_element_ud(c->reg.fixed_planes, 2), make_plane_ud( 0, 0xff, 0, 1));
79 brw_MOV(p, get_element_ud(c->reg.fixed_planes, 3), make_plane_ud( 0, 1, 0, 1));
80 brw_MOV(p, get_element_ud(c->reg.fixed_planes, 4), make_plane_ud(0xff, 0, 0, 1));
81 brw_MOV(p, get_element_ud(c->reg.fixed_planes, 5), make_plane_ud( 1, 0, 0, 1));
82 }
83 }
84
85
86
87 #define W 3
88
89 /* Project 'pos' to screen space (or back again), overwrite with results:
90 */
91 void brw_clip_project_position(struct brw_clip_compile *c, struct brw_reg pos )
92 {
93 struct brw_compile *p = &c->func;
94
95 /* calc rhw
96 */
97 brw_math_invert(p, get_element(pos, W), get_element(pos, W));
98
99 /* value.xyz *= value.rhw
100 */
101 brw_set_access_mode(p, BRW_ALIGN_16);
102 brw_MUL(p, brw_writemask(pos, WRITEMASK_XYZ), pos, brw_swizzle1(pos, W));
103 brw_set_access_mode(p, BRW_ALIGN_1);
104 }
105
106
107 static void brw_clip_project_vertex( struct brw_clip_compile *c,
108 struct brw_indirect vert_addr )
109 {
110 struct brw_compile *p = &c->func;
111 struct brw_reg tmp = get_tmp(c);
112
113 /* Fixup position. Extract from the original vertex and re-project
114 * to screen space:
115 */
116 brw_MOV(p, tmp, deref_4f(vert_addr, c->offset[VERT_RESULT_HPOS]));
117 brw_clip_project_position(c, tmp);
118 brw_MOV(p, deref_4f(vert_addr, c->header_position_offset), tmp);
119
120 release_tmp(c, tmp);
121 }
122
123
124
125
126 /* Interpolate between two vertices and put the result into a0.0.
127 * Increment a0.0 accordingly.
128 */
129 void brw_clip_interp_vertex( struct brw_clip_compile *c,
130 struct brw_indirect dest_ptr,
131 struct brw_indirect v0_ptr, /* from */
132 struct brw_indirect v1_ptr, /* to */
133 struct brw_reg t0,
134 GLboolean force_edgeflag)
135 {
136 struct brw_compile *p = &c->func;
137 struct intel_context *intel = &p->brw->intel;
138 struct brw_reg tmp = get_tmp(c);
139 GLuint i;
140
141 /* Just copy the vertex header:
142 */
143 /*
144 * After CLIP stage, only first 256 bits of the VUE are read
145 * back on Ironlake, so needn't change it
146 */
147 brw_copy_indirect_to_indirect(p, dest_ptr, v0_ptr, 1);
148
149 /* Iterate over each attribute (could be done in pairs?)
150 */
151 for (i = 0; i < c->nr_attrs; i++) {
152 GLuint delta = i*16 + 32;
153
154 if (intel->is_ironlake)
155 delta = i * 16 + 32 * 3;
156
157 if (delta == c->offset[VERT_RESULT_EDGE]) {
158 if (force_edgeflag)
159 brw_MOV(p, deref_4f(dest_ptr, delta), brw_imm_f(1));
160 else
161 brw_MOV(p, deref_4f(dest_ptr, delta), deref_4f(v0_ptr, delta));
162 }
163 else {
164 /* Interpolate:
165 *
166 * New = attr0 + t*attr1 - t*attr0
167 */
168 brw_MUL(p,
169 vec4(brw_null_reg()),
170 deref_4f(v1_ptr, delta),
171 t0);
172
173 brw_MAC(p,
174 tmp,
175 negate(deref_4f(v0_ptr, delta)),
176 t0);
177
178 brw_ADD(p,
179 deref_4f(dest_ptr, delta),
180 deref_4f(v0_ptr, delta),
181 tmp);
182 }
183 }
184
185 if (i & 1) {
186 GLuint delta = i*16 + 32;
187
188 if (intel->is_ironlake)
189 delta = i * 16 + 32 * 3;
190
191 brw_MOV(p, deref_4f(dest_ptr, delta), brw_imm_f(0));
192 }
193
194 release_tmp(c, tmp);
195
196 /* Recreate the projected (NDC) coordinate in the new vertex
197 * header:
198 */
199 brw_clip_project_vertex(c, dest_ptr );
200 }
201
202
203
204
205 #define MAX_MRF 16
206
207 void brw_clip_emit_vue(struct brw_clip_compile *c,
208 struct brw_indirect vert,
209 GLboolean allocate,
210 GLboolean eot,
211 GLuint header)
212 {
213 struct brw_compile *p = &c->func;
214 GLuint start = c->last_mrf;
215
216 brw_clip_ff_sync(c);
217
218 assert(!(allocate && eot));
219
220 /* Cycle through mrf regs - probably futile as we have to wait for
221 * the allocation response anyway. Also, the order this function
222 * is invoked doesn't correspond to the order the instructions will
223 * be executed, so it won't have any effect in many cases.
224 */
225 #if 0
226 if (start + c->nr_regs + 1 >= MAX_MRF)
227 start = 0;
228
229 c->last_mrf = start + c->nr_regs + 1;
230 #endif
231
232 /* Copy the vertex from vertn into m1..mN+1:
233 */
234 brw_copy_from_indirect(p, brw_message_reg(start+1), vert, c->nr_regs);
235
236 /* Overwrite PrimType and PrimStart in the message header, for
237 * each vertex in turn:
238 */
239 brw_MOV(p, get_element_ud(c->reg.R0, 2), brw_imm_ud(header));
240
241
242 /* Send each vertex as a seperate write to the urb. This
243 * is different to the concept in brw_sf_emit.c, where
244 * subsequent writes are used to build up a single urb
245 * entry. Each of these writes instantiates a seperate
246 * urb entry - (I think... what about 'allocate'?)
247 */
248 brw_urb_WRITE(p,
249 allocate ? c->reg.R0 : retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
250 start,
251 c->reg.R0,
252 allocate,
253 1, /* used */
254 c->nr_regs + 1, /* msg length */
255 allocate ? 1 : 0, /* response_length */
256 eot, /* eot */
257 1, /* writes_complete */
258 0, /* urb offset */
259 BRW_URB_SWIZZLE_NONE);
260 }
261
262
263
264 void brw_clip_kill_thread(struct brw_clip_compile *c)
265 {
266 struct brw_compile *p = &c->func;
267
268 brw_clip_ff_sync(c);
269 /* Send an empty message to kill the thread and release any
270 * allocated urb entry:
271 */
272 brw_urb_WRITE(p,
273 retype(brw_null_reg(), BRW_REGISTER_TYPE_UD),
274 0,
275 c->reg.R0,
276 0, /* allocate */
277 0, /* used */
278 1, /* msg len */
279 0, /* response len */
280 1, /* eot */
281 1, /* writes complete */
282 0,
283 BRW_URB_SWIZZLE_NONE);
284 }
285
286
287
288
289 struct brw_reg brw_clip_plane0_address( struct brw_clip_compile *c )
290 {
291 return brw_address(c->reg.fixed_planes);
292 }
293
294
295 struct brw_reg brw_clip_plane_stride( struct brw_clip_compile *c )
296 {
297 if (c->key.nr_userclip) {
298 return brw_imm_uw(16);
299 }
300 else {
301 return brw_imm_uw(4);
302 }
303 }
304
305
306 /* If flatshading, distribute color from provoking vertex prior to
307 * clipping.
308 */
309 void brw_clip_copy_colors( struct brw_clip_compile *c,
310 GLuint to, GLuint from )
311 {
312 struct brw_compile *p = &c->func;
313
314 if (c->offset[VERT_RESULT_COL0])
315 brw_MOV(p,
316 byte_offset(c->reg.vertex[to], c->offset[VERT_RESULT_COL0]),
317 byte_offset(c->reg.vertex[from], c->offset[VERT_RESULT_COL0]));
318
319 if (c->offset[VERT_RESULT_COL1])
320 brw_MOV(p,
321 byte_offset(c->reg.vertex[to], c->offset[VERT_RESULT_COL1]),
322 byte_offset(c->reg.vertex[from], c->offset[VERT_RESULT_COL1]));
323
324 if (c->offset[VERT_RESULT_BFC0])
325 brw_MOV(p,
326 byte_offset(c->reg.vertex[to], c->offset[VERT_RESULT_BFC0]),
327 byte_offset(c->reg.vertex[from], c->offset[VERT_RESULT_BFC0]));
328
329 if (c->offset[VERT_RESULT_BFC1])
330 brw_MOV(p,
331 byte_offset(c->reg.vertex[to], c->offset[VERT_RESULT_BFC1]),
332 byte_offset(c->reg.vertex[from], c->offset[VERT_RESULT_BFC1]));
333 }
334
335
336
337 void brw_clip_init_clipmask( struct brw_clip_compile *c )
338 {
339 struct brw_compile *p = &c->func;
340 struct brw_reg incoming = get_element_ud(c->reg.R0, 2);
341
342 /* Shift so that lowest outcode bit is rightmost:
343 */
344 brw_SHR(p, c->reg.planemask, incoming, brw_imm_ud(26));
345
346 if (c->key.nr_userclip) {
347 struct brw_reg tmp = retype(vec1(get_tmp(c)), BRW_REGISTER_TYPE_UD);
348
349 /* Rearrange userclip outcodes so that they come directly after
350 * the fixed plane bits.
351 */
352 brw_AND(p, tmp, incoming, brw_imm_ud(0x3f<<14));
353 brw_SHR(p, tmp, tmp, brw_imm_ud(8));
354 brw_OR(p, c->reg.planemask, c->reg.planemask, tmp);
355
356 release_tmp(c, tmp);
357 }
358 }
359
360 void brw_clip_ff_sync(struct brw_clip_compile *c)
361 {
362 struct intel_context *intel = &c->func.brw->intel;
363
364 if (intel->needs_ff_sync) {
365 struct brw_compile *p = &c->func;
366 struct brw_instruction *need_ff_sync;
367
368 brw_set_conditionalmod(p, BRW_CONDITIONAL_Z);
369 brw_AND(p, brw_null_reg(), c->reg.ff_sync, brw_imm_ud(0x1));
370 need_ff_sync = brw_IF(p, BRW_EXECUTE_1);
371 {
372 brw_OR(p, c->reg.ff_sync, c->reg.ff_sync, brw_imm_ud(0x1));
373 brw_ff_sync(p,
374 c->reg.R0,
375 0,
376 c->reg.R0,
377 1,
378 1, /* used */
379 1, /* msg length */
380 1, /* response length */
381 0, /* eot */
382 1, /* write compelete */
383 0, /* urb offset */
384 BRW_URB_SWIZZLE_NONE);
385 }
386 brw_ENDIF(p, need_ff_sync);
387 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
388 }
389 }
390
391 void brw_clip_init_ff_sync(struct brw_clip_compile *c)
392 {
393 struct intel_context *intel = &c->func.brw->intel;
394
395 if (intel->needs_ff_sync) {
396 struct brw_compile *p = &c->func;
397
398 brw_MOV(p, c->reg.ff_sync, brw_imm_ud(0));
399 }
400 }