Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "main/shaderimage.h"
26 #include "brw_fs.h"
27 #include "brw_fs_surface_builder.h"
28 #include "brw_nir.h"
29 #include "brw_program.h"
30
31 using namespace brw;
32 using namespace brw::surface_access;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_inputs();
41 nir_setup_outputs();
42 nir_setup_uniforms();
43 nir_emit_system_values();
44
45 /* get the main function and emit it */
46 nir_foreach_function(nir, function) {
47 assert(strcmp(function->name, "main") == 0);
48 assert(function->impl);
49 nir_emit_impl(function->impl);
50 }
51 }
52
53 void
54 fs_visitor::nir_setup_inputs()
55 {
56 if (stage != MESA_SHADER_FRAGMENT)
57 return;
58
59 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
60
61 nir_foreach_variable(var, &nir->inputs) {
62 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
63
64 fs_reg reg;
65 if (var->data.location == VARYING_SLOT_POS) {
66 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
67 var->data.origin_upper_left);
68 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
69 input, reg), 0xF);
70 } else if (var->data.location == VARYING_SLOT_LAYER) {
71 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
72 reg.type = BRW_REGISTER_TYPE_D;
73 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
74 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
75 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
76 reg.type = BRW_REGISTER_TYPE_D;
77 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
78 } else {
79 int location = var->data.location;
80 emit_general_interpolation(&input, var->name, var->type,
81 (glsl_interp_qualifier) var->data.interpolation,
82 &location, var->data.centroid,
83 var->data.sample);
84 }
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_single_output_varying(fs_reg *reg,
90 const glsl_type *type,
91 unsigned *location)
92 {
93 if (type->is_array() || type->is_matrix()) {
94 const struct glsl_type *elem_type = glsl_get_array_element(type);
95 const unsigned length = glsl_get_length(type);
96
97 for (unsigned i = 0; i < length; i++) {
98 nir_setup_single_output_varying(reg, elem_type, location);
99 }
100 } else if (type->is_record()) {
101 for (unsigned i = 0; i < type->length; i++) {
102 const struct glsl_type *field_type = type->fields.structure[i].type;
103 nir_setup_single_output_varying(reg, field_type, location);
104 }
105 } else {
106 assert(type->is_scalar() || type->is_vector());
107 this->outputs[*location] = *reg;
108 this->output_components[*location] = type->vector_elements;
109 *reg = offset(*reg, bld, 4);
110 (*location)++;
111 }
112 }
113
114 void
115 fs_visitor::nir_setup_outputs()
116 {
117 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
118
119 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
120
121 nir_foreach_variable(var, &nir->outputs) {
122 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
123
124 switch (stage) {
125 case MESA_SHADER_VERTEX:
126 case MESA_SHADER_TESS_EVAL:
127 case MESA_SHADER_GEOMETRY: {
128 unsigned location = var->data.location;
129 nir_setup_single_output_varying(&reg, var->type, &location);
130 break;
131 }
132 case MESA_SHADER_FRAGMENT:
133 if (key->force_dual_color_blend &&
134 var->data.location == FRAG_RESULT_DATA1) {
135 this->dual_src_output = reg;
136 this->do_dual_src = true;
137 } else if (var->data.index > 0) {
138 assert(var->data.location == FRAG_RESULT_DATA0);
139 assert(var->data.index == 1);
140 this->dual_src_output = reg;
141 this->do_dual_src = true;
142 } else if (var->data.location == FRAG_RESULT_COLOR) {
143 /* Writing gl_FragColor outputs to all color regions. */
144 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
145 this->outputs[i] = reg;
146 this->output_components[i] = 4;
147 }
148 } else if (var->data.location == FRAG_RESULT_DEPTH) {
149 this->frag_depth = reg;
150 } else if (var->data.location == FRAG_RESULT_STENCIL) {
151 this->frag_stencil = reg;
152 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
153 this->sample_mask = reg;
154 } else {
155 int vector_elements = var->type->without_array()->vector_elements;
156
157 /* gl_FragData or a user-defined FS output */
158 assert(var->data.location >= FRAG_RESULT_DATA0 &&
159 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
160
161 /* General color output. */
162 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
163 int output = var->data.location - FRAG_RESULT_DATA0 + i;
164 this->outputs[output] = offset(reg, bld, vector_elements * i);
165 this->output_components[output] = vector_elements;
166 }
167 }
168 break;
169 default:
170 unreachable("unhandled shader stage");
171 }
172 }
173 }
174
175 void
176 fs_visitor::nir_setup_uniforms()
177 {
178 if (dispatch_width != 8)
179 return;
180
181 uniforms = nir->num_uniforms / 4;
182 }
183
184 static bool
185 emit_system_values_block(nir_block *block, void *void_visitor)
186 {
187 fs_visitor *v = (fs_visitor *)void_visitor;
188 fs_reg *reg;
189
190 nir_foreach_instr(block, instr) {
191 if (instr->type != nir_instr_type_intrinsic)
192 continue;
193
194 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
195 switch (intrin->intrinsic) {
196 case nir_intrinsic_load_vertex_id:
197 unreachable("should be lowered by lower_vertex_id().");
198
199 case nir_intrinsic_load_vertex_id_zero_base:
200 assert(v->stage == MESA_SHADER_VERTEX);
201 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
202 if (reg->file == BAD_FILE)
203 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
204 break;
205
206 case nir_intrinsic_load_base_vertex:
207 assert(v->stage == MESA_SHADER_VERTEX);
208 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
209 if (reg->file == BAD_FILE)
210 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
211 break;
212
213 case nir_intrinsic_load_instance_id:
214 assert(v->stage == MESA_SHADER_VERTEX);
215 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
216 if (reg->file == BAD_FILE)
217 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
218 break;
219
220 case nir_intrinsic_load_base_instance:
221 assert(v->stage == MESA_SHADER_VERTEX);
222 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
223 if (reg->file == BAD_FILE)
224 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
225 break;
226
227 case nir_intrinsic_load_draw_id:
228 assert(v->stage == MESA_SHADER_VERTEX);
229 reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
230 if (reg->file == BAD_FILE)
231 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
232 break;
233
234 case nir_intrinsic_load_invocation_id:
235 assert(v->stage == MESA_SHADER_GEOMETRY);
236 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
237 if (reg->file == BAD_FILE) {
238 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
239 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
240 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
241 abld.SHR(iid, g1, brw_imm_ud(27u));
242 *reg = iid;
243 }
244 break;
245
246 case nir_intrinsic_load_sample_pos:
247 assert(v->stage == MESA_SHADER_FRAGMENT);
248 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
249 if (reg->file == BAD_FILE)
250 *reg = *v->emit_samplepos_setup();
251 break;
252
253 case nir_intrinsic_load_sample_id:
254 assert(v->stage == MESA_SHADER_FRAGMENT);
255 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
256 if (reg->file == BAD_FILE)
257 *reg = *v->emit_sampleid_setup();
258 break;
259
260 case nir_intrinsic_load_sample_mask_in:
261 assert(v->stage == MESA_SHADER_FRAGMENT);
262 assert(v->devinfo->gen >= 7);
263 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
264 if (reg->file == BAD_FILE)
265 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
266 BRW_REGISTER_TYPE_D));
267 break;
268
269 case nir_intrinsic_load_local_invocation_id:
270 assert(v->stage == MESA_SHADER_COMPUTE);
271 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
272 if (reg->file == BAD_FILE)
273 *reg = *v->emit_cs_local_invocation_id_setup();
274 break;
275
276 case nir_intrinsic_load_work_group_id:
277 assert(v->stage == MESA_SHADER_COMPUTE);
278 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
279 if (reg->file == BAD_FILE)
280 *reg = *v->emit_cs_work_group_id_setup();
281 break;
282
283 case nir_intrinsic_load_helper_invocation:
284 assert(v->stage == MESA_SHADER_FRAGMENT);
285 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
286 if (reg->file == BAD_FILE) {
287 const fs_builder abld =
288 v->bld.annotate("gl_HelperInvocation", NULL);
289
290 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
291 * pixel mask is in g1.7 of the thread payload.
292 *
293 * We move the per-channel pixel enable bit to the low bit of each
294 * channel by shifting the byte containing the pixel mask by the
295 * vector immediate 0x76543210UV.
296 *
297 * The region of <1,8,0> reads only 1 byte (the pixel masks for
298 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
299 * masks for 2 and 3) in SIMD16.
300 */
301 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
302 abld.SHR(shifted,
303 stride(byte_offset(retype(brw_vec1_grf(1, 0),
304 BRW_REGISTER_TYPE_UB), 28),
305 1, 8, 0),
306 brw_imm_uv(0x76543210));
307
308 /* A set bit in the pixel mask means the channel is enabled, but
309 * that is the opposite of gl_HelperInvocation so we need to invert
310 * the mask.
311 *
312 * The negate source-modifier bit of logical instructions on Gen8+
313 * performs 1's complement negation, so we can use that instead of
314 * a NOT instruction.
315 */
316 fs_reg inverted = negate(shifted);
317 if (v->devinfo->gen < 8) {
318 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
319 abld.NOT(inverted, shifted);
320 }
321
322 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
323 * with 1 and negating.
324 */
325 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
326 abld.AND(anded, inverted, brw_imm_uw(1));
327
328 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
329 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
330 *reg = dst;
331 }
332 break;
333
334 default:
335 break;
336 }
337 }
338
339 return true;
340 }
341
342 void
343 fs_visitor::nir_emit_system_values()
344 {
345 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
346 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
347 nir_system_values[i] = fs_reg();
348 }
349
350 nir_foreach_function(nir, function) {
351 assert(strcmp(function->name, "main") == 0);
352 assert(function->impl);
353 nir_foreach_block(function->impl, emit_system_values_block, this);
354 }
355 }
356
357 void
358 fs_visitor::nir_emit_impl(nir_function_impl *impl)
359 {
360 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
361 for (unsigned i = 0; i < impl->reg_alloc; i++) {
362 nir_locals[i] = fs_reg();
363 }
364
365 foreach_list_typed(nir_register, reg, node, &impl->registers) {
366 unsigned array_elems =
367 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
368 unsigned size = array_elems * reg->num_components;
369 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
370 }
371
372 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
373 impl->ssa_alloc);
374
375 nir_emit_cf_list(&impl->body);
376 }
377
378 void
379 fs_visitor::nir_emit_cf_list(exec_list *list)
380 {
381 exec_list_validate(list);
382 foreach_list_typed(nir_cf_node, node, node, list) {
383 switch (node->type) {
384 case nir_cf_node_if:
385 nir_emit_if(nir_cf_node_as_if(node));
386 break;
387
388 case nir_cf_node_loop:
389 nir_emit_loop(nir_cf_node_as_loop(node));
390 break;
391
392 case nir_cf_node_block:
393 nir_emit_block(nir_cf_node_as_block(node));
394 break;
395
396 default:
397 unreachable("Invalid CFG node block");
398 }
399 }
400 }
401
402 void
403 fs_visitor::nir_emit_if(nir_if *if_stmt)
404 {
405 /* first, put the condition into f0 */
406 fs_inst *inst = bld.MOV(bld.null_reg_d(),
407 retype(get_nir_src(if_stmt->condition),
408 BRW_REGISTER_TYPE_D));
409 inst->conditional_mod = BRW_CONDITIONAL_NZ;
410
411 bld.IF(BRW_PREDICATE_NORMAL);
412
413 nir_emit_cf_list(&if_stmt->then_list);
414
415 /* note: if the else is empty, dead CF elimination will remove it */
416 bld.emit(BRW_OPCODE_ELSE);
417
418 nir_emit_cf_list(&if_stmt->else_list);
419
420 bld.emit(BRW_OPCODE_ENDIF);
421 }
422
423 void
424 fs_visitor::nir_emit_loop(nir_loop *loop)
425 {
426 bld.emit(BRW_OPCODE_DO);
427
428 nir_emit_cf_list(&loop->body);
429
430 bld.emit(BRW_OPCODE_WHILE);
431 }
432
433 void
434 fs_visitor::nir_emit_block(nir_block *block)
435 {
436 nir_foreach_instr(block, instr) {
437 nir_emit_instr(instr);
438 }
439 }
440
441 void
442 fs_visitor::nir_emit_instr(nir_instr *instr)
443 {
444 const fs_builder abld = bld.annotate(NULL, instr);
445
446 switch (instr->type) {
447 case nir_instr_type_alu:
448 nir_emit_alu(abld, nir_instr_as_alu(instr));
449 break;
450
451 case nir_instr_type_intrinsic:
452 switch (stage) {
453 case MESA_SHADER_VERTEX:
454 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_TESS_EVAL:
457 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_GEOMETRY:
460 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 case MESA_SHADER_FRAGMENT:
463 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_COMPUTE:
466 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 default:
469 unreachable("unsupported shader stage");
470 }
471 break;
472
473 case nir_instr_type_tex:
474 nir_emit_texture(abld, nir_instr_as_tex(instr));
475 break;
476
477 case nir_instr_type_load_const:
478 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
479 break;
480
481 case nir_instr_type_ssa_undef:
482 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
483 break;
484
485 case nir_instr_type_jump:
486 nir_emit_jump(abld, nir_instr_as_jump(instr));
487 break;
488
489 default:
490 unreachable("unknown instruction type");
491 }
492 }
493
494 /**
495 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
496 * match instr.
497 */
498 bool
499 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
500 const fs_reg &result)
501 {
502 if (!instr->src[0].src.is_ssa ||
503 !instr->src[0].src.ssa->parent_instr)
504 return false;
505
506 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
507 return false;
508
509 nir_alu_instr *src0 =
510 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
511
512 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
513 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
514 return false;
515
516 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
517 assert(element != NULL);
518
519 enum opcode extract_op;
520 if (src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16) {
521 assert(element->u32[0] <= 1);
522 extract_op = SHADER_OPCODE_EXTRACT_WORD;
523 } else {
524 assert(element->u32[0] <= 3);
525 extract_op = SHADER_OPCODE_EXTRACT_BYTE;
526 }
527
528 fs_reg op0 = get_nir_src(src0->src[0].src);
529 op0.type = brw_type_for_nir_type(nir_op_infos[src0->op].input_types[0]);
530 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
531
532 set_saturate(instr->dest.saturate,
533 bld.emit(extract_op, result, op0, brw_imm_ud(element->u32[0])));
534 return true;
535 }
536
537 bool
538 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
539 const fs_reg &result)
540 {
541 if (!instr->src[0].src.is_ssa ||
542 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
543 return false;
544
545 nir_intrinsic_instr *src0 =
546 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
547
548 if (src0->intrinsic != nir_intrinsic_load_front_face)
549 return false;
550
551 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
552 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
553 return false;
554
555 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
556 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
557 return false;
558
559 fs_reg tmp = vgrf(glsl_type::int_type);
560
561 if (devinfo->gen >= 6) {
562 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
563 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
564
565 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
566 *
567 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
568 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
569 *
570 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
571 *
572 * This negation looks like it's safe in practice, because bits 0:4 will
573 * surely be TRIANGLES
574 */
575
576 if (value1->f32[0] == -1.0f) {
577 g0.negate = true;
578 }
579
580 tmp.type = BRW_REGISTER_TYPE_W;
581 tmp.subreg_offset = 2;
582 tmp.stride = 2;
583
584 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
585
586 tmp.type = BRW_REGISTER_TYPE_D;
587 tmp.subreg_offset = 0;
588 tmp.stride = 1;
589 } else {
590 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
591 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
592
593 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
594 *
595 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
596 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
597 *
598 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
599 *
600 * This negation looks like it's safe in practice, because bits 0:4 will
601 * surely be TRIANGLES
602 */
603
604 if (value1->f32[0] == -1.0f) {
605 g1_6.negate = true;
606 }
607
608 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
609 }
610 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
611
612 return true;
613 }
614
615 void
616 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
617 {
618 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
619 fs_inst *inst;
620
621 fs_reg result = get_nir_dest(instr->dest.dest);
622 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
623
624 fs_reg op[4];
625 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
626 op[i] = get_nir_src(instr->src[i].src);
627 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
628 op[i].abs = instr->src[i].abs;
629 op[i].negate = instr->src[i].negate;
630 }
631
632 /* We get a bunch of mov's out of the from_ssa pass and they may still
633 * be vectorized. We'll handle them as a special-case. We'll also
634 * handle vecN here because it's basically the same thing.
635 */
636 switch (instr->op) {
637 case nir_op_imov:
638 case nir_op_fmov:
639 case nir_op_vec2:
640 case nir_op_vec3:
641 case nir_op_vec4: {
642 fs_reg temp = result;
643 bool need_extra_copy = false;
644 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
645 if (!instr->src[i].src.is_ssa &&
646 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
647 need_extra_copy = true;
648 temp = bld.vgrf(result.type, 4);
649 break;
650 }
651 }
652
653 for (unsigned i = 0; i < 4; i++) {
654 if (!(instr->dest.write_mask & (1 << i)))
655 continue;
656
657 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
658 inst = bld.MOV(offset(temp, bld, i),
659 offset(op[0], bld, instr->src[0].swizzle[i]));
660 } else {
661 inst = bld.MOV(offset(temp, bld, i),
662 offset(op[i], bld, instr->src[i].swizzle[0]));
663 }
664 inst->saturate = instr->dest.saturate;
665 }
666
667 /* In this case the source and destination registers were the same,
668 * so we need to insert an extra set of moves in order to deal with
669 * any swizzling.
670 */
671 if (need_extra_copy) {
672 for (unsigned i = 0; i < 4; i++) {
673 if (!(instr->dest.write_mask & (1 << i)))
674 continue;
675
676 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
677 }
678 }
679 return;
680 }
681 default:
682 break;
683 }
684
685 /* At this point, we have dealt with any instruction that operates on
686 * more than a single channel. Therefore, we can just adjust the source
687 * and destination registers for that channel and emit the instruction.
688 */
689 unsigned channel = 0;
690 if (nir_op_infos[instr->op].output_size == 0) {
691 /* Since NIR is doing the scalarizing for us, we should only ever see
692 * vectorized operations with a single channel.
693 */
694 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
695 channel = ffs(instr->dest.write_mask) - 1;
696
697 result = offset(result, bld, channel);
698 }
699
700 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
701 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
702 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
703 }
704
705 switch (instr->op) {
706 case nir_op_i2f:
707 case nir_op_u2f:
708 if (optimize_extract_to_float(instr, result))
709 return;
710
711 inst = bld.MOV(result, op[0]);
712 inst->saturate = instr->dest.saturate;
713 break;
714
715 case nir_op_f2i:
716 case nir_op_f2u:
717 bld.MOV(result, op[0]);
718 break;
719
720 case nir_op_fsign: {
721 /* AND(val, 0x80000000) gives the sign bit.
722 *
723 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
724 * zero.
725 */
726 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
727
728 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
729 op[0].type = BRW_REGISTER_TYPE_UD;
730 result.type = BRW_REGISTER_TYPE_UD;
731 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
732
733 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
734 inst->predicate = BRW_PREDICATE_NORMAL;
735 if (instr->dest.saturate) {
736 inst = bld.MOV(result, result);
737 inst->saturate = true;
738 }
739 break;
740 }
741
742 case nir_op_isign:
743 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
744 * -> non-negative val generates 0x00000000.
745 * Predicated OR sets 1 if val is positive.
746 */
747 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
748 bld.ASR(result, op[0], brw_imm_d(31));
749 inst = bld.OR(result, result, brw_imm_d(1));
750 inst->predicate = BRW_PREDICATE_NORMAL;
751 break;
752
753 case nir_op_frcp:
754 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
755 inst->saturate = instr->dest.saturate;
756 break;
757
758 case nir_op_fexp2:
759 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
760 inst->saturate = instr->dest.saturate;
761 break;
762
763 case nir_op_flog2:
764 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
765 inst->saturate = instr->dest.saturate;
766 break;
767
768 case nir_op_fsin:
769 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
770 inst->saturate = instr->dest.saturate;
771 break;
772
773 case nir_op_fcos:
774 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
775 inst->saturate = instr->dest.saturate;
776 break;
777
778 case nir_op_fddx:
779 if (fs_key->high_quality_derivatives) {
780 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
781 } else {
782 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
783 }
784 inst->saturate = instr->dest.saturate;
785 break;
786 case nir_op_fddx_fine:
787 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
788 inst->saturate = instr->dest.saturate;
789 break;
790 case nir_op_fddx_coarse:
791 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
792 inst->saturate = instr->dest.saturate;
793 break;
794 case nir_op_fddy:
795 if (fs_key->high_quality_derivatives) {
796 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
797 brw_imm_d(fs_key->render_to_fbo));
798 } else {
799 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
800 brw_imm_d(fs_key->render_to_fbo));
801 }
802 inst->saturate = instr->dest.saturate;
803 break;
804 case nir_op_fddy_fine:
805 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
806 brw_imm_d(fs_key->render_to_fbo));
807 inst->saturate = instr->dest.saturate;
808 break;
809 case nir_op_fddy_coarse:
810 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
811 brw_imm_d(fs_key->render_to_fbo));
812 inst->saturate = instr->dest.saturate;
813 break;
814
815 case nir_op_fadd:
816 case nir_op_iadd:
817 inst = bld.ADD(result, op[0], op[1]);
818 inst->saturate = instr->dest.saturate;
819 break;
820
821 case nir_op_fmul:
822 inst = bld.MUL(result, op[0], op[1]);
823 inst->saturate = instr->dest.saturate;
824 break;
825
826 case nir_op_imul:
827 bld.MUL(result, op[0], op[1]);
828 break;
829
830 case nir_op_imul_high:
831 case nir_op_umul_high:
832 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
833 break;
834
835 case nir_op_idiv:
836 case nir_op_udiv:
837 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
838 break;
839
840 case nir_op_uadd_carry:
841 unreachable("Should have been lowered by carry_to_arith().");
842
843 case nir_op_usub_borrow:
844 unreachable("Should have been lowered by borrow_to_arith().");
845
846 case nir_op_umod:
847 case nir_op_irem:
848 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
849 * appears that our hardware just does the right thing for signed
850 * remainder.
851 */
852 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
853 break;
854
855 case nir_op_imod: {
856 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
857 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
858
859 /* Math instructions don't support conditional mod */
860 inst = bld.MOV(bld.null_reg_d(), result);
861 inst->conditional_mod = BRW_CONDITIONAL_NZ;
862
863 /* Now, we need to determine if signs of the sources are different.
864 * When we XOR the sources, the top bit is 0 if they are the same and 1
865 * if they are different. We can then use a conditional modifier to
866 * turn that into a predicate. This leads us to an XOR.l instruction.
867 *
868 * Technically, according to the PRM, you're not allowed to use .l on a
869 * XOR instruction. However, emperical experiments and Curro's reading
870 * of the simulator source both indicate that it's safe.
871 */
872 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
873 inst = bld.XOR(tmp, op[0], op[1]);
874 inst->predicate = BRW_PREDICATE_NORMAL;
875 inst->conditional_mod = BRW_CONDITIONAL_L;
876
877 /* If the result of the initial remainder operation is non-zero and the
878 * two sources have different signs, add in a copy of op[1] to get the
879 * final integer modulus value.
880 */
881 inst = bld.ADD(result, result, op[1]);
882 inst->predicate = BRW_PREDICATE_NORMAL;
883 break;
884 }
885
886 case nir_op_flt:
887 case nir_op_ilt:
888 case nir_op_ult:
889 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
890 break;
891
892 case nir_op_fge:
893 case nir_op_ige:
894 case nir_op_uge:
895 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
896 break;
897
898 case nir_op_feq:
899 case nir_op_ieq:
900 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
901 break;
902
903 case nir_op_fne:
904 case nir_op_ine:
905 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
906 break;
907
908 case nir_op_inot:
909 if (devinfo->gen >= 8) {
910 op[0] = resolve_source_modifiers(op[0]);
911 }
912 bld.NOT(result, op[0]);
913 break;
914 case nir_op_ixor:
915 if (devinfo->gen >= 8) {
916 op[0] = resolve_source_modifiers(op[0]);
917 op[1] = resolve_source_modifiers(op[1]);
918 }
919 bld.XOR(result, op[0], op[1]);
920 break;
921 case nir_op_ior:
922 if (devinfo->gen >= 8) {
923 op[0] = resolve_source_modifiers(op[0]);
924 op[1] = resolve_source_modifiers(op[1]);
925 }
926 bld.OR(result, op[0], op[1]);
927 break;
928 case nir_op_iand:
929 if (devinfo->gen >= 8) {
930 op[0] = resolve_source_modifiers(op[0]);
931 op[1] = resolve_source_modifiers(op[1]);
932 }
933 bld.AND(result, op[0], op[1]);
934 break;
935
936 case nir_op_fdot2:
937 case nir_op_fdot3:
938 case nir_op_fdot4:
939 case nir_op_ball_fequal2:
940 case nir_op_ball_iequal2:
941 case nir_op_ball_fequal3:
942 case nir_op_ball_iequal3:
943 case nir_op_ball_fequal4:
944 case nir_op_ball_iequal4:
945 case nir_op_bany_fnequal2:
946 case nir_op_bany_inequal2:
947 case nir_op_bany_fnequal3:
948 case nir_op_bany_inequal3:
949 case nir_op_bany_fnequal4:
950 case nir_op_bany_inequal4:
951 unreachable("Lowered by nir_lower_alu_reductions");
952
953 case nir_op_fnoise1_1:
954 case nir_op_fnoise1_2:
955 case nir_op_fnoise1_3:
956 case nir_op_fnoise1_4:
957 case nir_op_fnoise2_1:
958 case nir_op_fnoise2_2:
959 case nir_op_fnoise2_3:
960 case nir_op_fnoise2_4:
961 case nir_op_fnoise3_1:
962 case nir_op_fnoise3_2:
963 case nir_op_fnoise3_3:
964 case nir_op_fnoise3_4:
965 case nir_op_fnoise4_1:
966 case nir_op_fnoise4_2:
967 case nir_op_fnoise4_3:
968 case nir_op_fnoise4_4:
969 unreachable("not reached: should be handled by lower_noise");
970
971 case nir_op_ldexp:
972 unreachable("not reached: should be handled by ldexp_to_arith()");
973
974 case nir_op_fsqrt:
975 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
976 inst->saturate = instr->dest.saturate;
977 break;
978
979 case nir_op_frsq:
980 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
981 inst->saturate = instr->dest.saturate;
982 break;
983
984 case nir_op_b2i:
985 case nir_op_b2f:
986 bld.MOV(result, negate(op[0]));
987 break;
988
989 case nir_op_f2b:
990 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
991 break;
992 case nir_op_i2b:
993 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
994 break;
995
996 case nir_op_ftrunc:
997 inst = bld.RNDZ(result, op[0]);
998 inst->saturate = instr->dest.saturate;
999 break;
1000
1001 case nir_op_fceil: {
1002 op[0].negate = !op[0].negate;
1003 fs_reg temp = vgrf(glsl_type::float_type);
1004 bld.RNDD(temp, op[0]);
1005 temp.negate = true;
1006 inst = bld.MOV(result, temp);
1007 inst->saturate = instr->dest.saturate;
1008 break;
1009 }
1010 case nir_op_ffloor:
1011 inst = bld.RNDD(result, op[0]);
1012 inst->saturate = instr->dest.saturate;
1013 break;
1014 case nir_op_ffract:
1015 inst = bld.FRC(result, op[0]);
1016 inst->saturate = instr->dest.saturate;
1017 break;
1018 case nir_op_fround_even:
1019 inst = bld.RNDE(result, op[0]);
1020 inst->saturate = instr->dest.saturate;
1021 break;
1022
1023 case nir_op_fquantize2f16: {
1024 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1025 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1026 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1027
1028 /* The destination stride must be at least as big as the source stride. */
1029 tmp16.type = BRW_REGISTER_TYPE_W;
1030 tmp16.stride = 2;
1031
1032 /* Check for denormal */
1033 fs_reg abs_src0 = op[0];
1034 abs_src0.abs = true;
1035 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1036 BRW_CONDITIONAL_L);
1037 /* Get the appropriately signed zero */
1038 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1039 retype(op[0], BRW_REGISTER_TYPE_UD),
1040 brw_imm_ud(0x80000000));
1041 /* Do the actual F32 -> F16 -> F32 conversion */
1042 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1043 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1044 /* Select that or zero based on normal status */
1045 inst = bld.SEL(result, zero, tmp32);
1046 inst->predicate = BRW_PREDICATE_NORMAL;
1047 inst->saturate = instr->dest.saturate;
1048 break;
1049 }
1050
1051 case nir_op_fmin:
1052 case nir_op_imin:
1053 case nir_op_umin:
1054 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1055 inst->saturate = instr->dest.saturate;
1056 break;
1057
1058 case nir_op_fmax:
1059 case nir_op_imax:
1060 case nir_op_umax:
1061 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1062 inst->saturate = instr->dest.saturate;
1063 break;
1064
1065 case nir_op_pack_snorm_2x16:
1066 case nir_op_pack_snorm_4x8:
1067 case nir_op_pack_unorm_2x16:
1068 case nir_op_pack_unorm_4x8:
1069 case nir_op_unpack_snorm_2x16:
1070 case nir_op_unpack_snorm_4x8:
1071 case nir_op_unpack_unorm_2x16:
1072 case nir_op_unpack_unorm_4x8:
1073 case nir_op_unpack_half_2x16:
1074 case nir_op_pack_half_2x16:
1075 unreachable("not reached: should be handled by lower_packing_builtins");
1076
1077 case nir_op_unpack_half_2x16_split_x:
1078 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1079 inst->saturate = instr->dest.saturate;
1080 break;
1081 case nir_op_unpack_half_2x16_split_y:
1082 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1083 inst->saturate = instr->dest.saturate;
1084 break;
1085
1086 case nir_op_fpow:
1087 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1088 inst->saturate = instr->dest.saturate;
1089 break;
1090
1091 case nir_op_bitfield_reverse:
1092 bld.BFREV(result, op[0]);
1093 break;
1094
1095 case nir_op_bit_count:
1096 bld.CBIT(result, op[0]);
1097 break;
1098
1099 case nir_op_ufind_msb:
1100 case nir_op_ifind_msb: {
1101 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1102
1103 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1104 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1105 * subtract the result from 31 to convert the MSB count into an LSB count.
1106 */
1107 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1108
1109 inst = bld.ADD(result, result, brw_imm_d(31));
1110 inst->predicate = BRW_PREDICATE_NORMAL;
1111 inst->src[0].negate = true;
1112 break;
1113 }
1114
1115 case nir_op_find_lsb:
1116 bld.FBL(result, op[0]);
1117 break;
1118
1119 case nir_op_ubitfield_extract:
1120 case nir_op_ibitfield_extract:
1121 unreachable("should have been lowered");
1122 case nir_op_ubfe:
1123 case nir_op_ibfe:
1124 bld.BFE(result, op[2], op[1], op[0]);
1125 break;
1126 case nir_op_bfm:
1127 bld.BFI1(result, op[0], op[1]);
1128 break;
1129 case nir_op_bfi:
1130 bld.BFI2(result, op[0], op[1], op[2]);
1131 break;
1132
1133 case nir_op_bitfield_insert:
1134 unreachable("not reached: should have been lowered");
1135
1136 case nir_op_ishl:
1137 bld.SHL(result, op[0], op[1]);
1138 break;
1139 case nir_op_ishr:
1140 bld.ASR(result, op[0], op[1]);
1141 break;
1142 case nir_op_ushr:
1143 bld.SHR(result, op[0], op[1]);
1144 break;
1145
1146 case nir_op_pack_half_2x16_split:
1147 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1148 break;
1149
1150 case nir_op_ffma:
1151 inst = bld.MAD(result, op[2], op[1], op[0]);
1152 inst->saturate = instr->dest.saturate;
1153 break;
1154
1155 case nir_op_flrp:
1156 inst = bld.LRP(result, op[0], op[1], op[2]);
1157 inst->saturate = instr->dest.saturate;
1158 break;
1159
1160 case nir_op_bcsel:
1161 if (optimize_frontfacing_ternary(instr, result))
1162 return;
1163
1164 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1165 inst = bld.SEL(result, op[1], op[2]);
1166 inst->predicate = BRW_PREDICATE_NORMAL;
1167 break;
1168
1169 case nir_op_extract_u8:
1170 case nir_op_extract_i8: {
1171 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1172 bld.emit(SHADER_OPCODE_EXTRACT_BYTE,
1173 result, op[0], brw_imm_ud(byte->u32[0]));
1174 break;
1175 }
1176
1177 case nir_op_extract_u16:
1178 case nir_op_extract_i16: {
1179 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1180 bld.emit(SHADER_OPCODE_EXTRACT_WORD,
1181 result, op[0], brw_imm_ud(word->u32[0]));
1182 break;
1183 }
1184
1185 default:
1186 unreachable("unhandled instruction");
1187 }
1188
1189 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1190 * to sign extend the low bit to 0/~0
1191 */
1192 if (devinfo->gen <= 5 &&
1193 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1194 fs_reg masked = vgrf(glsl_type::int_type);
1195 bld.AND(masked, result, brw_imm_d(1));
1196 masked.negate = true;
1197 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1198 }
1199 }
1200
1201 void
1202 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1203 nir_load_const_instr *instr)
1204 {
1205 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1206
1207 for (unsigned i = 0; i < instr->def.num_components; i++)
1208 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1209
1210 nir_ssa_values[instr->def.index] = reg;
1211 }
1212
1213 void
1214 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1215 {
1216 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1217 instr->def.num_components);
1218 }
1219
1220 fs_reg
1221 fs_visitor::get_nir_src(nir_src src)
1222 {
1223 fs_reg reg;
1224 if (src.is_ssa) {
1225 reg = nir_ssa_values[src.ssa->index];
1226 } else {
1227 /* We don't handle indirects on locals */
1228 assert(src.reg.indirect == NULL);
1229 reg = offset(nir_locals[src.reg.reg->index], bld,
1230 src.reg.base_offset * src.reg.reg->num_components);
1231 }
1232
1233 /* to avoid floating-point denorm flushing problems, set the type by
1234 * default to D - instructions that need floating point semantics will set
1235 * this to F if they need to
1236 */
1237 return retype(reg, BRW_REGISTER_TYPE_D);
1238 }
1239
1240 fs_reg
1241 fs_visitor::get_nir_dest(nir_dest dest)
1242 {
1243 if (dest.is_ssa) {
1244 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1245 dest.ssa.num_components);
1246 return nir_ssa_values[dest.ssa.index];
1247 } else {
1248 /* We don't handle indirects on locals */
1249 assert(dest.reg.indirect == NULL);
1250 return offset(nir_locals[dest.reg.reg->index], bld,
1251 dest.reg.base_offset * dest.reg.reg->num_components);
1252 }
1253 }
1254
1255 fs_reg
1256 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1257 {
1258 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1259 BRW_REGISTER_TYPE_UD);
1260 fs_reg indirect;
1261 unsigned indirect_max = 0;
1262
1263 for (const nir_deref *tail = &deref->deref; tail->child;
1264 tail = tail->child) {
1265 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1266 assert(tail->child->deref_type == nir_deref_type_array);
1267 const unsigned size = glsl_get_length(tail->type);
1268 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1269 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1270 image = offset(image, bld, base * element_size);
1271
1272 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1273 fs_reg tmp = vgrf(glsl_type::uint_type);
1274
1275 if (devinfo->gen == 7 && !devinfo->is_haswell) {
1276 /* IVB hangs when trying to access an invalid surface index with
1277 * the dataport. According to the spec "if the index used to
1278 * select an individual element is negative or greater than or
1279 * equal to the size of the array, the results of the operation
1280 * are undefined but may not lead to termination" -- which is one
1281 * of the possible outcomes of the hang. Clamp the index to
1282 * prevent access outside of the array bounds.
1283 */
1284 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1285 BRW_REGISTER_TYPE_UD),
1286 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1287 } else {
1288 bld.MOV(tmp, get_nir_src(deref_array->indirect));
1289 }
1290
1291 indirect_max += element_size * (tail->type->length - 1);
1292
1293 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1294 if (indirect.file == BAD_FILE) {
1295 indirect = tmp;
1296 } else {
1297 bld.ADD(indirect, indirect, tmp);
1298 }
1299 }
1300 }
1301
1302 if (indirect.file == BAD_FILE) {
1303 return image;
1304 } else {
1305 /* Emit a pile of MOVs to load the uniform into a temporary. The
1306 * dead-code elimination pass will get rid of what we don't use.
1307 */
1308 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1309 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1310 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1311 offset(tmp, bld, j), offset(image, bld, j),
1312 indirect, brw_imm_ud((indirect_max + 1) * 4));
1313 }
1314 return tmp;
1315 }
1316 }
1317
1318 void
1319 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1320 unsigned wr_mask)
1321 {
1322 for (unsigned i = 0; i < 4; i++) {
1323 if (!((wr_mask >> i) & 1))
1324 continue;
1325
1326 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1327 new_inst->dst = offset(new_inst->dst, bld, i);
1328 for (unsigned j = 0; j < new_inst->sources; j++)
1329 if (new_inst->src[j].file == VGRF)
1330 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1331
1332 bld.emit(new_inst);
1333 }
1334 }
1335
1336 /**
1337 * Get the matching channel register datatype for an image intrinsic of the
1338 * specified GLSL image type.
1339 */
1340 static brw_reg_type
1341 get_image_base_type(const glsl_type *type)
1342 {
1343 switch ((glsl_base_type)type->sampled_type) {
1344 case GLSL_TYPE_UINT:
1345 return BRW_REGISTER_TYPE_UD;
1346 case GLSL_TYPE_INT:
1347 return BRW_REGISTER_TYPE_D;
1348 case GLSL_TYPE_FLOAT:
1349 return BRW_REGISTER_TYPE_F;
1350 default:
1351 unreachable("Not reached.");
1352 }
1353 }
1354
1355 /**
1356 * Get the appropriate atomic op for an image atomic intrinsic.
1357 */
1358 static unsigned
1359 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1360 {
1361 switch (op) {
1362 case nir_intrinsic_image_atomic_add:
1363 return BRW_AOP_ADD;
1364 case nir_intrinsic_image_atomic_min:
1365 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1366 BRW_AOP_IMIN : BRW_AOP_UMIN);
1367 case nir_intrinsic_image_atomic_max:
1368 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1369 BRW_AOP_IMAX : BRW_AOP_UMAX);
1370 case nir_intrinsic_image_atomic_and:
1371 return BRW_AOP_AND;
1372 case nir_intrinsic_image_atomic_or:
1373 return BRW_AOP_OR;
1374 case nir_intrinsic_image_atomic_xor:
1375 return BRW_AOP_XOR;
1376 case nir_intrinsic_image_atomic_exchange:
1377 return BRW_AOP_MOV;
1378 case nir_intrinsic_image_atomic_comp_swap:
1379 return BRW_AOP_CMPWR;
1380 default:
1381 unreachable("Not reachable.");
1382 }
1383 }
1384
1385 static fs_inst *
1386 emit_pixel_interpolater_send(const fs_builder &bld,
1387 enum opcode opcode,
1388 const fs_reg &dst,
1389 const fs_reg &src,
1390 const fs_reg &desc,
1391 glsl_interp_qualifier interpolation)
1392 {
1393 fs_inst *inst;
1394 fs_reg payload;
1395 int mlen;
1396
1397 if (src.file == BAD_FILE) {
1398 /* Dummy payload */
1399 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1400 mlen = 1;
1401 } else {
1402 payload = src;
1403 mlen = 2 * bld.dispatch_width() / 8;
1404 }
1405
1406 inst = bld.emit(opcode, dst, payload, desc);
1407 inst->mlen = mlen;
1408 /* 2 floats per slot returned */
1409 inst->regs_written = 2 * bld.dispatch_width() / 8;
1410 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1411
1412 return inst;
1413 }
1414
1415 /**
1416 * Computes 1 << x, given a D/UD register containing some value x.
1417 */
1418 static fs_reg
1419 intexp2(const fs_builder &bld, const fs_reg &x)
1420 {
1421 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1422
1423 fs_reg result = bld.vgrf(x.type, 1);
1424 fs_reg one = bld.vgrf(x.type, 1);
1425
1426 bld.MOV(one, retype(brw_imm_d(1), one.type));
1427 bld.SHL(result, one, x);
1428 return result;
1429 }
1430
1431 void
1432 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1433 {
1434 assert(stage == MESA_SHADER_GEOMETRY);
1435
1436 struct brw_gs_prog_data *gs_prog_data =
1437 (struct brw_gs_prog_data *) prog_data;
1438
1439 /* We can only do EndPrimitive() functionality when the control data
1440 * consists of cut bits. Fortunately, the only time it isn't is when the
1441 * output type is points, in which case EndPrimitive() is a no-op.
1442 */
1443 if (gs_prog_data->control_data_format !=
1444 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1445 return;
1446 }
1447
1448 /* Cut bits use one bit per vertex. */
1449 assert(gs_compile->control_data_bits_per_vertex == 1);
1450
1451 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1452 vertex_count.type = BRW_REGISTER_TYPE_UD;
1453
1454 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1455 * vertex n, 0 otherwise. So all we need to do here is mark bit
1456 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1457 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1458 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1459 *
1460 * Note that if EndPrimitive() is called before emitting any vertices, this
1461 * will cause us to set bit 31 of the control_data_bits register to 1.
1462 * That's fine because:
1463 *
1464 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1465 * output, so the hardware will ignore cut bit 31.
1466 *
1467 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1468 * last vertex, so setting cut bit 31 has no effect (since the primitive
1469 * is automatically ended when the GS terminates).
1470 *
1471 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1472 * control_data_bits register to 0 when the first vertex is emitted.
1473 */
1474
1475 const fs_builder abld = bld.annotate("end primitive");
1476
1477 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1478 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1479 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1480 fs_reg mask = intexp2(abld, prev_count);
1481 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1482 * attention to the lower 5 bits of its second source argument, so on this
1483 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1484 * ((vertex_count - 1) % 32).
1485 */
1486 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1487 }
1488
1489 void
1490 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1491 {
1492 assert(stage == MESA_SHADER_GEOMETRY);
1493 assert(gs_compile->control_data_bits_per_vertex != 0);
1494
1495 struct brw_gs_prog_data *gs_prog_data =
1496 (struct brw_gs_prog_data *) prog_data;
1497
1498 const fs_builder abld = bld.annotate("emit control data bits");
1499 const fs_builder fwa_bld = bld.exec_all();
1500
1501 /* We use a single UD register to accumulate control data bits (32 bits
1502 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1503 * at a time.
1504 *
1505 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1506 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1507 * use the Channel Mask phase to enable/disable which DWord within that
1508 * group to write. (Remember, different SIMD8 channels may have emitted
1509 * different numbers of vertices, so we may need per-slot offsets.)
1510 *
1511 * Channel masking presents an annoying problem: we may have to replicate
1512 * the data up to 4 times:
1513 *
1514 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1515 *
1516 * To avoid penalizing shaders that emit a small number of vertices, we
1517 * can avoid these sometimes: if the size of the control data header is
1518 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1519 * land in the same 128-bit group, so we can skip per-slot offsets.
1520 *
1521 * Similarly, if the control data header is <= 32 bits, there is only one
1522 * DWord, so we can skip channel masks.
1523 */
1524 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1525
1526 fs_reg channel_mask, per_slot_offset;
1527
1528 if (gs_compile->control_data_header_size_bits > 32) {
1529 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1530 channel_mask = vgrf(glsl_type::uint_type);
1531 }
1532
1533 if (gs_compile->control_data_header_size_bits > 128) {
1534 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1535 per_slot_offset = vgrf(glsl_type::uint_type);
1536 }
1537
1538 /* Figure out which DWord we're trying to write to using the formula:
1539 *
1540 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1541 *
1542 * Since bits_per_vertex is a power of two, and is known at compile
1543 * time, this can be optimized to:
1544 *
1545 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1546 */
1547 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1548 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1549 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1550 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1551 unsigned log2_bits_per_vertex =
1552 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1553 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1554
1555 if (per_slot_offset.file != BAD_FILE) {
1556 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1557 * the appropriate OWord within the control data header.
1558 */
1559 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1560 }
1561
1562 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1563 * write to the appropriate DWORD within the OWORD.
1564 */
1565 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1566 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1567 channel_mask = intexp2(fwa_bld, channel);
1568 /* Then the channel masks need to be in bits 23:16. */
1569 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1570 }
1571
1572 /* Store the control data bits in the message payload and send it. */
1573 int mlen = 2;
1574 if (channel_mask.file != BAD_FILE)
1575 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1576 if (per_slot_offset.file != BAD_FILE)
1577 mlen++;
1578
1579 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1580 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1581 int i = 0;
1582 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1583 if (per_slot_offset.file != BAD_FILE)
1584 sources[i++] = per_slot_offset;
1585 if (channel_mask.file != BAD_FILE)
1586 sources[i++] = channel_mask;
1587 while (i < mlen) {
1588 sources[i++] = this->control_data_bits;
1589 }
1590
1591 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1592 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1593 inst->mlen = mlen;
1594 /* We need to increment Global Offset by 256-bits to make room for
1595 * Broadwell's extra "Vertex Count" payload at the beginning of the
1596 * URB entry. Since this is an OWord message, Global Offset is counted
1597 * in 128-bit units, so we must set it to 2.
1598 */
1599 if (gs_prog_data->static_vertex_count == -1)
1600 inst->offset = 2;
1601 }
1602
1603 void
1604 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1605 unsigned stream_id)
1606 {
1607 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1608
1609 /* Note: we are calling this *before* increasing vertex_count, so
1610 * this->vertex_count == vertex_count - 1 in the formula above.
1611 */
1612
1613 /* Stream mode uses 2 bits per vertex */
1614 assert(gs_compile->control_data_bits_per_vertex == 2);
1615
1616 /* Must be a valid stream */
1617 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1618
1619 /* Control data bits are initialized to 0 so we don't have to set any
1620 * bits when sending vertices to stream 0.
1621 */
1622 if (stream_id == 0)
1623 return;
1624
1625 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1626
1627 /* reg::sid = stream_id */
1628 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1629 abld.MOV(sid, brw_imm_ud(stream_id));
1630
1631 /* reg:shift_count = 2 * (vertex_count - 1) */
1632 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1633 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1634
1635 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1636 * attention to the lower 5 bits of its second source argument, so on this
1637 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1638 * stream_id << ((2 * (vertex_count - 1)) % 32).
1639 */
1640 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1641 abld.SHL(mask, sid, shift_count);
1642 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1643 }
1644
1645 void
1646 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1647 unsigned stream_id)
1648 {
1649 assert(stage == MESA_SHADER_GEOMETRY);
1650
1651 struct brw_gs_prog_data *gs_prog_data =
1652 (struct brw_gs_prog_data *) prog_data;
1653
1654 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1655 vertex_count.type = BRW_REGISTER_TYPE_UD;
1656
1657 /* Haswell and later hardware ignores the "Render Stream Select" bits
1658 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1659 * and instead sends all primitives down the pipeline for rasterization.
1660 * If the SOL stage is enabled, "Render Stream Select" is honored and
1661 * primitives bound to non-zero streams are discarded after stream output.
1662 *
1663 * Since the only purpose of primives sent to non-zero streams is to
1664 * be recorded by transform feedback, we can simply discard all geometry
1665 * bound to these streams when transform feedback is disabled.
1666 */
1667 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1668 return;
1669
1670 /* If we're outputting 32 control data bits or less, then we can wait
1671 * until the shader is over to output them all. Otherwise we need to
1672 * output them as we go. Now is the time to do it, since we're about to
1673 * output the vertex_count'th vertex, so it's guaranteed that the
1674 * control data bits associated with the (vertex_count - 1)th vertex are
1675 * correct.
1676 */
1677 if (gs_compile->control_data_header_size_bits > 32) {
1678 const fs_builder abld =
1679 bld.annotate("emit vertex: emit control data bits");
1680
1681 /* Only emit control data bits if we've finished accumulating a batch
1682 * of 32 bits. This is the case when:
1683 *
1684 * (vertex_count * bits_per_vertex) % 32 == 0
1685 *
1686 * (in other words, when the last 5 bits of vertex_count *
1687 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1688 * integer n (which is always the case, since bits_per_vertex is
1689 * always 1 or 2), this is equivalent to requiring that the last 5-n
1690 * bits of vertex_count are 0:
1691 *
1692 * vertex_count & (2^(5-n) - 1) == 0
1693 *
1694 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1695 * equivalent to:
1696 *
1697 * vertex_count & (32 / bits_per_vertex - 1) == 0
1698 *
1699 * TODO: If vertex_count is an immediate, we could do some of this math
1700 * at compile time...
1701 */
1702 fs_inst *inst =
1703 abld.AND(bld.null_reg_d(), vertex_count,
1704 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1705 inst->conditional_mod = BRW_CONDITIONAL_Z;
1706
1707 abld.IF(BRW_PREDICATE_NORMAL);
1708 /* If vertex_count is 0, then no control data bits have been
1709 * accumulated yet, so we can skip emitting them.
1710 */
1711 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1712 BRW_CONDITIONAL_NEQ);
1713 abld.IF(BRW_PREDICATE_NORMAL);
1714 emit_gs_control_data_bits(vertex_count);
1715 abld.emit(BRW_OPCODE_ENDIF);
1716
1717 /* Reset control_data_bits to 0 so we can start accumulating a new
1718 * batch.
1719 *
1720 * Note: in the case where vertex_count == 0, this neutralizes the
1721 * effect of any call to EndPrimitive() that the shader may have
1722 * made before outputting its first vertex.
1723 */
1724 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1725 inst->force_writemask_all = true;
1726 abld.emit(BRW_OPCODE_ENDIF);
1727 }
1728
1729 emit_urb_writes(vertex_count);
1730
1731 /* In stream mode we have to set control data bits for all vertices
1732 * unless we have disabled control data bits completely (which we do
1733 * do for GL_POINTS outputs that don't use streams).
1734 */
1735 if (gs_compile->control_data_header_size_bits > 0 &&
1736 gs_prog_data->control_data_format ==
1737 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1738 set_gs_stream_control_data_bits(vertex_count, stream_id);
1739 }
1740 }
1741
1742 void
1743 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1744 const nir_src &vertex_src,
1745 unsigned base_offset,
1746 const nir_src &offset_src,
1747 unsigned num_components)
1748 {
1749 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1750
1751 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1752 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1753 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1754
1755 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1756 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1757 * gl_PointSize is available as a GS input, however, so it must be that.
1758 */
1759 const bool is_point_size = (base_offset == 0);
1760
1761 if (offset_const != NULL && vertex_const != NULL &&
1762 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
1763 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
1764 vertex_const->u32[0] * push_reg_count;
1765 /* This input was pushed into registers. */
1766 if (is_point_size) {
1767 /* gl_PointSize comes in .w */
1768 assert(imm_offset == 0);
1769 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
1770 } else {
1771 for (unsigned i = 0; i < num_components; i++) {
1772 bld.MOV(offset(dst, bld, i),
1773 fs_reg(ATTR, imm_offset + i, dst.type));
1774 }
1775 }
1776 } else {
1777 /* Resort to the pull model. Ensure the VUE handles are provided. */
1778 gs_prog_data->base.include_vue_handles = true;
1779
1780 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1781 fs_reg icp_handle;
1782
1783 if (vertex_const) {
1784 /* The vertex index is constant; just select the proper URB handle. */
1785 icp_handle =
1786 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
1787 BRW_REGISTER_TYPE_UD);
1788 } else {
1789 /* The vertex index is non-constant. We need to use indirect
1790 * addressing to fetch the proper URB handle.
1791 *
1792 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1793 * indicating that channel <n> should read the handle from
1794 * DWord <n>. We convert that to bytes by multiplying by 4.
1795 *
1796 * Next, we convert the vertex index to bytes by multiplying
1797 * by 32 (shifting by 5), and add the two together. This is
1798 * the final indirect byte offset.
1799 */
1800 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1801 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1802 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1803 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1804 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1805
1806 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1807 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1808 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1809 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1810 /* Convert vertex_index to bytes (multiply by 32) */
1811 bld.SHL(vertex_offset_bytes,
1812 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
1813 brw_imm_ud(5u));
1814 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
1815
1816 /* Use first_icp_handle as the base offset. There is one register
1817 * of URB handles per vertex, so inform the register allocator that
1818 * we might read up to nir->info.gs.vertices_in registers.
1819 */
1820 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
1821 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
1822 fs_reg(icp_offset_bytes),
1823 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
1824 }
1825
1826 fs_inst *inst;
1827 if (offset_const) {
1828 /* Constant indexing - use global offset. */
1829 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
1830 inst->offset = base_offset + offset_const->u32[0];
1831 inst->base_mrf = -1;
1832 inst->mlen = 1;
1833 inst->regs_written = num_components;
1834 } else {
1835 /* Indirect indexing - use per-slot offsets as well. */
1836 const fs_reg srcs[] = { icp_handle, get_nir_src(offset_src) };
1837 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1838 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1839
1840 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
1841 inst->offset = base_offset;
1842 inst->base_mrf = -1;
1843 inst->mlen = 2;
1844 inst->regs_written = num_components;
1845 }
1846
1847 if (is_point_size) {
1848 /* Read the whole VUE header (because of alignment) and read .w. */
1849 fs_reg tmp = bld.vgrf(dst.type, 4);
1850 inst->dst = tmp;
1851 inst->regs_written = 4;
1852 bld.MOV(dst, offset(tmp, bld, 3));
1853 }
1854 }
1855 }
1856
1857 fs_reg
1858 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
1859 {
1860 nir_src *offset_src = nir_get_io_offset_src(instr);
1861 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
1862
1863 if (const_value) {
1864 /* The only constant offset we should find is 0. brw_nir.c's
1865 * add_const_offset_to_base() will fold other constant offsets
1866 * into instr->const_index[0].
1867 */
1868 assert(const_value->u32[0] == 0);
1869 return fs_reg();
1870 }
1871
1872 return get_nir_src(*offset_src);
1873 }
1874
1875 void
1876 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
1877 nir_intrinsic_instr *instr)
1878 {
1879 assert(stage == MESA_SHADER_VERTEX);
1880
1881 fs_reg dest;
1882 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1883 dest = get_nir_dest(instr->dest);
1884
1885 switch (instr->intrinsic) {
1886 case nir_intrinsic_load_vertex_id:
1887 unreachable("should be lowered by lower_vertex_id()");
1888
1889 case nir_intrinsic_load_vertex_id_zero_base:
1890 case nir_intrinsic_load_base_vertex:
1891 case nir_intrinsic_load_instance_id:
1892 case nir_intrinsic_load_base_instance:
1893 case nir_intrinsic_load_draw_id: {
1894 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1895 fs_reg val = nir_system_values[sv];
1896 assert(val.file != BAD_FILE);
1897 dest.type = val.type;
1898 bld.MOV(dest, val);
1899 break;
1900 }
1901
1902 default:
1903 nir_emit_intrinsic(bld, instr);
1904 break;
1905 }
1906 }
1907
1908 void
1909 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
1910 nir_intrinsic_instr *instr)
1911 {
1912 assert(stage == MESA_SHADER_TESS_EVAL);
1913 struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data;
1914
1915 fs_reg dest;
1916 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1917 dest = get_nir_dest(instr->dest);
1918
1919 switch (instr->intrinsic) {
1920 case nir_intrinsic_load_primitive_id:
1921 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
1922 break;
1923 case nir_intrinsic_load_tess_coord:
1924 /* gl_TessCoord is part of the payload in g1-3 */
1925 for (unsigned i = 0; i < 3; i++) {
1926 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
1927 }
1928 break;
1929
1930 case nir_intrinsic_load_tess_level_outer:
1931 /* When the TES reads gl_TessLevelOuter, we ensure that the patch header
1932 * appears as a push-model input. So, we can simply use the ATTR file
1933 * rather than issuing URB read messages. The data is stored in the
1934 * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains
1935 * .y, and so on.
1936 */
1937 switch (tes_prog_data->domain) {
1938 case BRW_TESS_DOMAIN_QUAD:
1939 for (unsigned i = 0; i < 4; i++)
1940 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1941 break;
1942 case BRW_TESS_DOMAIN_TRI:
1943 for (unsigned i = 0; i < 3; i++)
1944 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1945 break;
1946 case BRW_TESS_DOMAIN_ISOLINE:
1947 for (unsigned i = 0; i < 2; i++)
1948 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1949 break;
1950 }
1951 break;
1952
1953 case nir_intrinsic_load_tess_level_inner:
1954 /* When the TES reads gl_TessLevelInner, we ensure that the patch header
1955 * appears as a push-model input. So, we can simply use the ATTR file
1956 * rather than issuing URB read messages.
1957 */
1958 switch (tes_prog_data->domain) {
1959 case BRW_TESS_DOMAIN_QUAD:
1960 bld.MOV(dest, component(fs_reg(ATTR, 0), 3));
1961 bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2));
1962 break;
1963 case BRW_TESS_DOMAIN_TRI:
1964 bld.MOV(dest, component(fs_reg(ATTR, 0), 4));
1965 break;
1966 case BRW_TESS_DOMAIN_ISOLINE:
1967 /* ignore - value is undefined */
1968 break;
1969 }
1970 break;
1971
1972 case nir_intrinsic_load_input:
1973 case nir_intrinsic_load_per_vertex_input: {
1974 fs_reg indirect_offset = get_indirect_offset(instr);
1975 unsigned imm_offset = instr->const_index[0];
1976
1977 fs_inst *inst;
1978 if (indirect_offset.file == BAD_FILE) {
1979 /* Arbitrarily only push up to 32 vec4 slots worth of data,
1980 * which is 16 registers (since each holds 2 vec4 slots).
1981 */
1982 const unsigned max_push_slots = 32;
1983 if (imm_offset < max_push_slots) {
1984 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
1985 for (int i = 0; i < instr->num_components; i++) {
1986 bld.MOV(offset(dest, bld, i),
1987 component(src, 4 * (imm_offset % 2) + i));
1988 }
1989 tes_prog_data->base.urb_read_length =
1990 MAX2(tes_prog_data->base.urb_read_length,
1991 DIV_ROUND_UP(imm_offset + 1, 2));
1992 } else {
1993 /* Replicate the patch handle to all enabled channels */
1994 const fs_reg srcs[] = {
1995 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
1996 };
1997 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1998 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
1999
2000 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle);
2001 inst->mlen = 1;
2002 inst->offset = imm_offset;
2003 inst->base_mrf = -1;
2004 inst->regs_written = instr->num_components;
2005 }
2006 } else {
2007 /* Indirect indexing - use per-slot offsets as well. */
2008 const fs_reg srcs[] = {
2009 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2010 indirect_offset
2011 };
2012 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2013 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2014
2015 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload);
2016 inst->mlen = 2;
2017 inst->offset = imm_offset;
2018 inst->base_mrf = -1;
2019 inst->regs_written = instr->num_components;
2020 }
2021 break;
2022 }
2023 default:
2024 nir_emit_intrinsic(bld, instr);
2025 break;
2026 }
2027 }
2028
2029 void
2030 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2031 nir_intrinsic_instr *instr)
2032 {
2033 assert(stage == MESA_SHADER_GEOMETRY);
2034 fs_reg indirect_offset;
2035
2036 fs_reg dest;
2037 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2038 dest = get_nir_dest(instr->dest);
2039
2040 switch (instr->intrinsic) {
2041 case nir_intrinsic_load_primitive_id:
2042 assert(stage == MESA_SHADER_GEOMETRY);
2043 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
2044 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2045 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2046 break;
2047
2048 case nir_intrinsic_load_input:
2049 unreachable("load_input intrinsics are invalid for the GS stage");
2050
2051 case nir_intrinsic_load_per_vertex_input:
2052 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2053 instr->src[1], instr->num_components);
2054 break;
2055
2056 case nir_intrinsic_emit_vertex_with_counter:
2057 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2058 break;
2059
2060 case nir_intrinsic_end_primitive_with_counter:
2061 emit_gs_end_primitive(instr->src[0]);
2062 break;
2063
2064 case nir_intrinsic_set_vertex_count:
2065 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2066 break;
2067
2068 case nir_intrinsic_load_invocation_id: {
2069 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2070 assert(val.file != BAD_FILE);
2071 dest.type = val.type;
2072 bld.MOV(dest, val);
2073 break;
2074 }
2075
2076 default:
2077 nir_emit_intrinsic(bld, instr);
2078 break;
2079 }
2080 }
2081
2082 void
2083 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
2084 nir_intrinsic_instr *instr)
2085 {
2086 assert(stage == MESA_SHADER_FRAGMENT);
2087 struct brw_wm_prog_data *wm_prog_data =
2088 (struct brw_wm_prog_data *) prog_data;
2089
2090 fs_reg dest;
2091 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2092 dest = get_nir_dest(instr->dest);
2093
2094 switch (instr->intrinsic) {
2095 case nir_intrinsic_load_front_face:
2096 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
2097 *emit_frontfacing_interpolation());
2098 break;
2099
2100 case nir_intrinsic_load_sample_pos: {
2101 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
2102 assert(sample_pos.file != BAD_FILE);
2103 dest.type = sample_pos.type;
2104 bld.MOV(dest, sample_pos);
2105 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
2106 break;
2107 }
2108
2109 case nir_intrinsic_load_helper_invocation:
2110 case nir_intrinsic_load_sample_mask_in:
2111 case nir_intrinsic_load_sample_id: {
2112 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2113 fs_reg val = nir_system_values[sv];
2114 assert(val.file != BAD_FILE);
2115 dest.type = val.type;
2116 bld.MOV(dest, val);
2117 break;
2118 }
2119
2120 case nir_intrinsic_discard:
2121 case nir_intrinsic_discard_if: {
2122 /* We track our discarded pixels in f0.1. By predicating on it, we can
2123 * update just the flag bits that aren't yet discarded. If there's no
2124 * condition, we emit a CMP of g0 != g0, so all currently executing
2125 * channels will get turned off.
2126 */
2127 fs_inst *cmp;
2128 if (instr->intrinsic == nir_intrinsic_discard_if) {
2129 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
2130 brw_imm_d(0), BRW_CONDITIONAL_Z);
2131 } else {
2132 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2133 BRW_REGISTER_TYPE_UW));
2134 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
2135 }
2136 cmp->predicate = BRW_PREDICATE_NORMAL;
2137 cmp->flag_subreg = 1;
2138
2139 if (devinfo->gen >= 6) {
2140 emit_discard_jump();
2141 }
2142 break;
2143 }
2144
2145 case nir_intrinsic_interp_var_at_centroid:
2146 case nir_intrinsic_interp_var_at_sample:
2147 case nir_intrinsic_interp_var_at_offset: {
2148 /* Handle ARB_gpu_shader5 interpolation intrinsics
2149 *
2150 * It's worth a quick word of explanation as to why we handle the full
2151 * variable-based interpolation intrinsic rather than a lowered version
2152 * with like we do for other inputs. We have to do that because the way
2153 * we set up inputs doesn't allow us to use the already setup inputs for
2154 * interpolation. At the beginning of the shader, we go through all of
2155 * the input variables and do the initial interpolation and put it in
2156 * the nir_inputs array based on its location as determined in
2157 * nir_lower_io. If the input isn't used, dead code cleans up and
2158 * everything works fine. However, when we get to the ARB_gpu_shader5
2159 * interpolation intrinsics, we need to reinterpolate the input
2160 * differently. If we used an intrinsic that just had an index it would
2161 * only give us the offset into the nir_inputs array. However, this is
2162 * useless because that value is post-interpolation and we need
2163 * pre-interpolation. In order to get the actual location of the bits
2164 * we get from the vertex fetching hardware, we need the variable.
2165 */
2166 wm_prog_data->pulls_bary = true;
2167
2168 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
2169 const glsl_interp_qualifier interpolation =
2170 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
2171
2172 switch (instr->intrinsic) {
2173 case nir_intrinsic_interp_var_at_centroid:
2174 emit_pixel_interpolater_send(bld,
2175 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2176 dst_xy,
2177 fs_reg(), /* src */
2178 brw_imm_ud(0u),
2179 interpolation);
2180 break;
2181
2182 case nir_intrinsic_interp_var_at_sample: {
2183 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
2184
2185 if (const_sample) {
2186 unsigned msg_data = const_sample->i32[0] << 4;
2187
2188 emit_pixel_interpolater_send(bld,
2189 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2190 dst_xy,
2191 fs_reg(), /* src */
2192 brw_imm_ud(msg_data),
2193 interpolation);
2194 } else {
2195 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
2196 BRW_REGISTER_TYPE_UD);
2197
2198 if (nir_src_is_dynamically_uniform(instr->src[0])) {
2199 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2200 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2201 bld.exec_all().group(1, 0)
2202 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2203 emit_pixel_interpolater_send(bld,
2204 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2205 dst_xy,
2206 fs_reg(), /* src */
2207 msg_data,
2208 interpolation);
2209 } else {
2210 /* Make a loop that sends a message to the pixel interpolater
2211 * for the sample number in each live channel. If there are
2212 * multiple channels with the same sample number then these
2213 * will be handled simultaneously with a single interation of
2214 * the loop.
2215 */
2216 bld.emit(BRW_OPCODE_DO);
2217
2218 /* Get the next live sample number into sample_id_reg */
2219 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2220
2221 /* Set the flag register so that we can perform the send
2222 * message on all channels that have the same sample number
2223 */
2224 bld.CMP(bld.null_reg_ud(),
2225 sample_src, sample_id,
2226 BRW_CONDITIONAL_EQ);
2227 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2228 bld.exec_all().group(1, 0)
2229 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2230 fs_inst *inst =
2231 emit_pixel_interpolater_send(bld,
2232 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2233 dst_xy,
2234 fs_reg(), /* src */
2235 msg_data,
2236 interpolation);
2237 set_predicate(BRW_PREDICATE_NORMAL, inst);
2238
2239 /* Continue the loop if there are any live channels left */
2240 set_predicate_inv(BRW_PREDICATE_NORMAL,
2241 true, /* inverse */
2242 bld.emit(BRW_OPCODE_WHILE));
2243 }
2244 }
2245
2246 break;
2247 }
2248
2249 case nir_intrinsic_interp_var_at_offset: {
2250 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2251
2252 if (const_offset) {
2253 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
2254 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
2255
2256 emit_pixel_interpolater_send(bld,
2257 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
2258 dst_xy,
2259 fs_reg(), /* src */
2260 brw_imm_ud(off_x | (off_y << 4)),
2261 interpolation);
2262 } else {
2263 fs_reg src = vgrf(glsl_type::ivec2_type);
2264 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
2265 BRW_REGISTER_TYPE_F);
2266 for (int i = 0; i < 2; i++) {
2267 fs_reg temp = vgrf(glsl_type::float_type);
2268 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
2269 fs_reg itemp = vgrf(glsl_type::int_type);
2270 bld.MOV(itemp, temp); /* float to int */
2271
2272 /* Clamp the upper end of the range to +7/16.
2273 * ARB_gpu_shader5 requires that we support a maximum offset
2274 * of +0.5, which isn't representable in a S0.4 value -- if
2275 * we didn't clamp it, we'd end up with -8/16, which is the
2276 * opposite of what the shader author wanted.
2277 *
2278 * This is legal due to ARB_gpu_shader5's quantization
2279 * rules:
2280 *
2281 * "Not all values of <offset> may be supported; x and y
2282 * offsets may be rounded to fixed-point values with the
2283 * number of fraction bits given by the
2284 * implementation-dependent constant
2285 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
2286 */
2287 set_condmod(BRW_CONDITIONAL_L,
2288 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
2289 }
2290
2291 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
2292 emit_pixel_interpolater_send(bld,
2293 opcode,
2294 dst_xy,
2295 src,
2296 brw_imm_ud(0u),
2297 interpolation);
2298 }
2299 break;
2300 }
2301
2302 default:
2303 unreachable("Invalid intrinsic");
2304 }
2305
2306 for (unsigned j = 0; j < instr->num_components; j++) {
2307 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
2308 src.type = dest.type;
2309
2310 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
2311 dest = offset(dest, bld, 1);
2312 }
2313 break;
2314 }
2315 default:
2316 nir_emit_intrinsic(bld, instr);
2317 break;
2318 }
2319 }
2320
2321 void
2322 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
2323 nir_intrinsic_instr *instr)
2324 {
2325 assert(stage == MESA_SHADER_COMPUTE);
2326 struct brw_cs_prog_data *cs_prog_data =
2327 (struct brw_cs_prog_data *) prog_data;
2328
2329 fs_reg dest;
2330 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2331 dest = get_nir_dest(instr->dest);
2332
2333 switch (instr->intrinsic) {
2334 case nir_intrinsic_barrier:
2335 emit_barrier();
2336 cs_prog_data->uses_barrier = true;
2337 break;
2338
2339 case nir_intrinsic_load_local_invocation_id:
2340 case nir_intrinsic_load_work_group_id: {
2341 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2342 fs_reg val = nir_system_values[sv];
2343 assert(val.file != BAD_FILE);
2344 dest.type = val.type;
2345 for (unsigned i = 0; i < 3; i++)
2346 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
2347 break;
2348 }
2349
2350 case nir_intrinsic_load_num_work_groups: {
2351 const unsigned surface =
2352 cs_prog_data->binding_table.work_groups_start;
2353
2354 cs_prog_data->uses_num_work_groups = true;
2355
2356 fs_reg surf_index = brw_imm_ud(surface);
2357 brw_mark_surface_used(prog_data, surface);
2358
2359 /* Read the 3 GLuint components of gl_NumWorkGroups */
2360 for (unsigned i = 0; i < 3; i++) {
2361 fs_reg read_result =
2362 emit_untyped_read(bld, surf_index,
2363 brw_imm_ud(i << 2),
2364 1 /* dims */, 1 /* size */,
2365 BRW_PREDICATE_NONE);
2366 read_result.type = dest.type;
2367 bld.MOV(dest, read_result);
2368 dest = offset(dest, bld, 1);
2369 }
2370 break;
2371 }
2372
2373 case nir_intrinsic_shared_atomic_add:
2374 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
2375 break;
2376 case nir_intrinsic_shared_atomic_imin:
2377 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
2378 break;
2379 case nir_intrinsic_shared_atomic_umin:
2380 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
2381 break;
2382 case nir_intrinsic_shared_atomic_imax:
2383 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
2384 break;
2385 case nir_intrinsic_shared_atomic_umax:
2386 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
2387 break;
2388 case nir_intrinsic_shared_atomic_and:
2389 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
2390 break;
2391 case nir_intrinsic_shared_atomic_or:
2392 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
2393 break;
2394 case nir_intrinsic_shared_atomic_xor:
2395 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
2396 break;
2397 case nir_intrinsic_shared_atomic_exchange:
2398 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
2399 break;
2400 case nir_intrinsic_shared_atomic_comp_swap:
2401 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
2402 break;
2403
2404 case nir_intrinsic_load_shared: {
2405 assert(devinfo->gen >= 7);
2406
2407 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2408
2409 /* Get the offset to read from */
2410 fs_reg offset_reg;
2411 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2412 if (const_offset) {
2413 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
2414 } else {
2415 offset_reg = vgrf(glsl_type::uint_type);
2416 bld.ADD(offset_reg,
2417 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
2418 brw_imm_ud(instr->const_index[0]));
2419 }
2420
2421 /* Read the vector */
2422 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2423 1 /* dims */,
2424 instr->num_components,
2425 BRW_PREDICATE_NONE);
2426 read_result.type = dest.type;
2427 for (int i = 0; i < instr->num_components; i++)
2428 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2429
2430 break;
2431 }
2432
2433 case nir_intrinsic_store_shared: {
2434 assert(devinfo->gen >= 7);
2435
2436 /* Block index */
2437 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2438
2439 /* Value */
2440 fs_reg val_reg = get_nir_src(instr->src[0]);
2441
2442 /* Writemask */
2443 unsigned writemask = instr->const_index[1];
2444
2445 /* Combine groups of consecutive enabled channels in one write
2446 * message. We use ffs to find the first enabled channel and then ffs on
2447 * the bit-inverse, down-shifted writemask to determine the length of
2448 * the block of enabled bits.
2449 */
2450 while (writemask) {
2451 unsigned first_component = ffs(writemask) - 1;
2452 unsigned length = ffs(~(writemask >> first_component)) - 1;
2453 fs_reg offset_reg;
2454
2455 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2456 if (const_offset) {
2457 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
2458 4 * first_component);
2459 } else {
2460 offset_reg = vgrf(glsl_type::uint_type);
2461 bld.ADD(offset_reg,
2462 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
2463 brw_imm_ud(instr->const_index[0] + 4 * first_component));
2464 }
2465
2466 emit_untyped_write(bld, surf_index, offset_reg,
2467 offset(val_reg, bld, first_component),
2468 1 /* dims */, length,
2469 BRW_PREDICATE_NONE);
2470
2471 /* Clear the bits in the writemask that we just wrote, then try
2472 * again to see if more channels are left.
2473 */
2474 writemask &= (15 << (first_component + length));
2475 }
2476
2477 break;
2478 }
2479
2480 default:
2481 nir_emit_intrinsic(bld, instr);
2482 break;
2483 }
2484 }
2485
2486 void
2487 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
2488 {
2489 fs_reg dest;
2490 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2491 dest = get_nir_dest(instr->dest);
2492
2493 switch (instr->intrinsic) {
2494 case nir_intrinsic_atomic_counter_inc:
2495 case nir_intrinsic_atomic_counter_dec:
2496 case nir_intrinsic_atomic_counter_read: {
2497 /* Get the arguments of the atomic intrinsic. */
2498 const fs_reg offset = get_nir_src(instr->src[0]);
2499 const unsigned surface = (stage_prog_data->binding_table.abo_start +
2500 instr->const_index[0]);
2501 fs_reg tmp;
2502
2503 /* Emit a surface read or atomic op. */
2504 switch (instr->intrinsic) {
2505 case nir_intrinsic_atomic_counter_read:
2506 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
2507 break;
2508
2509 case nir_intrinsic_atomic_counter_inc:
2510 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2511 fs_reg(), 1, 1, BRW_AOP_INC);
2512 break;
2513
2514 case nir_intrinsic_atomic_counter_dec:
2515 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2516 fs_reg(), 1, 1, BRW_AOP_PREDEC);
2517 break;
2518
2519 default:
2520 unreachable("Unreachable");
2521 }
2522
2523 /* Assign the result. */
2524 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
2525
2526 /* Mark the surface as used. */
2527 brw_mark_surface_used(stage_prog_data, surface);
2528 break;
2529 }
2530
2531 case nir_intrinsic_image_load:
2532 case nir_intrinsic_image_store:
2533 case nir_intrinsic_image_atomic_add:
2534 case nir_intrinsic_image_atomic_min:
2535 case nir_intrinsic_image_atomic_max:
2536 case nir_intrinsic_image_atomic_and:
2537 case nir_intrinsic_image_atomic_or:
2538 case nir_intrinsic_image_atomic_xor:
2539 case nir_intrinsic_image_atomic_exchange:
2540 case nir_intrinsic_image_atomic_comp_swap: {
2541 using namespace image_access;
2542
2543 /* Get the referenced image variable and type. */
2544 const nir_variable *var = instr->variables[0]->var;
2545 const glsl_type *type = var->type->without_array();
2546 const brw_reg_type base_type = get_image_base_type(type);
2547
2548 /* Get some metadata from the image intrinsic. */
2549 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2550 const unsigned arr_dims = type->sampler_array ? 1 : 0;
2551 const unsigned surf_dims = type->coordinate_components() - arr_dims;
2552 const mesa_format format =
2553 (var->data.image.write_only ? MESA_FORMAT_NONE :
2554 _mesa_get_shader_image_format(var->data.image.format));
2555
2556 /* Get the arguments of the image intrinsic. */
2557 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2558 const fs_reg addr = retype(get_nir_src(instr->src[0]),
2559 BRW_REGISTER_TYPE_UD);
2560 const fs_reg src0 = (info->num_srcs >= 3 ?
2561 retype(get_nir_src(instr->src[2]), base_type) :
2562 fs_reg());
2563 const fs_reg src1 = (info->num_srcs >= 4 ?
2564 retype(get_nir_src(instr->src[3]), base_type) :
2565 fs_reg());
2566 fs_reg tmp;
2567
2568 /* Emit an image load, store or atomic op. */
2569 if (instr->intrinsic == nir_intrinsic_image_load)
2570 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
2571
2572 else if (instr->intrinsic == nir_intrinsic_image_store)
2573 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
2574
2575 else
2576 tmp = emit_image_atomic(bld, image, addr, src0, src1,
2577 surf_dims, arr_dims, info->dest_components,
2578 get_image_atomic_op(instr->intrinsic, type));
2579
2580 /* Assign the result. */
2581 for (unsigned c = 0; c < info->dest_components; ++c)
2582 bld.MOV(offset(retype(dest, base_type), bld, c),
2583 offset(tmp, bld, c));
2584 break;
2585 }
2586
2587 case nir_intrinsic_memory_barrier_atomic_counter:
2588 case nir_intrinsic_memory_barrier_buffer:
2589 case nir_intrinsic_memory_barrier_image:
2590 case nir_intrinsic_memory_barrier: {
2591 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
2592 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
2593 ->regs_written = 2;
2594 break;
2595 }
2596
2597 case nir_intrinsic_group_memory_barrier:
2598 case nir_intrinsic_memory_barrier_shared:
2599 /* We treat these workgroup-level barriers as no-ops. This should be
2600 * safe at present and as long as:
2601 *
2602 * - Memory access instructions are not subsequently reordered by the
2603 * compiler back-end.
2604 *
2605 * - All threads from a given compute shader workgroup fit within a
2606 * single subslice and therefore talk to the same HDC shared unit
2607 * what supposedly guarantees ordering and coherency between threads
2608 * from the same workgroup. This may change in the future when we
2609 * start splitting workgroups across multiple subslices.
2610 *
2611 * - The context is not in fault-and-stream mode, which could cause
2612 * memory transactions (including to SLM) prior to the barrier to be
2613 * replayed after the barrier if a pagefault occurs. This shouldn't
2614 * be a problem up to and including SKL because fault-and-stream is
2615 * not usable due to hardware issues, but that's likely to change in
2616 * the future.
2617 */
2618 break;
2619
2620 case nir_intrinsic_shader_clock: {
2621 /* We cannot do anything if there is an event, so ignore it for now */
2622 fs_reg shader_clock = get_timestamp(bld);
2623 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
2624
2625 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
2626 break;
2627 }
2628
2629 case nir_intrinsic_image_size: {
2630 /* Get the referenced image variable and type. */
2631 const nir_variable *var = instr->variables[0]->var;
2632 const glsl_type *type = var->type->without_array();
2633
2634 /* Get the size of the image. */
2635 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2636 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
2637
2638 /* For 1DArray image types, the array index is stored in the Z component.
2639 * Fix this by swizzling the Z component to the Y component.
2640 */
2641 const bool is_1d_array_image =
2642 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
2643 type->sampler_array;
2644
2645 /* For CubeArray images, we should count the number of cubes instead
2646 * of the number of faces. Fix it by dividing the (Z component) by 6.
2647 */
2648 const bool is_cube_array_image =
2649 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2650 type->sampler_array;
2651
2652 /* Copy all the components. */
2653 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2654 for (unsigned c = 0; c < info->dest_components; ++c) {
2655 if ((int)c >= type->coordinate_components()) {
2656 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2657 brw_imm_d(1));
2658 } else if (c == 1 && is_1d_array_image) {
2659 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2660 offset(size, bld, 2));
2661 } else if (c == 2 && is_cube_array_image) {
2662 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
2663 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2664 offset(size, bld, c), brw_imm_d(6));
2665 } else {
2666 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2667 offset(size, bld, c));
2668 }
2669 }
2670
2671 break;
2672 }
2673
2674 case nir_intrinsic_image_samples:
2675 /* The driver does not support multi-sampled images. */
2676 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
2677 break;
2678
2679 case nir_intrinsic_load_uniform: {
2680 /* Offsets are in bytes but they should always be multiples of 4 */
2681 assert(instr->const_index[0] % 4 == 0);
2682
2683 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
2684
2685 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2686 if (const_offset) {
2687 /* Offsets are in bytes but they should always be multiples of 4 */
2688 assert(const_offset->u32[0] % 4 == 0);
2689 src.reg_offset = const_offset->u32[0] / 4;
2690
2691 for (unsigned j = 0; j < instr->num_components; j++) {
2692 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2693 }
2694 } else {
2695 fs_reg indirect = retype(get_nir_src(instr->src[0]),
2696 BRW_REGISTER_TYPE_UD);
2697
2698 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
2699 * go past the end of the uniform. In order to keep the n'th
2700 * component from running past, we subtract off the size of all but
2701 * one component of the vector.
2702 */
2703 assert(instr->const_index[1] >= instr->num_components * 4);
2704 unsigned read_size = instr->const_index[1] -
2705 (instr->num_components - 1) * 4;
2706
2707 for (unsigned j = 0; j < instr->num_components; j++) {
2708 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
2709 offset(dest, bld, j), offset(src, bld, j),
2710 indirect, brw_imm_ud(read_size));
2711 }
2712 }
2713 break;
2714 }
2715
2716 case nir_intrinsic_load_ubo: {
2717 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
2718 fs_reg surf_index;
2719
2720 if (const_index) {
2721 const unsigned index = stage_prog_data->binding_table.ubo_start +
2722 const_index->u32[0];
2723 surf_index = brw_imm_ud(index);
2724 brw_mark_surface_used(prog_data, index);
2725 } else {
2726 /* The block index is not a constant. Evaluate the index expression
2727 * per-channel and add the base UBO index; we have to select a value
2728 * from any live channel.
2729 */
2730 surf_index = vgrf(glsl_type::uint_type);
2731 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2732 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
2733 surf_index = bld.emit_uniformize(surf_index);
2734
2735 /* Assume this may touch any UBO. It would be nice to provide
2736 * a tighter bound, but the array information is already lowered away.
2737 */
2738 brw_mark_surface_used(prog_data,
2739 stage_prog_data->binding_table.ubo_start +
2740 nir->info.num_ubos - 1);
2741 }
2742
2743 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2744 if (const_offset == NULL) {
2745 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
2746 BRW_REGISTER_TYPE_D);
2747
2748 for (int i = 0; i < instr->num_components; i++)
2749 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
2750 base_offset, i * 4);
2751 } else {
2752 fs_reg packed_consts = vgrf(glsl_type::float_type);
2753 packed_consts.type = dest.type;
2754
2755 struct brw_reg const_offset_reg = brw_imm_ud(const_offset->u32[0] & ~15);
2756 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
2757 surf_index, const_offset_reg);
2758
2759 for (unsigned i = 0; i < instr->num_components; i++) {
2760 packed_consts.set_smear(const_offset->u32[0] % 16 / 4 + i);
2761
2762 /* The std140 packing rules don't allow vectors to cross 16-byte
2763 * boundaries, and a reg is 32 bytes.
2764 */
2765 assert(packed_consts.subreg_offset < 32);
2766
2767 bld.MOV(dest, packed_consts);
2768 dest = offset(dest, bld, 1);
2769 }
2770 }
2771 break;
2772 }
2773
2774 case nir_intrinsic_load_ssbo: {
2775 assert(devinfo->gen >= 7);
2776
2777 nir_const_value *const_uniform_block =
2778 nir_src_as_const_value(instr->src[0]);
2779
2780 fs_reg surf_index;
2781 if (const_uniform_block) {
2782 unsigned index = stage_prog_data->binding_table.ssbo_start +
2783 const_uniform_block->u32[0];
2784 surf_index = brw_imm_ud(index);
2785 brw_mark_surface_used(prog_data, index);
2786 } else {
2787 surf_index = vgrf(glsl_type::uint_type);
2788 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2789 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2790
2791 /* Assume this may touch any UBO. It would be nice to provide
2792 * a tighter bound, but the array information is already lowered away.
2793 */
2794 brw_mark_surface_used(prog_data,
2795 stage_prog_data->binding_table.ssbo_start +
2796 nir->info.num_ssbos - 1);
2797 }
2798
2799 fs_reg offset_reg;
2800 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2801 if (const_offset) {
2802 offset_reg = brw_imm_ud(const_offset->u32[0]);
2803 } else {
2804 offset_reg = get_nir_src(instr->src[1]);
2805 }
2806
2807 /* Read the vector */
2808 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2809 1 /* dims */,
2810 instr->num_components,
2811 BRW_PREDICATE_NONE);
2812 read_result.type = dest.type;
2813 for (int i = 0; i < instr->num_components; i++)
2814 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2815
2816 break;
2817 }
2818
2819 case nir_intrinsic_load_input: {
2820 fs_reg src;
2821 if (stage == MESA_SHADER_VERTEX) {
2822 src = fs_reg(ATTR, instr->const_index[0], dest.type);
2823 } else {
2824 src = offset(retype(nir_inputs, dest.type), bld,
2825 instr->const_index[0]);
2826 }
2827
2828 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2829 assert(const_offset && "Indirect input loads not allowed");
2830 src = offset(src, bld, const_offset->u32[0]);
2831
2832 for (unsigned j = 0; j < instr->num_components; j++) {
2833 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2834 }
2835 break;
2836 }
2837
2838 case nir_intrinsic_store_ssbo: {
2839 assert(devinfo->gen >= 7);
2840
2841 /* Block index */
2842 fs_reg surf_index;
2843 nir_const_value *const_uniform_block =
2844 nir_src_as_const_value(instr->src[1]);
2845 if (const_uniform_block) {
2846 unsigned index = stage_prog_data->binding_table.ssbo_start +
2847 const_uniform_block->u32[0];
2848 surf_index = brw_imm_ud(index);
2849 brw_mark_surface_used(prog_data, index);
2850 } else {
2851 surf_index = vgrf(glsl_type::uint_type);
2852 bld.ADD(surf_index, get_nir_src(instr->src[1]),
2853 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2854
2855 brw_mark_surface_used(prog_data,
2856 stage_prog_data->binding_table.ssbo_start +
2857 nir->info.num_ssbos - 1);
2858 }
2859
2860 /* Value */
2861 fs_reg val_reg = get_nir_src(instr->src[0]);
2862
2863 /* Writemask */
2864 unsigned writemask = instr->const_index[0];
2865
2866 /* Combine groups of consecutive enabled channels in one write
2867 * message. We use ffs to find the first enabled channel and then ffs on
2868 * the bit-inverse, down-shifted writemask to determine the length of
2869 * the block of enabled bits.
2870 */
2871 while (writemask) {
2872 unsigned first_component = ffs(writemask) - 1;
2873 unsigned length = ffs(~(writemask >> first_component)) - 1;
2874
2875 fs_reg offset_reg;
2876 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
2877 if (const_offset) {
2878 offset_reg = brw_imm_ud(const_offset->u32[0] + 4 * first_component);
2879 } else {
2880 offset_reg = vgrf(glsl_type::uint_type);
2881 bld.ADD(offset_reg,
2882 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
2883 brw_imm_ud(4 * first_component));
2884 }
2885
2886 emit_untyped_write(bld, surf_index, offset_reg,
2887 offset(val_reg, bld, first_component),
2888 1 /* dims */, length,
2889 BRW_PREDICATE_NONE);
2890
2891 /* Clear the bits in the writemask that we just wrote, then try
2892 * again to see if more channels are left.
2893 */
2894 writemask &= (15 << (first_component + length));
2895 }
2896 break;
2897 }
2898
2899 case nir_intrinsic_store_output: {
2900 fs_reg src = get_nir_src(instr->src[0]);
2901 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
2902 instr->const_index[0]);
2903
2904 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2905 assert(const_offset && "Indirect output stores not allowed");
2906 new_dest = offset(new_dest, bld, const_offset->u32[0]);
2907
2908 for (unsigned j = 0; j < instr->num_components; j++) {
2909 bld.MOV(offset(new_dest, bld, j), offset(src, bld, j));
2910 }
2911 break;
2912 }
2913
2914 case nir_intrinsic_ssbo_atomic_add:
2915 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
2916 break;
2917 case nir_intrinsic_ssbo_atomic_imin:
2918 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
2919 break;
2920 case nir_intrinsic_ssbo_atomic_umin:
2921 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
2922 break;
2923 case nir_intrinsic_ssbo_atomic_imax:
2924 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
2925 break;
2926 case nir_intrinsic_ssbo_atomic_umax:
2927 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
2928 break;
2929 case nir_intrinsic_ssbo_atomic_and:
2930 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
2931 break;
2932 case nir_intrinsic_ssbo_atomic_or:
2933 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
2934 break;
2935 case nir_intrinsic_ssbo_atomic_xor:
2936 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
2937 break;
2938 case nir_intrinsic_ssbo_atomic_exchange:
2939 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
2940 break;
2941 case nir_intrinsic_ssbo_atomic_comp_swap:
2942 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
2943 break;
2944
2945 case nir_intrinsic_get_buffer_size: {
2946 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
2947 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
2948 int reg_width = dispatch_width / 8;
2949
2950 /* Set LOD = 0 */
2951 fs_reg source = brw_imm_d(0);
2952
2953 int mlen = 1 * reg_width;
2954
2955 /* A resinfo's sampler message is used to get the buffer size.
2956 * The SIMD8's writeback message consists of four registers and
2957 * SIMD16's writeback message consists of 8 destination registers
2958 * (two per each component), although we are only interested on the
2959 * first component, where resinfo returns the buffer size for
2960 * SURFTYPE_BUFFER.
2961 */
2962 int regs_written = 4 * mlen;
2963 fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
2964 BRW_REGISTER_TYPE_UD);
2965 bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
2966 fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
2967 BRW_REGISTER_TYPE_UD);
2968 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
2969 fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
2970 src_payload, brw_imm_ud(index));
2971 inst->header_size = 0;
2972 inst->mlen = mlen;
2973 inst->regs_written = regs_written;
2974 bld.emit(inst);
2975 bld.MOV(retype(dest, buffer_size.type), buffer_size);
2976
2977 brw_mark_surface_used(prog_data, index);
2978 break;
2979 }
2980
2981 default:
2982 unreachable("unknown intrinsic");
2983 }
2984 }
2985
2986 void
2987 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
2988 int op, nir_intrinsic_instr *instr)
2989 {
2990 fs_reg dest;
2991 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2992 dest = get_nir_dest(instr->dest);
2993
2994 fs_reg surface;
2995 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
2996 if (const_surface) {
2997 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
2998 const_surface->u32[0];
2999 surface = brw_imm_ud(surf_index);
3000 brw_mark_surface_used(prog_data, surf_index);
3001 } else {
3002 surface = vgrf(glsl_type::uint_type);
3003 bld.ADD(surface, get_nir_src(instr->src[0]),
3004 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3005
3006 /* Assume this may touch any SSBO. This is the same we do for other
3007 * UBO/SSBO accesses with non-constant surface.
3008 */
3009 brw_mark_surface_used(prog_data,
3010 stage_prog_data->binding_table.ssbo_start +
3011 nir->info.num_ssbos - 1);
3012 }
3013
3014 fs_reg offset = get_nir_src(instr->src[1]);
3015 fs_reg data1 = get_nir_src(instr->src[2]);
3016 fs_reg data2;
3017 if (op == BRW_AOP_CMPWR)
3018 data2 = get_nir_src(instr->src[3]);
3019
3020 /* Emit the actual atomic operation operation */
3021
3022 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
3023 data1, data2,
3024 1 /* dims */, 1 /* rsize */,
3025 op,
3026 BRW_PREDICATE_NONE);
3027 dest.type = atomic_result.type;
3028 bld.MOV(dest, atomic_result);
3029 }
3030
3031 void
3032 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
3033 int op, nir_intrinsic_instr *instr)
3034 {
3035 fs_reg dest;
3036 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3037 dest = get_nir_dest(instr->dest);
3038
3039 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
3040 fs_reg offset = get_nir_src(instr->src[0]);
3041 fs_reg data1 = get_nir_src(instr->src[1]);
3042 fs_reg data2;
3043 if (op == BRW_AOP_CMPWR)
3044 data2 = get_nir_src(instr->src[2]);
3045
3046 /* Emit the actual atomic operation operation */
3047
3048 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
3049 data1, data2,
3050 1 /* dims */, 1 /* rsize */,
3051 op,
3052 BRW_PREDICATE_NONE);
3053 dest.type = atomic_result.type;
3054 bld.MOV(dest, atomic_result);
3055 }
3056
3057 void
3058 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
3059 {
3060 unsigned texture = instr->texture_index;
3061 unsigned sampler = instr->sampler_index;
3062 fs_reg texture_reg(brw_imm_ud(texture));
3063 fs_reg sampler_reg(brw_imm_ud(sampler));
3064
3065 int gather_component = instr->component;
3066
3067 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
3068 instr->is_array;
3069
3070 int lod_components = 0;
3071
3072 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
3073
3074 /* The hardware requires a LOD for buffer textures */
3075 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
3076 lod = brw_imm_d(0);
3077
3078 for (unsigned i = 0; i < instr->num_srcs; i++) {
3079 fs_reg src = get_nir_src(instr->src[i].src);
3080 switch (instr->src[i].src_type) {
3081 case nir_tex_src_bias:
3082 lod = retype(src, BRW_REGISTER_TYPE_F);
3083 break;
3084 case nir_tex_src_comparitor:
3085 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
3086 break;
3087 case nir_tex_src_coord:
3088 switch (instr->op) {
3089 case nir_texop_txf:
3090 case nir_texop_txf_ms:
3091 case nir_texop_samples_identical:
3092 coordinate = retype(src, BRW_REGISTER_TYPE_D);
3093 break;
3094 default:
3095 coordinate = retype(src, BRW_REGISTER_TYPE_F);
3096 break;
3097 }
3098 break;
3099 case nir_tex_src_ddx:
3100 lod = retype(src, BRW_REGISTER_TYPE_F);
3101 lod_components = nir_tex_instr_src_size(instr, i);
3102 break;
3103 case nir_tex_src_ddy:
3104 lod2 = retype(src, BRW_REGISTER_TYPE_F);
3105 break;
3106 case nir_tex_src_lod:
3107 switch (instr->op) {
3108 case nir_texop_txs:
3109 lod = retype(src, BRW_REGISTER_TYPE_UD);
3110 break;
3111 case nir_texop_txf:
3112 lod = retype(src, BRW_REGISTER_TYPE_D);
3113 break;
3114 default:
3115 lod = retype(src, BRW_REGISTER_TYPE_F);
3116 break;
3117 }
3118 break;
3119 case nir_tex_src_ms_index:
3120 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
3121 break;
3122
3123 case nir_tex_src_offset: {
3124 nir_const_value *const_offset =
3125 nir_src_as_const_value(instr->src[i].src);
3126 if (const_offset) {
3127 tex_offset = brw_imm_ud(brw_texture_offset(const_offset->i32, 3));
3128 } else {
3129 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
3130 }
3131 break;
3132 }
3133
3134 case nir_tex_src_projector:
3135 unreachable("should be lowered");
3136
3137 case nir_tex_src_texture_offset: {
3138 /* Figure out the highest possible texture index and mark it as used */
3139 uint32_t max_used = texture + instr->texture_array_size - 1;
3140 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
3141 max_used += stage_prog_data->binding_table.gather_texture_start;
3142 } else {
3143 max_used += stage_prog_data->binding_table.texture_start;
3144 }
3145 brw_mark_surface_used(prog_data, max_used);
3146
3147 /* Emit code to evaluate the actual indexing expression */
3148 texture_reg = vgrf(glsl_type::uint_type);
3149 bld.ADD(texture_reg, src, brw_imm_ud(texture));
3150 texture_reg = bld.emit_uniformize(texture_reg);
3151 break;
3152 }
3153
3154 case nir_tex_src_sampler_offset: {
3155 /* Emit code to evaluate the actual indexing expression */
3156 sampler_reg = vgrf(glsl_type::uint_type);
3157 bld.ADD(sampler_reg, src, brw_imm_ud(sampler));
3158 sampler_reg = bld.emit_uniformize(sampler_reg);
3159 break;
3160 }
3161
3162 default:
3163 unreachable("unknown texture source");
3164 }
3165 }
3166
3167 if (instr->op == nir_texop_txf_ms ||
3168 instr->op == nir_texop_samples_identical) {
3169 if (devinfo->gen >= 7 &&
3170 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
3171 mcs = emit_mcs_fetch(coordinate, instr->coord_components, texture_reg);
3172 } else {
3173 mcs = brw_imm_ud(0u);
3174 }
3175 }
3176
3177 enum glsl_base_type dest_base_type =
3178 brw_glsl_base_type_for_nir_type (instr->dest_type);
3179
3180 const glsl_type *dest_type =
3181 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
3182 1);
3183
3184 ir_texture_opcode op;
3185 switch (instr->op) {
3186 case nir_texop_lod: op = ir_lod; break;
3187 case nir_texop_query_levels: op = ir_query_levels; break;
3188 case nir_texop_tex: op = ir_tex; break;
3189 case nir_texop_tg4: op = ir_tg4; break;
3190 case nir_texop_txb: op = ir_txb; break;
3191 case nir_texop_txd: op = ir_txd; break;
3192 case nir_texop_txf: op = ir_txf; break;
3193 case nir_texop_txf_ms: op = ir_txf_ms; break;
3194 case nir_texop_txl: op = ir_txl; break;
3195 case nir_texop_txs: op = ir_txs; break;
3196 case nir_texop_texture_samples: {
3197 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
3198 fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
3199 bld.vgrf(BRW_REGISTER_TYPE_D, 1),
3200 texture_reg, texture_reg);
3201 inst->mlen = 1;
3202 inst->header_size = 1;
3203 inst->base_mrf = -1;
3204 return;
3205 }
3206 case nir_texop_samples_identical: op = ir_samples_identical; break;
3207 default:
3208 unreachable("unknown texture opcode");
3209 }
3210
3211 emit_texture(op, dest_type, coordinate, instr->coord_components,
3212 shadow_comparitor, lod, lod2, lod_components, sample_index,
3213 tex_offset, mcs, gather_component, is_cube_array,
3214 texture, texture_reg, sampler, sampler_reg);
3215
3216 fs_reg dest = get_nir_dest(instr->dest);
3217 dest.type = this->result.type;
3218 unsigned num_components = nir_tex_instr_dest_size(instr);
3219 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
3220 dest, this->result),
3221 (1 << num_components) - 1);
3222 }
3223
3224 void
3225 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
3226 {
3227 switch (instr->type) {
3228 case nir_jump_break:
3229 bld.emit(BRW_OPCODE_BREAK);
3230 break;
3231 case nir_jump_continue:
3232 bld.emit(BRW_OPCODE_CONTINUE);
3233 break;
3234 case nir_jump_return:
3235 default:
3236 unreachable("unknown jump");
3237 }
3238 }