Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 fs_reg *
36 fs_visitor::emit_vs_system_value(int location)
37 {
38 fs_reg *reg = new(this->mem_ctx)
39 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
40 BRW_REGISTER_TYPE_D);
41 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
42
43 switch (location) {
44 case SYSTEM_VALUE_BASE_VERTEX:
45 reg->reg_offset = 0;
46 vs_prog_data->uses_basevertex = true;
47 break;
48 case SYSTEM_VALUE_BASE_INSTANCE:
49 reg->reg_offset = 1;
50 vs_prog_data->uses_baseinstance = true;
51 break;
52 case SYSTEM_VALUE_VERTEX_ID:
53 unreachable("should have been lowered");
54 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
55 reg->reg_offset = 2;
56 vs_prog_data->uses_vertexid = true;
57 break;
58 case SYSTEM_VALUE_INSTANCE_ID:
59 reg->reg_offset = 3;
60 vs_prog_data->uses_instanceid = true;
61 break;
62 case SYSTEM_VALUE_DRAW_ID:
63 if (nir->info.system_values_read &
64 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
65 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
66 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
67 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)))
68 reg->nr += 4;
69 reg->reg_offset = 0;
70 vs_prog_data->uses_drawid = true;
71 break;
72 default:
73 unreachable("not reached");
74 }
75
76 return reg;
77 }
78
79 /* Sample from the MCS surface attached to this multisample texture. */
80 fs_reg
81 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
82 const fs_reg &texture)
83 {
84 const fs_reg dest = vgrf(glsl_type::uvec4_type);
85 const fs_reg srcs[] = {
86 coordinate, fs_reg(), fs_reg(), fs_reg(), fs_reg(), fs_reg(),
87 texture, texture, fs_reg(), brw_imm_ud(components), brw_imm_d(0)
88 };
89 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
90 ARRAY_SIZE(srcs));
91
92 /* We only care about one or two regs of response, but the sampler always
93 * writes 4/8.
94 */
95 inst->regs_written = 4 * dispatch_width / 8;
96
97 return dest;
98 }
99
100 void
101 fs_visitor::emit_texture(ir_texture_opcode op,
102 const glsl_type *dest_type,
103 fs_reg coordinate, int coord_components,
104 fs_reg shadow_c,
105 fs_reg lod, fs_reg lod2, int grad_components,
106 fs_reg sample_index,
107 fs_reg offset_value,
108 fs_reg mcs,
109 int gather_component,
110 bool is_cube_array,
111 uint32_t surface,
112 fs_reg surface_reg,
113 uint32_t sampler,
114 fs_reg sampler_reg)
115 {
116 fs_inst *inst = NULL;
117
118 if (op == ir_query_levels) {
119 /* textureQueryLevels() is implemented in terms of TXS so we need to
120 * pass a valid LOD argument.
121 */
122 assert(lod.file == BAD_FILE);
123 lod = brw_imm_ud(0u);
124 }
125
126 if (op == ir_samples_identical) {
127 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 1, 1));
128
129 /* If mcs is an immediate value, it means there is no MCS. In that case
130 * just return false.
131 */
132 if (mcs.file == BRW_IMMEDIATE_VALUE) {
133 bld.MOV(dst, brw_imm_ud(0u));
134 } else if ((key_tex->msaa_16 & (1 << sampler))) {
135 fs_reg tmp = vgrf(glsl_type::uint_type);
136 bld.OR(tmp, mcs, offset(mcs, bld, 1));
137 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
138 } else {
139 bld.CMP(dst, mcs, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
140 }
141
142 this->result = dst;
143 return;
144 }
145
146 /* Writemasking doesn't eliminate channels on SIMD8 texture
147 * samples, so don't worry about them.
148 */
149 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
150 const fs_reg srcs[] = {
151 coordinate, shadow_c, lod, lod2,
152 sample_index, mcs, surface_reg, sampler_reg, offset_value,
153 brw_imm_d(coord_components), brw_imm_d(grad_components)
154 };
155 enum opcode opcode;
156
157 switch (op) {
158 case ir_tex:
159 opcode = SHADER_OPCODE_TEX_LOGICAL;
160 break;
161 case ir_txb:
162 opcode = FS_OPCODE_TXB_LOGICAL;
163 break;
164 case ir_txl:
165 opcode = SHADER_OPCODE_TXL_LOGICAL;
166 break;
167 case ir_txd:
168 opcode = SHADER_OPCODE_TXD_LOGICAL;
169 break;
170 case ir_txf:
171 opcode = SHADER_OPCODE_TXF_LOGICAL;
172 break;
173 case ir_txf_ms:
174 if ((key_tex->msaa_16 & (1 << sampler)))
175 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
176 else
177 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
178 break;
179 case ir_txs:
180 case ir_query_levels:
181 opcode = SHADER_OPCODE_TXS_LOGICAL;
182 break;
183 case ir_lod:
184 opcode = SHADER_OPCODE_LOD_LOGICAL;
185 break;
186 case ir_tg4:
187 opcode = (offset_value.file != BAD_FILE && offset_value.file != IMM ?
188 SHADER_OPCODE_TG4_OFFSET_LOGICAL : SHADER_OPCODE_TG4_LOGICAL);
189 break;
190 default:
191 unreachable("Invalid texture opcode.");
192 }
193
194 inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
195 inst->regs_written = 4 * dispatch_width / 8;
196
197 if (shadow_c.file != BAD_FILE)
198 inst->shadow_compare = true;
199
200 if (offset_value.file == IMM)
201 inst->offset = offset_value.ud;
202
203 if (op == ir_tg4) {
204 if (gather_component == 1 &&
205 key_tex->gather_channel_quirk_mask & (1 << surface)) {
206 /* gather4 sampler is broken for green channel on RG32F --
207 * we must ask for blue instead.
208 */
209 inst->offset |= 2 << 16;
210 } else {
211 inst->offset |= gather_component << 16;
212 }
213
214 if (devinfo->gen == 6)
215 emit_gen6_gather_wa(key_tex->gen6_gather_wa[surface], dst);
216 }
217
218 /* fixup #layers for cube map arrays */
219 if (op == ir_txs && is_cube_array) {
220 fs_reg depth = offset(dst, bld, 2);
221 fs_reg fixed_depth = vgrf(glsl_type::int_type);
222 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, brw_imm_d(6));
223
224 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
225 int components = inst->regs_written / (inst->exec_size / 8);
226 for (int i = 0; i < components; i++) {
227 if (i == 2) {
228 fixed_payload[i] = fixed_depth;
229 } else {
230 fixed_payload[i] = offset(dst, bld, i);
231 }
232 }
233 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
234 }
235
236 if (op == ir_query_levels) {
237 /* # levels is in .w */
238 dst = offset(dst, bld, 3);
239 }
240
241 this->result = dst;
242 }
243
244 /**
245 * Apply workarounds for Gen6 gather with UINT/SINT
246 */
247 void
248 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
249 {
250 if (!wa)
251 return;
252
253 int width = (wa & WA_8BIT) ? 8 : 16;
254
255 for (int i = 0; i < 4; i++) {
256 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
257 /* Convert from UNORM to UINT */
258 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
259 bld.MOV(dst, dst_f);
260
261 if (wa & WA_SIGN) {
262 /* Reinterpret the UINT value as a signed INT value by
263 * shifting the sign bit into place, then shifting back
264 * preserving sign.
265 */
266 bld.SHL(dst, dst, brw_imm_d(32 - width));
267 bld.ASR(dst, dst, brw_imm_d(32 - width));
268 }
269
270 dst = offset(dst, bld, 1);
271 }
272 }
273
274 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
275 void
276 fs_visitor::emit_dummy_fs()
277 {
278 int reg_width = dispatch_width / 8;
279
280 /* Everyone's favorite color. */
281 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
282 for (int i = 0; i < 4; i++) {
283 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
284 brw_imm_f(color[i]));
285 }
286
287 fs_inst *write;
288 write = bld.emit(FS_OPCODE_FB_WRITE);
289 write->eot = true;
290 if (devinfo->gen >= 6) {
291 write->base_mrf = 2;
292 write->mlen = 4 * reg_width;
293 } else {
294 write->header_size = 2;
295 write->base_mrf = 0;
296 write->mlen = 2 + 4 * reg_width;
297 }
298
299 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
300 * varying to avoid GPU hangs, so set that.
301 */
302 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
303 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
304 memset(wm_prog_data->urb_setup, -1,
305 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
306
307 /* We don't have any uniforms. */
308 stage_prog_data->nr_params = 0;
309 stage_prog_data->nr_pull_params = 0;
310 stage_prog_data->curb_read_length = 0;
311 stage_prog_data->dispatch_grf_start_reg = 2;
312 wm_prog_data->dispatch_grf_start_reg_16 = 2;
313 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
314
315 calculate_cfg();
316 }
317
318 /* The register location here is relative to the start of the URB
319 * data. It will get adjusted to be a real location before
320 * generate_code() time.
321 */
322 struct brw_reg
323 fs_visitor::interp_reg(int location, int channel)
324 {
325 assert(stage == MESA_SHADER_FRAGMENT);
326 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
327 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
328 int stride = (channel & 1) * 4;
329
330 assert(prog_data->urb_setup[location] != -1);
331
332 return brw_vec1_grf(regnr, stride);
333 }
334
335 /** Emits the interpolation for the varying inputs. */
336 void
337 fs_visitor::emit_interpolation_setup_gen4()
338 {
339 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
340
341 fs_builder abld = bld.annotate("compute pixel centers");
342 this->pixel_x = vgrf(glsl_type::uint_type);
343 this->pixel_y = vgrf(glsl_type::uint_type);
344 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
345 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
346 abld.ADD(this->pixel_x,
347 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
348 fs_reg(brw_imm_v(0x10101010)));
349 abld.ADD(this->pixel_y,
350 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
351 fs_reg(brw_imm_v(0x11001100)));
352
353 abld = bld.annotate("compute pixel deltas from v0");
354
355 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
356 vgrf(glsl_type::vec2_type);
357 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
358 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
359 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
360
361 if (devinfo->has_pln && dispatch_width == 16) {
362 for (unsigned i = 0; i < 2; i++) {
363 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
364 half(this->pixel_x, i), xstart);
365 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
366 half(this->pixel_y, i), ystart);
367 }
368 } else {
369 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
370 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
371 }
372
373 abld = bld.annotate("compute pos.w and 1/pos.w");
374 /* Compute wpos.w. It's always in our setup, since it's needed to
375 * interpolate the other attributes.
376 */
377 this->wpos_w = vgrf(glsl_type::float_type);
378 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
379 interp_reg(VARYING_SLOT_POS, 3));
380 /* Compute the pixel 1/W value from wpos.w. */
381 this->pixel_w = vgrf(glsl_type::float_type);
382 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
383 }
384
385 /** Emits the interpolation for the varying inputs. */
386 void
387 fs_visitor::emit_interpolation_setup_gen6()
388 {
389 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
390
391 fs_builder abld = bld.annotate("compute pixel centers");
392 if (devinfo->gen >= 8 || dispatch_width == 8) {
393 /* The "Register Region Restrictions" page says for BDW (and newer,
394 * presumably):
395 *
396 * "When destination spans two registers, the source may be one or
397 * two registers. The destination elements must be evenly split
398 * between the two registers."
399 *
400 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
401 * compute our pixel centers.
402 */
403 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
404 BRW_REGISTER_TYPE_UW);
405
406 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
407 dbld.ADD(int_pixel_xy,
408 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
409 fs_reg(brw_imm_v(0x11001010)));
410
411 this->pixel_x = vgrf(glsl_type::float_type);
412 this->pixel_y = vgrf(glsl_type::float_type);
413 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
414 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
415 } else {
416 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
417 *
418 * "When destination spans two registers, the source MUST span two
419 * registers."
420 *
421 * Since the GRF source of the ADD will only read a single register, we
422 * must do two separate ADDs in SIMD16.
423 */
424 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
425 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
426 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
427 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
428 abld.ADD(int_pixel_x,
429 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
430 fs_reg(brw_imm_v(0x10101010)));
431 abld.ADD(int_pixel_y,
432 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
433 fs_reg(brw_imm_v(0x11001100)));
434
435 /* As of gen6, we can no longer mix float and int sources. We have
436 * to turn the integer pixel centers into floats for their actual
437 * use.
438 */
439 this->pixel_x = vgrf(glsl_type::float_type);
440 this->pixel_y = vgrf(glsl_type::float_type);
441 abld.MOV(this->pixel_x, int_pixel_x);
442 abld.MOV(this->pixel_y, int_pixel_y);
443 }
444
445 abld = bld.annotate("compute pos.w");
446 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
447 this->wpos_w = vgrf(glsl_type::float_type);
448 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
449
450 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
451 uint8_t reg = payload.barycentric_coord_reg[i];
452 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
453 }
454 }
455
456 static enum brw_conditional_mod
457 cond_for_alpha_func(GLenum func)
458 {
459 switch(func) {
460 case GL_GREATER:
461 return BRW_CONDITIONAL_G;
462 case GL_GEQUAL:
463 return BRW_CONDITIONAL_GE;
464 case GL_LESS:
465 return BRW_CONDITIONAL_L;
466 case GL_LEQUAL:
467 return BRW_CONDITIONAL_LE;
468 case GL_EQUAL:
469 return BRW_CONDITIONAL_EQ;
470 case GL_NOTEQUAL:
471 return BRW_CONDITIONAL_NEQ;
472 default:
473 unreachable("Not reached");
474 }
475 }
476
477 /**
478 * Alpha test support for when we compile it into the shader instead
479 * of using the normal fixed-function alpha test.
480 */
481 void
482 fs_visitor::emit_alpha_test()
483 {
484 assert(stage == MESA_SHADER_FRAGMENT);
485 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
486 const fs_builder abld = bld.annotate("Alpha test");
487
488 fs_inst *cmp;
489 if (key->alpha_test_func == GL_ALWAYS)
490 return;
491
492 if (key->alpha_test_func == GL_NEVER) {
493 /* f0.1 = 0 */
494 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
495 BRW_REGISTER_TYPE_UW));
496 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
497 BRW_CONDITIONAL_NEQ);
498 } else {
499 /* RT0 alpha */
500 fs_reg color = offset(outputs[0], bld, 3);
501
502 /* f0.1 &= func(color, ref) */
503 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
504 cond_for_alpha_func(key->alpha_test_func));
505 }
506 cmp->predicate = BRW_PREDICATE_NORMAL;
507 cmp->flag_subreg = 1;
508 }
509
510 fs_inst *
511 fs_visitor::emit_single_fb_write(const fs_builder &bld,
512 fs_reg color0, fs_reg color1,
513 fs_reg src0_alpha, unsigned components)
514 {
515 assert(stage == MESA_SHADER_FRAGMENT);
516 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
517
518 /* Hand over gl_FragDepth or the payload depth. */
519 const fs_reg dst_depth = (payload.dest_depth_reg ?
520 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
521 fs_reg());
522 fs_reg src_depth, src_stencil;
523
524 if (source_depth_to_render_target) {
525 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
526 src_depth = frag_depth;
527 else
528 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
529 }
530
531 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
532 src_stencil = frag_stencil;
533
534 const fs_reg sources[] = {
535 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
536 sample_mask, brw_imm_ud(components)
537 };
538 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
539 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
540 sources, ARRAY_SIZE(sources));
541
542 if (prog_data->uses_kill) {
543 write->predicate = BRW_PREDICATE_NORMAL;
544 write->flag_subreg = 1;
545 }
546
547 return write;
548 }
549
550 void
551 fs_visitor::emit_fb_writes()
552 {
553 assert(stage == MESA_SHADER_FRAGMENT);
554 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
555 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
556
557 fs_inst *inst = NULL;
558
559 if (source_depth_to_render_target && devinfo->gen == 6) {
560 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
561 * would require SIMD8 moves of each half to message regs, e.g. by using
562 * the SIMD lowering pass. Unfortunately this is more difficult than it
563 * sounds because the SIMD8 single-source message lacks channel selects
564 * for the second and third subspans.
565 */
566 no16("Missing support for simd16 depth writes on gen6\n");
567 }
568
569 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
570 /* From the 'Render Target Write message' section of the docs:
571 * "Output Stencil is not supported with SIMD16 Render Target Write
572 * Messages."
573 *
574 * FINISHME: split 16 into 2 8s
575 */
576 no16("FINISHME: support 2 simd8 writes for gl_FragStencilRefARB\n");
577 }
578
579 if (do_dual_src) {
580 const fs_builder abld = bld.annotate("FB dual-source write");
581
582 inst = emit_single_fb_write(abld, this->outputs[0],
583 this->dual_src_output, reg_undef, 4);
584 inst->target = 0;
585
586 prog_data->dual_src_blend = true;
587 } else {
588 for (int target = 0; target < key->nr_color_regions; target++) {
589 /* Skip over outputs that weren't written. */
590 if (this->outputs[target].file == BAD_FILE)
591 continue;
592
593 const fs_builder abld = bld.annotate(
594 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
595
596 fs_reg src0_alpha;
597 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
598 src0_alpha = offset(outputs[0], bld, 3);
599
600 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
601 src0_alpha,
602 this->output_components[target]);
603 inst->target = target;
604 }
605 }
606
607 if (inst == NULL) {
608 /* Even if there's no color buffers enabled, we still need to send
609 * alpha out the pipeline to our null renderbuffer to support
610 * alpha-testing, alpha-to-coverage, and so on.
611 */
612 /* FINISHME: Factor out this frequently recurring pattern into a
613 * helper function.
614 */
615 const fs_reg srcs[] = { reg_undef, reg_undef,
616 reg_undef, offset(this->outputs[0], bld, 3) };
617 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
618 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
619
620 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
621 inst->target = 0;
622 }
623
624 inst->eot = true;
625 }
626
627 void
628 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
629 {
630 const struct brw_vs_prog_key *key =
631 (const struct brw_vs_prog_key *) this->key;
632
633 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
634 this->userplane[i] = fs_reg(UNIFORM, uniforms);
635 for (int j = 0; j < 4; ++j) {
636 stage_prog_data->param[uniforms + j] =
637 (gl_constant_value *) &clip_planes[i][j];
638 }
639 uniforms += 4;
640 }
641 }
642
643 /**
644 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
645 *
646 * This does nothing if the shader uses gl_ClipDistance or user clipping is
647 * disabled altogether.
648 */
649 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
650 {
651 struct brw_vue_prog_data *vue_prog_data =
652 (struct brw_vue_prog_data *) prog_data;
653 const struct brw_vs_prog_key *key =
654 (const struct brw_vs_prog_key *) this->key;
655
656 /* Bail unless some sort of legacy clipping is enabled */
657 if (key->nr_userclip_plane_consts == 0)
658 return;
659
660 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
661 *
662 * "If a linked set of shaders forming the vertex stage contains no
663 * static write to gl_ClipVertex or gl_ClipDistance, but the
664 * application has requested clipping against user clip planes through
665 * the API, then the coordinate written to gl_Position is used for
666 * comparison against the user clip planes."
667 *
668 * This function is only called if the shader didn't write to
669 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
670 * if the user wrote to it; otherwise we use gl_Position.
671 */
672
673 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
674 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
675 clip_vertex = VARYING_SLOT_POS;
676
677 /* If the clip vertex isn't written, skip this. Typically this means
678 * the GS will set up clipping. */
679 if (outputs[clip_vertex].file == BAD_FILE)
680 return;
681
682 setup_uniform_clipplane_values(clip_planes);
683
684 const fs_builder abld = bld.annotate("user clip distances");
685
686 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
687 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
688 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
689 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
690
691 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
692 fs_reg u = userplane[i];
693 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
694 output.reg_offset = i & 3;
695
696 abld.MUL(output, outputs[clip_vertex], u);
697 for (int j = 1; j < 4; j++) {
698 u.nr = userplane[i].nr + j;
699 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
700 }
701 }
702 }
703
704 void
705 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
706 {
707 int slot, urb_offset, length;
708 int starting_urb_offset = 0;
709 const struct brw_vue_prog_data *vue_prog_data =
710 (const struct brw_vue_prog_data *) this->prog_data;
711 const struct brw_vs_prog_key *vs_key =
712 (const struct brw_vs_prog_key *) this->key;
713 const GLbitfield64 psiz_mask =
714 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
715 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
716 bool flush;
717 fs_reg sources[8];
718 fs_reg urb_handle;
719
720 if (stage == MESA_SHADER_TESS_EVAL)
721 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
722 else
723 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
724
725 /* If we don't have any valid slots to write, just do a minimal urb write
726 * send to terminate the shader. This includes 1 slot of undefined data,
727 * because it's invalid to write 0 data:
728 *
729 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
730 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
731 * Write Data Payload:
732 *
733 * "The write data payload can be between 1 and 8 message phases long."
734 */
735 if (vue_map->slots_valid == 0) {
736 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
737 bld.exec_all().MOV(payload, urb_handle);
738
739 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
740 inst->eot = true;
741 inst->mlen = 2;
742 inst->offset = 1;
743 return;
744 }
745
746 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
747 int header_size = 1;
748 fs_reg per_slot_offsets;
749
750 if (stage == MESA_SHADER_GEOMETRY) {
751 const struct brw_gs_prog_data *gs_prog_data =
752 (const struct brw_gs_prog_data *) this->prog_data;
753
754 /* We need to increment the Global Offset to skip over the control data
755 * header and the extra "Vertex Count" field (1 HWord) at the beginning
756 * of the VUE. We're counting in OWords, so the units are doubled.
757 */
758 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
759 if (gs_prog_data->static_vertex_count == -1)
760 starting_urb_offset += 2;
761
762 /* We also need to use per-slot offsets. The per-slot offset is the
763 * Vertex Count. SIMD8 mode processes 8 different primitives at a
764 * time; each may output a different number of vertices.
765 */
766 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
767 header_size++;
768
769 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
770 const int output_vertex_size_owords =
771 gs_prog_data->output_vertex_size_hwords * 2;
772
773 if (gs_vertex_count.file == IMM) {
774 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
775 gs_vertex_count.ud);
776 } else {
777 per_slot_offsets = vgrf(glsl_type::int_type);
778 bld.MUL(per_slot_offsets, gs_vertex_count,
779 brw_imm_ud(output_vertex_size_owords));
780 }
781 }
782
783 length = 0;
784 urb_offset = starting_urb_offset;
785 flush = false;
786 for (slot = 0; slot < vue_map->num_slots; slot++) {
787 int varying = vue_map->slot_to_varying[slot];
788 switch (varying) {
789 case VARYING_SLOT_PSIZ: {
790 /* The point size varying slot is the vue header and is always in the
791 * vue map. But often none of the special varyings that live there
792 * are written and in that case we can skip writing to the vue
793 * header, provided the corresponding state properly clamps the
794 * values further down the pipeline. */
795 if ((vue_map->slots_valid & psiz_mask) == 0) {
796 assert(length == 0);
797 urb_offset++;
798 break;
799 }
800
801 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
802 bld.MOV(zero, brw_imm_ud(0u));
803
804 sources[length++] = zero;
805 if (vue_map->slots_valid & VARYING_BIT_LAYER)
806 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
807 else
808 sources[length++] = zero;
809
810 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
811 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
812 else
813 sources[length++] = zero;
814
815 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
816 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
817 else
818 sources[length++] = zero;
819 break;
820 }
821 case BRW_VARYING_SLOT_NDC:
822 case VARYING_SLOT_EDGE:
823 unreachable("unexpected scalar vs output");
824 break;
825
826 default:
827 /* gl_Position is always in the vue map, but isn't always written by
828 * the shader. Other varyings (clip distances) get added to the vue
829 * map but don't always get written. In those cases, the
830 * corresponding this->output[] slot will be invalid we and can skip
831 * the urb write for the varying. If we've already queued up a vue
832 * slot for writing we flush a mlen 5 urb write, otherwise we just
833 * advance the urb_offset.
834 */
835 if (varying == BRW_VARYING_SLOT_PAD ||
836 this->outputs[varying].file == BAD_FILE) {
837 if (length > 0)
838 flush = true;
839 else
840 urb_offset++;
841 break;
842 }
843
844 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
845 (varying == VARYING_SLOT_COL0 ||
846 varying == VARYING_SLOT_COL1 ||
847 varying == VARYING_SLOT_BFC0 ||
848 varying == VARYING_SLOT_BFC1)) {
849 /* We need to clamp these guys, so do a saturating MOV into a
850 * temp register and use that for the payload.
851 */
852 for (int i = 0; i < 4; i++) {
853 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
854 fs_reg src = offset(this->outputs[varying], bld, i);
855 set_saturate(true, bld.MOV(reg, src));
856 sources[length++] = reg;
857 }
858 } else {
859 for (unsigned i = 0; i < output_components[varying]; i++)
860 sources[length++] = offset(this->outputs[varying], bld, i);
861 for (unsigned i = output_components[varying]; i < 4; i++)
862 sources[length++] = brw_imm_d(0);
863 }
864 break;
865 }
866
867 const fs_builder abld = bld.annotate("URB write");
868
869 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
870 * the last slot or if we need to flush (see BAD_FILE varying case
871 * above), emit a URB write send now to flush out the data.
872 */
873 int last = slot == vue_map->num_slots - 1;
874 if (length == 8 || last)
875 flush = true;
876 if (flush) {
877 fs_reg *payload_sources =
878 ralloc_array(mem_ctx, fs_reg, length + header_size);
879 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
880 BRW_REGISTER_TYPE_F);
881 payload_sources[0] = urb_handle;
882
883 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
884 payload_sources[1] = per_slot_offsets;
885
886 memcpy(&payload_sources[header_size], sources,
887 length * sizeof sources[0]);
888
889 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
890 header_size);
891
892 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
893 inst->eot = last && stage != MESA_SHADER_GEOMETRY;
894 inst->mlen = length + header_size;
895 inst->offset = urb_offset;
896 urb_offset = starting_urb_offset + slot + 1;
897 length = 0;
898 flush = false;
899 }
900 }
901 }
902
903 void
904 fs_visitor::emit_cs_terminate()
905 {
906 assert(devinfo->gen >= 7);
907
908 /* We are getting the thread ID from the compute shader header */
909 assert(stage == MESA_SHADER_COMPUTE);
910
911 /* We can't directly send from g0, since sends with EOT have to use
912 * g112-127. So, copy it to a virtual register, The register allocator will
913 * make sure it uses the appropriate register range.
914 */
915 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
916 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
917 bld.group(8, 0).exec_all().MOV(payload, g0);
918
919 /* Send a message to the thread spawner to terminate the thread. */
920 fs_inst *inst = bld.exec_all()
921 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
922 inst->eot = true;
923 }
924
925 void
926 fs_visitor::emit_barrier()
927 {
928 assert(devinfo->gen >= 7);
929 const uint32_t barrier_id_mask =
930 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
931
932 /* We are getting the barrier ID from the compute shader header */
933 assert(stage == MESA_SHADER_COMPUTE);
934
935 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
936
937 const fs_builder pbld = bld.exec_all().group(8, 0);
938
939 /* Clear the message payload */
940 pbld.MOV(payload, brw_imm_ud(0u));
941
942 /* Copy the barrier id from r0.2 to the message payload reg.2 */
943 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
944 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));
945
946 /* Emit a gateway "barrier" message using the payload we set up, followed
947 * by a wait instruction.
948 */
949 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
950 }
951
952 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
953 void *mem_ctx,
954 const void *key,
955 struct brw_stage_prog_data *prog_data,
956 struct gl_program *prog,
957 const nir_shader *shader,
958 unsigned dispatch_width,
959 int shader_time_index,
960 const struct brw_vue_map *input_vue_map)
961 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
962 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
963 input_vue_map(input_vue_map),
964 dispatch_width(dispatch_width),
965 shader_time_index(shader_time_index),
966 bld(fs_builder(this, dispatch_width).at_end())
967 {
968 init();
969 }
970
971 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
972 void *mem_ctx,
973 struct brw_gs_compile *c,
974 struct brw_gs_prog_data *prog_data,
975 const nir_shader *shader,
976 int shader_time_index)
977 : backend_shader(compiler, log_data, mem_ctx, shader,
978 &prog_data->base.base),
979 key(&c->key), gs_compile(c),
980 prog_data(&prog_data->base.base), prog(NULL),
981 dispatch_width(8),
982 shader_time_index(shader_time_index),
983 bld(fs_builder(this, dispatch_width).at_end())
984 {
985 init();
986 }
987
988
989 void
990 fs_visitor::init()
991 {
992 switch (stage) {
993 case MESA_SHADER_FRAGMENT:
994 key_tex = &((const brw_wm_prog_key *) key)->tex;
995 break;
996 case MESA_SHADER_VERTEX:
997 key_tex = &((const brw_vs_prog_key *) key)->tex;
998 break;
999 case MESA_SHADER_TESS_EVAL:
1000 key_tex = &((const brw_tes_prog_key *) key)->tex;
1001 break;
1002 case MESA_SHADER_GEOMETRY:
1003 key_tex = &((const brw_gs_prog_key *) key)->tex;
1004 break;
1005 case MESA_SHADER_COMPUTE:
1006 key_tex = &((const brw_cs_prog_key*) key)->tex;
1007 break;
1008 default:
1009 unreachable("unhandled shader stage");
1010 }
1011
1012 this->prog_data = this->stage_prog_data;
1013
1014 this->failed = false;
1015 this->simd16_unsupported = false;
1016 this->no16_msg = NULL;
1017
1018 this->nir_locals = NULL;
1019 this->nir_ssa_values = NULL;
1020
1021 memset(&this->payload, 0, sizeof(this->payload));
1022 memset(this->output_components, 0, sizeof(this->output_components));
1023 this->source_depth_to_render_target = false;
1024 this->runtime_check_aads_emit = false;
1025 this->first_non_payload_grf = 0;
1026 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1027
1028 this->virtual_grf_start = NULL;
1029 this->virtual_grf_end = NULL;
1030 this->live_intervals = NULL;
1031 this->regs_live_at_ip = NULL;
1032
1033 this->uniforms = 0;
1034 this->last_scratch = 0;
1035 this->pull_constant_loc = NULL;
1036 this->push_constant_loc = NULL;
1037
1038 this->promoted_constants = 0,
1039
1040 this->spilled_any_registers = false;
1041 this->do_dual_src = false;
1042 }
1043
1044 fs_visitor::~fs_visitor()
1045 {
1046 }