Merge branch mesa-public/master into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "glsl/nir/glsl_types.h"
42
43 using namespace brw;
44
45 void
46 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
47 const fs_reg *src, unsigned sources)
48 {
49 memset(this, 0, sizeof(*this));
50
51 this->src = new fs_reg[MAX2(sources, 3)];
52 for (unsigned i = 0; i < sources; i++)
53 this->src[i] = src[i];
54
55 this->opcode = opcode;
56 this->dst = dst;
57 this->sources = sources;
58 this->exec_size = exec_size;
59
60 assert(dst.file != IMM && dst.file != UNIFORM);
61
62 assert(this->exec_size != 0);
63
64 this->conditional_mod = BRW_CONDITIONAL_NONE;
65
66 /* This will be the case for almost all instructions. */
67 switch (dst.file) {
68 case VGRF:
69 case ARF:
70 case FIXED_GRF:
71 case MRF:
72 case ATTR:
73 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
74 REG_SIZE);
75 break;
76 case BAD_FILE:
77 this->regs_written = 0;
78 break;
79 case IMM:
80 case UNIFORM:
81 unreachable("Invalid destination register file");
82 }
83
84 this->writes_accumulator = false;
85 }
86
87 fs_inst::fs_inst()
88 {
89 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
90 }
91
92 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
93 {
94 init(opcode, exec_size, reg_undef, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
98 {
99 init(opcode, exec_size, dst, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
103 const fs_reg &src0)
104 {
105 const fs_reg src[1] = { src0 };
106 init(opcode, exec_size, dst, src, 1);
107 }
108
109 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
110 const fs_reg &src0, const fs_reg &src1)
111 {
112 const fs_reg src[2] = { src0, src1 };
113 init(opcode, exec_size, dst, src, 2);
114 }
115
116 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
117 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
118 {
119 const fs_reg src[3] = { src0, src1, src2 };
120 init(opcode, exec_size, dst, src, 3);
121 }
122
123 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
124 const fs_reg src[], unsigned sources)
125 {
126 init(opcode, exec_width, dst, src, sources);
127 }
128
129 fs_inst::fs_inst(const fs_inst &that)
130 {
131 memcpy(this, &that, sizeof(that));
132
133 this->src = new fs_reg[MAX2(that.sources, 3)];
134
135 for (unsigned i = 0; i < that.sources; i++)
136 this->src[i] = that.src[i];
137 }
138
139 fs_inst::~fs_inst()
140 {
141 delete[] this->src;
142 }
143
144 void
145 fs_inst::resize_sources(uint8_t num_sources)
146 {
147 if (this->sources != num_sources) {
148 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
149
150 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
151 src[i] = this->src[i];
152
153 delete[] this->src;
154 this->src = src;
155 this->sources = num_sources;
156 }
157 }
158
159 void
160 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
161 const fs_reg &dst,
162 const fs_reg &surf_index,
163 const fs_reg &varying_offset,
164 uint32_t const_offset)
165 {
166 /* We have our constant surface use a pitch of 4 bytes, so our index can
167 * be any component of a vector, and then we load 4 contiguous
168 * components starting from that.
169 *
170 * We break down the const_offset to a portion added to the variable
171 * offset and a portion done using reg_offset, which means that if you
172 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
173 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
174 * CSE can later notice that those loads are all the same and eliminate
175 * the redundant ones.
176 */
177 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
178 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
179
180 int scale = 1;
181 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
182 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
183 * u, v, r) as parameters, or we can just use the SIMD16 message
184 * consisting of (header, u). We choose the second, at the cost of a
185 * longer return length.
186 */
187 scale = 2;
188 }
189
190 enum opcode op;
191 if (devinfo->gen >= 7)
192 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
193 else
194 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
195
196 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
197 fs_reg vec4_result = fs_reg(VGRF, alloc.allocate(regs_written), dst.type);
198 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
199 inst->regs_written = regs_written;
200
201 if (devinfo->gen < 7) {
202 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
203 inst->header_size = 1;
204 if (devinfo->gen == 4)
205 inst->mlen = 3;
206 else
207 inst->mlen = 1 + bld.dispatch_width() / 8;
208 }
209
210 bld.MOV(dst, offset(vec4_result, bld, ((const_offset & 0xf) / 4) * scale));
211 }
212
213 /**
214 * A helper for MOV generation for fixing up broken hardware SEND dependency
215 * handling.
216 */
217 void
218 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
219 {
220 /* The caller always wants uncompressed to emit the minimal extra
221 * dependencies, and to avoid having to deal with aligning its regs to 2.
222 */
223 const fs_builder ubld = bld.annotate("send dependency resolve")
224 .half(0);
225
226 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
227 }
228
229 bool
230 fs_inst::equals(fs_inst *inst) const
231 {
232 return (opcode == inst->opcode &&
233 dst.equals(inst->dst) &&
234 src[0].equals(inst->src[0]) &&
235 src[1].equals(inst->src[1]) &&
236 src[2].equals(inst->src[2]) &&
237 saturate == inst->saturate &&
238 predicate == inst->predicate &&
239 conditional_mod == inst->conditional_mod &&
240 mlen == inst->mlen &&
241 base_mrf == inst->base_mrf &&
242 target == inst->target &&
243 eot == inst->eot &&
244 header_size == inst->header_size &&
245 shadow_compare == inst->shadow_compare &&
246 exec_size == inst->exec_size &&
247 offset == inst->offset);
248 }
249
250 bool
251 fs_inst::overwrites_reg(const fs_reg &reg) const
252 {
253 return reg.in_range(dst, regs_written);
254 }
255
256 bool
257 fs_inst::is_send_from_grf() const
258 {
259 switch (opcode) {
260 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
261 case SHADER_OPCODE_SHADER_TIME_ADD:
262 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
263 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
264 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
265 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
266 case SHADER_OPCODE_UNTYPED_ATOMIC:
267 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
268 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
269 case SHADER_OPCODE_TYPED_ATOMIC:
270 case SHADER_OPCODE_TYPED_SURFACE_READ:
271 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
272 case SHADER_OPCODE_URB_WRITE_SIMD8:
273 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
274 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
275 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
276 case SHADER_OPCODE_URB_READ_SIMD8:
277 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
278 return true;
279 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
280 return src[1].file == VGRF;
281 case FS_OPCODE_FB_WRITE:
282 return src[0].file == VGRF;
283 default:
284 if (is_tex())
285 return src[0].file == VGRF;
286
287 return false;
288 }
289 }
290
291 /**
292 * Returns true if this instruction's sources and destinations cannot
293 * safely be the same register.
294 *
295 * In most cases, a register can be written over safely by the same
296 * instruction that is its last use. For a single instruction, the
297 * sources are dereferenced before writing of the destination starts
298 * (naturally).
299 *
300 * However, there are a few cases where this can be problematic:
301 *
302 * - Virtual opcodes that translate to multiple instructions in the
303 * code generator: if src == dst and one instruction writes the
304 * destination before a later instruction reads the source, then
305 * src will have been clobbered.
306 *
307 * - SIMD16 compressed instructions with certain regioning (see below).
308 *
309 * The register allocator uses this information to set up conflicts between
310 * GRF sources and the destination.
311 */
312 bool
313 fs_inst::has_source_and_destination_hazard() const
314 {
315 switch (opcode) {
316 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
317 /* Multiple partial writes to the destination */
318 return true;
319 default:
320 /* The SIMD16 compressed instruction
321 *
322 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
323 *
324 * is actually decoded in hardware as:
325 *
326 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
327 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
328 *
329 * Which is safe. However, if we have uniform accesses
330 * happening, we get into trouble:
331 *
332 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
333 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
334 *
335 * Now our destination for the first instruction overwrote the
336 * second instruction's src0, and we get garbage for those 8
337 * pixels. There's a similar issue for the pre-gen6
338 * pixel_x/pixel_y, which are registers of 16-bit values and thus
339 * would get stomped by the first decode as well.
340 */
341 if (exec_size == 16) {
342 for (int i = 0; i < sources; i++) {
343 if (src[i].file == VGRF && (src[i].stride == 0 ||
344 src[i].type == BRW_REGISTER_TYPE_UW ||
345 src[i].type == BRW_REGISTER_TYPE_W ||
346 src[i].type == BRW_REGISTER_TYPE_UB ||
347 src[i].type == BRW_REGISTER_TYPE_B)) {
348 return true;
349 }
350 }
351 }
352 return false;
353 }
354 }
355
356 bool
357 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
358 {
359 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
360 return false;
361
362 fs_reg reg = this->src[0];
363 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
364 return false;
365
366 if (grf_alloc.sizes[reg.nr] != this->regs_written)
367 return false;
368
369 for (int i = 0; i < this->sources; i++) {
370 reg.type = this->src[i].type;
371 if (!this->src[i].equals(reg))
372 return false;
373
374 if (i < this->header_size) {
375 reg.reg_offset += 1;
376 } else {
377 reg.reg_offset += this->exec_size / 8;
378 }
379 }
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
386 {
387 if (devinfo->gen == 6 && is_math())
388 return false;
389
390 if (is_send_from_grf())
391 return false;
392
393 if (!backend_instruction::can_do_source_mods())
394 return false;
395
396 return true;
397 }
398
399 bool
400 fs_inst::can_change_types() const
401 {
402 return dst.type == src[0].type &&
403 !src[0].abs && !src[0].negate && !saturate &&
404 (opcode == BRW_OPCODE_MOV ||
405 (opcode == BRW_OPCODE_SEL &&
406 dst.type == src[1].type &&
407 predicate != BRW_PREDICATE_NONE &&
408 !src[1].abs && !src[1].negate));
409 }
410
411 bool
412 fs_inst::has_side_effects() const
413 {
414 return this->eot || backend_instruction::has_side_effects();
415 }
416
417 void
418 fs_reg::init()
419 {
420 memset(this, 0, sizeof(*this));
421 stride = 1;
422 }
423
424 /** Generic unset register constructor. */
425 fs_reg::fs_reg()
426 {
427 init();
428 this->file = BAD_FILE;
429 }
430
431 fs_reg::fs_reg(struct ::brw_reg reg) :
432 backend_reg(reg)
433 {
434 this->reg_offset = 0;
435 this->subreg_offset = 0;
436 this->stride = 1;
437 if (this->file == IMM &&
438 (this->type != BRW_REGISTER_TYPE_V &&
439 this->type != BRW_REGISTER_TYPE_UV &&
440 this->type != BRW_REGISTER_TYPE_VF)) {
441 this->stride = 0;
442 }
443 }
444
445 bool
446 fs_reg::equals(const fs_reg &r) const
447 {
448 return (this->backend_reg::equals(r) &&
449 subreg_offset == r.subreg_offset &&
450 stride == r.stride);
451 }
452
453 fs_reg &
454 fs_reg::set_smear(unsigned subreg)
455 {
456 assert(file != ARF && file != FIXED_GRF && file != IMM);
457 subreg_offset = subreg * type_sz(type);
458 stride = 0;
459 return *this;
460 }
461
462 bool
463 fs_reg::is_contiguous() const
464 {
465 return stride == 1;
466 }
467
468 unsigned
469 fs_reg::component_size(unsigned width) const
470 {
471 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
472 hstride == 0 ? 0 :
473 1 << (hstride - 1));
474 return MAX2(width * stride, 1) * type_sz(type);
475 }
476
477 extern "C" int
478 type_size_scalar(const struct glsl_type *type)
479 {
480 unsigned int size, i;
481
482 switch (type->base_type) {
483 case GLSL_TYPE_UINT:
484 case GLSL_TYPE_INT:
485 case GLSL_TYPE_FLOAT:
486 case GLSL_TYPE_BOOL:
487 return type->components();
488 case GLSL_TYPE_ARRAY:
489 return type_size_scalar(type->fields.array) * type->length;
490 case GLSL_TYPE_STRUCT:
491 size = 0;
492 for (i = 0; i < type->length; i++) {
493 size += type_size_scalar(type->fields.structure[i].type);
494 }
495 return size;
496 case GLSL_TYPE_SAMPLER:
497 /* Samplers take up no register space, since they're baked in at
498 * link time.
499 */
500 return 0;
501 case GLSL_TYPE_ATOMIC_UINT:
502 return 0;
503 case GLSL_TYPE_SUBROUTINE:
504 return 1;
505 case GLSL_TYPE_IMAGE:
506 return BRW_IMAGE_PARAM_SIZE;
507 case GLSL_TYPE_VOID:
508 case GLSL_TYPE_ERROR:
509 case GLSL_TYPE_INTERFACE:
510 case GLSL_TYPE_DOUBLE:
511 case GLSL_TYPE_FUNCTION:
512 unreachable("not reached");
513 }
514
515 return 0;
516 }
517
518 /**
519 * Returns the number of scalar components needed to store type, assuming
520 * that vectors are padded out to vec4.
521 *
522 * This has the packing rules of type_size_vec4(), but counts components
523 * similar to type_size_scalar().
524 */
525 extern "C" int
526 type_size_vec4_times_4(const struct glsl_type *type)
527 {
528 return 4 * type_size_vec4(type);
529 }
530
531 /**
532 * Create a MOV to read the timestamp register.
533 *
534 * The caller is responsible for emitting the MOV. The return value is
535 * the destination of the MOV, with extra parameters set.
536 */
537 fs_reg
538 fs_visitor::get_timestamp(const fs_builder &bld)
539 {
540 assert(devinfo->gen >= 7);
541
542 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
543 BRW_ARF_TIMESTAMP,
544 0),
545 BRW_REGISTER_TYPE_UD));
546
547 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
548
549 /* We want to read the 3 fields we care about even if it's not enabled in
550 * the dispatch.
551 */
552 bld.group(4, 0).exec_all().MOV(dst, ts);
553
554 return dst;
555 }
556
557 void
558 fs_visitor::emit_shader_time_begin()
559 {
560 shader_start_time = get_timestamp(bld.annotate("shader time start"));
561
562 /* We want only the low 32 bits of the timestamp. Since it's running
563 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
564 * which is plenty of time for our purposes. It is identical across the
565 * EUs, but since it's tracking GPU core speed it will increment at a
566 * varying rate as render P-states change.
567 */
568 shader_start_time.set_smear(0);
569 }
570
571 void
572 fs_visitor::emit_shader_time_end()
573 {
574 /* Insert our code just before the final SEND with EOT. */
575 exec_node *end = this->instructions.get_tail();
576 assert(end && ((fs_inst *) end)->eot);
577 const fs_builder ibld = bld.annotate("shader time end")
578 .exec_all().at(NULL, end);
579
580 fs_reg shader_end_time = get_timestamp(ibld);
581
582 /* We only use the low 32 bits of the timestamp - see
583 * emit_shader_time_begin()).
584 *
585 * We could also check if render P-states have changed (or anything
586 * else that might disrupt timing) by setting smear to 2 and checking if
587 * that field is != 0.
588 */
589 shader_end_time.set_smear(0);
590
591 /* Check that there weren't any timestamp reset events (assuming these
592 * were the only two timestamp reads that happened).
593 */
594 fs_reg reset = shader_end_time;
595 reset.set_smear(2);
596 set_condmod(BRW_CONDITIONAL_Z,
597 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
598 ibld.IF(BRW_PREDICATE_NORMAL);
599
600 fs_reg start = shader_start_time;
601 start.negate = true;
602 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
603 diff.set_smear(0);
604
605 const fs_builder cbld = ibld.group(1, 0);
606 cbld.group(1, 0).ADD(diff, start, shader_end_time);
607
608 /* If there were no instructions between the two timestamp gets, the diff
609 * is 2 cycles. Remove that overhead, so I can forget about that when
610 * trying to determine the time taken for single instructions.
611 */
612 cbld.ADD(diff, diff, brw_imm_ud(-2u));
613 SHADER_TIME_ADD(cbld, 0, diff);
614 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
615 ibld.emit(BRW_OPCODE_ELSE);
616 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
617 ibld.emit(BRW_OPCODE_ENDIF);
618 }
619
620 void
621 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
622 int shader_time_subindex,
623 fs_reg value)
624 {
625 int index = shader_time_index * 3 + shader_time_subindex;
626 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
627
628 fs_reg payload;
629 if (dispatch_width == 8)
630 payload = vgrf(glsl_type::uvec2_type);
631 else
632 payload = vgrf(glsl_type::uint_type);
633
634 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
635 }
636
637 void
638 fs_visitor::vfail(const char *format, va_list va)
639 {
640 char *msg;
641
642 if (failed)
643 return;
644
645 failed = true;
646
647 msg = ralloc_vasprintf(mem_ctx, format, va);
648 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
649
650 this->fail_msg = msg;
651
652 if (debug_enabled) {
653 fprintf(stderr, "%s", msg);
654 }
655 }
656
657 void
658 fs_visitor::fail(const char *format, ...)
659 {
660 va_list va;
661
662 va_start(va, format);
663 vfail(format, va);
664 va_end(va);
665 }
666
667 /**
668 * Mark this program as impossible to compile in SIMD16 mode.
669 *
670 * During the SIMD8 compile (which happens first), we can detect and flag
671 * things that are unsupported in SIMD16 mode, so the compiler can skip
672 * the SIMD16 compile altogether.
673 *
674 * During a SIMD16 compile (if one happens anyway), this just calls fail().
675 */
676 void
677 fs_visitor::no16(const char *msg)
678 {
679 if (dispatch_width == 16) {
680 fail("%s", msg);
681 } else {
682 simd16_unsupported = true;
683
684 compiler->shader_perf_log(log_data,
685 "SIMD16 shader failed to compile: %s", msg);
686 }
687 }
688
689 /**
690 * Returns true if the instruction has a flag that means it won't
691 * update an entire destination register.
692 *
693 * For example, dead code elimination and live variable analysis want to know
694 * when a write to a variable screens off any preceding values that were in
695 * it.
696 */
697 bool
698 fs_inst::is_partial_write() const
699 {
700 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
701 (this->exec_size * type_sz(this->dst.type)) < 32 ||
702 !this->dst.is_contiguous());
703 }
704
705 unsigned
706 fs_inst::components_read(unsigned i) const
707 {
708 switch (opcode) {
709 case FS_OPCODE_LINTERP:
710 if (i == 0)
711 return 2;
712 else
713 return 1;
714
715 case FS_OPCODE_PIXEL_X:
716 case FS_OPCODE_PIXEL_Y:
717 assert(i == 0);
718 return 2;
719
720 case FS_OPCODE_FB_WRITE_LOGICAL:
721 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
722 /* First/second FB write color. */
723 if (i < 2)
724 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
725 else
726 return 1;
727
728 case SHADER_OPCODE_TEX_LOGICAL:
729 case SHADER_OPCODE_TXD_LOGICAL:
730 case SHADER_OPCODE_TXF_LOGICAL:
731 case SHADER_OPCODE_TXL_LOGICAL:
732 case SHADER_OPCODE_TXS_LOGICAL:
733 case FS_OPCODE_TXB_LOGICAL:
734 case SHADER_OPCODE_TXF_CMS_LOGICAL:
735 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
736 case SHADER_OPCODE_TXF_UMS_LOGICAL:
737 case SHADER_OPCODE_TXF_MCS_LOGICAL:
738 case SHADER_OPCODE_LOD_LOGICAL:
739 case SHADER_OPCODE_TG4_LOGICAL:
740 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
741 assert(src[9].file == IMM && src[10].file == IMM);
742 /* Texture coordinates. */
743 if (i == 0)
744 return src[9].ud;
745 /* Texture derivatives. */
746 else if ((i == 2 || i == 3) && opcode == SHADER_OPCODE_TXD_LOGICAL)
747 return src[10].ud;
748 /* Texture offset. */
749 else if (i == 8)
750 return 2;
751 /* MCS */
752 else if (i == 5 && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
753 return 2;
754 else
755 return 1;
756
757 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
758 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
759 assert(src[3].file == IMM);
760 /* Surface coordinates. */
761 if (i == 0)
762 return src[3].ud;
763 /* Surface operation source (ignored for reads). */
764 else if (i == 1)
765 return 0;
766 else
767 return 1;
768
769 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
770 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
771 assert(src[3].file == IMM &&
772 src[4].file == IMM);
773 /* Surface coordinates. */
774 if (i == 0)
775 return src[3].ud;
776 /* Surface operation source. */
777 else if (i == 1)
778 return src[4].ud;
779 else
780 return 1;
781
782 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
783 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
784 assert(src[3].file == IMM &&
785 src[4].file == IMM);
786 const unsigned op = src[4].ud;
787 /* Surface coordinates. */
788 if (i == 0)
789 return src[3].ud;
790 /* Surface operation source. */
791 else if (i == 1 && op == BRW_AOP_CMPWR)
792 return 2;
793 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
794 op == BRW_AOP_PREDEC))
795 return 0;
796 else
797 return 1;
798 }
799
800 default:
801 return 1;
802 }
803 }
804
805 int
806 fs_inst::regs_read(int arg) const
807 {
808 switch (opcode) {
809 case FS_OPCODE_FB_WRITE:
810 case SHADER_OPCODE_URB_WRITE_SIMD8:
811 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
812 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
813 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
814 case SHADER_OPCODE_URB_READ_SIMD8:
815 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
816 case SHADER_OPCODE_UNTYPED_ATOMIC:
817 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
818 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
819 case SHADER_OPCODE_TYPED_ATOMIC:
820 case SHADER_OPCODE_TYPED_SURFACE_READ:
821 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
822 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
823 if (arg == 0)
824 return mlen;
825 break;
826
827 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
828 /* The payload is actually stored in src1 */
829 if (arg == 1)
830 return mlen;
831 break;
832
833 case FS_OPCODE_LINTERP:
834 if (arg == 1)
835 return 1;
836 break;
837
838 case SHADER_OPCODE_LOAD_PAYLOAD:
839 if (arg < this->header_size)
840 return 1;
841 break;
842
843 case CS_OPCODE_CS_TERMINATE:
844 case SHADER_OPCODE_BARRIER:
845 return 1;
846
847 case SHADER_OPCODE_MOV_INDIRECT:
848 if (arg == 0) {
849 assert(src[2].file == IMM);
850 unsigned region_length = src[2].ud;
851
852 if (src[0].file == UNIFORM) {
853 assert(region_length % 4 == 0);
854 return region_length / 4;
855 } else if (src[0].file == FIXED_GRF) {
856 /* If the start of the region is not register aligned, then
857 * there's some portion of the register that's technically
858 * unread at the beginning.
859 *
860 * However, the register allocator works in terms of whole
861 * registers, and does not use subnr. It assumes that the
862 * read starts at the beginning of the register, and extends
863 * regs_read() whole registers beyond that.
864 *
865 * To compensate, we extend the region length to include this
866 * unread portion at the beginning.
867 */
868 if (src[0].subnr)
869 region_length += src[0].subnr;
870
871 return DIV_ROUND_UP(region_length, REG_SIZE);
872 } else {
873 assert(!"Invalid register file");
874 }
875 }
876 break;
877
878 default:
879 if (is_tex() && arg == 0 && src[0].file == VGRF)
880 return mlen;
881 break;
882 }
883
884 switch (src[arg].file) {
885 case BAD_FILE:
886 return 0;
887 case UNIFORM:
888 case IMM:
889 return 1;
890 case ARF:
891 case FIXED_GRF:
892 case VGRF:
893 case ATTR:
894 return DIV_ROUND_UP(components_read(arg) *
895 src[arg].component_size(exec_size),
896 REG_SIZE);
897 case MRF:
898 unreachable("MRF registers are not allowed as sources");
899 }
900 return 0;
901 }
902
903 bool
904 fs_inst::reads_flag() const
905 {
906 return predicate;
907 }
908
909 bool
910 fs_inst::writes_flag() const
911 {
912 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
913 opcode != BRW_OPCODE_IF &&
914 opcode != BRW_OPCODE_WHILE)) ||
915 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
916 }
917
918 /**
919 * Returns how many MRFs an FS opcode will write over.
920 *
921 * Note that this is not the 0 or 1 implied writes in an actual gen
922 * instruction -- the FS opcodes often generate MOVs in addition.
923 */
924 int
925 fs_visitor::implied_mrf_writes(fs_inst *inst)
926 {
927 if (inst->mlen == 0)
928 return 0;
929
930 if (inst->base_mrf == -1)
931 return 0;
932
933 switch (inst->opcode) {
934 case SHADER_OPCODE_RCP:
935 case SHADER_OPCODE_RSQ:
936 case SHADER_OPCODE_SQRT:
937 case SHADER_OPCODE_EXP2:
938 case SHADER_OPCODE_LOG2:
939 case SHADER_OPCODE_SIN:
940 case SHADER_OPCODE_COS:
941 return 1 * dispatch_width / 8;
942 case SHADER_OPCODE_POW:
943 case SHADER_OPCODE_INT_QUOTIENT:
944 case SHADER_OPCODE_INT_REMAINDER:
945 return 2 * dispatch_width / 8;
946 case SHADER_OPCODE_TEX:
947 case FS_OPCODE_TXB:
948 case SHADER_OPCODE_TXD:
949 case SHADER_OPCODE_TXF:
950 case SHADER_OPCODE_TXF_CMS:
951 case SHADER_OPCODE_TXF_CMS_W:
952 case SHADER_OPCODE_TXF_MCS:
953 case SHADER_OPCODE_TG4:
954 case SHADER_OPCODE_TG4_OFFSET:
955 case SHADER_OPCODE_TXL:
956 case SHADER_OPCODE_TXS:
957 case SHADER_OPCODE_LOD:
958 case SHADER_OPCODE_SAMPLEINFO:
959 return 1;
960 case FS_OPCODE_FB_WRITE:
961 return 2;
962 case FS_OPCODE_GET_BUFFER_SIZE:
963 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
964 case SHADER_OPCODE_GEN4_SCRATCH_READ:
965 return 1;
966 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
967 return inst->mlen;
968 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
969 return inst->mlen;
970 case SHADER_OPCODE_UNTYPED_ATOMIC:
971 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
972 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
973 case SHADER_OPCODE_TYPED_ATOMIC:
974 case SHADER_OPCODE_TYPED_SURFACE_READ:
975 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
976 case SHADER_OPCODE_URB_WRITE_SIMD8:
977 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
978 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
979 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
980 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
981 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
982 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
983 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
984 return 0;
985 default:
986 unreachable("not reached");
987 }
988 }
989
990 fs_reg
991 fs_visitor::vgrf(const glsl_type *const type)
992 {
993 int reg_width = dispatch_width / 8;
994 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
995 brw_type_for_base_type(type));
996 }
997
998 fs_reg::fs_reg(enum brw_reg_file file, int nr)
999 {
1000 init();
1001 this->file = file;
1002 this->nr = nr;
1003 this->type = BRW_REGISTER_TYPE_F;
1004 this->stride = (file == UNIFORM ? 0 : 1);
1005 }
1006
1007 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1008 {
1009 init();
1010 this->file = file;
1011 this->nr = nr;
1012 this->type = type;
1013 this->stride = (file == UNIFORM ? 0 : 1);
1014 }
1015
1016 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1017 * This brings in those uniform definitions
1018 */
1019 void
1020 fs_visitor::import_uniforms(fs_visitor *v)
1021 {
1022 this->push_constant_loc = v->push_constant_loc;
1023 this->pull_constant_loc = v->pull_constant_loc;
1024 this->uniforms = v->uniforms;
1025 }
1026
1027 fs_reg *
1028 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
1029 bool origin_upper_left)
1030 {
1031 assert(stage == MESA_SHADER_FRAGMENT);
1032 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1033 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
1034 fs_reg wpos = *reg;
1035 bool flip = !origin_upper_left ^ key->render_to_fbo;
1036
1037 /* gl_FragCoord.x */
1038 if (pixel_center_integer) {
1039 bld.MOV(wpos, this->pixel_x);
1040 } else {
1041 bld.ADD(wpos, this->pixel_x, brw_imm_f(0.5f));
1042 }
1043 wpos = offset(wpos, bld, 1);
1044
1045 /* gl_FragCoord.y */
1046 if (!flip && pixel_center_integer) {
1047 bld.MOV(wpos, this->pixel_y);
1048 } else {
1049 fs_reg pixel_y = this->pixel_y;
1050 float offset = (pixel_center_integer ? 0.0f : 0.5f);
1051
1052 if (flip) {
1053 pixel_y.negate = true;
1054 offset += key->drawable_height - 1.0f;
1055 }
1056
1057 bld.ADD(wpos, pixel_y, brw_imm_f(offset));
1058 }
1059 wpos = offset(wpos, bld, 1);
1060
1061 /* gl_FragCoord.z */
1062 if (devinfo->gen >= 6) {
1063 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1064 } else {
1065 bld.emit(FS_OPCODE_LINTERP, wpos,
1066 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1067 interp_reg(VARYING_SLOT_POS, 2));
1068 }
1069 wpos = offset(wpos, bld, 1);
1070
1071 /* gl_FragCoord.w: Already set up in emit_interpolation */
1072 bld.MOV(wpos, this->wpos_w);
1073
1074 return reg;
1075 }
1076
1077 fs_inst *
1078 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1079 glsl_interp_qualifier interpolation_mode,
1080 bool is_centroid, bool is_sample)
1081 {
1082 brw_wm_barycentric_interp_mode barycoord_mode;
1083 if (devinfo->gen >= 6) {
1084 if (is_centroid) {
1085 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1086 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1087 else
1088 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1089 } else if (is_sample) {
1090 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1091 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1092 else
1093 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1094 } else {
1095 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1096 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1097 else
1098 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1099 }
1100 } else {
1101 /* On Ironlake and below, there is only one interpolation mode.
1102 * Centroid interpolation doesn't mean anything on this hardware --
1103 * there is no multisampling.
1104 */
1105 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1106 }
1107 return bld.emit(FS_OPCODE_LINTERP, attr,
1108 this->delta_xy[barycoord_mode], interp);
1109 }
1110
1111 void
1112 fs_visitor::emit_general_interpolation(fs_reg *attr, const char *name,
1113 const glsl_type *type,
1114 glsl_interp_qualifier interpolation_mode,
1115 int *location, bool mod_centroid,
1116 bool mod_sample)
1117 {
1118 assert(stage == MESA_SHADER_FRAGMENT);
1119 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1120 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1121
1122 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1123 bool is_gl_Color =
1124 *location == VARYING_SLOT_COL0 || *location == VARYING_SLOT_COL1;
1125 if (key->flat_shade && is_gl_Color) {
1126 interpolation_mode = INTERP_QUALIFIER_FLAT;
1127 } else {
1128 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1129 }
1130 }
1131
1132 if (type->is_array() || type->is_matrix()) {
1133 const glsl_type *elem_type = glsl_get_array_element(type);
1134 const unsigned length = glsl_get_length(type);
1135
1136 for (unsigned i = 0; i < length; i++) {
1137 emit_general_interpolation(attr, name, elem_type, interpolation_mode,
1138 location, mod_centroid, mod_sample);
1139 }
1140 } else if (type->is_record()) {
1141 for (unsigned i = 0; i < type->length; i++) {
1142 const glsl_type *field_type = type->fields.structure[i].type;
1143 emit_general_interpolation(attr, name, field_type, interpolation_mode,
1144 location, mod_centroid, mod_sample);
1145 }
1146 } else {
1147 assert(type->is_scalar() || type->is_vector());
1148
1149 if (prog_data->urb_setup[*location] == -1) {
1150 /* If there's no incoming setup data for this slot, don't
1151 * emit interpolation for it.
1152 */
1153 *attr = offset(*attr, bld, type->vector_elements);
1154 (*location)++;
1155 return;
1156 }
1157
1158 attr->type = brw_type_for_base_type(type->get_scalar_type());
1159
1160 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1161 /* Constant interpolation (flat shading) case. The SF has
1162 * handed us defined values in only the constant offset
1163 * field of the setup reg.
1164 */
1165 for (unsigned int i = 0; i < type->vector_elements; i++) {
1166 struct brw_reg interp = interp_reg(*location, i);
1167 interp = suboffset(interp, 3);
1168 interp.type = attr->type;
1169 bld.emit(FS_OPCODE_CINTERP, *attr, fs_reg(interp));
1170 *attr = offset(*attr, bld, 1);
1171 }
1172 } else {
1173 /* Smooth/noperspective interpolation case. */
1174 for (unsigned int i = 0; i < type->vector_elements; i++) {
1175 struct brw_reg interp = interp_reg(*location, i);
1176 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1177 /* Get the pixel/sample mask into f0 so that we know
1178 * which pixels are lit. Then, for each channel that is
1179 * unlit, replace the centroid data with non-centroid
1180 * data.
1181 */
1182 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1183
1184 fs_inst *inst;
1185 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1186 false, false);
1187 inst->predicate = BRW_PREDICATE_NORMAL;
1188 inst->predicate_inverse = true;
1189 if (devinfo->has_pln)
1190 inst->no_dd_clear = true;
1191
1192 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1193 mod_centroid && !key->persample_shading,
1194 mod_sample || key->persample_shading);
1195 inst->predicate = BRW_PREDICATE_NORMAL;
1196 inst->predicate_inverse = false;
1197 if (devinfo->has_pln)
1198 inst->no_dd_check = true;
1199
1200 } else {
1201 emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1202 mod_centroid && !key->persample_shading,
1203 mod_sample || key->persample_shading);
1204 }
1205 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1206 bld.MUL(*attr, *attr, this->pixel_w);
1207 }
1208 *attr = offset(*attr, bld, 1);
1209 }
1210 }
1211 (*location)++;
1212 }
1213 }
1214
1215 fs_reg *
1216 fs_visitor::emit_frontfacing_interpolation()
1217 {
1218 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1219
1220 if (devinfo->gen >= 6) {
1221 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1222 * a boolean result from this (~0/true or 0/false).
1223 *
1224 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1225 * this task in only one instruction:
1226 * - a negation source modifier will flip the bit; and
1227 * - a W -> D type conversion will sign extend the bit into the high
1228 * word of the destination.
1229 *
1230 * An ASR 15 fills the low word of the destination.
1231 */
1232 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1233 g0.negate = true;
1234
1235 bld.ASR(*reg, g0, brw_imm_d(15));
1236 } else {
1237 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1238 * a boolean result from this (1/true or 0/false).
1239 *
1240 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1241 * the negation source modifier to flip it. Unfortunately the SHR
1242 * instruction only operates on UD (or D with an abs source modifier)
1243 * sources without negation.
1244 *
1245 * Instead, use ASR (which will give ~0/true or 0/false).
1246 */
1247 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1248 g1_6.negate = true;
1249
1250 bld.ASR(*reg, g1_6, brw_imm_d(31));
1251 }
1252
1253 return reg;
1254 }
1255
1256 void
1257 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1258 {
1259 assert(stage == MESA_SHADER_FRAGMENT);
1260 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1261 assert(dst.type == BRW_REGISTER_TYPE_F);
1262
1263 if (key->compute_pos_offset) {
1264 /* Convert int_sample_pos to floating point */
1265 bld.MOV(dst, int_sample_pos);
1266 /* Scale to the range [0, 1] */
1267 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1268 }
1269 else {
1270 /* From ARB_sample_shading specification:
1271 * "When rendering to a non-multisample buffer, or if multisample
1272 * rasterization is disabled, gl_SamplePosition will always be
1273 * (0.5, 0.5).
1274 */
1275 bld.MOV(dst, brw_imm_f(0.5f));
1276 }
1277 }
1278
1279 fs_reg *
1280 fs_visitor::emit_samplepos_setup()
1281 {
1282 assert(devinfo->gen >= 6);
1283
1284 const fs_builder abld = bld.annotate("compute sample position");
1285 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1286 fs_reg pos = *reg;
1287 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1288 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1289
1290 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1291 * mode will be enabled.
1292 *
1293 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1294 * R31.1:0 Position Offset X/Y for Slot[3:0]
1295 * R31.3:2 Position Offset X/Y for Slot[7:4]
1296 * .....
1297 *
1298 * The X, Y sample positions come in as bytes in thread payload. So, read
1299 * the positions using vstride=16, width=8, hstride=2.
1300 */
1301 struct brw_reg sample_pos_reg =
1302 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1303 BRW_REGISTER_TYPE_B), 16, 8, 2);
1304
1305 if (dispatch_width == 8) {
1306 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1307 } else {
1308 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1309 abld.half(1).MOV(half(int_sample_x, 1),
1310 fs_reg(suboffset(sample_pos_reg, 16)));
1311 }
1312 /* Compute gl_SamplePosition.x */
1313 compute_sample_position(pos, int_sample_x);
1314 pos = offset(pos, abld, 1);
1315 if (dispatch_width == 8) {
1316 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1317 } else {
1318 abld.half(0).MOV(half(int_sample_y, 0),
1319 fs_reg(suboffset(sample_pos_reg, 1)));
1320 abld.half(1).MOV(half(int_sample_y, 1),
1321 fs_reg(suboffset(sample_pos_reg, 17)));
1322 }
1323 /* Compute gl_SamplePosition.y */
1324 compute_sample_position(pos, int_sample_y);
1325 return reg;
1326 }
1327
1328 fs_reg *
1329 fs_visitor::emit_sampleid_setup()
1330 {
1331 assert(stage == MESA_SHADER_FRAGMENT);
1332 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1333 assert(devinfo->gen >= 6);
1334
1335 const fs_builder abld = bld.annotate("compute sample id");
1336 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1337
1338 if (key->compute_sample_id) {
1339 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1340 t1.set_smear(0);
1341 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1342
1343 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1344 * 8x multisampling, subspan 0 will represent sample N (where N
1345 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1346 * 7. We can find the value of N by looking at R0.0 bits 7:6
1347 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1348 * (since samples are always delivered in pairs). That is, we
1349 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1350 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1351 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1352 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1353 * populating a temporary variable with the sequence (0, 1, 2, 3),
1354 * and then reading from it using vstride=1, width=4, hstride=0.
1355 * These computations hold good for 4x multisampling as well.
1356 *
1357 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1358 * the first four slots are sample 0 of subspan 0; the next four
1359 * are sample 1 of subspan 0; the third group is sample 0 of
1360 * subspan 1, and finally sample 1 of subspan 1.
1361 */
1362
1363 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1364 * accomodate 16x MSAA.
1365 */
1366 unsigned sspi_mask = devinfo->gen >= 9 ? 0x1c0 : 0xc0;
1367
1368 abld.exec_all().group(1, 0)
1369 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1370 brw_imm_ud(sspi_mask));
1371 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1372
1373 /* This works for both SIMD8 and SIMD16 */
1374 abld.exec_all().group(4, 0)
1375 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1376
1377 /* This special instruction takes care of setting vstride=1,
1378 * width=4, hstride=0 of t2 during an ADD instruction.
1379 */
1380 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1381 } else {
1382 /* As per GL_ARB_sample_shading specification:
1383 * "When rendering to a non-multisample buffer, or if multisample
1384 * rasterization is disabled, gl_SampleID will always be zero."
1385 */
1386 abld.MOV(*reg, brw_imm_d(0));
1387 }
1388
1389 return reg;
1390 }
1391
1392 fs_reg
1393 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1394 {
1395 if (!src.abs && !src.negate)
1396 return src;
1397
1398 fs_reg temp = bld.vgrf(src.type);
1399 bld.MOV(temp, src);
1400
1401 return temp;
1402 }
1403
1404 void
1405 fs_visitor::emit_discard_jump()
1406 {
1407 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1408
1409 /* For performance, after a discard, jump to the end of the
1410 * shader if all relevant channels have been discarded.
1411 */
1412 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1413 discard_jump->flag_subreg = 1;
1414
1415 discard_jump->predicate = (dispatch_width == 8)
1416 ? BRW_PREDICATE_ALIGN1_ANY8H
1417 : BRW_PREDICATE_ALIGN1_ANY16H;
1418 discard_jump->predicate_inverse = true;
1419 }
1420
1421 void
1422 fs_visitor::emit_gs_thread_end()
1423 {
1424 assert(stage == MESA_SHADER_GEOMETRY);
1425
1426 struct brw_gs_prog_data *gs_prog_data =
1427 (struct brw_gs_prog_data *) prog_data;
1428
1429 if (gs_compile->control_data_header_size_bits > 0) {
1430 emit_gs_control_data_bits(this->final_gs_vertex_count);
1431 }
1432
1433 const fs_builder abld = bld.annotate("thread end");
1434 fs_inst *inst;
1435
1436 if (gs_prog_data->static_vertex_count != -1) {
1437 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1438 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1439 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1440 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1441 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1442 prev->eot = true;
1443
1444 /* Delete now dead instructions. */
1445 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1446 if (dead == prev)
1447 break;
1448 dead->remove();
1449 }
1450 return;
1451 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1452 break;
1453 }
1454 }
1455 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1456 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1457 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1458 inst->mlen = 1;
1459 } else {
1460 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1461 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1462 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1463 sources[1] = this->final_gs_vertex_count;
1464 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1465 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1466 inst->mlen = 2;
1467 }
1468 inst->eot = true;
1469 inst->offset = 0;
1470 }
1471
1472 void
1473 fs_visitor::assign_curb_setup()
1474 {
1475 if (dispatch_width == 8) {
1476 prog_data->dispatch_grf_start_reg = payload.num_regs;
1477 } else {
1478 if (stage == MESA_SHADER_FRAGMENT) {
1479 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1480 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1481 } else if (stage == MESA_SHADER_COMPUTE) {
1482 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1483 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1484 } else {
1485 unreachable("Unsupported shader type!");
1486 }
1487 }
1488
1489 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1490
1491 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1492 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1493 for (unsigned int i = 0; i < inst->sources; i++) {
1494 if (inst->src[i].file == UNIFORM) {
1495 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1496 int constant_nr;
1497 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1498 constant_nr = push_constant_loc[uniform_nr];
1499 } else {
1500 /* Section 5.11 of the OpenGL 4.1 spec says:
1501 * "Out-of-bounds reads return undefined values, which include
1502 * values from other variables of the active program or zero."
1503 * Just return the first push constant.
1504 */
1505 constant_nr = 0;
1506 }
1507
1508 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1509 constant_nr / 8,
1510 constant_nr % 8);
1511 brw_reg.abs = inst->src[i].abs;
1512 brw_reg.negate = inst->src[i].negate;
1513
1514 assert(inst->src[i].stride == 0);
1515 inst->src[i] = byte_offset(
1516 retype(brw_reg, inst->src[i].type),
1517 inst->src[i].subreg_offset);
1518 }
1519 }
1520 }
1521
1522 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1523 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1524 }
1525
1526 void
1527 fs_visitor::calculate_urb_setup()
1528 {
1529 assert(stage == MESA_SHADER_FRAGMENT);
1530 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1531 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1532
1533 memset(prog_data->urb_setup, -1,
1534 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1535
1536 int urb_next = 0;
1537 /* Figure out where each of the incoming setup attributes lands. */
1538 if (devinfo->gen >= 6) {
1539 if (_mesa_bitcount_64(nir->info.inputs_read &
1540 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1541 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1542 * first 16 varying inputs, so we can put them wherever we want.
1543 * Just put them in order.
1544 *
1545 * This is useful because it means that (a) inputs not used by the
1546 * fragment shader won't take up valuable register space, and (b) we
1547 * won't have to recompile the fragment shader if it gets paired with
1548 * a different vertex (or geometry) shader.
1549 */
1550 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1551 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1552 BITFIELD64_BIT(i)) {
1553 prog_data->urb_setup[i] = urb_next++;
1554 }
1555 }
1556 } else {
1557 bool include_vue_header =
1558 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1559
1560 /* We have enough input varyings that the SF/SBE pipeline stage can't
1561 * arbitrarily rearrange them to suit our whim; we have to put them
1562 * in an order that matches the output of the previous pipeline stage
1563 * (geometry or vertex shader).
1564 */
1565 struct brw_vue_map prev_stage_vue_map;
1566 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1567 key->input_slots_valid,
1568 nir->info.separate_shader);
1569 int first_slot =
1570 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1571
1572 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1573 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1574 slot++) {
1575 int varying = prev_stage_vue_map.slot_to_varying[slot];
1576 if (varying != BRW_VARYING_SLOT_PAD &&
1577 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1578 BITFIELD64_BIT(varying))) {
1579 prog_data->urb_setup[varying] = slot - first_slot;
1580 }
1581 }
1582 urb_next = prev_stage_vue_map.num_slots - first_slot;
1583 }
1584 } else {
1585 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1586 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1587 /* Point size is packed into the header, not as a general attribute */
1588 if (i == VARYING_SLOT_PSIZ)
1589 continue;
1590
1591 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1592 /* The back color slot is skipped when the front color is
1593 * also written to. In addition, some slots can be
1594 * written in the vertex shader and not read in the
1595 * fragment shader. So the register number must always be
1596 * incremented, mapped or not.
1597 */
1598 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1599 prog_data->urb_setup[i] = urb_next;
1600 urb_next++;
1601 }
1602 }
1603
1604 /*
1605 * It's a FS only attribute, and we did interpolation for this attribute
1606 * in SF thread. So, count it here, too.
1607 *
1608 * See compile_sf_prog() for more info.
1609 */
1610 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1611 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1612 }
1613
1614 prog_data->num_varying_inputs = urb_next;
1615 }
1616
1617 void
1618 fs_visitor::assign_urb_setup()
1619 {
1620 assert(stage == MESA_SHADER_FRAGMENT);
1621 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1622
1623 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1624
1625 /* Offset all the urb_setup[] index by the actual position of the
1626 * setup regs, now that the location of the constants has been chosen.
1627 */
1628 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1629 if (inst->opcode == FS_OPCODE_LINTERP) {
1630 assert(inst->src[1].file == FIXED_GRF);
1631 inst->src[1].nr += urb_start;
1632 }
1633
1634 if (inst->opcode == FS_OPCODE_CINTERP) {
1635 assert(inst->src[0].file == FIXED_GRF);
1636 inst->src[0].nr += urb_start;
1637 }
1638 }
1639
1640 /* Each attribute is 4 setup channels, each of which is half a reg. */
1641 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1642 }
1643
1644 void
1645 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1646 {
1647 for (int i = 0; i < inst->sources; i++) {
1648 if (inst->src[i].file == ATTR) {
1649 int grf = payload.num_regs +
1650 prog_data->curb_read_length +
1651 inst->src[i].nr +
1652 inst->src[i].reg_offset;
1653
1654 unsigned width = inst->src[i].stride == 0 ? 1 : inst->exec_size;
1655 struct brw_reg reg =
1656 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1657 inst->src[i].subreg_offset),
1658 inst->exec_size * inst->src[i].stride,
1659 width, inst->src[i].stride);
1660 reg.abs = inst->src[i].abs;
1661 reg.negate = inst->src[i].negate;
1662
1663 inst->src[i] = reg;
1664 }
1665 }
1666 }
1667
1668 void
1669 fs_visitor::assign_vs_urb_setup()
1670 {
1671 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1672
1673 assert(stage == MESA_SHADER_VERTEX);
1674
1675 /* Each attribute is 4 regs. */
1676 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1677
1678 assert(vs_prog_data->base.urb_read_length <= 15);
1679
1680 /* Rewrite all ATTR file references to the hw grf that they land in. */
1681 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1682 convert_attr_sources_to_hw_regs(inst);
1683 }
1684 }
1685
1686 void
1687 fs_visitor::assign_tes_urb_setup()
1688 {
1689 assert(stage == MESA_SHADER_TESS_EVAL);
1690
1691 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1692
1693 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1694
1695 /* Rewrite all ATTR file references to HW_REGs. */
1696 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1697 convert_attr_sources_to_hw_regs(inst);
1698 }
1699 }
1700
1701 void
1702 fs_visitor::assign_gs_urb_setup()
1703 {
1704 assert(stage == MESA_SHADER_GEOMETRY);
1705
1706 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1707
1708 first_non_payload_grf +=
1709 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1710
1711 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1712 /* Rewrite all ATTR file references to GRFs. */
1713 convert_attr_sources_to_hw_regs(inst);
1714 }
1715 }
1716
1717
1718 /**
1719 * Split large virtual GRFs into separate components if we can.
1720 *
1721 * This is mostly duplicated with what brw_fs_vector_splitting does,
1722 * but that's really conservative because it's afraid of doing
1723 * splitting that doesn't result in real progress after the rest of
1724 * the optimization phases, which would cause infinite looping in
1725 * optimization. We can do it once here, safely. This also has the
1726 * opportunity to split interpolated values, or maybe even uniforms,
1727 * which we don't have at the IR level.
1728 *
1729 * We want to split, because virtual GRFs are what we register
1730 * allocate and spill (due to contiguousness requirements for some
1731 * instructions), and they're what we naturally generate in the
1732 * codegen process, but most virtual GRFs don't actually need to be
1733 * contiguous sets of GRFs. If we split, we'll end up with reduced
1734 * live intervals and better dead code elimination and coalescing.
1735 */
1736 void
1737 fs_visitor::split_virtual_grfs()
1738 {
1739 int num_vars = this->alloc.count;
1740
1741 /* Count the total number of registers */
1742 int reg_count = 0;
1743 int vgrf_to_reg[num_vars];
1744 for (int i = 0; i < num_vars; i++) {
1745 vgrf_to_reg[i] = reg_count;
1746 reg_count += alloc.sizes[i];
1747 }
1748
1749 /* An array of "split points". For each register slot, this indicates
1750 * if this slot can be separated from the previous slot. Every time an
1751 * instruction uses multiple elements of a register (as a source or
1752 * destination), we mark the used slots as inseparable. Then we go
1753 * through and split the registers into the smallest pieces we can.
1754 */
1755 bool split_points[reg_count];
1756 memset(split_points, 0, sizeof(split_points));
1757
1758 /* Mark all used registers as fully splittable */
1759 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1760 if (inst->dst.file == VGRF) {
1761 int reg = vgrf_to_reg[inst->dst.nr];
1762 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1763 split_points[reg + j] = true;
1764 }
1765
1766 for (int i = 0; i < inst->sources; i++) {
1767 if (inst->src[i].file == VGRF) {
1768 int reg = vgrf_to_reg[inst->src[i].nr];
1769 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1770 split_points[reg + j] = true;
1771 }
1772 }
1773 }
1774
1775 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1776 if (inst->dst.file == VGRF) {
1777 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1778 for (int j = 1; j < inst->regs_written; j++)
1779 split_points[reg + j] = false;
1780 }
1781 for (int i = 0; i < inst->sources; i++) {
1782 if (inst->src[i].file == VGRF) {
1783 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1784 for (int j = 1; j < inst->regs_read(i); j++)
1785 split_points[reg + j] = false;
1786 }
1787 }
1788 }
1789
1790 int new_virtual_grf[reg_count];
1791 int new_reg_offset[reg_count];
1792
1793 int reg = 0;
1794 for (int i = 0; i < num_vars; i++) {
1795 /* The first one should always be 0 as a quick sanity check. */
1796 assert(split_points[reg] == false);
1797
1798 /* j = 0 case */
1799 new_reg_offset[reg] = 0;
1800 reg++;
1801 int offset = 1;
1802
1803 /* j > 0 case */
1804 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1805 /* If this is a split point, reset the offset to 0 and allocate a
1806 * new virtual GRF for the previous offset many registers
1807 */
1808 if (split_points[reg]) {
1809 assert(offset <= MAX_VGRF_SIZE);
1810 int grf = alloc.allocate(offset);
1811 for (int k = reg - offset; k < reg; k++)
1812 new_virtual_grf[k] = grf;
1813 offset = 0;
1814 }
1815 new_reg_offset[reg] = offset;
1816 offset++;
1817 reg++;
1818 }
1819
1820 /* The last one gets the original register number */
1821 assert(offset <= MAX_VGRF_SIZE);
1822 alloc.sizes[i] = offset;
1823 for (int k = reg - offset; k < reg; k++)
1824 new_virtual_grf[k] = i;
1825 }
1826 assert(reg == reg_count);
1827
1828 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1829 if (inst->dst.file == VGRF) {
1830 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1831 inst->dst.nr = new_virtual_grf[reg];
1832 inst->dst.reg_offset = new_reg_offset[reg];
1833 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1834 }
1835 for (int i = 0; i < inst->sources; i++) {
1836 if (inst->src[i].file == VGRF) {
1837 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1838 inst->src[i].nr = new_virtual_grf[reg];
1839 inst->src[i].reg_offset = new_reg_offset[reg];
1840 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1841 }
1842 }
1843 }
1844 invalidate_live_intervals();
1845 }
1846
1847 /**
1848 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1849 *
1850 * During code generation, we create tons of temporary variables, many of
1851 * which get immediately killed and are never used again. Yet, in later
1852 * optimization and analysis passes, such as compute_live_intervals, we need
1853 * to loop over all the virtual GRFs. Compacting them can save a lot of
1854 * overhead.
1855 */
1856 bool
1857 fs_visitor::compact_virtual_grfs()
1858 {
1859 bool progress = false;
1860 int remap_table[this->alloc.count];
1861 memset(remap_table, -1, sizeof(remap_table));
1862
1863 /* Mark which virtual GRFs are used. */
1864 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1865 if (inst->dst.file == VGRF)
1866 remap_table[inst->dst.nr] = 0;
1867
1868 for (int i = 0; i < inst->sources; i++) {
1869 if (inst->src[i].file == VGRF)
1870 remap_table[inst->src[i].nr] = 0;
1871 }
1872 }
1873
1874 /* Compact the GRF arrays. */
1875 int new_index = 0;
1876 for (unsigned i = 0; i < this->alloc.count; i++) {
1877 if (remap_table[i] == -1) {
1878 /* We just found an unused register. This means that we are
1879 * actually going to compact something.
1880 */
1881 progress = true;
1882 } else {
1883 remap_table[i] = new_index;
1884 alloc.sizes[new_index] = alloc.sizes[i];
1885 invalidate_live_intervals();
1886 ++new_index;
1887 }
1888 }
1889
1890 this->alloc.count = new_index;
1891
1892 /* Patch all the instructions to use the newly renumbered registers */
1893 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1894 if (inst->dst.file == VGRF)
1895 inst->dst.nr = remap_table[inst->dst.nr];
1896
1897 for (int i = 0; i < inst->sources; i++) {
1898 if (inst->src[i].file == VGRF)
1899 inst->src[i].nr = remap_table[inst->src[i].nr];
1900 }
1901 }
1902
1903 /* Patch all the references to delta_xy, since they're used in register
1904 * allocation. If they're unused, switch them to BAD_FILE so we don't
1905 * think some random VGRF is delta_xy.
1906 */
1907 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1908 if (delta_xy[i].file == VGRF) {
1909 if (remap_table[delta_xy[i].nr] != -1) {
1910 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1911 } else {
1912 delta_xy[i].file = BAD_FILE;
1913 }
1914 }
1915 }
1916
1917 return progress;
1918 }
1919
1920 /**
1921 * Assign UNIFORM file registers to either push constants or pull constants.
1922 *
1923 * We allow a fragment shader to have more than the specified minimum
1924 * maximum number of fragment shader uniform components (64). If
1925 * there are too many of these, they'd fill up all of register space.
1926 * So, this will push some of them out to the pull constant buffer and
1927 * update the program to load them.
1928 */
1929 void
1930 fs_visitor::assign_constant_locations()
1931 {
1932 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1933 if (dispatch_width != 8)
1934 return;
1935
1936 bool is_live[uniforms];
1937 memset(is_live, 0, sizeof(is_live));
1938
1939 /* For each uniform slot, a value of true indicates that the given slot and
1940 * the next slot must remain contiguous. This is used to keep us from
1941 * splitting arrays apart.
1942 */
1943 bool contiguous[uniforms];
1944 memset(contiguous, 0, sizeof(contiguous));
1945
1946 /* First, we walk through the instructions and do two things:
1947 *
1948 * 1) Figure out which uniforms are live.
1949 *
1950 * 2) Mark any indirectly used ranges of registers as contiguous.
1951 *
1952 * Note that we don't move constant-indexed accesses to arrays. No
1953 * testing has been done of the performance impact of this choice.
1954 */
1955 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1956 for (int i = 0 ; i < inst->sources; i++) {
1957 if (inst->src[i].file != UNIFORM)
1958 continue;
1959
1960 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
1961
1962 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1963 assert(inst->src[2].ud % 4 == 0);
1964 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1965 assert(last < uniforms);
1966
1967 for (unsigned j = constant_nr; j < last; j++) {
1968 is_live[j] = true;
1969 contiguous[j] = true;
1970 }
1971 is_live[last] = true;
1972 } else {
1973 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1974 is_live[constant_nr] = true;
1975 }
1976 }
1977 }
1978
1979 /* Only allow 16 registers (128 uniform components) as push constants.
1980 *
1981 * Just demote the end of the list. We could probably do better
1982 * here, demoting things that are rarely used in the program first.
1983 *
1984 * If changing this value, note the limitation about total_regs in
1985 * brw_curbe.c.
1986 */
1987 const unsigned int max_push_components = 16 * 8;
1988
1989 /* For vulkan we don't limit the max_chunk_size. We set it to 32 float =
1990 * 128 bytes, which is the maximum vulkan push constant size.
1991 */
1992 const unsigned int max_chunk_size = 32;
1993
1994 unsigned int num_push_constants = 0;
1995 unsigned int num_pull_constants = 0;
1996
1997 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1998 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1999
2000 int chunk_start = -1;
2001 for (unsigned u = 0; u < uniforms; u++) {
2002 push_constant_loc[u] = -1;
2003 pull_constant_loc[u] = -1;
2004
2005 if (!is_live[u])
2006 continue;
2007
2008 /* This is the first live uniform in the chunk */
2009 if (chunk_start < 0)
2010 chunk_start = u;
2011
2012 /* If this element does not need to be contiguous with the next, we
2013 * split at this point and everthing between chunk_start and u forms a
2014 * single chunk.
2015 */
2016 if (!contiguous[u]) {
2017 unsigned chunk_size = u - chunk_start + 1;
2018
2019 if (num_push_constants + chunk_size <= max_push_components &&
2020 chunk_size <= max_chunk_size) {
2021 for (unsigned j = chunk_start; j <= u; j++)
2022 push_constant_loc[j] = num_push_constants++;
2023 } else {
2024 for (unsigned j = chunk_start; j <= u; j++)
2025 pull_constant_loc[j] = num_pull_constants++;
2026 }
2027
2028 chunk_start = -1;
2029 }
2030 }
2031
2032 stage_prog_data->nr_params = num_push_constants;
2033 stage_prog_data->nr_pull_params = num_pull_constants;
2034
2035 /* Up until now, the param[] array has been indexed by reg + reg_offset
2036 * of UNIFORM registers. Move pull constants into pull_param[] and
2037 * condense param[] to only contain the uniforms we chose to push.
2038 *
2039 * NOTE: Because we are condensing the params[] array, we know that
2040 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2041 * having to make a copy.
2042 */
2043 for (unsigned int i = 0; i < uniforms; i++) {
2044 const gl_constant_value *value = stage_prog_data->param[i];
2045
2046 if (pull_constant_loc[i] != -1) {
2047 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2048 } else if (push_constant_loc[i] != -1) {
2049 stage_prog_data->param[push_constant_loc[i]] = value;
2050 }
2051 }
2052 }
2053
2054 /**
2055 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2056 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2057 */
2058 void
2059 fs_visitor::lower_constant_loads()
2060 {
2061 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2062
2063 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2064 /* Set up the annotation tracking for new generated instructions. */
2065 const fs_builder ibld(this, block, inst);
2066
2067 for (int i = 0; i < inst->sources; i++) {
2068 if (inst->src[i].file != UNIFORM)
2069 continue;
2070
2071 /* We'll handle this case later */
2072 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2073 continue;
2074
2075 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2076 if (location >= uniforms)
2077 continue; /* Out of bounds access */
2078
2079 int pull_index = pull_constant_loc[location];
2080
2081 if (pull_index == -1)
2082 continue;
2083
2084 assert(inst->src[i].stride == 0);
2085
2086 fs_reg dst = vgrf(glsl_type::float_type);
2087 const fs_builder ubld = ibld.exec_all().group(8, 0);
2088 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2089 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2090 dst, brw_imm_ud(index), offset);
2091
2092 /* Rewrite the instruction to use the temporary VGRF. */
2093 inst->src[i].file = VGRF;
2094 inst->src[i].nr = dst.nr;
2095 inst->src[i].reg_offset = 0;
2096 inst->src[i].set_smear(pull_index & 3);
2097
2098 brw_mark_surface_used(prog_data, index);
2099 }
2100
2101 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2102 inst->src[0].file == UNIFORM) {
2103
2104 unsigned location = inst->src[0].nr + inst->src[0].reg_offset;
2105 if (location >= uniforms)
2106 continue; /* Out of bounds access */
2107
2108 int pull_index = pull_constant_loc[location];
2109
2110 if (pull_index == -1)
2111 continue;
2112
2113 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2114 brw_imm_ud(index),
2115 inst->src[1],
2116 pull_index * 4);
2117 inst->remove(block);
2118
2119 brw_mark_surface_used(prog_data, index);
2120 }
2121 }
2122 invalidate_live_intervals();
2123 }
2124
2125 bool
2126 fs_visitor::opt_algebraic()
2127 {
2128 bool progress = false;
2129
2130 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2131 switch (inst->opcode) {
2132 case BRW_OPCODE_MOV:
2133 if (inst->src[0].file != IMM)
2134 break;
2135
2136 if (inst->saturate) {
2137 if (inst->dst.type != inst->src[0].type)
2138 assert(!"unimplemented: saturate mixed types");
2139
2140 if (brw_saturate_immediate(inst->dst.type,
2141 &inst->src[0].as_brw_reg())) {
2142 inst->saturate = false;
2143 progress = true;
2144 }
2145 }
2146 break;
2147
2148 case BRW_OPCODE_MUL:
2149 if (inst->src[1].file != IMM)
2150 continue;
2151
2152 /* a * 1.0 = a */
2153 if (inst->src[1].is_one()) {
2154 inst->opcode = BRW_OPCODE_MOV;
2155 inst->src[1] = reg_undef;
2156 progress = true;
2157 break;
2158 }
2159
2160 /* a * -1.0 = -a */
2161 if (inst->src[1].is_negative_one()) {
2162 inst->opcode = BRW_OPCODE_MOV;
2163 inst->src[0].negate = !inst->src[0].negate;
2164 inst->src[1] = reg_undef;
2165 progress = true;
2166 break;
2167 }
2168
2169 /* a * 0.0 = 0.0 */
2170 if (inst->src[1].is_zero()) {
2171 inst->opcode = BRW_OPCODE_MOV;
2172 inst->src[0] = inst->src[1];
2173 inst->src[1] = reg_undef;
2174 progress = true;
2175 break;
2176 }
2177
2178 if (inst->src[0].file == IMM) {
2179 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2180 inst->opcode = BRW_OPCODE_MOV;
2181 inst->src[0].f *= inst->src[1].f;
2182 inst->src[1] = reg_undef;
2183 progress = true;
2184 break;
2185 }
2186 break;
2187 case BRW_OPCODE_ADD:
2188 if (inst->src[1].file != IMM)
2189 continue;
2190
2191 /* a + 0.0 = a */
2192 if (inst->src[1].is_zero()) {
2193 inst->opcode = BRW_OPCODE_MOV;
2194 inst->src[1] = reg_undef;
2195 progress = true;
2196 break;
2197 }
2198
2199 if (inst->src[0].file == IMM) {
2200 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2201 inst->opcode = BRW_OPCODE_MOV;
2202 inst->src[0].f += inst->src[1].f;
2203 inst->src[1] = reg_undef;
2204 progress = true;
2205 break;
2206 }
2207 break;
2208 case BRW_OPCODE_OR:
2209 if (inst->src[0].equals(inst->src[1])) {
2210 inst->opcode = BRW_OPCODE_MOV;
2211 inst->src[1] = reg_undef;
2212 progress = true;
2213 break;
2214 }
2215 break;
2216 case BRW_OPCODE_LRP:
2217 if (inst->src[1].equals(inst->src[2])) {
2218 inst->opcode = BRW_OPCODE_MOV;
2219 inst->src[0] = inst->src[1];
2220 inst->src[1] = reg_undef;
2221 inst->src[2] = reg_undef;
2222 progress = true;
2223 break;
2224 }
2225 break;
2226 case BRW_OPCODE_CMP:
2227 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2228 inst->src[0].abs &&
2229 inst->src[0].negate &&
2230 inst->src[1].is_zero()) {
2231 inst->src[0].abs = false;
2232 inst->src[0].negate = false;
2233 inst->conditional_mod = BRW_CONDITIONAL_Z;
2234 progress = true;
2235 break;
2236 }
2237 break;
2238 case BRW_OPCODE_SEL:
2239 if (inst->src[0].equals(inst->src[1])) {
2240 inst->opcode = BRW_OPCODE_MOV;
2241 inst->src[1] = reg_undef;
2242 inst->predicate = BRW_PREDICATE_NONE;
2243 inst->predicate_inverse = false;
2244 progress = true;
2245 } else if (inst->saturate && inst->src[1].file == IMM) {
2246 switch (inst->conditional_mod) {
2247 case BRW_CONDITIONAL_LE:
2248 case BRW_CONDITIONAL_L:
2249 switch (inst->src[1].type) {
2250 case BRW_REGISTER_TYPE_F:
2251 if (inst->src[1].f >= 1.0f) {
2252 inst->opcode = BRW_OPCODE_MOV;
2253 inst->src[1] = reg_undef;
2254 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2255 progress = true;
2256 }
2257 break;
2258 default:
2259 break;
2260 }
2261 break;
2262 case BRW_CONDITIONAL_GE:
2263 case BRW_CONDITIONAL_G:
2264 switch (inst->src[1].type) {
2265 case BRW_REGISTER_TYPE_F:
2266 if (inst->src[1].f <= 0.0f) {
2267 inst->opcode = BRW_OPCODE_MOV;
2268 inst->src[1] = reg_undef;
2269 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2270 progress = true;
2271 }
2272 break;
2273 default:
2274 break;
2275 }
2276 default:
2277 break;
2278 }
2279 }
2280 break;
2281 case BRW_OPCODE_MAD:
2282 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2283 inst->opcode = BRW_OPCODE_MOV;
2284 inst->src[1] = reg_undef;
2285 inst->src[2] = reg_undef;
2286 progress = true;
2287 } else if (inst->src[0].is_zero()) {
2288 inst->opcode = BRW_OPCODE_MUL;
2289 inst->src[0] = inst->src[2];
2290 inst->src[2] = reg_undef;
2291 progress = true;
2292 } else if (inst->src[1].is_one()) {
2293 inst->opcode = BRW_OPCODE_ADD;
2294 inst->src[1] = inst->src[2];
2295 inst->src[2] = reg_undef;
2296 progress = true;
2297 } else if (inst->src[2].is_one()) {
2298 inst->opcode = BRW_OPCODE_ADD;
2299 inst->src[2] = reg_undef;
2300 progress = true;
2301 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2302 inst->opcode = BRW_OPCODE_ADD;
2303 inst->src[1].f *= inst->src[2].f;
2304 inst->src[2] = reg_undef;
2305 progress = true;
2306 }
2307 break;
2308 case SHADER_OPCODE_RCP: {
2309 fs_inst *prev = (fs_inst *)inst->prev;
2310 if (prev->opcode == SHADER_OPCODE_SQRT) {
2311 if (inst->src[0].equals(prev->dst)) {
2312 inst->opcode = SHADER_OPCODE_RSQ;
2313 inst->src[0] = prev->src[0];
2314 progress = true;
2315 }
2316 }
2317 break;
2318 }
2319 case SHADER_OPCODE_BROADCAST:
2320 if (is_uniform(inst->src[0])) {
2321 inst->opcode = BRW_OPCODE_MOV;
2322 inst->sources = 1;
2323 inst->force_writemask_all = true;
2324 progress = true;
2325 } else if (inst->src[1].file == IMM) {
2326 inst->opcode = BRW_OPCODE_MOV;
2327 inst->src[0] = component(inst->src[0],
2328 inst->src[1].ud);
2329 inst->sources = 1;
2330 inst->force_writemask_all = true;
2331 progress = true;
2332 }
2333 break;
2334
2335 default:
2336 break;
2337 }
2338
2339 /* Swap if src[0] is immediate. */
2340 if (progress && inst->is_commutative()) {
2341 if (inst->src[0].file == IMM) {
2342 fs_reg tmp = inst->src[1];
2343 inst->src[1] = inst->src[0];
2344 inst->src[0] = tmp;
2345 }
2346 }
2347 }
2348 return progress;
2349 }
2350
2351 /**
2352 * Optimize sample messages that have constant zero values for the trailing
2353 * texture coordinates. We can just reduce the message length for these
2354 * instructions instead of reserving a register for it. Trailing parameters
2355 * that aren't sent default to zero anyway. This will cause the dead code
2356 * eliminator to remove the MOV instruction that would otherwise be emitted to
2357 * set up the zero value.
2358 */
2359 bool
2360 fs_visitor::opt_zero_samples()
2361 {
2362 /* Gen4 infers the texturing opcode based on the message length so we can't
2363 * change it.
2364 */
2365 if (devinfo->gen < 5)
2366 return false;
2367
2368 bool progress = false;
2369
2370 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2371 if (!inst->is_tex())
2372 continue;
2373
2374 fs_inst *load_payload = (fs_inst *) inst->prev;
2375
2376 if (load_payload->is_head_sentinel() ||
2377 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2378 continue;
2379
2380 /* We don't want to remove the message header or the first parameter.
2381 * Removing the first parameter is not allowed, see the Haswell PRM
2382 * volume 7, page 149:
2383 *
2384 * "Parameter 0 is required except for the sampleinfo message, which
2385 * has no parameter 0"
2386 */
2387 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2388 load_payload->src[(inst->mlen - inst->header_size) /
2389 (inst->exec_size / 8) +
2390 inst->header_size - 1].is_zero()) {
2391 inst->mlen -= inst->exec_size / 8;
2392 progress = true;
2393 }
2394 }
2395
2396 if (progress)
2397 invalidate_live_intervals();
2398
2399 return progress;
2400 }
2401
2402 /**
2403 * Optimize sample messages which are followed by the final RT write.
2404 *
2405 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2406 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2407 * final texturing results copied to the framebuffer write payload and modify
2408 * them to write to the framebuffer directly.
2409 */
2410 bool
2411 fs_visitor::opt_sampler_eot()
2412 {
2413 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2414
2415 if (stage != MESA_SHADER_FRAGMENT)
2416 return false;
2417
2418 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2419 return false;
2420
2421 /* FINISHME: It should be possible to implement this optimization when there
2422 * are multiple drawbuffers.
2423 */
2424 if (key->nr_color_regions != 1)
2425 return false;
2426
2427 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2428 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2429 fs_inst *fb_write = (fs_inst *)block->end();
2430 assert(fb_write->eot);
2431 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2432
2433 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2434
2435 /* There wasn't one; nothing to do. */
2436 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2437 return false;
2438
2439 /* 3D Sampler » Messages » Message Format
2440 *
2441 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2442 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2443 */
2444 if (tex_inst->opcode == SHADER_OPCODE_TXS ||
2445 tex_inst->opcode == SHADER_OPCODE_SAMPLEINFO ||
2446 tex_inst->opcode == SHADER_OPCODE_LOD ||
2447 tex_inst->opcode == SHADER_OPCODE_TG4 ||
2448 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2449 return false;
2450
2451 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2452 * It's very likely to be the previous instruction.
2453 */
2454 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2455 if (load_payload->is_head_sentinel() ||
2456 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2457 return false;
2458
2459 assert(!tex_inst->eot); /* We can't get here twice */
2460 assert((tex_inst->offset & (0xff << 24)) == 0);
2461
2462 const fs_builder ibld(this, block, tex_inst);
2463
2464 tex_inst->offset |= fb_write->target << 24;
2465 tex_inst->eot = true;
2466 tex_inst->dst = ibld.null_reg_ud();
2467 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2468
2469 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2470 * to create a new LOAD_PAYLOAD command with the same sources and a space
2471 * saved for the header. Using a new destination register not only makes sure
2472 * we have enough space, but it will make sure the dead code eliminator kills
2473 * the instruction that this will replace.
2474 */
2475 if (tex_inst->header_size != 0)
2476 return true;
2477
2478 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2479 load_payload->sources + 1);
2480 fs_reg *new_sources =
2481 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2482
2483 new_sources[0] = fs_reg();
2484 for (int i = 0; i < load_payload->sources; i++)
2485 new_sources[i+1] = load_payload->src[i];
2486
2487 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2488 * requires a lot of information about the sources to appropriately figure
2489 * out the number of registers needed to be used. Given this stage in our
2490 * optimization, we may not have the appropriate GRFs required by
2491 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2492 * manually emit the instruction.
2493 */
2494 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2495 load_payload->exec_size,
2496 send_header,
2497 new_sources,
2498 load_payload->sources + 1);
2499
2500 new_load_payload->regs_written = load_payload->regs_written + 1;
2501 new_load_payload->header_size = 1;
2502 tex_inst->mlen++;
2503 tex_inst->header_size = 1;
2504 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2505 tex_inst->src[0] = send_header;
2506
2507 return true;
2508 }
2509
2510 bool
2511 fs_visitor::opt_register_renaming()
2512 {
2513 bool progress = false;
2514 int depth = 0;
2515
2516 int remap[alloc.count];
2517 memset(remap, -1, sizeof(int) * alloc.count);
2518
2519 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2520 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2521 depth++;
2522 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2523 inst->opcode == BRW_OPCODE_WHILE) {
2524 depth--;
2525 }
2526
2527 /* Rewrite instruction sources. */
2528 for (int i = 0; i < inst->sources; i++) {
2529 if (inst->src[i].file == VGRF &&
2530 remap[inst->src[i].nr] != -1 &&
2531 remap[inst->src[i].nr] != inst->src[i].nr) {
2532 inst->src[i].nr = remap[inst->src[i].nr];
2533 progress = true;
2534 }
2535 }
2536
2537 const int dst = inst->dst.nr;
2538
2539 if (depth == 0 &&
2540 inst->dst.file == VGRF &&
2541 alloc.sizes[inst->dst.nr] == inst->exec_size / 8 &&
2542 !inst->is_partial_write()) {
2543 if (remap[dst] == -1) {
2544 remap[dst] = dst;
2545 } else {
2546 remap[dst] = alloc.allocate(inst->exec_size / 8);
2547 inst->dst.nr = remap[dst];
2548 progress = true;
2549 }
2550 } else if (inst->dst.file == VGRF &&
2551 remap[dst] != -1 &&
2552 remap[dst] != dst) {
2553 inst->dst.nr = remap[dst];
2554 progress = true;
2555 }
2556 }
2557
2558 if (progress) {
2559 invalidate_live_intervals();
2560
2561 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2562 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2563 delta_xy[i].nr = remap[delta_xy[i].nr];
2564 }
2565 }
2566 }
2567
2568 return progress;
2569 }
2570
2571 /**
2572 * Remove redundant or useless discard jumps.
2573 *
2574 * For example, we can eliminate jumps in the following sequence:
2575 *
2576 * discard-jump (redundant with the next jump)
2577 * discard-jump (useless; jumps to the next instruction)
2578 * placeholder-halt
2579 */
2580 bool
2581 fs_visitor::opt_redundant_discard_jumps()
2582 {
2583 bool progress = false;
2584
2585 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2586
2587 fs_inst *placeholder_halt = NULL;
2588 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2589 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2590 placeholder_halt = inst;
2591 break;
2592 }
2593 }
2594
2595 if (!placeholder_halt)
2596 return false;
2597
2598 /* Delete any HALTs immediately before the placeholder halt. */
2599 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2600 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2601 prev = (fs_inst *) placeholder_halt->prev) {
2602 prev->remove(last_bblock);
2603 progress = true;
2604 }
2605
2606 if (progress)
2607 invalidate_live_intervals();
2608
2609 return progress;
2610 }
2611
2612 bool
2613 fs_visitor::compute_to_mrf()
2614 {
2615 bool progress = false;
2616 int next_ip = 0;
2617
2618 /* No MRFs on Gen >= 7. */
2619 if (devinfo->gen >= 7)
2620 return false;
2621
2622 calculate_live_intervals();
2623
2624 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2625 int ip = next_ip;
2626 next_ip++;
2627
2628 if (inst->opcode != BRW_OPCODE_MOV ||
2629 inst->is_partial_write() ||
2630 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2631 inst->dst.type != inst->src[0].type ||
2632 inst->src[0].abs || inst->src[0].negate ||
2633 !inst->src[0].is_contiguous() ||
2634 inst->src[0].subreg_offset)
2635 continue;
2636
2637 /* Work out which hardware MRF registers are written by this
2638 * instruction.
2639 */
2640 int mrf_low = inst->dst.nr & ~BRW_MRF_COMPR4;
2641 int mrf_high;
2642 if (inst->dst.nr & BRW_MRF_COMPR4) {
2643 mrf_high = mrf_low + 4;
2644 } else if (inst->exec_size == 16) {
2645 mrf_high = mrf_low + 1;
2646 } else {
2647 mrf_high = mrf_low;
2648 }
2649
2650 /* Can't compute-to-MRF this GRF if someone else was going to
2651 * read it later.
2652 */
2653 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2654 continue;
2655
2656 /* Found a move of a GRF to a MRF. Let's see if we can go
2657 * rewrite the thing that made this GRF to write into the MRF.
2658 */
2659 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2660 if (scan_inst->dst.file == VGRF &&
2661 scan_inst->dst.nr == inst->src[0].nr) {
2662 /* Found the last thing to write our reg we want to turn
2663 * into a compute-to-MRF.
2664 */
2665
2666 /* If this one instruction didn't populate all the
2667 * channels, bail. We might be able to rewrite everything
2668 * that writes that reg, but it would require smarter
2669 * tracking to delay the rewriting until complete success.
2670 */
2671 if (scan_inst->is_partial_write())
2672 break;
2673
2674 /* Things returning more than one register would need us to
2675 * understand coalescing out more than one MOV at a time.
2676 */
2677 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2678 break;
2679
2680 /* SEND instructions can't have MRF as a destination. */
2681 if (scan_inst->mlen)
2682 break;
2683
2684 if (devinfo->gen == 6) {
2685 /* gen6 math instructions must have the destination be
2686 * GRF, so no compute-to-MRF for them.
2687 */
2688 if (scan_inst->is_math()) {
2689 break;
2690 }
2691 }
2692
2693 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2694 /* Found the creator of our MRF's source value. */
2695 scan_inst->dst.file = MRF;
2696 scan_inst->dst.nr = inst->dst.nr;
2697 scan_inst->saturate |= inst->saturate;
2698 inst->remove(block);
2699 progress = true;
2700 }
2701 break;
2702 }
2703
2704 /* We don't handle control flow here. Most computation of
2705 * values that end up in MRFs are shortly before the MRF
2706 * write anyway.
2707 */
2708 if (block->start() == scan_inst)
2709 break;
2710
2711 /* You can't read from an MRF, so if someone else reads our
2712 * MRF's source GRF that we wanted to rewrite, that stops us.
2713 */
2714 bool interfered = false;
2715 for (int i = 0; i < scan_inst->sources; i++) {
2716 if (scan_inst->src[i].file == VGRF &&
2717 scan_inst->src[i].nr == inst->src[0].nr &&
2718 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2719 interfered = true;
2720 }
2721 }
2722 if (interfered)
2723 break;
2724
2725 if (scan_inst->dst.file == MRF) {
2726 /* If somebody else writes our MRF here, we can't
2727 * compute-to-MRF before that.
2728 */
2729 int scan_mrf_low = scan_inst->dst.nr & ~BRW_MRF_COMPR4;
2730 int scan_mrf_high;
2731
2732 if (scan_inst->dst.nr & BRW_MRF_COMPR4) {
2733 scan_mrf_high = scan_mrf_low + 4;
2734 } else if (scan_inst->exec_size == 16) {
2735 scan_mrf_high = scan_mrf_low + 1;
2736 } else {
2737 scan_mrf_high = scan_mrf_low;
2738 }
2739
2740 if (mrf_low == scan_mrf_low ||
2741 mrf_low == scan_mrf_high ||
2742 mrf_high == scan_mrf_low ||
2743 mrf_high == scan_mrf_high) {
2744 break;
2745 }
2746 }
2747
2748 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2749 /* Found a SEND instruction, which means that there are
2750 * live values in MRFs from base_mrf to base_mrf +
2751 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2752 * above it.
2753 */
2754 if (mrf_low >= scan_inst->base_mrf &&
2755 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2756 break;
2757 }
2758 if (mrf_high >= scan_inst->base_mrf &&
2759 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2760 break;
2761 }
2762 }
2763 }
2764 }
2765
2766 if (progress)
2767 invalidate_live_intervals();
2768
2769 return progress;
2770 }
2771
2772 /**
2773 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2774 * flow. We could probably do better here with some form of divergence
2775 * analysis.
2776 */
2777 bool
2778 fs_visitor::eliminate_find_live_channel()
2779 {
2780 bool progress = false;
2781 unsigned depth = 0;
2782
2783 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2784 switch (inst->opcode) {
2785 case BRW_OPCODE_IF:
2786 case BRW_OPCODE_DO:
2787 depth++;
2788 break;
2789
2790 case BRW_OPCODE_ENDIF:
2791 case BRW_OPCODE_WHILE:
2792 depth--;
2793 break;
2794
2795 case FS_OPCODE_DISCARD_JUMP:
2796 /* This can potentially make control flow non-uniform until the end
2797 * of the program.
2798 */
2799 return progress;
2800
2801 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2802 if (depth == 0) {
2803 inst->opcode = BRW_OPCODE_MOV;
2804 inst->src[0] = brw_imm_ud(0u);
2805 inst->sources = 1;
2806 inst->force_writemask_all = true;
2807 progress = true;
2808 }
2809 break;
2810
2811 default:
2812 break;
2813 }
2814 }
2815
2816 return progress;
2817 }
2818
2819 /**
2820 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2821 * instructions to FS_OPCODE_REP_FB_WRITE.
2822 */
2823 void
2824 fs_visitor::emit_repclear_shader()
2825 {
2826 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2827 int base_mrf = 1;
2828 int color_mrf = base_mrf + 2;
2829 fs_inst *mov;
2830
2831 if (uniforms == 1) {
2832 mov = bld.exec_all().group(4, 0)
2833 .MOV(brw_message_reg(color_mrf),
2834 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2835 } else {
2836 struct brw_reg reg =
2837 brw_reg(BRW_GENERAL_REGISTER_FILE,
2838 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2839 BRW_VERTICAL_STRIDE_8,
2840 BRW_WIDTH_2,
2841 BRW_HORIZONTAL_STRIDE_4, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2842
2843 mov = bld.exec_all().group(4, 0)
2844 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2845 }
2846
2847 fs_inst *write;
2848 if (key->nr_color_regions == 1) {
2849 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2850 write->saturate = key->clamp_fragment_color;
2851 write->base_mrf = color_mrf;
2852 write->target = 0;
2853 write->header_size = 0;
2854 write->mlen = 1;
2855 } else {
2856 assume(key->nr_color_regions > 0);
2857 for (int i = 0; i < key->nr_color_regions; ++i) {
2858 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2859 write->saturate = key->clamp_fragment_color;
2860 write->base_mrf = base_mrf;
2861 write->target = i;
2862 write->header_size = 2;
2863 write->mlen = 3;
2864 }
2865 }
2866 write->eot = true;
2867
2868 calculate_cfg();
2869
2870 assign_constant_locations();
2871 assign_curb_setup();
2872
2873 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2874 if (uniforms == 1) {
2875 assert(mov->src[0].file == FIXED_GRF);
2876 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2877 }
2878 }
2879
2880 /**
2881 * Walks through basic blocks, looking for repeated MRF writes and
2882 * removing the later ones.
2883 */
2884 bool
2885 fs_visitor::remove_duplicate_mrf_writes()
2886 {
2887 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2888 bool progress = false;
2889
2890 /* Need to update the MRF tracking for compressed instructions. */
2891 if (dispatch_width == 16)
2892 return false;
2893
2894 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2895
2896 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2897 if (inst->is_control_flow()) {
2898 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2899 }
2900
2901 if (inst->opcode == BRW_OPCODE_MOV &&
2902 inst->dst.file == MRF) {
2903 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2904 if (prev_inst && inst->equals(prev_inst)) {
2905 inst->remove(block);
2906 progress = true;
2907 continue;
2908 }
2909 }
2910
2911 /* Clear out the last-write records for MRFs that were overwritten. */
2912 if (inst->dst.file == MRF) {
2913 last_mrf_move[inst->dst.nr] = NULL;
2914 }
2915
2916 if (inst->mlen > 0 && inst->base_mrf != -1) {
2917 /* Found a SEND instruction, which will include two or fewer
2918 * implied MRF writes. We could do better here.
2919 */
2920 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2921 last_mrf_move[inst->base_mrf + i] = NULL;
2922 }
2923 }
2924
2925 /* Clear out any MRF move records whose sources got overwritten. */
2926 if (inst->dst.file == VGRF) {
2927 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2928 if (last_mrf_move[i] &&
2929 last_mrf_move[i]->src[0].nr == inst->dst.nr) {
2930 last_mrf_move[i] = NULL;
2931 }
2932 }
2933 }
2934
2935 if (inst->opcode == BRW_OPCODE_MOV &&
2936 inst->dst.file == MRF &&
2937 inst->src[0].file == VGRF &&
2938 !inst->is_partial_write()) {
2939 last_mrf_move[inst->dst.nr] = inst;
2940 }
2941 }
2942
2943 if (progress)
2944 invalidate_live_intervals();
2945
2946 return progress;
2947 }
2948
2949 static void
2950 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2951 {
2952 /* Clear the flag for registers that actually got read (as expected). */
2953 for (int i = 0; i < inst->sources; i++) {
2954 int grf;
2955 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
2956 grf = inst->src[i].nr;
2957 } else {
2958 continue;
2959 }
2960
2961 if (grf >= first_grf &&
2962 grf < first_grf + grf_len) {
2963 deps[grf - first_grf] = false;
2964 if (inst->exec_size == 16)
2965 deps[grf - first_grf + 1] = false;
2966 }
2967 }
2968 }
2969
2970 /**
2971 * Implements this workaround for the original 965:
2972 *
2973 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2974 * check for post destination dependencies on this instruction, software
2975 * must ensure that there is no destination hazard for the case of ‘write
2976 * followed by a posted write’ shown in the following example.
2977 *
2978 * 1. mov r3 0
2979 * 2. send r3.xy <rest of send instruction>
2980 * 3. mov r2 r3
2981 *
2982 * Due to no post-destination dependency check on the ‘send’, the above
2983 * code sequence could have two instructions (1 and 2) in flight at the
2984 * same time that both consider ‘r3’ as the target of their final writes.
2985 */
2986 void
2987 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2988 fs_inst *inst)
2989 {
2990 int write_len = inst->regs_written;
2991 int first_write_grf = inst->dst.nr;
2992 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2993 assert(write_len < (int)sizeof(needs_dep) - 1);
2994
2995 memset(needs_dep, false, sizeof(needs_dep));
2996 memset(needs_dep, true, write_len);
2997
2998 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2999
3000 /* Walk backwards looking for writes to registers we're writing which
3001 * aren't read since being written. If we hit the start of the program,
3002 * we assume that there are no outstanding dependencies on entry to the
3003 * program.
3004 */
3005 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3006 /* If we hit control flow, assume that there *are* outstanding
3007 * dependencies, and force their cleanup before our instruction.
3008 */
3009 if (block->start() == scan_inst) {
3010 for (int i = 0; i < write_len; i++) {
3011 if (needs_dep[i])
3012 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3013 first_write_grf + i);
3014 }
3015 return;
3016 }
3017
3018 /* We insert our reads as late as possible on the assumption that any
3019 * instruction but a MOV that might have left us an outstanding
3020 * dependency has more latency than a MOV.
3021 */
3022 if (scan_inst->dst.file == VGRF) {
3023 for (int i = 0; i < scan_inst->regs_written; i++) {
3024 int reg = scan_inst->dst.nr + i;
3025
3026 if (reg >= first_write_grf &&
3027 reg < first_write_grf + write_len &&
3028 needs_dep[reg - first_write_grf]) {
3029 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3030 needs_dep[reg - first_write_grf] = false;
3031 if (scan_inst->exec_size == 16)
3032 needs_dep[reg - first_write_grf + 1] = false;
3033 }
3034 }
3035 }
3036
3037 /* Clear the flag for registers that actually got read (as expected). */
3038 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3039
3040 /* Continue the loop only if we haven't resolved all the dependencies */
3041 int i;
3042 for (i = 0; i < write_len; i++) {
3043 if (needs_dep[i])
3044 break;
3045 }
3046 if (i == write_len)
3047 return;
3048 }
3049 }
3050
3051 /**
3052 * Implements this workaround for the original 965:
3053 *
3054 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3055 * used as a destination register until after it has been sourced by an
3056 * instruction with a different destination register.
3057 */
3058 void
3059 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3060 {
3061 int write_len = inst->regs_written;
3062 int first_write_grf = inst->dst.nr;
3063 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3064 assert(write_len < (int)sizeof(needs_dep) - 1);
3065
3066 memset(needs_dep, false, sizeof(needs_dep));
3067 memset(needs_dep, true, write_len);
3068 /* Walk forwards looking for writes to registers we're writing which aren't
3069 * read before being written.
3070 */
3071 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3072 /* If we hit control flow, force resolve all remaining dependencies. */
3073 if (block->end() == scan_inst) {
3074 for (int i = 0; i < write_len; i++) {
3075 if (needs_dep[i])
3076 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3077 first_write_grf + i);
3078 }
3079 return;
3080 }
3081
3082 /* Clear the flag for registers that actually got read (as expected). */
3083 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3084
3085 /* We insert our reads as late as possible since they're reading the
3086 * result of a SEND, which has massive latency.
3087 */
3088 if (scan_inst->dst.file == VGRF &&
3089 scan_inst->dst.nr >= first_write_grf &&
3090 scan_inst->dst.nr < first_write_grf + write_len &&
3091 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3092 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3093 scan_inst->dst.nr);
3094 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3095 }
3096
3097 /* Continue the loop only if we haven't resolved all the dependencies */
3098 int i;
3099 for (i = 0; i < write_len; i++) {
3100 if (needs_dep[i])
3101 break;
3102 }
3103 if (i == write_len)
3104 return;
3105 }
3106 }
3107
3108 void
3109 fs_visitor::insert_gen4_send_dependency_workarounds()
3110 {
3111 if (devinfo->gen != 4 || devinfo->is_g4x)
3112 return;
3113
3114 bool progress = false;
3115
3116 /* Note that we're done with register allocation, so GRF fs_regs always
3117 * have a .reg_offset of 0.
3118 */
3119
3120 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3121 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3122 insert_gen4_pre_send_dependency_workarounds(block, inst);
3123 insert_gen4_post_send_dependency_workarounds(block, inst);
3124 progress = true;
3125 }
3126 }
3127
3128 if (progress)
3129 invalidate_live_intervals();
3130 }
3131
3132 /**
3133 * Turns the generic expression-style uniform pull constant load instruction
3134 * into a hardware-specific series of instructions for loading a pull
3135 * constant.
3136 *
3137 * The expression style allows the CSE pass before this to optimize out
3138 * repeated loads from the same offset, and gives the pre-register-allocation
3139 * scheduling full flexibility, while the conversion to native instructions
3140 * allows the post-register-allocation scheduler the best information
3141 * possible.
3142 *
3143 * Note that execution masking for setting up pull constant loads is special:
3144 * the channels that need to be written are unrelated to the current execution
3145 * mask, since a later instruction will use one of the result channels as a
3146 * source operand for all 8 or 16 of its channels.
3147 */
3148 void
3149 fs_visitor::lower_uniform_pull_constant_loads()
3150 {
3151 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3152 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3153 continue;
3154
3155 if (devinfo->gen >= 7) {
3156 /* The offset arg is a vec4-aligned immediate byte offset. */
3157 fs_reg const_offset_reg = inst->src[1];
3158 assert(const_offset_reg.file == IMM &&
3159 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3160 assert(const_offset_reg.ud % 16 == 0);
3161
3162 fs_reg payload, offset;
3163 if (devinfo->gen >= 9) {
3164 /* We have to use a message header on Skylake to get SIMD4x2
3165 * mode. Reserve space for the register.
3166 */
3167 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3168 offset.reg_offset++;
3169 inst->mlen = 2;
3170 } else {
3171 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3172 inst->mlen = 1;
3173 }
3174
3175 /* This is actually going to be a MOV, but since only the first dword
3176 * is accessed, we have a special opcode to do just that one. Note
3177 * that this needs to be an operation that will be considered a def
3178 * by live variable analysis, or register allocation will explode.
3179 */
3180 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3181 8, offset, const_offset_reg);
3182 setup->force_writemask_all = true;
3183
3184 setup->ir = inst->ir;
3185 setup->annotation = inst->annotation;
3186 inst->insert_before(block, setup);
3187
3188 /* Similarly, this will only populate the first 4 channels of the
3189 * result register (since we only use smear values from 0-3), but we
3190 * don't tell the optimizer.
3191 */
3192 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3193 inst->src[1] = payload;
3194 inst->base_mrf = -1;
3195
3196 invalidate_live_intervals();
3197 } else {
3198 /* Before register allocation, we didn't tell the scheduler about the
3199 * MRF we use. We know it's safe to use this MRF because nothing
3200 * else does except for register spill/unspill, which generates and
3201 * uses its MRF within a single IR instruction.
3202 */
3203 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3204 inst->mlen = 1;
3205 }
3206 }
3207 }
3208
3209 bool
3210 fs_visitor::lower_load_payload()
3211 {
3212 bool progress = false;
3213
3214 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3215 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3216 continue;
3217
3218 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3219 assert(inst->saturate == false);
3220 fs_reg dst = inst->dst;
3221
3222 /* Get rid of COMPR4. We'll add it back in if we need it */
3223 if (dst.file == MRF)
3224 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3225
3226 const fs_builder ibld(this, block, inst);
3227 const fs_builder hbld = ibld.exec_all().group(8, 0);
3228
3229 for (uint8_t i = 0; i < inst->header_size; i++) {
3230 if (inst->src[i].file != BAD_FILE) {
3231 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3232 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3233 hbld.MOV(mov_dst, mov_src);
3234 }
3235 dst = offset(dst, hbld, 1);
3236 }
3237
3238 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3239 inst->exec_size > 8) {
3240 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3241 * a straightforward copy. Instead, the result of the
3242 * LOAD_PAYLOAD is treated as interleaved and the first four
3243 * non-header sources are unpacked as:
3244 *
3245 * m + 0: r0
3246 * m + 1: g0
3247 * m + 2: b0
3248 * m + 3: a0
3249 * m + 4: r1
3250 * m + 5: g1
3251 * m + 6: b1
3252 * m + 7: a1
3253 *
3254 * This is used for gen <= 5 fb writes.
3255 */
3256 assert(inst->exec_size == 16);
3257 assert(inst->header_size + 4 <= inst->sources);
3258 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3259 if (inst->src[i].file != BAD_FILE) {
3260 if (devinfo->has_compr4) {
3261 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3262 compr4_dst.nr |= BRW_MRF_COMPR4;
3263 ibld.MOV(compr4_dst, inst->src[i]);
3264 } else {
3265 /* Platform doesn't have COMPR4. We have to fake it */
3266 fs_reg mov_dst = retype(dst, inst->src[i].type);
3267 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3268 mov_dst.nr += 4;
3269 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3270 }
3271 }
3272
3273 dst.nr++;
3274 }
3275
3276 /* The loop above only ever incremented us through the first set
3277 * of 4 registers. However, thanks to the magic of COMPR4, we
3278 * actually wrote to the first 8 registers, so we need to take
3279 * that into account now.
3280 */
3281 dst.nr += 4;
3282
3283 /* The COMPR4 code took care of the first 4 sources. We'll let
3284 * the regular path handle any remaining sources. Yes, we are
3285 * modifying the instruction but we're about to delete it so
3286 * this really doesn't hurt anything.
3287 */
3288 inst->header_size += 4;
3289 }
3290
3291 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3292 if (inst->src[i].file != BAD_FILE)
3293 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3294 dst = offset(dst, ibld, 1);
3295 }
3296
3297 inst->remove(block);
3298 progress = true;
3299 }
3300
3301 if (progress)
3302 invalidate_live_intervals();
3303
3304 return progress;
3305 }
3306
3307 bool
3308 fs_visitor::lower_integer_multiplication()
3309 {
3310 bool progress = false;
3311
3312 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3313 const fs_builder ibld(this, block, inst);
3314
3315 if (inst->opcode == BRW_OPCODE_MUL) {
3316 if (inst->dst.is_accumulator() ||
3317 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3318 inst->dst.type != BRW_REGISTER_TYPE_UD))
3319 continue;
3320
3321 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3322 * operation directly, but CHV/BXT cannot.
3323 */
3324 if (devinfo->gen >= 8 &&
3325 !devinfo->is_cherryview && !devinfo->is_broxton)
3326 continue;
3327
3328 if (inst->src[1].file == IMM &&
3329 inst->src[1].ud < (1 << 16)) {
3330 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3331 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3332 * src1 are used.
3333 *
3334 * If multiplying by an immediate value that fits in 16-bits, do a
3335 * single MUL instruction with that value in the proper location.
3336 */
3337 if (devinfo->gen < 7) {
3338 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3339 inst->dst.type);
3340 ibld.MOV(imm, inst->src[1]);
3341 ibld.MUL(inst->dst, imm, inst->src[0]);
3342 } else {
3343 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3344 }
3345 } else {
3346 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3347 * do 32-bit integer multiplication in one instruction, but instead
3348 * must do a sequence (which actually calculates a 64-bit result):
3349 *
3350 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3351 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3352 * mov(8) g2<1>D acc0<8,8,1>D
3353 *
3354 * But on Gen > 6, the ability to use second accumulator register
3355 * (acc1) for non-float data types was removed, preventing a simple
3356 * implementation in SIMD16. A 16-channel result can be calculated by
3357 * executing the three instructions twice in SIMD8, once with quarter
3358 * control of 1Q for the first eight channels and again with 2Q for
3359 * the second eight channels.
3360 *
3361 * Which accumulator register is implicitly accessed (by AccWrEnable
3362 * for instance) is determined by the quarter control. Unfortunately
3363 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3364 * implicit accumulator access by an instruction with 2Q will access
3365 * acc1 regardless of whether the data type is usable in acc1.
3366 *
3367 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3368 * integer data types.
3369 *
3370 * Since we only want the low 32-bits of the result, we can do two
3371 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3372 * adjust the high result and add them (like the mach is doing):
3373 *
3374 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3375 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3376 * shl(8) g9<1>D g8<8,8,1>D 16D
3377 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3378 *
3379 * We avoid the shl instruction by realizing that we only want to add
3380 * the low 16-bits of the "high" result to the high 16-bits of the
3381 * "low" result and using proper regioning on the add:
3382 *
3383 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3384 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3385 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3386 *
3387 * Since it does not use the (single) accumulator register, we can
3388 * schedule multi-component multiplications much better.
3389 */
3390
3391 fs_reg orig_dst = inst->dst;
3392 if (orig_dst.is_null() || orig_dst.file == MRF) {
3393 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3394 inst->dst.type);
3395 }
3396 fs_reg low = inst->dst;
3397 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3398 inst->dst.type);
3399
3400 if (devinfo->gen >= 7) {
3401 fs_reg src1_0_w = inst->src[1];
3402 fs_reg src1_1_w = inst->src[1];
3403
3404 if (inst->src[1].file == IMM) {
3405 src1_0_w.ud &= 0xffff;
3406 src1_1_w.ud >>= 16;
3407 } else {
3408 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3409 if (src1_0_w.stride != 0) {
3410 assert(src1_0_w.stride == 1);
3411 src1_0_w.stride = 2;
3412 }
3413
3414 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3415 if (src1_1_w.stride != 0) {
3416 assert(src1_1_w.stride == 1);
3417 src1_1_w.stride = 2;
3418 }
3419 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3420 }
3421 ibld.MUL(low, inst->src[0], src1_0_w);
3422 ibld.MUL(high, inst->src[0], src1_1_w);
3423 } else {
3424 fs_reg src0_0_w = inst->src[0];
3425 fs_reg src0_1_w = inst->src[0];
3426
3427 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3428 if (src0_0_w.stride != 0) {
3429 assert(src0_0_w.stride == 1);
3430 src0_0_w.stride = 2;
3431 }
3432
3433 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3434 if (src0_1_w.stride != 0) {
3435 assert(src0_1_w.stride == 1);
3436 src0_1_w.stride = 2;
3437 }
3438 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3439
3440 ibld.MUL(low, src0_0_w, inst->src[1]);
3441 ibld.MUL(high, src0_1_w, inst->src[1]);
3442 }
3443
3444 fs_reg dst = inst->dst;
3445 dst.type = BRW_REGISTER_TYPE_UW;
3446 dst.subreg_offset = 2;
3447 dst.stride = 2;
3448
3449 high.type = BRW_REGISTER_TYPE_UW;
3450 high.stride = 2;
3451
3452 low.type = BRW_REGISTER_TYPE_UW;
3453 low.subreg_offset = 2;
3454 low.stride = 2;
3455
3456 ibld.ADD(dst, low, high);
3457
3458 if (inst->conditional_mod || orig_dst.file == MRF) {
3459 set_condmod(inst->conditional_mod,
3460 ibld.MOV(orig_dst, inst->dst));
3461 }
3462 }
3463
3464 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3465 /* Should have been lowered to 8-wide. */
3466 assert(inst->exec_size <= 8);
3467 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3468 inst->dst.type);
3469 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3470 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3471
3472 if (devinfo->gen >= 8) {
3473 /* Until Gen8, integer multiplies read 32-bits from one source,
3474 * and 16-bits from the other, and relying on the MACH instruction
3475 * to generate the high bits of the result.
3476 *
3477 * On Gen8, the multiply instruction does a full 32x32-bit
3478 * multiply, but in order to do a 64-bit multiply we can simulate
3479 * the previous behavior and then use a MACH instruction.
3480 *
3481 * FINISHME: Don't use source modifiers on src1.
3482 */
3483 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3484 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3485 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3486 mul->src[1].stride *= 2;
3487
3488 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3489 inst->force_sechalf) {
3490 /* Among other things the quarter control bits influence which
3491 * accumulator register is used by the hardware for instructions
3492 * that access the accumulator implicitly (e.g. MACH). A
3493 * second-half instruction would normally map to acc1, which
3494 * doesn't exist on Gen7 and up (the hardware does emulate it for
3495 * floating-point instructions *only* by taking advantage of the
3496 * extra precision of acc0 not normally used for floating point
3497 * arithmetic).
3498 *
3499 * HSW and up are careful enough not to try to access an
3500 * accumulator register that doesn't exist, but on earlier Gen7
3501 * hardware we need to make sure that the quarter control bits are
3502 * zero to avoid non-deterministic behaviour and emit an extra MOV
3503 * to get the result masked correctly according to the current
3504 * channel enables.
3505 */
3506 mach->force_sechalf = false;
3507 mach->force_writemask_all = true;
3508 mach->dst = ibld.vgrf(inst->dst.type);
3509 ibld.MOV(inst->dst, mach->dst);
3510 }
3511 } else {
3512 continue;
3513 }
3514
3515 inst->remove(block);
3516 progress = true;
3517 }
3518
3519 if (progress)
3520 invalidate_live_intervals();
3521
3522 return progress;
3523 }
3524
3525 static void
3526 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3527 fs_reg *dst, fs_reg color, unsigned components)
3528 {
3529 if (key->clamp_fragment_color) {
3530 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3531 assert(color.type == BRW_REGISTER_TYPE_F);
3532
3533 for (unsigned i = 0; i < components; i++)
3534 set_saturate(true,
3535 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3536
3537 color = tmp;
3538 }
3539
3540 for (unsigned i = 0; i < components; i++)
3541 dst[i] = offset(color, bld, i);
3542 }
3543
3544 static void
3545 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3546 const brw_wm_prog_data *prog_data,
3547 const brw_wm_prog_key *key,
3548 const fs_visitor::thread_payload &payload)
3549 {
3550 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3551 const brw_device_info *devinfo = bld.shader->devinfo;
3552 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3553 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3554 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3555 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3556 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3557 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3558 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3559 const unsigned components =
3560 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3561
3562 /* We can potentially have a message length of up to 15, so we have to set
3563 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3564 */
3565 fs_reg sources[15];
3566 int header_size = 2, payload_header_size;
3567 unsigned length = 0;
3568
3569 /* From the Sandy Bridge PRM, volume 4, page 198:
3570 *
3571 * "Dispatched Pixel Enables. One bit per pixel indicating
3572 * which pixels were originally enabled when the thread was
3573 * dispatched. This field is only required for the end-of-
3574 * thread message and on all dual-source messages."
3575 */
3576 if (devinfo->gen >= 6 &&
3577 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3578 color1.file == BAD_FILE &&
3579 key->nr_color_regions == 1) {
3580 header_size = 0;
3581 }
3582
3583 if (header_size != 0) {
3584 assert(header_size == 2);
3585 /* Allocate 2 registers for a header */
3586 length += 2;
3587 }
3588
3589 if (payload.aa_dest_stencil_reg) {
3590 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3591 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3592 .MOV(sources[length],
3593 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3594 length++;
3595 }
3596
3597 if (prog_data->uses_omask) {
3598 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3599 BRW_REGISTER_TYPE_UD);
3600
3601 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3602 * relevant. Since it's unsigned single words one vgrf is always
3603 * 16-wide, but only the lower or higher 8 channels will be used by the
3604 * hardware when doing a SIMD8 write depending on whether we have
3605 * selected the subspans for the first or second half respectively.
3606 */
3607 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3608 sample_mask.type = BRW_REGISTER_TYPE_UW;
3609 sample_mask.stride *= 2;
3610
3611 bld.exec_all().annotate("FB write oMask")
3612 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3613 inst->force_sechalf),
3614 sample_mask);
3615 length++;
3616 }
3617
3618 payload_header_size = length;
3619
3620 if (src0_alpha.file != BAD_FILE) {
3621 /* FIXME: This is being passed at the wrong location in the payload and
3622 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3623 * It's supposed to be immediately before oMask but there seems to be no
3624 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3625 * requires header sources to form a contiguous segment at the beginning
3626 * of the message and src0_alpha has per-channel semantics.
3627 */
3628 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3629 length++;
3630 }
3631
3632 setup_color_payload(bld, key, &sources[length], color0, components);
3633 length += 4;
3634
3635 if (color1.file != BAD_FILE) {
3636 setup_color_payload(bld, key, &sources[length], color1, components);
3637 length += 4;
3638 }
3639
3640 if (src_depth.file != BAD_FILE) {
3641 sources[length] = src_depth;
3642 length++;
3643 }
3644
3645 if (dst_depth.file != BAD_FILE) {
3646 sources[length] = dst_depth;
3647 length++;
3648 }
3649
3650 if (src_stencil.file != BAD_FILE) {
3651 assert(devinfo->gen >= 9);
3652 assert(bld.dispatch_width() != 16);
3653
3654 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3655 * available on gen9+. As such it's impossible to have both enabled at the
3656 * same time and therefore length cannot overrun the array.
3657 */
3658 assert(length < 15);
3659
3660 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3661 bld.exec_all().annotate("FB write OS")
3662 .emit(FS_OPCODE_PACK_STENCIL_REF, sources[length],
3663 retype(src_stencil, BRW_REGISTER_TYPE_UB));
3664 length++;
3665 }
3666
3667 fs_inst *load;
3668 if (devinfo->gen >= 7) {
3669 /* Send from the GRF */
3670 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3671 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3672 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3673 load->dst = payload;
3674
3675 inst->src[0] = payload;
3676 inst->resize_sources(1);
3677 inst->base_mrf = -1;
3678 } else {
3679 /* Send from the MRF */
3680 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3681 sources, length, payload_header_size);
3682
3683 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3684 * will do this for us if we just give it a COMPR4 destination.
3685 */
3686 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3687 load->dst.nr |= BRW_MRF_COMPR4;
3688
3689 inst->resize_sources(0);
3690 inst->base_mrf = 1;
3691 }
3692
3693 inst->opcode = FS_OPCODE_FB_WRITE;
3694 inst->mlen = load->regs_written;
3695 inst->header_size = header_size;
3696 }
3697
3698 static void
3699 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3700 const fs_reg &coordinate,
3701 const fs_reg &shadow_c,
3702 const fs_reg &lod, const fs_reg &lod2,
3703 const fs_reg &surface,
3704 const fs_reg &sampler,
3705 unsigned coord_components,
3706 unsigned grad_components)
3707 {
3708 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3709 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3710 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3711 fs_reg msg_end = msg_begin;
3712
3713 /* g0 header. */
3714 msg_end = offset(msg_end, bld.group(8, 0), 1);
3715
3716 for (unsigned i = 0; i < coord_components; i++)
3717 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3718 offset(coordinate, bld, i));
3719
3720 msg_end = offset(msg_end, bld, coord_components);
3721
3722 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3723 * require all three components to be present and zero if they are unused.
3724 */
3725 if (coord_components > 0 &&
3726 (has_lod || shadow_c.file != BAD_FILE ||
3727 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3728 for (unsigned i = coord_components; i < 3; i++)
3729 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3730
3731 msg_end = offset(msg_end, bld, 3 - coord_components);
3732 }
3733
3734 if (op == SHADER_OPCODE_TXD) {
3735 /* TXD unsupported in SIMD16 mode. */
3736 assert(bld.dispatch_width() == 8);
3737
3738 /* the slots for u and v are always present, but r is optional */
3739 if (coord_components < 2)
3740 msg_end = offset(msg_end, bld, 2 - coord_components);
3741
3742 /* P = u, v, r
3743 * dPdx = dudx, dvdx, drdx
3744 * dPdy = dudy, dvdy, drdy
3745 *
3746 * 1-arg: Does not exist.
3747 *
3748 * 2-arg: dudx dvdx dudy dvdy
3749 * dPdx.x dPdx.y dPdy.x dPdy.y
3750 * m4 m5 m6 m7
3751 *
3752 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3753 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3754 * m5 m6 m7 m8 m9 m10
3755 */
3756 for (unsigned i = 0; i < grad_components; i++)
3757 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3758
3759 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3760
3761 for (unsigned i = 0; i < grad_components; i++)
3762 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3763
3764 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3765 }
3766
3767 if (has_lod) {
3768 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3769 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3770 */
3771 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3772 bld.dispatch_width() == 16);
3773
3774 const brw_reg_type type =
3775 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3776 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3777 bld.MOV(retype(msg_end, type), lod);
3778 msg_end = offset(msg_end, bld, 1);
3779 }
3780
3781 if (shadow_c.file != BAD_FILE) {
3782 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3783 /* There's no plain shadow compare message, so we use shadow
3784 * compare with a bias of 0.0.
3785 */
3786 bld.MOV(msg_end, brw_imm_f(0.0f));
3787 msg_end = offset(msg_end, bld, 1);
3788 }
3789
3790 bld.MOV(msg_end, shadow_c);
3791 msg_end = offset(msg_end, bld, 1);
3792 }
3793
3794 inst->opcode = op;
3795 inst->src[0] = reg_undef;
3796 inst->src[1] = surface;
3797 inst->src[2] = sampler;
3798 inst->resize_sources(3);
3799 inst->base_mrf = msg_begin.nr;
3800 inst->mlen = msg_end.nr - msg_begin.nr;
3801 inst->header_size = 1;
3802 }
3803
3804 static void
3805 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3806 fs_reg coordinate,
3807 const fs_reg &shadow_c,
3808 fs_reg lod, fs_reg lod2,
3809 const fs_reg &sample_index,
3810 const fs_reg &surface,
3811 const fs_reg &sampler,
3812 const fs_reg &offset_value,
3813 unsigned coord_components,
3814 unsigned grad_components)
3815 {
3816 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3817 fs_reg msg_coords = message;
3818 unsigned header_size = 0;
3819
3820 if (offset_value.file != BAD_FILE) {
3821 /* The offsets set up by the visitor are in the m1 header, so we can't
3822 * go headerless.
3823 */
3824 header_size = 1;
3825 message.nr--;
3826 }
3827
3828 for (unsigned i = 0; i < coord_components; i++) {
3829 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3830 coordinate = offset(coordinate, bld, 1);
3831 }
3832 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3833 fs_reg msg_lod = offset(msg_coords, bld, 4);
3834
3835 if (shadow_c.file != BAD_FILE) {
3836 fs_reg msg_shadow = msg_lod;
3837 bld.MOV(msg_shadow, shadow_c);
3838 msg_lod = offset(msg_shadow, bld, 1);
3839 msg_end = msg_lod;
3840 }
3841
3842 switch (op) {
3843 case SHADER_OPCODE_TXL:
3844 case FS_OPCODE_TXB:
3845 bld.MOV(msg_lod, lod);
3846 msg_end = offset(msg_lod, bld, 1);
3847 break;
3848 case SHADER_OPCODE_TXD:
3849 /**
3850 * P = u, v, r
3851 * dPdx = dudx, dvdx, drdx
3852 * dPdy = dudy, dvdy, drdy
3853 *
3854 * Load up these values:
3855 * - dudx dudy dvdx dvdy drdx drdy
3856 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3857 */
3858 msg_end = msg_lod;
3859 for (unsigned i = 0; i < grad_components; i++) {
3860 bld.MOV(msg_end, lod);
3861 lod = offset(lod, bld, 1);
3862 msg_end = offset(msg_end, bld, 1);
3863
3864 bld.MOV(msg_end, lod2);
3865 lod2 = offset(lod2, bld, 1);
3866 msg_end = offset(msg_end, bld, 1);
3867 }
3868 break;
3869 case SHADER_OPCODE_TXS:
3870 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3871 bld.MOV(msg_lod, lod);
3872 msg_end = offset(msg_lod, bld, 1);
3873 break;
3874 case SHADER_OPCODE_TXF:
3875 msg_lod = offset(msg_coords, bld, 3);
3876 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3877 msg_end = offset(msg_lod, bld, 1);
3878 break;
3879 case SHADER_OPCODE_TXF_CMS:
3880 msg_lod = offset(msg_coords, bld, 3);
3881 /* lod */
3882 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3883 /* sample index */
3884 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3885 msg_end = offset(msg_lod, bld, 2);
3886 break;
3887 default:
3888 break;
3889 }
3890
3891 inst->opcode = op;
3892 inst->src[0] = reg_undef;
3893 inst->src[1] = surface;
3894 inst->src[2] = sampler;
3895 inst->resize_sources(3);
3896 inst->base_mrf = message.nr;
3897 inst->mlen = msg_end.nr - message.nr;
3898 inst->header_size = header_size;
3899
3900 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3901 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3902 }
3903
3904 static bool
3905 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3906 {
3907 if (devinfo->gen < 8 && !devinfo->is_haswell)
3908 return false;
3909
3910 return sampler.file != IMM || sampler.ud >= 16;
3911 }
3912
3913 static void
3914 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3915 fs_reg coordinate,
3916 const fs_reg &shadow_c,
3917 fs_reg lod, fs_reg lod2,
3918 const fs_reg &sample_index,
3919 const fs_reg &mcs,
3920 const fs_reg &surface,
3921 const fs_reg &sampler,
3922 fs_reg offset_value,
3923 unsigned coord_components,
3924 unsigned grad_components)
3925 {
3926 const brw_device_info *devinfo = bld.shader->devinfo;
3927 int reg_width = bld.dispatch_width() / 8;
3928 unsigned header_size = 0, length = 0;
3929 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3930 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3931 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3932
3933 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3934 offset_value.file != BAD_FILE ||
3935 is_high_sampler(devinfo, sampler)) {
3936 /* For general texture offsets (no txf workaround), we need a header to
3937 * put them in. Note that we're only reserving space for it in the
3938 * message payload as it will be initialized implicitly by the
3939 * generator.
3940 *
3941 * TG4 needs to place its channel select in the header, for interaction
3942 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3943 * larger sampler numbers we need to offset the Sampler State Pointer in
3944 * the header.
3945 */
3946 header_size = 1;
3947 sources[0] = fs_reg();
3948 length++;
3949 }
3950
3951 if (shadow_c.file != BAD_FILE) {
3952 bld.MOV(sources[length], shadow_c);
3953 length++;
3954 }
3955
3956 bool coordinate_done = false;
3957
3958 /* The sampler can only meaningfully compute LOD for fragment shader
3959 * messages. For all other stages, we change the opcode to TXL and
3960 * hardcode the LOD to 0.
3961 */
3962 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3963 op == SHADER_OPCODE_TEX) {
3964 op = SHADER_OPCODE_TXL;
3965 lod = brw_imm_f(0.0f);
3966 }
3967
3968 /* Set up the LOD info */
3969 switch (op) {
3970 case FS_OPCODE_TXB:
3971 case SHADER_OPCODE_TXL:
3972 bld.MOV(sources[length], lod);
3973 length++;
3974 break;
3975 case SHADER_OPCODE_TXD:
3976 /* TXD should have been lowered in SIMD16 mode. */
3977 assert(bld.dispatch_width() == 8);
3978
3979 /* Load dPdx and the coordinate together:
3980 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
3981 */
3982 for (unsigned i = 0; i < coord_components; i++) {
3983 bld.MOV(sources[length], coordinate);
3984 coordinate = offset(coordinate, bld, 1);
3985 length++;
3986
3987 /* For cube map array, the coordinate is (u,v,r,ai) but there are
3988 * only derivatives for (u, v, r).
3989 */
3990 if (i < grad_components) {
3991 bld.MOV(sources[length], lod);
3992 lod = offset(lod, bld, 1);
3993 length++;
3994
3995 bld.MOV(sources[length], lod2);
3996 lod2 = offset(lod2, bld, 1);
3997 length++;
3998 }
3999 }
4000
4001 coordinate_done = true;
4002 break;
4003 case SHADER_OPCODE_TXS:
4004 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4005 length++;
4006 break;
4007 case SHADER_OPCODE_TXF:
4008 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4009 * On Gen9 they are u, v, lod, r
4010 */
4011 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4012 coordinate = offset(coordinate, bld, 1);
4013 length++;
4014
4015 if (devinfo->gen >= 9) {
4016 if (coord_components >= 2) {
4017 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4018 coordinate = offset(coordinate, bld, 1);
4019 }
4020 length++;
4021 }
4022
4023 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4024 length++;
4025
4026 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
4027 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4028 coordinate = offset(coordinate, bld, 1);
4029 length++;
4030 }
4031
4032 coordinate_done = true;
4033 break;
4034 case SHADER_OPCODE_TXF_CMS:
4035 case SHADER_OPCODE_TXF_CMS_W:
4036 case SHADER_OPCODE_TXF_UMS:
4037 case SHADER_OPCODE_TXF_MCS:
4038 if (op == SHADER_OPCODE_TXF_UMS ||
4039 op == SHADER_OPCODE_TXF_CMS ||
4040 op == SHADER_OPCODE_TXF_CMS_W) {
4041 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4042 length++;
4043 }
4044
4045 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4046 /* Data from the multisample control surface. */
4047 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4048 length++;
4049
4050 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4051 * the MCS data.
4052 */
4053 if (op == SHADER_OPCODE_TXF_CMS_W) {
4054 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4055 mcs.file == IMM ?
4056 mcs :
4057 offset(mcs, bld, 1));
4058 length++;
4059 }
4060 }
4061
4062 /* There is no offsetting for this message; just copy in the integer
4063 * texture coordinates.
4064 */
4065 for (unsigned i = 0; i < coord_components; i++) {
4066 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4067 coordinate = offset(coordinate, bld, 1);
4068 length++;
4069 }
4070
4071 coordinate_done = true;
4072 break;
4073 case SHADER_OPCODE_TG4_OFFSET:
4074 /* gather4_po_c should have been lowered in SIMD16 mode. */
4075 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
4076
4077 /* More crazy intermixing */
4078 for (unsigned i = 0; i < 2; i++) { /* u, v */
4079 bld.MOV(sources[length], coordinate);
4080 coordinate = offset(coordinate, bld, 1);
4081 length++;
4082 }
4083
4084 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
4085 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
4086 offset_value = offset(offset_value, bld, 1);
4087 length++;
4088 }
4089
4090 if (coord_components == 3) { /* r if present */
4091 bld.MOV(sources[length], coordinate);
4092 coordinate = offset(coordinate, bld, 1);
4093 length++;
4094 }
4095
4096 coordinate_done = true;
4097 break;
4098 default:
4099 break;
4100 }
4101
4102 /* Set up the coordinate (except for cases where it was done above) */
4103 if (!coordinate_done) {
4104 for (unsigned i = 0; i < coord_components; i++) {
4105 bld.MOV(sources[length], coordinate);
4106 coordinate = offset(coordinate, bld, 1);
4107 length++;
4108 }
4109 }
4110
4111 int mlen;
4112 if (reg_width == 2)
4113 mlen = length * reg_width - header_size;
4114 else
4115 mlen = length * reg_width;
4116
4117 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4118 BRW_REGISTER_TYPE_F);
4119 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4120
4121 /* Generate the SEND. */
4122 inst->opcode = op;
4123 inst->src[0] = src_payload;
4124 inst->src[1] = surface;
4125 inst->src[2] = sampler;
4126 inst->resize_sources(3);
4127 inst->base_mrf = -1;
4128 inst->mlen = mlen;
4129 inst->header_size = header_size;
4130
4131 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4132 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4133 }
4134
4135 static void
4136 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4137 {
4138 const brw_device_info *devinfo = bld.shader->devinfo;
4139 const fs_reg &coordinate = inst->src[0];
4140 const fs_reg &shadow_c = inst->src[1];
4141 const fs_reg &lod = inst->src[2];
4142 const fs_reg &lod2 = inst->src[3];
4143 const fs_reg &sample_index = inst->src[4];
4144 const fs_reg &mcs = inst->src[5];
4145 const fs_reg &surface = inst->src[6];
4146 const fs_reg &sampler = inst->src[7];
4147 const fs_reg &offset_value = inst->src[8];
4148 assert(inst->src[9].file == IMM && inst->src[10].file == IMM);
4149 const unsigned coord_components = inst->src[9].ud;
4150 const unsigned grad_components = inst->src[10].ud;
4151
4152 if (devinfo->gen >= 7) {
4153 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4154 shadow_c, lod, lod2, sample_index,
4155 mcs, surface, sampler, offset_value,
4156 coord_components, grad_components);
4157 } else if (devinfo->gen >= 5) {
4158 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4159 shadow_c, lod, lod2, sample_index,
4160 surface, sampler, offset_value,
4161 coord_components, grad_components);
4162 } else {
4163 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4164 shadow_c, lod, lod2,
4165 surface, sampler,
4166 coord_components, grad_components);
4167 }
4168 }
4169
4170 /**
4171 * Initialize the header present in some typed and untyped surface
4172 * messages.
4173 */
4174 static fs_reg
4175 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4176 {
4177 fs_builder ubld = bld.exec_all().group(8, 0);
4178 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4179 ubld.MOV(dst, brw_imm_d(0));
4180 ubld.MOV(component(dst, 7), sample_mask);
4181 return dst;
4182 }
4183
4184 static void
4185 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4186 const fs_reg &sample_mask)
4187 {
4188 /* Get the logical send arguments. */
4189 const fs_reg &addr = inst->src[0];
4190 const fs_reg &src = inst->src[1];
4191 const fs_reg &surface = inst->src[2];
4192 const UNUSED fs_reg &dims = inst->src[3];
4193 const fs_reg &arg = inst->src[4];
4194
4195 /* Calculate the total number of components of the payload. */
4196 const unsigned addr_sz = inst->components_read(0);
4197 const unsigned src_sz = inst->components_read(1);
4198 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4199 const unsigned sz = header_sz + addr_sz + src_sz;
4200
4201 /* Allocate space for the payload. */
4202 fs_reg *const components = new fs_reg[sz];
4203 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4204 unsigned n = 0;
4205
4206 /* Construct the payload. */
4207 if (header_sz)
4208 components[n++] = emit_surface_header(bld, sample_mask);
4209
4210 for (unsigned i = 0; i < addr_sz; i++)
4211 components[n++] = offset(addr, bld, i);
4212
4213 for (unsigned i = 0; i < src_sz; i++)
4214 components[n++] = offset(src, bld, i);
4215
4216 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4217
4218 /* Update the original instruction. */
4219 inst->opcode = op;
4220 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4221 inst->header_size = header_sz;
4222
4223 inst->src[0] = payload;
4224 inst->src[1] = surface;
4225 inst->src[2] = arg;
4226 inst->resize_sources(3);
4227
4228 delete[] components;
4229 }
4230
4231 bool
4232 fs_visitor::lower_logical_sends()
4233 {
4234 bool progress = false;
4235
4236 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4237 const fs_builder ibld(this, block, inst);
4238
4239 switch (inst->opcode) {
4240 case FS_OPCODE_FB_WRITE_LOGICAL:
4241 assert(stage == MESA_SHADER_FRAGMENT);
4242 lower_fb_write_logical_send(ibld, inst,
4243 (const brw_wm_prog_data *)prog_data,
4244 (const brw_wm_prog_key *)key,
4245 payload);
4246 break;
4247
4248 case SHADER_OPCODE_TEX_LOGICAL:
4249 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4250 break;
4251
4252 case SHADER_OPCODE_TXD_LOGICAL:
4253 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4254 break;
4255
4256 case SHADER_OPCODE_TXF_LOGICAL:
4257 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4258 break;
4259
4260 case SHADER_OPCODE_TXL_LOGICAL:
4261 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4262 break;
4263
4264 case SHADER_OPCODE_TXS_LOGICAL:
4265 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4266 break;
4267
4268 case FS_OPCODE_TXB_LOGICAL:
4269 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4270 break;
4271
4272 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4273 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4274 break;
4275
4276 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4277 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4278 break;
4279
4280 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4281 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4282 break;
4283
4284 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4285 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4286 break;
4287
4288 case SHADER_OPCODE_LOD_LOGICAL:
4289 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4290 break;
4291
4292 case SHADER_OPCODE_TG4_LOGICAL:
4293 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4294 break;
4295
4296 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4297 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4298 break;
4299
4300 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4301 lower_surface_logical_send(ibld, inst,
4302 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4303 fs_reg());
4304 break;
4305
4306 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4307 lower_surface_logical_send(ibld, inst,
4308 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4309 ibld.sample_mask_reg());
4310 break;
4311
4312 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4313 lower_surface_logical_send(ibld, inst,
4314 SHADER_OPCODE_UNTYPED_ATOMIC,
4315 ibld.sample_mask_reg());
4316 break;
4317
4318 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4319 lower_surface_logical_send(ibld, inst,
4320 SHADER_OPCODE_TYPED_SURFACE_READ,
4321 brw_imm_d(0xffff));
4322 break;
4323
4324 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4325 lower_surface_logical_send(ibld, inst,
4326 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4327 ibld.sample_mask_reg());
4328 break;
4329
4330 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4331 lower_surface_logical_send(ibld, inst,
4332 SHADER_OPCODE_TYPED_ATOMIC,
4333 ibld.sample_mask_reg());
4334 break;
4335
4336 default:
4337 continue;
4338 }
4339
4340 progress = true;
4341 }
4342
4343 if (progress)
4344 invalidate_live_intervals();
4345
4346 return progress;
4347 }
4348
4349 /**
4350 * Get the closest native SIMD width supported by the hardware for instruction
4351 * \p inst. The instruction will be left untouched by
4352 * fs_visitor::lower_simd_width() if the returned value is equal to the
4353 * original execution size.
4354 */
4355 static unsigned
4356 get_lowered_simd_width(const struct brw_device_info *devinfo,
4357 const fs_inst *inst)
4358 {
4359 switch (inst->opcode) {
4360 case BRW_OPCODE_MOV:
4361 case BRW_OPCODE_SEL:
4362 case BRW_OPCODE_NOT:
4363 case BRW_OPCODE_AND:
4364 case BRW_OPCODE_OR:
4365 case BRW_OPCODE_XOR:
4366 case BRW_OPCODE_SHR:
4367 case BRW_OPCODE_SHL:
4368 case BRW_OPCODE_ASR:
4369 case BRW_OPCODE_CMP:
4370 case BRW_OPCODE_CMPN:
4371 case BRW_OPCODE_CSEL:
4372 case BRW_OPCODE_F32TO16:
4373 case BRW_OPCODE_F16TO32:
4374 case BRW_OPCODE_BFREV:
4375 case BRW_OPCODE_BFE:
4376 case BRW_OPCODE_BFI1:
4377 case BRW_OPCODE_BFI2:
4378 case BRW_OPCODE_ADD:
4379 case BRW_OPCODE_MUL:
4380 case BRW_OPCODE_AVG:
4381 case BRW_OPCODE_FRC:
4382 case BRW_OPCODE_RNDU:
4383 case BRW_OPCODE_RNDD:
4384 case BRW_OPCODE_RNDE:
4385 case BRW_OPCODE_RNDZ:
4386 case BRW_OPCODE_LZD:
4387 case BRW_OPCODE_FBH:
4388 case BRW_OPCODE_FBL:
4389 case BRW_OPCODE_CBIT:
4390 case BRW_OPCODE_SAD2:
4391 case BRW_OPCODE_MAD:
4392 case BRW_OPCODE_LRP:
4393 case SHADER_OPCODE_RCP:
4394 case SHADER_OPCODE_RSQ:
4395 case SHADER_OPCODE_SQRT:
4396 case SHADER_OPCODE_EXP2:
4397 case SHADER_OPCODE_LOG2:
4398 case SHADER_OPCODE_POW:
4399 case SHADER_OPCODE_INT_QUOTIENT:
4400 case SHADER_OPCODE_INT_REMAINDER:
4401 case SHADER_OPCODE_SIN:
4402 case SHADER_OPCODE_COS: {
4403 /* According to the PRMs:
4404 * "A. In Direct Addressing mode, a source cannot span more than 2
4405 * adjacent GRF registers.
4406 * B. A destination cannot span more than 2 adjacent GRF registers."
4407 *
4408 * Look for the source or destination with the largest register region
4409 * which is the one that is going to limit the overal execution size of
4410 * the instruction due to this rule.
4411 */
4412 unsigned reg_count = inst->regs_written;
4413
4414 for (unsigned i = 0; i < inst->sources; i++)
4415 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4416
4417 /* Calculate the maximum execution size of the instruction based on the
4418 * factor by which it goes over the hardware limit of 2 GRFs.
4419 */
4420 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4421 }
4422 case SHADER_OPCODE_MULH:
4423 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4424 * is 8-wide on Gen7+.
4425 */
4426 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4427
4428 case FS_OPCODE_FB_WRITE_LOGICAL:
4429 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4430 * here.
4431 */
4432 assert(devinfo->gen != 6 ||
4433 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4434 inst->exec_size == 8);
4435 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4436 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4437 8 : inst->exec_size);
4438
4439 case SHADER_OPCODE_TXD_LOGICAL:
4440 /* TXD is unsupported in SIMD16 mode. */
4441 return 8;
4442
4443 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4444 /* gather4_po_c is unsupported in SIMD16 mode. */
4445 const fs_reg &shadow_c = inst->src[1];
4446 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4447 }
4448 case SHADER_OPCODE_TXL_LOGICAL:
4449 case FS_OPCODE_TXB_LOGICAL: {
4450 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4451 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4452 * mode because the message exceeds the maximum length of 11.
4453 */
4454 const fs_reg &shadow_c = inst->src[1];
4455 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4456 return 16;
4457 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4458 return 8;
4459 else
4460 return inst->exec_size;
4461 }
4462 case SHADER_OPCODE_TXF_LOGICAL:
4463 case SHADER_OPCODE_TXS_LOGICAL:
4464 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4465 * messages. Use SIMD16 instead.
4466 */
4467 if (devinfo->gen == 4)
4468 return 16;
4469 else
4470 return inst->exec_size;
4471
4472 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4473 /* This opcode can take up to 6 arguments which means that in some
4474 * circumstances it can end up with a message that is too long in SIMD16
4475 * mode.
4476 */
4477 const unsigned coord_components = inst->src[8].ud;
4478 /* First three arguments are the sample index and the two arguments for
4479 * the MCS data.
4480 */
4481 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4482 return 8;
4483 else
4484 return inst->exec_size;
4485 }
4486
4487 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4488 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4489 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4490 return 8;
4491
4492 case SHADER_OPCODE_MOV_INDIRECT:
4493 /* Prior to Broadwell, we only have 8 address subregisters */
4494 return devinfo->gen < 8 ? 8 : inst->exec_size;
4495
4496 default:
4497 return inst->exec_size;
4498 }
4499 }
4500
4501 /**
4502 * The \p rows array of registers represents a \p num_rows by \p num_columns
4503 * matrix in row-major order, write it in column-major order into the register
4504 * passed as destination. \p stride gives the separation between matrix
4505 * elements in the input in fs_builder::dispatch_width() units.
4506 */
4507 static void
4508 emit_transpose(const fs_builder &bld,
4509 const fs_reg &dst, const fs_reg *rows,
4510 unsigned num_rows, unsigned num_columns, unsigned stride)
4511 {
4512 fs_reg *const components = new fs_reg[num_rows * num_columns];
4513
4514 for (unsigned i = 0; i < num_columns; ++i) {
4515 for (unsigned j = 0; j < num_rows; ++j)
4516 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4517 }
4518
4519 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4520
4521 delete[] components;
4522 }
4523
4524 bool
4525 fs_visitor::lower_simd_width()
4526 {
4527 bool progress = false;
4528
4529 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4530 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4531
4532 if (lower_width != inst->exec_size) {
4533 /* Builder matching the original instruction. We may also need to
4534 * emit an instruction of width larger than the original, set the
4535 * execution size of the builder to the highest of both for now so
4536 * we're sure that both cases can be handled.
4537 */
4538 const fs_builder ibld = bld.at(block, inst)
4539 .exec_all(inst->force_writemask_all)
4540 .group(MAX2(inst->exec_size, lower_width),
4541 inst->force_sechalf);
4542
4543 /* Split the copies in chunks of the execution width of either the
4544 * original or the lowered instruction, whichever is lower.
4545 */
4546 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4547 const unsigned n = inst->exec_size / copy_width;
4548 const unsigned dst_size = inst->regs_written * REG_SIZE /
4549 inst->dst.component_size(inst->exec_size);
4550 fs_reg dsts[4];
4551
4552 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4553 !inst->writes_accumulator && !inst->mlen);
4554
4555 for (unsigned i = 0; i < n; i++) {
4556 /* Emit a copy of the original instruction with the lowered width.
4557 * If the EOT flag was set throw it away except for the last
4558 * instruction to avoid killing the thread prematurely.
4559 */
4560 fs_inst split_inst = *inst;
4561 split_inst.exec_size = lower_width;
4562 split_inst.eot = inst->eot && i == n - 1;
4563
4564 /* Select the correct channel enables for the i-th group, then
4565 * transform the sources and destination and emit the lowered
4566 * instruction.
4567 */
4568 const fs_builder lbld = ibld.group(lower_width, i);
4569
4570 for (unsigned j = 0; j < inst->sources; j++) {
4571 if (inst->src[j].file != BAD_FILE &&
4572 !is_uniform(inst->src[j])) {
4573 /* Get the i-th copy_width-wide chunk of the source. */
4574 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4575 const unsigned src_size = inst->components_read(j);
4576
4577 /* Use a trivial transposition to copy one every n
4578 * copy_width-wide components of the register into a
4579 * temporary passed as source to the lowered instruction.
4580 */
4581 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4582 emit_transpose(lbld.group(copy_width, 0),
4583 split_inst.src[j], &src, 1, src_size, n);
4584 }
4585 }
4586
4587 if (inst->regs_written) {
4588 /* Allocate enough space to hold the result of the lowered
4589 * instruction and fix up the number of registers written.
4590 */
4591 split_inst.dst = dsts[i] =
4592 lbld.vgrf(inst->dst.type, dst_size);
4593 split_inst.regs_written =
4594 DIV_ROUND_UP(inst->regs_written * lower_width,
4595 inst->exec_size);
4596 }
4597
4598 lbld.emit(split_inst);
4599 }
4600
4601 if (inst->regs_written) {
4602 /* Distance between useful channels in the temporaries, skipping
4603 * garbage if the lowered instruction is wider than the original.
4604 */
4605 const unsigned m = lower_width / copy_width;
4606
4607 /* Interleave the components of the result from the lowered
4608 * instructions. We need to set exec_all() when copying more than
4609 * one half per component, because LOAD_PAYLOAD (in terms of which
4610 * emit_transpose is implemented) can only use the same channel
4611 * enable signals for all of its non-header sources.
4612 */
4613 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4614 .group(copy_width, 0),
4615 inst->dst, dsts, n, dst_size, m);
4616 }
4617
4618 inst->remove(block);
4619 progress = true;
4620 }
4621 }
4622
4623 if (progress)
4624 invalidate_live_intervals();
4625
4626 return progress;
4627 }
4628
4629 void
4630 fs_visitor::dump_instructions()
4631 {
4632 dump_instructions(NULL);
4633 }
4634
4635 void
4636 fs_visitor::dump_instructions(const char *name)
4637 {
4638 FILE *file = stderr;
4639 if (name && geteuid() != 0) {
4640 file = fopen(name, "w");
4641 if (!file)
4642 file = stderr;
4643 }
4644
4645 if (cfg) {
4646 calculate_register_pressure();
4647 int ip = 0, max_pressure = 0;
4648 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4649 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4650 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4651 dump_instruction(inst, file);
4652 ip++;
4653 }
4654 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4655 } else {
4656 int ip = 0;
4657 foreach_in_list(backend_instruction, inst, &instructions) {
4658 fprintf(file, "%4d: ", ip++);
4659 dump_instruction(inst, file);
4660 }
4661 }
4662
4663 if (file != stderr) {
4664 fclose(file);
4665 }
4666 }
4667
4668 void
4669 fs_visitor::dump_instruction(backend_instruction *be_inst)
4670 {
4671 dump_instruction(be_inst, stderr);
4672 }
4673
4674 void
4675 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4676 {
4677 fs_inst *inst = (fs_inst *)be_inst;
4678
4679 if (inst->predicate) {
4680 fprintf(file, "(%cf0.%d) ",
4681 inst->predicate_inverse ? '-' : '+',
4682 inst->flag_subreg);
4683 }
4684
4685 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4686 if (inst->saturate)
4687 fprintf(file, ".sat");
4688 if (inst->conditional_mod) {
4689 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4690 if (!inst->predicate &&
4691 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4692 inst->opcode != BRW_OPCODE_IF &&
4693 inst->opcode != BRW_OPCODE_WHILE))) {
4694 fprintf(file, ".f0.%d", inst->flag_subreg);
4695 }
4696 }
4697 fprintf(file, "(%d) ", inst->exec_size);
4698
4699 if (inst->mlen) {
4700 fprintf(file, "(mlen: %d) ", inst->mlen);
4701 }
4702
4703 switch (inst->dst.file) {
4704 case VGRF:
4705 fprintf(file, "vgrf%d", inst->dst.nr);
4706 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
4707 inst->dst.subreg_offset)
4708 fprintf(file, "+%d.%d",
4709 inst->dst.reg_offset, inst->dst.subreg_offset);
4710 break;
4711 case FIXED_GRF:
4712 fprintf(file, "g%d", inst->dst.nr);
4713 break;
4714 case MRF:
4715 fprintf(file, "m%d", inst->dst.nr);
4716 break;
4717 case BAD_FILE:
4718 fprintf(file, "(null)");
4719 break;
4720 case UNIFORM:
4721 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
4722 break;
4723 case ATTR:
4724 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
4725 break;
4726 case ARF:
4727 switch (inst->dst.nr) {
4728 case BRW_ARF_NULL:
4729 fprintf(file, "null");
4730 break;
4731 case BRW_ARF_ADDRESS:
4732 fprintf(file, "a0.%d", inst->dst.subnr);
4733 break;
4734 case BRW_ARF_ACCUMULATOR:
4735 fprintf(file, "acc%d", inst->dst.subnr);
4736 break;
4737 case BRW_ARF_FLAG:
4738 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4739 break;
4740 default:
4741 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4742 break;
4743 }
4744 if (inst->dst.subnr)
4745 fprintf(file, "+%d", inst->dst.subnr);
4746 break;
4747 case IMM:
4748 unreachable("not reached");
4749 }
4750 if (inst->dst.stride != 1)
4751 fprintf(file, "<%u>", inst->dst.stride);
4752 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4753
4754 for (int i = 0; i < inst->sources; i++) {
4755 if (inst->src[i].negate)
4756 fprintf(file, "-");
4757 if (inst->src[i].abs)
4758 fprintf(file, "|");
4759 switch (inst->src[i].file) {
4760 case VGRF:
4761 fprintf(file, "vgrf%d", inst->src[i].nr);
4762 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
4763 inst->src[i].subreg_offset)
4764 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4765 inst->src[i].subreg_offset);
4766 break;
4767 case FIXED_GRF:
4768 fprintf(file, "g%d", inst->src[i].nr);
4769 break;
4770 case MRF:
4771 fprintf(file, "***m%d***", inst->src[i].nr);
4772 break;
4773 case ATTR:
4774 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
4775 break;
4776 case UNIFORM:
4777 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
4778 if (inst->src[i].subreg_offset) {
4779 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4780 inst->src[i].subreg_offset);
4781 }
4782 break;
4783 case BAD_FILE:
4784 fprintf(file, "(null)");
4785 break;
4786 case IMM:
4787 switch (inst->src[i].type) {
4788 case BRW_REGISTER_TYPE_F:
4789 fprintf(file, "%ff", inst->src[i].f);
4790 break;
4791 case BRW_REGISTER_TYPE_W:
4792 case BRW_REGISTER_TYPE_D:
4793 fprintf(file, "%dd", inst->src[i].d);
4794 break;
4795 case BRW_REGISTER_TYPE_UW:
4796 case BRW_REGISTER_TYPE_UD:
4797 fprintf(file, "%uu", inst->src[i].ud);
4798 break;
4799 case BRW_REGISTER_TYPE_VF:
4800 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4801 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
4802 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
4803 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
4804 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
4805 break;
4806 default:
4807 fprintf(file, "???");
4808 break;
4809 }
4810 break;
4811 case ARF:
4812 switch (inst->src[i].nr) {
4813 case BRW_ARF_NULL:
4814 fprintf(file, "null");
4815 break;
4816 case BRW_ARF_ADDRESS:
4817 fprintf(file, "a0.%d", inst->src[i].subnr);
4818 break;
4819 case BRW_ARF_ACCUMULATOR:
4820 fprintf(file, "acc%d", inst->src[i].subnr);
4821 break;
4822 case BRW_ARF_FLAG:
4823 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4824 break;
4825 default:
4826 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4827 break;
4828 }
4829 if (inst->src[i].subnr)
4830 fprintf(file, "+%d", inst->src[i].subnr);
4831 break;
4832 }
4833 if (inst->src[i].abs)
4834 fprintf(file, "|");
4835
4836 if (inst->src[i].file != IMM) {
4837 unsigned stride;
4838 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
4839 unsigned hstride = inst->src[i].hstride;
4840 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
4841 } else {
4842 stride = inst->src[i].stride;
4843 }
4844 if (stride != 1)
4845 fprintf(file, "<%u>", stride);
4846
4847 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4848 }
4849
4850 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4851 fprintf(file, ", ");
4852 }
4853
4854 fprintf(file, " ");
4855
4856 if (inst->force_writemask_all)
4857 fprintf(file, "NoMask ");
4858
4859 if (dispatch_width == 16 && inst->exec_size == 8) {
4860 if (inst->force_sechalf)
4861 fprintf(file, "2ndhalf ");
4862 else
4863 fprintf(file, "1sthalf ");
4864 }
4865
4866 fprintf(file, "\n");
4867 }
4868
4869 /**
4870 * Possibly returns an instruction that set up @param reg.
4871 *
4872 * Sometimes we want to take the result of some expression/variable
4873 * dereference tree and rewrite the instruction generating the result
4874 * of the tree. When processing the tree, we know that the
4875 * instructions generated are all writing temporaries that are dead
4876 * outside of this tree. So, if we have some instructions that write
4877 * a temporary, we're free to point that temp write somewhere else.
4878 *
4879 * Note that this doesn't guarantee that the instruction generated
4880 * only reg -- it might be the size=4 destination of a texture instruction.
4881 */
4882 fs_inst *
4883 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4884 fs_inst *end,
4885 const fs_reg &reg)
4886 {
4887 if (end == start ||
4888 end->is_partial_write() ||
4889 !reg.equals(end->dst)) {
4890 return NULL;
4891 } else {
4892 return end;
4893 }
4894 }
4895
4896 void
4897 fs_visitor::setup_payload_gen6()
4898 {
4899 bool uses_depth =
4900 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4901 unsigned barycentric_interp_modes =
4902 (stage == MESA_SHADER_FRAGMENT) ?
4903 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4904
4905 assert(devinfo->gen >= 6);
4906
4907 /* R0-1: masks, pixel X/Y coordinates. */
4908 payload.num_regs = 2;
4909 /* R2: only for 32-pixel dispatch.*/
4910
4911 /* R3-26: barycentric interpolation coordinates. These appear in the
4912 * same order that they appear in the brw_wm_barycentric_interp_mode
4913 * enum. Each set of coordinates occupies 2 registers if dispatch width
4914 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4915 * appear if they were enabled using the "Barycentric Interpolation
4916 * Mode" bits in WM_STATE.
4917 */
4918 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4919 if (barycentric_interp_modes & (1 << i)) {
4920 payload.barycentric_coord_reg[i] = payload.num_regs;
4921 payload.num_regs += 2;
4922 if (dispatch_width == 16) {
4923 payload.num_regs += 2;
4924 }
4925 }
4926 }
4927
4928 /* R27: interpolated depth if uses source depth */
4929 if (uses_depth) {
4930 payload.source_depth_reg = payload.num_regs;
4931 payload.num_regs++;
4932 if (dispatch_width == 16) {
4933 /* R28: interpolated depth if not SIMD8. */
4934 payload.num_regs++;
4935 }
4936 }
4937 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4938 if (uses_depth) {
4939 payload.source_w_reg = payload.num_regs;
4940 payload.num_regs++;
4941 if (dispatch_width == 16) {
4942 /* R30: interpolated W if not SIMD8. */
4943 payload.num_regs++;
4944 }
4945 }
4946
4947 if (stage == MESA_SHADER_FRAGMENT) {
4948 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4949 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4950 prog_data->uses_pos_offset = key->compute_pos_offset;
4951 /* R31: MSAA position offsets. */
4952 if (prog_data->uses_pos_offset) {
4953 payload.sample_pos_reg = payload.num_regs;
4954 payload.num_regs++;
4955 }
4956 }
4957
4958 /* R32: MSAA input coverage mask */
4959 if (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) {
4960 assert(devinfo->gen >= 7);
4961 payload.sample_mask_in_reg = payload.num_regs;
4962 payload.num_regs++;
4963 if (dispatch_width == 16) {
4964 /* R33: input coverage mask if not SIMD8. */
4965 payload.num_regs++;
4966 }
4967 }
4968
4969 /* R34-: bary for 32-pixel. */
4970 /* R58-59: interp W for 32-pixel. */
4971
4972 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
4973 source_depth_to_render_target = true;
4974 }
4975 }
4976
4977 void
4978 fs_visitor::setup_vs_payload()
4979 {
4980 /* R0: thread header, R1: urb handles */
4981 payload.num_regs = 2;
4982 }
4983
4984 /**
4985 * We are building the local ID push constant data using the simplest possible
4986 * method. We simply push the local IDs directly as they should appear in the
4987 * registers for the uvec3 gl_LocalInvocationID variable.
4988 *
4989 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
4990 * registers worth of push constant space.
4991 *
4992 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
4993 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
4994 * to coordinated.
4995 *
4996 * FINISHME: There are a few easy optimizations to consider.
4997 *
4998 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
4999 * no need for using push constant space for that dimension.
5000 *
5001 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
5002 * easily use 16-bit words rather than 32-bit dwords in the push constant
5003 * data.
5004 *
5005 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
5006 * conveying the data, and thereby reduce push constant usage.
5007 *
5008 */
5009 void
5010 fs_visitor::setup_gs_payload()
5011 {
5012 assert(stage == MESA_SHADER_GEOMETRY);
5013
5014 struct brw_gs_prog_data *gs_prog_data =
5015 (struct brw_gs_prog_data *) prog_data;
5016 struct brw_vue_prog_data *vue_prog_data =
5017 (struct brw_vue_prog_data *) prog_data;
5018
5019 /* R0: thread header, R1: output URB handles */
5020 payload.num_regs = 2;
5021
5022 if (gs_prog_data->include_primitive_id) {
5023 /* R2: Primitive ID 0..7 */
5024 payload.num_regs++;
5025 }
5026
5027 /* Use a maximum of 32 registers for push-model inputs. */
5028 const unsigned max_push_components = 32;
5029
5030 /* If pushing our inputs would take too many registers, reduce the URB read
5031 * length (which is in HWords, or 8 registers), and resort to pulling.
5032 *
5033 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5034 * have to multiply by VerticesIn to obtain the total storage requirement.
5035 */
5036 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5037 max_push_components) {
5038 gs_prog_data->base.include_vue_handles = true;
5039
5040 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5041 payload.num_regs += nir->info.gs.vertices_in;
5042
5043 vue_prog_data->urb_read_length =
5044 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5045 }
5046 }
5047
5048 void
5049 fs_visitor::setup_cs_payload()
5050 {
5051 assert(devinfo->gen >= 7);
5052 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
5053
5054 payload.num_regs = 1;
5055
5056 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
5057 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
5058 payload.local_invocation_id_reg = payload.num_regs;
5059 payload.num_regs += prog_data->local_invocation_id_regs;
5060 }
5061 }
5062
5063 void
5064 fs_visitor::calculate_register_pressure()
5065 {
5066 invalidate_live_intervals();
5067 calculate_live_intervals();
5068
5069 unsigned num_instructions = 0;
5070 foreach_block(block, cfg)
5071 num_instructions += block->instructions.length();
5072
5073 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5074
5075 for (unsigned reg = 0; reg < alloc.count; reg++) {
5076 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5077 regs_live_at_ip[ip] += alloc.sizes[reg];
5078 }
5079 }
5080
5081 void
5082 fs_visitor::optimize()
5083 {
5084 /* Start by validating the shader we currently have. */
5085 validate();
5086
5087 /* bld is the common builder object pointing at the end of the program we
5088 * used to translate it into i965 IR. For the optimization and lowering
5089 * passes coming next, any code added after the end of the program without
5090 * having explicitly called fs_builder::at() clearly points at a mistake.
5091 * Ideally optimization passes wouldn't be part of the visitor so they
5092 * wouldn't have access to bld at all, but they do, so just in case some
5093 * pass forgets to ask for a location explicitly set it to NULL here to
5094 * make it trip. The dispatch width is initialized to a bogus value to
5095 * make sure that optimizations set the execution controls explicitly to
5096 * match the code they are manipulating instead of relying on the defaults.
5097 */
5098 bld = fs_builder(this, 64);
5099
5100 assign_constant_locations();
5101 lower_constant_loads();
5102
5103 validate();
5104
5105 split_virtual_grfs();
5106 validate();
5107
5108 #define OPT(pass, args...) ({ \
5109 pass_num++; \
5110 bool this_progress = pass(args); \
5111 \
5112 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5113 char filename[64]; \
5114 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5115 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5116 \
5117 backend_shader::dump_instructions(filename); \
5118 } \
5119 \
5120 validate(); \
5121 \
5122 progress = progress || this_progress; \
5123 this_progress; \
5124 })
5125
5126 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5127 char filename[64];
5128 snprintf(filename, 64, "%s%d-%s-00-start",
5129 stage_abbrev, dispatch_width, nir->info.name);
5130
5131 backend_shader::dump_instructions(filename);
5132 }
5133
5134 bool progress = false;
5135 int iteration = 0;
5136 int pass_num = 0;
5137
5138 OPT(lower_simd_width);
5139 OPT(lower_logical_sends);
5140
5141 do {
5142 progress = false;
5143 pass_num = 0;
5144 iteration++;
5145
5146 OPT(remove_duplicate_mrf_writes);
5147
5148 OPT(opt_algebraic);
5149 OPT(opt_cse);
5150 OPT(opt_copy_propagate);
5151 OPT(opt_predicated_break, this);
5152 OPT(opt_cmod_propagation);
5153 OPT(dead_code_eliminate);
5154 OPT(opt_peephole_sel);
5155 OPT(dead_control_flow_eliminate, this);
5156 OPT(opt_register_renaming);
5157 OPT(opt_redundant_discard_jumps);
5158 OPT(opt_saturate_propagation);
5159 OPT(opt_zero_samples);
5160 OPT(register_coalesce);
5161 OPT(compute_to_mrf);
5162 OPT(eliminate_find_live_channel);
5163
5164 OPT(compact_virtual_grfs);
5165 } while (progress);
5166
5167 pass_num = 0;
5168
5169 OPT(opt_sampler_eot);
5170
5171 if (OPT(lower_load_payload)) {
5172 split_virtual_grfs();
5173 OPT(register_coalesce);
5174 OPT(compute_to_mrf);
5175 OPT(dead_code_eliminate);
5176 }
5177
5178 OPT(opt_combine_constants);
5179 OPT(lower_integer_multiplication);
5180
5181 lower_uniform_pull_constant_loads();
5182
5183 validate();
5184 }
5185
5186 /**
5187 * Three source instruction must have a GRF/MRF destination register.
5188 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5189 */
5190 void
5191 fs_visitor::fixup_3src_null_dest()
5192 {
5193 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5194 if (inst->is_3src() && inst->dst.is_null()) {
5195 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5196 inst->dst.type);
5197 }
5198 }
5199 }
5200
5201 void
5202 fs_visitor::allocate_registers()
5203 {
5204 bool allocated_without_spills;
5205
5206 static const enum instruction_scheduler_mode pre_modes[] = {
5207 SCHEDULE_PRE,
5208 SCHEDULE_PRE_NON_LIFO,
5209 SCHEDULE_PRE_LIFO,
5210 };
5211
5212 /* Try each scheduling heuristic to see if it can successfully register
5213 * allocate without spilling. They should be ordered by decreasing
5214 * performance but increasing likelihood of allocating.
5215 */
5216 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5217 schedule_instructions(pre_modes[i]);
5218
5219 if (0) {
5220 assign_regs_trivial();
5221 allocated_without_spills = true;
5222 } else {
5223 allocated_without_spills = assign_regs(false);
5224 }
5225 if (allocated_without_spills)
5226 break;
5227 }
5228
5229 if (!allocated_without_spills) {
5230 /* We assume that any spilling is worse than just dropping back to
5231 * SIMD8. There's probably actually some intermediate point where
5232 * SIMD16 with a couple of spills is still better.
5233 */
5234 if (dispatch_width == 16) {
5235 fail("Failure to register allocate. Reduce number of "
5236 "live scalar values to avoid this.");
5237 } else {
5238 compiler->shader_perf_log(log_data,
5239 "%s shader triggered register spilling. "
5240 "Try reducing the number of live scalar "
5241 "values to improve performance.\n",
5242 stage_name);
5243 }
5244
5245 /* Since we're out of heuristics, just go spill registers until we
5246 * get an allocation.
5247 */
5248 while (!assign_regs(true)) {
5249 if (failed)
5250 break;
5251 }
5252 }
5253
5254 /* This must come after all optimization and register allocation, since
5255 * it inserts dead code that happens to have side effects, and it does
5256 * so based on the actual physical registers in use.
5257 */
5258 insert_gen4_send_dependency_workarounds();
5259
5260 if (failed)
5261 return;
5262
5263 schedule_instructions(SCHEDULE_POST);
5264
5265 if (last_scratch > 0)
5266 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5267 }
5268
5269 bool
5270 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5271 {
5272 assert(stage == MESA_SHADER_VERTEX);
5273
5274 setup_vs_payload();
5275
5276 if (shader_time_index >= 0)
5277 emit_shader_time_begin();
5278
5279 emit_nir_code();
5280
5281 if (failed)
5282 return false;
5283
5284 compute_clip_distance(clip_planes);
5285
5286 emit_urb_writes();
5287
5288 if (shader_time_index >= 0)
5289 emit_shader_time_end();
5290
5291 calculate_cfg();
5292
5293 optimize();
5294
5295 assign_curb_setup();
5296 assign_vs_urb_setup();
5297
5298 fixup_3src_null_dest();
5299 allocate_registers();
5300
5301 return !failed;
5302 }
5303
5304 bool
5305 fs_visitor::run_tes()
5306 {
5307 assert(stage == MESA_SHADER_TESS_EVAL);
5308
5309 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
5310 payload.num_regs = 5;
5311
5312 if (shader_time_index >= 0)
5313 emit_shader_time_begin();
5314
5315 emit_nir_code();
5316
5317 if (failed)
5318 return false;
5319
5320 emit_urb_writes();
5321
5322 if (shader_time_index >= 0)
5323 emit_shader_time_end();
5324
5325 calculate_cfg();
5326
5327 optimize();
5328
5329 assign_curb_setup();
5330 assign_tes_urb_setup();
5331
5332 fixup_3src_null_dest();
5333 allocate_registers();
5334
5335 return !failed;
5336 }
5337
5338 bool
5339 fs_visitor::run_gs()
5340 {
5341 assert(stage == MESA_SHADER_GEOMETRY);
5342
5343 setup_gs_payload();
5344
5345 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
5346
5347 if (gs_compile->control_data_header_size_bits > 0) {
5348 /* Create a VGRF to store accumulated control data bits. */
5349 this->control_data_bits = vgrf(glsl_type::uint_type);
5350
5351 /* If we're outputting more than 32 control data bits, then EmitVertex()
5352 * will set control_data_bits to 0 after emitting the first vertex.
5353 * Otherwise, we need to initialize it to 0 here.
5354 */
5355 if (gs_compile->control_data_header_size_bits <= 32) {
5356 const fs_builder abld = bld.annotate("initialize control data bits");
5357 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
5358 }
5359 }
5360
5361 if (shader_time_index >= 0)
5362 emit_shader_time_begin();
5363
5364 emit_nir_code();
5365
5366 emit_gs_thread_end();
5367
5368 if (shader_time_index >= 0)
5369 emit_shader_time_end();
5370
5371 if (failed)
5372 return false;
5373
5374 calculate_cfg();
5375
5376 optimize();
5377
5378 assign_curb_setup();
5379 assign_gs_urb_setup();
5380
5381 fixup_3src_null_dest();
5382 allocate_registers();
5383
5384 return !failed;
5385 }
5386
5387 bool
5388 fs_visitor::run_fs(bool do_rep_send)
5389 {
5390 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
5391 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
5392
5393 assert(stage == MESA_SHADER_FRAGMENT);
5394
5395 if (devinfo->gen >= 6)
5396 setup_payload_gen6();
5397 else
5398 setup_payload_gen4();
5399
5400 if (0) {
5401 emit_dummy_fs();
5402 } else if (do_rep_send) {
5403 assert(dispatch_width == 16);
5404 emit_repclear_shader();
5405 } else {
5406 if (shader_time_index >= 0)
5407 emit_shader_time_begin();
5408
5409 calculate_urb_setup();
5410 if (nir->info.inputs_read > 0) {
5411 if (devinfo->gen < 6)
5412 emit_interpolation_setup_gen4();
5413 else
5414 emit_interpolation_setup_gen6();
5415 }
5416
5417 /* We handle discards by keeping track of the still-live pixels in f0.1.
5418 * Initialize it with the dispatched pixels.
5419 */
5420 if (wm_prog_data->uses_kill) {
5421 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5422 discard_init->flag_subreg = 1;
5423 }
5424
5425 /* Generate FS IR for main(). (the visitor only descends into
5426 * functions called "main").
5427 */
5428 emit_nir_code();
5429
5430 if (failed)
5431 return false;
5432
5433 if (wm_prog_data->uses_kill)
5434 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5435
5436 if (wm_key->alpha_test_func)
5437 emit_alpha_test();
5438
5439 emit_fb_writes();
5440
5441 if (shader_time_index >= 0)
5442 emit_shader_time_end();
5443
5444 calculate_cfg();
5445
5446 optimize();
5447
5448 assign_curb_setup();
5449 assign_urb_setup();
5450
5451 fixup_3src_null_dest();
5452 allocate_registers();
5453
5454 if (failed)
5455 return false;
5456 }
5457
5458 if (dispatch_width == 8)
5459 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5460 else
5461 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5462
5463 return !failed;
5464 }
5465
5466 bool
5467 fs_visitor::run_cs()
5468 {
5469 assert(stage == MESA_SHADER_COMPUTE);
5470
5471 setup_cs_payload();
5472
5473 if (shader_time_index >= 0)
5474 emit_shader_time_begin();
5475
5476 emit_nir_code();
5477
5478 if (failed)
5479 return false;
5480
5481 emit_cs_terminate();
5482
5483 if (shader_time_index >= 0)
5484 emit_shader_time_end();
5485
5486 calculate_cfg();
5487
5488 optimize();
5489
5490 assign_curb_setup();
5491
5492 fixup_3src_null_dest();
5493 allocate_registers();
5494
5495 if (failed)
5496 return false;
5497
5498 return !failed;
5499 }
5500
5501 /**
5502 * Return a bitfield where bit n is set if barycentric interpolation mode n
5503 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
5504 */
5505 static unsigned
5506 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
5507 bool shade_model_flat,
5508 bool persample_shading,
5509 const nir_shader *shader)
5510 {
5511 unsigned barycentric_interp_modes = 0;
5512
5513 nir_foreach_variable(var, &shader->inputs) {
5514 enum glsl_interp_qualifier interp_qualifier =
5515 (enum glsl_interp_qualifier)var->data.interpolation;
5516 bool is_centroid = var->data.centroid && !persample_shading;
5517 bool is_sample = var->data.sample || persample_shading;
5518 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5519 (var->data.location == VARYING_SLOT_COL1);
5520
5521 /* Ignore WPOS and FACE, because they don't require interpolation. */
5522 if (var->data.location == VARYING_SLOT_POS ||
5523 var->data.location == VARYING_SLOT_FACE)
5524 continue;
5525
5526 /* Determine the set (or sets) of barycentric coordinates needed to
5527 * interpolate this variable. Note that when
5528 * brw->needs_unlit_centroid_workaround is set, centroid interpolation
5529 * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
5530 * for lit pixels, so we need both sets of barycentric coordinates.
5531 */
5532 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
5533 if (is_centroid) {
5534 barycentric_interp_modes |=
5535 1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
5536 } else if (is_sample) {
5537 barycentric_interp_modes |=
5538 1 << BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
5539 }
5540 if ((!is_centroid && !is_sample) ||
5541 devinfo->needs_unlit_centroid_workaround) {
5542 barycentric_interp_modes |=
5543 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
5544 }
5545 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
5546 (!(shade_model_flat && is_gl_Color) &&
5547 interp_qualifier == INTERP_QUALIFIER_NONE)) {
5548 if (is_centroid) {
5549 barycentric_interp_modes |=
5550 1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
5551 } else if (is_sample) {
5552 barycentric_interp_modes |=
5553 1 << BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
5554 }
5555 if ((!is_centroid && !is_sample) ||
5556 devinfo->needs_unlit_centroid_workaround) {
5557 barycentric_interp_modes |=
5558 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
5559 }
5560 }
5561 }
5562
5563 return barycentric_interp_modes;
5564 }
5565
5566 static uint8_t
5567 computed_depth_mode(const nir_shader *shader)
5568 {
5569 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5570 switch (shader->info.fs.depth_layout) {
5571 case FRAG_DEPTH_LAYOUT_NONE:
5572 case FRAG_DEPTH_LAYOUT_ANY:
5573 return BRW_PSCDEPTH_ON;
5574 case FRAG_DEPTH_LAYOUT_GREATER:
5575 return BRW_PSCDEPTH_ON_GE;
5576 case FRAG_DEPTH_LAYOUT_LESS:
5577 return BRW_PSCDEPTH_ON_LE;
5578 case FRAG_DEPTH_LAYOUT_UNCHANGED:
5579 return BRW_PSCDEPTH_OFF;
5580 }
5581 }
5582 return BRW_PSCDEPTH_OFF;
5583 }
5584
5585 const unsigned *
5586 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
5587 void *mem_ctx,
5588 const struct brw_wm_prog_key *key,
5589 struct brw_wm_prog_data *prog_data,
5590 const nir_shader *src_shader,
5591 struct gl_program *prog,
5592 int shader_time_index8, int shader_time_index16,
5593 bool use_rep_send,
5594 unsigned *final_assembly_size,
5595 char **error_str)
5596 {
5597 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5598 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5599 true);
5600 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5601
5602 /* key->alpha_test_func means simulating alpha testing via discards,
5603 * so the shader definitely kills pixels.
5604 */
5605 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
5606 prog_data->uses_omask =
5607 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
5608 prog_data->computed_depth_mode = computed_depth_mode(shader);
5609 prog_data->computed_stencil =
5610 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
5611
5612 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
5613
5614 prog_data->barycentric_interp_modes =
5615 brw_compute_barycentric_interp_modes(compiler->devinfo,
5616 key->flat_shade,
5617 key->persample_shading,
5618 shader);
5619
5620 fs_visitor v(compiler, log_data, mem_ctx, key,
5621 &prog_data->base, prog, shader, 8,
5622 shader_time_index8);
5623 if (!v.run_fs(false /* do_rep_send */)) {
5624 if (error_str)
5625 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5626
5627 return NULL;
5628 }
5629
5630 cfg_t *simd16_cfg = NULL;
5631 fs_visitor v2(compiler, log_data, mem_ctx, key,
5632 &prog_data->base, prog, shader, 16,
5633 shader_time_index16);
5634 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5635 if (!v.simd16_unsupported) {
5636 /* Try a SIMD16 compile */
5637 v2.import_uniforms(&v);
5638 if (!v2.run_fs(use_rep_send)) {
5639 compiler->shader_perf_log(log_data,
5640 "SIMD16 shader failed to compile: %s",
5641 v2.fail_msg);
5642 } else {
5643 simd16_cfg = v2.cfg;
5644 }
5645 }
5646 }
5647
5648 cfg_t *simd8_cfg;
5649 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5650 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5651 simd8_cfg = NULL;
5652 prog_data->no_8 = true;
5653 } else {
5654 simd8_cfg = v.cfg;
5655 prog_data->no_8 = false;
5656 }
5657
5658 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5659 v.promoted_constants, v.runtime_check_aads_emit,
5660 MESA_SHADER_FRAGMENT);
5661
5662 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5663 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5664 shader->info.label ? shader->info.label :
5665 "unnamed",
5666 shader->info.name));
5667 }
5668
5669 if (simd8_cfg)
5670 g.generate_code(simd8_cfg, 8);
5671 if (simd16_cfg)
5672 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5673
5674 return g.get_assembly(final_assembly_size);
5675 }
5676
5677 fs_reg *
5678 fs_visitor::emit_cs_local_invocation_id_setup()
5679 {
5680 assert(stage == MESA_SHADER_COMPUTE);
5681
5682 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5683
5684 struct brw_reg src =
5685 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5686 src = retype(src, BRW_REGISTER_TYPE_UD);
5687 bld.MOV(*reg, src);
5688 src.nr += dispatch_width / 8;
5689 bld.MOV(offset(*reg, bld, 1), src);
5690 src.nr += dispatch_width / 8;
5691 bld.MOV(offset(*reg, bld, 2), src);
5692
5693 return reg;
5694 }
5695
5696 fs_reg *
5697 fs_visitor::emit_cs_work_group_id_setup()
5698 {
5699 assert(stage == MESA_SHADER_COMPUTE);
5700
5701 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5702
5703 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5704 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5705 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5706
5707 bld.MOV(*reg, r0_1);
5708 bld.MOV(offset(*reg, bld, 1), r0_6);
5709 bld.MOV(offset(*reg, bld, 2), r0_7);
5710
5711 return reg;
5712 }
5713
5714 const unsigned *
5715 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
5716 void *mem_ctx,
5717 const struct brw_cs_prog_key *key,
5718 struct brw_cs_prog_data *prog_data,
5719 const nir_shader *src_shader,
5720 int shader_time_index,
5721 unsigned *final_assembly_size,
5722 char **error_str)
5723 {
5724 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5725 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5726 true);
5727 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5728
5729 prog_data->local_size[0] = shader->info.cs.local_size[0];
5730 prog_data->local_size[1] = shader->info.cs.local_size[1];
5731 prog_data->local_size[2] = shader->info.cs.local_size[2];
5732 unsigned local_workgroup_size =
5733 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5734 shader->info.cs.local_size[2];
5735
5736 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5737
5738 cfg_t *cfg = NULL;
5739 const char *fail_msg = NULL;
5740
5741 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5742 */
5743 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5744 NULL, /* Never used in core profile */
5745 shader, 8, shader_time_index);
5746 if (!v8.run_cs()) {
5747 fail_msg = v8.fail_msg;
5748 } else if (local_workgroup_size <= 8 * max_cs_threads) {
5749 cfg = v8.cfg;
5750 prog_data->simd_size = 8;
5751 }
5752
5753 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5754 NULL, /* Never used in core profile */
5755 shader, 16, shader_time_index);
5756 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5757 !fail_msg && !v8.simd16_unsupported &&
5758 local_workgroup_size <= 16 * max_cs_threads) {
5759 /* Try a SIMD16 compile */
5760 v16.import_uniforms(&v8);
5761 if (!v16.run_cs()) {
5762 compiler->shader_perf_log(log_data,
5763 "SIMD16 shader failed to compile: %s",
5764 v16.fail_msg);
5765 if (!cfg) {
5766 fail_msg =
5767 "Couldn't generate SIMD16 program and not "
5768 "enough threads for SIMD8";
5769 }
5770 } else {
5771 cfg = v16.cfg;
5772 prog_data->simd_size = 16;
5773 }
5774 }
5775
5776 if (unlikely(cfg == NULL)) {
5777 assert(fail_msg);
5778 if (error_str)
5779 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5780
5781 return NULL;
5782 }
5783
5784 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5785 v8.promoted_constants, v8.runtime_check_aads_emit,
5786 MESA_SHADER_COMPUTE);
5787 if (INTEL_DEBUG & DEBUG_CS) {
5788 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5789 shader->info.label ? shader->info.label :
5790 "unnamed",
5791 shader->info.name);
5792 g.enable_debug(name);
5793 }
5794
5795 g.generate_code(cfg, prog_data->simd_size);
5796
5797 return g.get_assembly(final_assembly_size);
5798 }
5799
5800 void
5801 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5802 void *buffer, uint32_t threads, uint32_t stride)
5803 {
5804 if (prog_data->local_invocation_id_regs == 0)
5805 return;
5806
5807 /* 'stride' should be an integer number of registers, that is, a multiple
5808 * of 32 bytes.
5809 */
5810 assert(stride % 32 == 0);
5811
5812 unsigned x = 0, y = 0, z = 0;
5813 for (unsigned t = 0; t < threads; t++) {
5814 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5815
5816 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5817 param[0 * prog_data->simd_size + i] = x;
5818 param[1 * prog_data->simd_size + i] = y;
5819 param[2 * prog_data->simd_size + i] = z;
5820
5821 x++;
5822 if (x == prog_data->local_size[0]) {
5823 x = 0;
5824 y++;
5825 if (y == prog_data->local_size[1]) {
5826 y = 0;
5827 z++;
5828 if (z == prog_data->local_size[2])
5829 z = 0;
5830 }
5831 }
5832 }
5833 }
5834 }