vk: Add four unit tests for our lock-free data-structures
[mesa.git] / src / mesa / drivers / dri / i965 / brw_context.c
1 /*
2 Copyright 2003 VMware, Inc.
3 Copyright (C) Intel Corp. 2006. All Rights Reserved.
4 Intel funded Tungsten Graphics to
5 develop this 3D driver.
6
7 Permission is hereby granted, free of charge, to any person obtaining
8 a copy of this software and associated documentation files (the
9 "Software"), to deal in the Software without restriction, including
10 without limitation the rights to use, copy, modify, merge, publish,
11 distribute, sublicense, and/or sell copies of the Software, and to
12 permit persons to whom the Software is furnished to do so, subject to
13 the following conditions:
14
15 The above copyright notice and this permission notice (including the
16 next paragraph) shall be included in all copies or substantial
17 portions of the Software.
18
19 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
20 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
22 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
23 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
24 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
25 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26
27 **********************************************************************/
28 /*
29 * Authors:
30 * Keith Whitwell <keithw@vmware.com>
31 */
32
33
34 #include "main/api_exec.h"
35 #include "main/context.h"
36 #include "main/fbobject.h"
37 #include "main/extensions.h"
38 #include "main/imports.h"
39 #include "main/macros.h"
40 #include "main/points.h"
41 #include "main/version.h"
42 #include "main/vtxfmt.h"
43 #include "main/texobj.h"
44
45 #include "vbo/vbo_context.h"
46
47 #include "drivers/common/driverfuncs.h"
48 #include "drivers/common/meta.h"
49 #include "utils.h"
50
51 #include "brw_context.h"
52 #include "brw_defines.h"
53 #include "brw_shader.h"
54 #include "brw_draw.h"
55 #include "brw_state.h"
56
57 #include "intel_batchbuffer.h"
58 #include "intel_buffer_objects.h"
59 #include "intel_buffers.h"
60 #include "intel_fbo.h"
61 #include "intel_mipmap_tree.h"
62 #include "intel_pixel.h"
63 #include "intel_image.h"
64 #include "intel_tex.h"
65 #include "intel_tex_obj.h"
66
67 #include "swrast_setup/swrast_setup.h"
68 #include "tnl/tnl.h"
69 #include "tnl/t_pipeline.h"
70 #include "util/ralloc.h"
71
72 /***************************************
73 * Mesa's Driver Functions
74 ***************************************/
75
76 static size_t
77 brw_query_samples_for_format(struct gl_context *ctx, GLenum target,
78 GLenum internalFormat, int samples[16])
79 {
80 struct brw_context *brw = brw_context(ctx);
81
82 (void) target;
83
84 switch (brw->gen) {
85 case 9:
86 case 8:
87 samples[0] = 8;
88 samples[1] = 4;
89 samples[2] = 2;
90 return 3;
91
92 case 7:
93 samples[0] = 8;
94 samples[1] = 4;
95 return 2;
96
97 case 6:
98 samples[0] = 4;
99 return 1;
100
101 default:
102 assert(brw->gen < 6);
103 samples[0] = 1;
104 return 1;
105 }
106 }
107
108 const char *const brw_vendor_string = "Intel Open Source Technology Center";
109
110 const char *
111 brw_get_renderer_string(unsigned deviceID)
112 {
113 const char *chipset;
114 static char buffer[128];
115
116 switch (deviceID) {
117 #undef CHIPSET
118 #define CHIPSET(id, symbol, str) case id: chipset = str; break;
119 #include "pci_ids/i965_pci_ids.h"
120 default:
121 chipset = "Unknown Intel Chipset";
122 break;
123 }
124
125 (void) driGetRendererString(buffer, chipset, 0);
126 return buffer;
127 }
128
129 static const GLubyte *
130 intel_get_string(struct gl_context * ctx, GLenum name)
131 {
132 const struct brw_context *const brw = brw_context(ctx);
133
134 switch (name) {
135 case GL_VENDOR:
136 return (GLubyte *) brw_vendor_string;
137
138 case GL_RENDERER:
139 return
140 (GLubyte *) brw_get_renderer_string(brw->intelScreen->deviceID);
141
142 default:
143 return NULL;
144 }
145 }
146
147 static void
148 intel_viewport(struct gl_context *ctx)
149 {
150 struct brw_context *brw = brw_context(ctx);
151 __DRIcontext *driContext = brw->driContext;
152
153 if (_mesa_is_winsys_fbo(ctx->DrawBuffer)) {
154 dri2InvalidateDrawable(driContext->driDrawablePriv);
155 dri2InvalidateDrawable(driContext->driReadablePriv);
156 }
157 }
158
159 static void
160 intel_update_state(struct gl_context * ctx, GLuint new_state)
161 {
162 struct brw_context *brw = brw_context(ctx);
163 struct intel_texture_object *tex_obj;
164 struct intel_renderbuffer *depth_irb;
165
166 if (ctx->swrast_context)
167 _swrast_InvalidateState(ctx, new_state);
168 _vbo_InvalidateState(ctx, new_state);
169
170 brw->NewGLState |= new_state;
171
172 _mesa_unlock_context_textures(ctx);
173
174 /* Resolve the depth buffer's HiZ buffer. */
175 depth_irb = intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
176 if (depth_irb)
177 intel_renderbuffer_resolve_hiz(brw, depth_irb);
178
179 /* Resolve depth buffer and render cache of each enabled texture. */
180 int maxEnabledUnit = ctx->Texture._MaxEnabledTexImageUnit;
181 for (int i = 0; i <= maxEnabledUnit; i++) {
182 if (!ctx->Texture.Unit[i]._Current)
183 continue;
184 tex_obj = intel_texture_object(ctx->Texture.Unit[i]._Current);
185 if (!tex_obj || !tex_obj->mt)
186 continue;
187 intel_miptree_all_slices_resolve_depth(brw, tex_obj->mt);
188 intel_miptree_resolve_color(brw, tex_obj->mt);
189 brw_render_cache_set_check_flush(brw, tex_obj->mt->bo);
190 }
191
192 _mesa_lock_context_textures(ctx);
193 }
194
195 #define flushFront(screen) ((screen)->image.loader ? (screen)->image.loader->flushFrontBuffer : (screen)->dri2.loader->flushFrontBuffer)
196
197 static void
198 intel_flush_front(struct gl_context *ctx)
199 {
200 struct brw_context *brw = brw_context(ctx);
201 __DRIcontext *driContext = brw->driContext;
202 __DRIdrawable *driDrawable = driContext->driDrawablePriv;
203 __DRIscreen *const screen = brw->intelScreen->driScrnPriv;
204
205 if (brw->front_buffer_dirty && _mesa_is_winsys_fbo(ctx->DrawBuffer)) {
206 if (flushFront(screen) && driDrawable &&
207 driDrawable->loaderPrivate) {
208
209 /* Resolve before flushing FAKE_FRONT_LEFT to FRONT_LEFT.
210 *
211 * This potentially resolves both front and back buffer. It
212 * is unnecessary to resolve the back, but harms nothing except
213 * performance. And no one cares about front-buffer render
214 * performance.
215 */
216 intel_resolve_for_dri2_flush(brw, driDrawable);
217 intel_batchbuffer_flush(brw);
218
219 flushFront(screen)(driDrawable, driDrawable->loaderPrivate);
220
221 /* We set the dirty bit in intel_prepare_render() if we're
222 * front buffer rendering once we get there.
223 */
224 brw->front_buffer_dirty = false;
225 }
226 }
227 }
228
229 static void
230 intel_glFlush(struct gl_context *ctx)
231 {
232 struct brw_context *brw = brw_context(ctx);
233
234 intel_batchbuffer_flush(brw);
235 intel_flush_front(ctx);
236
237 brw->need_flush_throttle = true;
238 }
239
240 static void
241 intel_finish(struct gl_context * ctx)
242 {
243 struct brw_context *brw = brw_context(ctx);
244
245 intel_glFlush(ctx);
246
247 if (brw->batch.last_bo)
248 drm_intel_bo_wait_rendering(brw->batch.last_bo);
249 }
250
251 static void
252 brw_init_driver_functions(struct brw_context *brw,
253 struct dd_function_table *functions)
254 {
255 _mesa_init_driver_functions(functions);
256
257 /* GLX uses DRI2 invalidate events to handle window resizing.
258 * Unfortunately, EGL does not - libEGL is written in XCB (not Xlib),
259 * which doesn't provide a mechanism for snooping the event queues.
260 *
261 * So EGL still relies on viewport hacks to handle window resizing.
262 * This should go away with DRI3000.
263 */
264 if (!brw->driContext->driScreenPriv->dri2.useInvalidate)
265 functions->Viewport = intel_viewport;
266
267 functions->Flush = intel_glFlush;
268 functions->Finish = intel_finish;
269 functions->GetString = intel_get_string;
270 functions->UpdateState = intel_update_state;
271
272 intelInitTextureFuncs(functions);
273 intelInitTextureImageFuncs(functions);
274 intelInitTextureSubImageFuncs(functions);
275 intelInitTextureCopyImageFuncs(functions);
276 intelInitCopyImageFuncs(functions);
277 intelInitClearFuncs(functions);
278 intelInitBufferFuncs(functions);
279 intelInitPixelFuncs(functions);
280 intelInitBufferObjectFuncs(functions);
281 intel_init_syncobj_functions(functions);
282 brw_init_object_purgeable_functions(functions);
283
284 brwInitFragProgFuncs( functions );
285 brw_init_common_queryobj_functions(functions);
286 if (brw->gen >= 6)
287 gen6_init_queryobj_functions(functions);
288 else
289 gen4_init_queryobj_functions(functions);
290 brw_init_compute_functions(functions);
291 if (brw->gen >= 7)
292 brw_init_conditional_render_functions(functions);
293
294 functions->QuerySamplesForFormat = brw_query_samples_for_format;
295
296 functions->NewTransformFeedback = brw_new_transform_feedback;
297 functions->DeleteTransformFeedback = brw_delete_transform_feedback;
298 functions->GetTransformFeedbackVertexCount =
299 brw_get_transform_feedback_vertex_count;
300 if (brw->gen >= 7) {
301 functions->BeginTransformFeedback = gen7_begin_transform_feedback;
302 functions->EndTransformFeedback = gen7_end_transform_feedback;
303 functions->PauseTransformFeedback = gen7_pause_transform_feedback;
304 functions->ResumeTransformFeedback = gen7_resume_transform_feedback;
305 } else {
306 functions->BeginTransformFeedback = brw_begin_transform_feedback;
307 functions->EndTransformFeedback = brw_end_transform_feedback;
308 }
309
310 if (brw->gen >= 6)
311 functions->GetSamplePosition = gen6_get_sample_position;
312 }
313
314 void
315 brw_initialize_context_constants(struct brw_context *brw)
316 {
317 struct gl_context *ctx = &brw->ctx;
318
319 unsigned max_samplers =
320 brw->gen >= 8 || brw->is_haswell ? BRW_MAX_TEX_UNIT : 16;
321
322 ctx->Const.QueryCounterBits.Timestamp = 36;
323
324 ctx->Const.StripTextureBorder = true;
325
326 ctx->Const.MaxDualSourceDrawBuffers = 1;
327 ctx->Const.MaxDrawBuffers = BRW_MAX_DRAW_BUFFERS;
328 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits = max_samplers;
329 ctx->Const.MaxTextureCoordUnits = 8; /* Mesa limit */
330 ctx->Const.MaxTextureUnits =
331 MIN2(ctx->Const.MaxTextureCoordUnits,
332 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits);
333 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits = max_samplers;
334 if (brw->gen >= 6)
335 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = max_samplers;
336 else
337 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits = 0;
338 if (_mesa_extension_override_enables.ARB_compute_shader) {
339 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = BRW_MAX_TEX_UNIT;
340 ctx->Const.MaxUniformBufferBindings += 12;
341 } else {
342 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits = 0;
343 }
344 ctx->Const.MaxCombinedTextureImageUnits =
345 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTextureImageUnits +
346 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxTextureImageUnits +
347 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxTextureImageUnits +
348 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxTextureImageUnits;
349
350 ctx->Const.MaxTextureLevels = 14; /* 8192 */
351 if (ctx->Const.MaxTextureLevels > MAX_TEXTURE_LEVELS)
352 ctx->Const.MaxTextureLevels = MAX_TEXTURE_LEVELS;
353 ctx->Const.Max3DTextureLevels = 12; /* 2048 */
354 ctx->Const.MaxCubeTextureLevels = 14; /* 8192 */
355 ctx->Const.MaxTextureMbytes = 1536;
356
357 if (brw->gen >= 7)
358 ctx->Const.MaxArrayTextureLayers = 2048;
359 else
360 ctx->Const.MaxArrayTextureLayers = 512;
361
362 ctx->Const.MaxTextureRectSize = 1 << 12;
363
364 ctx->Const.MaxTextureMaxAnisotropy = 16.0;
365
366 ctx->Const.MaxRenderbufferSize = 8192;
367
368 /* Hardware only supports a limited number of transform feedback buffers.
369 * So we need to override the Mesa default (which is based only on software
370 * limits).
371 */
372 ctx->Const.MaxTransformFeedbackBuffers = BRW_MAX_SOL_BUFFERS;
373
374 /* On Gen6, in the worst case, we use up one binding table entry per
375 * transform feedback component (see comments above the definition of
376 * BRW_MAX_SOL_BINDINGS, in brw_context.h), so we need to advertise a value
377 * for MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS equal to
378 * BRW_MAX_SOL_BINDINGS.
379 *
380 * In "separate components" mode, we need to divide this value by
381 * BRW_MAX_SOL_BUFFERS, so that the total number of binding table entries
382 * used up by all buffers will not exceed BRW_MAX_SOL_BINDINGS.
383 */
384 ctx->Const.MaxTransformFeedbackInterleavedComponents = BRW_MAX_SOL_BINDINGS;
385 ctx->Const.MaxTransformFeedbackSeparateComponents =
386 BRW_MAX_SOL_BINDINGS / BRW_MAX_SOL_BUFFERS;
387
388 ctx->Const.AlwaysUseGetTransformFeedbackVertexCount = true;
389
390 int max_samples;
391 const int *msaa_modes = intel_supported_msaa_modes(brw->intelScreen);
392 const int clamp_max_samples =
393 brw->optionCache.info != NULL ?
394 driQueryOptioni(&brw->optionCache, "clamp_max_samples") : -1;
395
396 if (clamp_max_samples < 0) {
397 max_samples = msaa_modes[0];
398 } else {
399 /* Select the largest supported MSAA mode that does not exceed
400 * clamp_max_samples.
401 */
402 max_samples = 0;
403 for (int i = 0; msaa_modes[i] != 0; ++i) {
404 if (msaa_modes[i] <= clamp_max_samples) {
405 max_samples = msaa_modes[i];
406 break;
407 }
408 }
409 }
410
411 ctx->Const.MaxSamples = max_samples;
412 ctx->Const.MaxColorTextureSamples = max_samples;
413 ctx->Const.MaxDepthTextureSamples = max_samples;
414 ctx->Const.MaxIntegerSamples = max_samples;
415
416 /* gen6_set_sample_maps() sets SampleMap{2,4,8}x variables which are used
417 * to map indices of rectangular grid to sample numbers within a pixel.
418 * These variables are used by GL_EXT_framebuffer_multisample_blit_scaled
419 * extension implementation. For more details see the comment above
420 * gen6_set_sample_maps() definition.
421 */
422 gen6_set_sample_maps(ctx);
423
424 if (brw->gen >= 7)
425 ctx->Const.MaxProgramTextureGatherComponents = 4;
426 else if (brw->gen == 6)
427 ctx->Const.MaxProgramTextureGatherComponents = 1;
428
429 ctx->Const.MinLineWidth = 1.0;
430 ctx->Const.MinLineWidthAA = 1.0;
431 if (brw->gen >= 6) {
432 ctx->Const.MaxLineWidth = 7.375;
433 ctx->Const.MaxLineWidthAA = 7.375;
434 ctx->Const.LineWidthGranularity = 0.125;
435 } else {
436 ctx->Const.MaxLineWidth = 7.0;
437 ctx->Const.MaxLineWidthAA = 7.0;
438 ctx->Const.LineWidthGranularity = 0.5;
439 }
440
441 /* For non-antialiased lines, we have to round the line width to the
442 * nearest whole number. Make sure that we don't advertise a line
443 * width that, when rounded, will be beyond the actual hardware
444 * maximum.
445 */
446 assert(roundf(ctx->Const.MaxLineWidth) <= ctx->Const.MaxLineWidth);
447
448 ctx->Const.MinPointSize = 1.0;
449 ctx->Const.MinPointSizeAA = 1.0;
450 ctx->Const.MaxPointSize = 255.0;
451 ctx->Const.MaxPointSizeAA = 255.0;
452 ctx->Const.PointSizeGranularity = 1.0;
453
454 if (brw->gen >= 5 || brw->is_g4x)
455 ctx->Const.MaxClipPlanes = 8;
456
457 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeInstructions = 16 * 1024;
458 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAluInstructions = 0;
459 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexInstructions = 0;
460 ctx->Const.Program[MESA_SHADER_VERTEX].MaxTexIndirections = 0;
461 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAluInstructions = 0;
462 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexInstructions = 0;
463 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTexIndirections = 0;
464 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAttribs = 16;
465 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeTemps = 256;
466 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeAddressRegs = 1;
467 ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters = 1024;
468 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams =
469 MIN2(ctx->Const.Program[MESA_SHADER_VERTEX].MaxNativeParameters,
470 ctx->Const.Program[MESA_SHADER_VERTEX].MaxEnvParams);
471
472 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeInstructions = 1024;
473 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAluInstructions = 1024;
474 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexInstructions = 1024;
475 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTexIndirections = 1024;
476 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAttribs = 12;
477 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeTemps = 256;
478 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeAddressRegs = 0;
479 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters = 1024;
480 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams =
481 MIN2(ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxNativeParameters,
482 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxEnvParams);
483
484 /* Fragment shaders use real, 32-bit twos-complement integers for all
485 * integer types.
486 */
487 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMin = 31;
488 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.RangeMax = 30;
489 ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt.Precision = 0;
490 ctx->Const.Program[MESA_SHADER_FRAGMENT].HighInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
491 ctx->Const.Program[MESA_SHADER_FRAGMENT].MediumInt = ctx->Const.Program[MESA_SHADER_FRAGMENT].LowInt;
492
493 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMin = 31;
494 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.RangeMax = 30;
495 ctx->Const.Program[MESA_SHADER_VERTEX].LowInt.Precision = 0;
496 ctx->Const.Program[MESA_SHADER_VERTEX].HighInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
497 ctx->Const.Program[MESA_SHADER_VERTEX].MediumInt = ctx->Const.Program[MESA_SHADER_VERTEX].LowInt;
498
499 if (brw->gen >= 7) {
500 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
501 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
502 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
503 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicCounters = MAX_ATOMIC_COUNTERS;
504 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxAtomicBuffers = BRW_MAX_ABO;
505 ctx->Const.Program[MESA_SHADER_VERTEX].MaxAtomicBuffers = BRW_MAX_ABO;
506 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxAtomicBuffers = BRW_MAX_ABO;
507 ctx->Const.Program[MESA_SHADER_COMPUTE].MaxAtomicBuffers = BRW_MAX_ABO;
508 ctx->Const.MaxCombinedAtomicBuffers = 3 * BRW_MAX_ABO;
509 }
510
511 /* Gen6 converts quads to polygon in beginning of 3D pipeline,
512 * but we're not sure how it's actually done for vertex order,
513 * that affect provoking vertex decision. Always use last vertex
514 * convention for quad primitive which works as expected for now.
515 */
516 if (brw->gen >= 6)
517 ctx->Const.QuadsFollowProvokingVertexConvention = false;
518
519 ctx->Const.NativeIntegers = true;
520 ctx->Const.VertexID_is_zero_based = true;
521
522 /* Regarding the CMP instruction, the Ivybridge PRM says:
523 *
524 * "For each enabled channel 0b or 1b is assigned to the appropriate flag
525 * bit and 0/all zeros or all ones (e.g, byte 0xFF, word 0xFFFF, DWord
526 * 0xFFFFFFFF) is assigned to dst."
527 *
528 * but PRMs for earlier generations say
529 *
530 * "In dword format, one GRF may store up to 8 results. When the register
531 * is used later as a vector of Booleans, as only LSB at each channel
532 * contains meaning [sic] data, software should make sure all higher bits
533 * are masked out (e.g. by 'and-ing' an [sic] 0x01 constant)."
534 *
535 * We select the representation of a true boolean uniform to be ~0, and fix
536 * the results of Gen <= 5 CMP instruction's with -(result & 1).
537 */
538 ctx->Const.UniformBooleanTrue = ~0;
539
540 /* From the gen4 PRM, volume 4 page 127:
541 *
542 * "For SURFTYPE_BUFFER non-rendertarget surfaces, this field specifies
543 * the base address of the first element of the surface, computed in
544 * software by adding the surface base address to the byte offset of
545 * the element in the buffer."
546 *
547 * However, unaligned accesses are slower, so enforce buffer alignment.
548 */
549 ctx->Const.UniformBufferOffsetAlignment = 16;
550 ctx->Const.TextureBufferOffsetAlignment = 16;
551 ctx->Const.MaxTextureBufferSize = 128 * 1024 * 1024;
552
553 if (brw->gen >= 6) {
554 ctx->Const.MaxVarying = 32;
555 ctx->Const.Program[MESA_SHADER_VERTEX].MaxOutputComponents = 128;
556 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxInputComponents = 64;
557 ctx->Const.Program[MESA_SHADER_GEOMETRY].MaxOutputComponents = 128;
558 ctx->Const.Program[MESA_SHADER_FRAGMENT].MaxInputComponents = 128;
559 }
560
561 /* We want the GLSL compiler to emit code that uses condition codes */
562 for (int i = 0; i < MESA_SHADER_STAGES; i++) {
563 ctx->Const.ShaderCompilerOptions[i] =
564 brw->intelScreen->compiler->glsl_compiler_options[i];
565 }
566
567 /* ARB_viewport_array */
568 if (brw->gen >= 6 && ctx->API == API_OPENGL_CORE) {
569 ctx->Const.MaxViewports = GEN6_NUM_VIEWPORTS;
570 ctx->Const.ViewportSubpixelBits = 0;
571
572 /* Cast to float before negating because MaxViewportWidth is unsigned.
573 */
574 ctx->Const.ViewportBounds.Min = -(float)ctx->Const.MaxViewportWidth;
575 ctx->Const.ViewportBounds.Max = ctx->Const.MaxViewportWidth;
576 }
577
578 /* ARB_gpu_shader5 */
579 if (brw->gen >= 7)
580 ctx->Const.MaxVertexStreams = MIN2(4, MAX_VERTEX_STREAMS);
581
582 /* ARB_framebuffer_no_attachments */
583 ctx->Const.MaxFramebufferWidth = ctx->Const.MaxViewportWidth;
584 ctx->Const.MaxFramebufferHeight = ctx->Const.MaxViewportHeight;
585 ctx->Const.MaxFramebufferLayers = ctx->Const.MaxArrayTextureLayers;
586 ctx->Const.MaxFramebufferSamples = max_samples;
587 }
588
589 static void
590 brw_adjust_cs_context_constants(struct brw_context *brw)
591 {
592 struct gl_context *ctx = &brw->ctx;
593
594 /* For ES, we set these constants based on SIMD8.
595 *
596 * TODO: Once we can always generate SIMD16, we should update this.
597 *
598 * For GL, we assume we can generate a SIMD16 program, but this currently
599 * is not always true. This allows us to run more test cases, and will be
600 * required based on desktop GL compute shader requirements.
601 */
602 const int simd_size = ctx->API == API_OPENGL_CORE ? 16 : 8;
603
604 const uint32_t max_invocations = simd_size * brw->max_cs_threads;
605 ctx->Const.MaxComputeWorkGroupSize[0] = max_invocations;
606 ctx->Const.MaxComputeWorkGroupSize[1] = max_invocations;
607 ctx->Const.MaxComputeWorkGroupSize[2] = max_invocations;
608 ctx->Const.MaxComputeWorkGroupInvocations = max_invocations;
609 }
610
611 /**
612 * Process driconf (drirc) options, setting appropriate context flags.
613 *
614 * intelInitExtensions still pokes at optionCache directly, in order to
615 * avoid advertising various extensions. No flags are set, so it makes
616 * sense to continue doing that there.
617 */
618 static void
619 brw_process_driconf_options(struct brw_context *brw)
620 {
621 struct gl_context *ctx = &brw->ctx;
622
623 driOptionCache *options = &brw->optionCache;
624 driParseConfigFiles(options, &brw->intelScreen->optionCache,
625 brw->driContext->driScreenPriv->myNum, "i965");
626
627 int bo_reuse_mode = driQueryOptioni(options, "bo_reuse");
628 switch (bo_reuse_mode) {
629 case DRI_CONF_BO_REUSE_DISABLED:
630 break;
631 case DRI_CONF_BO_REUSE_ALL:
632 intel_bufmgr_gem_enable_reuse(brw->bufmgr);
633 break;
634 }
635
636 if (!driQueryOptionb(options, "hiz")) {
637 brw->has_hiz = false;
638 /* On gen6, you can only do separate stencil with HIZ. */
639 if (brw->gen == 6)
640 brw->has_separate_stencil = false;
641 }
642
643 if (driQueryOptionb(options, "always_flush_batch")) {
644 fprintf(stderr, "flushing batchbuffer before/after each draw call\n");
645 brw->always_flush_batch = true;
646 }
647
648 if (driQueryOptionb(options, "always_flush_cache")) {
649 fprintf(stderr, "flushing GPU caches before/after each draw call\n");
650 brw->always_flush_cache = true;
651 }
652
653 if (driQueryOptionb(options, "disable_throttling")) {
654 fprintf(stderr, "disabling flush throttling\n");
655 brw->disable_throttling = true;
656 }
657
658 brw->precompile = driQueryOptionb(&brw->optionCache, "shader_precompile");
659
660 ctx->Const.ForceGLSLExtensionsWarn =
661 driQueryOptionb(options, "force_glsl_extensions_warn");
662
663 ctx->Const.DisableGLSLLineContinuations =
664 driQueryOptionb(options, "disable_glsl_line_continuations");
665
666 ctx->Const.AllowGLSLExtensionDirectiveMidShader =
667 driQueryOptionb(options, "allow_glsl_extension_directive_midshader");
668 }
669
670 GLboolean
671 brwCreateContext(gl_api api,
672 const struct gl_config *mesaVis,
673 __DRIcontext *driContextPriv,
674 unsigned major_version,
675 unsigned minor_version,
676 uint32_t flags,
677 bool notify_reset,
678 unsigned *dri_ctx_error,
679 void *sharedContextPrivate)
680 {
681 __DRIscreen *sPriv = driContextPriv->driScreenPriv;
682 struct gl_context *shareCtx = (struct gl_context *) sharedContextPrivate;
683 struct intel_screen *screen = sPriv->driverPrivate;
684 const struct brw_device_info *devinfo = screen->devinfo;
685 struct dd_function_table functions;
686
687 /* Only allow the __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS flag if the kernel
688 * provides us with context reset notifications.
689 */
690 uint32_t allowed_flags = __DRI_CTX_FLAG_DEBUG
691 | __DRI_CTX_FLAG_FORWARD_COMPATIBLE;
692
693 if (screen->has_context_reset_notification)
694 allowed_flags |= __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS;
695
696 if (flags & ~allowed_flags) {
697 *dri_ctx_error = __DRI_CTX_ERROR_UNKNOWN_FLAG;
698 return false;
699 }
700
701 struct brw_context *brw = rzalloc(NULL, struct brw_context);
702 if (!brw) {
703 fprintf(stderr, "%s: failed to alloc context\n", __func__);
704 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
705 return false;
706 }
707
708 driContextPriv->driverPrivate = brw;
709 brw->driContext = driContextPriv;
710 brw->intelScreen = screen;
711 brw->bufmgr = screen->bufmgr;
712
713 brw->gen = devinfo->gen;
714 brw->gt = devinfo->gt;
715 brw->is_g4x = devinfo->is_g4x;
716 brw->is_baytrail = devinfo->is_baytrail;
717 brw->is_haswell = devinfo->is_haswell;
718 brw->is_cherryview = devinfo->is_cherryview;
719 brw->has_llc = devinfo->has_llc;
720 brw->has_hiz = devinfo->has_hiz_and_separate_stencil;
721 brw->has_separate_stencil = devinfo->has_hiz_and_separate_stencil;
722 brw->has_pln = devinfo->has_pln;
723 brw->has_compr4 = devinfo->has_compr4;
724 brw->has_surface_tile_offset = devinfo->has_surface_tile_offset;
725 brw->has_negative_rhw_bug = devinfo->has_negative_rhw_bug;
726 brw->needs_unlit_centroid_workaround =
727 devinfo->needs_unlit_centroid_workaround;
728
729 brw->must_use_separate_stencil = screen->hw_must_use_separate_stencil;
730 brw->has_swizzling = screen->hw_has_swizzling;
731
732 brw->vs.base.stage = MESA_SHADER_VERTEX;
733 brw->gs.base.stage = MESA_SHADER_GEOMETRY;
734 brw->wm.base.stage = MESA_SHADER_FRAGMENT;
735 if (brw->gen >= 8) {
736 gen8_init_vtable_surface_functions(brw);
737 brw->vtbl.emit_depth_stencil_hiz = gen8_emit_depth_stencil_hiz;
738 } else if (brw->gen >= 7) {
739 gen7_init_vtable_surface_functions(brw);
740 brw->vtbl.emit_depth_stencil_hiz = gen7_emit_depth_stencil_hiz;
741 } else if (brw->gen >= 6) {
742 gen6_init_vtable_surface_functions(brw);
743 brw->vtbl.emit_depth_stencil_hiz = gen6_emit_depth_stencil_hiz;
744 } else {
745 gen4_init_vtable_surface_functions(brw);
746 brw->vtbl.emit_depth_stencil_hiz = brw_emit_depth_stencil_hiz;
747 }
748
749 brw_init_driver_functions(brw, &functions);
750
751 if (notify_reset)
752 functions.GetGraphicsResetStatus = brw_get_graphics_reset_status;
753
754 struct gl_context *ctx = &brw->ctx;
755
756 if (!_mesa_initialize_context(ctx, api, mesaVis, shareCtx, &functions)) {
757 *dri_ctx_error = __DRI_CTX_ERROR_NO_MEMORY;
758 fprintf(stderr, "%s: failed to init mesa context\n", __func__);
759 intelDestroyContext(driContextPriv);
760 return false;
761 }
762
763 driContextSetFlags(ctx, flags);
764
765 /* Initialize the software rasterizer and helper modules.
766 *
767 * As of GL 3.1 core, the gen4+ driver doesn't need the swrast context for
768 * software fallbacks (which we have to support on legacy GL to do weird
769 * glDrawPixels(), glBitmap(), and other functions).
770 */
771 if (api != API_OPENGL_CORE && api != API_OPENGLES2) {
772 _swrast_CreateContext(ctx);
773 }
774
775 _vbo_CreateContext(ctx);
776 if (ctx->swrast_context) {
777 _tnl_CreateContext(ctx);
778 TNL_CONTEXT(ctx)->Driver.RunPipeline = _tnl_run_pipeline;
779 _swsetup_CreateContext(ctx);
780
781 /* Configure swrast to match hardware characteristics: */
782 _swrast_allow_pixel_fog(ctx, false);
783 _swrast_allow_vertex_fog(ctx, true);
784 }
785
786 _mesa_meta_init(ctx);
787
788 brw_process_driconf_options(brw);
789
790 if (INTEL_DEBUG & DEBUG_PERF)
791 brw->perf_debug = true;
792
793 brw_initialize_context_constants(brw);
794
795 ctx->Const.ResetStrategy = notify_reset
796 ? GL_LOSE_CONTEXT_ON_RESET_ARB : GL_NO_RESET_NOTIFICATION_ARB;
797
798 /* Reinitialize the context point state. It depends on ctx->Const values. */
799 _mesa_init_point(ctx);
800
801 intel_fbo_init(brw);
802
803 intel_batchbuffer_init(brw);
804
805 #if 0
806 if (brw->gen >= 6) {
807 /* Create a new hardware context. Using a hardware context means that
808 * our GPU state will be saved/restored on context switch, allowing us
809 * to assume that the GPU is in the same state we left it in.
810 *
811 * This is required for transform feedback buffer offsets, query objects,
812 * and also allows us to reduce how much state we have to emit.
813 */
814 brw->hw_ctx = drm_intel_gem_context_create(brw->bufmgr);
815
816 if (!brw->hw_ctx) {
817 fprintf(stderr, "Gen6+ requires Kernel 3.6 or later.\n");
818 intelDestroyContext(driContextPriv);
819 return false;
820 }
821 }
822
823 brw_init_state(brw);
824 #endif
825
826 intelInitExtensions(ctx);
827
828 brw_init_surface_formats(brw);
829
830 brw->max_vs_threads = devinfo->max_vs_threads;
831 brw->max_hs_threads = devinfo->max_hs_threads;
832 brw->max_ds_threads = devinfo->max_ds_threads;
833 brw->max_gs_threads = devinfo->max_gs_threads;
834 brw->max_wm_threads = devinfo->max_wm_threads;
835 brw->max_cs_threads = devinfo->max_cs_threads;
836 brw->urb.size = devinfo->urb.size;
837 brw->urb.min_vs_entries = devinfo->urb.min_vs_entries;
838 brw->urb.max_vs_entries = devinfo->urb.max_vs_entries;
839 brw->urb.max_hs_entries = devinfo->urb.max_hs_entries;
840 brw->urb.max_ds_entries = devinfo->urb.max_ds_entries;
841 brw->urb.max_gs_entries = devinfo->urb.max_gs_entries;
842
843 brw_adjust_cs_context_constants(brw);
844
845 /* Estimate the size of the mappable aperture into the GTT. There's an
846 * ioctl to get the whole GTT size, but not one to get the mappable subset.
847 * It turns out it's basically always 256MB, though some ancient hardware
848 * was smaller.
849 */
850 uint32_t gtt_size = 256 * 1024 * 1024;
851
852 /* We don't want to map two objects such that a memcpy between them would
853 * just fault one mapping in and then the other over and over forever. So
854 * we would need to divide the GTT size by 2. Additionally, some GTT is
855 * taken up by things like the framebuffer and the ringbuffer and such, so
856 * be more conservative.
857 */
858 brw->max_gtt_map_object_size = gtt_size / 4;
859
860 if (brw->gen == 6)
861 brw->urb.gs_present = false;
862
863 brw->prim_restart.in_progress = false;
864 brw->prim_restart.enable_cut_index = false;
865 brw->gs.enabled = false;
866 brw->sf.viewport_transform_enable = true;
867
868 brw->predicate.state = BRW_PREDICATE_STATE_RENDER;
869
870 ctx->VertexProgram._MaintainTnlProgram = true;
871 ctx->FragmentProgram._MaintainTexEnvProgram = true;
872
873 brw_draw_init( brw );
874
875 if ((flags & __DRI_CTX_FLAG_DEBUG) != 0) {
876 /* Turn on some extra GL_ARB_debug_output generation. */
877 brw->perf_debug = true;
878 }
879
880 if ((flags & __DRI_CTX_FLAG_ROBUST_BUFFER_ACCESS) != 0)
881 ctx->Const.ContextFlags |= GL_CONTEXT_FLAG_ROBUST_ACCESS_BIT_ARB;
882
883 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
884 brw_init_shader_time(brw);
885
886 _mesa_compute_version(ctx);
887
888 #if 0
889 _mesa_initialize_dispatch_tables(ctx);
890 _mesa_initialize_vbo_vtxfmt(ctx);
891 #endif
892
893 if (ctx->Extensions.AMD_performance_monitor) {
894 brw_init_performance_monitors(brw);
895 }
896
897 vbo_use_buffer_objects(ctx);
898 vbo_always_unmap_buffers(ctx);
899
900 return true;
901 }
902
903 void
904 intelDestroyContext(__DRIcontext * driContextPriv)
905 {
906 struct brw_context *brw =
907 (struct brw_context *) driContextPriv->driverPrivate;
908 struct gl_context *ctx = &brw->ctx;
909
910 /* Dump a final BMP in case the application doesn't call SwapBuffers */
911 if (INTEL_DEBUG & DEBUG_AUB) {
912 intel_batchbuffer_flush(brw);
913 aub_dump_bmp(&brw->ctx);
914 }
915
916 _mesa_meta_free(&brw->ctx);
917 brw_meta_fast_clear_free(brw);
918
919 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
920 /* Force a report. */
921 brw->shader_time.report_time = 0;
922
923 brw_collect_and_report_shader_time(brw);
924 brw_destroy_shader_time(brw);
925 }
926
927 brw_destroy_state(brw);
928 brw_draw_destroy(brw);
929
930 drm_intel_bo_unreference(brw->curbe.curbe_bo);
931 if (brw->vs.base.scratch_bo)
932 drm_intel_bo_unreference(brw->vs.base.scratch_bo);
933 if (brw->gs.base.scratch_bo)
934 drm_intel_bo_unreference(brw->gs.base.scratch_bo);
935 if (brw->wm.base.scratch_bo)
936 drm_intel_bo_unreference(brw->wm.base.scratch_bo);
937
938 drm_intel_gem_context_destroy(brw->hw_ctx);
939
940 if (ctx->swrast_context) {
941 _swsetup_DestroyContext(&brw->ctx);
942 _tnl_DestroyContext(&brw->ctx);
943 }
944 _vbo_DestroyContext(&brw->ctx);
945
946 if (ctx->swrast_context)
947 _swrast_DestroyContext(&brw->ctx);
948
949 intel_batchbuffer_free(brw);
950
951 drm_intel_bo_unreference(brw->throttle_batch[1]);
952 drm_intel_bo_unreference(brw->throttle_batch[0]);
953 brw->throttle_batch[1] = NULL;
954 brw->throttle_batch[0] = NULL;
955
956 driDestroyOptionCache(&brw->optionCache);
957
958 /* free the Mesa context */
959 _mesa_free_context_data(&brw->ctx);
960
961 ralloc_free(brw);
962 driContextPriv->driverPrivate = NULL;
963 }
964
965 GLboolean
966 intelUnbindContext(__DRIcontext * driContextPriv)
967 {
968 /* Unset current context and dispath table */
969 _mesa_make_current(NULL, NULL, NULL);
970
971 return true;
972 }
973
974 /**
975 * Fixes up the context for GLES23 with our default-to-sRGB-capable behavior
976 * on window system framebuffers.
977 *
978 * Desktop GL is fairly reasonable in its handling of sRGB: You can ask if
979 * your renderbuffer can do sRGB encode, and you can flip a switch that does
980 * sRGB encode if the renderbuffer can handle it. You can ask specifically
981 * for a visual where you're guaranteed to be capable, but it turns out that
982 * everyone just makes all their ARGB8888 visuals capable and doesn't offer
983 * incapable ones, because there's no difference between the two in resources
984 * used. Applications thus get built that accidentally rely on the default
985 * visual choice being sRGB, so we make ours sRGB capable. Everything sounds
986 * great...
987 *
988 * But for GLES2/3, they decided that it was silly to not turn on sRGB encode
989 * for sRGB renderbuffers you made with the GL_EXT_texture_sRGB equivalent.
990 * So they removed the enable knob and made it "if the renderbuffer is sRGB
991 * capable, do sRGB encode". Then, for your window system renderbuffers, you
992 * can ask for sRGB visuals and get sRGB encode, or not ask for sRGB visuals
993 * and get no sRGB encode (assuming that both kinds of visual are available).
994 * Thus our choice to support sRGB by default on our visuals for desktop would
995 * result in broken rendering of GLES apps that aren't expecting sRGB encode.
996 *
997 * Unfortunately, renderbuffer setup happens before a context is created. So
998 * in intel_screen.c we always set up sRGB, and here, if you're a GLES2/3
999 * context (without an sRGB visual, though we don't have sRGB visuals exposed
1000 * yet), we go turn that back off before anyone finds out.
1001 */
1002 static void
1003 intel_gles3_srgb_workaround(struct brw_context *brw,
1004 struct gl_framebuffer *fb)
1005 {
1006 struct gl_context *ctx = &brw->ctx;
1007
1008 if (_mesa_is_desktop_gl(ctx) || !fb->Visual.sRGBCapable)
1009 return;
1010
1011 /* Some day when we support the sRGB capable bit on visuals available for
1012 * GLES, we'll need to respect that and not disable things here.
1013 */
1014 fb->Visual.sRGBCapable = false;
1015 for (int i = 0; i < BUFFER_COUNT; i++) {
1016 if (fb->Attachment[i].Renderbuffer &&
1017 fb->Attachment[i].Renderbuffer->Format == MESA_FORMAT_B8G8R8A8_SRGB) {
1018 fb->Attachment[i].Renderbuffer->Format = MESA_FORMAT_B8G8R8A8_UNORM;
1019 }
1020 }
1021 }
1022
1023 GLboolean
1024 intelMakeCurrent(__DRIcontext * driContextPriv,
1025 __DRIdrawable * driDrawPriv,
1026 __DRIdrawable * driReadPriv)
1027 {
1028 struct brw_context *brw;
1029 GET_CURRENT_CONTEXT(curCtx);
1030
1031 if (driContextPriv)
1032 brw = (struct brw_context *) driContextPriv->driverPrivate;
1033 else
1034 brw = NULL;
1035
1036 /* According to the glXMakeCurrent() man page: "Pending commands to
1037 * the previous context, if any, are flushed before it is released."
1038 * But only flush if we're actually changing contexts.
1039 */
1040 if (brw_context(curCtx) && brw_context(curCtx) != brw) {
1041 _mesa_flush(curCtx);
1042 }
1043
1044 if (driContextPriv) {
1045 struct gl_context *ctx = &brw->ctx;
1046 struct gl_framebuffer *fb, *readFb;
1047
1048 if (driDrawPriv == NULL) {
1049 fb = _mesa_get_incomplete_framebuffer();
1050 } else {
1051 fb = driDrawPriv->driverPrivate;
1052 driContextPriv->dri2.draw_stamp = driDrawPriv->dri2.stamp - 1;
1053 }
1054
1055 if (driReadPriv == NULL) {
1056 readFb = _mesa_get_incomplete_framebuffer();
1057 } else {
1058 readFb = driReadPriv->driverPrivate;
1059 driContextPriv->dri2.read_stamp = driReadPriv->dri2.stamp - 1;
1060 }
1061
1062 /* The sRGB workaround changes the renderbuffer's format. We must change
1063 * the format before the renderbuffer's miptree get's allocated, otherwise
1064 * the formats of the renderbuffer and its miptree will differ.
1065 */
1066 intel_gles3_srgb_workaround(brw, fb);
1067 intel_gles3_srgb_workaround(brw, readFb);
1068
1069 /* If the context viewport hasn't been initialized, force a call out to
1070 * the loader to get buffers so we have a drawable size for the initial
1071 * viewport. */
1072 if (!brw->ctx.ViewportInitialized)
1073 intel_prepare_render(brw);
1074
1075 _mesa_make_current(ctx, fb, readFb);
1076 } else {
1077 _mesa_make_current(NULL, NULL, NULL);
1078 }
1079
1080 return true;
1081 }
1082
1083 void
1084 intel_resolve_for_dri2_flush(struct brw_context *brw,
1085 __DRIdrawable *drawable)
1086 {
1087 if (brw->gen < 6) {
1088 /* MSAA and fast color clear are not supported, so don't waste time
1089 * checking whether a resolve is needed.
1090 */
1091 return;
1092 }
1093
1094 struct gl_framebuffer *fb = drawable->driverPrivate;
1095 struct intel_renderbuffer *rb;
1096
1097 /* Usually, only the back buffer will need to be downsampled. However,
1098 * the front buffer will also need it if the user has rendered into it.
1099 */
1100 static const gl_buffer_index buffers[2] = {
1101 BUFFER_BACK_LEFT,
1102 BUFFER_FRONT_LEFT,
1103 };
1104
1105 for (int i = 0; i < 2; ++i) {
1106 rb = intel_get_renderbuffer(fb, buffers[i]);
1107 if (rb == NULL || rb->mt == NULL)
1108 continue;
1109 if (rb->mt->num_samples <= 1)
1110 intel_miptree_resolve_color(brw, rb->mt);
1111 else
1112 intel_renderbuffer_downsample(brw, rb);
1113 }
1114 }
1115
1116 static unsigned
1117 intel_bits_per_pixel(const struct intel_renderbuffer *rb)
1118 {
1119 return _mesa_get_format_bytes(intel_rb_format(rb)) * 8;
1120 }
1121
1122 static void
1123 intel_query_dri2_buffers(struct brw_context *brw,
1124 __DRIdrawable *drawable,
1125 __DRIbuffer **buffers,
1126 int *count);
1127
1128 static void
1129 intel_process_dri2_buffer(struct brw_context *brw,
1130 __DRIdrawable *drawable,
1131 __DRIbuffer *buffer,
1132 struct intel_renderbuffer *rb,
1133 const char *buffer_name);
1134
1135 static void
1136 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable);
1137
1138 static void
1139 intel_update_dri2_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1140 {
1141 struct gl_framebuffer *fb = drawable->driverPrivate;
1142 struct intel_renderbuffer *rb;
1143 __DRIbuffer *buffers = NULL;
1144 int i, count;
1145 const char *region_name;
1146
1147 /* Set this up front, so that in case our buffers get invalidated
1148 * while we're getting new buffers, we don't clobber the stamp and
1149 * thus ignore the invalidate. */
1150 drawable->lastStamp = drawable->dri2.stamp;
1151
1152 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1153 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1154
1155 intel_query_dri2_buffers(brw, drawable, &buffers, &count);
1156
1157 if (buffers == NULL)
1158 return;
1159
1160 for (i = 0; i < count; i++) {
1161 switch (buffers[i].attachment) {
1162 case __DRI_BUFFER_FRONT_LEFT:
1163 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1164 region_name = "dri2 front buffer";
1165 break;
1166
1167 case __DRI_BUFFER_FAKE_FRONT_LEFT:
1168 rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1169 region_name = "dri2 fake front buffer";
1170 break;
1171
1172 case __DRI_BUFFER_BACK_LEFT:
1173 rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1174 region_name = "dri2 back buffer";
1175 break;
1176
1177 case __DRI_BUFFER_DEPTH:
1178 case __DRI_BUFFER_HIZ:
1179 case __DRI_BUFFER_DEPTH_STENCIL:
1180 case __DRI_BUFFER_STENCIL:
1181 case __DRI_BUFFER_ACCUM:
1182 default:
1183 fprintf(stderr,
1184 "unhandled buffer attach event, attachment type %d\n",
1185 buffers[i].attachment);
1186 return;
1187 }
1188
1189 intel_process_dri2_buffer(brw, drawable, &buffers[i], rb, region_name);
1190 }
1191
1192 }
1193
1194 void
1195 intel_update_renderbuffers(__DRIcontext *context, __DRIdrawable *drawable)
1196 {
1197 struct brw_context *brw = context->driverPrivate;
1198 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1199
1200 /* Set this up front, so that in case our buffers get invalidated
1201 * while we're getting new buffers, we don't clobber the stamp and
1202 * thus ignore the invalidate. */
1203 drawable->lastStamp = drawable->dri2.stamp;
1204
1205 if (unlikely(INTEL_DEBUG & DEBUG_DRI))
1206 fprintf(stderr, "enter %s, drawable %p\n", __func__, drawable);
1207
1208 if (screen->image.loader)
1209 intel_update_image_buffers(brw, drawable);
1210 else
1211 intel_update_dri2_buffers(brw, drawable);
1212
1213 driUpdateFramebufferSize(&brw->ctx, drawable);
1214 }
1215
1216 /**
1217 * intel_prepare_render should be called anywhere that curent read/drawbuffer
1218 * state is required.
1219 */
1220 void
1221 intel_prepare_render(struct brw_context *brw)
1222 {
1223 struct gl_context *ctx = &brw->ctx;
1224 __DRIcontext *driContext = brw->driContext;
1225 __DRIdrawable *drawable;
1226
1227 drawable = driContext->driDrawablePriv;
1228 if (drawable && drawable->dri2.stamp != driContext->dri2.draw_stamp) {
1229 if (drawable->lastStamp != drawable->dri2.stamp)
1230 intel_update_renderbuffers(driContext, drawable);
1231 driContext->dri2.draw_stamp = drawable->dri2.stamp;
1232 }
1233
1234 drawable = driContext->driReadablePriv;
1235 if (drawable && drawable->dri2.stamp != driContext->dri2.read_stamp) {
1236 if (drawable->lastStamp != drawable->dri2.stamp)
1237 intel_update_renderbuffers(driContext, drawable);
1238 driContext->dri2.read_stamp = drawable->dri2.stamp;
1239 }
1240
1241 /* If we're currently rendering to the front buffer, the rendering
1242 * that will happen next will probably dirty the front buffer. So
1243 * mark it as dirty here.
1244 */
1245 if (brw_is_front_buffer_drawing(ctx->DrawBuffer))
1246 brw->front_buffer_dirty = true;
1247 }
1248
1249 /**
1250 * \brief Query DRI2 to obtain a DRIdrawable's buffers.
1251 *
1252 * To determine which DRI buffers to request, examine the renderbuffers
1253 * attached to the drawable's framebuffer. Then request the buffers with
1254 * DRI2GetBuffers() or DRI2GetBuffersWithFormat().
1255 *
1256 * This is called from intel_update_renderbuffers().
1257 *
1258 * \param drawable Drawable whose buffers are queried.
1259 * \param buffers [out] List of buffers returned by DRI2 query.
1260 * \param buffer_count [out] Number of buffers returned.
1261 *
1262 * \see intel_update_renderbuffers()
1263 * \see DRI2GetBuffers()
1264 * \see DRI2GetBuffersWithFormat()
1265 */
1266 static void
1267 intel_query_dri2_buffers(struct brw_context *brw,
1268 __DRIdrawable *drawable,
1269 __DRIbuffer **buffers,
1270 int *buffer_count)
1271 {
1272 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1273 struct gl_framebuffer *fb = drawable->driverPrivate;
1274 int i = 0;
1275 unsigned attachments[8];
1276
1277 struct intel_renderbuffer *front_rb;
1278 struct intel_renderbuffer *back_rb;
1279
1280 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1281 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1282
1283 memset(attachments, 0, sizeof(attachments));
1284 if ((brw_is_front_buffer_drawing(fb) ||
1285 brw_is_front_buffer_reading(fb) ||
1286 !back_rb) && front_rb) {
1287 /* If a fake front buffer is in use, then querying for
1288 * __DRI_BUFFER_FRONT_LEFT will cause the server to copy the image from
1289 * the real front buffer to the fake front buffer. So before doing the
1290 * query, we need to make sure all the pending drawing has landed in the
1291 * real front buffer.
1292 */
1293 intel_batchbuffer_flush(brw);
1294 intel_flush_front(&brw->ctx);
1295
1296 attachments[i++] = __DRI_BUFFER_FRONT_LEFT;
1297 attachments[i++] = intel_bits_per_pixel(front_rb);
1298 } else if (front_rb && brw->front_buffer_dirty) {
1299 /* We have pending front buffer rendering, but we aren't querying for a
1300 * front buffer. If the front buffer we have is a fake front buffer,
1301 * the X server is going to throw it away when it processes the query.
1302 * So before doing the query, make sure all the pending drawing has
1303 * landed in the real front buffer.
1304 */
1305 intel_batchbuffer_flush(brw);
1306 intel_flush_front(&brw->ctx);
1307 }
1308
1309 if (back_rb) {
1310 attachments[i++] = __DRI_BUFFER_BACK_LEFT;
1311 attachments[i++] = intel_bits_per_pixel(back_rb);
1312 }
1313
1314 assert(i <= ARRAY_SIZE(attachments));
1315
1316 *buffers = screen->dri2.loader->getBuffersWithFormat(drawable,
1317 &drawable->w,
1318 &drawable->h,
1319 attachments, i / 2,
1320 buffer_count,
1321 drawable->loaderPrivate);
1322 }
1323
1324 /**
1325 * \brief Assign a DRI buffer's DRM region to a renderbuffer.
1326 *
1327 * This is called from intel_update_renderbuffers().
1328 *
1329 * \par Note:
1330 * DRI buffers whose attachment point is DRI2BufferStencil or
1331 * DRI2BufferDepthStencil are handled as special cases.
1332 *
1333 * \param buffer_name is a human readable name, such as "dri2 front buffer",
1334 * that is passed to drm_intel_bo_gem_create_from_name().
1335 *
1336 * \see intel_update_renderbuffers()
1337 */
1338 static void
1339 intel_process_dri2_buffer(struct brw_context *brw,
1340 __DRIdrawable *drawable,
1341 __DRIbuffer *buffer,
1342 struct intel_renderbuffer *rb,
1343 const char *buffer_name)
1344 {
1345 struct gl_framebuffer *fb = drawable->driverPrivate;
1346 drm_intel_bo *bo;
1347
1348 if (!rb)
1349 return;
1350
1351 unsigned num_samples = rb->Base.Base.NumSamples;
1352
1353 /* We try to avoid closing and reopening the same BO name, because the first
1354 * use of a mapping of the buffer involves a bunch of page faulting which is
1355 * moderately expensive.
1356 */
1357 struct intel_mipmap_tree *last_mt;
1358 if (num_samples == 0)
1359 last_mt = rb->mt;
1360 else
1361 last_mt = rb->singlesample_mt;
1362
1363 uint32_t old_name = 0;
1364 if (last_mt) {
1365 /* The bo already has a name because the miptree was created by a
1366 * previous call to intel_process_dri2_buffer(). If a bo already has a
1367 * name, then drm_intel_bo_flink() is a low-cost getter. It does not
1368 * create a new name.
1369 */
1370 drm_intel_bo_flink(last_mt->bo, &old_name);
1371 }
1372
1373 if (old_name == buffer->name)
1374 return;
1375
1376 if (unlikely(INTEL_DEBUG & DEBUG_DRI)) {
1377 fprintf(stderr,
1378 "attaching buffer %d, at %d, cpp %d, pitch %d\n",
1379 buffer->name, buffer->attachment,
1380 buffer->cpp, buffer->pitch);
1381 }
1382
1383 intel_miptree_release(&rb->mt);
1384 bo = drm_intel_bo_gem_create_from_name(brw->bufmgr, buffer_name,
1385 buffer->name);
1386 if (!bo) {
1387 fprintf(stderr,
1388 "Failed to open BO for returned DRI2 buffer "
1389 "(%dx%d, %s, named %d).\n"
1390 "This is likely a bug in the X Server that will lead to a "
1391 "crash soon.\n",
1392 drawable->w, drawable->h, buffer_name, buffer->name);
1393 return;
1394 }
1395
1396 intel_update_winsys_renderbuffer_miptree(brw, rb, bo,
1397 drawable->w, drawable->h,
1398 buffer->pitch);
1399
1400 if (brw_is_front_buffer_drawing(fb) &&
1401 (buffer->attachment == __DRI_BUFFER_FRONT_LEFT ||
1402 buffer->attachment == __DRI_BUFFER_FAKE_FRONT_LEFT) &&
1403 rb->Base.Base.NumSamples > 1) {
1404 intel_renderbuffer_upsample(brw, rb);
1405 }
1406
1407 assert(rb->mt);
1408
1409 drm_intel_bo_unreference(bo);
1410 }
1411
1412 /**
1413 * \brief Query DRI image loader to obtain a DRIdrawable's buffers.
1414 *
1415 * To determine which DRI buffers to request, examine the renderbuffers
1416 * attached to the drawable's framebuffer. Then request the buffers from
1417 * the image loader
1418 *
1419 * This is called from intel_update_renderbuffers().
1420 *
1421 * \param drawable Drawable whose buffers are queried.
1422 * \param buffers [out] List of buffers returned by DRI2 query.
1423 * \param buffer_count [out] Number of buffers returned.
1424 *
1425 * \see intel_update_renderbuffers()
1426 */
1427
1428 static void
1429 intel_update_image_buffer(struct brw_context *intel,
1430 __DRIdrawable *drawable,
1431 struct intel_renderbuffer *rb,
1432 __DRIimage *buffer,
1433 enum __DRIimageBufferMask buffer_type)
1434 {
1435 struct gl_framebuffer *fb = drawable->driverPrivate;
1436
1437 if (!rb || !buffer->bo)
1438 return;
1439
1440 unsigned num_samples = rb->Base.Base.NumSamples;
1441
1442 /* Check and see if we're already bound to the right
1443 * buffer object
1444 */
1445 struct intel_mipmap_tree *last_mt;
1446 if (num_samples == 0)
1447 last_mt = rb->mt;
1448 else
1449 last_mt = rb->singlesample_mt;
1450
1451 if (last_mt && last_mt->bo == buffer->bo)
1452 return;
1453
1454 intel_update_winsys_renderbuffer_miptree(intel, rb, buffer->bo,
1455 buffer->width, buffer->height,
1456 buffer->pitch);
1457
1458 if (brw_is_front_buffer_drawing(fb) &&
1459 buffer_type == __DRI_IMAGE_BUFFER_FRONT &&
1460 rb->Base.Base.NumSamples > 1) {
1461 intel_renderbuffer_upsample(intel, rb);
1462 }
1463 }
1464
1465 static void
1466 intel_update_image_buffers(struct brw_context *brw, __DRIdrawable *drawable)
1467 {
1468 struct gl_framebuffer *fb = drawable->driverPrivate;
1469 __DRIscreen *screen = brw->intelScreen->driScrnPriv;
1470 struct intel_renderbuffer *front_rb;
1471 struct intel_renderbuffer *back_rb;
1472 struct __DRIimageList images;
1473 unsigned int format;
1474 uint32_t buffer_mask = 0;
1475
1476 front_rb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
1477 back_rb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
1478
1479 if (back_rb)
1480 format = intel_rb_format(back_rb);
1481 else if (front_rb)
1482 format = intel_rb_format(front_rb);
1483 else
1484 return;
1485
1486 if (front_rb && (brw_is_front_buffer_drawing(fb) ||
1487 brw_is_front_buffer_reading(fb) || !back_rb)) {
1488 buffer_mask |= __DRI_IMAGE_BUFFER_FRONT;
1489 }
1490
1491 if (back_rb)
1492 buffer_mask |= __DRI_IMAGE_BUFFER_BACK;
1493
1494 (*screen->image.loader->getBuffers) (drawable,
1495 driGLFormatToImageFormat(format),
1496 &drawable->dri2.stamp,
1497 drawable->loaderPrivate,
1498 buffer_mask,
1499 &images);
1500
1501 if (images.image_mask & __DRI_IMAGE_BUFFER_FRONT) {
1502 drawable->w = images.front->width;
1503 drawable->h = images.front->height;
1504 intel_update_image_buffer(brw,
1505 drawable,
1506 front_rb,
1507 images.front,
1508 __DRI_IMAGE_BUFFER_FRONT);
1509 }
1510 if (images.image_mask & __DRI_IMAGE_BUFFER_BACK) {
1511 drawable->w = images.back->width;
1512 drawable->h = images.back->height;
1513 intel_update_image_buffer(brw,
1514 drawable,
1515 back_rb,
1516 images.back,
1517 __DRI_IMAGE_BUFFER_BACK);
1518 }
1519 }