e07798cebc1b3510ea5cb77a04b535ca0d98f6e8
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 extern "C" {
32
33 #include <sys/types.h>
34
35 #include "main/macros.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "program/prog_parameter.h"
39 #include "program/prog_print.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_shader.h"
48 #include "brw_fs.h"
49 #include "../glsl/glsl_types.h"
50 #include "../glsl/ir_print_visitor.h"
51
52 #define MAX_INSTRUCTION (1 << 30)
53
54 int
55 fs_visitor::type_size(const struct glsl_type *type)
56 {
57 unsigned int size, i;
58
59 switch (type->base_type) {
60 case GLSL_TYPE_UINT:
61 case GLSL_TYPE_INT:
62 case GLSL_TYPE_FLOAT:
63 case GLSL_TYPE_BOOL:
64 return type->components();
65 case GLSL_TYPE_ARRAY:
66 return type_size(type->fields.array) * type->length;
67 case GLSL_TYPE_STRUCT:
68 size = 0;
69 for (i = 0; i < type->length; i++) {
70 size += type_size(type->fields.structure[i].type);
71 }
72 return size;
73 case GLSL_TYPE_SAMPLER:
74 /* Samplers take up no register space, since they're baked in at
75 * link time.
76 */
77 return 0;
78 default:
79 assert(!"not reached");
80 return 0;
81 }
82 }
83
84 void
85 fs_visitor::fail(const char *format, ...)
86 {
87 va_list va;
88 char *msg;
89
90 if (failed)
91 return;
92
93 failed = true;
94
95 va_start(va, format);
96 msg = ralloc_vasprintf(mem_ctx, format, va);
97 va_end(va);
98 msg = ralloc_asprintf(mem_ctx, "FS compile failed: %s\n", msg);
99
100 this->fail_msg = msg;
101
102 if (INTEL_DEBUG & DEBUG_WM) {
103 fprintf(stderr, "%s", msg);
104 }
105 }
106
107 void
108 fs_visitor::push_force_uncompressed()
109 {
110 force_uncompressed_stack++;
111 }
112
113 void
114 fs_visitor::pop_force_uncompressed()
115 {
116 force_uncompressed_stack--;
117 assert(force_uncompressed_stack >= 0);
118 }
119
120 void
121 fs_visitor::push_force_sechalf()
122 {
123 force_sechalf_stack++;
124 }
125
126 void
127 fs_visitor::pop_force_sechalf()
128 {
129 force_sechalf_stack--;
130 assert(force_sechalf_stack >= 0);
131 }
132
133 /**
134 * Returns how many MRFs an FS opcode will write over.
135 *
136 * Note that this is not the 0 or 1 implied writes in an actual gen
137 * instruction -- the FS opcodes often generate MOVs in addition.
138 */
139 int
140 fs_visitor::implied_mrf_writes(fs_inst *inst)
141 {
142 if (inst->mlen == 0)
143 return 0;
144
145 switch (inst->opcode) {
146 case FS_OPCODE_RCP:
147 case FS_OPCODE_RSQ:
148 case FS_OPCODE_SQRT:
149 case FS_OPCODE_EXP2:
150 case FS_OPCODE_LOG2:
151 case FS_OPCODE_SIN:
152 case FS_OPCODE_COS:
153 return 1 * c->dispatch_width / 8;
154 case FS_OPCODE_POW:
155 return 2 * c->dispatch_width / 8;
156 case FS_OPCODE_TEX:
157 case FS_OPCODE_TXB:
158 case FS_OPCODE_TXD:
159 case FS_OPCODE_TXL:
160 return 1;
161 case FS_OPCODE_FB_WRITE:
162 return 2;
163 case FS_OPCODE_PULL_CONSTANT_LOAD:
164 case FS_OPCODE_UNSPILL:
165 return 1;
166 case FS_OPCODE_SPILL:
167 return 2;
168 default:
169 assert(!"not reached");
170 return inst->mlen;
171 }
172 }
173
174 int
175 fs_visitor::virtual_grf_alloc(int size)
176 {
177 if (virtual_grf_array_size <= virtual_grf_next) {
178 if (virtual_grf_array_size == 0)
179 virtual_grf_array_size = 16;
180 else
181 virtual_grf_array_size *= 2;
182 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
183 virtual_grf_array_size);
184
185 /* This slot is always unused. */
186 virtual_grf_sizes[0] = 0;
187 }
188 virtual_grf_sizes[virtual_grf_next] = size;
189 return virtual_grf_next++;
190 }
191
192 /** Fixed HW reg constructor. */
193 fs_reg::fs_reg(enum register_file file, int hw_reg)
194 {
195 init();
196 this->file = file;
197 this->hw_reg = hw_reg;
198 this->type = BRW_REGISTER_TYPE_F;
199 }
200
201 /** Fixed HW reg constructor. */
202 fs_reg::fs_reg(enum register_file file, int hw_reg, uint32_t type)
203 {
204 init();
205 this->file = file;
206 this->hw_reg = hw_reg;
207 this->type = type;
208 }
209
210 /** Automatic reg constructor. */
211 fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
212 {
213 init();
214
215 this->file = GRF;
216 this->reg = v->virtual_grf_alloc(v->type_size(type));
217 this->reg_offset = 0;
218 this->type = brw_type_for_base_type(type);
219 }
220
221 fs_reg *
222 fs_visitor::variable_storage(ir_variable *var)
223 {
224 return (fs_reg *)hash_table_find(this->variable_ht, var);
225 }
226
227 void
228 import_uniforms_callback(const void *key,
229 void *data,
230 void *closure)
231 {
232 struct hash_table *dst_ht = (struct hash_table *)closure;
233 const fs_reg *reg = (const fs_reg *)data;
234
235 if (reg->file != UNIFORM)
236 return;
237
238 hash_table_insert(dst_ht, data, key);
239 }
240
241 /* For 16-wide, we need to follow from the uniform setup of 8-wide dispatch.
242 * This brings in those uniform definitions
243 */
244 void
245 fs_visitor::import_uniforms(struct hash_table *src_variable_ht)
246 {
247 hash_table_call_foreach(src_variable_ht,
248 import_uniforms_callback,
249 variable_ht);
250 }
251
252 /* Our support for uniforms is piggy-backed on the struct
253 * gl_fragment_program, because that's where the values actually
254 * get stored, rather than in some global gl_shader_program uniform
255 * store.
256 */
257 int
258 fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
259 {
260 unsigned int offset = 0;
261
262 if (type->is_matrix()) {
263 const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
264 type->vector_elements,
265 1);
266
267 for (unsigned int i = 0; i < type->matrix_columns; i++) {
268 offset += setup_uniform_values(loc + offset, column);
269 }
270
271 return offset;
272 }
273
274 switch (type->base_type) {
275 case GLSL_TYPE_FLOAT:
276 case GLSL_TYPE_UINT:
277 case GLSL_TYPE_INT:
278 case GLSL_TYPE_BOOL:
279 for (unsigned int i = 0; i < type->vector_elements; i++) {
280 unsigned int param = c->prog_data.nr_params++;
281
282 assert(param < ARRAY_SIZE(c->prog_data.param));
283
284 switch (type->base_type) {
285 case GLSL_TYPE_FLOAT:
286 c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
287 break;
288 case GLSL_TYPE_UINT:
289 c->prog_data.param_convert[param] = PARAM_CONVERT_F2U;
290 break;
291 case GLSL_TYPE_INT:
292 c->prog_data.param_convert[param] = PARAM_CONVERT_F2I;
293 break;
294 case GLSL_TYPE_BOOL:
295 c->prog_data.param_convert[param] = PARAM_CONVERT_F2B;
296 break;
297 default:
298 assert(!"not reached");
299 c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
300 break;
301 }
302 this->param_index[param] = loc;
303 this->param_offset[param] = i;
304 }
305 return 1;
306
307 case GLSL_TYPE_STRUCT:
308 for (unsigned int i = 0; i < type->length; i++) {
309 offset += setup_uniform_values(loc + offset,
310 type->fields.structure[i].type);
311 }
312 return offset;
313
314 case GLSL_TYPE_ARRAY:
315 for (unsigned int i = 0; i < type->length; i++) {
316 offset += setup_uniform_values(loc + offset, type->fields.array);
317 }
318 return offset;
319
320 case GLSL_TYPE_SAMPLER:
321 /* The sampler takes up a slot, but we don't use any values from it. */
322 return 1;
323
324 default:
325 assert(!"not reached");
326 return 0;
327 }
328 }
329
330
331 /* Our support for builtin uniforms is even scarier than non-builtin.
332 * It sits on top of the PROG_STATE_VAR parameters that are
333 * automatically updated from GL context state.
334 */
335 void
336 fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
337 {
338 const ir_state_slot *const slots = ir->state_slots;
339 assert(ir->state_slots != NULL);
340
341 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
342 /* This state reference has already been setup by ir_to_mesa, but we'll
343 * get the same index back here.
344 */
345 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
346 (gl_state_index *)slots[i].tokens);
347
348 /* Add each of the unique swizzles of the element as a parameter.
349 * This'll end up matching the expected layout of the
350 * array/matrix/structure we're trying to fill in.
351 */
352 int last_swiz = -1;
353 for (unsigned int j = 0; j < 4; j++) {
354 int swiz = GET_SWZ(slots[i].swizzle, j);
355 if (swiz == last_swiz)
356 break;
357 last_swiz = swiz;
358
359 c->prog_data.param_convert[c->prog_data.nr_params] =
360 PARAM_NO_CONVERT;
361 this->param_index[c->prog_data.nr_params] = index;
362 this->param_offset[c->prog_data.nr_params] = swiz;
363 c->prog_data.nr_params++;
364 }
365 }
366 }
367
368 fs_reg *
369 fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
370 {
371 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
372 fs_reg wpos = *reg;
373 bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo;
374
375 /* gl_FragCoord.x */
376 if (ir->pixel_center_integer) {
377 emit(BRW_OPCODE_MOV, wpos, this->pixel_x);
378 } else {
379 emit(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f));
380 }
381 wpos.reg_offset++;
382
383 /* gl_FragCoord.y */
384 if (!flip && ir->pixel_center_integer) {
385 emit(BRW_OPCODE_MOV, wpos, this->pixel_y);
386 } else {
387 fs_reg pixel_y = this->pixel_y;
388 float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
389
390 if (flip) {
391 pixel_y.negate = true;
392 offset += c->key.drawable_height - 1.0;
393 }
394
395 emit(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset));
396 }
397 wpos.reg_offset++;
398
399 /* gl_FragCoord.z */
400 if (intel->gen >= 6) {
401 emit(BRW_OPCODE_MOV, wpos,
402 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
403 } else {
404 emit(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
405 interp_reg(FRAG_ATTRIB_WPOS, 2));
406 }
407 wpos.reg_offset++;
408
409 /* gl_FragCoord.w: Already set up in emit_interpolation */
410 emit(BRW_OPCODE_MOV, wpos, this->wpos_w);
411
412 return reg;
413 }
414
415 fs_reg *
416 fs_visitor::emit_general_interpolation(ir_variable *ir)
417 {
418 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
419 /* Interpolation is always in floating point regs. */
420 reg->type = BRW_REGISTER_TYPE_F;
421 fs_reg attr = *reg;
422
423 unsigned int array_elements;
424 const glsl_type *type;
425
426 if (ir->type->is_array()) {
427 array_elements = ir->type->length;
428 if (array_elements == 0) {
429 fail("dereferenced array '%s' has length 0\n", ir->name);
430 }
431 type = ir->type->fields.array;
432 } else {
433 array_elements = 1;
434 type = ir->type;
435 }
436
437 int location = ir->location;
438 for (unsigned int i = 0; i < array_elements; i++) {
439 for (unsigned int j = 0; j < type->matrix_columns; j++) {
440 if (urb_setup[location] == -1) {
441 /* If there's no incoming setup data for this slot, don't
442 * emit interpolation for it.
443 */
444 attr.reg_offset += type->vector_elements;
445 location++;
446 continue;
447 }
448
449 bool is_gl_Color =
450 location == FRAG_ATTRIB_COL0 || location == FRAG_ATTRIB_COL1;
451
452 if (c->key.flat_shade && is_gl_Color) {
453 /* Constant interpolation (flat shading) case. The SF has
454 * handed us defined values in only the constant offset
455 * field of the setup reg.
456 */
457 for (unsigned int k = 0; k < type->vector_elements; k++) {
458 struct brw_reg interp = interp_reg(location, k);
459 interp = suboffset(interp, 3);
460 emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
461 attr.reg_offset++;
462 }
463 } else {
464 /* Perspective interpolation case. */
465 for (unsigned int k = 0; k < type->vector_elements; k++) {
466 /* FINISHME: At some point we probably want to push
467 * this farther by giving similar treatment to the
468 * other potentially constant components of the
469 * attribute, as well as making brw_vs_constval.c
470 * handle varyings other than gl_TexCoord.
471 */
472 if (location >= FRAG_ATTRIB_TEX0 &&
473 location <= FRAG_ATTRIB_TEX7 &&
474 k == 3 && !(c->key.proj_attrib_mask & (1 << location))) {
475 emit(BRW_OPCODE_MOV, attr, fs_reg(1.0f));
476 } else {
477 struct brw_reg interp = interp_reg(location, k);
478 emit(FS_OPCODE_LINTERP, attr,
479 this->delta_x, this->delta_y, fs_reg(interp));
480 }
481 attr.reg_offset++;
482 }
483
484 if (intel->gen < 6) {
485 attr.reg_offset -= type->vector_elements;
486 for (unsigned int k = 0; k < type->vector_elements; k++) {
487 emit(BRW_OPCODE_MUL, attr, attr, this->pixel_w);
488 attr.reg_offset++;
489 }
490 }
491 }
492 location++;
493 }
494 }
495
496 return reg;
497 }
498
499 fs_reg *
500 fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
501 {
502 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
503
504 /* The frontfacing comes in as a bit in the thread payload. */
505 if (intel->gen >= 6) {
506 emit(BRW_OPCODE_ASR, *reg,
507 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
508 fs_reg(15));
509 emit(BRW_OPCODE_NOT, *reg, *reg);
510 emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1));
511 } else {
512 struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
513 /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
514 * us front face
515 */
516 fs_inst *inst = emit(BRW_OPCODE_CMP, *reg,
517 fs_reg(r1_6ud),
518 fs_reg(1u << 31));
519 inst->conditional_mod = BRW_CONDITIONAL_L;
520 emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u));
521 }
522
523 return reg;
524 }
525
526 fs_inst *
527 fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src)
528 {
529 switch (opcode) {
530 case FS_OPCODE_RCP:
531 case FS_OPCODE_RSQ:
532 case FS_OPCODE_SQRT:
533 case FS_OPCODE_EXP2:
534 case FS_OPCODE_LOG2:
535 case FS_OPCODE_SIN:
536 case FS_OPCODE_COS:
537 break;
538 default:
539 assert(!"not reached: bad math opcode");
540 return NULL;
541 }
542
543 /* Can't do hstride == 0 args to gen6 math, so expand it out. We
544 * might be able to do better by doing execsize = 1 math and then
545 * expanding that result out, but we would need to be careful with
546 * masking.
547 *
548 * The hardware ignores source modifiers (negate and abs) on math
549 * instructions, so we also move to a temp to set those up.
550 */
551 if (intel->gen >= 6 && (src.file == UNIFORM ||
552 src.abs ||
553 src.negate)) {
554 fs_reg expanded = fs_reg(this, glsl_type::float_type);
555 emit(BRW_OPCODE_MOV, expanded, src);
556 src = expanded;
557 }
558
559 fs_inst *inst = emit(opcode, dst, src);
560
561 if (intel->gen < 6) {
562 inst->base_mrf = 2;
563 inst->mlen = c->dispatch_width / 8;
564 }
565
566 return inst;
567 }
568
569 fs_inst *
570 fs_visitor::emit_math(fs_opcodes opcode, fs_reg dst, fs_reg src0, fs_reg src1)
571 {
572 int base_mrf = 2;
573 fs_inst *inst;
574
575 assert(opcode == FS_OPCODE_POW);
576
577 if (intel->gen >= 6) {
578 /* Can't do hstride == 0 args to gen6 math, so expand it out.
579 *
580 * The hardware ignores source modifiers (negate and abs) on math
581 * instructions, so we also move to a temp to set those up.
582 */
583 if (src0.file == UNIFORM || src0.abs || src0.negate) {
584 fs_reg expanded = fs_reg(this, glsl_type::float_type);
585 emit(BRW_OPCODE_MOV, expanded, src0);
586 src0 = expanded;
587 }
588
589 if (src1.file == UNIFORM || src1.abs || src1.negate) {
590 fs_reg expanded = fs_reg(this, glsl_type::float_type);
591 emit(BRW_OPCODE_MOV, expanded, src1);
592 src1 = expanded;
593 }
594
595 inst = emit(opcode, dst, src0, src1);
596 } else {
597 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1), src1);
598 inst = emit(opcode, dst, src0, reg_null_f);
599
600 inst->base_mrf = base_mrf;
601 inst->mlen = 2 * c->dispatch_width / 8;
602 }
603 return inst;
604 }
605
606 /**
607 * To be called after the last _mesa_add_state_reference() call, to
608 * set up prog_data.param[] for assign_curb_setup() and
609 * setup_pull_constants().
610 */
611 void
612 fs_visitor::setup_paramvalues_refs()
613 {
614 if (c->dispatch_width != 8)
615 return;
616
617 /* Set up the pointers to ParamValues now that that array is finalized. */
618 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
619 c->prog_data.param[i] =
620 fp->Base.Parameters->ParameterValues[this->param_index[i]] +
621 this->param_offset[i];
622 }
623 }
624
625 void
626 fs_visitor::assign_curb_setup()
627 {
628 c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
629 if (c->dispatch_width == 8) {
630 c->prog_data.first_curbe_grf = c->nr_payload_regs;
631 } else {
632 c->prog_data.first_curbe_grf_16 = c->nr_payload_regs;
633 }
634
635 /* Map the offsets in the UNIFORM file to fixed HW regs. */
636 foreach_list(node, &this->instructions) {
637 fs_inst *inst = (fs_inst *)node;
638
639 for (unsigned int i = 0; i < 3; i++) {
640 if (inst->src[i].file == UNIFORM) {
641 int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
642 struct brw_reg brw_reg = brw_vec1_grf(c->nr_payload_regs +
643 constant_nr / 8,
644 constant_nr % 8);
645
646 inst->src[i].file = FIXED_HW_REG;
647 inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type);
648 }
649 }
650 }
651 }
652
653 void
654 fs_visitor::calculate_urb_setup()
655 {
656 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
657 urb_setup[i] = -1;
658 }
659
660 int urb_next = 0;
661 /* Figure out where each of the incoming setup attributes lands. */
662 if (intel->gen >= 6) {
663 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
664 if (fp->Base.InputsRead & BITFIELD64_BIT(i)) {
665 urb_setup[i] = urb_next++;
666 }
667 }
668 } else {
669 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
670 for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
671 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
672 int fp_index;
673
674 if (i >= VERT_RESULT_VAR0)
675 fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0);
676 else if (i <= VERT_RESULT_TEX7)
677 fp_index = i;
678 else
679 fp_index = -1;
680
681 if (fp_index >= 0)
682 urb_setup[fp_index] = urb_next++;
683 }
684 }
685 }
686
687 /* Each attribute is 4 setup channels, each of which is half a reg. */
688 c->prog_data.urb_read_length = urb_next * 2;
689 }
690
691 void
692 fs_visitor::assign_urb_setup()
693 {
694 int urb_start = c->nr_payload_regs + c->prog_data.curb_read_length;
695
696 /* Offset all the urb_setup[] index by the actual position of the
697 * setup regs, now that the location of the constants has been chosen.
698 */
699 foreach_list(node, &this->instructions) {
700 fs_inst *inst = (fs_inst *)node;
701
702 if (inst->opcode == FS_OPCODE_LINTERP) {
703 assert(inst->src[2].file == FIXED_HW_REG);
704 inst->src[2].fixed_hw_reg.nr += urb_start;
705 }
706
707 if (inst->opcode == FS_OPCODE_CINTERP) {
708 assert(inst->src[0].file == FIXED_HW_REG);
709 inst->src[0].fixed_hw_reg.nr += urb_start;
710 }
711 }
712
713 this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
714 }
715
716 /**
717 * Split large virtual GRFs into separate components if we can.
718 *
719 * This is mostly duplicated with what brw_fs_vector_splitting does,
720 * but that's really conservative because it's afraid of doing
721 * splitting that doesn't result in real progress after the rest of
722 * the optimization phases, which would cause infinite looping in
723 * optimization. We can do it once here, safely. This also has the
724 * opportunity to split interpolated values, or maybe even uniforms,
725 * which we don't have at the IR level.
726 *
727 * We want to split, because virtual GRFs are what we register
728 * allocate and spill (due to contiguousness requirements for some
729 * instructions), and they're what we naturally generate in the
730 * codegen process, but most virtual GRFs don't actually need to be
731 * contiguous sets of GRFs. If we split, we'll end up with reduced
732 * live intervals and better dead code elimination and coalescing.
733 */
734 void
735 fs_visitor::split_virtual_grfs()
736 {
737 int num_vars = this->virtual_grf_next;
738 bool split_grf[num_vars];
739 int new_virtual_grf[num_vars];
740
741 /* Try to split anything > 0 sized. */
742 for (int i = 0; i < num_vars; i++) {
743 if (this->virtual_grf_sizes[i] != 1)
744 split_grf[i] = true;
745 else
746 split_grf[i] = false;
747 }
748
749 if (brw->has_pln) {
750 /* PLN opcodes rely on the delta_xy being contiguous. */
751 split_grf[this->delta_x.reg] = false;
752 }
753
754 foreach_list(node, &this->instructions) {
755 fs_inst *inst = (fs_inst *)node;
756
757 /* Texturing produces 4 contiguous registers, so no splitting. */
758 if (inst->is_tex()) {
759 split_grf[inst->dst.reg] = false;
760 }
761 }
762
763 /* Allocate new space for split regs. Note that the virtual
764 * numbers will be contiguous.
765 */
766 for (int i = 0; i < num_vars; i++) {
767 if (split_grf[i]) {
768 new_virtual_grf[i] = virtual_grf_alloc(1);
769 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
770 int reg = virtual_grf_alloc(1);
771 assert(reg == new_virtual_grf[i] + j - 1);
772 (void) reg;
773 }
774 this->virtual_grf_sizes[i] = 1;
775 }
776 }
777
778 foreach_list(node, &this->instructions) {
779 fs_inst *inst = (fs_inst *)node;
780
781 if (inst->dst.file == GRF &&
782 split_grf[inst->dst.reg] &&
783 inst->dst.reg_offset != 0) {
784 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
785 inst->dst.reg_offset - 1);
786 inst->dst.reg_offset = 0;
787 }
788 for (int i = 0; i < 3; i++) {
789 if (inst->src[i].file == GRF &&
790 split_grf[inst->src[i].reg] &&
791 inst->src[i].reg_offset != 0) {
792 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
793 inst->src[i].reg_offset - 1);
794 inst->src[i].reg_offset = 0;
795 }
796 }
797 }
798 this->live_intervals_valid = false;
799 }
800
801 /**
802 * Choose accesses from the UNIFORM file to demote to using the pull
803 * constant buffer.
804 *
805 * We allow a fragment shader to have more than the specified minimum
806 * maximum number of fragment shader uniform components (64). If
807 * there are too many of these, they'd fill up all of register space.
808 * So, this will push some of them out to the pull constant buffer and
809 * update the program to load them.
810 */
811 void
812 fs_visitor::setup_pull_constants()
813 {
814 /* Only allow 16 registers (128 uniform components) as push constants. */
815 unsigned int max_uniform_components = 16 * 8;
816 if (c->prog_data.nr_params <= max_uniform_components)
817 return;
818
819 if (c->dispatch_width == 16) {
820 fail("Pull constants not supported in 16-wide\n");
821 return;
822 }
823
824 /* Just demote the end of the list. We could probably do better
825 * here, demoting things that are rarely used in the program first.
826 */
827 int pull_uniform_base = max_uniform_components;
828 int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base;
829
830 foreach_list(node, &this->instructions) {
831 fs_inst *inst = (fs_inst *)node;
832
833 for (int i = 0; i < 3; i++) {
834 if (inst->src[i].file != UNIFORM)
835 continue;
836
837 int uniform_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
838 if (uniform_nr < pull_uniform_base)
839 continue;
840
841 fs_reg dst = fs_reg(this, glsl_type::float_type);
842 fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
843 dst);
844 pull->offset = ((uniform_nr - pull_uniform_base) * 4) & ~15;
845 pull->ir = inst->ir;
846 pull->annotation = inst->annotation;
847 pull->base_mrf = 14;
848 pull->mlen = 1;
849
850 inst->insert_before(pull);
851
852 inst->src[i].file = GRF;
853 inst->src[i].reg = dst.reg;
854 inst->src[i].reg_offset = 0;
855 inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3;
856 }
857 }
858
859 for (int i = 0; i < pull_uniform_count; i++) {
860 c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i];
861 c->prog_data.pull_param_convert[i] =
862 c->prog_data.param_convert[pull_uniform_base + i];
863 }
864 c->prog_data.nr_params -= pull_uniform_count;
865 c->prog_data.nr_pull_params = pull_uniform_count;
866 }
867
868 void
869 fs_visitor::calculate_live_intervals()
870 {
871 int num_vars = this->virtual_grf_next;
872 int *def = ralloc_array(mem_ctx, int, num_vars);
873 int *use = ralloc_array(mem_ctx, int, num_vars);
874 int loop_depth = 0;
875 int loop_start = 0;
876
877 if (this->live_intervals_valid)
878 return;
879
880 for (int i = 0; i < num_vars; i++) {
881 def[i] = MAX_INSTRUCTION;
882 use[i] = -1;
883 }
884
885 int ip = 0;
886 foreach_list(node, &this->instructions) {
887 fs_inst *inst = (fs_inst *)node;
888
889 if (inst->opcode == BRW_OPCODE_DO) {
890 if (loop_depth++ == 0)
891 loop_start = ip;
892 } else if (inst->opcode == BRW_OPCODE_WHILE) {
893 loop_depth--;
894
895 if (loop_depth == 0) {
896 /* Patches up the use of vars marked for being live across
897 * the whole loop.
898 */
899 for (int i = 0; i < num_vars; i++) {
900 if (use[i] == loop_start) {
901 use[i] = ip;
902 }
903 }
904 }
905 } else {
906 for (unsigned int i = 0; i < 3; i++) {
907 if (inst->src[i].file == GRF && inst->src[i].reg != 0) {
908 int reg = inst->src[i].reg;
909
910 if (!loop_depth) {
911 use[reg] = ip;
912 } else {
913 def[reg] = MIN2(loop_start, def[reg]);
914 use[reg] = loop_start;
915
916 /* Nobody else is going to go smash our start to
917 * later in the loop now, because def[reg] now
918 * points before the bb header.
919 */
920 }
921 }
922 }
923 if (inst->dst.file == GRF && inst->dst.reg != 0) {
924 int reg = inst->dst.reg;
925
926 if (!loop_depth) {
927 def[reg] = MIN2(def[reg], ip);
928 } else {
929 def[reg] = MIN2(def[reg], loop_start);
930 }
931 }
932 }
933
934 ip++;
935 }
936
937 ralloc_free(this->virtual_grf_def);
938 ralloc_free(this->virtual_grf_use);
939 this->virtual_grf_def = def;
940 this->virtual_grf_use = use;
941
942 this->live_intervals_valid = true;
943 }
944
945 /**
946 * Attempts to move immediate constants into the immediate
947 * constant slot of following instructions.
948 *
949 * Immediate constants are a bit tricky -- they have to be in the last
950 * operand slot, you can't do abs/negate on them,
951 */
952
953 bool
954 fs_visitor::propagate_constants()
955 {
956 bool progress = false;
957
958 calculate_live_intervals();
959
960 foreach_list(node, &this->instructions) {
961 fs_inst *inst = (fs_inst *)node;
962
963 if (inst->opcode != BRW_OPCODE_MOV ||
964 inst->predicated ||
965 inst->dst.file != GRF || inst->src[0].file != IMM ||
966 inst->dst.type != inst->src[0].type ||
967 (c->dispatch_width == 16 &&
968 (inst->force_uncompressed || inst->force_sechalf)))
969 continue;
970
971 /* Don't bother with cases where we should have had the
972 * operation on the constant folded in GLSL already.
973 */
974 if (inst->saturate)
975 continue;
976
977 /* Found a move of a constant to a GRF. Find anything else using the GRF
978 * before it's written, and replace it with the constant if we can.
979 */
980 for (fs_inst *scan_inst = (fs_inst *)inst->next;
981 !scan_inst->is_tail_sentinel();
982 scan_inst = (fs_inst *)scan_inst->next) {
983 if (scan_inst->opcode == BRW_OPCODE_DO ||
984 scan_inst->opcode == BRW_OPCODE_WHILE ||
985 scan_inst->opcode == BRW_OPCODE_ELSE ||
986 scan_inst->opcode == BRW_OPCODE_ENDIF) {
987 break;
988 }
989
990 for (int i = 2; i >= 0; i--) {
991 if (scan_inst->src[i].file != GRF ||
992 scan_inst->src[i].reg != inst->dst.reg ||
993 scan_inst->src[i].reg_offset != inst->dst.reg_offset)
994 continue;
995
996 /* Don't bother with cases where we should have had the
997 * operation on the constant folded in GLSL already.
998 */
999 if (scan_inst->src[i].negate || scan_inst->src[i].abs)
1000 continue;
1001
1002 switch (scan_inst->opcode) {
1003 case BRW_OPCODE_MOV:
1004 scan_inst->src[i] = inst->src[0];
1005 progress = true;
1006 break;
1007
1008 case BRW_OPCODE_MUL:
1009 case BRW_OPCODE_ADD:
1010 if (i == 1) {
1011 scan_inst->src[i] = inst->src[0];
1012 progress = true;
1013 } else if (i == 0 && scan_inst->src[1].file != IMM) {
1014 /* Fit this constant in by commuting the operands */
1015 scan_inst->src[0] = scan_inst->src[1];
1016 scan_inst->src[1] = inst->src[0];
1017 progress = true;
1018 }
1019 break;
1020
1021 case BRW_OPCODE_CMP:
1022 if (i == 1) {
1023 scan_inst->src[i] = inst->src[0];
1024 progress = true;
1025 } else if (i == 0 && scan_inst->src[1].file != IMM) {
1026 uint32_t new_cmod;
1027
1028 new_cmod = brw_swap_cmod(scan_inst->conditional_mod);
1029 if (new_cmod != ~0u) {
1030 /* Fit this constant in by swapping the operands and
1031 * flipping the test
1032 */
1033 scan_inst->src[0] = scan_inst->src[1];
1034 scan_inst->src[1] = inst->src[0];
1035 scan_inst->conditional_mod = new_cmod;
1036 progress = true;
1037 }
1038 }
1039 break;
1040
1041 case BRW_OPCODE_SEL:
1042 if (i == 1) {
1043 scan_inst->src[i] = inst->src[0];
1044 progress = true;
1045 } else if (i == 0 && scan_inst->src[1].file != IMM) {
1046 scan_inst->src[0] = scan_inst->src[1];
1047 scan_inst->src[1] = inst->src[0];
1048
1049 /* If this was predicated, flipping operands means
1050 * we also need to flip the predicate.
1051 */
1052 if (scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) {
1053 scan_inst->predicate_inverse =
1054 !scan_inst->predicate_inverse;
1055 }
1056 progress = true;
1057 }
1058 break;
1059
1060 case FS_OPCODE_RCP:
1061 /* The hardware doesn't do math on immediate values
1062 * (because why are you doing that, seriously?), but
1063 * the correct answer is to just constant fold it
1064 * anyway.
1065 */
1066 assert(i == 0);
1067 if (inst->src[0].imm.f != 0.0f) {
1068 scan_inst->opcode = BRW_OPCODE_MOV;
1069 scan_inst->src[0] = inst->src[0];
1070 scan_inst->src[0].imm.f = 1.0f / scan_inst->src[0].imm.f;
1071 progress = true;
1072 }
1073 break;
1074 }
1075 }
1076
1077 if (scan_inst->dst.file == GRF &&
1078 scan_inst->dst.reg == inst->dst.reg &&
1079 (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
1080 scan_inst->is_tex())) {
1081 break;
1082 }
1083 }
1084 }
1085
1086 if (progress)
1087 this->live_intervals_valid = false;
1088
1089 return progress;
1090 }
1091
1092
1093 /**
1094 * Attempts to move immediate constants into the immediate
1095 * constant slot of following instructions.
1096 *
1097 * Immediate constants are a bit tricky -- they have to be in the last
1098 * operand slot, you can't do abs/negate on them,
1099 */
1100
1101 bool
1102 fs_visitor::opt_algebraic()
1103 {
1104 bool progress = false;
1105
1106 calculate_live_intervals();
1107
1108 foreach_list(node, &this->instructions) {
1109 fs_inst *inst = (fs_inst *)node;
1110
1111 switch (inst->opcode) {
1112 case BRW_OPCODE_MUL:
1113 if (inst->src[1].file != IMM)
1114 continue;
1115
1116 /* a * 1.0 = a */
1117 if (inst->src[1].type == BRW_REGISTER_TYPE_F &&
1118 inst->src[1].imm.f == 1.0) {
1119 inst->opcode = BRW_OPCODE_MOV;
1120 inst->src[1] = reg_undef;
1121 progress = true;
1122 break;
1123 }
1124
1125 break;
1126 }
1127 }
1128
1129 return progress;
1130 }
1131
1132 /**
1133 * Must be called after calculate_live_intervales() to remove unused
1134 * writes to registers -- register allocation will fail otherwise
1135 * because something deffed but not used won't be considered to
1136 * interfere with other regs.
1137 */
1138 bool
1139 fs_visitor::dead_code_eliminate()
1140 {
1141 bool progress = false;
1142 int pc = 0;
1143
1144 calculate_live_intervals();
1145
1146 foreach_list_safe(node, &this->instructions) {
1147 fs_inst *inst = (fs_inst *)node;
1148
1149 if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
1150 inst->remove();
1151 progress = true;
1152 }
1153
1154 pc++;
1155 }
1156
1157 if (progress)
1158 live_intervals_valid = false;
1159
1160 return progress;
1161 }
1162
1163 bool
1164 fs_visitor::register_coalesce()
1165 {
1166 bool progress = false;
1167 int if_depth = 0;
1168 int loop_depth = 0;
1169
1170 foreach_list_safe(node, &this->instructions) {
1171 fs_inst *inst = (fs_inst *)node;
1172
1173 /* Make sure that we dominate the instructions we're going to
1174 * scan for interfering with our coalescing, or we won't have
1175 * scanned enough to see if anything interferes with our
1176 * coalescing. We don't dominate the following instructions if
1177 * we're in a loop or an if block.
1178 */
1179 switch (inst->opcode) {
1180 case BRW_OPCODE_DO:
1181 loop_depth++;
1182 break;
1183 case BRW_OPCODE_WHILE:
1184 loop_depth--;
1185 break;
1186 case BRW_OPCODE_IF:
1187 if_depth++;
1188 break;
1189 case BRW_OPCODE_ENDIF:
1190 if_depth--;
1191 break;
1192 }
1193 if (loop_depth || if_depth)
1194 continue;
1195
1196 if (inst->opcode != BRW_OPCODE_MOV ||
1197 inst->predicated ||
1198 inst->saturate ||
1199 inst->dst.file != GRF || (inst->src[0].file != GRF &&
1200 inst->src[0].file != UNIFORM)||
1201 inst->dst.type != inst->src[0].type)
1202 continue;
1203
1204 bool has_source_modifiers = inst->src[0].abs || inst->src[0].negate;
1205
1206 /* Found a move of a GRF to a GRF. Let's see if we can coalesce
1207 * them: check for no writes to either one until the exit of the
1208 * program.
1209 */
1210 bool interfered = false;
1211
1212 for (fs_inst *scan_inst = (fs_inst *)inst->next;
1213 !scan_inst->is_tail_sentinel();
1214 scan_inst = (fs_inst *)scan_inst->next) {
1215 if (scan_inst->dst.file == GRF) {
1216 if (scan_inst->dst.reg == inst->dst.reg &&
1217 (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
1218 scan_inst->is_tex())) {
1219 interfered = true;
1220 break;
1221 }
1222 if (inst->src[0].file == GRF &&
1223 scan_inst->dst.reg == inst->src[0].reg &&
1224 (scan_inst->dst.reg_offset == inst->src[0].reg_offset ||
1225 scan_inst->is_tex())) {
1226 interfered = true;
1227 break;
1228 }
1229 }
1230
1231 /* The gen6 MATH instruction can't handle source modifiers or
1232 * unusual register regions, so avoid coalescing those for
1233 * now. We should do something more specific.
1234 */
1235 if (intel->gen >= 6 &&
1236 scan_inst->is_math() &&
1237 (has_source_modifiers || inst->src[0].file == UNIFORM)) {
1238 interfered = true;
1239 break;
1240 }
1241 }
1242 if (interfered) {
1243 continue;
1244 }
1245
1246 /* Rewrite the later usage to point at the source of the move to
1247 * be removed.
1248 */
1249 for (fs_inst *scan_inst = inst;
1250 !scan_inst->is_tail_sentinel();
1251 scan_inst = (fs_inst *)scan_inst->next) {
1252 for (int i = 0; i < 3; i++) {
1253 if (scan_inst->src[i].file == GRF &&
1254 scan_inst->src[i].reg == inst->dst.reg &&
1255 scan_inst->src[i].reg_offset == inst->dst.reg_offset) {
1256 fs_reg new_src = inst->src[0];
1257 new_src.negate ^= scan_inst->src[i].negate;
1258 new_src.abs |= scan_inst->src[i].abs;
1259 scan_inst->src[i] = new_src;
1260 }
1261 }
1262 }
1263
1264 inst->remove();
1265 progress = true;
1266 }
1267
1268 if (progress)
1269 live_intervals_valid = false;
1270
1271 return progress;
1272 }
1273
1274
1275 bool
1276 fs_visitor::compute_to_mrf()
1277 {
1278 bool progress = false;
1279 int next_ip = 0;
1280
1281 calculate_live_intervals();
1282
1283 foreach_list_safe(node, &this->instructions) {
1284 fs_inst *inst = (fs_inst *)node;
1285
1286 int ip = next_ip;
1287 next_ip++;
1288
1289 if (inst->opcode != BRW_OPCODE_MOV ||
1290 inst->predicated ||
1291 inst->dst.file != MRF || inst->src[0].file != GRF ||
1292 inst->dst.type != inst->src[0].type ||
1293 inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1)
1294 continue;
1295
1296 /* Work out which hardware MRF registers are written by this
1297 * instruction.
1298 */
1299 int mrf_low = inst->dst.hw_reg & ~BRW_MRF_COMPR4;
1300 int mrf_high;
1301 if (inst->dst.hw_reg & BRW_MRF_COMPR4) {
1302 mrf_high = mrf_low + 4;
1303 } else if (c->dispatch_width == 16 &&
1304 (!inst->force_uncompressed && !inst->force_sechalf)) {
1305 mrf_high = mrf_low + 1;
1306 } else {
1307 mrf_high = mrf_low;
1308 }
1309
1310 /* Can't compute-to-MRF this GRF if someone else was going to
1311 * read it later.
1312 */
1313 if (this->virtual_grf_use[inst->src[0].reg] > ip)
1314 continue;
1315
1316 /* Found a move of a GRF to a MRF. Let's see if we can go
1317 * rewrite the thing that made this GRF to write into the MRF.
1318 */
1319 fs_inst *scan_inst;
1320 for (scan_inst = (fs_inst *)inst->prev;
1321 scan_inst->prev != NULL;
1322 scan_inst = (fs_inst *)scan_inst->prev) {
1323 if (scan_inst->dst.file == GRF &&
1324 scan_inst->dst.reg == inst->src[0].reg) {
1325 /* Found the last thing to write our reg we want to turn
1326 * into a compute-to-MRF.
1327 */
1328
1329 if (scan_inst->is_tex()) {
1330 /* texturing writes several continuous regs, so we can't
1331 * compute-to-mrf that.
1332 */
1333 break;
1334 }
1335
1336 /* If it's predicated, it (probably) didn't populate all
1337 * the channels. We might be able to rewrite everything
1338 * that writes that reg, but it would require smarter
1339 * tracking to delay the rewriting until complete success.
1340 */
1341 if (scan_inst->predicated)
1342 break;
1343
1344 /* If it's half of register setup and not the same half as
1345 * our MOV we're trying to remove, bail for now.
1346 */
1347 if (scan_inst->force_uncompressed != inst->force_uncompressed ||
1348 scan_inst->force_sechalf != inst->force_sechalf) {
1349 break;
1350 }
1351
1352 /* SEND instructions can't have MRF as a destination. */
1353 if (scan_inst->mlen)
1354 break;
1355
1356 if (intel->gen >= 6) {
1357 /* gen6 math instructions must have the destination be
1358 * GRF, so no compute-to-MRF for them.
1359 */
1360 if (scan_inst->is_math()) {
1361 break;
1362 }
1363 }
1364
1365 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1366 /* Found the creator of our MRF's source value. */
1367 scan_inst->dst.file = MRF;
1368 scan_inst->dst.hw_reg = inst->dst.hw_reg;
1369 scan_inst->saturate |= inst->saturate;
1370 inst->remove();
1371 progress = true;
1372 }
1373 break;
1374 }
1375
1376 /* We don't handle flow control here. Most computation of
1377 * values that end up in MRFs are shortly before the MRF
1378 * write anyway.
1379 */
1380 if (scan_inst->opcode == BRW_OPCODE_DO ||
1381 scan_inst->opcode == BRW_OPCODE_WHILE ||
1382 scan_inst->opcode == BRW_OPCODE_ELSE ||
1383 scan_inst->opcode == BRW_OPCODE_ENDIF) {
1384 break;
1385 }
1386
1387 /* You can't read from an MRF, so if someone else reads our
1388 * MRF's source GRF that we wanted to rewrite, that stops us.
1389 */
1390 bool interfered = false;
1391 for (int i = 0; i < 3; i++) {
1392 if (scan_inst->src[i].file == GRF &&
1393 scan_inst->src[i].reg == inst->src[0].reg &&
1394 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1395 interfered = true;
1396 }
1397 }
1398 if (interfered)
1399 break;
1400
1401 if (scan_inst->dst.file == MRF) {
1402 /* If somebody else writes our MRF here, we can't
1403 * compute-to-MRF before that.
1404 */
1405 int scan_mrf_low = scan_inst->dst.hw_reg & ~BRW_MRF_COMPR4;
1406 int scan_mrf_high;
1407
1408 if (scan_inst->dst.hw_reg & BRW_MRF_COMPR4) {
1409 scan_mrf_high = scan_mrf_low + 4;
1410 } else if (c->dispatch_width == 16 &&
1411 (!scan_inst->force_uncompressed &&
1412 !scan_inst->force_sechalf)) {
1413 scan_mrf_high = scan_mrf_low + 1;
1414 } else {
1415 scan_mrf_high = scan_mrf_low;
1416 }
1417
1418 if (mrf_low == scan_mrf_low ||
1419 mrf_low == scan_mrf_high ||
1420 mrf_high == scan_mrf_low ||
1421 mrf_high == scan_mrf_high) {
1422 break;
1423 }
1424 }
1425
1426 if (scan_inst->mlen > 0) {
1427 /* Found a SEND instruction, which means that there are
1428 * live values in MRFs from base_mrf to base_mrf +
1429 * scan_inst->mlen - 1. Don't go pushing our MRF write up
1430 * above it.
1431 */
1432 if (mrf_low >= scan_inst->base_mrf &&
1433 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
1434 break;
1435 }
1436 if (mrf_high >= scan_inst->base_mrf &&
1437 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
1438 break;
1439 }
1440 }
1441 }
1442 }
1443
1444 return progress;
1445 }
1446
1447 /**
1448 * Walks through basic blocks, locking for repeated MRF writes and
1449 * removing the later ones.
1450 */
1451 bool
1452 fs_visitor::remove_duplicate_mrf_writes()
1453 {
1454 fs_inst *last_mrf_move[16];
1455 bool progress = false;
1456
1457 /* Need to update the MRF tracking for compressed instructions. */
1458 if (c->dispatch_width == 16)
1459 return false;
1460
1461 memset(last_mrf_move, 0, sizeof(last_mrf_move));
1462
1463 foreach_list_safe(node, &this->instructions) {
1464 fs_inst *inst = (fs_inst *)node;
1465
1466 switch (inst->opcode) {
1467 case BRW_OPCODE_DO:
1468 case BRW_OPCODE_WHILE:
1469 case BRW_OPCODE_IF:
1470 case BRW_OPCODE_ELSE:
1471 case BRW_OPCODE_ENDIF:
1472 memset(last_mrf_move, 0, sizeof(last_mrf_move));
1473 continue;
1474 default:
1475 break;
1476 }
1477
1478 if (inst->opcode == BRW_OPCODE_MOV &&
1479 inst->dst.file == MRF) {
1480 fs_inst *prev_inst = last_mrf_move[inst->dst.hw_reg];
1481 if (prev_inst && inst->equals(prev_inst)) {
1482 inst->remove();
1483 progress = true;
1484 continue;
1485 }
1486 }
1487
1488 /* Clear out the last-write records for MRFs that were overwritten. */
1489 if (inst->dst.file == MRF) {
1490 last_mrf_move[inst->dst.hw_reg] = NULL;
1491 }
1492
1493 if (inst->mlen > 0) {
1494 /* Found a SEND instruction, which will include two or fewer
1495 * implied MRF writes. We could do better here.
1496 */
1497 for (int i = 0; i < implied_mrf_writes(inst); i++) {
1498 last_mrf_move[inst->base_mrf + i] = NULL;
1499 }
1500 }
1501
1502 /* Clear out any MRF move records whose sources got overwritten. */
1503 if (inst->dst.file == GRF) {
1504 for (unsigned int i = 0; i < Elements(last_mrf_move); i++) {
1505 if (last_mrf_move[i] &&
1506 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
1507 last_mrf_move[i] = NULL;
1508 }
1509 }
1510 }
1511
1512 if (inst->opcode == BRW_OPCODE_MOV &&
1513 inst->dst.file == MRF &&
1514 inst->src[0].file == GRF &&
1515 !inst->predicated) {
1516 last_mrf_move[inst->dst.hw_reg] = inst;
1517 }
1518 }
1519
1520 return progress;
1521 }
1522
1523 bool
1524 fs_visitor::virtual_grf_interferes(int a, int b)
1525 {
1526 int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
1527 int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
1528
1529 /* We can't handle dead register writes here, without iterating
1530 * over the whole instruction stream to find every single dead
1531 * write to that register to compare to the live interval of the
1532 * other register. Just assert that dead_code_eliminate() has been
1533 * called.
1534 */
1535 assert((this->virtual_grf_use[a] != -1 ||
1536 this->virtual_grf_def[a] == MAX_INSTRUCTION) &&
1537 (this->virtual_grf_use[b] != -1 ||
1538 this->virtual_grf_def[b] == MAX_INSTRUCTION));
1539
1540 /* If the register is used to store 16 values of less than float
1541 * size (only the case for pixel_[xy]), then we can't allocate
1542 * another dword-sized thing to that register that would be used in
1543 * the same instruction. This is because when the GPU decodes (for
1544 * example):
1545 *
1546 * (declare (in ) vec4 gl_FragCoord@0x97766a0)
1547 * add(16) g6<1>F g6<8,8,1>UW 0.5F { align1 compr };
1548 *
1549 * it's actually processed as:
1550 * add(8) g6<1>F g6<8,8,1>UW 0.5F { align1 };
1551 * add(8) g7<1>F g6.8<8,8,1>UW 0.5F { align1 sechalf };
1552 *
1553 * so our second half values in g6 got overwritten in the first
1554 * half.
1555 */
1556 if (c->dispatch_width == 16 && (this->pixel_x.reg == a ||
1557 this->pixel_x.reg == b ||
1558 this->pixel_y.reg == a ||
1559 this->pixel_y.reg == b)) {
1560 return start <= end;
1561 }
1562
1563 return start < end;
1564 }
1565
1566 bool
1567 fs_visitor::run()
1568 {
1569 uint32_t prog_offset_16 = 0;
1570 uint32_t orig_nr_params = c->prog_data.nr_params;
1571
1572 brw_wm_payload_setup(brw, c);
1573
1574 if (c->dispatch_width == 16) {
1575 /* align to 64 byte boundary. */
1576 while ((c->func.nr_insn * sizeof(struct brw_instruction)) % 64) {
1577 brw_NOP(p);
1578 }
1579
1580 /* Save off the start of this 16-wide program in case we succeed. */
1581 prog_offset_16 = c->func.nr_insn * sizeof(struct brw_instruction);
1582
1583 brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
1584 }
1585
1586 if (0) {
1587 emit_dummy_fs();
1588 } else {
1589 calculate_urb_setup();
1590 if (intel->gen < 6)
1591 emit_interpolation_setup_gen4();
1592 else
1593 emit_interpolation_setup_gen6();
1594
1595 /* Generate FS IR for main(). (the visitor only descends into
1596 * functions called "main").
1597 */
1598 foreach_list(node, &*shader->ir) {
1599 ir_instruction *ir = (ir_instruction *)node;
1600 base_ir = ir;
1601 this->result = reg_undef;
1602 ir->accept(this);
1603 }
1604 if (failed)
1605 return false;
1606
1607 emit_fb_writes();
1608
1609 split_virtual_grfs();
1610
1611 setup_paramvalues_refs();
1612 setup_pull_constants();
1613
1614 bool progress;
1615 do {
1616 progress = false;
1617
1618 progress = remove_duplicate_mrf_writes() || progress;
1619
1620 progress = propagate_constants() || progress;
1621 progress = opt_algebraic() || progress;
1622 progress = register_coalesce() || progress;
1623 progress = compute_to_mrf() || progress;
1624 progress = dead_code_eliminate() || progress;
1625 } while (progress);
1626
1627 schedule_instructions();
1628
1629 assign_curb_setup();
1630 assign_urb_setup();
1631
1632 if (0) {
1633 /* Debug of register spilling: Go spill everything. */
1634 int virtual_grf_count = virtual_grf_next;
1635 for (int i = 1; i < virtual_grf_count; i++) {
1636 spill_reg(i);
1637 }
1638 }
1639
1640 if (0)
1641 assign_regs_trivial();
1642 else {
1643 while (!assign_regs()) {
1644 if (failed)
1645 break;
1646 }
1647 }
1648 }
1649 assert(force_uncompressed_stack == 0);
1650 assert(force_sechalf_stack == 0);
1651
1652 if (failed)
1653 return false;
1654
1655 generate_code();
1656
1657 if (c->dispatch_width == 8) {
1658 c->prog_data.reg_blocks = brw_register_blocks(grf_used);
1659 } else {
1660 c->prog_data.reg_blocks_16 = brw_register_blocks(grf_used);
1661 c->prog_data.prog_offset_16 = prog_offset_16;
1662
1663 /* Make sure we didn't try to sneak in an extra uniform */
1664 assert(orig_nr_params == c->prog_data.nr_params);
1665 }
1666
1667 return !failed;
1668 }
1669
1670 bool
1671 brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c,
1672 struct gl_shader_program *prog)
1673 {
1674 struct intel_context *intel = &brw->intel;
1675
1676 if (!prog)
1677 return false;
1678
1679 struct brw_shader *shader =
1680 (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1681 if (!shader)
1682 return false;
1683
1684 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
1685 printf("GLSL IR for native fragment shader %d:\n", prog->Name);
1686 _mesa_print_ir(shader->ir, NULL);
1687 printf("\n\n");
1688 }
1689
1690 /* Now the main event: Visit the shader IR and generate our FS IR for it.
1691 */
1692 c->dispatch_width = 8;
1693
1694 fs_visitor v(c, prog, shader);
1695 if (!v.run()) {
1696 prog->LinkStatus = GL_FALSE;
1697 prog->InfoLog = ralloc_strdup(prog, v.fail_msg);
1698
1699 return false;
1700 }
1701
1702 if (intel->gen >= 5 && c->prog_data.nr_pull_params == 0) {
1703 c->dispatch_width = 16;
1704 fs_visitor v2(c, prog, shader);
1705 v2.import_uniforms(v.variable_ht);
1706 v2.run();
1707 }
1708
1709 c->prog_data.dispatch_width = 8;
1710
1711 return true;
1712 }
1713
1714 bool
1715 brw_fs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
1716 {
1717 struct brw_context *brw = brw_context(ctx);
1718 struct brw_wm_prog_key key;
1719 struct gl_fragment_program *fp = prog->FragmentProgram;
1720 struct brw_fragment_program *bfp = brw_fragment_program(fp);
1721
1722 if (!fp)
1723 return true;
1724
1725 memset(&key, 0, sizeof(key));
1726
1727 if (fp->UsesKill)
1728 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
1729
1730 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
1731 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
1732
1733 /* Just assume depth testing. */
1734 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
1735 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
1736
1737 key.vp_outputs_written |= BITFIELD64_BIT(FRAG_ATTRIB_WPOS);
1738 for (int i = 0; i < FRAG_ATTRIB_MAX; i++) {
1739 int vp_index = -1;
1740
1741 if (!(fp->Base.InputsRead & BITFIELD64_BIT(i)))
1742 continue;
1743
1744 key.proj_attrib_mask |= 1 << i;
1745
1746 if (i <= FRAG_ATTRIB_TEX7)
1747 vp_index = i;
1748 else if (i >= FRAG_ATTRIB_VAR0)
1749 vp_index = i - FRAG_ATTRIB_VAR0 + VERT_RESULT_VAR0;
1750
1751 if (vp_index >= 0)
1752 key.vp_outputs_written |= BITFIELD64_BIT(vp_index);
1753 }
1754
1755 key.clamp_fragment_color = true;
1756
1757 for (int i = 0; i < BRW_MAX_TEX_UNIT; i++) {
1758 if (fp->Base.ShadowSamplers & (1 << i))
1759 key.compare_funcs[i] = GL_LESS;
1760
1761 /* FINISHME: depth compares might use (0,0,0,W) for example */
1762 key.tex_swizzles[i] = SWIZZLE_XYZW;
1763 }
1764
1765 if (fp->Base.InputsRead & FRAG_BIT_WPOS) {
1766 key.drawable_height = ctx->DrawBuffer->Height;
1767 key.render_to_fbo = ctx->DrawBuffer->Name != 0;
1768 }
1769
1770 key.nr_color_regions = 1;
1771
1772 key.program_string_id = bfp->id;
1773
1774 uint32_t old_prog_offset = brw->wm.prog_offset;
1775 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
1776
1777 bool success = do_wm_prog(brw, prog, bfp, &key);
1778
1779 brw->wm.prog_offset = old_prog_offset;
1780 brw->wm.prog_data = old_prog_data;
1781
1782 return success;
1783 }