Merge remote-tracking branch 'public/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_visitor.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_visitor.cpp
25 *
26 * This file supports generating the FS LIR from the GLSL IR. The LIR
27 * makes it easier to do backend-specific optimizations than doing so
28 * in the GLSL IR or in the native code.
29 */
30 #include "brw_fs.h"
31 #include "compiler/glsl_types.h"
32
33 using namespace brw;
34
35 fs_reg *
36 fs_visitor::emit_vs_system_value(int location)
37 {
38 fs_reg *reg = new(this->mem_ctx)
39 fs_reg(ATTR, 4 * _mesa_bitcount_64(nir->info.inputs_read),
40 BRW_REGISTER_TYPE_D);
41 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
42
43 switch (location) {
44 case SYSTEM_VALUE_BASE_VERTEX:
45 reg->reg_offset = 0;
46 vs_prog_data->uses_basevertex = true;
47 break;
48 case SYSTEM_VALUE_BASE_INSTANCE:
49 reg->reg_offset = 1;
50 vs_prog_data->uses_baseinstance = true;
51 break;
52 case SYSTEM_VALUE_VERTEX_ID:
53 unreachable("should have been lowered");
54 case SYSTEM_VALUE_VERTEX_ID_ZERO_BASE:
55 reg->reg_offset = 2;
56 vs_prog_data->uses_vertexid = true;
57 break;
58 case SYSTEM_VALUE_INSTANCE_ID:
59 reg->reg_offset = 3;
60 vs_prog_data->uses_instanceid = true;
61 break;
62 case SYSTEM_VALUE_DRAW_ID:
63 if (nir->info.system_values_read &
64 (BITFIELD64_BIT(SYSTEM_VALUE_BASE_VERTEX) |
65 BITFIELD64_BIT(SYSTEM_VALUE_BASE_INSTANCE) |
66 BITFIELD64_BIT(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE) |
67 BITFIELD64_BIT(SYSTEM_VALUE_INSTANCE_ID)))
68 reg->nr += 4;
69 reg->reg_offset = 0;
70 vs_prog_data->uses_drawid = true;
71 break;
72 default:
73 unreachable("not reached");
74 }
75
76 return reg;
77 }
78
79 /* Sample from the MCS surface attached to this multisample texture. */
80 fs_reg
81 fs_visitor::emit_mcs_fetch(const fs_reg &coordinate, unsigned components,
82 const fs_reg &texture)
83 {
84 const fs_reg dest = vgrf(glsl_type::uvec4_type);
85
86 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
87 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
88 srcs[TEX_LOGICAL_SRC_SURFACE] = texture;
89 srcs[TEX_LOGICAL_SRC_SAMPLER] = texture;
90 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(components);
91 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(0);
92
93 fs_inst *inst = bld.emit(SHADER_OPCODE_TXF_MCS_LOGICAL, dest, srcs,
94 ARRAY_SIZE(srcs));
95
96 /* We only care about one or two regs of response, but the sampler always
97 * writes 4/8.
98 */
99 inst->regs_written = 4 * dispatch_width / 8;
100
101 return dest;
102 }
103
104 void
105 fs_visitor::emit_texture(ir_texture_opcode op,
106 const glsl_type *dest_type,
107 fs_reg coordinate, int coord_components,
108 fs_reg shadow_c,
109 fs_reg lod, fs_reg lod2, int grad_components,
110 fs_reg sample_index,
111 fs_reg offset_value,
112 fs_reg mcs,
113 int gather_component,
114 bool is_cube_array,
115 uint32_t surface,
116 fs_reg surface_reg,
117 uint32_t sampler,
118 fs_reg sampler_reg)
119 {
120 fs_inst *inst = NULL;
121
122 if (op == ir_query_levels) {
123 /* textureQueryLevels() is implemented in terms of TXS so we need to
124 * pass a valid LOD argument.
125 */
126 assert(lod.file == BAD_FILE);
127 lod = brw_imm_ud(0u);
128 }
129
130 if (op == ir_samples_identical) {
131 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 1, 1));
132
133 /* If mcs is an immediate value, it means there is no MCS. In that case
134 * just return false.
135 */
136 if (mcs.file == BRW_IMMEDIATE_VALUE) {
137 bld.MOV(dst, brw_imm_ud(0u));
138 } else if ((key_tex->msaa_16 & (1 << sampler))) {
139 fs_reg tmp = vgrf(glsl_type::uint_type);
140 bld.OR(tmp, mcs, offset(mcs, bld, 1));
141 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
142 } else {
143 bld.CMP(dst, mcs, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
144 }
145
146 this->result = dst;
147 return;
148 }
149
150 /* Writemasking doesn't eliminate channels on SIMD8 texture
151 * samples, so don't worry about them.
152 */
153 fs_reg dst = vgrf(glsl_type::get_instance(dest_type->base_type, 4, 1));
154
155 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
156 srcs[TEX_LOGICAL_SRC_COORDINATE] = coordinate;
157 srcs[TEX_LOGICAL_SRC_SHADOW_C] = shadow_c;
158 srcs[TEX_LOGICAL_SRC_LOD] = lod;
159 srcs[TEX_LOGICAL_SRC_LOD2] = lod2;
160 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = sample_index;
161 srcs[TEX_LOGICAL_SRC_MCS] = mcs;
162 srcs[TEX_LOGICAL_SRC_SURFACE] = surface_reg;
163 srcs[TEX_LOGICAL_SRC_SAMPLER] = sampler_reg;
164 srcs[TEX_LOGICAL_SRC_OFFSET_VALUE] = offset_value;
165 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(coord_components);
166 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(grad_components);
167
168 enum opcode opcode;
169 switch (op) {
170 case ir_tex:
171 opcode = SHADER_OPCODE_TEX_LOGICAL;
172 break;
173 case ir_txb:
174 opcode = FS_OPCODE_TXB_LOGICAL;
175 break;
176 case ir_txl:
177 opcode = SHADER_OPCODE_TXL_LOGICAL;
178 break;
179 case ir_txd:
180 opcode = SHADER_OPCODE_TXD_LOGICAL;
181 break;
182 case ir_txf:
183 opcode = SHADER_OPCODE_TXF_LOGICAL;
184 break;
185 case ir_txf_ms:
186 if ((key_tex->msaa_16 & (1 << sampler)))
187 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
188 else
189 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
190 break;
191 case ir_txs:
192 case ir_query_levels:
193 opcode = SHADER_OPCODE_TXS_LOGICAL;
194 break;
195 case ir_lod:
196 opcode = SHADER_OPCODE_LOD_LOGICAL;
197 break;
198 case ir_tg4:
199 opcode = (offset_value.file != BAD_FILE && offset_value.file != IMM ?
200 SHADER_OPCODE_TG4_OFFSET_LOGICAL : SHADER_OPCODE_TG4_LOGICAL);
201 break;
202 default:
203 unreachable("Invalid texture opcode.");
204 }
205
206 inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
207 inst->regs_written = 4 * dispatch_width / 8;
208
209 if (shadow_c.file != BAD_FILE)
210 inst->shadow_compare = true;
211
212 if (offset_value.file == IMM)
213 inst->offset = offset_value.ud;
214
215 if (op == ir_tg4) {
216 if (gather_component == 1 &&
217 key_tex->gather_channel_quirk_mask & (1 << surface)) {
218 /* gather4 sampler is broken for green channel on RG32F --
219 * we must ask for blue instead.
220 */
221 inst->offset |= 2 << 16;
222 } else {
223 inst->offset |= gather_component << 16;
224 }
225
226 if (devinfo->gen == 6)
227 emit_gen6_gather_wa(key_tex->gen6_gather_wa[surface], dst);
228 }
229
230 /* fixup #layers for cube map arrays */
231 if (op == ir_txs && is_cube_array) {
232 fs_reg depth = offset(dst, bld, 2);
233 fs_reg fixed_depth = vgrf(glsl_type::int_type);
234 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, brw_imm_d(6));
235
236 fs_reg *fixed_payload = ralloc_array(mem_ctx, fs_reg, inst->regs_written);
237 int components = inst->regs_written / (inst->exec_size / 8);
238 for (int i = 0; i < components; i++) {
239 if (i == 2) {
240 fixed_payload[i] = fixed_depth;
241 } else {
242 fixed_payload[i] = offset(dst, bld, i);
243 }
244 }
245 bld.LOAD_PAYLOAD(dst, fixed_payload, components, 0);
246 }
247
248 if (op == ir_query_levels) {
249 /* # levels is in .w */
250 dst = offset(dst, bld, 3);
251 }
252
253 this->result = dst;
254 }
255
256 /**
257 * Apply workarounds for Gen6 gather with UINT/SINT
258 */
259 void
260 fs_visitor::emit_gen6_gather_wa(uint8_t wa, fs_reg dst)
261 {
262 if (!wa)
263 return;
264
265 int width = (wa & WA_8BIT) ? 8 : 16;
266
267 for (int i = 0; i < 4; i++) {
268 fs_reg dst_f = retype(dst, BRW_REGISTER_TYPE_F);
269 /* Convert from UNORM to UINT */
270 bld.MUL(dst_f, dst_f, brw_imm_f((1 << width) - 1));
271 bld.MOV(dst, dst_f);
272
273 if (wa & WA_SIGN) {
274 /* Reinterpret the UINT value as a signed INT value by
275 * shifting the sign bit into place, then shifting back
276 * preserving sign.
277 */
278 bld.SHL(dst, dst, brw_imm_d(32 - width));
279 bld.ASR(dst, dst, brw_imm_d(32 - width));
280 }
281
282 dst = offset(dst, bld, 1);
283 }
284 }
285
286 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
287 void
288 fs_visitor::emit_dummy_fs()
289 {
290 int reg_width = dispatch_width / 8;
291
292 /* Everyone's favorite color. */
293 const float color[4] = { 1.0, 0.0, 1.0, 0.0 };
294 for (int i = 0; i < 4; i++) {
295 bld.MOV(fs_reg(MRF, 2 + i * reg_width, BRW_REGISTER_TYPE_F),
296 brw_imm_f(color[i]));
297 }
298
299 fs_inst *write;
300 write = bld.emit(FS_OPCODE_FB_WRITE);
301 write->eot = true;
302 if (devinfo->gen >= 6) {
303 write->base_mrf = 2;
304 write->mlen = 4 * reg_width;
305 } else {
306 write->header_size = 2;
307 write->base_mrf = 0;
308 write->mlen = 2 + 4 * reg_width;
309 }
310
311 /* Tell the SF we don't have any inputs. Gen4-5 require at least one
312 * varying to avoid GPU hangs, so set that.
313 */
314 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
315 wm_prog_data->num_varying_inputs = devinfo->gen < 6 ? 1 : 0;
316 memset(wm_prog_data->urb_setup, -1,
317 sizeof(wm_prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
318
319 /* We don't have any uniforms. */
320 stage_prog_data->nr_params = 0;
321 stage_prog_data->nr_pull_params = 0;
322 stage_prog_data->curb_read_length = 0;
323 stage_prog_data->dispatch_grf_start_reg = 2;
324 wm_prog_data->dispatch_grf_start_reg_16 = 2;
325 grf_used = 1; /* Gen4-5 don't allow zero GRF blocks */
326
327 calculate_cfg();
328 }
329
330 /* The register location here is relative to the start of the URB
331 * data. It will get adjusted to be a real location before
332 * generate_code() time.
333 */
334 struct brw_reg
335 fs_visitor::interp_reg(int location, int channel)
336 {
337 assert(stage == MESA_SHADER_FRAGMENT);
338 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
339 int regnr = prog_data->urb_setup[location] * 2 + channel / 2;
340 int stride = (channel & 1) * 4;
341
342 assert(prog_data->urb_setup[location] != -1);
343
344 return brw_vec1_grf(regnr, stride);
345 }
346
347 /** Emits the interpolation for the varying inputs. */
348 void
349 fs_visitor::emit_interpolation_setup_gen4()
350 {
351 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
352
353 fs_builder abld = bld.annotate("compute pixel centers");
354 this->pixel_x = vgrf(glsl_type::uint_type);
355 this->pixel_y = vgrf(glsl_type::uint_type);
356 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
357 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
358 abld.ADD(this->pixel_x,
359 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
360 fs_reg(brw_imm_v(0x10101010)));
361 abld.ADD(this->pixel_y,
362 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
363 fs_reg(brw_imm_v(0x11001100)));
364
365 abld = bld.annotate("compute pixel deltas from v0");
366
367 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] =
368 vgrf(glsl_type::vec2_type);
369 const fs_reg &delta_xy = this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC];
370 const fs_reg xstart(negate(brw_vec1_grf(1, 0)));
371 const fs_reg ystart(negate(brw_vec1_grf(1, 1)));
372
373 if (devinfo->has_pln && dispatch_width == 16) {
374 for (unsigned i = 0; i < 2; i++) {
375 abld.half(i).ADD(half(offset(delta_xy, abld, i), 0),
376 half(this->pixel_x, i), xstart);
377 abld.half(i).ADD(half(offset(delta_xy, abld, i), 1),
378 half(this->pixel_y, i), ystart);
379 }
380 } else {
381 abld.ADD(offset(delta_xy, abld, 0), this->pixel_x, xstart);
382 abld.ADD(offset(delta_xy, abld, 1), this->pixel_y, ystart);
383 }
384
385 abld = bld.annotate("compute pos.w and 1/pos.w");
386 /* Compute wpos.w. It's always in our setup, since it's needed to
387 * interpolate the other attributes.
388 */
389 this->wpos_w = vgrf(glsl_type::float_type);
390 abld.emit(FS_OPCODE_LINTERP, wpos_w, delta_xy,
391 interp_reg(VARYING_SLOT_POS, 3));
392 /* Compute the pixel 1/W value from wpos.w. */
393 this->pixel_w = vgrf(glsl_type::float_type);
394 abld.emit(SHADER_OPCODE_RCP, this->pixel_w, wpos_w);
395 }
396
397 /** Emits the interpolation for the varying inputs. */
398 void
399 fs_visitor::emit_interpolation_setup_gen6()
400 {
401 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
402
403 fs_builder abld = bld.annotate("compute pixel centers");
404 if (devinfo->gen >= 8 || dispatch_width == 8) {
405 /* The "Register Region Restrictions" page says for BDW (and newer,
406 * presumably):
407 *
408 * "When destination spans two registers, the source may be one or
409 * two registers. The destination elements must be evenly split
410 * between the two registers."
411 *
412 * Thus we can do a single add(16) in SIMD8 or an add(32) in SIMD16 to
413 * compute our pixel centers.
414 */
415 fs_reg int_pixel_xy(VGRF, alloc.allocate(dispatch_width / 8),
416 BRW_REGISTER_TYPE_UW);
417
418 const fs_builder dbld = abld.exec_all().group(dispatch_width * 2, 0);
419 dbld.ADD(int_pixel_xy,
420 fs_reg(stride(suboffset(g1_uw, 4), 1, 4, 0)),
421 fs_reg(brw_imm_v(0x11001010)));
422
423 this->pixel_x = vgrf(glsl_type::float_type);
424 this->pixel_y = vgrf(glsl_type::float_type);
425 abld.emit(FS_OPCODE_PIXEL_X, this->pixel_x, int_pixel_xy);
426 abld.emit(FS_OPCODE_PIXEL_Y, this->pixel_y, int_pixel_xy);
427 } else {
428 /* The "Register Region Restrictions" page says for SNB, IVB, HSW:
429 *
430 * "When destination spans two registers, the source MUST span two
431 * registers."
432 *
433 * Since the GRF source of the ADD will only read a single register, we
434 * must do two separate ADDs in SIMD16.
435 */
436 fs_reg int_pixel_x = vgrf(glsl_type::uint_type);
437 fs_reg int_pixel_y = vgrf(glsl_type::uint_type);
438 int_pixel_x.type = BRW_REGISTER_TYPE_UW;
439 int_pixel_y.type = BRW_REGISTER_TYPE_UW;
440 abld.ADD(int_pixel_x,
441 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
442 fs_reg(brw_imm_v(0x10101010)));
443 abld.ADD(int_pixel_y,
444 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
445 fs_reg(brw_imm_v(0x11001100)));
446
447 /* As of gen6, we can no longer mix float and int sources. We have
448 * to turn the integer pixel centers into floats for their actual
449 * use.
450 */
451 this->pixel_x = vgrf(glsl_type::float_type);
452 this->pixel_y = vgrf(glsl_type::float_type);
453 abld.MOV(this->pixel_x, int_pixel_x);
454 abld.MOV(this->pixel_y, int_pixel_y);
455 }
456
457 abld = bld.annotate("compute pos.w");
458 this->pixel_w = fs_reg(brw_vec8_grf(payload.source_w_reg, 0));
459 this->wpos_w = vgrf(glsl_type::float_type);
460 abld.emit(SHADER_OPCODE_RCP, this->wpos_w, this->pixel_w);
461
462 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
463 uint8_t reg = payload.barycentric_coord_reg[i];
464 this->delta_xy[i] = fs_reg(brw_vec16_grf(reg, 0));
465 }
466 }
467
468 static enum brw_conditional_mod
469 cond_for_alpha_func(GLenum func)
470 {
471 switch(func) {
472 case GL_GREATER:
473 return BRW_CONDITIONAL_G;
474 case GL_GEQUAL:
475 return BRW_CONDITIONAL_GE;
476 case GL_LESS:
477 return BRW_CONDITIONAL_L;
478 case GL_LEQUAL:
479 return BRW_CONDITIONAL_LE;
480 case GL_EQUAL:
481 return BRW_CONDITIONAL_EQ;
482 case GL_NOTEQUAL:
483 return BRW_CONDITIONAL_NEQ;
484 default:
485 unreachable("Not reached");
486 }
487 }
488
489 /**
490 * Alpha test support for when we compile it into the shader instead
491 * of using the normal fixed-function alpha test.
492 */
493 void
494 fs_visitor::emit_alpha_test()
495 {
496 assert(stage == MESA_SHADER_FRAGMENT);
497 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
498 const fs_builder abld = bld.annotate("Alpha test");
499
500 fs_inst *cmp;
501 if (key->alpha_test_func == GL_ALWAYS)
502 return;
503
504 if (key->alpha_test_func == GL_NEVER) {
505 /* f0.1 = 0 */
506 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
507 BRW_REGISTER_TYPE_UW));
508 cmp = abld.CMP(bld.null_reg_f(), some_reg, some_reg,
509 BRW_CONDITIONAL_NEQ);
510 } else {
511 /* RT0 alpha */
512 fs_reg color = offset(outputs[0], bld, 3);
513
514 /* f0.1 &= func(color, ref) */
515 cmp = abld.CMP(bld.null_reg_f(), color, brw_imm_f(key->alpha_test_ref),
516 cond_for_alpha_func(key->alpha_test_func));
517 }
518 cmp->predicate = BRW_PREDICATE_NORMAL;
519 cmp->flag_subreg = 1;
520 }
521
522 fs_inst *
523 fs_visitor::emit_single_fb_write(const fs_builder &bld,
524 fs_reg color0, fs_reg color1,
525 fs_reg src0_alpha, unsigned components)
526 {
527 assert(stage == MESA_SHADER_FRAGMENT);
528 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
529
530 /* Hand over gl_FragDepth or the payload depth. */
531 const fs_reg dst_depth = (payload.dest_depth_reg ?
532 fs_reg(brw_vec8_grf(payload.dest_depth_reg, 0)) :
533 fs_reg());
534 fs_reg src_depth, src_stencil;
535
536 if (source_depth_to_render_target) {
537 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
538 src_depth = frag_depth;
539 else
540 src_depth = fs_reg(brw_vec8_grf(payload.source_depth_reg, 0));
541 }
542
543 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL))
544 src_stencil = frag_stencil;
545
546 const fs_reg sources[] = {
547 color0, color1, src0_alpha, src_depth, dst_depth, src_stencil,
548 sample_mask, brw_imm_ud(components)
549 };
550 assert(ARRAY_SIZE(sources) - 1 == FB_WRITE_LOGICAL_SRC_COMPONENTS);
551 fs_inst *write = bld.emit(FS_OPCODE_FB_WRITE_LOGICAL, fs_reg(),
552 sources, ARRAY_SIZE(sources));
553
554 if (prog_data->uses_kill) {
555 write->predicate = BRW_PREDICATE_NORMAL;
556 write->flag_subreg = 1;
557 }
558
559 return write;
560 }
561
562 void
563 fs_visitor::emit_fb_writes()
564 {
565 assert(stage == MESA_SHADER_FRAGMENT);
566 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
567 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
568
569 fs_inst *inst = NULL;
570
571 if (source_depth_to_render_target && devinfo->gen == 6) {
572 /* For outputting oDepth on gen6, SIMD8 writes have to be used. This
573 * would require SIMD8 moves of each half to message regs, e.g. by using
574 * the SIMD lowering pass. Unfortunately this is more difficult than it
575 * sounds because the SIMD8 single-source message lacks channel selects
576 * for the second and third subspans.
577 */
578 no16("Missing support for simd16 depth writes on gen6\n");
579 }
580
581 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL)) {
582 /* From the 'Render Target Write message' section of the docs:
583 * "Output Stencil is not supported with SIMD16 Render Target Write
584 * Messages."
585 *
586 * FINISHME: split 16 into 2 8s
587 */
588 no16("FINISHME: support 2 simd8 writes for gl_FragStencilRefARB\n");
589 }
590
591 if (do_dual_src) {
592 const fs_builder abld = bld.annotate("FB dual-source write");
593
594 inst = emit_single_fb_write(abld, this->outputs[0],
595 this->dual_src_output, reg_undef, 4);
596 inst->target = 0;
597
598 prog_data->dual_src_blend = true;
599 } else {
600 for (int target = 0; target < key->nr_color_regions; target++) {
601 /* Skip over outputs that weren't written. */
602 if (this->outputs[target].file == BAD_FILE)
603 continue;
604
605 const fs_builder abld = bld.annotate(
606 ralloc_asprintf(this->mem_ctx, "FB write target %d", target));
607
608 fs_reg src0_alpha;
609 if (devinfo->gen >= 6 && key->replicate_alpha && target != 0)
610 src0_alpha = offset(outputs[0], bld, 3);
611
612 inst = emit_single_fb_write(abld, this->outputs[target], reg_undef,
613 src0_alpha,
614 this->output_components[target]);
615 inst->target = target;
616 }
617 }
618
619 if (inst == NULL) {
620 /* Even if there's no color buffers enabled, we still need to send
621 * alpha out the pipeline to our null renderbuffer to support
622 * alpha-testing, alpha-to-coverage, and so on.
623 */
624 /* FINISHME: Factor out this frequently recurring pattern into a
625 * helper function.
626 */
627 const fs_reg srcs[] = { reg_undef, reg_undef,
628 reg_undef, offset(this->outputs[0], bld, 3) };
629 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 4);
630 bld.LOAD_PAYLOAD(tmp, srcs, 4, 0);
631
632 inst = emit_single_fb_write(bld, tmp, reg_undef, reg_undef, 4);
633 inst->target = 0;
634 }
635
636 inst->eot = true;
637 }
638
639 void
640 fs_visitor::setup_uniform_clipplane_values(gl_clip_plane *clip_planes)
641 {
642 const struct brw_vs_prog_key *key =
643 (const struct brw_vs_prog_key *) this->key;
644
645 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
646 this->userplane[i] = fs_reg(UNIFORM, uniforms);
647 for (int j = 0; j < 4; ++j) {
648 stage_prog_data->param[uniforms + j] =
649 (gl_constant_value *) &clip_planes[i][j];
650 }
651 uniforms += 4;
652 }
653 }
654
655 /**
656 * Lower legacy fixed-function and gl_ClipVertex clipping to clip distances.
657 *
658 * This does nothing if the shader uses gl_ClipDistance or user clipping is
659 * disabled altogether.
660 */
661 void fs_visitor::compute_clip_distance(gl_clip_plane *clip_planes)
662 {
663 struct brw_vue_prog_data *vue_prog_data =
664 (struct brw_vue_prog_data *) prog_data;
665 const struct brw_vs_prog_key *key =
666 (const struct brw_vs_prog_key *) this->key;
667
668 /* Bail unless some sort of legacy clipping is enabled */
669 if (key->nr_userclip_plane_consts == 0)
670 return;
671
672 /* From the GLSL 1.30 spec, section 7.1 (Vertex Shader Special Variables):
673 *
674 * "If a linked set of shaders forming the vertex stage contains no
675 * static write to gl_ClipVertex or gl_ClipDistance, but the
676 * application has requested clipping against user clip planes through
677 * the API, then the coordinate written to gl_Position is used for
678 * comparison against the user clip planes."
679 *
680 * This function is only called if the shader didn't write to
681 * gl_ClipDistance. Accordingly, we use gl_ClipVertex to perform clipping
682 * if the user wrote to it; otherwise we use gl_Position.
683 */
684
685 gl_varying_slot clip_vertex = VARYING_SLOT_CLIP_VERTEX;
686 if (!(vue_prog_data->vue_map.slots_valid & VARYING_BIT_CLIP_VERTEX))
687 clip_vertex = VARYING_SLOT_POS;
688
689 /* If the clip vertex isn't written, skip this. Typically this means
690 * the GS will set up clipping. */
691 if (outputs[clip_vertex].file == BAD_FILE)
692 return;
693
694 setup_uniform_clipplane_values(clip_planes);
695
696 const fs_builder abld = bld.annotate("user clip distances");
697
698 this->outputs[VARYING_SLOT_CLIP_DIST0] = vgrf(glsl_type::vec4_type);
699 this->output_components[VARYING_SLOT_CLIP_DIST0] = 4;
700 this->outputs[VARYING_SLOT_CLIP_DIST1] = vgrf(glsl_type::vec4_type);
701 this->output_components[VARYING_SLOT_CLIP_DIST1] = 4;
702
703 for (int i = 0; i < key->nr_userclip_plane_consts; i++) {
704 fs_reg u = userplane[i];
705 fs_reg output = outputs[VARYING_SLOT_CLIP_DIST0 + i / 4];
706 output.reg_offset = i & 3;
707
708 abld.MUL(output, outputs[clip_vertex], u);
709 for (int j = 1; j < 4; j++) {
710 u.nr = userplane[i].nr + j;
711 abld.MAD(output, output, offset(outputs[clip_vertex], bld, j), u);
712 }
713 }
714 }
715
716 void
717 fs_visitor::emit_urb_writes(const fs_reg &gs_vertex_count)
718 {
719 int slot, urb_offset, length;
720 int starting_urb_offset = 0;
721 const struct brw_vue_prog_data *vue_prog_data =
722 (const struct brw_vue_prog_data *) this->prog_data;
723 const struct brw_vs_prog_key *vs_key =
724 (const struct brw_vs_prog_key *) this->key;
725 const GLbitfield64 psiz_mask =
726 VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT | VARYING_BIT_PSIZ;
727 const struct brw_vue_map *vue_map = &vue_prog_data->vue_map;
728 bool flush;
729 fs_reg sources[8];
730 fs_reg urb_handle;
731
732 if (stage == MESA_SHADER_TESS_EVAL)
733 urb_handle = fs_reg(retype(brw_vec8_grf(4, 0), BRW_REGISTER_TYPE_UD));
734 else
735 urb_handle = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
736
737 /* If we don't have any valid slots to write, just do a minimal urb write
738 * send to terminate the shader. This includes 1 slot of undefined data,
739 * because it's invalid to write 0 data:
740 *
741 * From the Broadwell PRM, Volume 7: 3D Media GPGPU, Shared Functions -
742 * Unified Return Buffer (URB) > URB_SIMD8_Write and URB_SIMD8_Read >
743 * Write Data Payload:
744 *
745 * "The write data payload can be between 1 and 8 message phases long."
746 */
747 if (vue_map->slots_valid == 0) {
748 fs_reg payload = fs_reg(VGRF, alloc.allocate(2), BRW_REGISTER_TYPE_UD);
749 bld.exec_all().MOV(payload, urb_handle);
750
751 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
752 inst->eot = true;
753 inst->mlen = 2;
754 inst->offset = 1;
755 return;
756 }
757
758 opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
759 int header_size = 1;
760 fs_reg per_slot_offsets;
761
762 if (stage == MESA_SHADER_GEOMETRY) {
763 const struct brw_gs_prog_data *gs_prog_data =
764 (const struct brw_gs_prog_data *) this->prog_data;
765
766 /* We need to increment the Global Offset to skip over the control data
767 * header and the extra "Vertex Count" field (1 HWord) at the beginning
768 * of the VUE. We're counting in OWords, so the units are doubled.
769 */
770 starting_urb_offset = 2 * gs_prog_data->control_data_header_size_hwords;
771 if (gs_prog_data->static_vertex_count == -1)
772 starting_urb_offset += 2;
773
774 /* We also need to use per-slot offsets. The per-slot offset is the
775 * Vertex Count. SIMD8 mode processes 8 different primitives at a
776 * time; each may output a different number of vertices.
777 */
778 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT;
779 header_size++;
780
781 /* The URB offset is in 128-bit units, so we need to multiply by 2 */
782 const int output_vertex_size_owords =
783 gs_prog_data->output_vertex_size_hwords * 2;
784
785 if (gs_vertex_count.file == IMM) {
786 per_slot_offsets = brw_imm_ud(output_vertex_size_owords *
787 gs_vertex_count.ud);
788 } else {
789 per_slot_offsets = vgrf(glsl_type::int_type);
790 bld.MUL(per_slot_offsets, gs_vertex_count,
791 brw_imm_ud(output_vertex_size_owords));
792 }
793 }
794
795 length = 0;
796 urb_offset = starting_urb_offset;
797 flush = false;
798 for (slot = 0; slot < vue_map->num_slots; slot++) {
799 int varying = vue_map->slot_to_varying[slot];
800 switch (varying) {
801 case VARYING_SLOT_PSIZ: {
802 /* The point size varying slot is the vue header and is always in the
803 * vue map. But often none of the special varyings that live there
804 * are written and in that case we can skip writing to the vue
805 * header, provided the corresponding state properly clamps the
806 * values further down the pipeline. */
807 if ((vue_map->slots_valid & psiz_mask) == 0) {
808 assert(length == 0);
809 urb_offset++;
810 break;
811 }
812
813 fs_reg zero(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
814 bld.MOV(zero, brw_imm_ud(0u));
815
816 sources[length++] = zero;
817 if (vue_map->slots_valid & VARYING_BIT_LAYER)
818 sources[length++] = this->outputs[VARYING_SLOT_LAYER];
819 else
820 sources[length++] = zero;
821
822 if (vue_map->slots_valid & VARYING_BIT_VIEWPORT)
823 sources[length++] = this->outputs[VARYING_SLOT_VIEWPORT];
824 else
825 sources[length++] = zero;
826
827 if (vue_map->slots_valid & VARYING_BIT_PSIZ)
828 sources[length++] = this->outputs[VARYING_SLOT_PSIZ];
829 else
830 sources[length++] = zero;
831 break;
832 }
833 case BRW_VARYING_SLOT_NDC:
834 case VARYING_SLOT_EDGE:
835 unreachable("unexpected scalar vs output");
836 break;
837
838 default:
839 /* gl_Position is always in the vue map, but isn't always written by
840 * the shader. Other varyings (clip distances) get added to the vue
841 * map but don't always get written. In those cases, the
842 * corresponding this->output[] slot will be invalid we and can skip
843 * the urb write for the varying. If we've already queued up a vue
844 * slot for writing we flush a mlen 5 urb write, otherwise we just
845 * advance the urb_offset.
846 */
847 if (varying == BRW_VARYING_SLOT_PAD ||
848 this->outputs[varying].file == BAD_FILE) {
849 if (length > 0)
850 flush = true;
851 else
852 urb_offset++;
853 break;
854 }
855
856 if (stage == MESA_SHADER_VERTEX && vs_key->clamp_vertex_color &&
857 (varying == VARYING_SLOT_COL0 ||
858 varying == VARYING_SLOT_COL1 ||
859 varying == VARYING_SLOT_BFC0 ||
860 varying == VARYING_SLOT_BFC1)) {
861 /* We need to clamp these guys, so do a saturating MOV into a
862 * temp register and use that for the payload.
863 */
864 for (int i = 0; i < 4; i++) {
865 fs_reg reg = fs_reg(VGRF, alloc.allocate(1), outputs[varying].type);
866 fs_reg src = offset(this->outputs[varying], bld, i);
867 set_saturate(true, bld.MOV(reg, src));
868 sources[length++] = reg;
869 }
870 } else {
871 for (unsigned i = 0; i < output_components[varying]; i++)
872 sources[length++] = offset(this->outputs[varying], bld, i);
873 for (unsigned i = output_components[varying]; i < 4; i++)
874 sources[length++] = brw_imm_d(0);
875 }
876 break;
877 }
878
879 const fs_builder abld = bld.annotate("URB write");
880
881 /* If we've queued up 8 registers of payload (2 VUE slots), if this is
882 * the last slot or if we need to flush (see BAD_FILE varying case
883 * above), emit a URB write send now to flush out the data.
884 */
885 int last = slot == vue_map->num_slots - 1;
886 if (length == 8 || last)
887 flush = true;
888 if (flush) {
889 fs_reg *payload_sources =
890 ralloc_array(mem_ctx, fs_reg, length + header_size);
891 fs_reg payload = fs_reg(VGRF, alloc.allocate(length + header_size),
892 BRW_REGISTER_TYPE_F);
893 payload_sources[0] = urb_handle;
894
895 if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT)
896 payload_sources[1] = per_slot_offsets;
897
898 memcpy(&payload_sources[header_size], sources,
899 length * sizeof sources[0]);
900
901 abld.LOAD_PAYLOAD(payload, payload_sources, length + header_size,
902 header_size);
903
904 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
905 inst->eot = last && stage != MESA_SHADER_GEOMETRY;
906 inst->mlen = length + header_size;
907 inst->offset = urb_offset;
908 urb_offset = starting_urb_offset + slot + 1;
909 length = 0;
910 flush = false;
911 }
912 }
913 }
914
915 void
916 fs_visitor::emit_cs_terminate()
917 {
918 assert(devinfo->gen >= 7);
919
920 /* We are getting the thread ID from the compute shader header */
921 assert(stage == MESA_SHADER_COMPUTE);
922
923 /* We can't directly send from g0, since sends with EOT have to use
924 * g112-127. So, copy it to a virtual register, The register allocator will
925 * make sure it uses the appropriate register range.
926 */
927 struct brw_reg g0 = retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD);
928 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
929 bld.group(8, 0).exec_all().MOV(payload, g0);
930
931 /* Send a message to the thread spawner to terminate the thread. */
932 fs_inst *inst = bld.exec_all()
933 .emit(CS_OPCODE_CS_TERMINATE, reg_undef, payload);
934 inst->eot = true;
935 }
936
937 void
938 fs_visitor::emit_barrier()
939 {
940 assert(devinfo->gen >= 7);
941 const uint32_t barrier_id_mask =
942 devinfo->gen >= 9 ? 0x8f000000u : 0x0f000000u;
943
944 /* We are getting the barrier ID from the compute shader header */
945 assert(stage == MESA_SHADER_COMPUTE);
946
947 fs_reg payload = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
948
949 const fs_builder pbld = bld.exec_all().group(8, 0);
950
951 /* Clear the message payload */
952 pbld.MOV(payload, brw_imm_ud(0u));
953
954 /* Copy the barrier id from r0.2 to the message payload reg.2 */
955 fs_reg r0_2 = fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD));
956 pbld.AND(component(payload, 2), r0_2, brw_imm_ud(barrier_id_mask));
957
958 /* Emit a gateway "barrier" message using the payload we set up, followed
959 * by a wait instruction.
960 */
961 bld.exec_all().emit(SHADER_OPCODE_BARRIER, reg_undef, payload);
962 }
963
964 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
965 void *mem_ctx,
966 const void *key,
967 struct brw_stage_prog_data *prog_data,
968 struct gl_program *prog,
969 const nir_shader *shader,
970 unsigned dispatch_width,
971 int shader_time_index,
972 const struct brw_vue_map *input_vue_map)
973 : backend_shader(compiler, log_data, mem_ctx, shader, prog_data),
974 key(key), gs_compile(NULL), prog_data(prog_data), prog(prog),
975 input_vue_map(input_vue_map),
976 dispatch_width(dispatch_width),
977 shader_time_index(shader_time_index),
978 bld(fs_builder(this, dispatch_width).at_end())
979 {
980 init();
981 }
982
983 fs_visitor::fs_visitor(const struct brw_compiler *compiler, void *log_data,
984 void *mem_ctx,
985 struct brw_gs_compile *c,
986 struct brw_gs_prog_data *prog_data,
987 const nir_shader *shader,
988 int shader_time_index)
989 : backend_shader(compiler, log_data, mem_ctx, shader,
990 &prog_data->base.base),
991 key(&c->key), gs_compile(c),
992 prog_data(&prog_data->base.base), prog(NULL),
993 dispatch_width(8),
994 shader_time_index(shader_time_index),
995 bld(fs_builder(this, dispatch_width).at_end())
996 {
997 init();
998 }
999
1000
1001 void
1002 fs_visitor::init()
1003 {
1004 switch (stage) {
1005 case MESA_SHADER_FRAGMENT:
1006 key_tex = &((const brw_wm_prog_key *) key)->tex;
1007 break;
1008 case MESA_SHADER_VERTEX:
1009 key_tex = &((const brw_vs_prog_key *) key)->tex;
1010 break;
1011 case MESA_SHADER_TESS_EVAL:
1012 key_tex = &((const brw_tes_prog_key *) key)->tex;
1013 break;
1014 case MESA_SHADER_GEOMETRY:
1015 key_tex = &((const brw_gs_prog_key *) key)->tex;
1016 break;
1017 case MESA_SHADER_COMPUTE:
1018 key_tex = &((const brw_cs_prog_key*) key)->tex;
1019 break;
1020 default:
1021 unreachable("unhandled shader stage");
1022 }
1023
1024 if (stage == MESA_SHADER_COMPUTE) {
1025 const brw_cs_prog_data *cs_prog_data =
1026 (const brw_cs_prog_data *) prog_data;
1027 unsigned size = cs_prog_data->local_size[0] *
1028 cs_prog_data->local_size[1] *
1029 cs_prog_data->local_size[2];
1030 size = DIV_ROUND_UP(size, devinfo->max_cs_threads);
1031 min_dispatch_width = size > 16 ? 32 : (size > 8 ? 16 : 8);
1032 } else {
1033 min_dispatch_width = 8;
1034 }
1035
1036 this->prog_data = this->stage_prog_data;
1037
1038 this->failed = false;
1039 this->simd16_unsupported = false;
1040 this->no16_msg = NULL;
1041
1042 this->nir_locals = NULL;
1043 this->nir_ssa_values = NULL;
1044
1045 memset(&this->payload, 0, sizeof(this->payload));
1046 memset(this->output_components, 0, sizeof(this->output_components));
1047 this->source_depth_to_render_target = false;
1048 this->runtime_check_aads_emit = false;
1049 this->first_non_payload_grf = 0;
1050 this->max_grf = devinfo->gen >= 7 ? GEN7_MRF_HACK_START : BRW_MAX_GRF;
1051
1052 this->virtual_grf_start = NULL;
1053 this->virtual_grf_end = NULL;
1054 this->live_intervals = NULL;
1055 this->regs_live_at_ip = NULL;
1056
1057 this->uniforms = 0;
1058 this->last_scratch = 0;
1059 this->pull_constant_loc = NULL;
1060 this->push_constant_loc = NULL;
1061
1062 this->promoted_constants = 0,
1063
1064 this->spilled_any_registers = false;
1065 this->do_dual_src = false;
1066 }
1067
1068 fs_visitor::~fs_visitor()
1069 {
1070 }