i965: Move the back-end compiler to src/intel/compiler
[mesa.git] / src / mesa / drivers / dri / i965 / brw_draw.c
1 /*
2 * Copyright 2003 VMware, Inc.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sublicense, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
20 * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 */
25
26 #include <sys/errno.h>
27
28 #include "main/context.h"
29 #include "main/condrender.h"
30 #include "main/samplerobj.h"
31 #include "main/state.h"
32 #include "main/enums.h"
33 #include "main/macros.h"
34 #include "main/transformfeedback.h"
35 #include "main/framebuffer.h"
36 #include "tnl/tnl.h"
37 #include "vbo/vbo_context.h"
38 #include "swrast/swrast.h"
39 #include "swrast_setup/swrast_setup.h"
40 #include "drivers/common/meta.h"
41 #include "util/bitscan.h"
42
43 #include "brw_blorp.h"
44 #include "brw_draw.h"
45 #include "brw_defines.h"
46 #include "compiler/brw_eu_defines.h"
47 #include "brw_context.h"
48 #include "brw_state.h"
49
50 #include "intel_batchbuffer.h"
51 #include "intel_buffers.h"
52 #include "intel_fbo.h"
53 #include "intel_mipmap_tree.h"
54 #include "intel_buffer_objects.h"
55
56 #define FILE_DEBUG_FLAG DEBUG_PRIMS
57
58
59 static const GLenum reduced_prim[GL_POLYGON+1] = {
60 [GL_POINTS] = GL_POINTS,
61 [GL_LINES] = GL_LINES,
62 [GL_LINE_LOOP] = GL_LINES,
63 [GL_LINE_STRIP] = GL_LINES,
64 [GL_TRIANGLES] = GL_TRIANGLES,
65 [GL_TRIANGLE_STRIP] = GL_TRIANGLES,
66 [GL_TRIANGLE_FAN] = GL_TRIANGLES,
67 [GL_QUADS] = GL_TRIANGLES,
68 [GL_QUAD_STRIP] = GL_TRIANGLES,
69 [GL_POLYGON] = GL_TRIANGLES
70 };
71
72 /* When the primitive changes, set a state bit and re-validate. Not
73 * the nicest and would rather deal with this by having all the
74 * programs be immune to the active primitive (ie. cope with all
75 * possibilities). That may not be realistic however.
76 */
77 static void
78 brw_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
79 {
80 struct gl_context *ctx = &brw->ctx;
81 uint32_t hw_prim = get_hw_prim_for_gl_prim(prim->mode);
82
83 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
84
85 /* Slight optimization to avoid the GS program when not needed:
86 */
87 if (prim->mode == GL_QUAD_STRIP &&
88 ctx->Light.ShadeModel != GL_FLAT &&
89 ctx->Polygon.FrontMode == GL_FILL &&
90 ctx->Polygon.BackMode == GL_FILL)
91 hw_prim = _3DPRIM_TRISTRIP;
92
93 if (prim->mode == GL_QUADS && prim->count == 4 &&
94 ctx->Light.ShadeModel != GL_FLAT &&
95 ctx->Polygon.FrontMode == GL_FILL &&
96 ctx->Polygon.BackMode == GL_FILL) {
97 hw_prim = _3DPRIM_TRIFAN;
98 }
99
100 if (hw_prim != brw->primitive) {
101 brw->primitive = hw_prim;
102 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
103
104 if (reduced_prim[prim->mode] != brw->reduced_primitive) {
105 brw->reduced_primitive = reduced_prim[prim->mode];
106 brw->ctx.NewDriverState |= BRW_NEW_REDUCED_PRIMITIVE;
107 }
108 }
109 }
110
111 static void
112 gen6_set_prim(struct brw_context *brw, const struct _mesa_prim *prim)
113 {
114 const struct gl_context *ctx = &brw->ctx;
115 uint32_t hw_prim;
116
117 DBG("PRIM: %s\n", _mesa_enum_to_string(prim->mode));
118
119 if (prim->mode == GL_PATCHES) {
120 hw_prim = _3DPRIM_PATCHLIST(ctx->TessCtrlProgram.patch_vertices);
121 } else {
122 hw_prim = get_hw_prim_for_gl_prim(prim->mode);
123 }
124
125 if (hw_prim != brw->primitive) {
126 brw->primitive = hw_prim;
127 brw->ctx.NewDriverState |= BRW_NEW_PRIMITIVE;
128 if (prim->mode == GL_PATCHES)
129 brw->ctx.NewDriverState |= BRW_NEW_PATCH_PRIMITIVE;
130 }
131 }
132
133
134 /**
135 * The hardware is capable of removing dangling vertices on its own; however,
136 * prior to Gen6, we sometimes convert quads into trifans (and quad strips
137 * into tristrips), since pre-Gen6 hardware requires a GS to render quads.
138 * This function manually trims dangling vertices from a draw call involving
139 * quads so that those dangling vertices won't get drawn when we convert to
140 * trifans/tristrips.
141 */
142 static GLuint
143 trim(GLenum prim, GLuint length)
144 {
145 if (prim == GL_QUAD_STRIP)
146 return length > 3 ? (length - length % 2) : 0;
147 else if (prim == GL_QUADS)
148 return length - length % 4;
149 else
150 return length;
151 }
152
153
154 static void
155 brw_emit_prim(struct brw_context *brw,
156 const struct _mesa_prim *prim,
157 uint32_t hw_prim,
158 struct brw_transform_feedback_object *xfb_obj,
159 unsigned stream)
160 {
161 int verts_per_instance;
162 int vertex_access_type;
163 int indirect_flag;
164
165 DBG("PRIM: %s %d %d\n", _mesa_enum_to_string(prim->mode),
166 prim->start, prim->count);
167
168 int start_vertex_location = prim->start;
169 int base_vertex_location = prim->basevertex;
170
171 if (prim->indexed) {
172 vertex_access_type = brw->gen >= 7 ?
173 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM :
174 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_RANDOM;
175 start_vertex_location += brw->ib.start_vertex_offset;
176 base_vertex_location += brw->vb.start_vertex_bias;
177 } else {
178 vertex_access_type = brw->gen >= 7 ?
179 GEN7_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL :
180 GEN4_3DPRIM_VERTEXBUFFER_ACCESS_SEQUENTIAL;
181 start_vertex_location += brw->vb.start_vertex_bias;
182 }
183
184 /* We only need to trim the primitive count on pre-Gen6. */
185 if (brw->gen < 6)
186 verts_per_instance = trim(prim->mode, prim->count);
187 else
188 verts_per_instance = prim->count;
189
190 /* If nothing to emit, just return. */
191 if (verts_per_instance == 0 && !prim->is_indirect && !xfb_obj)
192 return;
193
194 /* If we're set to always flush, do it before and after the primitive emit.
195 * We want to catch both missed flushes that hurt instruction/state cache
196 * and missed flushes of the render cache as it heads to other parts of
197 * the besides the draw code.
198 */
199 if (brw->always_flush_cache)
200 brw_emit_mi_flush(brw);
201
202 /* If indirect, emit a bunch of loads from the indirect BO. */
203 if (xfb_obj) {
204 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
205
206 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT,
207 xfb_obj->prim_count_bo,
208 I915_GEM_DOMAIN_VERTEX, 0,
209 stream * sizeof(uint32_t));
210 BEGIN_BATCH(9);
211 OUT_BATCH(MI_LOAD_REGISTER_IMM | (9 - 2));
212 OUT_BATCH(GEN7_3DPRIM_INSTANCE_COUNT);
213 OUT_BATCH(prim->num_instances);
214 OUT_BATCH(GEN7_3DPRIM_START_VERTEX);
215 OUT_BATCH(0);
216 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
217 OUT_BATCH(0);
218 OUT_BATCH(GEN7_3DPRIM_START_INSTANCE);
219 OUT_BATCH(0);
220 ADVANCE_BATCH();
221 } else if (prim->is_indirect) {
222 struct gl_buffer_object *indirect_buffer = brw->ctx.DrawIndirectBuffer;
223 drm_intel_bo *bo = intel_bufferobj_buffer(brw,
224 intel_buffer_object(indirect_buffer),
225 prim->indirect_offset, 5 * sizeof(GLuint));
226
227 indirect_flag = GEN7_3DPRIM_INDIRECT_PARAMETER_ENABLE;
228
229 brw_load_register_mem(brw, GEN7_3DPRIM_VERTEX_COUNT, bo,
230 I915_GEM_DOMAIN_VERTEX, 0,
231 prim->indirect_offset + 0);
232 brw_load_register_mem(brw, GEN7_3DPRIM_INSTANCE_COUNT, bo,
233 I915_GEM_DOMAIN_VERTEX, 0,
234 prim->indirect_offset + 4);
235
236 brw_load_register_mem(brw, GEN7_3DPRIM_START_VERTEX, bo,
237 I915_GEM_DOMAIN_VERTEX, 0,
238 prim->indirect_offset + 8);
239 if (prim->indexed) {
240 brw_load_register_mem(brw, GEN7_3DPRIM_BASE_VERTEX, bo,
241 I915_GEM_DOMAIN_VERTEX, 0,
242 prim->indirect_offset + 12);
243 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
244 I915_GEM_DOMAIN_VERTEX, 0,
245 prim->indirect_offset + 16);
246 } else {
247 brw_load_register_mem(brw, GEN7_3DPRIM_START_INSTANCE, bo,
248 I915_GEM_DOMAIN_VERTEX, 0,
249 prim->indirect_offset + 12);
250 BEGIN_BATCH(3);
251 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
252 OUT_BATCH(GEN7_3DPRIM_BASE_VERTEX);
253 OUT_BATCH(0);
254 ADVANCE_BATCH();
255 }
256 } else {
257 indirect_flag = 0;
258 }
259
260 BEGIN_BATCH(brw->gen >= 7 ? 7 : 6);
261
262 if (brw->gen >= 7) {
263 const int predicate_enable =
264 (brw->predicate.state == BRW_PREDICATE_STATE_USE_BIT)
265 ? GEN7_3DPRIM_PREDICATE_ENABLE : 0;
266
267 OUT_BATCH(CMD_3D_PRIM << 16 | (7 - 2) | indirect_flag | predicate_enable);
268 OUT_BATCH(hw_prim | vertex_access_type);
269 } else {
270 OUT_BATCH(CMD_3D_PRIM << 16 | (6 - 2) |
271 hw_prim << GEN4_3DPRIM_TOPOLOGY_TYPE_SHIFT |
272 vertex_access_type);
273 }
274 OUT_BATCH(verts_per_instance);
275 OUT_BATCH(start_vertex_location);
276 OUT_BATCH(prim->num_instances);
277 OUT_BATCH(prim->base_instance);
278 OUT_BATCH(base_vertex_location);
279 ADVANCE_BATCH();
280
281 if (brw->always_flush_cache)
282 brw_emit_mi_flush(brw);
283 }
284
285
286 static void
287 brw_merge_inputs(struct brw_context *brw,
288 const struct gl_vertex_array *arrays[])
289 {
290 const struct gl_context *ctx = &brw->ctx;
291 GLuint i;
292
293 for (i = 0; i < brw->vb.nr_buffers; i++) {
294 drm_intel_bo_unreference(brw->vb.buffers[i].bo);
295 brw->vb.buffers[i].bo = NULL;
296 }
297 brw->vb.nr_buffers = 0;
298
299 for (i = 0; i < VERT_ATTRIB_MAX; i++) {
300 brw->vb.inputs[i].buffer = -1;
301 brw->vb.inputs[i].glarray = arrays[i];
302 }
303
304 if (brw->gen < 8 && !brw->is_haswell) {
305 uint64_t mask = ctx->VertexProgram._Current->info.inputs_read;
306 /* Prior to Haswell, the hardware can't natively support GL_FIXED or
307 * 2_10_10_10_REV vertex formats. Set appropriate workaround flags.
308 */
309 while (mask) {
310 uint8_t wa_flags = 0;
311
312 i = u_bit_scan64(&mask);
313
314 switch (brw->vb.inputs[i].glarray->Type) {
315
316 case GL_FIXED:
317 wa_flags = brw->vb.inputs[i].glarray->Size;
318 break;
319
320 case GL_INT_2_10_10_10_REV:
321 wa_flags |= BRW_ATTRIB_WA_SIGN;
322 /* fallthough */
323
324 case GL_UNSIGNED_INT_2_10_10_10_REV:
325 if (brw->vb.inputs[i].glarray->Format == GL_BGRA)
326 wa_flags |= BRW_ATTRIB_WA_BGRA;
327
328 if (brw->vb.inputs[i].glarray->Normalized)
329 wa_flags |= BRW_ATTRIB_WA_NORMALIZE;
330 else if (!brw->vb.inputs[i].glarray->Integer)
331 wa_flags |= BRW_ATTRIB_WA_SCALE;
332
333 break;
334 }
335
336 if (brw->vb.attrib_wa_flags[i] != wa_flags) {
337 brw->vb.attrib_wa_flags[i] = wa_flags;
338 brw->ctx.NewDriverState |= BRW_NEW_VS_ATTRIB_WORKAROUNDS;
339 }
340 }
341 }
342 }
343
344 /**
345 * \brief Call this after drawing to mark which buffers need resolving
346 *
347 * If the depth buffer was written to and if it has an accompanying HiZ
348 * buffer, then mark that it needs a depth resolve.
349 *
350 * If the color buffer is a multisample window system buffer, then
351 * mark that it needs a downsample.
352 *
353 * Also mark any render targets which will be textured as needing a render
354 * cache flush.
355 */
356 static void
357 brw_postdraw_set_buffers_need_resolve(struct brw_context *brw)
358 {
359 struct gl_context *ctx = &brw->ctx;
360 struct gl_framebuffer *fb = ctx->DrawBuffer;
361
362 struct intel_renderbuffer *front_irb = NULL;
363 struct intel_renderbuffer *back_irb = intel_get_renderbuffer(fb, BUFFER_BACK_LEFT);
364 struct intel_renderbuffer *depth_irb = intel_get_renderbuffer(fb, BUFFER_DEPTH);
365 struct intel_renderbuffer *stencil_irb = intel_get_renderbuffer(fb, BUFFER_STENCIL);
366 struct gl_renderbuffer_attachment *depth_att = &fb->Attachment[BUFFER_DEPTH];
367
368 if (_mesa_is_front_buffer_drawing(fb))
369 front_irb = intel_get_renderbuffer(fb, BUFFER_FRONT_LEFT);
370
371 if (front_irb)
372 front_irb->need_downsample = true;
373 if (back_irb)
374 back_irb->need_downsample = true;
375 if (depth_irb && brw_depth_writes_enabled(brw)) {
376 intel_renderbuffer_att_set_needs_depth_resolve(depth_att);
377 brw_render_cache_set_add_bo(brw, depth_irb->mt->bo);
378 }
379
380 if (ctx->Extensions.ARB_stencil_texturing &&
381 stencil_irb && ctx->Stencil._WriteEnabled) {
382 brw_render_cache_set_add_bo(brw, stencil_irb->mt->bo);
383 }
384
385 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
386 struct intel_renderbuffer *irb =
387 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
388
389 if (!irb)
390 continue;
391
392 brw_render_cache_set_add_bo(brw, irb->mt->bo);
393 intel_miptree_used_for_rendering(
394 brw, irb->mt, irb->mt_level, irb->mt_layer, irb->layer_count);
395 }
396 }
397
398 static void
399 brw_predraw_set_aux_buffers(struct brw_context *brw)
400 {
401 if (brw->gen < 9)
402 return;
403
404 struct gl_context *ctx = &brw->ctx;
405 struct gl_framebuffer *fb = ctx->DrawBuffer;
406
407 for (unsigned i = 0; i < fb->_NumColorDrawBuffers; i++) {
408 struct intel_renderbuffer *irb =
409 intel_renderbuffer(fb->_ColorDrawBuffers[i]);
410
411 if (!irb) {
412 continue;
413 }
414
415 /* For layered rendering non-compressed fast cleared buffers need to be
416 * resolved. Surface state can carry only one fast color clear value
417 * while each layer may have its own fast clear color value. For
418 * compressed buffers color value is available in the color buffer.
419 */
420 if (irb->layer_count > 1 &&
421 !(irb->mt->aux_disable & INTEL_AUX_DISABLE_CCS) &&
422 !intel_miptree_is_lossless_compressed(brw, irb->mt)) {
423 assert(brw->gen >= 8);
424
425 intel_miptree_resolve_color(brw, irb->mt, irb->mt_level,
426 irb->mt_layer, irb->layer_count, 0);
427 }
428 }
429 }
430
431 /* May fail if out of video memory for texture or vbo upload, or on
432 * fallback conditions.
433 */
434 static void
435 brw_try_draw_prims(struct gl_context *ctx,
436 const struct gl_vertex_array *arrays[],
437 const struct _mesa_prim *prims,
438 GLuint nr_prims,
439 const struct _mesa_index_buffer *ib,
440 bool index_bounds_valid,
441 GLuint min_index,
442 GLuint max_index,
443 struct brw_transform_feedback_object *xfb_obj,
444 unsigned stream,
445 struct gl_buffer_object *indirect)
446 {
447 struct brw_context *brw = brw_context(ctx);
448 GLuint i;
449 bool fail_next = false;
450
451 if (ctx->NewState)
452 _mesa_update_state(ctx);
453
454 /* We have to validate the textures *before* checking for fallbacks;
455 * otherwise, the software fallback won't be able to rely on the
456 * texture state, the firstLevel and lastLevel fields won't be
457 * set in the intel texture object (they'll both be 0), and the
458 * software fallback will segfault if it attempts to access any
459 * texture level other than level 0.
460 */
461 brw_validate_textures(brw);
462
463 /* Find the highest sampler unit used by each shader program. A bit-count
464 * won't work since ARB programs use the texture unit number as the sampler
465 * index.
466 */
467 brw->wm.base.sampler_count =
468 util_last_bit(ctx->FragmentProgram._Current->SamplersUsed);
469 brw->gs.base.sampler_count = ctx->GeometryProgram._Current ?
470 util_last_bit(ctx->GeometryProgram._Current->SamplersUsed) : 0;
471 brw->tes.base.sampler_count = ctx->TessEvalProgram._Current ?
472 util_last_bit(ctx->TessEvalProgram._Current->SamplersUsed) : 0;
473 brw->tcs.base.sampler_count = ctx->TessCtrlProgram._Current ?
474 util_last_bit(ctx->TessCtrlProgram._Current->SamplersUsed) : 0;
475 brw->vs.base.sampler_count =
476 util_last_bit(ctx->VertexProgram._Current->SamplersUsed);
477
478 intel_prepare_render(brw);
479 brw_predraw_set_aux_buffers(brw);
480
481 /* This workaround has to happen outside of brw_upload_render_state()
482 * because it may flush the batchbuffer for a blit, affecting the state
483 * flags.
484 */
485 brw_workaround_depthstencil_alignment(brw, 0);
486
487 /* Bind all inputs, derive varying and size information:
488 */
489 brw_merge_inputs(brw, arrays);
490
491 brw->ib.ib = ib;
492 brw->ctx.NewDriverState |= BRW_NEW_INDICES;
493
494 brw->vb.index_bounds_valid = index_bounds_valid;
495 brw->vb.min_index = min_index;
496 brw->vb.max_index = max_index;
497 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
498
499 for (i = 0; i < nr_prims; i++) {
500 int estimated_max_prim_size;
501 const int sampler_state_size = 16;
502
503 estimated_max_prim_size = 512; /* batchbuffer commands */
504 estimated_max_prim_size += BRW_MAX_TEX_UNIT *
505 (sampler_state_size + sizeof(struct gen5_sampler_default_color));
506 estimated_max_prim_size += 1024; /* gen6 VS push constants */
507 estimated_max_prim_size += 1024; /* gen6 WM push constants */
508 estimated_max_prim_size += 512; /* misc. pad */
509
510 /* Flush the batch if it's approaching full, so that we don't wrap while
511 * we've got validated state that needs to be in the same batch as the
512 * primitives.
513 */
514 intel_batchbuffer_require_space(brw, estimated_max_prim_size, RENDER_RING);
515 intel_batchbuffer_save_state(brw);
516
517 if (brw->num_instances != prims[i].num_instances ||
518 brw->basevertex != prims[i].basevertex ||
519 brw->baseinstance != prims[i].base_instance) {
520 brw->num_instances = prims[i].num_instances;
521 brw->basevertex = prims[i].basevertex;
522 brw->baseinstance = prims[i].base_instance;
523 if (i > 0) { /* For i == 0 we just did this before the loop */
524 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
525 brw_merge_inputs(brw, arrays);
526 }
527 }
528
529 /* Determine if we need to flag BRW_NEW_VERTICES for updating the
530 * gl_BaseVertexARB or gl_BaseInstanceARB values. For indirect draw, we
531 * always flag if the shader uses one of the values. For direct draws,
532 * we only flag if the values change.
533 */
534 const int new_basevertex =
535 prims[i].indexed ? prims[i].basevertex : prims[i].start;
536 const int new_baseinstance = prims[i].base_instance;
537 const struct brw_vs_prog_data *vs_prog_data =
538 brw_vs_prog_data(brw->vs.base.prog_data);
539 if (i > 0) {
540 const bool uses_draw_parameters =
541 vs_prog_data->uses_basevertex ||
542 vs_prog_data->uses_baseinstance;
543
544 if ((uses_draw_parameters && prims[i].is_indirect) ||
545 (vs_prog_data->uses_basevertex &&
546 brw->draw.params.gl_basevertex != new_basevertex) ||
547 (vs_prog_data->uses_baseinstance &&
548 brw->draw.params.gl_baseinstance != new_baseinstance))
549 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
550 }
551
552 brw->draw.params.gl_basevertex = new_basevertex;
553 brw->draw.params.gl_baseinstance = new_baseinstance;
554 drm_intel_bo_unreference(brw->draw.draw_params_bo);
555
556 if (prims[i].is_indirect) {
557 /* Point draw_params_bo at the indirect buffer. */
558 brw->draw.draw_params_bo =
559 intel_buffer_object(ctx->DrawIndirectBuffer)->buffer;
560 drm_intel_bo_reference(brw->draw.draw_params_bo);
561 brw->draw.draw_params_offset =
562 prims[i].indirect_offset + (prims[i].indexed ? 12 : 8);
563 } else {
564 /* Set draw_params_bo to NULL so brw_prepare_vertices knows it
565 * has to upload gl_BaseVertex and such if they're needed.
566 */
567 brw->draw.draw_params_bo = NULL;
568 brw->draw.draw_params_offset = 0;
569 }
570
571 /* gl_DrawID always needs its own vertex buffer since it's not part of
572 * the indirect parameter buffer. If the program uses gl_DrawID we need
573 * to flag BRW_NEW_VERTICES. For the first iteration, we don't have
574 * valid vs_prog_data, but we always flag BRW_NEW_VERTICES before
575 * the loop.
576 */
577 brw->draw.gl_drawid = prims[i].draw_id;
578 drm_intel_bo_unreference(brw->draw.draw_id_bo);
579 brw->draw.draw_id_bo = NULL;
580 if (i > 0 && vs_prog_data->uses_drawid)
581 brw->ctx.NewDriverState |= BRW_NEW_VERTICES;
582
583 if (brw->gen < 6)
584 brw_set_prim(brw, &prims[i]);
585 else
586 gen6_set_prim(brw, &prims[i]);
587
588 retry:
589
590 /* Note that before the loop, brw->ctx.NewDriverState was set to != 0, and
591 * that the state updated in the loop outside of this block is that in
592 * *_set_prim or intel_batchbuffer_flush(), which only impacts
593 * brw->ctx.NewDriverState.
594 */
595 if (brw->ctx.NewDriverState) {
596 brw->no_batch_wrap = true;
597 brw_upload_render_state(brw);
598 }
599
600 brw_emit_prim(brw, &prims[i], brw->primitive, xfb_obj, stream);
601
602 brw->no_batch_wrap = false;
603
604 if (dri_bufmgr_check_aperture_space(&brw->batch.bo, 1)) {
605 if (!fail_next) {
606 intel_batchbuffer_reset_to_saved(brw);
607 intel_batchbuffer_flush(brw);
608 fail_next = true;
609 goto retry;
610 } else {
611 int ret = intel_batchbuffer_flush(brw);
612 WARN_ONCE(ret == -ENOSPC,
613 "i965: Single primitive emit exceeded "
614 "available aperture space\n");
615 }
616 }
617
618 /* Now that we know we haven't run out of aperture space, we can safely
619 * reset the dirty bits.
620 */
621 if (brw->ctx.NewDriverState)
622 brw_render_state_finished(brw);
623 }
624
625 if (brw->always_flush_batch)
626 intel_batchbuffer_flush(brw);
627
628 brw_program_cache_check_size(brw);
629 brw_postdraw_set_buffers_need_resolve(brw);
630
631 return;
632 }
633
634 void
635 brw_draw_prims(struct gl_context *ctx,
636 const struct _mesa_prim *prims,
637 GLuint nr_prims,
638 const struct _mesa_index_buffer *ib,
639 GLboolean index_bounds_valid,
640 GLuint min_index,
641 GLuint max_index,
642 struct gl_transform_feedback_object *gl_xfb_obj,
643 unsigned stream,
644 struct gl_buffer_object *indirect)
645 {
646 struct brw_context *brw = brw_context(ctx);
647 const struct gl_vertex_array **arrays = ctx->Array._DrawArrays;
648 struct brw_transform_feedback_object *xfb_obj =
649 (struct brw_transform_feedback_object *) gl_xfb_obj;
650
651 if (!brw_check_conditional_render(brw))
652 return;
653
654 /* Handle primitive restart if needed */
655 if (brw_handle_primitive_restart(ctx, prims, nr_prims, ib, indirect)) {
656 /* The draw was handled, so we can exit now */
657 return;
658 }
659
660 /* Do GL_SELECT and GL_FEEDBACK rendering using swrast, even though it
661 * won't support all the extensions we support.
662 */
663 if (ctx->RenderMode != GL_RENDER) {
664 perf_debug("%s render mode not supported in hardware\n",
665 _mesa_enum_to_string(ctx->RenderMode));
666 _swsetup_Wakeup(ctx);
667 _tnl_wakeup(ctx);
668 _tnl_draw_prims(ctx, prims, nr_prims, ib,
669 index_bounds_valid, min_index, max_index, NULL, 0, NULL);
670 return;
671 }
672
673 /* If we're going to have to upload any of the user's vertex arrays, then
674 * get the minimum and maximum of their index buffer so we know what range
675 * to upload.
676 */
677 if (!index_bounds_valid && !vbo_all_varyings_in_vbos(arrays)) {
678 perf_debug("Scanning index buffer to compute index buffer bounds. "
679 "Use glDrawRangeElements() to avoid this.\n");
680 vbo_get_minmax_indices(ctx, prims, ib, &min_index, &max_index, nr_prims);
681 index_bounds_valid = true;
682 }
683
684 /* Try drawing with the hardware, but don't do anything else if we can't
685 * manage it. swrast doesn't support our featureset, so we can't fall back
686 * to it.
687 */
688 brw_try_draw_prims(ctx, arrays, prims, nr_prims, ib, index_bounds_valid,
689 min_index, max_index, xfb_obj, stream, indirect);
690 }
691
692 void
693 brw_draw_init(struct brw_context *brw)
694 {
695 struct gl_context *ctx = &brw->ctx;
696 struct vbo_context *vbo = vbo_context(ctx);
697
698 /* Register our drawing function:
699 */
700 vbo->draw_prims = brw_draw_prims;
701
702 for (int i = 0; i < VERT_ATTRIB_MAX; i++)
703 brw->vb.inputs[i].buffer = -1;
704 brw->vb.nr_buffers = 0;
705 brw->vb.nr_enabled = 0;
706 }
707
708 void
709 brw_draw_destroy(struct brw_context *brw)
710 {
711 unsigned i;
712
713 for (i = 0; i < brw->vb.nr_buffers; i++) {
714 drm_intel_bo_unreference(brw->vb.buffers[i].bo);
715 brw->vb.buffers[i].bo = NULL;
716 }
717 brw->vb.nr_buffers = 0;
718
719 for (i = 0; i < brw->vb.nr_enabled; i++) {
720 brw->vb.enabled[i]->buffer = -1;
721 }
722 brw->vb.nr_enabled = 0;
723
724 drm_intel_bo_unreference(brw->ib.bo);
725 brw->ib.bo = NULL;
726 }