mesa: add bool param to _mesa_free_context_data
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "compiler/nir/nir.h"
35 #include "main/api_exec.h"
36 #include "main/context.h"
37 #include "main/fbobject.h"
38 #include "main/extensions.h"
39 #include "main/glthread.h"
40 #include "main/macros.h"
41 #include "main/points.h"
42 #include "main/version.h"
43 #include "main/vtxfmt.h"
44 #include "main/texobj.h"
45 #include "main/framebuffer.h"
46 #include "main/stencil.h"
47 #include "main/state.h"
48 #include "main/spirv_extensions.h"
49
50 #include "vbo/vbo.h"
51
52 #include "drivers/common/driverfuncs.h"
53 #include "drivers/common/meta.h"
54 #include "utils.h"
55
56 #include "brw_context.h"
57 #include "brw_defines.h"
58 #include "brw_blorp.h"
59 #include "brw_draw.h"
60 #include "brw_state.h"
61
62 #include "intel_batchbuffer.h"
63 #include "intel_buffer_objects.h"
64 #include "intel_buffers.h"
65 #include "intel_fbo.h"
66 #include "intel_mipmap_tree.h"
67 #include "intel_pixel.h"
68 #include "intel_image.h"
69 #include "intel_tex.h"
70 #include "intel_tex_obj.h"
71
72 #include "swrast_setup/swrast_setup.h"
73 #include "tnl/tnl.h"
74 #include "tnl/t_pipeline.h"
75 #include "util/ralloc.h"
76 #include "util/debug.h"
77 #include "util/disk_cache.h"
78 #include "util/u_memory.h"
79 #include "isl/isl.h"
80
81 #include "common/gen_defines.h"
82
83 #include "compiler/spirv/nir_spirv.h"
84 /***************************************
85 * Mesa's Driver Functions
86 ***************************************/
87
88 const char *const brw_vendor_string = "Intel Open Source Technology Center";
89
90 static const char *
91 get_bsw_model(const struct intel_screen *screen)
92 {
93 switch (screen->eu_total) {
94 case 16:
95 return "405";
96 case 12:
97 return "400";
98 default:
99 return " ";
100 }
101 }
102
103 const char *
104 brw_get_renderer_string(const struct intel_screen *screen)
105 {
106 static char buf[128];
107 const char *name = gen_get_device_name(screen->deviceID);
108
109 if (!name)
110 name = "Intel Unknown";
111
112 snprintf(buf, sizeof(buf), "Mesa DRI %s", name);
113
114 /* Braswell branding is funny, so we have to fix it up here */
115 if (screen->deviceID == 0x22B1) {
116 char *needle = strstr(buf, "XXX");
117 if (needle)
118 memcpy(needle, get_bsw_model(screen), 3);
119 }
120
121 return buf;
122 }
123
124 static const GLubyte *
125 intel_get_string(struct gl_context * ctx, GLenum name)
126 {
127 const struct brw_context *const brw = brw_context(ctx);
128
129 switch (name) {
130 case GL_VENDOR:
131 return (GLubyte *) brw_vendor_string;
132
133 case GL_RENDERER:
134 return
135 (GLubyte *) brw_get_renderer_string(brw->screen);
136
137 default:
138 return NULL;
139 }
140 }
141
142 static void
143 brw_set_background_context(struct gl_context *ctx,
144 struct util_queue_monitoring *queue_info)
145 {
146 struct brw_context *brw = brw_context(ctx);
147 __DRIcontext *driContext = brw->driContext;
148 __DRIscreen *driScreen = driContext->driScreenPriv;
149 const __DRIbackgroundCallableExtension *backgroundCallable =
150 driScreen->dri2.backgroundCallable;
151
152 /* Note: Mesa will only call this function if we've called
153 * _mesa_enable_multithreading(). We only do that if the loader exposed
154 * the __DRI_BACKGROUND_CALLABLE extension. So we know that
155 * backgroundCallable is not NULL.
156 */
157 backgroundCallable->setBackgroundContext(driContext->loaderPrivate);
158 }
159
160 static void
161 intel_viewport(struct gl_context *ctx)
162 {
163 struct brw_context *brw = brw_context(ctx);
164 __DRIcontext *driContext = brw->driContext;
165
166 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
167 if (driContext->driDrawablePriv)
168 dri2InvalidateDrawable(driContext->driDrawablePriv);
169 if (driContext->driReadablePriv)
170 dri2InvalidateDrawable(driContext->driReadablePriv);
171 }
172 }
173
174 static void
175 intel_update_framebuffer(struct gl_context *ctx,
176 struct gl_framebuffer *fb)
177 {
178 struct brw_context *brw = brw_context(ctx);
179
180 /* Quantize the derived default number of samples
181 */
182 fb->DefaultGeometry._NumSamples =
183 intel_quantize_num_samples(brw->screen,
184 fb->DefaultGeometry.NumSamples);
185 }
186
187 static void
188 intel_update_state(struct gl_context * ctx)
189 {
190 GLuint new_state = ctx->NewState;
191 struct brw_context *brw = brw_context(ctx);
192
193 if (ctx->swrast_context)
194 _swrast_InvalidateState(ctx, new_state);
195
196 brw->NewGLState |= new_state;
197
198 if (new_state & (_NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT))
199 _mesa_update_draw_buffer_bounds(ctx, ctx->DrawBuffer);
200
201 if (new_state & (_NEW_STENCIL | _NEW_BUFFERS)) {
202 brw->stencil_enabled = _mesa_stencil_is_enabled(ctx);
203 brw->stencil_two_sided = _mesa_stencil_is_two_sided(ctx);
204 brw->stencil_write_enabled =
205 _mesa_stencil_is_write_enabled(ctx, brw->stencil_two_sided);
206 }
207
208 if (new_state & _NEW_POLYGON)
209 brw->polygon_front_bit = _mesa_polygon_get_front_bit(ctx);
210
211 if (new_state & _NEW_BUFFERS) {
212 intel_update_framebuffer(ctx, ctx->DrawBuffer);
213 if (ctx->DrawBuffer != ctx->ReadBuffer)
214 intel_update_framebuffer(ctx, ctx->ReadBuffer);
215 }
216 }
217
218 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
219
220 static void
221 intel_flush_front(struct gl_context *ctx)
222 {
223 struct brw_context *brw = brw_context(ctx);
224 __DRIcontext *driContext = brw->driContext;
225 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
226 __DRIscreen *const dri_screen = brw->screen->driScrnPriv;
227
228 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
229 if (flushFront(dri_screen) && driDrawable &&
230 driDrawable->loaderPrivate) {
231
232 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
233 *
234 * This potentially resolves both front and back buffer. It
235 * is unnecessary to resolve the back, but harms nothing except
236 * performance. And no one cares about front-buffer render
237 * performance.
238 */
239 intel_resolve_for_dri2_flush(brw, driDrawable);
240 intel_batchbuffer_flush(brw);
241
242 flushFront(dri_screen)(driDrawable, driDrawable->loaderPrivate);
243
244 /* We set the dirty bit in intel_prepare_render() if we're
245 * front buffer rendering once we get there.
246 */
247 brw->front_buffer_dirty = false;
248 }
249 }
250 }
251
252 static void
253 brw_display_shared_buffer(struct brw_context *brw)
254 {
255 __DRIcontext *dri_context = brw->driContext;
256 __DRIdrawable *dri_drawable = dri_context->driDrawablePriv;
257 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
258 int fence_fd = -1;
259
260 if (!brw->is_shared_buffer_bound)
261 return;
262
263 if (!brw->is_shared_buffer_dirty)
264 return;
265
266 if (brw->screen->has_exec_fence) {
267 /* This function is always called during a flush operation, so there is
268 * no need to flush again here. But we want to provide a fence_fd to the
269 * loader, and a redundant flush is the easiest way to acquire one.
270 */
271 if (intel_batchbuffer_flush_fence(brw, -1, &fence_fd))
272 return;
273 }
274
275 dri_screen->mutableRenderBuffer.loader
276 ->displaySharedBuffer(dri_drawable, fence_fd,
277 dri_drawable->loaderPrivate);
278 brw->is_shared_buffer_dirty = false;
279 }
280
281 static void
282 intel_glFlush(struct gl_context *ctx)
283 {
284 struct brw_context *brw = brw_context(ctx);
285
286 intel_batchbuffer_flush(brw);
287 intel_flush_front(ctx);
288 brw_display_shared_buffer(brw);
289 brw->need_flush_throttle = true;
290 }
291
292 static void
293 intel_glEnable(struct gl_context *ctx, GLenum cap, GLboolean state)
294 {
295 struct brw_context *brw = brw_context(ctx);
296
297 switch (cap) {
298 case GL_BLACKHOLE_RENDER_INTEL:
299 brw->frontend_noop = state;
300 intel_batchbuffer_flush(brw);
301 intel_batchbuffer_maybe_noop(brw);
302 /* Because we started previous batches with a potential
303 * MI_BATCH_BUFFER_END if NOOP was enabled, that means that anything
304 * that was ever emitted after that never made it to the HW. So when the
305 * blackhole state changes from NOOP->!NOOP reupload the entire state.
306 */
307 if (!brw->frontend_noop) {
308 brw->NewGLState = ~0u;
309 brw->ctx.NewDriverState = ~0ull;
310 }
311 break;
312 default:
313 break;
314 }
315 }
316
317 static void
318 intel_finish(struct gl_context * ctx)
319 {
320 struct brw_context *brw = brw_context(ctx);
321
322 intel_glFlush(ctx);
323
324 if (brw->batch.last_bo)
325 brw_bo_wait_rendering(brw->batch.last_bo);
326 }
327
328 static void
329 brw_init_driver_functions(struct brw_context *brw,
330 struct dd_function_table *functions)
331 {
332 const struct gen_device_info *devinfo = &brw->screen->devinfo;
333
334 _mesa_init_driver_functions(functions);
335
336 /* GLX uses DRI2 invalidate events to handle window resizing.
337 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
338 * which doesn't provide a mechanism for snooping the event queues.
339 *
340 * So EGL still relies on viewport hacks to handle window resizing.
341 * This should go away with DRI3000.
342 */
343 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
344 functions->Viewport = intel_viewport;
345
346 functions->Enable = intel_glEnable;
347 functions->Flush = intel_glFlush;
348 functions->Finish = intel_finish;
349 functions->GetString = intel_get_string;
350 functions->UpdateState = intel_update_state;
351
352 brw_init_draw_functions(functions);
353 intelInitTextureFuncs(functions);
354 intelInitTextureImageFuncs(functions);
355 intelInitTextureCopyImageFuncs(functions);
356 intelInitCopyImageFuncs(functions);
357 intelInitClearFuncs(functions);
358 intelInitBufferFuncs(functions);
359 intelInitPixelFuncs(functions);
360 intelInitBufferObjectFuncs(functions);
361 brw_init_syncobj_functions(functions);
362 brw_init_object_purgeable_functions(functions);
363
364 brwInitFragProgFuncs( functions );
365 brw_init_common_queryobj_functions(functions);
366 if (devinfo->gen >= 8 || devinfo->is_haswell)
367 hsw_init_queryobj_functions(functions);
368 else if (devinfo->gen >= 6)
369 gen6_init_queryobj_functions(functions);
370 else
371 gen4_init_queryobj_functions(functions);
372 brw_init_compute_functions(functions);
373 brw_init_conditional_render_functions(functions);
374
375 functions->GenerateMipmap = brw_generate_mipmap;
376
377 functions->QueryInternalFormat = brw_query_internal_format;
378
379 functions->NewTransformFeedback = brw_new_transform_feedback;
380 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
381 if (can_do_mi_math_and_lrr(brw->screen)) {
382 functions->BeginTransformFeedback = hsw_begin_transform_feedback;
383 functions->EndTransformFeedback = hsw_end_transform_feedback;
384 functions->PauseTransformFeedback = hsw_pause_transform_feedback;
385 functions->ResumeTransformFeedback = hsw_resume_transform_feedback;
386 } else if (devinfo->gen >= 7) {
387 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
388 functions->EndTransformFeedback = gen7_end_transform_feedback;
389 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
390 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
391 functions->GetTransformFeedbackVertexCount =
392 brw_get_transform_feedback_vertex_count;
393 } else {
394 functions->BeginTransformFeedback = brw_begin_transform_feedback;
395 functions->EndTransformFeedback = brw_end_transform_feedback;
396 functions->PauseTransformFeedback = brw_pause_transform_feedback;
397 functions->ResumeTransformFeedback = brw_resume_transform_feedback;
398 functions->GetTransformFeedbackVertexCount =
399 brw_get_transform_feedback_vertex_count;
400 }
401
402 if (devinfo->gen >= 6)
403 functions->GetSamplePosition = gen6_get_sample_position;
404
405 /* GL_ARB_get_program_binary */
406 brw_program_binary_init(brw->screen->deviceID);
407 functions->GetProgramBinaryDriverSHA1 = brw_get_program_binary_driver_sha1;
408 functions->ProgramBinarySerializeDriverBlob = brw_serialize_program_binary;
409 functions->ProgramBinaryDeserializeDriverBlob =
410 brw_deserialize_program_binary;
411
412 if (brw->screen->disk_cache) {
413 functions->ShaderCacheSerializeDriverBlob = brw_program_serialize_nir;
414 }
415
416 functions->SetBackgroundContext = brw_set_background_context;
417 }
418
419 static void
420 brw_initialize_spirv_supported_capabilities(struct brw_context *brw)
421 {
422 const struct gen_device_info *devinfo = &brw->screen->devinfo;
423 struct gl_context *ctx = &brw->ctx;
424
425 /* The following SPIR-V capabilities are only supported on gen7+. In theory
426 * you should enable the extension only on gen7+, but just in case let's
427 * assert it.
428 */
429 assert(devinfo->gen >= 7);
430
431 ctx->Const.SpirVCapabilities.atomic_storage = devinfo->gen >= 7;
432 ctx->Const.SpirVCapabilities.draw_parameters = true;
433 ctx->Const.SpirVCapabilities.float64 = devinfo->gen >= 8;
434 ctx->Const.SpirVCapabilities.geometry_streams = devinfo->gen >= 7;
435 ctx->Const.SpirVCapabilities.image_write_without_format = true;
436 ctx->Const.SpirVCapabilities.int64 = devinfo->gen >= 8;
437 ctx->Const.SpirVCapabilities.tessellation = true;
438 ctx->Const.SpirVCapabilities.transform_feedback = devinfo->gen >= 7;
439 ctx->Const.SpirVCapabilities.variable_pointers = true;
440 ctx->Const.SpirVCapabilities.integer_functions2 = devinfo->gen >= 8;
441 }
442
443 static void
444 brw_initialize_context_constants(struct brw_context *brw)
445 {
446 const struct gen_device_info *devinfo = &brw->screen->devinfo;
447 struct gl_context *ctx = &brw->ctx;
448 const struct brw_compiler *compiler = brw->screen->compiler;
449
450 const bool stage_exists[MESA_SHADER_STAGES] = {
451 [MESA_SHADER_VERTEX] = true,
452 [MESA_SHADER_TESS_CTRL] = devinfo->gen >= 7,
453 [MESA_SHADER_TESS_EVAL] = devinfo->gen >= 7,
454 [MESA_SHADER_GEOMETRY] = devinfo->gen >= 6,
455 [MESA_SHADER_FRAGMENT] = true,
456 [MESA_SHADER_COMPUTE] =
457 (_mesa_is_desktop_gl(ctx) &&
458 ctx->Const.MaxComputeWorkGroupSize[0] >= 1024) ||
459 (ctx->API == API_OPENGLES2 &&
460 ctx->Const.MaxComputeWorkGroupSize[0] >= 128),
461 };
462
463 unsigned num_stages = 0;
464 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
465 if (stage_exists[i])
466 num_stages++;
467 }
468
469 unsigned max_samplers =
470 devinfo->gen >= 8 || devinfo->is_haswell ? BRW_MAX_TEX_UNIT : 16;
471
472 ctx->Const.MaxDualSourceDrawBuffers = 1;
473 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
474 ctx->Const.MaxCombinedShaderOutputResources =
475 MAX_IMAGE_UNITS + BRW_MAX_DRAW_BUFFERS;
476
477 /* The timestamp register we can read for glGetTimestamp() is
478 * sometimes only 32 bits, before scaling to nanoseconds (depending
479 * on kernel).
480 *
481 * Once scaled to nanoseconds the timestamp would roll over at a
482 * non-power-of-two, so an application couldn't use
483 * GL_QUERY_COUNTER_BITS to handle rollover correctly. Instead, we
484 * report 36 bits and truncate at that (rolling over 5 times as
485 * often as the HW counter), and when the 32-bit counter rolls
486 * over, it happens to also be at a rollover in the reported value
487 * from near (1<<36) to 0.
488 *
489 * The low 32 bits rolls over in ~343 seconds. Our 36-bit result
490 * rolls over every ~69 seconds.
491 */
492 ctx->Const.QueryCounterBits.Timestamp = 36;
493
494 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
495 ctx->Const.MaxImageUnits = MAX_IMAGE_UNITS;
496 if (devinfo->gen >= 7) {
497 ctx->Const.MaxRenderbufferSize = 16384;
498 ctx->Const.MaxTextureSize = 16384;
499 ctx->Const.MaxCubeTextureLevels = 15; /* 16384 */
500 } else {
501 ctx->Const.MaxRenderbufferSize = 8192;
502 ctx->Const.MaxTextureSize = 8192;
503 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
504 }
505 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
506 ctx->Const.MaxArrayTextureLayers = devinfo->gen >= 7 ? 2048 : 512;
507 ctx->Const.MaxTextureMbytes = 1536;
508 ctx->Const.MaxTextureRectSize = devinfo->gen >= 7 ? 16384 : 8192;
509 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
510 ctx->Const.MaxTextureLodBias = 15.0;
511 ctx->Const.StripTextureBorder = true;
512 if (devinfo->gen >= 7) {
513 ctx->Const.MaxProgramTextureGatherComponents = 4;
514 ctx->Const.MinProgramTextureGatherOffset = -32;
515 ctx->Const.MaxProgramTextureGatherOffset = 31;
516 } else if (devinfo->gen == 6) {
517 ctx->Const.MaxProgramTextureGatherComponents = 1;
518 ctx->Const.MinProgramTextureGatherOffset = -8;
519 ctx->Const.MaxProgramTextureGatherOffset = 7;
520 }
521
522 ctx->Const.MaxUniformBlockSize = 65536;
523
524 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
525 struct gl_program_constants *prog = &ctx->Const.Program[i];
526
527 if (!stage_exists[i])
528 continue;
529
530 prog->MaxTextureImageUnits = max_samplers;
531
532 prog->MaxUniformBlocks = BRW_MAX_UBO;
533 prog->MaxCombinedUniformComponents =
534 prog->MaxUniformComponents +
535 ctx->Const.MaxUniformBlockSize / 4 * prog->MaxUniformBlocks;
536
537 prog->MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
538 prog->MaxAtomicBuffers = BRW_MAX_ABO;
539 prog->MaxImageUniforms = compiler->scalar_stage[i] ? BRW_MAX_IMAGES : 0;
540 prog->MaxShaderStorageBlocks = BRW_MAX_SSBO;
541 }
542
543 ctx->Const.MaxTextureUnits =
544 MIN2(ctx->Const.MaxTextureCoordUnits,
545 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
546
547 ctx->Const.MaxUniformBufferBindings = num_stages * BRW_MAX_UBO;
548 ctx->Const.MaxCombinedUniformBlocks = num_stages * BRW_MAX_UBO;
549 ctx->Const.MaxCombinedAtomicBuffers = num_stages * BRW_MAX_ABO;
550 ctx->Const.MaxCombinedShaderStorageBlocks = num_stages * BRW_MAX_SSBO;
551 ctx->Const.MaxShaderStorageBufferBindings = num_stages * BRW_MAX_SSBO;
552 ctx->Const.MaxCombinedTextureImageUnits = num_stages * max_samplers;
553 ctx->Const.MaxCombinedImageUniforms = num_stages * BRW_MAX_IMAGES;
554
555
556 /* Hardware only supports a limited number of transform feedback buffers.
557 * So we need to override the Mesa default (which is based only on software
558 * limits).
559 */
560 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
561
562 /* On Gen6, in the worst case, we use up one binding table entry per
563 * transform feedback component (see comments above the definition of
564 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
565 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
566 * BRW_MAX_SOL_BINDINGS.
567 *
568 * In "separate components" mode, we need to divide this value by
569 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
570 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
571 */
572 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
573 ctx->Const.MaxTransformFeedbackSeparateComponents =
574 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
575
576 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount =
577 !can_do_mi_math_and_lrr(brw->screen);
578
579 int max_samples;
580 const int *msaa_modes = intel_supported_msaa_modes(brw->screen);
581 const int clamp_max_samples =
582 driQueryOptioni(&brw->optionCache, "clamp_max_samples");
583
584 if (clamp_max_samples < 0) {
585 max_samples = msaa_modes[0];
586 } else {
587 /* Select the largest supported MSAA mode that does not exceed
588 * clamp_max_samples.
589 */
590 max_samples = 0;
591 for (int i = 0; msaa_modes[i] != 0; ++i) {
592 if (msaa_modes[i] <= clamp_max_samples) {
593 max_samples = msaa_modes[i];
594 break;
595 }
596 }
597 }
598
599 ctx->Const.MaxSamples = max_samples;
600 ctx->Const.MaxColorTextureSamples = max_samples;
601 ctx->Const.MaxDepthTextureSamples = max_samples;
602 ctx->Const.MaxIntegerSamples = max_samples;
603 ctx->Const.MaxImageSamples = 0;
604
605 ctx->Const.MinLineWidth = 1.0;
606 ctx->Const.MinLineWidthAA = 1.0;
607 if (devinfo->gen >= 6) {
608 ctx->Const.MaxLineWidth = 7.375;
609 ctx->Const.MaxLineWidthAA = 7.375;
610 ctx->Const.LineWidthGranularity = 0.125;
611 } else {
612 ctx->Const.MaxLineWidth = 7.0;
613 ctx->Const.MaxLineWidthAA = 7.0;
614 ctx->Const.LineWidthGranularity = 0.5;
615 }
616
617 /* For non-antialiased lines, we have to round the line width to the
618 * nearest whole number. Make sure that we don't advertise a line
619 * width that, when rounded, will be beyond the actual hardware
620 * maximum.
621 */
622 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
623
624 ctx->Const.MinPointSize = 1.0;
625 ctx->Const.MinPointSizeAA = 1.0;
626 ctx->Const.MaxPointSize = 255.0;
627 ctx->Const.MaxPointSizeAA = 255.0;
628 ctx->Const.PointSizeGranularity = 1.0;
629
630 if (devinfo->gen >= 5 || devinfo->is_g4x)
631 ctx->Const.MaxClipPlanes = 8;
632
633 ctx->Const.GLSLFragCoordIsSysVal = true;
634 ctx->Const.GLSLFrontFacingIsSysVal = true;
635 ctx->Const.GLSLTessLevelsAsInputs = true;
636 ctx->Const.PrimitiveRestartForPatches = true;
637
638 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
639 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
640 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
641 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
642 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
643 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
644 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
645 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
646 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
647 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
648 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
649 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
650 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
651 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
652
653 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
654 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
655 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
656 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
657 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
658 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
659 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
660 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
661 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
662 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
663 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
664
665 /* Fragment shaders use real, 32-bit twos-complement integers for all
666 * integer types.
667 */
668 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
669 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
670 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
671 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
672 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
673
674 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
675 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
676 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
677 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
678 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
679
680 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
681 * but we're not sure how it's actually done for vertex order,
682 * that affect provoking vertex decision. Always use last vertex
683 * convention for quad primitive which works as expected for now.
684 */
685 if (devinfo->gen >= 6)
686 ctx->Const.QuadsFollowProvokingVertexConvention = false;
687
688 ctx->Const.NativeIntegers = true;
689
690 /* Regarding the CMP instruction, the Ivybridge PRM says:
691 *
692 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
693 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
694 * 0xFFFFFFFF) is assigned to dst."
695 *
696 * but PRMs for earlier generations say
697 *
698 * "In dword format, one GRF may store up to 8 results. When the register
699 * is used later as a vector of Booleans, as only LSB at each channel
700 * contains meaning [sic] data, software should make sure all higher bits
701 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
702 *
703 * We select the representation of a true boolean uniform to be ~0, and fix
704 * the results of Gen <= 5 CMP instruction's with -(result & 1).
705 */
706 ctx->Const.UniformBooleanTrue = ~0;
707
708 /* From the gen4 PRM, volume 4 page 127:
709 *
710 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
711 * the base address of the first element of the surface, computed in
712 * software by adding the surface base address to the byte offset of
713 * the element in the buffer."
714 *
715 * However, unaligned accesses are slower, so enforce buffer alignment.
716 *
717 * In order to push UBO data, 3DSTATE_CONSTANT_XS imposes an additional
718 * restriction: the start of the buffer needs to be 32B aligned.
719 */
720 ctx->Const.UniformBufferOffsetAlignment = 32;
721
722 /* ShaderStorageBufferOffsetAlignment should be a cacheline (64 bytes) so
723 * that we can safely have the CPU and GPU writing the same SSBO on
724 * non-cachecoherent systems (our Atom CPUs). With UBOs, the GPU never
725 * writes, so there's no problem. For an SSBO, the GPU and the CPU can
726 * be updating disjoint regions of the buffer simultaneously and that will
727 * break if the regions overlap the same cacheline.
728 */
729 ctx->Const.ShaderStorageBufferOffsetAlignment = 64;
730 ctx->Const.TextureBufferOffsetAlignment = 16;
731 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
732
733 if (devinfo->gen >= 6) {
734 ctx->Const.MaxVarying = 32;
735 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
736 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents =
737 compiler->scalar_stage[MESA_SHADER_GEOMETRY] ? 128 : 64;
738 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
739 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
740 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxInputComponents = 128;
741 ctx->Const.Program[MESA_SHADER_TESS_CTRL].MaxOutputComponents = 128;
742 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxInputComponents = 128;
743 ctx->Const.Program[MESA_SHADER_TESS_EVAL].MaxOutputComponents = 128;
744 }
745
746 /* We want the GLSL compiler to emit code that uses condition codes */
747 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
748 ctx->Const.ShaderCompilerOptions[i] =
749 brw->screen->compiler->glsl_compiler_options[i];
750 }
751
752 if (devinfo->gen >= 7) {
753 ctx->Const.MaxViewportWidth = 32768;
754 ctx->Const.MaxViewportHeight = 32768;
755 }
756
757 /* ARB_viewport_array, OES_viewport_array */
758 if (devinfo->gen >= 6) {
759 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
760 ctx->Const.ViewportSubpixelBits = 8;
761
762 /* Cast to float before negating because MaxViewportWidth is unsigned.
763 */
764 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
765 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
766 }
767
768 /* ARB_gpu_shader5 */
769 if (devinfo->gen >= 7)
770 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
771
772 /* ARB_framebuffer_no_attachments */
773 ctx->Const.MaxFramebufferWidth = 16384;
774 ctx->Const.MaxFramebufferHeight = 16384;
775 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
776 ctx->Const.MaxFramebufferSamples = max_samples;
777
778 /* OES_primitive_bounding_box */
779 ctx->Const.NoPrimitiveBoundingBoxOutput = true;
780
781 /* TODO: We should be able to use STD430 packing by default on all hardware
782 * but some piglit tests [1] currently fail on SNB when this is enabled.
783 * The problem is the messages we're using for doing uniform pulls
784 * in the vec4 back-end on SNB is the OWORD block load instruction, which
785 * takes its offset in units of OWORDS (16 bytes). On IVB+, we use the
786 * sampler which doesn't have these restrictions.
787 *
788 * In the scalar back-end, we use the sampler for dynamic uniform loads and
789 * pull an entire cache line at a time for constant offset loads both of
790 * which support almost any alignment.
791 *
792 * [1] glsl-1.40/uniform_buffer/vs-float-array-variable-index.shader_test
793 */
794 if (devinfo->gen >= 7)
795 ctx->Const.UseSTD430AsDefaultPacking = true;
796
797 if (!(ctx->Const.ContextFlags & GL_CONTEXT_FLAG_DEBUG_BIT))
798 ctx->Const.AllowMappedBuffersDuringExecution = true;
799
800 /* GL_ARB_get_program_binary */
801 ctx->Const.NumProgramBinaryFormats = 1;
802 }
803
804 static void
805 brw_initialize_cs_context_constants(struct brw_context *brw)
806 {
807 struct gl_context *ctx = &brw->ctx;
808 const struct intel_screen *screen = brw->screen;
809 struct gen_device_info *devinfo = &brw->screen->devinfo;
810
811 /* FINISHME: Do this for all platforms that the kernel supports */
812 if (devinfo->is_cherryview &&
813 screen->subslice_total > 0 && screen->eu_total > 0) {
814 /* Logical CS threads = EUs per subslice * 7 threads per EU */
815 uint32_t max_cs_threads = screen->eu_total / screen->subslice_total * 7;
816
817 /* Fuse configurations may give more threads than expected, never less. */
818 if (max_cs_threads > devinfo->max_cs_threads)
819 devinfo->max_cs_threads = max_cs_threads;
820 }
821
822 /* Maximum number of scalar compute shader invocations that can be run in
823 * parallel in the same subslice assuming SIMD32 dispatch.
824 *
825 * We don't advertise more than 64 threads, because we are limited to 64 by
826 * our usage of thread_width_max in the gpgpu walker command. This only
827 * currently impacts Haswell, which otherwise might be able to advertise 70
828 * threads. With SIMD32 and 64 threads, Haswell still provides twice the
829 * required the number of invocation needed for ARB_compute_shader.
830 */
831 const unsigned max_threads = MIN2(64, devinfo->max_cs_threads);
832 const uint32_t max_invocations = 32 * max_threads;
833 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
834 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
835 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
836 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
837 ctx->Const.MaxComputeSharedMemorySize = 64 * 1024;
838
839 /* Constants used for ARB_compute_variable_group_size. */
840 if (devinfo->gen >= 7) {
841 assert(max_invocations >= 512);
842 ctx->Const.MaxComputeVariableGroupSize[0] = max_invocations;
843 ctx->Const.MaxComputeVariableGroupSize[1] = max_invocations;
844 ctx->Const.MaxComputeVariableGroupSize[2] = max_invocations;
845 ctx->Const.MaxComputeVariableGroupInvocations = max_invocations;
846 }
847 }
848
849 /**
850 * Process driconf (drirc) options, setting appropriate context flags.
851 *
852 * intelInitExtensions still pokes at optionCache directly, in order to
853 * avoid advertising various extensions. No flags are set, so it makes
854 * sense to continue doing that there.
855 */
856 static void
857 brw_process_driconf_options(struct brw_context *brw)
858 {
859 const struct gen_device_info *devinfo = &brw->screen->devinfo;
860 struct gl_context *ctx = &brw->ctx;
861
862 driOptionCache *options = &brw->optionCache;
863 driParseConfigFiles(options, &brw->screen->optionCache,
864 brw->driContext->driScreenPriv->myNum,
865 "i965", NULL, NULL, 0);
866
867 if (INTEL_DEBUG & DEBUG_NO_HIZ) {
868 brw->has_hiz = false;
869 /* On gen6, you can only do separate stencil with HIZ. */
870 if (devinfo->gen == 6)
871 brw->has_separate_stencil = false;
872 }
873
874 if (driQueryOptionb(options, "mesa_no_error"))
875 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_NO_ERROR_BIT_KHR;
876
877 if (driQueryOptionb(options, "always_flush_batch")) {
878 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
879 brw->always_flush_batch = true;
880 }
881
882 if (driQueryOptionb(options, "always_flush_cache")) {
883 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
884 brw->always_flush_cache = true;
885 }
886
887 if (driQueryOptionb(options, "disable_throttling")) {
888 fprintf(stderr, "disabling flush throttling\n");
889 brw->disable_throttling = true;
890 }
891
892 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
893
894 if (driQueryOptionb(&brw->optionCache, "precise_trig"))
895 brw->screen->compiler->precise_trig = true;
896
897 ctx->Const.ForceGLSLExtensionsWarn =
898 driQueryOptionb(options, "force_glsl_extensions_warn");
899
900 ctx->Const.ForceGLSLVersion =
901 driQueryOptioni(options, "force_glsl_version");
902
903 ctx->Const.DisableGLSLLineContinuations =
904 driQueryOptionb(options, "disable_glsl_line_continuations");
905
906 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
907 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
908
909 ctx->Const.AllowGLSLBuiltinVariableRedeclaration =
910 driQueryOptionb(options, "allow_glsl_builtin_variable_redeclaration");
911
912 ctx->Const.AllowHigherCompatVersion =
913 driQueryOptionb(options, "allow_higher_compat_version");
914
915 ctx->Const.ForceGLSLAbsSqrt =
916 driQueryOptionb(options, "force_glsl_abs_sqrt");
917
918 ctx->Const.GLSLZeroInit = driQueryOptionb(options, "glsl_zero_init") ? 1 : 0;
919
920 brw->dual_color_blend_by_location =
921 driQueryOptionb(options, "dual_color_blend_by_location");
922
923 ctx->Const.AllowGLSLCrossStageInterpolationMismatch =
924 driQueryOptionb(options, "allow_glsl_cross_stage_interpolation_mismatch");
925
926 ctx->Const.dri_config_options_sha1 = ralloc_array(brw, unsigned char, 20);
927 driComputeOptionsSha1(&brw->screen->optionCache,
928 ctx->Const.dri_config_options_sha1);
929 }
930
931 GLboolean
932 brwCreateContext(gl_api api,
933 const struct gl_config *mesaVis,
934 __DRIcontext *driContextPriv,
935 const struct __DriverContextConfig *ctx_config,
936 unsigned *dri_ctx_error,
937 void *sharedContextPrivate)
938 {
939 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
940 struct intel_screen *screen = driContextPriv->driScreenPriv->driverPrivate;
941 const struct gen_device_info *devinfo = &screen->devinfo;
942 struct dd_function_table functions;
943
944 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
945 * provides us with context reset notifications.
946 */
947 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG |
948 __DRI_CTX_FLAG_FORWARD_COMPATIBLE |
949 __DRI_CTX_FLAG_NO_ERROR;
950
951 if (screen->has_context_reset_notification)
952 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
953
954 if (ctx_config->flags & ~allowed_flags) {
955 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
956 return false;
957 }
958
959 if (ctx_config->attribute_mask &
960 ~(__DRIVER_CONTEXT_ATTRIB_RESET_STRATEGY |
961 __DRIVER_CONTEXT_ATTRIB_PRIORITY)) {
962 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_ATTRIBUTE;
963 return false;
964 }
965
966 bool notify_reset =
967 ((ctx_config->attribute_mask & __DRIVER_CONTEXT_ATTRIB_RESET_STRATEGY) &&
968 ctx_config->reset_strategy != __DRI_CTX_RESET_NO_NOTIFICATION);
969
970 struct brw_context *brw = rzalloc(NULL, struct brw_context);
971 if (!brw) {
972 fprintf(stderr, "%s: failed to alloc context\n", __func__);
973 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
974 return false;
975 }
976 brw->perf_ctx = gen_perf_new_context(brw);
977
978 driContextPriv->driverPrivate = brw;
979 brw->driContext = driContextPriv;
980 brw->screen = screen;
981 brw->bufmgr = screen->bufmgr;
982
983 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
984 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
985
986 brw->has_swizzling = screen->hw_has_swizzling;
987
988 brw->isl_dev = screen->isl_dev;
989
990 brw->vs.base.stage = MESA_SHADER_VERTEX;
991 brw->tcs.base.stage = MESA_SHADER_TESS_CTRL;
992 brw->tes.base.stage = MESA_SHADER_TESS_EVAL;
993 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
994 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
995 brw->cs.base.stage = MESA_SHADER_COMPUTE;
996
997 brw_init_driver_functions(brw, &functions);
998
999 if (notify_reset)
1000 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
1001
1002 brw_process_driconf_options(brw);
1003
1004 if (api == API_OPENGL_CORE &&
1005 driQueryOptionb(&screen->optionCache, "force_compat_profile")) {
1006 api = API_OPENGL_COMPAT;
1007 }
1008
1009 struct gl_context *ctx = &brw->ctx;
1010
1011 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
1012 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1013 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
1014 intelDestroyContext(driContextPriv);
1015 return false;
1016 }
1017
1018 driContextSetFlags(ctx, ctx_config->flags);
1019
1020 /* Initialize the software rasterizer and helper modules.
1021 *
1022 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
1023 * software fallbacks (which we have to support on legacy GL to do weird
1024 * glDrawPixels(), glBitmap(), and other functions).
1025 */
1026 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
1027 _swrast_CreateContext(ctx);
1028 }
1029
1030 _vbo_CreateContext(ctx, true);
1031 if (ctx->swrast_context) {
1032 _tnl_CreateContext(ctx);
1033 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
1034 _swsetup_CreateContext(ctx);
1035
1036 /* Configure swrast to match hardware characteristics: */
1037 _swrast_allow_pixel_fog(ctx, false);
1038 _swrast_allow_vertex_fog(ctx, true);
1039 }
1040
1041 _mesa_meta_init(ctx);
1042
1043 if (INTEL_DEBUG & DEBUG_PERF)
1044 brw->perf_debug = true;
1045
1046 brw_initialize_cs_context_constants(brw);
1047 brw_initialize_context_constants(brw);
1048
1049 ctx->Const.ResetStrategy = notify_reset
1050 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
1051
1052 /* Reinitialize the context point state. It depends on ctx->Const values. */
1053 _mesa_init_point(ctx);
1054
1055 intel_fbo_init(brw);
1056
1057 intel_batchbuffer_init(brw);
1058
1059 /* Create a new hardware context. Using a hardware context means that
1060 * our GPU state will be saved/restored on context switch, allowing us
1061 * to assume that the GPU is in the same state we left it in.
1062 *
1063 * This is required for transform feedback buffer offsets, query objects,
1064 * and also allows us to reduce how much state we have to emit.
1065 */
1066 brw->hw_ctx = brw_create_hw_context(brw->bufmgr);
1067 if (!brw->hw_ctx && devinfo->gen >= 6) {
1068 fprintf(stderr, "Failed to create hardware context.\n");
1069 intelDestroyContext(driContextPriv);
1070 return false;
1071 }
1072
1073 if (brw->hw_ctx) {
1074 int hw_priority = GEN_CONTEXT_MEDIUM_PRIORITY;
1075 if (ctx_config->attribute_mask & __DRIVER_CONTEXT_ATTRIB_PRIORITY) {
1076 switch (ctx_config->priority) {
1077 case __DRI_CTX_PRIORITY_LOW:
1078 hw_priority = GEN_CONTEXT_LOW_PRIORITY;
1079 break;
1080 case __DRI_CTX_PRIORITY_HIGH:
1081 hw_priority = GEN_CONTEXT_HIGH_PRIORITY;
1082 break;
1083 }
1084 }
1085 if (hw_priority != I915_CONTEXT_DEFAULT_PRIORITY &&
1086 brw_hw_context_set_priority(brw->bufmgr, brw->hw_ctx, hw_priority)) {
1087 fprintf(stderr,
1088 "Failed to set priority [%d:%d] for hardware context.\n",
1089 ctx_config->priority, hw_priority);
1090 intelDestroyContext(driContextPriv);
1091 return false;
1092 }
1093 }
1094
1095 if (brw_init_pipe_control(brw, devinfo)) {
1096 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
1097 intelDestroyContext(driContextPriv);
1098 return false;
1099 }
1100
1101 brw_upload_init(&brw->upload, brw->bufmgr, 65536);
1102
1103 brw_init_state(brw);
1104
1105 intelInitExtensions(ctx);
1106
1107 brw_init_surface_formats(brw);
1108
1109 brw_blorp_init(brw);
1110
1111 brw->urb.size = devinfo->urb.size;
1112
1113 if (devinfo->gen == 6)
1114 brw->urb.gs_present = false;
1115
1116 brw->prim_restart.in_progress = false;
1117 brw->prim_restart.enable_cut_index = false;
1118 brw->gs.enabled = false;
1119 brw->clip.viewport_count = 1;
1120
1121 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
1122
1123 brw->max_gtt_map_object_size = screen->max_gtt_map_object_size;
1124
1125 ctx->VertexProgram._MaintainTnlProgram = true;
1126 ctx->FragmentProgram._MaintainTexEnvProgram = true;
1127
1128 brw_draw_init( brw );
1129
1130 if ((ctx_config->flags & __DRI_CTX_FLAG_DEBUG) != 0) {
1131 /* Turn on some extra GL_ARB_debug_output generation. */
1132 brw->perf_debug = true;
1133 }
1134
1135 if ((ctx_config->flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0) {
1136 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
1137 ctx->Const.RobustAccess = GL_TRUE;
1138 }
1139
1140 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
1141 brw_init_shader_time(brw);
1142
1143 _mesa_override_extensions(ctx);
1144 _mesa_compute_version(ctx);
1145
1146 /* GL_ARB_gl_spirv */
1147 if (ctx->Extensions.ARB_gl_spirv) {
1148 brw_initialize_spirv_supported_capabilities(brw);
1149
1150 if (ctx->Extensions.ARB_spirv_extensions) {
1151 /* GL_ARB_spirv_extensions */
1152 ctx->Const.SpirVExtensions = MALLOC_STRUCT(spirv_supported_extensions);
1153 _mesa_fill_supported_spirv_extensions(ctx->Const.SpirVExtensions,
1154 &ctx->Const.SpirVCapabilities);
1155 }
1156 }
1157
1158 _mesa_initialize_dispatch_tables(ctx);
1159 _mesa_initialize_vbo_vtxfmt(ctx);
1160
1161 if (ctx->Extensions.INTEL_performance_query)
1162 brw_init_performance_queries(brw);
1163
1164 brw->ctx.Cache = brw->screen->disk_cache;
1165
1166 if (driContextPriv->driScreenPriv->dri2.backgroundCallable &&
1167 driQueryOptionb(&screen->optionCache, "mesa_glthread")) {
1168 /* Loader supports multithreading, and so do we. */
1169 _mesa_glthread_init(ctx);
1170 }
1171
1172 return true;
1173 }
1174
1175 void
1176 intelDestroyContext(__DRIcontext * driContextPriv)
1177 {
1178 struct brw_context *brw =
1179 (struct brw_context *) driContextPriv->driverPrivate;
1180 struct gl_context *ctx = &brw->ctx;
1181
1182 GET_CURRENT_CONTEXT(curctx);
1183
1184 if (curctx == NULL) {
1185 /* No current context, but we need one to release
1186 * renderbuffer surface when we release framebuffer.
1187 * So temporarily bind the context.
1188 */
1189 _mesa_make_current(ctx, NULL, NULL);
1190 }
1191
1192 _mesa_glthread_destroy(&brw->ctx);
1193
1194 _mesa_meta_free(&brw->ctx);
1195
1196 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
1197 /* Force a report. */
1198 brw->shader_time.report_time = 0;
1199
1200 brw_collect_and_report_shader_time(brw);
1201 brw_destroy_shader_time(brw);
1202 }
1203
1204 blorp_finish(&brw->blorp);
1205
1206 brw_destroy_state(brw);
1207 brw_draw_destroy(brw);
1208
1209 brw_bo_unreference(brw->curbe.curbe_bo);
1210
1211 brw_bo_unreference(brw->vs.base.scratch_bo);
1212 brw_bo_unreference(brw->tcs.base.scratch_bo);
1213 brw_bo_unreference(brw->tes.base.scratch_bo);
1214 brw_bo_unreference(brw->gs.base.scratch_bo);
1215 brw_bo_unreference(brw->wm.base.scratch_bo);
1216
1217 brw_bo_unreference(brw->vs.base.push_const_bo);
1218 brw_bo_unreference(brw->tcs.base.push_const_bo);
1219 brw_bo_unreference(brw->tes.base.push_const_bo);
1220 brw_bo_unreference(brw->gs.base.push_const_bo);
1221 brw_bo_unreference(brw->wm.base.push_const_bo);
1222
1223 brw_destroy_hw_context(brw->bufmgr, brw->hw_ctx);
1224
1225 if (ctx->swrast_context) {
1226 _swsetup_DestroyContext(&brw->ctx);
1227 _tnl_DestroyContext(&brw->ctx);
1228 }
1229 _vbo_DestroyContext(&brw->ctx);
1230
1231 if (ctx->swrast_context)
1232 _swrast_DestroyContext(&brw->ctx);
1233
1234 brw_fini_pipe_control(brw);
1235 intel_batchbuffer_free(&brw->batch);
1236
1237 brw_bo_unreference(brw->throttle_batch[1]);
1238 brw_bo_unreference(brw->throttle_batch[0]);
1239 brw->throttle_batch[1] = NULL;
1240 brw->throttle_batch[0] = NULL;
1241
1242 driDestroyOptionCache(&brw->optionCache);
1243
1244 /* free the Mesa context */
1245 _mesa_free_context_data(&brw->ctx, true);
1246
1247 ralloc_free(brw);
1248 driContextPriv->driverPrivate = NULL;
1249 }
1250
1251 GLboolean
1252 intelUnbindContext(__DRIcontext * driContextPriv)
1253 {
1254 struct gl_context *ctx = driContextPriv->driverPrivate;
1255 _mesa_glthread_finish(ctx);
1256
1257 /* Unset current context and dispath table */
1258 _mesa_make_current(NULL, NULL, NULL);
1259
1260 return true;
1261 }
1262
1263 /**
1264 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
1265 * on window system framebuffers.
1266 *
1267 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
1268 * your renderbuffer can do sRGB encode, and you can flip a switch that does
1269 * sRGB encode if the renderbuffer can handle it. You can ask specifically
1270 * for a visual where you're guaranteed to be capable, but it turns out that
1271 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
1272 * incapable ones, because there's no difference between the two in resources
1273 * used. Applications thus get built that accidentally rely on the default
1274 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
1275 * great...
1276 *
1277 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
1278 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
1279 * So they removed the enable knob and made it "if the renderbuffer is sRGB
1280 * capable, do sRGB encode". Then, for your window system renderbuffers, you
1281 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
1282 * and get no sRGB encode (assuming that both kinds of visual are available).
1283 * Thus our choice to support sRGB by default on our visuals for desktop would
1284 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
1285 *
1286 * Unfortunately, renderbuffer setup happens before a context is created. So
1287 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
1288 * context (without an sRGB visual), we go turn that back off before anyone
1289 * finds out.
1290 */
1291 static void
1292 intel_gles3_srgb_workaround(struct brw_context *brw,
1293 struct gl_framebuffer *fb)
1294 {
1295 struct gl_context *ctx = &brw->ctx;
1296
1297 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1298 return;
1299
1300 for (int i = 0; i < BUFFER_COUNT; i++) {
1301 struct gl_renderbuffer *rb = fb->Attachment[i].Renderbuffer;
1302
1303 /* Check if sRGB was specifically asked for. */
1304 struct intel_renderbuffer *irb = intel_get_renderbuffer(fb, i);
1305 if (irb && irb->need_srgb)
1306 return;
1307
1308 if (rb)
1309 rb->Format = _mesa_get_srgb_format_linear(rb->Format);
1310 }
1311 /* Disable sRGB from framebuffers that are not compatible. */
1312 fb->Visual.sRGBCapable = false;
1313 }
1314
1315 GLboolean
1316 intelMakeCurrent(__DRIcontext * driContextPriv,
1317 __DRIdrawable * driDrawPriv,
1318 __DRIdrawable * driReadPriv)
1319 {
1320 struct brw_context *brw;
1321
1322 if (driContextPriv)
1323 brw = (struct brw_context *) driContextPriv->driverPrivate;
1324 else
1325 brw = NULL;
1326
1327 if (driContextPriv) {
1328 struct gl_context *ctx = &brw->ctx;
1329 struct gl_framebuffer *fb, *readFb;
1330
1331 if (driDrawPriv == NULL) {
1332 fb = _mesa_get_incomplete_framebuffer();
1333 } else {
1334 fb = driDrawPriv->driverPrivate;
1335 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1336 }
1337
1338 if (driReadPriv == NULL) {
1339 readFb = _mesa_get_incomplete_framebuffer();
1340 } else {
1341 readFb = driReadPriv->driverPrivate;
1342 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1343 }
1344
1345 /* The sRGB workaround changes the renderbuffer's format. We must change
1346 * the format before the renderbuffer's miptree get's allocated, otherwise
1347 * the formats of the renderbuffer and its miptree will differ.
1348 */
1349 intel_gles3_srgb_workaround(brw, fb);
1350 intel_gles3_srgb_workaround(brw, readFb);
1351
1352 /* If the context viewport hasn't been initialized, force a call out to
1353 * the loader to get buffers so we have a drawable size for the initial
1354 * viewport. */
1355 if (!brw->ctx.ViewportInitialized)
1356 intel_prepare_render(brw);
1357
1358 _mesa_make_current(ctx, fb, readFb);
1359 } else {
1360 GET_CURRENT_CONTEXT(ctx);
1361 _mesa_glthread_finish(ctx);
1362 _mesa_make_current(NULL, NULL, NULL);
1363 }
1364
1365 return true;
1366 }
1367
1368 void
1369 intel_resolve_for_dri2_flush(struct brw_context *brw,
1370 __DRIdrawable *drawable)
1371 {
1372 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1373
1374 if (devinfo->gen < 6) {
1375 /* MSAA and fast color clear are not supported, so don't waste time
1376 * checking whether a resolve is needed.
1377 */
1378 return;
1379 }
1380
1381 struct gl_framebuffer *fb = drawable->driverPrivate;
1382 struct intel_renderbuffer *rb;
1383
1384 /* Usually, only the back buffer will need to be downsampled. However,
1385 * the front buffer will also need it if the user has rendered into it.
1386 */
1387 static const gl_buffer_index buffers[2] = {
1388 BUFFER_BACK_LEFT,
1389 BUFFER_FRONT_LEFT,
1390 };
1391
1392 for (int i = 0; i < 2; ++i) {
1393 rb = intel_get_renderbuffer(fb, buffers[i]);
1394 if (rb == NULL || rb->mt == NULL)
1395 continue;
1396 if (rb->mt->surf.samples == 1) {
1397 assert(rb->mt_layer == 0 && rb->mt_level == 0 &&
1398 rb->layer_count == 1);
1399 intel_miptree_prepare_external(brw, rb->mt);
1400 } else {
1401 intel_renderbuffer_downsample(brw, rb);
1402
1403 /* Call prepare_external on the single-sample miptree to do any
1404 * needed resolves prior to handing it off to the window system.
1405 * This is needed in the case that rb->singlesample_mt is Y-tiled
1406 * with CCS_E enabled but without I915_FORMAT_MOD_Y_TILED_CCS_E. In
1407 * this case, the MSAA resolve above will write compressed data into
1408 * rb->singlesample_mt.
1409 *
1410 * TODO: Some day, if we decide to care about the tiny performance
1411 * hit we're taking by doing the MSAA resolve and then a CCS resolve,
1412 * we could detect this case and just allocate the single-sampled
1413 * miptree without aux. However, that would be a lot of plumbing and
1414 * this is a rather exotic case so it's not really worth it.
1415 */
1416 intel_miptree_prepare_external(brw, rb->singlesample_mt);
1417 }
1418 }
1419 }
1420
1421 static unsigned
1422 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1423 {
1424 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1425 }
1426
1427 static void
1428 intel_query_dri2_buffers(struct brw_context *brw,
1429 __DRIdrawable *drawable,
1430 __DRIbuffer **buffers,
1431 int *count);
1432
1433 static void
1434 intel_process_dri2_buffer(struct brw_context *brw,
1435 __DRIdrawable *drawable,
1436 __DRIbuffer *buffer,
1437 struct intel_renderbuffer *rb,
1438 const char *buffer_name);
1439
1440 static void
1441 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1442
1443 static void
1444 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1445 {
1446 struct gl_framebuffer *fb = drawable->driverPrivate;
1447 struct intel_renderbuffer *rb;
1448 __DRIbuffer *buffers = NULL;
1449 int count;
1450 const char *region_name;
1451
1452 /* Set this up front, so that in case our buffers get invalidated
1453 * while we're getting new buffers, we don't clobber the stamp and
1454 * thus ignore the invalidate. */
1455 drawable->lastStamp = drawable->dri2.stamp;
1456
1457 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1458 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1459
1460 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1461
1462 if (buffers == NULL)
1463 return;
1464
1465 for (int i = 0; i < count; i++) {
1466 switch (buffers[i].attachment) {
1467 case __DRI_BUFFER_FRONT_LEFT:
1468 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1469 region_name = "dri2 front buffer";
1470 break;
1471
1472 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1473 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1474 region_name = "dri2 fake front buffer";
1475 break;
1476
1477 case __DRI_BUFFER_BACK_LEFT:
1478 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1479 region_name = "dri2 back buffer";
1480 break;
1481
1482 case __DRI_BUFFER_DEPTH:
1483 case __DRI_BUFFER_HIZ:
1484 case __DRI_BUFFER_DEPTH_STENCIL:
1485 case __DRI_BUFFER_STENCIL:
1486 case __DRI_BUFFER_ACCUM:
1487 default:
1488 fprintf(stderr,
1489 "unhandled buffer attach event, attachment type %d\n",
1490 buffers[i].attachment);
1491 return;
1492 }
1493
1494 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1495 }
1496
1497 }
1498
1499 void
1500 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1501 {
1502 struct brw_context *brw = context->driverPrivate;
1503 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1504
1505 /* Set this up front, so that in case our buffers get invalidated
1506 * while we're getting new buffers, we don't clobber the stamp and
1507 * thus ignore the invalidate. */
1508 drawable->lastStamp = drawable->dri2.stamp;
1509
1510 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1511 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1512
1513 if (dri_screen->image.loader)
1514 intel_update_image_buffers(brw, drawable);
1515 else
1516 intel_update_dri2_buffers(brw, drawable);
1517
1518 driUpdateFramebufferSize(&brw->ctx, drawable);
1519 }
1520
1521 /**
1522 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1523 * state is required.
1524 */
1525 void
1526 intel_prepare_render(struct brw_context *brw)
1527 {
1528 struct gl_context *ctx = &brw->ctx;
1529 __DRIcontext *driContext = brw->driContext;
1530 __DRIdrawable *drawable;
1531
1532 drawable = driContext->driDrawablePriv;
1533 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1534 if (drawable->lastStamp != drawable->dri2.stamp)
1535 intel_update_renderbuffers(driContext, drawable);
1536 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1537 }
1538
1539 drawable = driContext->driReadablePriv;
1540 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1541 if (drawable->lastStamp != drawable->dri2.stamp)
1542 intel_update_renderbuffers(driContext, drawable);
1543 driContext->dri2.read_stamp = drawable->dri2.stamp;
1544 }
1545
1546 /* If we're currently rendering to the front buffer, the rendering
1547 * that will happen next will probably dirty the front buffer. So
1548 * mark it as dirty here.
1549 */
1550 if (_mesa_is_front_buffer_drawing(ctx->DrawBuffer) &&
1551 ctx->DrawBuffer != _mesa_get_incomplete_framebuffer()) {
1552 brw->front_buffer_dirty = true;
1553 }
1554
1555 if (brw->is_shared_buffer_bound) {
1556 /* Subsequent rendering will probably dirty the shared buffer. */
1557 brw->is_shared_buffer_dirty = true;
1558 }
1559 }
1560
1561 /**
1562 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1563 *
1564 * To determine which DRI buffers to request, examine the renderbuffers
1565 * attached to the drawable's framebuffer. Then request the buffers with
1566 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1567 *
1568 * This is called from intel_update_renderbuffers().
1569 *
1570 * \param drawable Drawable whose buffers are queried.
1571 * \param buffers [out] List of buffers returned by DRI2 query.
1572 * \param buffer_count [out] Number of buffers returned.
1573 *
1574 * \see intel_update_renderbuffers()
1575 * \see DRI2GetBuffers()
1576 * \see DRI2GetBuffersWithFormat()
1577 */
1578 static void
1579 intel_query_dri2_buffers(struct brw_context *brw,
1580 __DRIdrawable *drawable,
1581 __DRIbuffer **buffers,
1582 int *buffer_count)
1583 {
1584 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1585 struct gl_framebuffer *fb = drawable->driverPrivate;
1586 int i = 0;
1587 unsigned attachments[8];
1588
1589 struct intel_renderbuffer *front_rb;
1590 struct intel_renderbuffer *back_rb;
1591
1592 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1593 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1594
1595 memset(attachments, 0, sizeof(attachments));
1596 if ((_mesa_is_front_buffer_drawing(fb) ||
1597 _mesa_is_front_buffer_reading(fb) ||
1598 !back_rb) && front_rb) {
1599 /* If a fake front buffer is in use, then querying for
1600 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1601 * the real front buffer to the fake front buffer. So before doing the
1602 * query, we need to make sure all the pending drawing has landed in the
1603 * real front buffer.
1604 */
1605 intel_batchbuffer_flush(brw);
1606 intel_flush_front(&brw->ctx);
1607
1608 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1609 attachments[i++] = intel_bits_per_pixel(front_rb);
1610 } else if (front_rb && brw->front_buffer_dirty) {
1611 /* We have pending front buffer rendering, but we aren't querying for a
1612 * front buffer. If the front buffer we have is a fake front buffer,
1613 * the X server is going to throw it away when it processes the query.
1614 * So before doing the query, make sure all the pending drawing has
1615 * landed in the real front buffer.
1616 */
1617 intel_batchbuffer_flush(brw);
1618 intel_flush_front(&brw->ctx);
1619 }
1620
1621 if (back_rb) {
1622 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1623 attachments[i++] = intel_bits_per_pixel(back_rb);
1624 }
1625
1626 assert(i <= ARRAY_SIZE(attachments));
1627
1628 *buffers =
1629 dri_screen->dri2.loader->getBuffersWithFormat(drawable,
1630 &drawable->w,
1631 &drawable->h,
1632 attachments, i / 2,
1633 buffer_count,
1634 drawable->loaderPrivate);
1635 }
1636
1637 /**
1638 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1639 *
1640 * This is called from intel_update_renderbuffers().
1641 *
1642 * \par Note:
1643 * DRI buffers whose attachment point is DRI2BufferStencil or
1644 * DRI2BufferDepthStencil are handled as special cases.
1645 *
1646 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1647 * that is passed to brw_bo_gem_create_from_name().
1648 *
1649 * \see intel_update_renderbuffers()
1650 */
1651 static void
1652 intel_process_dri2_buffer(struct brw_context *brw,
1653 __DRIdrawable *drawable,
1654 __DRIbuffer *buffer,
1655 struct intel_renderbuffer *rb,
1656 const char *buffer_name)
1657 {
1658 struct gl_framebuffer *fb = drawable->driverPrivate;
1659 struct brw_bo *bo;
1660
1661 if (!rb)
1662 return;
1663
1664 unsigned num_samples = rb->Base.Base.NumSamples;
1665
1666 /* We try to avoid closing and reopening the same BO name, because the first
1667 * use of a mapping of the buffer involves a bunch of page faulting which is
1668 * moderately expensive.
1669 */
1670 struct intel_mipmap_tree *last_mt;
1671 if (num_samples == 0)
1672 last_mt = rb->mt;
1673 else
1674 last_mt = rb->singlesample_mt;
1675
1676 uint32_t old_name = 0;
1677 if (last_mt) {
1678 /* The bo already has a name because the miptree was created by a
1679 * previous call to intel_process_dri2_buffer(). If a bo already has a
1680 * name, then brw_bo_flink() is a low-cost getter. It does not
1681 * create a new name.
1682 */
1683 brw_bo_flink(last_mt->bo, &old_name);
1684 }
1685
1686 if (old_name == buffer->name)
1687 return;
1688
1689 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1690 fprintf(stderr,
1691 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1692 buffer->name, buffer->attachment,
1693 buffer->cpp, buffer->pitch);
1694 }
1695
1696 bo = brw_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1697 buffer->name);
1698 if (!bo) {
1699 fprintf(stderr,
1700 "Failed to open BO for returned DRI2 buffer "
1701 "(%dx%d, %s, named %d).\n"
1702 "This is likely a bug in the X Server that will lead to a "
1703 "crash soon.\n",
1704 drawable->w, drawable->h, buffer_name, buffer->name);
1705 return;
1706 }
1707
1708 uint32_t tiling, swizzle;
1709 brw_bo_get_tiling(bo, &tiling, &swizzle);
1710
1711 struct intel_mipmap_tree *mt =
1712 intel_miptree_create_for_bo(brw,
1713 bo,
1714 intel_rb_format(rb),
1715 0,
1716 drawable->w,
1717 drawable->h,
1718 1,
1719 buffer->pitch,
1720 isl_tiling_from_i915_tiling(tiling),
1721 MIPTREE_CREATE_DEFAULT);
1722 if (!mt) {
1723 brw_bo_unreference(bo);
1724 return;
1725 }
1726
1727 /* We got this BO from X11. We cana't assume that we have coherent texture
1728 * access because X may suddenly decide to use it for scan-out which would
1729 * destroy coherency.
1730 */
1731 bo->cache_coherent = false;
1732
1733 if (!intel_update_winsys_renderbuffer_miptree(brw, rb, mt,
1734 drawable->w, drawable->h,
1735 buffer->pitch)) {
1736 brw_bo_unreference(bo);
1737 intel_miptree_release(&mt);
1738 return;
1739 }
1740
1741 if (_mesa_is_front_buffer_drawing(fb) &&
1742 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1743 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1744 rb->Base.Base.NumSamples > 1) {
1745 intel_renderbuffer_upsample(brw, rb);
1746 }
1747
1748 assert(rb->mt);
1749
1750 brw_bo_unreference(bo);
1751 }
1752
1753 /**
1754 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1755 *
1756 * To determine which DRI buffers to request, examine the renderbuffers
1757 * attached to the drawable's framebuffer. Then request the buffers from
1758 * the image loader
1759 *
1760 * This is called from intel_update_renderbuffers().
1761 *
1762 * \param drawable Drawable whose buffers are queried.
1763 * \param buffers [out] List of buffers returned by DRI2 query.
1764 * \param buffer_count [out] Number of buffers returned.
1765 *
1766 * \see intel_update_renderbuffers()
1767 */
1768
1769 static void
1770 intel_update_image_buffer(struct brw_context *intel,
1771 __DRIdrawable *drawable,
1772 struct intel_renderbuffer *rb,
1773 __DRIimage *buffer,
1774 enum __DRIimageBufferMask buffer_type)
1775 {
1776 struct gl_framebuffer *fb = drawable->driverPrivate;
1777
1778 if (!rb || !buffer->bo)
1779 return;
1780
1781 unsigned num_samples = rb->Base.Base.NumSamples;
1782
1783 /* Check and see if we're already bound to the right
1784 * buffer object
1785 */
1786 struct intel_mipmap_tree *last_mt;
1787 if (num_samples == 0)
1788 last_mt = rb->mt;
1789 else
1790 last_mt = rb->singlesample_mt;
1791
1792 if (last_mt && last_mt->bo == buffer->bo) {
1793 if (buffer_type == __DRI_IMAGE_BUFFER_SHARED) {
1794 intel_miptree_make_shareable(intel, last_mt);
1795 }
1796 return;
1797 }
1798
1799 /* Only allow internal compression if samples == 0. For multisampled
1800 * window system buffers, the only thing the single-sampled buffer is used
1801 * for is as a resolve target. If we do any compression beyond what is
1802 * supported by the window system, we will just have to resolve so it's
1803 * probably better to just not bother.
1804 */
1805 const bool allow_internal_aux = (num_samples == 0);
1806
1807 struct intel_mipmap_tree *mt =
1808 intel_miptree_create_for_dri_image(intel, buffer, GL_TEXTURE_2D,
1809 intel_rb_format(rb),
1810 allow_internal_aux);
1811 if (!mt)
1812 return;
1813
1814 if (!intel_update_winsys_renderbuffer_miptree(intel, rb, mt,
1815 buffer->width, buffer->height,
1816 buffer->pitch)) {
1817 intel_miptree_release(&mt);
1818 return;
1819 }
1820
1821 if (_mesa_is_front_buffer_drawing(fb) &&
1822 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1823 rb->Base.Base.NumSamples > 1) {
1824 intel_renderbuffer_upsample(intel, rb);
1825 }
1826
1827 if (buffer_type == __DRI_IMAGE_BUFFER_SHARED) {
1828 /* The compositor and the application may access this image
1829 * concurrently. The display hardware may even scanout the image while
1830 * the GPU is rendering to it. Aux surfaces cause difficulty with
1831 * concurrent access, so permanently disable aux for this miptree.
1832 *
1833 * Perhaps we could improve overall application performance by
1834 * re-enabling the aux surface when EGL_RENDER_BUFFER transitions to
1835 * EGL_BACK_BUFFER, then disabling it again when EGL_RENDER_BUFFER
1836 * returns to EGL_SINGLE_BUFFER. I expect the wins and losses with this
1837 * approach to be highly dependent on the application's GL usage.
1838 *
1839 * I [chadv] expect clever disabling/reenabling to be counterproductive
1840 * in the use cases I care about: applications that render nearly
1841 * realtime handwriting to the surface while possibly undergiong
1842 * simultaneously scanout as a display plane. The app requires low
1843 * render latency. Even though the app spends most of its time in
1844 * shared-buffer mode, it also frequently transitions between
1845 * shared-buffer (EGL_SINGLE_BUFFER) and double-buffer (EGL_BACK_BUFFER)
1846 * mode. Visual sutter during the transitions should be avoided.
1847 *
1848 * In this case, I [chadv] believe reducing the GPU workload at
1849 * shared-buffer/double-buffer transitions would offer a smoother app
1850 * experience than any savings due to aux compression. But I've
1851 * collected no data to prove my theory.
1852 */
1853 intel_miptree_make_shareable(intel, mt);
1854 }
1855 }
1856
1857 static void
1858 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1859 {
1860 struct gl_framebuffer *fb = drawable->driverPrivate;
1861 __DRIscreen *dri_screen = brw->screen->driScrnPriv;
1862 struct intel_renderbuffer *front_rb;
1863 struct intel_renderbuffer *back_rb;
1864 struct __DRIimageList images;
1865 mesa_format format;
1866 uint32_t buffer_mask = 0;
1867 int ret;
1868
1869 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1870 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1871
1872 if (back_rb)
1873 format = intel_rb_format(back_rb);
1874 else if (front_rb)
1875 format = intel_rb_format(front_rb);
1876 else
1877 return;
1878
1879 if (front_rb && (_mesa_is_front_buffer_drawing(fb) ||
1880 _mesa_is_front_buffer_reading(fb) || !back_rb)) {
1881 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1882 }
1883
1884 if (back_rb)
1885 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1886
1887 ret = dri_screen->image.loader->getBuffers(drawable,
1888 driGLFormatToImageFormat(format),
1889 &drawable->dri2.stamp,
1890 drawable->loaderPrivate,
1891 buffer_mask,
1892 &images);
1893 if (!ret)
1894 return;
1895
1896 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1897 drawable->w = images.front->width;
1898 drawable->h = images.front->height;
1899 intel_update_image_buffer(brw,
1900 drawable,
1901 front_rb,
1902 images.front,
1903 __DRI_IMAGE_BUFFER_FRONT);
1904 }
1905
1906 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1907 drawable->w = images.back->width;
1908 drawable->h = images.back->height;
1909 intel_update_image_buffer(brw,
1910 drawable,
1911 back_rb,
1912 images.back,
1913 __DRI_IMAGE_BUFFER_BACK);
1914 }
1915
1916 if (images.image_mask & __DRI_IMAGE_BUFFER_SHARED) {
1917 assert(images.image_mask == __DRI_IMAGE_BUFFER_SHARED);
1918 drawable->w = images.back->width;
1919 drawable->h = images.back->height;
1920 intel_update_image_buffer(brw,
1921 drawable,
1922 back_rb,
1923 images.back,
1924 __DRI_IMAGE_BUFFER_SHARED);
1925 brw->is_shared_buffer_bound = true;
1926 } else {
1927 brw->is_shared_buffer_bound = false;
1928 brw->is_shared_buffer_dirty = false;
1929 }
1930 }