9d903609a8b578ae9c5e60a9099d9f41e12129aa
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44
45 #include "vbo/vbo_context.h"
46
47 #include "drivers/common/driverfuncs.h"
48 #include "drivers/common/meta.h"
49 #include "utils.h"
50
51 #include "brw_context.h"
52 #include "brw_defines.h"
53 #include "brw_draw.h"
54 #include "brw_state.h"
55
56 #include "intel_batchbuffer.h"
57 #include "intel_buffer_objects.h"
58 #include "intel_buffers.h"
59 #include "intel_fbo.h"
60 #include "intel_mipmap_tree.h"
61 #include "intel_pixel.h"
62 #include "intel_image.h"
63 #include "intel_tex.h"
64 #include "intel_tex_obj.h"
65
66 #include "swrast_setup/swrast_setup.h"
67 #include "tnl/tnl.h"
68 #include "tnl/t_pipeline.h"
69 #include "util/ralloc.h"
70
71 #include "glsl/nir/nir.h"
72
73 /***************************************
74 * Mesa's Driver Functions
75 ***************************************/
76
77 static size_t
78 brw_query_samples_for_format(struct gl_context *ctx, GLenum target,
79 GLenum internalFormat, int samples[16])
80 {
81 struct brw_context *brw = brw_context(ctx);
82
83 (void) target;
84
85 switch (brw->gen) {
86 case 9:
87 case 8:
88 samples[0] = 8;
89 samples[1] = 4;
90 samples[2] = 2;
91 return 3;
92
93 case 7:
94 samples[0] = 8;
95 samples[1] = 4;
96 return 2;
97
98 case 6:
99 samples[0] = 4;
100 return 1;
101
102 default:
103 assert(brw->gen < 6);
104 samples[0] = 1;
105 return 1;
106 }
107 }
108
109 const char *const brw_vendor_string = "Intel Open Source Technology Center";
110
111 const char *
112 brw_get_renderer_string(unsigned deviceID)
113 {
114 const char *chipset;
115 static char buffer[128];
116
117 switch (deviceID) {
118 #undef CHIPSET
119 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
120 #include "pci_ids/i965_pci_ids.h"
121 default:
122 chipset = "Unknown Intel Chipset";
123 break;
124 }
125
126 (void) driGetRendererString(buffer, chipset, 0);
127 return buffer;
128 }
129
130 static const GLubyte *
131 intel_get_string(struct gl_context * ctx, GLenum name)
132 {
133 const struct brw_context *const brw = brw_context(ctx);
134
135 switch (name) {
136 case GL_VENDOR:
137 return (GLubyte *) brw_vendor_string;
138
139 case GL_RENDERER:
140 return
141 (GLubyte *) brw_get_renderer_string(brw->intelScreen->deviceID);
142
143 default:
144 return NULL;
145 }
146 }
147
148 static void
149 intel_viewport(struct gl_context *ctx)
150 {
151 struct brw_context *brw = brw_context(ctx);
152 __DRIcontext *driContext = brw->driContext;
153
154 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
155 dri2InvalidateDrawable(driContext->driDrawablePriv);
156 dri2InvalidateDrawable(driContext->driReadablePriv);
157 }
158 }
159
160 static void
161 intel_update_state(struct gl_context * ctx, GLuint new_state)
162 {
163 struct brw_context *brw = brw_context(ctx);
164 struct intel_texture_object *tex_obj;
165 struct intel_renderbuffer *depth_irb;
166
167 if (ctx->swrast_context)
168 _swrast_InvalidateState(ctx, new_state);
169 _vbo_InvalidateState(ctx, new_state);
170
171 brw->NewGLState |= new_state;
172
173 _mesa_unlock_context_textures(ctx);
174
175 /* Resolve the depth buffer's HiZ buffer. */
176 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
177 if (depth_irb)
178 intel_renderbuffer_resolve_hiz(brw, depth_irb);
179
180 /* Resolve depth buffer and render cache of each enabled texture. */
181 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
182 for (int i = 0; i <= maxEnabledUnit; i++) {
183 if (!ctx->Texture.Unit[i]._Current)
184 continue;
185 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
186 if (!tex_obj || !tex_obj->mt)
187 continue;
188 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
189 intel_miptree_resolve_color(brw, tex_obj->mt);
190 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
191 }
192
193 _mesa_lock_context_textures(ctx);
194 }
195
196 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
197
198 static void
199 intel_flush_front(struct gl_context *ctx)
200 {
201 struct brw_context *brw = brw_context(ctx);
202 __DRIcontext *driContext = brw->driContext;
203 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
204 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
205
206 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
207 if (flushFront(screen) && driDrawable &&
208 driDrawable->loaderPrivate) {
209
210 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
211 *
212 * This potentially resolves both front and back buffer. It
213 * is unnecessary to resolve the back, but harms nothing except
214 * performance. And no one cares about front-buffer render
215 * performance.
216 */
217 intel_resolve_for_dri2_flush(brw, driDrawable);
218 intel_batchbuffer_flush(brw);
219
220 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
221
222 /* We set the dirty bit in intel_prepare_render() if we're
223 * front buffer rendering once we get there.
224 */
225 brw->front_buffer_dirty = false;
226 }
227 }
228 }
229
230 static void
231 intel_glFlush(struct gl_context *ctx)
232 {
233 struct brw_context *brw = brw_context(ctx);
234
235 intel_batchbuffer_flush(brw);
236 intel_flush_front(ctx);
237
238 brw->need_flush_throttle = true;
239 }
240
241 static void
242 intel_finish(struct gl_context * ctx)
243 {
244 struct brw_context *brw = brw_context(ctx);
245
246 intel_glFlush(ctx);
247
248 if (brw->batch.last_bo)
249 drm_intel_bo_wait_rendering(brw->batch.last_bo);
250 }
251
252 static void
253 brw_init_driver_functions(struct brw_context *brw,
254 struct dd_function_table *functions)
255 {
256 _mesa_init_driver_functions(functions);
257
258 /* GLX uses DRI2 invalidate events to handle window resizing.
259 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
260 * which doesn't provide a mechanism for snooping the event queues.
261 *
262 * So EGL still relies on viewport hacks to handle window resizing.
263 * This should go away with DRI3000.
264 */
265 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
266 functions->Viewport = intel_viewport;
267
268 functions->Flush = intel_glFlush;
269 functions->Finish = intel_finish;
270 functions->GetString = intel_get_string;
271 functions->UpdateState = intel_update_state;
272
273 intelInitTextureFuncs(functions);
274 intelInitTextureImageFuncs(functions);
275 intelInitTextureSubImageFuncs(functions);
276 intelInitTextureCopyImageFuncs(functions);
277 intelInitCopyImageFuncs(functions);
278 intelInitClearFuncs(functions);
279 intelInitBufferFuncs(functions);
280 intelInitPixelFuncs(functions);
281 intelInitBufferObjectFuncs(functions);
282 intel_init_syncobj_functions(functions);
283 brw_init_object_purgeable_functions(functions);
284
285 brwInitFragProgFuncs( functions );
286 brw_init_common_queryobj_functions(functions);
287 if (brw->gen >= 6)
288 gen6_init_queryobj_functions(functions);
289 else
290 gen4_init_queryobj_functions(functions);
291
292 functions->QuerySamplesForFormat = brw_query_samples_for_format;
293
294 functions->NewTransformFeedback = brw_new_transform_feedback;
295 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
296 functions->GetTransformFeedbackVertexCount =
297 brw_get_transform_feedback_vertex_count;
298 if (brw->gen >= 7) {
299 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
300 functions->EndTransformFeedback = gen7_end_transform_feedback;
301 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
302 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
303 } else {
304 functions->BeginTransformFeedback = brw_begin_transform_feedback;
305 functions->EndTransformFeedback = brw_end_transform_feedback;
306 }
307
308 if (brw->gen >= 6)
309 functions->GetSamplePosition = gen6_get_sample_position;
310 }
311
312 static void
313 brw_initialize_context_constants(struct brw_context *brw)
314 {
315 struct gl_context *ctx = &brw->ctx;
316
317 unsigned max_samplers =
318 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
319
320 ctx->Const.QueryCounterBits.Timestamp = 36;
321
322 ctx->Const.StripTextureBorder = true;
323
324 ctx->Const.MaxDualSourceDrawBuffers = 1;
325 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
326 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits = max_samplers;
327 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
328 ctx->Const.MaxTextureUnits =
329 MIN2(ctx->Const.MaxTextureCoordUnits,
330 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
331 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits = max_samplers;
332 if (brw->gen >= 6)
333 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = max_samplers;
334 else
335 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = 0;
336 if (_mesa_extension_override_enables.ARB_compute_shader) {
337 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = BRW_MAX_TEX_UNIT;
338 ctx->Const.MaxUniformBufferBindings += 12;
339 } else {
340 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = 0;
341 }
342 ctx->Const.MaxCombinedTextureImageUnits =
343 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits +
344 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits +
345 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits +
346 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
347
348 ctx->Const.MaxTextureLevels = 14; /* 8192 */
349 if (ctx->Const.MaxTextureLevels > MAX_TEXTURE_LEVELS)
350 ctx->Const.MaxTextureLevels = MAX_TEXTURE_LEVELS;
351 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
352 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
353 ctx->Const.MaxTextureMbytes = 1536;
354
355 if (brw->gen >= 7)
356 ctx->Const.MaxArrayTextureLayers = 2048;
357 else
358 ctx->Const.MaxArrayTextureLayers = 512;
359
360 ctx->Const.MaxTextureRectSize = 1 << 12;
361
362 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
363
364 ctx->Const.MaxRenderbufferSize = 8192;
365
366 /* Hardware only supports a limited number of transform feedback buffers.
367 * So we need to override the Mesa default (which is based only on software
368 * limits).
369 */
370 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
371
372 /* On Gen6, in the worst case, we use up one binding table entry per
373 * transform feedback component (see comments above the definition of
374 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
375 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
376 * BRW_MAX_SOL_BINDINGS.
377 *
378 * In "separate components" mode, we need to divide this value by
379 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
380 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
381 */
382 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
383 ctx->Const.MaxTransformFeedbackSeparateComponents =
384 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
385
386 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount = true;
387
388 int max_samples;
389 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
390 const int clamp_max_samples =
391 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
392
393 if (clamp_max_samples < 0) {
394 max_samples = msaa_modes[0];
395 } else {
396 /* Select the largest supported MSAA mode that does not exceed
397 * clamp_max_samples.
398 */
399 max_samples = 0;
400 for (int i = 0; msaa_modes[i] != 0; ++i) {
401 if (msaa_modes[i] <= clamp_max_samples) {
402 max_samples = msaa_modes[i];
403 break;
404 }
405 }
406 }
407
408 ctx->Const.MaxSamples = max_samples;
409 ctx->Const.MaxColorTextureSamples = max_samples;
410 ctx->Const.MaxDepthTextureSamples = max_samples;
411 ctx->Const.MaxIntegerSamples = max_samples;
412
413 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
414 * to map indices of rectangular grid to sample numbers within a pixel.
415 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
416 * extension implementation. For more details see the comment above
417 * gen6_set_sample_maps() definition.
418 */
419 gen6_set_sample_maps(ctx);
420
421 if (brw->gen >= 7)
422 ctx->Const.MaxProgramTextureGatherComponents = 4;
423 else if (brw->gen == 6)
424 ctx->Const.MaxProgramTextureGatherComponents = 1;
425
426 ctx->Const.MinLineWidth = 1.0;
427 ctx->Const.MinLineWidthAA = 1.0;
428 if (brw->gen >= 9 || brw->is_cherryview) {
429 ctx->Const.MaxLineWidth = 40.0;
430 ctx->Const.MaxLineWidthAA = 40.0;
431 ctx->Const.LineWidthGranularity = 0.125;
432 } else if (brw->gen >= 6) {
433 ctx->Const.MaxLineWidth = 7.375;
434 ctx->Const.MaxLineWidthAA = 7.375;
435 ctx->Const.LineWidthGranularity = 0.125;
436 } else {
437 ctx->Const.MaxLineWidth = 7.0;
438 ctx->Const.MaxLineWidthAA = 7.0;
439 ctx->Const.LineWidthGranularity = 0.5;
440 }
441
442 ctx->Const.MinPointSize = 1.0;
443 ctx->Const.MinPointSizeAA = 1.0;
444 ctx->Const.MaxPointSize = 255.0;
445 ctx->Const.MaxPointSizeAA = 255.0;
446 ctx->Const.PointSizeGranularity = 1.0;
447
448 if (brw->gen >= 5 || brw->is_g4x)
449 ctx->Const.MaxClipPlanes = 8;
450
451 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
452 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
453 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
454 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
455 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
456 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
457 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
458 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
459 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
460 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
461 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
462 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
463 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
464 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
465
466 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
467 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
468 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
469 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
470 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
471 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
472 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
473 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
474 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
475 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
476 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
477
478 /* Fragment shaders use real, 32-bit twos-complement integers for all
479 * integer types.
480 */
481 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
482 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
483 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
484 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
485 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
486
487 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
488 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
489 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
490 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
491 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
492
493 if (brw->gen >= 7) {
494 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
495 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
496 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
497 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
498 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers = BRW_MAX_ABO;
499 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers = BRW_MAX_ABO;
500 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers = BRW_MAX_ABO;
501 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers = BRW_MAX_ABO;
502 ctx->Const.MaxCombinedAtomicBuffers = 3 * BRW_MAX_ABO;
503 }
504
505 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
506 * but we're not sure how it's actually done for vertex order,
507 * that affect provoking vertex decision. Always use last vertex
508 * convention for quad primitive which works as expected for now.
509 */
510 if (brw->gen >= 6)
511 ctx->Const.QuadsFollowProvokingVertexConvention = false;
512
513 ctx->Const.NativeIntegers = true;
514 ctx->Const.VertexID_is_zero_based = true;
515
516 /* Regarding the CMP instruction, the Ivybridge PRM says:
517 *
518 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
519 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
520 * 0xFFFFFFFF) is assigned to dst."
521 *
522 * but PRMs for earlier generations say
523 *
524 * "In dword format, one GRF may store up to 8 results. When the register
525 * is used later as a vector of Booleans, as only LSB at each channel
526 * contains meaning [sic] data, software should make sure all higher bits
527 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
528 *
529 * We select the representation of a true boolean uniform to be ~0, and fix
530 * the results of Gen <= 5 CMP instruction's with -(result & 1).
531 */
532 ctx->Const.UniformBooleanTrue = ~0;
533
534 /* From the gen4 PRM, volume 4 page 127:
535 *
536 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
537 * the base address of the first element of the surface, computed in
538 * software by adding the surface base address to the byte offset of
539 * the element in the buffer."
540 *
541 * However, unaligned accesses are slower, so enforce buffer alignment.
542 */
543 ctx->Const.UniformBufferOffsetAlignment = 16;
544 ctx->Const.TextureBufferOffsetAlignment = 16;
545
546 if (brw->gen >= 6) {
547 ctx->Const.MaxVarying = 32;
548 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
549 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
550 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
551 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
552 }
553
554 static const nir_shader_compiler_options nir_options = {
555 .native_integers = true,
556 /* In order to help allow for better CSE at the NIR level we tell NIR
557 * to split all ffma instructions during opt_algebraic and we then
558 * re-combine them as a later step.
559 */
560 .lower_ffma = true,
561 .lower_sub = true,
562 };
563
564 /* We want the GLSL compiler to emit code that uses condition codes */
565 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
566 ctx->Const.ShaderCompilerOptions[i].MaxIfDepth = brw->gen < 6 ? 16 : UINT_MAX;
567 ctx->Const.ShaderCompilerOptions[i].EmitCondCodes = true;
568 ctx->Const.ShaderCompilerOptions[i].EmitNoNoise = true;
569 ctx->Const.ShaderCompilerOptions[i].EmitNoMainReturn = true;
570 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectInput = true;
571 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectOutput =
572 (i == MESA_SHADER_FRAGMENT);
573 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectTemp =
574 (i == MESA_SHADER_FRAGMENT);
575 ctx->Const.ShaderCompilerOptions[i].EmitNoIndirectUniform = false;
576 ctx->Const.ShaderCompilerOptions[i].LowerClipDistance = true;
577 }
578
579 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS = true;
580 ctx->Const.ShaderCompilerOptions[MESA_SHADER_GEOMETRY].OptimizeForAOS = true;
581
582 if (brw->scalar_vs) {
583 /* If we're using the scalar backend for vertex shaders, we need to
584 * configure these accordingly.
585 */
586 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].EmitNoIndirectOutput = true;
587 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].EmitNoIndirectTemp = true;
588 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].OptimizeForAOS = false;
589
590 if (brw_env_var_as_boolean("INTEL_USE_NIR", false))
591 ctx->Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].NirOptions = &nir_options;
592 }
593
594 if (brw_env_var_as_boolean("INTEL_USE_NIR", true))
595 ctx->Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT].NirOptions = &nir_options;
596
597 /* ARB_viewport_array */
598 if (brw->gen >= 7 && ctx->API == API_OPENGL_CORE) {
599 ctx->Const.MaxViewports = GEN7_NUM_VIEWPORTS;
600 ctx->Const.ViewportSubpixelBits = 0;
601
602 /* Cast to float before negating becuase MaxViewportWidth is unsigned.
603 */
604 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
605 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
606 }
607
608 /* ARB_gpu_shader5 */
609 if (brw->gen >= 7)
610 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
611 }
612
613 /**
614 * Process driconf (drirc) options, setting appropriate context flags.
615 *
616 * intelInitExtensions still pokes at optionCache directly, in order to
617 * avoid advertising various extensions. No flags are set, so it makes
618 * sense to continue doing that there.
619 */
620 static void
621 brw_process_driconf_options(struct brw_context *brw)
622 {
623 struct gl_context *ctx = &brw->ctx;
624
625 driOptionCache *options = &brw->optionCache;
626 driParseConfigFiles(options, &brw->intelScreen->optionCache,
627 brw->driContext->driScreenPriv->myNum, "i965");
628
629 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
630 switch (bo_reuse_mode) {
631 case DRI_CONF_BO_REUSE_DISABLED:
632 break;
633 case DRI_CONF_BO_REUSE_ALL:
634 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
635 break;
636 }
637
638 if (!driQueryOptionb(options, "hiz")) {
639 brw->has_hiz = false;
640 /* On gen6, you can only do separate stencil with HIZ. */
641 if (brw->gen == 6)
642 brw->has_separate_stencil = false;
643 }
644
645 if (driQueryOptionb(options, "always_flush_batch")) {
646 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
647 brw->always_flush_batch = true;
648 }
649
650 if (driQueryOptionb(options, "always_flush_cache")) {
651 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
652 brw->always_flush_cache = true;
653 }
654
655 if (driQueryOptionb(options, "disable_throttling")) {
656 fprintf(stderr, "disabling flush throttling\n");
657 brw->disable_throttling = true;
658 }
659
660 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
661
662 ctx->Const.ForceGLSLExtensionsWarn =
663 driQueryOptionb(options, "force_glsl_extensions_warn");
664
665 ctx->Const.DisableGLSLLineContinuations =
666 driQueryOptionb(options, "disable_glsl_line_continuations");
667
668 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
669 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
670 }
671
672 GLboolean
673 brwCreateContext(gl_api api,
674 const struct gl_config *mesaVis,
675 __DRIcontext *driContextPriv,
676 unsigned major_version,
677 unsigned minor_version,
678 uint32_t flags,
679 bool notify_reset,
680 unsigned *dri_ctx_error,
681 void *sharedContextPrivate)
682 {
683 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
684 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
685 struct intel_screen *screen = sPriv->driverPrivate;
686 const struct brw_device_info *devinfo = screen->devinfo;
687 struct dd_function_table functions;
688
689 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
690 * provides us with context reset notifications.
691 */
692 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
693 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
694
695 if (screen->has_context_reset_notification)
696 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
697
698 if (flags & ~allowed_flags) {
699 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
700 return false;
701 }
702
703 struct brw_context *brw = rzalloc(NULL, struct brw_context);
704 if (!brw) {
705 fprintf(stderr, "%s: failed to alloc context\n", __func__);
706 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
707 return false;
708 }
709
710 driContextPriv->driverPrivate = brw;
711 brw->driContext = driContextPriv;
712 brw->intelScreen = screen;
713 brw->bufmgr = screen->bufmgr;
714
715 brw->gen = devinfo->gen;
716 brw->gt = devinfo->gt;
717 brw->is_g4x = devinfo->is_g4x;
718 brw->is_baytrail = devinfo->is_baytrail;
719 brw->is_haswell = devinfo->is_haswell;
720 brw->is_cherryview = devinfo->is_cherryview;
721 brw->has_llc = devinfo->has_llc;
722 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
723 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
724 brw->has_pln = devinfo->has_pln;
725 brw->has_compr4 = devinfo->has_compr4;
726 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
727 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
728 brw->needs_unlit_centroid_workaround =
729 devinfo->needs_unlit_centroid_workaround;
730
731 brw->must_use_separate_stencil = screen->hw_must_use_separate_stencil;
732 brw->has_swizzling = screen->hw_has_swizzling;
733
734 brw->vs.base.stage = MESA_SHADER_VERTEX;
735 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
736 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
737 if (brw->gen >= 8) {
738 gen8_init_vtable_surface_functions(brw);
739 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
740 } else if (brw->gen >= 7) {
741 gen7_init_vtable_surface_functions(brw);
742 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
743 } else if (brw->gen >= 6) {
744 gen6_init_vtable_surface_functions(brw);
745 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
746 } else {
747 gen4_init_vtable_surface_functions(brw);
748 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
749 }
750
751 brw_init_driver_functions(brw, &functions);
752
753 if (notify_reset)
754 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
755
756 struct gl_context *ctx = &brw->ctx;
757
758 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
759 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
760 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
761 intelDestroyContext(driContextPriv);
762 return false;
763 }
764
765 driContextSetFlags(ctx, flags);
766
767 /* Initialize the software rasterizer and helper modules.
768 *
769 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
770 * software fallbacks (which we have to support on legacy GL to do weird
771 * glDrawPixels(), glBitmap(), and other functions).
772 */
773 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
774 _swrast_CreateContext(ctx);
775 }
776
777 _vbo_CreateContext(ctx);
778 if (ctx->swrast_context) {
779 _tnl_CreateContext(ctx);
780 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
781 _swsetup_CreateContext(ctx);
782
783 /* Configure swrast to match hardware characteristics: */
784 _swrast_allow_pixel_fog(ctx, false);
785 _swrast_allow_vertex_fog(ctx, true);
786 }
787
788 _mesa_meta_init(ctx);
789
790 brw_process_driconf_options(brw);
791 brw_process_intel_debug_variable(brw);
792
793 if (brw->gen >= 8 && !(INTEL_DEBUG & DEBUG_VEC4VS))
794 brw->scalar_vs = true;
795
796 brw_initialize_context_constants(brw);
797
798 ctx->Const.ResetStrategy = notify_reset
799 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
800
801 /* Reinitialize the context point state. It depends on ctx->Const values. */
802 _mesa_init_point(ctx);
803
804 intel_fbo_init(brw);
805
806 intel_batchbuffer_init(brw);
807
808 if (brw->gen >= 6) {
809 /* Create a new hardware context. Using a hardware context means that
810 * our GPU state will be saved/restored on context switch, allowing us
811 * to assume that the GPU is in the same state we left it in.
812 *
813 * This is required for transform feedback buffer offsets, query objects,
814 * and also allows us to reduce how much state we have to emit.
815 */
816 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
817
818 if (!brw->hw_ctx) {
819 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
820 intelDestroyContext(driContextPriv);
821 return false;
822 }
823 }
824
825 brw_init_state(brw);
826
827 intelInitExtensions(ctx);
828
829 brw_init_surface_formats(brw);
830
831 brw->max_vs_threads = devinfo->max_vs_threads;
832 brw->max_hs_threads = devinfo->max_hs_threads;
833 brw->max_ds_threads = devinfo->max_ds_threads;
834 brw->max_gs_threads = devinfo->max_gs_threads;
835 brw->max_wm_threads = devinfo->max_wm_threads;
836 brw->urb.size = devinfo->urb.size;
837 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
838 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
839 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
840 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
841 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
842
843 /* Estimate the size of the mappable aperture into the GTT. There's an
844 * ioctl to get the whole GTT size, but not one to get the mappable subset.
845 * It turns out it's basically always 256MB, though some ancient hardware
846 * was smaller.
847 */
848 uint32_t gtt_size = 256 * 1024 * 1024;
849
850 /* We don't want to map two objects such that a memcpy between them would
851 * just fault one mapping in and then the other over and over forever. So
852 * we would need to divide the GTT size by 2. Additionally, some GTT is
853 * taken up by things like the framebuffer and the ringbuffer and such, so
854 * be more conservative.
855 */
856 brw->max_gtt_map_object_size = gtt_size / 4;
857
858 if (brw->gen == 6)
859 brw->urb.gs_present = false;
860
861 brw->prim_restart.in_progress = false;
862 brw->prim_restart.enable_cut_index = false;
863 brw->gs.enabled = false;
864 brw->sf.viewport_transform_enable = true;
865
866 ctx->VertexProgram._MaintainTnlProgram = true;
867 ctx->FragmentProgram._MaintainTexEnvProgram = true;
868
869 brw_draw_init( brw );
870
871 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
872 /* Turn on some extra GL_ARB_debug_output generation. */
873 brw->perf_debug = true;
874 }
875
876 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
877 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
878
879 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
880 brw_init_shader_time(brw);
881
882 _mesa_compute_version(ctx);
883
884 _mesa_initialize_dispatch_tables(ctx);
885 _mesa_initialize_vbo_vtxfmt(ctx);
886
887 if (ctx->Extensions.AMD_performance_monitor) {
888 brw_init_performance_monitors(brw);
889 }
890
891 vbo_use_buffer_objects(ctx);
892 vbo_always_unmap_buffers(ctx);
893
894 return true;
895 }
896
897 void
898 intelDestroyContext(__DRIcontext * driContextPriv)
899 {
900 struct brw_context *brw =
901 (struct brw_context *) driContextPriv->driverPrivate;
902 struct gl_context *ctx = &brw->ctx;
903
904 /* Dump a final BMP in case the application doesn't call SwapBuffers */
905 if (INTEL_DEBUG & DEBUG_AUB) {
906 intel_batchbuffer_flush(brw);
907 aub_dump_bmp(&brw->ctx);
908 }
909
910 _mesa_meta_free(&brw->ctx);
911 brw_meta_fast_clear_free(brw);
912
913 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
914 /* Force a report. */
915 brw->shader_time.report_time = 0;
916
917 brw_collect_and_report_shader_time(brw);
918 brw_destroy_shader_time(brw);
919 }
920
921 brw_destroy_state(brw);
922 brw_draw_destroy(brw);
923
924 drm_intel_bo_unreference(brw->curbe.curbe_bo);
925 if (brw->vs.base.scratch_bo)
926 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
927 if (brw->gs.base.scratch_bo)
928 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
929 if (brw->wm.base.scratch_bo)
930 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
931
932 drm_intel_gem_context_destroy(brw->hw_ctx);
933
934 if (ctx->swrast_context) {
935 _swsetup_DestroyContext(&brw->ctx);
936 _tnl_DestroyContext(&brw->ctx);
937 }
938 _vbo_DestroyContext(&brw->ctx);
939
940 if (ctx->swrast_context)
941 _swrast_DestroyContext(&brw->ctx);
942
943 intel_batchbuffer_free(brw);
944
945 drm_intel_bo_unreference(brw->throttle_batch[1]);
946 drm_intel_bo_unreference(brw->throttle_batch[0]);
947 brw->throttle_batch[1] = NULL;
948 brw->throttle_batch[0] = NULL;
949
950 driDestroyOptionCache(&brw->optionCache);
951
952 /* free the Mesa context */
953 _mesa_free_context_data(&brw->ctx);
954
955 ralloc_free(brw);
956 driContextPriv->driverPrivate = NULL;
957 }
958
959 GLboolean
960 intelUnbindContext(__DRIcontext * driContextPriv)
961 {
962 /* Unset current context and dispath table */
963 _mesa_make_current(NULL, NULL, NULL);
964
965 return true;
966 }
967
968 /**
969 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
970 * on window system framebuffers.
971 *
972 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
973 * your renderbuffer can do sRGB encode, and you can flip a switch that does
974 * sRGB encode if the renderbuffer can handle it. You can ask specifically
975 * for a visual where you're guaranteed to be capable, but it turns out that
976 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
977 * incapable ones, becuase there's no difference between the two in resources
978 * used. Applications thus get built that accidentally rely on the default
979 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
980 * great...
981 *
982 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
983 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
984 * So they removed the enable knob and made it "if the renderbuffer is sRGB
985 * capable, do sRGB encode". Then, for your window system renderbuffers, you
986 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
987 * and get no sRGB encode (assuming that both kinds of visual are available).
988 * Thus our choice to support sRGB by default on our visuals for desktop would
989 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
990 *
991 * Unfortunately, renderbuffer setup happens before a context is created. So
992 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
993 * context (without an sRGB visual, though we don't have sRGB visuals exposed
994 * yet), we go turn that back off before anyone finds out.
995 */
996 static void
997 intel_gles3_srgb_workaround(struct brw_context *brw,
998 struct gl_framebuffer *fb)
999 {
1000 struct gl_context *ctx = &brw->ctx;
1001
1002 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1003 return;
1004
1005 /* Some day when we support the sRGB capable bit on visuals available for
1006 * GLES, we'll need to respect that and not disable things here.
1007 */
1008 fb->Visual.sRGBCapable = false;
1009 for (int i = 0; i < BUFFER_COUNT; i++) {
1010 if (fb->Attachment[i].Renderbuffer &&
1011 fb->Attachment[i].Renderbuffer->Format == MESA_FORMAT_B8G8R8A8_SRGB) {
1012 fb->Attachment[i].Renderbuffer->Format = MESA_FORMAT_B8G8R8A8_UNORM;
1013 }
1014 }
1015 }
1016
1017 GLboolean
1018 intelMakeCurrent(__DRIcontext * driContextPriv,
1019 __DRIdrawable * driDrawPriv,
1020 __DRIdrawable * driReadPriv)
1021 {
1022 struct brw_context *brw;
1023 GET_CURRENT_CONTEXT(curCtx);
1024
1025 if (driContextPriv)
1026 brw = (struct brw_context *) driContextPriv->driverPrivate;
1027 else
1028 brw = NULL;
1029
1030 /* According to the glXMakeCurrent() man page: "Pending commands to
1031 * the previous context, if any, are flushed before it is released."
1032 * But only flush if we're actually changing contexts.
1033 */
1034 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1035 _mesa_flush(curCtx);
1036 }
1037
1038 if (driContextPriv) {
1039 struct gl_context *ctx = &brw->ctx;
1040 struct gl_framebuffer *fb, *readFb;
1041
1042 if (driDrawPriv == NULL) {
1043 fb = _mesa_get_incomplete_framebuffer();
1044 } else {
1045 fb = driDrawPriv->driverPrivate;
1046 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1047 }
1048
1049 if (driReadPriv == NULL) {
1050 readFb = _mesa_get_incomplete_framebuffer();
1051 } else {
1052 readFb = driReadPriv->driverPrivate;
1053 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1054 }
1055
1056 /* The sRGB workaround changes the renderbuffer's format. We must change
1057 * the format before the renderbuffer's miptree get's allocated, otherwise
1058 * the formats of the renderbuffer and its miptree will differ.
1059 */
1060 intel_gles3_srgb_workaround(brw, fb);
1061 intel_gles3_srgb_workaround(brw, readFb);
1062
1063 /* If the context viewport hasn't been initialized, force a call out to
1064 * the loader to get buffers so we have a drawable size for the initial
1065 * viewport. */
1066 if (!brw->ctx.ViewportInitialized)
1067 intel_prepare_render(brw);
1068
1069 _mesa_make_current(ctx, fb, readFb);
1070 } else {
1071 _mesa_make_current(NULL, NULL, NULL);
1072 }
1073
1074 return true;
1075 }
1076
1077 void
1078 intel_resolve_for_dri2_flush(struct brw_context *brw,
1079 __DRIdrawable *drawable)
1080 {
1081 if (brw->gen < 6) {
1082 /* MSAA and fast color clear are not supported, so don't waste time
1083 * checking whether a resolve is needed.
1084 */
1085 return;
1086 }
1087
1088 struct gl_framebuffer *fb = drawable->driverPrivate;
1089 struct intel_renderbuffer *rb;
1090
1091 /* Usually, only the back buffer will need to be downsampled. However,
1092 * the front buffer will also need it if the user has rendered into it.
1093 */
1094 static const gl_buffer_index buffers[2] = {
1095 BUFFER_BACK_LEFT,
1096 BUFFER_FRONT_LEFT,
1097 };
1098
1099 for (int i = 0; i < 2; ++i) {
1100 rb = intel_get_renderbuffer(fb, buffers[i]);
1101 if (rb == NULL || rb->mt == NULL)
1102 continue;
1103 if (rb->mt->num_samples <= 1)
1104 intel_miptree_resolve_color(brw, rb->mt);
1105 else
1106 intel_renderbuffer_downsample(brw, rb);
1107 }
1108 }
1109
1110 static unsigned
1111 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1112 {
1113 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1114 }
1115
1116 static void
1117 intel_query_dri2_buffers(struct brw_context *brw,
1118 __DRIdrawable *drawable,
1119 __DRIbuffer **buffers,
1120 int *count);
1121
1122 static void
1123 intel_process_dri2_buffer(struct brw_context *brw,
1124 __DRIdrawable *drawable,
1125 __DRIbuffer *buffer,
1126 struct intel_renderbuffer *rb,
1127 const char *buffer_name);
1128
1129 static void
1130 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1131
1132 static void
1133 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1134 {
1135 struct gl_framebuffer *fb = drawable->driverPrivate;
1136 struct intel_renderbuffer *rb;
1137 __DRIbuffer *buffers = NULL;
1138 int i, count;
1139 const char *region_name;
1140
1141 /* Set this up front, so that in case our buffers get invalidated
1142 * while we're getting new buffers, we don't clobber the stamp and
1143 * thus ignore the invalidate. */
1144 drawable->lastStamp = drawable->dri2.stamp;
1145
1146 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1147 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1148
1149 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1150
1151 if (buffers == NULL)
1152 return;
1153
1154 for (i = 0; i < count; i++) {
1155 switch (buffers[i].attachment) {
1156 case __DRI_BUFFER_FRONT_LEFT:
1157 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1158 region_name = "dri2 front buffer";
1159 break;
1160
1161 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1162 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1163 region_name = "dri2 fake front buffer";
1164 break;
1165
1166 case __DRI_BUFFER_BACK_LEFT:
1167 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1168 region_name = "dri2 back buffer";
1169 break;
1170
1171 case __DRI_BUFFER_DEPTH:
1172 case __DRI_BUFFER_HIZ:
1173 case __DRI_BUFFER_DEPTH_STENCIL:
1174 case __DRI_BUFFER_STENCIL:
1175 case __DRI_BUFFER_ACCUM:
1176 default:
1177 fprintf(stderr,
1178 "unhandled buffer attach event, attachment type %d\n",
1179 buffers[i].attachment);
1180 return;
1181 }
1182
1183 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1184 }
1185
1186 }
1187
1188 void
1189 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1190 {
1191 struct brw_context *brw = context->driverPrivate;
1192 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1193
1194 /* Set this up front, so that in case our buffers get invalidated
1195 * while we're getting new buffers, we don't clobber the stamp and
1196 * thus ignore the invalidate. */
1197 drawable->lastStamp = drawable->dri2.stamp;
1198
1199 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1200 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1201
1202 if (screen->image.loader)
1203 intel_update_image_buffers(brw, drawable);
1204 else
1205 intel_update_dri2_buffers(brw, drawable);
1206
1207 driUpdateFramebufferSize(&brw->ctx, drawable);
1208 }
1209
1210 /**
1211 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1212 * state is required.
1213 */
1214 void
1215 intel_prepare_render(struct brw_context *brw)
1216 {
1217 struct gl_context *ctx = &brw->ctx;
1218 __DRIcontext *driContext = brw->driContext;
1219 __DRIdrawable *drawable;
1220
1221 drawable = driContext->driDrawablePriv;
1222 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1223 if (drawable->lastStamp != drawable->dri2.stamp)
1224 intel_update_renderbuffers(driContext, drawable);
1225 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1226 }
1227
1228 drawable = driContext->driReadablePriv;
1229 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1230 if (drawable->lastStamp != drawable->dri2.stamp)
1231 intel_update_renderbuffers(driContext, drawable);
1232 driContext->dri2.read_stamp = drawable->dri2.stamp;
1233 }
1234
1235 /* If we're currently rendering to the front buffer, the rendering
1236 * that will happen next will probably dirty the front buffer. So
1237 * mark it as dirty here.
1238 */
1239 if (brw_is_front_buffer_drawing(ctx->DrawBuffer))
1240 brw->front_buffer_dirty = true;
1241 }
1242
1243 /**
1244 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1245 *
1246 * To determine which DRI buffers to request, examine the renderbuffers
1247 * attached to the drawable's framebuffer. Then request the buffers with
1248 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1249 *
1250 * This is called from intel_update_renderbuffers().
1251 *
1252 * \param drawable Drawable whose buffers are queried.
1253 * \param buffers [out] List of buffers returned by DRI2 query.
1254 * \param buffer_count [out] Number of buffers returned.
1255 *
1256 * \see intel_update_renderbuffers()
1257 * \see DRI2GetBuffers()
1258 * \see DRI2GetBuffersWithFormat()
1259 */
1260 static void
1261 intel_query_dri2_buffers(struct brw_context *brw,
1262 __DRIdrawable *drawable,
1263 __DRIbuffer **buffers,
1264 int *buffer_count)
1265 {
1266 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1267 struct gl_framebuffer *fb = drawable->driverPrivate;
1268 int i = 0;
1269 unsigned attachments[8];
1270
1271 struct intel_renderbuffer *front_rb;
1272 struct intel_renderbuffer *back_rb;
1273
1274 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1275 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1276
1277 memset(attachments, 0, sizeof(attachments));
1278 if ((brw_is_front_buffer_drawing(fb) ||
1279 brw_is_front_buffer_reading(fb) ||
1280 !back_rb) && front_rb) {
1281 /* If a fake front buffer is in use, then querying for
1282 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1283 * the real front buffer to the fake front buffer. So before doing the
1284 * query, we need to make sure all the pending drawing has landed in the
1285 * real front buffer.
1286 */
1287 intel_batchbuffer_flush(brw);
1288 intel_flush_front(&brw->ctx);
1289
1290 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1291 attachments[i++] = intel_bits_per_pixel(front_rb);
1292 } else if (front_rb && brw->front_buffer_dirty) {
1293 /* We have pending front buffer rendering, but we aren't querying for a
1294 * front buffer. If the front buffer we have is a fake front buffer,
1295 * the X server is going to throw it away when it processes the query.
1296 * So before doing the query, make sure all the pending drawing has
1297 * landed in the real front buffer.
1298 */
1299 intel_batchbuffer_flush(brw);
1300 intel_flush_front(&brw->ctx);
1301 }
1302
1303 if (back_rb) {
1304 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1305 attachments[i++] = intel_bits_per_pixel(back_rb);
1306 }
1307
1308 assert(i <= ARRAY_SIZE(attachments));
1309
1310 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1311 &drawable->w,
1312 &drawable->h,
1313 attachments, i / 2,
1314 buffer_count,
1315 drawable->loaderPrivate);
1316 }
1317
1318 /**
1319 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1320 *
1321 * This is called from intel_update_renderbuffers().
1322 *
1323 * \par Note:
1324 * DRI buffers whose attachment point is DRI2BufferStencil or
1325 * DRI2BufferDepthStencil are handled as special cases.
1326 *
1327 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1328 * that is passed to drm_intel_bo_gem_create_from_name().
1329 *
1330 * \see intel_update_renderbuffers()
1331 */
1332 static void
1333 intel_process_dri2_buffer(struct brw_context *brw,
1334 __DRIdrawable *drawable,
1335 __DRIbuffer *buffer,
1336 struct intel_renderbuffer *rb,
1337 const char *buffer_name)
1338 {
1339 struct gl_framebuffer *fb = drawable->driverPrivate;
1340 drm_intel_bo *bo;
1341
1342 if (!rb)
1343 return;
1344
1345 unsigned num_samples = rb->Base.Base.NumSamples;
1346
1347 /* We try to avoid closing and reopening the same BO name, because the first
1348 * use of a mapping of the buffer involves a bunch of page faulting which is
1349 * moderately expensive.
1350 */
1351 struct intel_mipmap_tree *last_mt;
1352 if (num_samples == 0)
1353 last_mt = rb->mt;
1354 else
1355 last_mt = rb->singlesample_mt;
1356
1357 uint32_t old_name = 0;
1358 if (last_mt) {
1359 /* The bo already has a name because the miptree was created by a
1360 * previous call to intel_process_dri2_buffer(). If a bo already has a
1361 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1362 * create a new name.
1363 */
1364 drm_intel_bo_flink(last_mt->bo, &old_name);
1365 }
1366
1367 if (old_name == buffer->name)
1368 return;
1369
1370 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1371 fprintf(stderr,
1372 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1373 buffer->name, buffer->attachment,
1374 buffer->cpp, buffer->pitch);
1375 }
1376
1377 intel_miptree_release(&rb->mt);
1378 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1379 buffer->name);
1380 if (!bo) {
1381 fprintf(stderr,
1382 "Failed to open BO for returned DRI2 buffer "
1383 "(%dx%d, %s, named %d).\n"
1384 "This is likely a bug in the X Server that will lead to a "
1385 "crash soon.\n",
1386 drawable->w, drawable->h, buffer_name, buffer->name);
1387 return;
1388 }
1389
1390 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1391 drawable->w, drawable->h,
1392 buffer->pitch);
1393
1394 if (brw_is_front_buffer_drawing(fb) &&
1395 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1396 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1397 rb->Base.Base.NumSamples > 1) {
1398 intel_renderbuffer_upsample(brw, rb);
1399 }
1400
1401 assert(rb->mt);
1402
1403 drm_intel_bo_unreference(bo);
1404 }
1405
1406 /**
1407 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1408 *
1409 * To determine which DRI buffers to request, examine the renderbuffers
1410 * attached to the drawable's framebuffer. Then request the buffers from
1411 * the image loader
1412 *
1413 * This is called from intel_update_renderbuffers().
1414 *
1415 * \param drawable Drawable whose buffers are queried.
1416 * \param buffers [out] List of buffers returned by DRI2 query.
1417 * \param buffer_count [out] Number of buffers returned.
1418 *
1419 * \see intel_update_renderbuffers()
1420 */
1421
1422 static void
1423 intel_update_image_buffer(struct brw_context *intel,
1424 __DRIdrawable *drawable,
1425 struct intel_renderbuffer *rb,
1426 __DRIimage *buffer,
1427 enum __DRIimageBufferMask buffer_type)
1428 {
1429 struct gl_framebuffer *fb = drawable->driverPrivate;
1430
1431 if (!rb || !buffer->bo)
1432 return;
1433
1434 unsigned num_samples = rb->Base.Base.NumSamples;
1435
1436 /* Check and see if we're already bound to the right
1437 * buffer object
1438 */
1439 struct intel_mipmap_tree *last_mt;
1440 if (num_samples == 0)
1441 last_mt = rb->mt;
1442 else
1443 last_mt = rb->singlesample_mt;
1444
1445 if (last_mt && last_mt->bo == buffer->bo)
1446 return;
1447
1448 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1449 buffer->width, buffer->height,
1450 buffer->pitch);
1451
1452 if (brw_is_front_buffer_drawing(fb) &&
1453 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1454 rb->Base.Base.NumSamples > 1) {
1455 intel_renderbuffer_upsample(intel, rb);
1456 }
1457 }
1458
1459 static void
1460 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1461 {
1462 struct gl_framebuffer *fb = drawable->driverPrivate;
1463 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1464 struct intel_renderbuffer *front_rb;
1465 struct intel_renderbuffer *back_rb;
1466 struct __DRIimageList images;
1467 unsigned int format;
1468 uint32_t buffer_mask = 0;
1469
1470 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1471 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1472
1473 if (back_rb)
1474 format = intel_rb_format(back_rb);
1475 else if (front_rb)
1476 format = intel_rb_format(front_rb);
1477 else
1478 return;
1479
1480 if (front_rb && (brw_is_front_buffer_drawing(fb) ||
1481 brw_is_front_buffer_reading(fb) || !back_rb)) {
1482 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1483 }
1484
1485 if (back_rb)
1486 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1487
1488 (*screen->image.loader->getBuffers) (drawable,
1489 driGLFormatToImageFormat(format),
1490 &drawable->dri2.stamp,
1491 drawable->loaderPrivate,
1492 buffer_mask,
1493 &images);
1494
1495 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1496 drawable->w = images.front->width;
1497 drawable->h = images.front->height;
1498 intel_update_image_buffer(brw,
1499 drawable,
1500 front_rb,
1501 images.front,
1502 __DRI_IMAGE_BUFFER_FRONT);
1503 }
1504 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1505 drawable->w = images.back->width;
1506 drawable->h = images.back->height;
1507 intel_update_image_buffer(brw,
1508 drawable,
1509 back_rb,
1510 images.back,
1511 __DRI_IMAGE_BUFFER_BACK);
1512 }
1513 }