90b878913b3700b325a720c73280be710acdbc59
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "main/shaderimage.h"
26 #include "brw_fs.h"
27 #include "brw_fs_surface_builder.h"
28 #include "brw_nir.h"
29 #include "brw_program.h"
30
31 using namespace brw;
32 using namespace brw::surface_access;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_inputs();
41 nir_setup_outputs();
42 nir_setup_uniforms();
43 nir_emit_system_values();
44
45 /* get the main function and emit it */
46 nir_foreach_function(nir, function) {
47 assert(strcmp(function->name, "main") == 0);
48 assert(function->impl);
49 nir_emit_impl(function->impl);
50 }
51 }
52
53 void
54 fs_visitor::nir_setup_inputs()
55 {
56 if (stage != MESA_SHADER_FRAGMENT)
57 return;
58
59 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
60
61 nir_foreach_variable(var, &nir->inputs) {
62 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
63
64 fs_reg reg;
65 if (var->data.location == VARYING_SLOT_POS) {
66 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
67 var->data.origin_upper_left);
68 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
69 input, reg), 0xF);
70 } else if (var->data.location == VARYING_SLOT_LAYER) {
71 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
72 reg.type = BRW_REGISTER_TYPE_D;
73 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
74 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
75 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
76 reg.type = BRW_REGISTER_TYPE_D;
77 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
78 } else {
79 int location = var->data.location;
80 emit_general_interpolation(&input, var->name, var->type,
81 (glsl_interp_qualifier) var->data.interpolation,
82 &location, var->data.centroid,
83 var->data.sample);
84 }
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_single_output_varying(fs_reg *reg,
90 const glsl_type *type,
91 unsigned *location)
92 {
93 if (type->is_array() || type->is_matrix()) {
94 const struct glsl_type *elem_type = glsl_get_array_element(type);
95 const unsigned length = glsl_get_length(type);
96
97 for (unsigned i = 0; i < length; i++) {
98 nir_setup_single_output_varying(reg, elem_type, location);
99 }
100 } else if (type->is_record()) {
101 for (unsigned i = 0; i < type->length; i++) {
102 const struct glsl_type *field_type = type->fields.structure[i].type;
103 nir_setup_single_output_varying(reg, field_type, location);
104 }
105 } else {
106 assert(type->is_scalar() || type->is_vector());
107 this->outputs[*location] = *reg;
108 this->output_components[*location] = type->vector_elements;
109 *reg = offset(*reg, bld, 4);
110 (*location)++;
111 }
112 }
113
114 void
115 fs_visitor::nir_setup_outputs()
116 {
117 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
118
119 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
120
121 nir_foreach_variable(var, &nir->outputs) {
122 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
123
124 switch (stage) {
125 case MESA_SHADER_VERTEX:
126 case MESA_SHADER_TESS_EVAL:
127 case MESA_SHADER_GEOMETRY: {
128 unsigned location = var->data.location;
129 nir_setup_single_output_varying(&reg, var->type, &location);
130 break;
131 }
132 case MESA_SHADER_FRAGMENT:
133 if (key->force_dual_color_blend &&
134 var->data.location == FRAG_RESULT_DATA1) {
135 this->dual_src_output = reg;
136 this->do_dual_src = true;
137 } else if (var->data.index > 0) {
138 assert(var->data.location == FRAG_RESULT_DATA0);
139 assert(var->data.index == 1);
140 this->dual_src_output = reg;
141 this->do_dual_src = true;
142 } else if (var->data.location == FRAG_RESULT_COLOR) {
143 /* Writing gl_FragColor outputs to all color regions. */
144 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
145 this->outputs[i] = reg;
146 this->output_components[i] = 4;
147 }
148 } else if (var->data.location == FRAG_RESULT_DEPTH) {
149 this->frag_depth = reg;
150 } else if (var->data.location == FRAG_RESULT_STENCIL) {
151 this->frag_stencil = reg;
152 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
153 this->sample_mask = reg;
154 } else {
155 int vector_elements = var->type->without_array()->vector_elements;
156
157 /* gl_FragData or a user-defined FS output */
158 assert(var->data.location >= FRAG_RESULT_DATA0 &&
159 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
160
161 /* General color output. */
162 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
163 int output = var->data.location - FRAG_RESULT_DATA0 + i;
164 this->outputs[output] = offset(reg, bld, vector_elements * i);
165 this->output_components[output] = vector_elements;
166 }
167 }
168 break;
169 default:
170 unreachable("unhandled shader stage");
171 }
172 }
173 }
174
175 void
176 fs_visitor::nir_setup_uniforms()
177 {
178 if (dispatch_width != 8)
179 return;
180
181 uniforms = nir->num_uniforms / 4;
182
183 nir_foreach_variable(var, &nir->uniforms) {
184 /* UBO's and atomics don't take up space in the uniform file */
185 if (var->interface_type != NULL || var->type->contains_atomic())
186 continue;
187
188 if (type_size_scalar(var->type) > 0)
189 param_size[var->data.driver_location / 4] = type_size_scalar(var->type);
190 }
191 }
192
193 static bool
194 emit_system_values_block(nir_block *block, void *void_visitor)
195 {
196 fs_visitor *v = (fs_visitor *)void_visitor;
197 fs_reg *reg;
198
199 nir_foreach_instr(block, instr) {
200 if (instr->type != nir_instr_type_intrinsic)
201 continue;
202
203 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
204 switch (intrin->intrinsic) {
205 case nir_intrinsic_load_vertex_id:
206 unreachable("should be lowered by lower_vertex_id().");
207
208 case nir_intrinsic_load_vertex_id_zero_base:
209 assert(v->stage == MESA_SHADER_VERTEX);
210 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
211 if (reg->file == BAD_FILE)
212 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
213 break;
214
215 case nir_intrinsic_load_base_vertex:
216 assert(v->stage == MESA_SHADER_VERTEX);
217 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
218 if (reg->file == BAD_FILE)
219 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
220 break;
221
222 case nir_intrinsic_load_instance_id:
223 assert(v->stage == MESA_SHADER_VERTEX);
224 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
225 if (reg->file == BAD_FILE)
226 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
227 break;
228
229 case nir_intrinsic_load_base_instance:
230 assert(v->stage == MESA_SHADER_VERTEX);
231 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
232 if (reg->file == BAD_FILE)
233 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
234 break;
235
236 case nir_intrinsic_load_draw_id:
237 assert(v->stage == MESA_SHADER_VERTEX);
238 reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
239 if (reg->file == BAD_FILE)
240 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
241 break;
242
243 case nir_intrinsic_load_invocation_id:
244 assert(v->stage == MESA_SHADER_GEOMETRY);
245 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
246 if (reg->file == BAD_FILE) {
247 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
248 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
249 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
250 abld.SHR(iid, g1, brw_imm_ud(27u));
251 *reg = iid;
252 }
253 break;
254
255 case nir_intrinsic_load_sample_pos:
256 assert(v->stage == MESA_SHADER_FRAGMENT);
257 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
258 if (reg->file == BAD_FILE)
259 *reg = *v->emit_samplepos_setup();
260 break;
261
262 case nir_intrinsic_load_sample_id:
263 assert(v->stage == MESA_SHADER_FRAGMENT);
264 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
265 if (reg->file == BAD_FILE)
266 *reg = *v->emit_sampleid_setup();
267 break;
268
269 case nir_intrinsic_load_sample_mask_in:
270 assert(v->stage == MESA_SHADER_FRAGMENT);
271 assert(v->devinfo->gen >= 7);
272 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
273 if (reg->file == BAD_FILE)
274 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
275 BRW_REGISTER_TYPE_D));
276 break;
277
278 case nir_intrinsic_load_local_invocation_id:
279 assert(v->stage == MESA_SHADER_COMPUTE);
280 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
281 if (reg->file == BAD_FILE)
282 *reg = *v->emit_cs_local_invocation_id_setup();
283 break;
284
285 case nir_intrinsic_load_work_group_id:
286 assert(v->stage == MESA_SHADER_COMPUTE);
287 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
288 if (reg->file == BAD_FILE)
289 *reg = *v->emit_cs_work_group_id_setup();
290 break;
291
292 case nir_intrinsic_load_helper_invocation:
293 assert(v->stage == MESA_SHADER_FRAGMENT);
294 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
295 if (reg->file == BAD_FILE) {
296 const fs_builder abld =
297 v->bld.annotate("gl_HelperInvocation", NULL);
298
299 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
300 * pixel mask is in g1.7 of the thread payload.
301 *
302 * We move the per-channel pixel enable bit to the low bit of each
303 * channel by shifting the byte containing the pixel mask by the
304 * vector immediate 0x76543210UV.
305 *
306 * The region of <1,8,0> reads only 1 byte (the pixel masks for
307 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
308 * masks for 2 and 3) in SIMD16.
309 */
310 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
311 abld.SHR(shifted,
312 stride(byte_offset(retype(brw_vec1_grf(1, 0),
313 BRW_REGISTER_TYPE_UB), 28),
314 1, 8, 0),
315 brw_imm_uv(0x76543210));
316
317 /* A set bit in the pixel mask means the channel is enabled, but
318 * that is the opposite of gl_HelperInvocation so we need to invert
319 * the mask.
320 *
321 * The negate source-modifier bit of logical instructions on Gen8+
322 * performs 1's complement negation, so we can use that instead of
323 * a NOT instruction.
324 */
325 fs_reg inverted = negate(shifted);
326 if (v->devinfo->gen < 8) {
327 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
328 abld.NOT(inverted, shifted);
329 }
330
331 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
332 * with 1 and negating.
333 */
334 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
335 abld.AND(anded, inverted, brw_imm_uw(1));
336
337 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
338 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
339 *reg = dst;
340 }
341 break;
342
343 default:
344 break;
345 }
346 }
347
348 return true;
349 }
350
351 void
352 fs_visitor::nir_emit_system_values()
353 {
354 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
355 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
356 nir_system_values[i] = fs_reg();
357 }
358
359 nir_foreach_function(nir, function) {
360 assert(strcmp(function->name, "main") == 0);
361 assert(function->impl);
362 nir_foreach_block(function->impl, emit_system_values_block, this);
363 }
364 }
365
366 void
367 fs_visitor::nir_emit_impl(nir_function_impl *impl)
368 {
369 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
370 for (unsigned i = 0; i < impl->reg_alloc; i++) {
371 nir_locals[i] = fs_reg();
372 }
373
374 foreach_list_typed(nir_register, reg, node, &impl->registers) {
375 unsigned array_elems =
376 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
377 unsigned size = array_elems * reg->num_components;
378 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
379 }
380
381 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
382 impl->ssa_alloc);
383
384 nir_emit_cf_list(&impl->body);
385 }
386
387 void
388 fs_visitor::nir_emit_cf_list(exec_list *list)
389 {
390 exec_list_validate(list);
391 foreach_list_typed(nir_cf_node, node, node, list) {
392 switch (node->type) {
393 case nir_cf_node_if:
394 nir_emit_if(nir_cf_node_as_if(node));
395 break;
396
397 case nir_cf_node_loop:
398 nir_emit_loop(nir_cf_node_as_loop(node));
399 break;
400
401 case nir_cf_node_block:
402 nir_emit_block(nir_cf_node_as_block(node));
403 break;
404
405 default:
406 unreachable("Invalid CFG node block");
407 }
408 }
409 }
410
411 void
412 fs_visitor::nir_emit_if(nir_if *if_stmt)
413 {
414 /* first, put the condition into f0 */
415 fs_inst *inst = bld.MOV(bld.null_reg_d(),
416 retype(get_nir_src(if_stmt->condition),
417 BRW_REGISTER_TYPE_D));
418 inst->conditional_mod = BRW_CONDITIONAL_NZ;
419
420 bld.IF(BRW_PREDICATE_NORMAL);
421
422 nir_emit_cf_list(&if_stmt->then_list);
423
424 /* note: if the else is empty, dead CF elimination will remove it */
425 bld.emit(BRW_OPCODE_ELSE);
426
427 nir_emit_cf_list(&if_stmt->else_list);
428
429 bld.emit(BRW_OPCODE_ENDIF);
430 }
431
432 void
433 fs_visitor::nir_emit_loop(nir_loop *loop)
434 {
435 bld.emit(BRW_OPCODE_DO);
436
437 nir_emit_cf_list(&loop->body);
438
439 bld.emit(BRW_OPCODE_WHILE);
440 }
441
442 void
443 fs_visitor::nir_emit_block(nir_block *block)
444 {
445 nir_foreach_instr(block, instr) {
446 nir_emit_instr(instr);
447 }
448 }
449
450 void
451 fs_visitor::nir_emit_instr(nir_instr *instr)
452 {
453 const fs_builder abld = bld.annotate(NULL, instr);
454
455 switch (instr->type) {
456 case nir_instr_type_alu:
457 nir_emit_alu(abld, nir_instr_as_alu(instr));
458 break;
459
460 case nir_instr_type_intrinsic:
461 switch (stage) {
462 case MESA_SHADER_VERTEX:
463 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_TESS_EVAL:
466 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_GEOMETRY:
469 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 case MESA_SHADER_FRAGMENT:
472 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
473 break;
474 case MESA_SHADER_COMPUTE:
475 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
476 break;
477 default:
478 unreachable("unsupported shader stage");
479 }
480 break;
481
482 case nir_instr_type_tex:
483 nir_emit_texture(abld, nir_instr_as_tex(instr));
484 break;
485
486 case nir_instr_type_load_const:
487 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
488 break;
489
490 case nir_instr_type_ssa_undef:
491 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
492 break;
493
494 case nir_instr_type_jump:
495 nir_emit_jump(abld, nir_instr_as_jump(instr));
496 break;
497
498 default:
499 unreachable("unknown instruction type");
500 }
501 }
502
503 /**
504 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
505 * match instr.
506 */
507 bool
508 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
509 const fs_reg &result)
510 {
511 if (!instr->src[0].src.is_ssa ||
512 !instr->src[0].src.ssa->parent_instr)
513 return false;
514
515 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
516 return false;
517
518 nir_alu_instr *src0 =
519 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
520
521 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
522 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
523 return false;
524
525 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
526 assert(element != NULL);
527
528 enum opcode extract_op;
529 if (src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16) {
530 assert(element->u32[0] <= 1);
531 extract_op = SHADER_OPCODE_EXTRACT_WORD;
532 } else {
533 assert(element->u32[0] <= 3);
534 extract_op = SHADER_OPCODE_EXTRACT_BYTE;
535 }
536
537 fs_reg op0 = get_nir_src(src0->src[0].src);
538 op0.type = brw_type_for_nir_type(nir_op_infos[src0->op].input_types[0]);
539 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
540
541 set_saturate(instr->dest.saturate,
542 bld.emit(extract_op, result, op0, brw_imm_ud(element->u32[0])));
543 return true;
544 }
545
546 bool
547 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
548 const fs_reg &result)
549 {
550 if (!instr->src[0].src.is_ssa ||
551 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
552 return false;
553
554 nir_intrinsic_instr *src0 =
555 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
556
557 if (src0->intrinsic != nir_intrinsic_load_front_face)
558 return false;
559
560 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
561 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
562 return false;
563
564 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
565 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
566 return false;
567
568 fs_reg tmp = vgrf(glsl_type::int_type);
569
570 if (devinfo->gen >= 6) {
571 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
572 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
573
574 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
575 *
576 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
577 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
578 *
579 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
580 *
581 * This negation looks like it's safe in practice, because bits 0:4 will
582 * surely be TRIANGLES
583 */
584
585 if (value1->f32[0] == -1.0f) {
586 g0.negate = true;
587 }
588
589 tmp.type = BRW_REGISTER_TYPE_W;
590 tmp.subreg_offset = 2;
591 tmp.stride = 2;
592
593 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
594
595 tmp.type = BRW_REGISTER_TYPE_D;
596 tmp.subreg_offset = 0;
597 tmp.stride = 1;
598 } else {
599 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
600 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
601
602 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
603 *
604 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
605 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
606 *
607 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
608 *
609 * This negation looks like it's safe in practice, because bits 0:4 will
610 * surely be TRIANGLES
611 */
612
613 if (value1->f32[0] == -1.0f) {
614 g1_6.negate = true;
615 }
616
617 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
618 }
619 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
620
621 return true;
622 }
623
624 void
625 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
626 {
627 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
628 fs_inst *inst;
629
630 fs_reg result = get_nir_dest(instr->dest.dest);
631 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
632
633 fs_reg op[4];
634 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
635 op[i] = get_nir_src(instr->src[i].src);
636 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
637 op[i].abs = instr->src[i].abs;
638 op[i].negate = instr->src[i].negate;
639 }
640
641 /* We get a bunch of mov's out of the from_ssa pass and they may still
642 * be vectorized. We'll handle them as a special-case. We'll also
643 * handle vecN here because it's basically the same thing.
644 */
645 switch (instr->op) {
646 case nir_op_imov:
647 case nir_op_fmov:
648 case nir_op_vec2:
649 case nir_op_vec3:
650 case nir_op_vec4: {
651 fs_reg temp = result;
652 bool need_extra_copy = false;
653 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
654 if (!instr->src[i].src.is_ssa &&
655 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
656 need_extra_copy = true;
657 temp = bld.vgrf(result.type, 4);
658 break;
659 }
660 }
661
662 for (unsigned i = 0; i < 4; i++) {
663 if (!(instr->dest.write_mask & (1 << i)))
664 continue;
665
666 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
667 inst = bld.MOV(offset(temp, bld, i),
668 offset(op[0], bld, instr->src[0].swizzle[i]));
669 } else {
670 inst = bld.MOV(offset(temp, bld, i),
671 offset(op[i], bld, instr->src[i].swizzle[0]));
672 }
673 inst->saturate = instr->dest.saturate;
674 }
675
676 /* In this case the source and destination registers were the same,
677 * so we need to insert an extra set of moves in order to deal with
678 * any swizzling.
679 */
680 if (need_extra_copy) {
681 for (unsigned i = 0; i < 4; i++) {
682 if (!(instr->dest.write_mask & (1 << i)))
683 continue;
684
685 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
686 }
687 }
688 return;
689 }
690 default:
691 break;
692 }
693
694 /* At this point, we have dealt with any instruction that operates on
695 * more than a single channel. Therefore, we can just adjust the source
696 * and destination registers for that channel and emit the instruction.
697 */
698 unsigned channel = 0;
699 if (nir_op_infos[instr->op].output_size == 0) {
700 /* Since NIR is doing the scalarizing for us, we should only ever see
701 * vectorized operations with a single channel.
702 */
703 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
704 channel = ffs(instr->dest.write_mask) - 1;
705
706 result = offset(result, bld, channel);
707 }
708
709 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
710 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
711 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
712 }
713
714 switch (instr->op) {
715 case nir_op_i2f:
716 case nir_op_u2f:
717 if (optimize_extract_to_float(instr, result))
718 return;
719
720 inst = bld.MOV(result, op[0]);
721 inst->saturate = instr->dest.saturate;
722 break;
723
724 case nir_op_f2i:
725 case nir_op_f2u:
726 bld.MOV(result, op[0]);
727 break;
728
729 case nir_op_fsign: {
730 /* AND(val, 0x80000000) gives the sign bit.
731 *
732 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
733 * zero.
734 */
735 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
736
737 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
738 op[0].type = BRW_REGISTER_TYPE_UD;
739 result.type = BRW_REGISTER_TYPE_UD;
740 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
741
742 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
743 inst->predicate = BRW_PREDICATE_NORMAL;
744 if (instr->dest.saturate) {
745 inst = bld.MOV(result, result);
746 inst->saturate = true;
747 }
748 break;
749 }
750
751 case nir_op_isign:
752 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
753 * -> non-negative val generates 0x00000000.
754 * Predicated OR sets 1 if val is positive.
755 */
756 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
757 bld.ASR(result, op[0], brw_imm_d(31));
758 inst = bld.OR(result, result, brw_imm_d(1));
759 inst->predicate = BRW_PREDICATE_NORMAL;
760 break;
761
762 case nir_op_frcp:
763 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
764 inst->saturate = instr->dest.saturate;
765 break;
766
767 case nir_op_fexp2:
768 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
769 inst->saturate = instr->dest.saturate;
770 break;
771
772 case nir_op_flog2:
773 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
774 inst->saturate = instr->dest.saturate;
775 break;
776
777 case nir_op_fsin:
778 if (!compiler->precise_trig) {
779 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
780 } else {
781 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F);
782 inst = bld.emit(SHADER_OPCODE_SIN, tmp, op[0]);
783 inst = bld.MUL(result, tmp, brw_imm_f(0.99997));
784 }
785 inst->saturate = instr->dest.saturate;
786 break;
787
788 case nir_op_fcos:
789 if (!compiler->precise_trig) {
790 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
791 } else {
792 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F);
793 inst = bld.emit(SHADER_OPCODE_COS, tmp, op[0]);
794 inst = bld.MUL(result, tmp, brw_imm_f(0.99997));
795 }
796 inst->saturate = instr->dest.saturate;
797 break;
798
799 case nir_op_fddx:
800 if (fs_key->high_quality_derivatives) {
801 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
802 } else {
803 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
804 }
805 inst->saturate = instr->dest.saturate;
806 break;
807 case nir_op_fddx_fine:
808 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
809 inst->saturate = instr->dest.saturate;
810 break;
811 case nir_op_fddx_coarse:
812 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
813 inst->saturate = instr->dest.saturate;
814 break;
815 case nir_op_fddy:
816 if (fs_key->high_quality_derivatives) {
817 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
818 brw_imm_d(fs_key->render_to_fbo));
819 } else {
820 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
821 brw_imm_d(fs_key->render_to_fbo));
822 }
823 inst->saturate = instr->dest.saturate;
824 break;
825 case nir_op_fddy_fine:
826 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
827 brw_imm_d(fs_key->render_to_fbo));
828 inst->saturate = instr->dest.saturate;
829 break;
830 case nir_op_fddy_coarse:
831 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
832 brw_imm_d(fs_key->render_to_fbo));
833 inst->saturate = instr->dest.saturate;
834 break;
835
836 case nir_op_fadd:
837 case nir_op_iadd:
838 inst = bld.ADD(result, op[0], op[1]);
839 inst->saturate = instr->dest.saturate;
840 break;
841
842 case nir_op_fmul:
843 inst = bld.MUL(result, op[0], op[1]);
844 inst->saturate = instr->dest.saturate;
845 break;
846
847 case nir_op_imul:
848 bld.MUL(result, op[0], op[1]);
849 break;
850
851 case nir_op_imul_high:
852 case nir_op_umul_high:
853 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
854 break;
855
856 case nir_op_idiv:
857 case nir_op_udiv:
858 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
859 break;
860
861 case nir_op_uadd_carry:
862 unreachable("Should have been lowered by carry_to_arith().");
863
864 case nir_op_usub_borrow:
865 unreachable("Should have been lowered by borrow_to_arith().");
866
867 case nir_op_umod:
868 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
869 break;
870
871 case nir_op_flt:
872 case nir_op_ilt:
873 case nir_op_ult:
874 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
875 break;
876
877 case nir_op_fge:
878 case nir_op_ige:
879 case nir_op_uge:
880 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
881 break;
882
883 case nir_op_feq:
884 case nir_op_ieq:
885 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
886 break;
887
888 case nir_op_fne:
889 case nir_op_ine:
890 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
891 break;
892
893 case nir_op_inot:
894 if (devinfo->gen >= 8) {
895 op[0] = resolve_source_modifiers(op[0]);
896 }
897 bld.NOT(result, op[0]);
898 break;
899 case nir_op_ixor:
900 if (devinfo->gen >= 8) {
901 op[0] = resolve_source_modifiers(op[0]);
902 op[1] = resolve_source_modifiers(op[1]);
903 }
904 bld.XOR(result, op[0], op[1]);
905 break;
906 case nir_op_ior:
907 if (devinfo->gen >= 8) {
908 op[0] = resolve_source_modifiers(op[0]);
909 op[1] = resolve_source_modifiers(op[1]);
910 }
911 bld.OR(result, op[0], op[1]);
912 break;
913 case nir_op_iand:
914 if (devinfo->gen >= 8) {
915 op[0] = resolve_source_modifiers(op[0]);
916 op[1] = resolve_source_modifiers(op[1]);
917 }
918 bld.AND(result, op[0], op[1]);
919 break;
920
921 case nir_op_fdot2:
922 case nir_op_fdot3:
923 case nir_op_fdot4:
924 case nir_op_ball_fequal2:
925 case nir_op_ball_iequal2:
926 case nir_op_ball_fequal3:
927 case nir_op_ball_iequal3:
928 case nir_op_ball_fequal4:
929 case nir_op_ball_iequal4:
930 case nir_op_bany_fnequal2:
931 case nir_op_bany_inequal2:
932 case nir_op_bany_fnequal3:
933 case nir_op_bany_inequal3:
934 case nir_op_bany_fnequal4:
935 case nir_op_bany_inequal4:
936 unreachable("Lowered by nir_lower_alu_reductions");
937
938 case nir_op_fnoise1_1:
939 case nir_op_fnoise1_2:
940 case nir_op_fnoise1_3:
941 case nir_op_fnoise1_4:
942 case nir_op_fnoise2_1:
943 case nir_op_fnoise2_2:
944 case nir_op_fnoise2_3:
945 case nir_op_fnoise2_4:
946 case nir_op_fnoise3_1:
947 case nir_op_fnoise3_2:
948 case nir_op_fnoise3_3:
949 case nir_op_fnoise3_4:
950 case nir_op_fnoise4_1:
951 case nir_op_fnoise4_2:
952 case nir_op_fnoise4_3:
953 case nir_op_fnoise4_4:
954 unreachable("not reached: should be handled by lower_noise");
955
956 case nir_op_ldexp:
957 unreachable("not reached: should be handled by ldexp_to_arith()");
958
959 case nir_op_fsqrt:
960 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
961 inst->saturate = instr->dest.saturate;
962 break;
963
964 case nir_op_frsq:
965 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
966 inst->saturate = instr->dest.saturate;
967 break;
968
969 case nir_op_b2i:
970 case nir_op_b2f:
971 bld.MOV(result, negate(op[0]));
972 break;
973
974 case nir_op_f2b:
975 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
976 break;
977 case nir_op_i2b:
978 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
979 break;
980
981 case nir_op_ftrunc:
982 inst = bld.RNDZ(result, op[0]);
983 inst->saturate = instr->dest.saturate;
984 break;
985
986 case nir_op_fceil: {
987 op[0].negate = !op[0].negate;
988 fs_reg temp = vgrf(glsl_type::float_type);
989 bld.RNDD(temp, op[0]);
990 temp.negate = true;
991 inst = bld.MOV(result, temp);
992 inst->saturate = instr->dest.saturate;
993 break;
994 }
995 case nir_op_ffloor:
996 inst = bld.RNDD(result, op[0]);
997 inst->saturate = instr->dest.saturate;
998 break;
999 case nir_op_ffract:
1000 inst = bld.FRC(result, op[0]);
1001 inst->saturate = instr->dest.saturate;
1002 break;
1003 case nir_op_fround_even:
1004 inst = bld.RNDE(result, op[0]);
1005 inst->saturate = instr->dest.saturate;
1006 break;
1007
1008 case nir_op_fquantize2f16: {
1009 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1010 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1011 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1012
1013 /* The destination stride must be at least as big as the source stride. */
1014 tmp16.type = BRW_REGISTER_TYPE_W;
1015 tmp16.stride = 2;
1016
1017 /* Check for denormal */
1018 fs_reg abs_src0 = op[0];
1019 abs_src0.abs = true;
1020 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1021 BRW_CONDITIONAL_L);
1022 /* Get the appropriately signed zero */
1023 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1024 retype(op[0], BRW_REGISTER_TYPE_UD),
1025 brw_imm_ud(0x80000000));
1026 /* Do the actual F32 -> F16 -> F32 conversion */
1027 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1028 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1029 /* Select that or zero based on normal status */
1030 inst = bld.SEL(result, zero, tmp32);
1031 inst->predicate = BRW_PREDICATE_NORMAL;
1032 inst->saturate = instr->dest.saturate;
1033 break;
1034 }
1035
1036 case nir_op_fmin:
1037 case nir_op_imin:
1038 case nir_op_umin:
1039 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1040 inst->saturate = instr->dest.saturate;
1041 break;
1042
1043 case nir_op_fmax:
1044 case nir_op_imax:
1045 case nir_op_umax:
1046 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1047 inst->saturate = instr->dest.saturate;
1048 break;
1049
1050 case nir_op_pack_snorm_2x16:
1051 case nir_op_pack_snorm_4x8:
1052 case nir_op_pack_unorm_2x16:
1053 case nir_op_pack_unorm_4x8:
1054 case nir_op_unpack_snorm_2x16:
1055 case nir_op_unpack_snorm_4x8:
1056 case nir_op_unpack_unorm_2x16:
1057 case nir_op_unpack_unorm_4x8:
1058 case nir_op_unpack_half_2x16:
1059 case nir_op_pack_half_2x16:
1060 unreachable("not reached: should be handled by lower_packing_builtins");
1061
1062 case nir_op_unpack_half_2x16_split_x:
1063 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1064 inst->saturate = instr->dest.saturate;
1065 break;
1066 case nir_op_unpack_half_2x16_split_y:
1067 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1068 inst->saturate = instr->dest.saturate;
1069 break;
1070
1071 case nir_op_fpow:
1072 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1073 inst->saturate = instr->dest.saturate;
1074 break;
1075
1076 case nir_op_bitfield_reverse:
1077 bld.BFREV(result, op[0]);
1078 break;
1079
1080 case nir_op_bit_count:
1081 bld.CBIT(result, op[0]);
1082 break;
1083
1084 case nir_op_ufind_msb:
1085 case nir_op_ifind_msb: {
1086 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1087
1088 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1089 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1090 * subtract the result from 31 to convert the MSB count into an LSB count.
1091 */
1092 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1093
1094 inst = bld.ADD(result, result, brw_imm_d(31));
1095 inst->predicate = BRW_PREDICATE_NORMAL;
1096 inst->src[0].negate = true;
1097 break;
1098 }
1099
1100 case nir_op_find_lsb:
1101 bld.FBL(result, op[0]);
1102 break;
1103
1104 case nir_op_ubitfield_extract:
1105 case nir_op_ibitfield_extract:
1106 unreachable("should have been lowered");
1107 case nir_op_ubfe:
1108 case nir_op_ibfe:
1109 bld.BFE(result, op[2], op[1], op[0]);
1110 break;
1111 case nir_op_bfm:
1112 bld.BFI1(result, op[0], op[1]);
1113 break;
1114 case nir_op_bfi:
1115 bld.BFI2(result, op[0], op[1], op[2]);
1116 break;
1117
1118 case nir_op_bitfield_insert:
1119 unreachable("not reached: should have been lowered");
1120
1121 case nir_op_ishl:
1122 bld.SHL(result, op[0], op[1]);
1123 break;
1124 case nir_op_ishr:
1125 bld.ASR(result, op[0], op[1]);
1126 break;
1127 case nir_op_ushr:
1128 bld.SHR(result, op[0], op[1]);
1129 break;
1130
1131 case nir_op_pack_half_2x16_split:
1132 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1133 break;
1134
1135 case nir_op_ffma:
1136 inst = bld.MAD(result, op[2], op[1], op[0]);
1137 inst->saturate = instr->dest.saturate;
1138 break;
1139
1140 case nir_op_flrp:
1141 inst = bld.LRP(result, op[0], op[1], op[2]);
1142 inst->saturate = instr->dest.saturate;
1143 break;
1144
1145 case nir_op_bcsel:
1146 if (optimize_frontfacing_ternary(instr, result))
1147 return;
1148
1149 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1150 inst = bld.SEL(result, op[1], op[2]);
1151 inst->predicate = BRW_PREDICATE_NORMAL;
1152 break;
1153
1154 case nir_op_extract_u8:
1155 case nir_op_extract_i8: {
1156 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1157 bld.emit(SHADER_OPCODE_EXTRACT_BYTE,
1158 result, op[0], brw_imm_ud(byte->u32[0]));
1159 break;
1160 }
1161
1162 case nir_op_extract_u16:
1163 case nir_op_extract_i16: {
1164 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1165 bld.emit(SHADER_OPCODE_EXTRACT_WORD,
1166 result, op[0], brw_imm_ud(word->u32[0]));
1167 break;
1168 }
1169
1170 default:
1171 unreachable("unhandled instruction");
1172 }
1173
1174 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1175 * to sign extend the low bit to 0/~0
1176 */
1177 if (devinfo->gen <= 5 &&
1178 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1179 fs_reg masked = vgrf(glsl_type::int_type);
1180 bld.AND(masked, result, brw_imm_d(1));
1181 masked.negate = true;
1182 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1183 }
1184 }
1185
1186 void
1187 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1188 nir_load_const_instr *instr)
1189 {
1190 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1191
1192 for (unsigned i = 0; i < instr->def.num_components; i++)
1193 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1194
1195 nir_ssa_values[instr->def.index] = reg;
1196 }
1197
1198 void
1199 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1200 {
1201 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1202 instr->def.num_components);
1203 }
1204
1205 fs_reg
1206 fs_visitor::get_nir_src(nir_src src)
1207 {
1208 fs_reg reg;
1209 if (src.is_ssa) {
1210 reg = nir_ssa_values[src.ssa->index];
1211 } else {
1212 /* We don't handle indirects on locals */
1213 assert(src.reg.indirect == NULL);
1214 reg = offset(nir_locals[src.reg.reg->index], bld,
1215 src.reg.base_offset * src.reg.reg->num_components);
1216 }
1217
1218 /* to avoid floating-point denorm flushing problems, set the type by
1219 * default to D - instructions that need floating point semantics will set
1220 * this to F if they need to
1221 */
1222 return retype(reg, BRW_REGISTER_TYPE_D);
1223 }
1224
1225 fs_reg
1226 fs_visitor::get_nir_dest(nir_dest dest)
1227 {
1228 if (dest.is_ssa) {
1229 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1230 dest.ssa.num_components);
1231 return nir_ssa_values[dest.ssa.index];
1232 } else {
1233 /* We don't handle indirects on locals */
1234 assert(dest.reg.indirect == NULL);
1235 return offset(nir_locals[dest.reg.reg->index], bld,
1236 dest.reg.base_offset * dest.reg.reg->num_components);
1237 }
1238 }
1239
1240 fs_reg
1241 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1242 {
1243 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1244 BRW_REGISTER_TYPE_UD);
1245
1246 for (const nir_deref *tail = &deref->deref; tail->child;
1247 tail = tail->child) {
1248 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1249 assert(tail->child->deref_type == nir_deref_type_array);
1250 const unsigned size = glsl_get_length(tail->type);
1251 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1252 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1253 image = offset(image, bld, base * element_size);
1254
1255 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1256 fs_reg tmp = vgrf(glsl_type::int_type);
1257
1258 if (devinfo->gen == 7 && !devinfo->is_haswell) {
1259 /* IVB hangs when trying to access an invalid surface index with
1260 * the dataport. According to the spec "if the index used to
1261 * select an individual element is negative or greater than or
1262 * equal to the size of the array, the results of the operation
1263 * are undefined but may not lead to termination" -- which is one
1264 * of the possible outcomes of the hang. Clamp the index to
1265 * prevent access outside of the array bounds.
1266 */
1267 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1268 BRW_REGISTER_TYPE_UD),
1269 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1270 } else {
1271 bld.MOV(tmp, get_nir_src(deref_array->indirect));
1272 }
1273
1274 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1275 if (image.reladdr)
1276 bld.ADD(*image.reladdr, *image.reladdr, tmp);
1277 else
1278 image.reladdr = new(mem_ctx) fs_reg(tmp);
1279 }
1280 }
1281
1282 return image;
1283 }
1284
1285 void
1286 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1287 unsigned wr_mask)
1288 {
1289 for (unsigned i = 0; i < 4; i++) {
1290 if (!((wr_mask >> i) & 1))
1291 continue;
1292
1293 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1294 new_inst->dst = offset(new_inst->dst, bld, i);
1295 for (unsigned j = 0; j < new_inst->sources; j++)
1296 if (new_inst->src[j].file == VGRF)
1297 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1298
1299 bld.emit(new_inst);
1300 }
1301 }
1302
1303 /**
1304 * Get the matching channel register datatype for an image intrinsic of the
1305 * specified GLSL image type.
1306 */
1307 static brw_reg_type
1308 get_image_base_type(const glsl_type *type)
1309 {
1310 switch ((glsl_base_type)type->sampled_type) {
1311 case GLSL_TYPE_UINT:
1312 return BRW_REGISTER_TYPE_UD;
1313 case GLSL_TYPE_INT:
1314 return BRW_REGISTER_TYPE_D;
1315 case GLSL_TYPE_FLOAT:
1316 return BRW_REGISTER_TYPE_F;
1317 default:
1318 unreachable("Not reached.");
1319 }
1320 }
1321
1322 /**
1323 * Get the appropriate atomic op for an image atomic intrinsic.
1324 */
1325 static unsigned
1326 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1327 {
1328 switch (op) {
1329 case nir_intrinsic_image_atomic_add:
1330 return BRW_AOP_ADD;
1331 case nir_intrinsic_image_atomic_min:
1332 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1333 BRW_AOP_IMIN : BRW_AOP_UMIN);
1334 case nir_intrinsic_image_atomic_max:
1335 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1336 BRW_AOP_IMAX : BRW_AOP_UMAX);
1337 case nir_intrinsic_image_atomic_and:
1338 return BRW_AOP_AND;
1339 case nir_intrinsic_image_atomic_or:
1340 return BRW_AOP_OR;
1341 case nir_intrinsic_image_atomic_xor:
1342 return BRW_AOP_XOR;
1343 case nir_intrinsic_image_atomic_exchange:
1344 return BRW_AOP_MOV;
1345 case nir_intrinsic_image_atomic_comp_swap:
1346 return BRW_AOP_CMPWR;
1347 default:
1348 unreachable("Not reachable.");
1349 }
1350 }
1351
1352 static fs_inst *
1353 emit_pixel_interpolater_send(const fs_builder &bld,
1354 enum opcode opcode,
1355 const fs_reg &dst,
1356 const fs_reg &src,
1357 const fs_reg &desc,
1358 glsl_interp_qualifier interpolation)
1359 {
1360 fs_inst *inst;
1361 fs_reg payload;
1362 int mlen;
1363
1364 if (src.file == BAD_FILE) {
1365 /* Dummy payload */
1366 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1367 mlen = 1;
1368 } else {
1369 payload = src;
1370 mlen = 2 * bld.dispatch_width() / 8;
1371 }
1372
1373 inst = bld.emit(opcode, dst, payload, desc);
1374 inst->mlen = mlen;
1375 /* 2 floats per slot returned */
1376 inst->regs_written = 2 * bld.dispatch_width() / 8;
1377 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1378
1379 return inst;
1380 }
1381
1382 /**
1383 * Computes 1 << x, given a D/UD register containing some value x.
1384 */
1385 static fs_reg
1386 intexp2(const fs_builder &bld, const fs_reg &x)
1387 {
1388 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1389
1390 fs_reg result = bld.vgrf(x.type, 1);
1391 fs_reg one = bld.vgrf(x.type, 1);
1392
1393 bld.MOV(one, retype(brw_imm_d(1), one.type));
1394 bld.SHL(result, one, x);
1395 return result;
1396 }
1397
1398 void
1399 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1400 {
1401 assert(stage == MESA_SHADER_GEOMETRY);
1402
1403 struct brw_gs_prog_data *gs_prog_data =
1404 (struct brw_gs_prog_data *) prog_data;
1405
1406 /* We can only do EndPrimitive() functionality when the control data
1407 * consists of cut bits. Fortunately, the only time it isn't is when the
1408 * output type is points, in which case EndPrimitive() is a no-op.
1409 */
1410 if (gs_prog_data->control_data_format !=
1411 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1412 return;
1413 }
1414
1415 /* Cut bits use one bit per vertex. */
1416 assert(gs_compile->control_data_bits_per_vertex == 1);
1417
1418 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1419 vertex_count.type = BRW_REGISTER_TYPE_UD;
1420
1421 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1422 * vertex n, 0 otherwise. So all we need to do here is mark bit
1423 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1424 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1425 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1426 *
1427 * Note that if EndPrimitive() is called before emitting any vertices, this
1428 * will cause us to set bit 31 of the control_data_bits register to 1.
1429 * That's fine because:
1430 *
1431 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1432 * output, so the hardware will ignore cut bit 31.
1433 *
1434 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1435 * last vertex, so setting cut bit 31 has no effect (since the primitive
1436 * is automatically ended when the GS terminates).
1437 *
1438 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1439 * control_data_bits register to 0 when the first vertex is emitted.
1440 */
1441
1442 const fs_builder abld = bld.annotate("end primitive");
1443
1444 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1445 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1446 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1447 fs_reg mask = intexp2(abld, prev_count);
1448 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1449 * attention to the lower 5 bits of its second source argument, so on this
1450 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1451 * ((vertex_count - 1) % 32).
1452 */
1453 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1454 }
1455
1456 void
1457 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1458 {
1459 assert(stage == MESA_SHADER_GEOMETRY);
1460 assert(gs_compile->control_data_bits_per_vertex != 0);
1461
1462 struct brw_gs_prog_data *gs_prog_data =
1463 (struct brw_gs_prog_data *) prog_data;
1464
1465 const fs_builder abld = bld.annotate("emit control data bits");
1466 const fs_builder fwa_bld = bld.exec_all();
1467
1468 /* We use a single UD register to accumulate control data bits (32 bits
1469 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1470 * at a time.
1471 *
1472 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1473 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1474 * use the Channel Mask phase to enable/disable which DWord within that
1475 * group to write. (Remember, different SIMD8 channels may have emitted
1476 * different numbers of vertices, so we may need per-slot offsets.)
1477 *
1478 * Channel masking presents an annoying problem: we may have to replicate
1479 * the data up to 4 times:
1480 *
1481 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1482 *
1483 * To avoid penalizing shaders that emit a small number of vertices, we
1484 * can avoid these sometimes: if the size of the control data header is
1485 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1486 * land in the same 128-bit group, so we can skip per-slot offsets.
1487 *
1488 * Similarly, if the control data header is <= 32 bits, there is only one
1489 * DWord, so we can skip channel masks.
1490 */
1491 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1492
1493 fs_reg channel_mask, per_slot_offset;
1494
1495 if (gs_compile->control_data_header_size_bits > 32) {
1496 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1497 channel_mask = vgrf(glsl_type::uint_type);
1498 }
1499
1500 if (gs_compile->control_data_header_size_bits > 128) {
1501 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1502 per_slot_offset = vgrf(glsl_type::uint_type);
1503 }
1504
1505 /* Figure out which DWord we're trying to write to using the formula:
1506 *
1507 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1508 *
1509 * Since bits_per_vertex is a power of two, and is known at compile
1510 * time, this can be optimized to:
1511 *
1512 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1513 */
1514 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1515 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1516 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1517 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1518 unsigned log2_bits_per_vertex =
1519 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1520 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1521
1522 if (per_slot_offset.file != BAD_FILE) {
1523 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1524 * the appropriate OWord within the control data header.
1525 */
1526 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1527 }
1528
1529 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1530 * write to the appropriate DWORD within the OWORD.
1531 */
1532 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1533 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1534 channel_mask = intexp2(fwa_bld, channel);
1535 /* Then the channel masks need to be in bits 23:16. */
1536 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1537 }
1538
1539 /* Store the control data bits in the message payload and send it. */
1540 int mlen = 2;
1541 if (channel_mask.file != BAD_FILE)
1542 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1543 if (per_slot_offset.file != BAD_FILE)
1544 mlen++;
1545
1546 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1547 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1548 int i = 0;
1549 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1550 if (per_slot_offset.file != BAD_FILE)
1551 sources[i++] = per_slot_offset;
1552 if (channel_mask.file != BAD_FILE)
1553 sources[i++] = channel_mask;
1554 while (i < mlen) {
1555 sources[i++] = this->control_data_bits;
1556 }
1557
1558 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1559 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1560 inst->mlen = mlen;
1561 /* We need to increment Global Offset by 256-bits to make room for
1562 * Broadwell's extra "Vertex Count" payload at the beginning of the
1563 * URB entry. Since this is an OWord message, Global Offset is counted
1564 * in 128-bit units, so we must set it to 2.
1565 */
1566 if (gs_prog_data->static_vertex_count == -1)
1567 inst->offset = 2;
1568 }
1569
1570 void
1571 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1572 unsigned stream_id)
1573 {
1574 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1575
1576 /* Note: we are calling this *before* increasing vertex_count, so
1577 * this->vertex_count == vertex_count - 1 in the formula above.
1578 */
1579
1580 /* Stream mode uses 2 bits per vertex */
1581 assert(gs_compile->control_data_bits_per_vertex == 2);
1582
1583 /* Must be a valid stream */
1584 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1585
1586 /* Control data bits are initialized to 0 so we don't have to set any
1587 * bits when sending vertices to stream 0.
1588 */
1589 if (stream_id == 0)
1590 return;
1591
1592 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1593
1594 /* reg::sid = stream_id */
1595 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1596 abld.MOV(sid, brw_imm_ud(stream_id));
1597
1598 /* reg:shift_count = 2 * (vertex_count - 1) */
1599 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1600 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1601
1602 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1603 * attention to the lower 5 bits of its second source argument, so on this
1604 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1605 * stream_id << ((2 * (vertex_count - 1)) % 32).
1606 */
1607 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1608 abld.SHL(mask, sid, shift_count);
1609 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1610 }
1611
1612 void
1613 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1614 unsigned stream_id)
1615 {
1616 assert(stage == MESA_SHADER_GEOMETRY);
1617
1618 struct brw_gs_prog_data *gs_prog_data =
1619 (struct brw_gs_prog_data *) prog_data;
1620
1621 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1622 vertex_count.type = BRW_REGISTER_TYPE_UD;
1623
1624 /* Haswell and later hardware ignores the "Render Stream Select" bits
1625 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1626 * and instead sends all primitives down the pipeline for rasterization.
1627 * If the SOL stage is enabled, "Render Stream Select" is honored and
1628 * primitives bound to non-zero streams are discarded after stream output.
1629 *
1630 * Since the only purpose of primives sent to non-zero streams is to
1631 * be recorded by transform feedback, we can simply discard all geometry
1632 * bound to these streams when transform feedback is disabled.
1633 */
1634 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1635 return;
1636
1637 /* If we're outputting 32 control data bits or less, then we can wait
1638 * until the shader is over to output them all. Otherwise we need to
1639 * output them as we go. Now is the time to do it, since we're about to
1640 * output the vertex_count'th vertex, so it's guaranteed that the
1641 * control data bits associated with the (vertex_count - 1)th vertex are
1642 * correct.
1643 */
1644 if (gs_compile->control_data_header_size_bits > 32) {
1645 const fs_builder abld =
1646 bld.annotate("emit vertex: emit control data bits");
1647
1648 /* Only emit control data bits if we've finished accumulating a batch
1649 * of 32 bits. This is the case when:
1650 *
1651 * (vertex_count * bits_per_vertex) % 32 == 0
1652 *
1653 * (in other words, when the last 5 bits of vertex_count *
1654 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1655 * integer n (which is always the case, since bits_per_vertex is
1656 * always 1 or 2), this is equivalent to requiring that the last 5-n
1657 * bits of vertex_count are 0:
1658 *
1659 * vertex_count & (2^(5-n) - 1) == 0
1660 *
1661 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1662 * equivalent to:
1663 *
1664 * vertex_count & (32 / bits_per_vertex - 1) == 0
1665 *
1666 * TODO: If vertex_count is an immediate, we could do some of this math
1667 * at compile time...
1668 */
1669 fs_inst *inst =
1670 abld.AND(bld.null_reg_d(), vertex_count,
1671 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1672 inst->conditional_mod = BRW_CONDITIONAL_Z;
1673
1674 abld.IF(BRW_PREDICATE_NORMAL);
1675 /* If vertex_count is 0, then no control data bits have been
1676 * accumulated yet, so we can skip emitting them.
1677 */
1678 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1679 BRW_CONDITIONAL_NEQ);
1680 abld.IF(BRW_PREDICATE_NORMAL);
1681 emit_gs_control_data_bits(vertex_count);
1682 abld.emit(BRW_OPCODE_ENDIF);
1683
1684 /* Reset control_data_bits to 0 so we can start accumulating a new
1685 * batch.
1686 *
1687 * Note: in the case where vertex_count == 0, this neutralizes the
1688 * effect of any call to EndPrimitive() that the shader may have
1689 * made before outputting its first vertex.
1690 */
1691 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1692 inst->force_writemask_all = true;
1693 abld.emit(BRW_OPCODE_ENDIF);
1694 }
1695
1696 emit_urb_writes(vertex_count);
1697
1698 /* In stream mode we have to set control data bits for all vertices
1699 * unless we have disabled control data bits completely (which we do
1700 * do for GL_POINTS outputs that don't use streams).
1701 */
1702 if (gs_compile->control_data_header_size_bits > 0 &&
1703 gs_prog_data->control_data_format ==
1704 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1705 set_gs_stream_control_data_bits(vertex_count, stream_id);
1706 }
1707 }
1708
1709 void
1710 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1711 const nir_src &vertex_src,
1712 unsigned base_offset,
1713 const nir_src &offset_src,
1714 unsigned num_components)
1715 {
1716 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1717
1718 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1719 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1720 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1721
1722 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1723 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1724 * gl_PointSize is available as a GS input, however, so it must be that.
1725 */
1726 const bool is_point_size = (base_offset == 0);
1727
1728 if (offset_const != NULL && vertex_const != NULL &&
1729 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
1730 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
1731 vertex_const->u32[0] * push_reg_count;
1732 /* This input was pushed into registers. */
1733 if (is_point_size) {
1734 /* gl_PointSize comes in .w */
1735 assert(imm_offset == 0);
1736 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
1737 } else {
1738 for (unsigned i = 0; i < num_components; i++) {
1739 bld.MOV(offset(dst, bld, i),
1740 fs_reg(ATTR, imm_offset + i, dst.type));
1741 }
1742 }
1743 } else {
1744 /* Resort to the pull model. Ensure the VUE handles are provided. */
1745 gs_prog_data->base.include_vue_handles = true;
1746
1747 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1748 fs_reg icp_handle;
1749
1750 if (vertex_const) {
1751 /* The vertex index is constant; just select the proper URB handle. */
1752 icp_handle =
1753 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
1754 BRW_REGISTER_TYPE_UD);
1755 } else {
1756 /* The vertex index is non-constant. We need to use indirect
1757 * addressing to fetch the proper URB handle.
1758 *
1759 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1760 * indicating that channel <n> should read the handle from
1761 * DWord <n>. We convert that to bytes by multiplying by 4.
1762 *
1763 * Next, we convert the vertex index to bytes by multiplying
1764 * by 32 (shifting by 5), and add the two together. This is
1765 * the final indirect byte offset.
1766 */
1767 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1768 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1769 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1770 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1771 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1772
1773 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1774 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1775 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1776 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1777 /* Convert vertex_index to bytes (multiply by 32) */
1778 bld.SHL(vertex_offset_bytes,
1779 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
1780 brw_imm_ud(5u));
1781 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
1782
1783 /* Use first_icp_handle as the base offset. There is one register
1784 * of URB handles per vertex, so inform the register allocator that
1785 * we might read up to nir->info.gs.vertices_in registers.
1786 */
1787 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
1788 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
1789 fs_reg(icp_offset_bytes),
1790 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
1791 }
1792
1793 fs_inst *inst;
1794 if (offset_const) {
1795 /* Constant indexing - use global offset. */
1796 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
1797 inst->offset = base_offset + offset_const->u32[0];
1798 inst->base_mrf = -1;
1799 inst->mlen = 1;
1800 inst->regs_written = num_components;
1801 } else {
1802 /* Indirect indexing - use per-slot offsets as well. */
1803 const fs_reg srcs[] = { icp_handle, get_nir_src(offset_src) };
1804 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1805 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1806
1807 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
1808 inst->offset = base_offset;
1809 inst->base_mrf = -1;
1810 inst->mlen = 2;
1811 inst->regs_written = num_components;
1812 }
1813
1814 if (is_point_size) {
1815 /* Read the whole VUE header (because of alignment) and read .w. */
1816 fs_reg tmp = bld.vgrf(dst.type, 4);
1817 inst->dst = tmp;
1818 inst->regs_written = 4;
1819 bld.MOV(dst, offset(tmp, bld, 3));
1820 }
1821 }
1822 }
1823
1824 fs_reg
1825 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
1826 {
1827 nir_src *offset_src = nir_get_io_offset_src(instr);
1828 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
1829
1830 if (const_value) {
1831 /* The only constant offset we should find is 0. brw_nir.c's
1832 * add_const_offset_to_base() will fold other constant offsets
1833 * into instr->const_index[0].
1834 */
1835 assert(const_value->u32[0] == 0);
1836 return fs_reg();
1837 }
1838
1839 return get_nir_src(*offset_src);
1840 }
1841
1842 void
1843 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
1844 nir_intrinsic_instr *instr)
1845 {
1846 assert(stage == MESA_SHADER_VERTEX);
1847
1848 fs_reg dest;
1849 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1850 dest = get_nir_dest(instr->dest);
1851
1852 switch (instr->intrinsic) {
1853 case nir_intrinsic_load_vertex_id:
1854 unreachable("should be lowered by lower_vertex_id()");
1855
1856 case nir_intrinsic_load_vertex_id_zero_base:
1857 case nir_intrinsic_load_base_vertex:
1858 case nir_intrinsic_load_instance_id:
1859 case nir_intrinsic_load_base_instance:
1860 case nir_intrinsic_load_draw_id: {
1861 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1862 fs_reg val = nir_system_values[sv];
1863 assert(val.file != BAD_FILE);
1864 dest.type = val.type;
1865 bld.MOV(dest, val);
1866 break;
1867 }
1868
1869 default:
1870 nir_emit_intrinsic(bld, instr);
1871 break;
1872 }
1873 }
1874
1875 void
1876 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
1877 nir_intrinsic_instr *instr)
1878 {
1879 assert(stage == MESA_SHADER_TESS_EVAL);
1880 struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data;
1881
1882 fs_reg dest;
1883 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1884 dest = get_nir_dest(instr->dest);
1885
1886 switch (instr->intrinsic) {
1887 case nir_intrinsic_load_primitive_id:
1888 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
1889 break;
1890 case nir_intrinsic_load_tess_coord:
1891 /* gl_TessCoord is part of the payload in g1-3 */
1892 for (unsigned i = 0; i < 3; i++) {
1893 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
1894 }
1895 break;
1896
1897 case nir_intrinsic_load_tess_level_outer:
1898 /* When the TES reads gl_TessLevelOuter, we ensure that the patch header
1899 * appears as a push-model input. So, we can simply use the ATTR file
1900 * rather than issuing URB read messages. The data is stored in the
1901 * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains
1902 * .y, and so on.
1903 */
1904 switch (tes_prog_data->domain) {
1905 case BRW_TESS_DOMAIN_QUAD:
1906 for (unsigned i = 0; i < 4; i++)
1907 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1908 break;
1909 case BRW_TESS_DOMAIN_TRI:
1910 for (unsigned i = 0; i < 3; i++)
1911 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1912 break;
1913 case BRW_TESS_DOMAIN_ISOLINE:
1914 for (unsigned i = 0; i < 2; i++)
1915 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1916 break;
1917 }
1918 break;
1919
1920 case nir_intrinsic_load_tess_level_inner:
1921 /* When the TES reads gl_TessLevelInner, we ensure that the patch header
1922 * appears as a push-model input. So, we can simply use the ATTR file
1923 * rather than issuing URB read messages.
1924 */
1925 switch (tes_prog_data->domain) {
1926 case BRW_TESS_DOMAIN_QUAD:
1927 bld.MOV(dest, component(fs_reg(ATTR, 0), 3));
1928 bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2));
1929 break;
1930 case BRW_TESS_DOMAIN_TRI:
1931 bld.MOV(dest, component(fs_reg(ATTR, 0), 4));
1932 break;
1933 case BRW_TESS_DOMAIN_ISOLINE:
1934 /* ignore - value is undefined */
1935 break;
1936 }
1937 break;
1938
1939 case nir_intrinsic_load_input:
1940 case nir_intrinsic_load_per_vertex_input: {
1941 fs_reg indirect_offset = get_indirect_offset(instr);
1942 unsigned imm_offset = instr->const_index[0];
1943
1944 fs_inst *inst;
1945 if (indirect_offset.file == BAD_FILE) {
1946 /* Arbitrarily only push up to 32 vec4 slots worth of data,
1947 * which is 16 registers (since each holds 2 vec4 slots).
1948 */
1949 const unsigned max_push_slots = 32;
1950 if (imm_offset < max_push_slots) {
1951 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
1952 for (int i = 0; i < instr->num_components; i++) {
1953 bld.MOV(offset(dest, bld, i),
1954 component(src, 4 * (imm_offset % 2) + i));
1955 }
1956 tes_prog_data->base.urb_read_length =
1957 MAX2(tes_prog_data->base.urb_read_length,
1958 DIV_ROUND_UP(imm_offset + 1, 2));
1959 } else {
1960 /* Replicate the patch handle to all enabled channels */
1961 const fs_reg srcs[] = {
1962 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
1963 };
1964 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1965 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
1966
1967 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle);
1968 inst->mlen = 1;
1969 inst->offset = imm_offset;
1970 inst->base_mrf = -1;
1971 inst->regs_written = instr->num_components;
1972 }
1973 } else {
1974 /* Indirect indexing - use per-slot offsets as well. */
1975 const fs_reg srcs[] = {
1976 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
1977 indirect_offset
1978 };
1979 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1980 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1981
1982 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload);
1983 inst->mlen = 2;
1984 inst->offset = imm_offset;
1985 inst->base_mrf = -1;
1986 inst->regs_written = instr->num_components;
1987 }
1988 break;
1989 }
1990 default:
1991 nir_emit_intrinsic(bld, instr);
1992 break;
1993 }
1994 }
1995
1996 void
1997 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
1998 nir_intrinsic_instr *instr)
1999 {
2000 assert(stage == MESA_SHADER_GEOMETRY);
2001 fs_reg indirect_offset;
2002
2003 fs_reg dest;
2004 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2005 dest = get_nir_dest(instr->dest);
2006
2007 switch (instr->intrinsic) {
2008 case nir_intrinsic_load_primitive_id:
2009 assert(stage == MESA_SHADER_GEOMETRY);
2010 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
2011 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2012 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2013 break;
2014
2015 case nir_intrinsic_load_input:
2016 unreachable("load_input intrinsics are invalid for the GS stage");
2017
2018 case nir_intrinsic_load_per_vertex_input:
2019 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2020 instr->src[1], instr->num_components);
2021 break;
2022
2023 case nir_intrinsic_emit_vertex_with_counter:
2024 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2025 break;
2026
2027 case nir_intrinsic_end_primitive_with_counter:
2028 emit_gs_end_primitive(instr->src[0]);
2029 break;
2030
2031 case nir_intrinsic_set_vertex_count:
2032 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2033 break;
2034
2035 case nir_intrinsic_load_invocation_id: {
2036 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2037 assert(val.file != BAD_FILE);
2038 dest.type = val.type;
2039 bld.MOV(dest, val);
2040 break;
2041 }
2042
2043 default:
2044 nir_emit_intrinsic(bld, instr);
2045 break;
2046 }
2047 }
2048
2049 void
2050 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
2051 nir_intrinsic_instr *instr)
2052 {
2053 assert(stage == MESA_SHADER_FRAGMENT);
2054 struct brw_wm_prog_data *wm_prog_data =
2055 (struct brw_wm_prog_data *) prog_data;
2056
2057 fs_reg dest;
2058 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2059 dest = get_nir_dest(instr->dest);
2060
2061 switch (instr->intrinsic) {
2062 case nir_intrinsic_load_front_face:
2063 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
2064 *emit_frontfacing_interpolation());
2065 break;
2066
2067 case nir_intrinsic_load_sample_pos: {
2068 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
2069 assert(sample_pos.file != BAD_FILE);
2070 dest.type = sample_pos.type;
2071 bld.MOV(dest, sample_pos);
2072 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
2073 break;
2074 }
2075
2076 case nir_intrinsic_load_helper_invocation:
2077 case nir_intrinsic_load_sample_mask_in:
2078 case nir_intrinsic_load_sample_id: {
2079 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2080 fs_reg val = nir_system_values[sv];
2081 assert(val.file != BAD_FILE);
2082 dest.type = val.type;
2083 bld.MOV(dest, val);
2084 break;
2085 }
2086
2087 case nir_intrinsic_discard:
2088 case nir_intrinsic_discard_if: {
2089 /* We track our discarded pixels in f0.1. By predicating on it, we can
2090 * update just the flag bits that aren't yet discarded. If there's no
2091 * condition, we emit a CMP of g0 != g0, so all currently executing
2092 * channels will get turned off.
2093 */
2094 fs_inst *cmp;
2095 if (instr->intrinsic == nir_intrinsic_discard_if) {
2096 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
2097 brw_imm_d(0), BRW_CONDITIONAL_Z);
2098 } else {
2099 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2100 BRW_REGISTER_TYPE_UW));
2101 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
2102 }
2103 cmp->predicate = BRW_PREDICATE_NORMAL;
2104 cmp->flag_subreg = 1;
2105
2106 if (devinfo->gen >= 6) {
2107 emit_discard_jump();
2108 }
2109 break;
2110 }
2111
2112 case nir_intrinsic_interp_var_at_centroid:
2113 case nir_intrinsic_interp_var_at_sample:
2114 case nir_intrinsic_interp_var_at_offset: {
2115 /* Handle ARB_gpu_shader5 interpolation intrinsics
2116 *
2117 * It's worth a quick word of explanation as to why we handle the full
2118 * variable-based interpolation intrinsic rather than a lowered version
2119 * with like we do for other inputs. We have to do that because the way
2120 * we set up inputs doesn't allow us to use the already setup inputs for
2121 * interpolation. At the beginning of the shader, we go through all of
2122 * the input variables and do the initial interpolation and put it in
2123 * the nir_inputs array based on its location as determined in
2124 * nir_lower_io. If the input isn't used, dead code cleans up and
2125 * everything works fine. However, when we get to the ARB_gpu_shader5
2126 * interpolation intrinsics, we need to reinterpolate the input
2127 * differently. If we used an intrinsic that just had an index it would
2128 * only give us the offset into the nir_inputs array. However, this is
2129 * useless because that value is post-interpolation and we need
2130 * pre-interpolation. In order to get the actual location of the bits
2131 * we get from the vertex fetching hardware, we need the variable.
2132 */
2133 wm_prog_data->pulls_bary = true;
2134
2135 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
2136 const glsl_interp_qualifier interpolation =
2137 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
2138
2139 switch (instr->intrinsic) {
2140 case nir_intrinsic_interp_var_at_centroid:
2141 emit_pixel_interpolater_send(bld,
2142 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2143 dst_xy,
2144 fs_reg(), /* src */
2145 brw_imm_ud(0u),
2146 interpolation);
2147 break;
2148
2149 case nir_intrinsic_interp_var_at_sample: {
2150 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
2151
2152 if (const_sample) {
2153 unsigned msg_data = const_sample->i32[0] << 4;
2154
2155 emit_pixel_interpolater_send(bld,
2156 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2157 dst_xy,
2158 fs_reg(), /* src */
2159 brw_imm_ud(msg_data),
2160 interpolation);
2161 } else {
2162 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
2163 BRW_REGISTER_TYPE_UD);
2164
2165 if (nir_src_is_dynamically_uniform(instr->src[0])) {
2166 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2167 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2168 bld.exec_all().group(1, 0)
2169 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2170 emit_pixel_interpolater_send(bld,
2171 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2172 dst_xy,
2173 fs_reg(), /* src */
2174 msg_data,
2175 interpolation);
2176 } else {
2177 /* Make a loop that sends a message to the pixel interpolater
2178 * for the sample number in each live channel. If there are
2179 * multiple channels with the same sample number then these
2180 * will be handled simultaneously with a single interation of
2181 * the loop.
2182 */
2183 bld.emit(BRW_OPCODE_DO);
2184
2185 /* Get the next live sample number into sample_id_reg */
2186 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2187
2188 /* Set the flag register so that we can perform the send
2189 * message on all channels that have the same sample number
2190 */
2191 bld.CMP(bld.null_reg_ud(),
2192 sample_src, sample_id,
2193 BRW_CONDITIONAL_EQ);
2194 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2195 bld.exec_all().group(1, 0)
2196 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2197 fs_inst *inst =
2198 emit_pixel_interpolater_send(bld,
2199 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2200 dst_xy,
2201 fs_reg(), /* src */
2202 msg_data,
2203 interpolation);
2204 set_predicate(BRW_PREDICATE_NORMAL, inst);
2205
2206 /* Continue the loop if there are any live channels left */
2207 set_predicate_inv(BRW_PREDICATE_NORMAL,
2208 true, /* inverse */
2209 bld.emit(BRW_OPCODE_WHILE));
2210 }
2211 }
2212
2213 break;
2214 }
2215
2216 case nir_intrinsic_interp_var_at_offset: {
2217 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2218
2219 if (const_offset) {
2220 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
2221 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
2222
2223 emit_pixel_interpolater_send(bld,
2224 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
2225 dst_xy,
2226 fs_reg(), /* src */
2227 brw_imm_ud(off_x | (off_y << 4)),
2228 interpolation);
2229 } else {
2230 fs_reg src = vgrf(glsl_type::ivec2_type);
2231 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
2232 BRW_REGISTER_TYPE_F);
2233 for (int i = 0; i < 2; i++) {
2234 fs_reg temp = vgrf(glsl_type::float_type);
2235 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
2236 fs_reg itemp = vgrf(glsl_type::int_type);
2237 bld.MOV(itemp, temp); /* float to int */
2238
2239 /* Clamp the upper end of the range to +7/16.
2240 * ARB_gpu_shader5 requires that we support a maximum offset
2241 * of +0.5, which isn't representable in a S0.4 value -- if
2242 * we didn't clamp it, we'd end up with -8/16, which is the
2243 * opposite of what the shader author wanted.
2244 *
2245 * This is legal due to ARB_gpu_shader5's quantization
2246 * rules:
2247 *
2248 * "Not all values of <offset> may be supported; x and y
2249 * offsets may be rounded to fixed-point values with the
2250 * number of fraction bits given by the
2251 * implementation-dependent constant
2252 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
2253 */
2254 set_condmod(BRW_CONDITIONAL_L,
2255 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
2256 }
2257
2258 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
2259 emit_pixel_interpolater_send(bld,
2260 opcode,
2261 dst_xy,
2262 src,
2263 brw_imm_ud(0u),
2264 interpolation);
2265 }
2266 break;
2267 }
2268
2269 default:
2270 unreachable("Invalid intrinsic");
2271 }
2272
2273 for (unsigned j = 0; j < instr->num_components; j++) {
2274 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
2275 src.type = dest.type;
2276
2277 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
2278 dest = offset(dest, bld, 1);
2279 }
2280 break;
2281 }
2282 default:
2283 nir_emit_intrinsic(bld, instr);
2284 break;
2285 }
2286 }
2287
2288 void
2289 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
2290 nir_intrinsic_instr *instr)
2291 {
2292 assert(stage == MESA_SHADER_COMPUTE);
2293 struct brw_cs_prog_data *cs_prog_data =
2294 (struct brw_cs_prog_data *) prog_data;
2295
2296 fs_reg dest;
2297 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2298 dest = get_nir_dest(instr->dest);
2299
2300 switch (instr->intrinsic) {
2301 case nir_intrinsic_barrier:
2302 emit_barrier();
2303 cs_prog_data->uses_barrier = true;
2304 break;
2305
2306 case nir_intrinsic_load_local_invocation_id:
2307 case nir_intrinsic_load_work_group_id: {
2308 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2309 fs_reg val = nir_system_values[sv];
2310 assert(val.file != BAD_FILE);
2311 dest.type = val.type;
2312 for (unsigned i = 0; i < 3; i++)
2313 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
2314 break;
2315 }
2316
2317 case nir_intrinsic_load_num_work_groups: {
2318 const unsigned surface =
2319 cs_prog_data->binding_table.work_groups_start;
2320
2321 cs_prog_data->uses_num_work_groups = true;
2322
2323 fs_reg surf_index = brw_imm_ud(surface);
2324 brw_mark_surface_used(prog_data, surface);
2325
2326 /* Read the 3 GLuint components of gl_NumWorkGroups */
2327 for (unsigned i = 0; i < 3; i++) {
2328 fs_reg read_result =
2329 emit_untyped_read(bld, surf_index,
2330 brw_imm_ud(i << 2),
2331 1 /* dims */, 1 /* size */,
2332 BRW_PREDICATE_NONE);
2333 read_result.type = dest.type;
2334 bld.MOV(dest, read_result);
2335 dest = offset(dest, bld, 1);
2336 }
2337 break;
2338 }
2339
2340 case nir_intrinsic_shared_atomic_add:
2341 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
2342 break;
2343 case nir_intrinsic_shared_atomic_imin:
2344 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
2345 break;
2346 case nir_intrinsic_shared_atomic_umin:
2347 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
2348 break;
2349 case nir_intrinsic_shared_atomic_imax:
2350 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
2351 break;
2352 case nir_intrinsic_shared_atomic_umax:
2353 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
2354 break;
2355 case nir_intrinsic_shared_atomic_and:
2356 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
2357 break;
2358 case nir_intrinsic_shared_atomic_or:
2359 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
2360 break;
2361 case nir_intrinsic_shared_atomic_xor:
2362 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
2363 break;
2364 case nir_intrinsic_shared_atomic_exchange:
2365 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
2366 break;
2367 case nir_intrinsic_shared_atomic_comp_swap:
2368 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
2369 break;
2370
2371 case nir_intrinsic_load_shared: {
2372 assert(devinfo->gen >= 7);
2373
2374 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2375
2376 /* Get the offset to read from */
2377 fs_reg offset_reg;
2378 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2379 if (const_offset) {
2380 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
2381 } else {
2382 offset_reg = vgrf(glsl_type::uint_type);
2383 bld.ADD(offset_reg,
2384 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
2385 brw_imm_ud(instr->const_index[0]));
2386 }
2387
2388 /* Read the vector */
2389 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2390 1 /* dims */,
2391 instr->num_components,
2392 BRW_PREDICATE_NONE);
2393 read_result.type = dest.type;
2394 for (int i = 0; i < instr->num_components; i++)
2395 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2396
2397 break;
2398 }
2399
2400 case nir_intrinsic_store_shared: {
2401 assert(devinfo->gen >= 7);
2402
2403 /* Block index */
2404 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2405
2406 /* Value */
2407 fs_reg val_reg = get_nir_src(instr->src[0]);
2408
2409 /* Writemask */
2410 unsigned writemask = instr->const_index[1];
2411
2412 /* Combine groups of consecutive enabled channels in one write
2413 * message. We use ffs to find the first enabled channel and then ffs on
2414 * the bit-inverse, down-shifted writemask to determine the length of
2415 * the block of enabled bits.
2416 */
2417 while (writemask) {
2418 unsigned first_component = ffs(writemask) - 1;
2419 unsigned length = ffs(~(writemask >> first_component)) - 1;
2420 fs_reg offset_reg;
2421
2422 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2423 if (const_offset) {
2424 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
2425 4 * first_component);
2426 } else {
2427 offset_reg = vgrf(glsl_type::uint_type);
2428 bld.ADD(offset_reg,
2429 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
2430 brw_imm_ud(instr->const_index[0] + 4 * first_component));
2431 }
2432
2433 emit_untyped_write(bld, surf_index, offset_reg,
2434 offset(val_reg, bld, first_component),
2435 1 /* dims */, length,
2436 BRW_PREDICATE_NONE);
2437
2438 /* Clear the bits in the writemask that we just wrote, then try
2439 * again to see if more channels are left.
2440 */
2441 writemask &= (15 << (first_component + length));
2442 }
2443
2444 break;
2445 }
2446
2447 default:
2448 nir_emit_intrinsic(bld, instr);
2449 break;
2450 }
2451 }
2452
2453 void
2454 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
2455 {
2456 fs_reg dest;
2457 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2458 dest = get_nir_dest(instr->dest);
2459
2460 switch (instr->intrinsic) {
2461 case nir_intrinsic_atomic_counter_inc:
2462 case nir_intrinsic_atomic_counter_dec:
2463 case nir_intrinsic_atomic_counter_read: {
2464 /* Get the arguments of the atomic intrinsic. */
2465 const fs_reg offset = get_nir_src(instr->src[0]);
2466 const unsigned surface = (stage_prog_data->binding_table.abo_start +
2467 instr->const_index[0]);
2468 fs_reg tmp;
2469
2470 /* Emit a surface read or atomic op. */
2471 switch (instr->intrinsic) {
2472 case nir_intrinsic_atomic_counter_read:
2473 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
2474 break;
2475
2476 case nir_intrinsic_atomic_counter_inc:
2477 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2478 fs_reg(), 1, 1, BRW_AOP_INC);
2479 break;
2480
2481 case nir_intrinsic_atomic_counter_dec:
2482 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2483 fs_reg(), 1, 1, BRW_AOP_PREDEC);
2484 break;
2485
2486 default:
2487 unreachable("Unreachable");
2488 }
2489
2490 /* Assign the result. */
2491 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
2492
2493 /* Mark the surface as used. */
2494 brw_mark_surface_used(stage_prog_data, surface);
2495 break;
2496 }
2497
2498 case nir_intrinsic_image_load:
2499 case nir_intrinsic_image_store:
2500 case nir_intrinsic_image_atomic_add:
2501 case nir_intrinsic_image_atomic_min:
2502 case nir_intrinsic_image_atomic_max:
2503 case nir_intrinsic_image_atomic_and:
2504 case nir_intrinsic_image_atomic_or:
2505 case nir_intrinsic_image_atomic_xor:
2506 case nir_intrinsic_image_atomic_exchange:
2507 case nir_intrinsic_image_atomic_comp_swap: {
2508 using namespace image_access;
2509
2510 /* Get the referenced image variable and type. */
2511 const nir_variable *var = instr->variables[0]->var;
2512 const glsl_type *type = var->type->without_array();
2513 const brw_reg_type base_type = get_image_base_type(type);
2514
2515 /* Get some metadata from the image intrinsic. */
2516 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2517 const unsigned arr_dims = type->sampler_array ? 1 : 0;
2518 const unsigned surf_dims = type->coordinate_components() - arr_dims;
2519 const mesa_format format =
2520 (var->data.image.write_only ? MESA_FORMAT_NONE :
2521 _mesa_get_shader_image_format(var->data.image.format));
2522
2523 /* Get the arguments of the image intrinsic. */
2524 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2525 const fs_reg addr = retype(get_nir_src(instr->src[0]),
2526 BRW_REGISTER_TYPE_UD);
2527 const fs_reg src0 = (info->num_srcs >= 3 ?
2528 retype(get_nir_src(instr->src[2]), base_type) :
2529 fs_reg());
2530 const fs_reg src1 = (info->num_srcs >= 4 ?
2531 retype(get_nir_src(instr->src[3]), base_type) :
2532 fs_reg());
2533 fs_reg tmp;
2534
2535 /* Emit an image load, store or atomic op. */
2536 if (instr->intrinsic == nir_intrinsic_image_load)
2537 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
2538
2539 else if (instr->intrinsic == nir_intrinsic_image_store)
2540 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
2541
2542 else
2543 tmp = emit_image_atomic(bld, image, addr, src0, src1,
2544 surf_dims, arr_dims, info->dest_components,
2545 get_image_atomic_op(instr->intrinsic, type));
2546
2547 /* Assign the result. */
2548 for (unsigned c = 0; c < info->dest_components; ++c)
2549 bld.MOV(offset(retype(dest, base_type), bld, c),
2550 offset(tmp, bld, c));
2551 break;
2552 }
2553
2554 case nir_intrinsic_memory_barrier_atomic_counter:
2555 case nir_intrinsic_memory_barrier_buffer:
2556 case nir_intrinsic_memory_barrier_image:
2557 case nir_intrinsic_memory_barrier: {
2558 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
2559 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
2560 ->regs_written = 2;
2561 break;
2562 }
2563
2564 case nir_intrinsic_group_memory_barrier:
2565 case nir_intrinsic_memory_barrier_shared:
2566 /* We treat these workgroup-level barriers as no-ops. This should be
2567 * safe at present and as long as:
2568 *
2569 * - Memory access instructions are not subsequently reordered by the
2570 * compiler back-end.
2571 *
2572 * - All threads from a given compute shader workgroup fit within a
2573 * single subslice and therefore talk to the same HDC shared unit
2574 * what supposedly guarantees ordering and coherency between threads
2575 * from the same workgroup. This may change in the future when we
2576 * start splitting workgroups across multiple subslices.
2577 *
2578 * - The context is not in fault-and-stream mode, which could cause
2579 * memory transactions (including to SLM) prior to the barrier to be
2580 * replayed after the barrier if a pagefault occurs. This shouldn't
2581 * be a problem up to and including SKL because fault-and-stream is
2582 * not usable due to hardware issues, but that's likely to change in
2583 * the future.
2584 */
2585 break;
2586
2587 case nir_intrinsic_shader_clock: {
2588 /* We cannot do anything if there is an event, so ignore it for now */
2589 fs_reg shader_clock = get_timestamp(bld);
2590 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
2591
2592 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
2593 break;
2594 }
2595
2596 case nir_intrinsic_image_size: {
2597 /* Get the referenced image variable and type. */
2598 const nir_variable *var = instr->variables[0]->var;
2599 const glsl_type *type = var->type->without_array();
2600
2601 /* Get the size of the image. */
2602 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2603 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
2604
2605 /* For 1DArray image types, the array index is stored in the Z component.
2606 * Fix this by swizzling the Z component to the Y component.
2607 */
2608 const bool is_1d_array_image =
2609 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
2610 type->sampler_array;
2611
2612 /* For CubeArray images, we should count the number of cubes instead
2613 * of the number of faces. Fix it by dividing the (Z component) by 6.
2614 */
2615 const bool is_cube_array_image =
2616 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2617 type->sampler_array;
2618
2619 /* Copy all the components. */
2620 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2621 for (unsigned c = 0; c < info->dest_components; ++c) {
2622 if ((int)c >= type->coordinate_components()) {
2623 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2624 brw_imm_d(1));
2625 } else if (c == 1 && is_1d_array_image) {
2626 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2627 offset(size, bld, 2));
2628 } else if (c == 2 && is_cube_array_image) {
2629 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
2630 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2631 offset(size, bld, c), brw_imm_d(6));
2632 } else {
2633 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2634 offset(size, bld, c));
2635 }
2636 }
2637
2638 break;
2639 }
2640
2641 case nir_intrinsic_image_samples:
2642 /* The driver does not support multi-sampled images. */
2643 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
2644 break;
2645
2646 case nir_intrinsic_load_uniform: {
2647 /* Offsets are in bytes but they should always be multiples of 4 */
2648 assert(instr->const_index[0] % 4 == 0);
2649
2650 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
2651
2652 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2653 if (const_offset) {
2654 /* Offsets are in bytes but they should always be multiples of 4 */
2655 assert(const_offset->u32[0] % 4 == 0);
2656 src.reg_offset = const_offset->u32[0] / 4;
2657 } else {
2658 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
2659 }
2660
2661 for (unsigned j = 0; j < instr->num_components; j++) {
2662 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2663 }
2664 break;
2665 }
2666
2667 case nir_intrinsic_load_ubo: {
2668 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
2669 fs_reg surf_index;
2670
2671 if (const_index) {
2672 const unsigned index = stage_prog_data->binding_table.ubo_start +
2673 const_index->u32[0];
2674 surf_index = brw_imm_ud(index);
2675 brw_mark_surface_used(prog_data, index);
2676 } else {
2677 /* The block index is not a constant. Evaluate the index expression
2678 * per-channel and add the base UBO index; we have to select a value
2679 * from any live channel.
2680 */
2681 surf_index = vgrf(glsl_type::uint_type);
2682 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2683 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
2684 surf_index = bld.emit_uniformize(surf_index);
2685
2686 /* Assume this may touch any UBO. It would be nice to provide
2687 * a tighter bound, but the array information is already lowered away.
2688 */
2689 brw_mark_surface_used(prog_data,
2690 stage_prog_data->binding_table.ubo_start +
2691 nir->info.num_ubos - 1);
2692 }
2693
2694 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2695 if (const_offset == NULL) {
2696 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
2697 BRW_REGISTER_TYPE_D);
2698
2699 for (int i = 0; i < instr->num_components; i++)
2700 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
2701 base_offset, i * 4);
2702 } else {
2703 fs_reg packed_consts = vgrf(glsl_type::float_type);
2704 packed_consts.type = dest.type;
2705
2706 struct brw_reg const_offset_reg = brw_imm_ud(const_offset->u32[0] & ~15);
2707 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
2708 surf_index, const_offset_reg);
2709
2710 for (unsigned i = 0; i < instr->num_components; i++) {
2711 packed_consts.set_smear(const_offset->u32[0] % 16 / 4 + i);
2712
2713 /* The std140 packing rules don't allow vectors to cross 16-byte
2714 * boundaries, and a reg is 32 bytes.
2715 */
2716 assert(packed_consts.subreg_offset < 32);
2717
2718 bld.MOV(dest, packed_consts);
2719 dest = offset(dest, bld, 1);
2720 }
2721 }
2722 break;
2723 }
2724
2725 case nir_intrinsic_load_ssbo: {
2726 assert(devinfo->gen >= 7);
2727
2728 nir_const_value *const_uniform_block =
2729 nir_src_as_const_value(instr->src[0]);
2730
2731 fs_reg surf_index;
2732 if (const_uniform_block) {
2733 unsigned index = stage_prog_data->binding_table.ssbo_start +
2734 const_uniform_block->u32[0];
2735 surf_index = brw_imm_ud(index);
2736 brw_mark_surface_used(prog_data, index);
2737 } else {
2738 surf_index = vgrf(glsl_type::uint_type);
2739 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2740 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2741
2742 /* Assume this may touch any UBO. It would be nice to provide
2743 * a tighter bound, but the array information is already lowered away.
2744 */
2745 brw_mark_surface_used(prog_data,
2746 stage_prog_data->binding_table.ssbo_start +
2747 nir->info.num_ssbos - 1);
2748 }
2749
2750 fs_reg offset_reg;
2751 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2752 if (const_offset) {
2753 offset_reg = brw_imm_ud(const_offset->u32[0]);
2754 } else {
2755 offset_reg = get_nir_src(instr->src[1]);
2756 }
2757
2758 /* Read the vector */
2759 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2760 1 /* dims */,
2761 instr->num_components,
2762 BRW_PREDICATE_NONE);
2763 read_result.type = dest.type;
2764 for (int i = 0; i < instr->num_components; i++)
2765 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2766
2767 break;
2768 }
2769
2770 case nir_intrinsic_load_input: {
2771 fs_reg src;
2772 if (stage == MESA_SHADER_VERTEX) {
2773 src = fs_reg(ATTR, instr->const_index[0], dest.type);
2774 } else {
2775 src = offset(retype(nir_inputs, dest.type), bld,
2776 instr->const_index[0]);
2777 }
2778
2779 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2780 assert(const_offset && "Indirect input loads not allowed");
2781 src = offset(src, bld, const_offset->u32[0]);
2782
2783 for (unsigned j = 0; j < instr->num_components; j++) {
2784 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2785 }
2786 break;
2787 }
2788
2789 case nir_intrinsic_store_ssbo: {
2790 assert(devinfo->gen >= 7);
2791
2792 /* Block index */
2793 fs_reg surf_index;
2794 nir_const_value *const_uniform_block =
2795 nir_src_as_const_value(instr->src[1]);
2796 if (const_uniform_block) {
2797 unsigned index = stage_prog_data->binding_table.ssbo_start +
2798 const_uniform_block->u32[0];
2799 surf_index = brw_imm_ud(index);
2800 brw_mark_surface_used(prog_data, index);
2801 } else {
2802 surf_index = vgrf(glsl_type::uint_type);
2803 bld.ADD(surf_index, get_nir_src(instr->src[1]),
2804 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2805
2806 brw_mark_surface_used(prog_data,
2807 stage_prog_data->binding_table.ssbo_start +
2808 nir->info.num_ssbos - 1);
2809 }
2810
2811 /* Value */
2812 fs_reg val_reg = get_nir_src(instr->src[0]);
2813
2814 /* Writemask */
2815 unsigned writemask = instr->const_index[0];
2816
2817 /* Combine groups of consecutive enabled channels in one write
2818 * message. We use ffs to find the first enabled channel and then ffs on
2819 * the bit-inverse, down-shifted writemask to determine the length of
2820 * the block of enabled bits.
2821 */
2822 while (writemask) {
2823 unsigned first_component = ffs(writemask) - 1;
2824 unsigned length = ffs(~(writemask >> first_component)) - 1;
2825
2826 fs_reg offset_reg;
2827 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
2828 if (const_offset) {
2829 offset_reg = brw_imm_ud(const_offset->u32[0] + 4 * first_component);
2830 } else {
2831 offset_reg = vgrf(glsl_type::uint_type);
2832 bld.ADD(offset_reg,
2833 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
2834 brw_imm_ud(4 * first_component));
2835 }
2836
2837 emit_untyped_write(bld, surf_index, offset_reg,
2838 offset(val_reg, bld, first_component),
2839 1 /* dims */, length,
2840 BRW_PREDICATE_NONE);
2841
2842 /* Clear the bits in the writemask that we just wrote, then try
2843 * again to see if more channels are left.
2844 */
2845 writemask &= (15 << (first_component + length));
2846 }
2847 break;
2848 }
2849
2850 case nir_intrinsic_store_output: {
2851 fs_reg src = get_nir_src(instr->src[0]);
2852 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
2853 instr->const_index[0]);
2854
2855 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2856 assert(const_offset && "Indirect output stores not allowed");
2857 new_dest = offset(new_dest, bld, const_offset->u32[0]);
2858
2859 for (unsigned j = 0; j < instr->num_components; j++) {
2860 bld.MOV(offset(new_dest, bld, j), offset(src, bld, j));
2861 }
2862 break;
2863 }
2864
2865 case nir_intrinsic_ssbo_atomic_add:
2866 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
2867 break;
2868 case nir_intrinsic_ssbo_atomic_imin:
2869 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
2870 break;
2871 case nir_intrinsic_ssbo_atomic_umin:
2872 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
2873 break;
2874 case nir_intrinsic_ssbo_atomic_imax:
2875 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
2876 break;
2877 case nir_intrinsic_ssbo_atomic_umax:
2878 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
2879 break;
2880 case nir_intrinsic_ssbo_atomic_and:
2881 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
2882 break;
2883 case nir_intrinsic_ssbo_atomic_or:
2884 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
2885 break;
2886 case nir_intrinsic_ssbo_atomic_xor:
2887 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
2888 break;
2889 case nir_intrinsic_ssbo_atomic_exchange:
2890 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
2891 break;
2892 case nir_intrinsic_ssbo_atomic_comp_swap:
2893 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
2894 break;
2895
2896 case nir_intrinsic_get_buffer_size: {
2897 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
2898 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
2899 int reg_width = dispatch_width / 8;
2900
2901 /* Set LOD = 0 */
2902 fs_reg source = brw_imm_d(0);
2903
2904 int mlen = 1 * reg_width;
2905
2906 /* A resinfo's sampler message is used to get the buffer size.
2907 * The SIMD8's writeback message consists of four registers and
2908 * SIMD16's writeback message consists of 8 destination registers
2909 * (two per each component), although we are only interested on the
2910 * first component, where resinfo returns the buffer size for
2911 * SURFTYPE_BUFFER.
2912 */
2913 int regs_written = 4 * mlen;
2914 fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
2915 BRW_REGISTER_TYPE_UD);
2916 bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
2917 fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
2918 BRW_REGISTER_TYPE_UD);
2919 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
2920 fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
2921 src_payload, brw_imm_ud(index));
2922 inst->header_size = 0;
2923 inst->mlen = mlen;
2924 inst->regs_written = regs_written;
2925 bld.emit(inst);
2926 bld.MOV(retype(dest, buffer_size.type), buffer_size);
2927
2928 brw_mark_surface_used(prog_data, index);
2929 break;
2930 }
2931
2932 default:
2933 unreachable("unknown intrinsic");
2934 }
2935 }
2936
2937 void
2938 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
2939 int op, nir_intrinsic_instr *instr)
2940 {
2941 fs_reg dest;
2942 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2943 dest = get_nir_dest(instr->dest);
2944
2945 fs_reg surface;
2946 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
2947 if (const_surface) {
2948 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
2949 const_surface->u32[0];
2950 surface = brw_imm_ud(surf_index);
2951 brw_mark_surface_used(prog_data, surf_index);
2952 } else {
2953 surface = vgrf(glsl_type::uint_type);
2954 bld.ADD(surface, get_nir_src(instr->src[0]),
2955 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2956
2957 /* Assume this may touch any SSBO. This is the same we do for other
2958 * UBO/SSBO accesses with non-constant surface.
2959 */
2960 brw_mark_surface_used(prog_data,
2961 stage_prog_data->binding_table.ssbo_start +
2962 nir->info.num_ssbos - 1);
2963 }
2964
2965 fs_reg offset = get_nir_src(instr->src[1]);
2966 fs_reg data1 = get_nir_src(instr->src[2]);
2967 fs_reg data2;
2968 if (op == BRW_AOP_CMPWR)
2969 data2 = get_nir_src(instr->src[3]);
2970
2971 /* Emit the actual atomic operation operation */
2972
2973 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
2974 data1, data2,
2975 1 /* dims */, 1 /* rsize */,
2976 op,
2977 BRW_PREDICATE_NONE);
2978 dest.type = atomic_result.type;
2979 bld.MOV(dest, atomic_result);
2980 }
2981
2982 void
2983 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
2984 int op, nir_intrinsic_instr *instr)
2985 {
2986 fs_reg dest;
2987 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2988 dest = get_nir_dest(instr->dest);
2989
2990 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
2991 fs_reg offset = get_nir_src(instr->src[0]);
2992 fs_reg data1 = get_nir_src(instr->src[1]);
2993 fs_reg data2;
2994 if (op == BRW_AOP_CMPWR)
2995 data2 = get_nir_src(instr->src[2]);
2996
2997 /* Emit the actual atomic operation operation */
2998
2999 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
3000 data1, data2,
3001 1 /* dims */, 1 /* rsize */,
3002 op,
3003 BRW_PREDICATE_NONE);
3004 dest.type = atomic_result.type;
3005 bld.MOV(dest, atomic_result);
3006 }
3007
3008 void
3009 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
3010 {
3011 unsigned texture = instr->texture_index;
3012 unsigned sampler = instr->sampler_index;
3013 fs_reg texture_reg(brw_imm_ud(texture));
3014 fs_reg sampler_reg(brw_imm_ud(sampler));
3015
3016 int gather_component = instr->component;
3017
3018 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
3019 instr->is_array;
3020
3021 int lod_components = 0;
3022
3023 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
3024
3025 /* The hardware requires a LOD for buffer textures */
3026 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
3027 lod = brw_imm_d(0);
3028
3029 for (unsigned i = 0; i < instr->num_srcs; i++) {
3030 fs_reg src = get_nir_src(instr->src[i].src);
3031 switch (instr->src[i].src_type) {
3032 case nir_tex_src_bias:
3033 lod = retype(src, BRW_REGISTER_TYPE_F);
3034 break;
3035 case nir_tex_src_comparitor:
3036 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
3037 break;
3038 case nir_tex_src_coord:
3039 switch (instr->op) {
3040 case nir_texop_txf:
3041 case nir_texop_txf_ms:
3042 case nir_texop_samples_identical:
3043 coordinate = retype(src, BRW_REGISTER_TYPE_D);
3044 break;
3045 default:
3046 coordinate = retype(src, BRW_REGISTER_TYPE_F);
3047 break;
3048 }
3049 break;
3050 case nir_tex_src_ddx:
3051 lod = retype(src, BRW_REGISTER_TYPE_F);
3052 lod_components = nir_tex_instr_src_size(instr, i);
3053 break;
3054 case nir_tex_src_ddy:
3055 lod2 = retype(src, BRW_REGISTER_TYPE_F);
3056 break;
3057 case nir_tex_src_lod:
3058 switch (instr->op) {
3059 case nir_texop_txs:
3060 lod = retype(src, BRW_REGISTER_TYPE_UD);
3061 break;
3062 case nir_texop_txf:
3063 lod = retype(src, BRW_REGISTER_TYPE_D);
3064 break;
3065 default:
3066 lod = retype(src, BRW_REGISTER_TYPE_F);
3067 break;
3068 }
3069 break;
3070 case nir_tex_src_ms_index:
3071 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
3072 break;
3073
3074 case nir_tex_src_offset: {
3075 nir_const_value *const_offset =
3076 nir_src_as_const_value(instr->src[i].src);
3077 if (const_offset) {
3078 tex_offset = brw_imm_ud(brw_texture_offset(const_offset->i32, 3));
3079 } else {
3080 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
3081 }
3082 break;
3083 }
3084
3085 case nir_tex_src_projector:
3086 unreachable("should be lowered");
3087
3088 case nir_tex_src_texture_offset: {
3089 /* Figure out the highest possible texture index and mark it as used */
3090 uint32_t max_used = texture + instr->texture_array_size - 1;
3091 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
3092 max_used += stage_prog_data->binding_table.gather_texture_start;
3093 } else {
3094 max_used += stage_prog_data->binding_table.texture_start;
3095 }
3096 brw_mark_surface_used(prog_data, max_used);
3097
3098 /* Emit code to evaluate the actual indexing expression */
3099 texture_reg = vgrf(glsl_type::uint_type);
3100 bld.ADD(texture_reg, src, brw_imm_ud(texture));
3101 texture_reg = bld.emit_uniformize(texture_reg);
3102 break;
3103 }
3104
3105 case nir_tex_src_sampler_offset: {
3106 /* Emit code to evaluate the actual indexing expression */
3107 sampler_reg = vgrf(glsl_type::uint_type);
3108 bld.ADD(sampler_reg, src, brw_imm_ud(sampler));
3109 sampler_reg = bld.emit_uniformize(sampler_reg);
3110 break;
3111 }
3112
3113 default:
3114 unreachable("unknown texture source");
3115 }
3116 }
3117
3118 if (instr->op == nir_texop_txf_ms ||
3119 instr->op == nir_texop_samples_identical) {
3120 if (devinfo->gen >= 7 &&
3121 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
3122 mcs = emit_mcs_fetch(coordinate, instr->coord_components, texture_reg);
3123 } else {
3124 mcs = brw_imm_ud(0u);
3125 }
3126 }
3127
3128 enum glsl_base_type dest_base_type =
3129 brw_glsl_base_type_for_nir_type (instr->dest_type);
3130
3131 const glsl_type *dest_type =
3132 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
3133 1);
3134
3135 ir_texture_opcode op;
3136 switch (instr->op) {
3137 case nir_texop_lod: op = ir_lod; break;
3138 case nir_texop_query_levels: op = ir_query_levels; break;
3139 case nir_texop_tex: op = ir_tex; break;
3140 case nir_texop_tg4: op = ir_tg4; break;
3141 case nir_texop_txb: op = ir_txb; break;
3142 case nir_texop_txd: op = ir_txd; break;
3143 case nir_texop_txf: op = ir_txf; break;
3144 case nir_texop_txf_ms: op = ir_txf_ms; break;
3145 case nir_texop_txl: op = ir_txl; break;
3146 case nir_texop_txs: op = ir_txs; break;
3147 case nir_texop_texture_samples: {
3148 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
3149 fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
3150 bld.vgrf(BRW_REGISTER_TYPE_D, 1),
3151 texture_reg, texture_reg);
3152 inst->mlen = 1;
3153 inst->header_size = 1;
3154 inst->base_mrf = -1;
3155 return;
3156 }
3157 case nir_texop_samples_identical: op = ir_samples_identical; break;
3158 default:
3159 unreachable("unknown texture opcode");
3160 }
3161
3162 emit_texture(op, dest_type, coordinate, instr->coord_components,
3163 shadow_comparitor, lod, lod2, lod_components, sample_index,
3164 tex_offset, mcs, gather_component, is_cube_array,
3165 texture, texture_reg, sampler, sampler_reg);
3166
3167 fs_reg dest = get_nir_dest(instr->dest);
3168 dest.type = this->result.type;
3169 unsigned num_components = nir_tex_instr_dest_size(instr);
3170 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
3171 dest, this->result),
3172 (1 << num_components) - 1);
3173 }
3174
3175 void
3176 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
3177 {
3178 switch (instr->type) {
3179 case nir_jump_break:
3180 bld.emit(BRW_OPCODE_BREAK);
3181 break;
3182 case nir_jump_continue:
3183 bld.emit(BRW_OPCODE_CONTINUE);
3184 break;
3185 case nir_jump_return:
3186 default:
3187 unreachable("unknown jump");
3188 }
3189 }