i965: Use NIR for lowering texture swizzle
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "program/prog_parameter.h"
35 #include "program/prog_print.h"
36 #include "program/prog_optimize.h"
37 #include "util/register_allocate.h"
38 #include "program/hash_table.h"
39 #include "brw_context.h"
40 #include "brw_eu.h"
41 #include "brw_wm.h"
42 #include "brw_cs.h"
43 #include "brw_vec4.h"
44 #include "brw_vec4_gs_visitor.h"
45 #include "brw_fs.h"
46 #include "main/uniforms.h"
47 #include "glsl/nir/glsl_types.h"
48 #include "glsl/ir_optimization.h"
49 #include "program/sampler.h"
50
51 using namespace brw;
52
53 fs_reg *
54 fs_visitor::emit_vs_system_value(int location)
55 {
56 fs_reg *reg = new(this->mem_ctx)
57 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
58 BRW_REGISTER_TYPE_D);
59 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
60
61 switch (location) {
62 case SYSTEM_VALUE_BASE_VERTEX:
63 reg->reg_offset = 0;
64 vs_prog_data->uses_vertexid = true;
65 break;
66 case SYSTEM_VALUE_VERTEX_ID:
67 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
68 reg->reg_offset = 2;
69 vs_prog_data->uses_vertexid = true;
70 break;
71 case SYSTEM_VALUE_INSTANCE_ID:
72 reg->reg_offset = 3;
73 vs_prog_data->uses_instanceid = true;
74 break;
75 default:
76 unreachable("not reached");
77 }
78
79 return reg;
80 }
81
82 /* Sample from the MCS surface attached to this multisample texture. */
83 fs_reg
84 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
85 const fs_reg &sampler)
86 {
87 const fs_reg dest = vgrf(glsl_type::uvec4_type);
88 const fs_reg srcs[] = {
89 coordinate, fs_reg(), fs_reg(), fs_reg(), fs_reg(), fs_reg(),
90 sampler, fs_reg(), brw_imm_ud(components), brw_imm_d(0)
91 };
92 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
93 ARRAY_SIZE(srcs));
94
95 /* We only care about one or two regs of response, but the sampler always
96 * writes 4/8.
97 */
98 inst->regs_written = 4 * dispatch_width / 8;
99
100 return dest;
101 }
102
103 void
104 fs_visitor::emit_texture(ir_texture_opcode op,
105 const glsl_type *dest_type,
106 fs_reg coordinate, int coord_components,
107 fs_reg shadow_c,
108 fs_reg lod, fs_reg lod2, int grad_components,
109 fs_reg sample_index,
110 fs_reg offset_value,
111 fs_reg mcs,
112 int gather_component,
113 bool is_cube_array,
114 uint32_t sampler,
115 fs_reg sampler_reg)
116 {
117 fs_inst *inst = NULL;
118
119 if (op == ir_query_levels) {
120 /* textureQueryLevels() is implemented in terms of TXS so we need to
121 * pass a valid LOD argument.
122 */
123 assert(lod.file == BAD_FILE);
124 lod = brw_imm_ud(0u);
125 }
126
127 if (op == ir_samples_identical) {
128 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 1, 1));
129
130 /* If mcs is an immediate value, it means there is no MCS. In that case
131 * just return false.
132 */
133 if (mcs.file == BRW_IMMEDIATE_VALUE) {
134 bld.MOV(dst, brw_imm_ud(0u));
135 } else if ((key_tex->msaa_16 & (1 << sampler))) {
136 fs_reg tmp = vgrf(glsl_type::uint_type);
137 bld.OR(tmp, mcs, offset(mcs, bld, 1));
138 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
139 } else {
140 bld.CMP(dst, mcs, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
141 }
142
143 this->result = dst;
144 return;
145 }
146
147 /* Writemasking doesn't eliminate channels on SIMD8 texture
148 * samples, so don't worry about them.
149 */
150 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
151 const fs_reg srcs[] = {
152 coordinate, shadow_c, lod, lod2,
153 sample_index, mcs, sampler_reg, offset_value,
154 brw_imm_d(coord_components), brw_imm_d(grad_components)
155 };
156 enum opcode opcode;
157
158 switch (op) {
159 case ir_tex:
160 opcode = SHADER_OPCODE_TEX_LOGICAL;
161 break;
162 case ir_txb:
163 opcode = FS_OPCODE_TXB_LOGICAL;
164 break;
165 case ir_txl:
166 opcode = SHADER_OPCODE_TXL_LOGICAL;
167 break;
168 case ir_txd:
169 opcode = SHADER_OPCODE_TXD_LOGICAL;
170 break;
171 case ir_txf:
172 opcode = SHADER_OPCODE_TXF_LOGICAL;
173 break;
174 case ir_txf_ms:
175 if ((key_tex->msaa_16 & (1 << sampler)))
176 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
177 else
178 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
179 break;
180 case ir_txs:
181 case ir_query_levels:
182 opcode = SHADER_OPCODE_TXS_LOGICAL;
183 break;
184 case ir_lod:
185 opcode = SHADER_OPCODE_LOD_LOGICAL;
186 break;
187 case ir_tg4:
188 opcode = (offset_value.file != BAD_FILE && offset_value.file != IMM ?
189 SHADER_OPCODE_TG4_OFFSET_LOGICAL : SHADER_OPCODE_TG4_LOGICAL);
190 break;
191 default:
192 unreachable("Invalid texture opcode.");
193 }
194
195 inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
196 inst->regs_written = 4 * dispatch_width / 8;
197
198 if (shadow_c.file != BAD_FILE)
199 inst->shadow_compare = true;
200
201 if (offset_value.file == IMM)
202 inst->offset = offset_value.ud;
203
204 if (op == ir_tg4) {
205 if (gather_component == 1 &&
206 key_tex->gather_channel_quirk_mask & (1 << sampler)) {
207 /* gather4 sampler is broken for green channel on RG32F --
208 * we must ask for blue instead.
209 */
210 inst->offset |= 2 << 16;
211 } else {
212 inst->offset |= gather_component << 16;
213 }
214
215 if (devinfo->gen == 6)
216 emit_gen6_gather_wa(key_tex->gen6_gather_wa[sampler], dst);
217 }
218
219 /* fixup #layers for cube map arrays */
220 if (op == ir_txs && is_cube_array) {
221 fs_reg depth = offset(dst, bld, 2);
222 fs_reg fixed_depth = vgrf(glsl_type::int_type);
223 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, brw_imm_d(6));
224
225 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
226 int components = inst->regs_written / (inst->exec_size / 8);
227 for (int i = 0; i < components; i++) {
228 if (i == 2) {
229 fixed_payload[i] = fixed_depth;
230 } else {
231 fixed_payload[i] = offset(dst, bld, i);
232 }
233 }
234 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
235 }
236
237 if (op == ir_query_levels) {
238 /* # levels is in .w */
239 dst = offset(dst, bld, 3);
240 }
241
242 this->result = dst;
243 }
244
245 /**
246 * Apply workarounds for Gen6 gather with UINT/SINT
247 */
248 void
249 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
250 {
251 if (!wa)
252 return;
253
254 int width = (wa & WA_8BIT) ? 8 : 16;
255
256 for (int i = 0; i < 4; i++) {
257 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
258 /* Convert from UNORM to UINT */
259 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
260 bld.MOV(dst, dst_f);
261
262 if (wa & WA_SIGN) {
263 /* Reinterpret the UINT value as a signed INT value by
264 * shifting the sign bit into place, then shifting back
265 * preserving sign.
266 */
267 bld.SHL(dst, dst, brw_imm_d(32 - width));
268 bld.ASR(dst, dst, brw_imm_d(32 - width));
269 }
270
271 dst = offset(dst, bld, 1);
272 }
273 }
274
275 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
276 void
277 fs_visitor::emit_dummy_fs()
278 {
279 int reg_width = dispatch_width / 8;
280
281 /* Everyone's favorite color. */
282 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
283 for (int i = 0; i < 4; i++) {
284 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
285 brw_imm_f(color[i]));
286 }
287
288 fs_inst *write;
289 write = bld.emit(FS_OPCODE_FB_WRITE);
290 write->eot = true;
291 if (devinfo->gen >= 6) {
292 write->base_mrf = 2;
293 write->mlen = 4 * reg_width;
294 } else {
295 write->header_size = 2;
296 write->base_mrf = 0;
297 write->mlen = 2 + 4 * reg_width;
298 }
299
300 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
301 * varying to avoid GPU hangs, so set that.
302 */
303 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
304 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
305 memset(wm_prog_data->urb_setup, -1,
306 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
307
308 /* We don't have any uniforms. */
309 stage_prog_data->nr_params = 0;
310 stage_prog_data->nr_pull_params = 0;
311 stage_prog_data->curb_read_length = 0;
312 stage_prog_data->dispatch_grf_start_reg = 2;
313 wm_prog_data->dispatch_grf_start_reg_16 = 2;
314 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
315
316 calculate_cfg();
317 }
318
319 /* The register location here is relative to the start of the URB
320 * data. It will get adjusted to be a real location before
321 * generate_code() time.
322 */
323 struct brw_reg
324 fs_visitor::interp_reg(int location, int channel)
325 {
326 assert(stage == MESA_SHADER_FRAGMENT);
327 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
328 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
329 int stride = (channel & 1) * 4;
330
331 assert(prog_data->urb_setup[location] != -1);
332
333 return brw_vec1_grf(regnr, stride);
334 }
335
336 /** Emits the interpolation for the varying inputs. */
337 void
338 fs_visitor::emit_interpolation_setup_gen4()
339 {
340 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
341
342 fs_builder abld = bld.annotate("compute pixel centers");
343 this->pixel_x = vgrf(glsl_type::uint_type);
344 this->pixel_y = vgrf(glsl_type::uint_type);
345 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
346 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
347 abld.ADD(this->pixel_x,
348 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
349 fs_reg(brw_imm_v(0x10101010)));
350 abld.ADD(this->pixel_y,
351 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
352 fs_reg(brw_imm_v(0x11001100)));
353
354 abld = bld.annotate("compute pixel deltas from v0");
355
356 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
357 vgrf(glsl_type::vec2_type);
358 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
359 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
360 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
361
362 if (devinfo->has_pln && dispatch_width == 16) {
363 for (unsigned i = 0; i < 2; i++) {
364 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
365 half(this->pixel_x, i), xstart);
366 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
367 half(this->pixel_y, i), ystart);
368 }
369 } else {
370 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
371 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
372 }
373
374 abld = bld.annotate("compute pos.w and 1/pos.w");
375 /* Compute wpos.w. It's always in our setup, since it's needed to
376 * interpolate the other attributes.
377 */
378 this->wpos_w = vgrf(glsl_type::float_type);
379 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
380 interp_reg(VARYING_SLOT_POS, 3));
381 /* Compute the pixel 1/W value from wpos.w. */
382 this->pixel_w = vgrf(glsl_type::float_type);
383 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
384 }
385
386 /** Emits the interpolation for the varying inputs. */
387 void
388 fs_visitor::emit_interpolation_setup_gen6()
389 {
390 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
391
392 fs_builder abld = bld.annotate("compute pixel centers");
393 if (devinfo->gen >= 8 || dispatch_width == 8) {
394 /* The "Register Region Restrictions" page says for BDW (and newer,
395 * presumably):
396 *
397 * "When destination spans two registers, the source may be one or
398 * two registers. The destination elements must be evenly split
399 * between the two registers."
400 *
401 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
402 * compute our pixel centers.
403 */
404 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
405 BRW_REGISTER_TYPE_UW);
406
407 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
408 dbld.ADD(int_pixel_xy,
409 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
410 fs_reg(brw_imm_v(0x11001010)));
411
412 this->pixel_x = vgrf(glsl_type::float_type);
413 this->pixel_y = vgrf(glsl_type::float_type);
414 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
415 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
416 } else {
417 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
418 *
419 * "When destination spans two registers, the source MUST span two
420 * registers."
421 *
422 * Since the GRF source of the ADD will only read a single register, we
423 * must do two separate ADDs in SIMD16.
424 */
425 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
426 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
427 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
428 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
429 abld.ADD(int_pixel_x,
430 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
431 fs_reg(brw_imm_v(0x10101010)));
432 abld.ADD(int_pixel_y,
433 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
434 fs_reg(brw_imm_v(0x11001100)));
435
436 /* As of gen6, we can no longer mix float and int sources. We have
437 * to turn the integer pixel centers into floats for their actual
438 * use.
439 */
440 this->pixel_x = vgrf(glsl_type::float_type);
441 this->pixel_y = vgrf(glsl_type::float_type);
442 abld.MOV(this->pixel_x, int_pixel_x);
443 abld.MOV(this->pixel_y, int_pixel_y);
444 }
445
446 abld = bld.annotate("compute pos.w");
447 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
448 this->wpos_w = vgrf(glsl_type::float_type);
449 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
450
451 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
452 uint8_t reg = payload.barycentric_coord_reg[i];
453 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
454 }
455 }
456
457 static enum brw_conditional_mod
458 cond_for_alpha_func(GLenum func)
459 {
460 switch(func) {
461 case GL_GREATER:
462 return BRW_CONDITIONAL_G;
463 case GL_GEQUAL:
464 return BRW_CONDITIONAL_GE;
465 case GL_LESS:
466 return BRW_CONDITIONAL_L;
467 case GL_LEQUAL:
468 return BRW_CONDITIONAL_LE;
469 case GL_EQUAL:
470 return BRW_CONDITIONAL_EQ;
471 case GL_NOTEQUAL:
472 return BRW_CONDITIONAL_NEQ;
473 default:
474 unreachable("Not reached");
475 }
476 }
477
478 /**
479 * Alpha test support for when we compile it into the shader instead
480 * of using the normal fixed-function alpha test.
481 */
482 void
483 fs_visitor::emit_alpha_test()
484 {
485 assert(stage == MESA_SHADER_FRAGMENT);
486 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
487 const fs_builder abld = bld.annotate("Alpha test");
488
489 fs_inst *cmp;
490 if (key->alpha_test_func == GL_ALWAYS)
491 return;
492
493 if (key->alpha_test_func == GL_NEVER) {
494 /* f0.1 = 0 */
495 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
496 BRW_REGISTER_TYPE_UW));
497 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
498 BRW_CONDITIONAL_NEQ);
499 } else {
500 /* RT0 alpha */
501 fs_reg color = offset(outputs[0], bld, 3);
502
503 /* f0.1 &= func(color, ref) */
504 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
505 cond_for_alpha_func(key->alpha_test_func));
506 }
507 cmp->predicate = BRW_PREDICATE_NORMAL;
508 cmp->flag_subreg = 1;
509 }
510
511 fs_inst *
512 fs_visitor::emit_single_fb_write(const fs_builder &bld,
513 fs_reg color0, fs_reg color1,
514 fs_reg src0_alpha, unsigned components)
515 {
516 assert(stage == MESA_SHADER_FRAGMENT);
517 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
518
519 /* Hand over gl_FragDepth or the payload depth. */
520 const fs_reg dst_depth = (payload.dest_depth_reg ?
521 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
522 fs_reg());
523 fs_reg src_depth, src_stencil;
524
525 if (source_depth_to_render_target) {
526 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
527 src_depth = frag_depth;
528 else
529 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
530 }
531
532 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
533 src_stencil = frag_stencil;
534
535 const fs_reg sources[] = {
536 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
537 sample_mask, brw_imm_ud(components)
538 };
539 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
540 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
541 sources, ARRAY_SIZE(sources));
542
543 if (prog_data->uses_kill) {
544 write->predicate = BRW_PREDICATE_NORMAL;
545 write->flag_subreg = 1;
546 }
547
548 return write;
549 }
550
551 void
552 fs_visitor::emit_fb_writes()
553 {
554 assert(stage == MESA_SHADER_FRAGMENT);
555 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
556 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
557
558 fs_inst *inst = NULL;
559
560 if (source_depth_to_render_target && devinfo->gen == 6) {
561 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
562 * would require SIMD8 moves of each half to message regs, e.g. by using
563 * the SIMD lowering pass. Unfortunately this is more difficult than it
564 * sounds because the SIMD8 single-source message lacks channel selects
565 * for the second and third subspans.
566 */
567 no16("Missing support for simd16 depth writes on gen6\n");
568 }
569
570 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
571 /* From the 'Render Target Write message' section of the docs:
572 * "Output Stencil is not supported with SIMD16 Render Target Write
573 * Messages."
574 *
575 * FINISHME: split 16 into 2 8s
576 */
577 no16("FINISHME: support 2 simd8 writes for gl_FragStencilRefARB\n");
578 }
579
580 if (do_dual_src) {
581 const fs_builder abld = bld.annotate("FB dual-source write");
582
583 inst = emit_single_fb_write(abld, this->outputs[0],
584 this->dual_src_output, reg_undef, 4);
585 inst->target = 0;
586
587 prog_data->dual_src_blend = true;
588 } else {
589 for (int target = 0; target < key->nr_color_regions; target++) {
590 /* Skip over outputs that weren't written. */
591 if (this->outputs[target].file == BAD_FILE)
592 continue;
593
594 const fs_builder abld = bld.annotate(
595 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
596
597 fs_reg src0_alpha;
598 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
599 src0_alpha = offset(outputs[0], bld, 3);
600
601 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
602 src0_alpha,
603 this->output_components[target]);
604 inst->target = target;
605 }
606 }
607
608 if (inst == NULL) {
609 /* Even if there's no color buffers enabled, we still need to send
610 * alpha out the pipeline to our null renderbuffer to support
611 * alpha-testing, alpha-to-coverage, and so on.
612 */
613 /* FINISHME: Factor out this frequently recurring pattern into a
614 * helper function.
615 */
616 const fs_reg srcs[] = { reg_undef, reg_undef,
617 reg_undef, offset(this->outputs[0], bld, 3) };
618 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
619 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
620
621 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
622 inst->target = 0;
623 }
624
625 inst->eot = true;
626 }
627
628 void
629 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
630 {
631 const struct brw_vs_prog_key *key =
632 (const struct brw_vs_prog_key *) this->key;
633
634 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
635 this->userplane[i] = fs_reg(UNIFORM, uniforms);
636 for (int j = 0; j < 4; ++j) {
637 stage_prog_data->param[uniforms + j] =
638 (gl_constant_value *) &clip_planes[i][j];
639 }
640 uniforms += 4;
641 }
642 }
643
644 /**
645 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
646 *
647 * This does nothing if the shader uses gl_ClipDistance or user clipping is
648 * disabled altogether.
649 */
650 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
651 {
652 struct brw_vue_prog_data *vue_prog_data =
653 (struct brw_vue_prog_data *) prog_data;
654 const struct brw_vs_prog_key *key =
655 (const struct brw_vs_prog_key *) this->key;
656
657 /* Bail unless some sort of legacy clipping is enabled */
658 if (key->nr_userclip_plane_consts == 0)
659 return;
660
661 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
662 *
663 * "If a linked set of shaders forming the vertex stage contains no
664 * static write to gl_ClipVertex or gl_ClipDistance, but the
665 * application has requested clipping against user clip planes through
666 * the API, then the coordinate written to gl_Position is used for
667 * comparison against the user clip planes."
668 *
669 * This function is only called if the shader didn't write to
670 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
671 * if the user wrote to it; otherwise we use gl_Position.
672 */
673
674 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
675 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
676 clip_vertex = VARYING_SLOT_POS;
677
678 /* If the clip vertex isn't written, skip this. Typically this means
679 * the GS will set up clipping. */
680 if (outputs[clip_vertex].file == BAD_FILE)
681 return;
682
683 setup_uniform_clipplane_values(clip_planes);
684
685 const fs_builder abld = bld.annotate("user clip distances");
686
687 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
688 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
689 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
690 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
691
692 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
693 fs_reg u = userplane[i];
694 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
695 output.reg_offset = i & 3;
696
697 abld.MUL(output, outputs[clip_vertex], u);
698 for (int j = 1; j < 4; j++) {
699 u.nr = userplane[i].nr + j;
700 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
701 }
702 }
703 }
704
705 void
706 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
707 {
708 int slot, urb_offset, length;
709 int starting_urb_offset = 0;
710 const struct brw_vue_prog_data *vue_prog_data =
711 (const struct brw_vue_prog_data *) this->prog_data;
712 const struct brw_vs_prog_key *vs_key =
713 (const struct brw_vs_prog_key *) this->key;
714 const GLbitfield64 psiz_mask =
715 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
716 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
717 bool flush;
718 fs_reg sources[8];
719
720 /* If we don't have any valid slots to write, just do a minimal urb write
721 * send to terminate the shader. This includes 1 slot of undefined data,
722 * because it's invalid to write 0 data:
723 *
724 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
725 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
726 * Write Data Payload:
727 *
728 * "The write data payload can be between 1 and 8 message phases long."
729 */
730 if (vue_map->slots_valid == 0) {
731 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
732 bld.exec_all().MOV(payload, fs_reg(retype(brw_vec8_grf(1, 0),
733 BRW_REGISTER_TYPE_UD)));
734
735 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
736 inst->eot = true;
737 inst->mlen = 2;
738 inst->offset = 1;
739 return;
740 }
741
742 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
743 int header_size = 1;
744 fs_reg per_slot_offsets;
745
746 if (stage == MESA_SHADER_GEOMETRY) {
747 const struct brw_gs_prog_data *gs_prog_data =
748 (const struct brw_gs_prog_data *) this->prog_data;
749
750 /* We need to increment the Global Offset to skip over the control data
751 * header and the extra "Vertex Count" field (1 HWord) at the beginning
752 * of the VUE. We're counting in OWords, so the units are doubled.
753 */
754 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
755 if (gs_prog_data->static_vertex_count == -1)
756 starting_urb_offset += 2;
757
758 /* We also need to use per-slot offsets. The per-slot offset is the
759 * Vertex Count. SIMD8 mode processes 8 different primitives at a
760 * time; each may output a different number of vertices.
761 */
762 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
763 header_size++;
764
765 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
766 const int output_vertex_size_owords =
767 gs_prog_data->output_vertex_size_hwords * 2;
768
769 fs_reg offset;
770 if (gs_vertex_count.file == IMM) {
771 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
772 gs_vertex_count.ud);
773 } else {
774 per_slot_offsets = vgrf(glsl_type::int_type);
775 bld.MUL(per_slot_offsets, gs_vertex_count,
776 brw_imm_ud(output_vertex_size_owords));
777 }
778 }
779
780 length = 0;
781 urb_offset = starting_urb_offset;
782 flush = false;
783 for (slot = 0; slot < vue_map->num_slots; slot++) {
784 int varying = vue_map->slot_to_varying[slot];
785 switch (varying) {
786 case VARYING_SLOT_PSIZ: {
787 /* The point size varying slot is the vue header and is always in the
788 * vue map. But often none of the special varyings that live there
789 * are written and in that case we can skip writing to the vue
790 * header, provided the corresponding state properly clamps the
791 * values further down the pipeline. */
792 if ((vue_map->slots_valid & psiz_mask) == 0) {
793 assert(length == 0);
794 urb_offset++;
795 break;
796 }
797
798 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
799 bld.MOV(zero, brw_imm_ud(0u));
800
801 sources[length++] = zero;
802 if (vue_map->slots_valid & VARYING_BIT_LAYER)
803 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
804 else
805 sources[length++] = zero;
806
807 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
808 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
809 else
810 sources[length++] = zero;
811
812 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
813 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
814 else
815 sources[length++] = zero;
816 break;
817 }
818 case BRW_VARYING_SLOT_NDC:
819 case VARYING_SLOT_EDGE:
820 unreachable("unexpected scalar vs output");
821 break;
822
823 default:
824 /* gl_Position is always in the vue map, but isn't always written by
825 * the shader. Other varyings (clip distances) get added to the vue
826 * map but don't always get written. In those cases, the
827 * corresponding this->output[] slot will be invalid we and can skip
828 * the urb write for the varying. If we've already queued up a vue
829 * slot for writing we flush a mlen 5 urb write, otherwise we just
830 * advance the urb_offset.
831 */
832 if (varying == BRW_VARYING_SLOT_PAD ||
833 this->outputs[varying].file == BAD_FILE) {
834 if (length > 0)
835 flush = true;
836 else
837 urb_offset++;
838 break;
839 }
840
841 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
842 (varying == VARYING_SLOT_COL0 ||
843 varying == VARYING_SLOT_COL1 ||
844 varying == VARYING_SLOT_BFC0 ||
845 varying == VARYING_SLOT_BFC1)) {
846 /* We need to clamp these guys, so do a saturating MOV into a
847 * temp register and use that for the payload.
848 */
849 for (int i = 0; i < 4; i++) {
850 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
851 fs_reg src = offset(this->outputs[varying], bld, i);
852 set_saturate(true, bld.MOV(reg, src));
853 sources[length++] = reg;
854 }
855 } else {
856 for (unsigned i = 0; i < output_components[varying]; i++)
857 sources[length++] = offset(this->outputs[varying], bld, i);
858 for (unsigned i = output_components[varying]; i < 4; i++)
859 sources[length++] = brw_imm_d(0);
860 }
861 break;
862 }
863
864 const fs_builder abld = bld.annotate("URB write");
865
866 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
867 * the last slot or if we need to flush (see BAD_FILE varying case
868 * above), emit a URB write send now to flush out the data.
869 */
870 int last = slot == vue_map->num_slots - 1;
871 if (length == 8 || last)
872 flush = true;
873 if (flush) {
874 fs_reg *payload_sources =
875 ralloc_array(mem_ctx, fs_reg, length + header_size);
876 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
877 BRW_REGISTER_TYPE_F);
878 payload_sources[0] =
879 fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
880
881 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
882 payload_sources[1] = per_slot_offsets;
883
884 memcpy(&payload_sources[header_size], sources,
885 length * sizeof sources[0]);
886
887 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
888 header_size);
889
890 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
891 inst->eot = last && stage == MESA_SHADER_VERTEX;
892 inst->mlen = length + header_size;
893 inst->offset = urb_offset;
894 urb_offset = starting_urb_offset + slot + 1;
895 length = 0;
896 flush = false;
897 }
898 }
899 }
900
901 void
902 fs_visitor::emit_cs_terminate()
903 {
904 assert(devinfo->gen >= 7);
905
906 /* We are getting the thread ID from the compute shader header */
907 assert(stage == MESA_SHADER_COMPUTE);
908
909 /* We can't directly send from g0, since sends with EOT have to use
910 * g112-127. So, copy it to a virtual register, The register allocator will
911 * make sure it uses the appropriate register range.
912 */
913 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
914 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
915 bld.group(8, 0).exec_all().MOV(payload, g0);
916
917 /* Send a message to the thread spawner to terminate the thread. */
918 fs_inst *inst = bld.exec_all()
919 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
920 inst->eot = true;
921 }
922
923 void
924 fs_visitor::emit_barrier()
925 {
926 assert(devinfo->gen >= 7);
927
928 /* We are getting the barrier ID from the compute shader header */
929 assert(stage == MESA_SHADER_COMPUTE);
930
931 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
932
933 const fs_builder pbld = bld.exec_all().group(8, 0);
934
935 /* Clear the message payload */
936 pbld.MOV(payload, brw_imm_ud(0u));
937
938 /* Copy bits 27:24 of r0.2 (barrier id) to the message payload reg.2 */
939 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
940 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(0x0f000000u));
941
942 /* Emit a gateway "barrier" message using the payload we set up, followed
943 * by a wait instruction.
944 */
945 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
946 }
947
948 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
949 void *mem_ctx,
950 const void *key,
951 struct brw_stage_prog_data *prog_data,
952 struct gl_program *prog,
953 const nir_shader *shader,
954 unsigned dispatch_width,
955 int shader_time_index)
956 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
957 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
958 dispatch_width(dispatch_width),
959 shader_time_index(shader_time_index),
960 bld(fs_builder(this, dispatch_width).at_end())
961 {
962 init();
963 }
964
965 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
966 void *mem_ctx,
967 struct brw_gs_compile *c,
968 struct brw_gs_prog_data *prog_data,
969 const nir_shader *shader,
970 int shader_time_index)
971 : backend_shader(compiler, log_data, mem_ctx, shader,
972 &prog_data->base.base),
973 key(&c->key), gs_compile(c),
974 prog_data(&prog_data->base.base), prog(NULL),
975 dispatch_width(8),
976 shader_time_index(shader_time_index),
977 bld(fs_builder(this, dispatch_width).at_end())
978 {
979 init();
980 }
981
982
983 void
984 fs_visitor::init()
985 {
986 switch (stage) {
987 case MESA_SHADER_FRAGMENT:
988 key_tex = &((const brw_wm_prog_key *) key)->tex;
989 break;
990 case MESA_SHADER_VERTEX:
991 key_tex = &((const brw_vs_prog_key *) key)->tex;
992 break;
993 case MESA_SHADER_GEOMETRY:
994 key_tex = &((const brw_gs_prog_key *) key)->tex;
995 break;
996 case MESA_SHADER_COMPUTE:
997 key_tex = &((const brw_cs_prog_key*) key)->tex;
998 break;
999 default:
1000 unreachable("unhandled shader stage");
1001 }
1002
1003 this->prog_data = this->stage_prog_data;
1004
1005 this->failed = false;
1006 this->simd16_unsupported = false;
1007 this->no16_msg = NULL;
1008
1009 this->nir_locals = NULL;
1010 this->nir_ssa_values = NULL;
1011
1012 memset(&this->payload, 0, sizeof(this->payload));
1013 memset(this->output_components, 0, sizeof(this->output_components));
1014 this->source_depth_to_render_target = false;
1015 this->runtime_check_aads_emit = false;
1016 this->first_non_payload_grf = 0;
1017 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1018
1019 this->virtual_grf_start = NULL;
1020 this->virtual_grf_end = NULL;
1021 this->live_intervals = NULL;
1022 this->regs_live_at_ip = NULL;
1023
1024 this->uniforms = 0;
1025 this->last_scratch = 0;
1026 this->pull_constant_loc = NULL;
1027 this->push_constant_loc = NULL;
1028
1029 this->promoted_constants = 0,
1030
1031 this->spilled_any_registers = false;
1032 this->do_dual_src = false;
1033
1034 if (dispatch_width == 8)
1035 this->param_size = rzalloc_array(mem_ctx, int, stage_prog_data->nr_params);
1036 }
1037
1038 fs_visitor::~fs_visitor()
1039 {
1040 }