Merge branch 'master' of ../mesa into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_gs.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_vec4_gs.c
26 *
27 * State atom for client-programmable geometry shaders, and support code.
28 */
29
30 #include "brw_gs.h"
31 #include "brw_context.h"
32 #include "brw_vec4_gs_visitor.h"
33 #include "brw_state.h"
34 #include "brw_ff_gs.h"
35
36 bool
37 brw_compile_gs_prog(struct brw_context *brw,
38 struct gl_shader_program *prog,
39 struct brw_geometry_program *gp,
40 struct brw_gs_prog_key *key,
41 struct brw_gs_compile_output *output)
42 {
43 struct brw_gs_compile c;
44 memset(&c, 0, sizeof(c));
45 c.key = *key;
46 c.gp = gp;
47
48 /* We get the bind map as input in the output struct...*/
49 c.prog_data.base.base.map_entries = output->prog_data.base.base.map_entries;
50 memcpy(c.prog_data.base.base.bind_map, output->prog_data.base.base.bind_map,
51 sizeof(c.prog_data.base.base.bind_map));
52
53 c.prog_data.include_primitive_id =
54 (gp->program.Base.InputsRead & VARYING_BIT_PRIMITIVE_ID) != 0;
55
56 c.prog_data.invocations = gp->program.Invocations;
57
58 /* Allocate the references to the uniforms that will end up in the
59 * prog_data associated with the compiled program, and which will be freed
60 * by the state cache.
61 *
62 * Note: param_count needs to be num_uniform_components * 4, since we add
63 * padding around uniform values below vec4 size, so the worst case is that
64 * every uniform is a float which gets padded to the size of a vec4.
65 */
66 struct gl_shader *gs = prog->_LinkedShaders[MESA_SHADER_GEOMETRY];
67 int param_count = gs->num_uniform_components * 4;
68
69 param_count += gs->NumImages * BRW_IMAGE_PARAM_SIZE;
70
71 c.prog_data.base.base.param =
72 rzalloc_array(NULL, const gl_constant_value *, param_count);
73 c.prog_data.base.base.pull_param =
74 rzalloc_array(NULL, const gl_constant_value *, param_count);
75 c.prog_data.base.base.image_param =
76 rzalloc_array(NULL, struct brw_image_param, gs->NumImages);
77 c.prog_data.base.base.nr_params = param_count;
78 c.prog_data.base.base.nr_image_params = gs->NumImages;
79
80 if (brw->gen >= 8) {
81 c.prog_data.static_vertex_count = !gp->program.Base.nir ? -1 :
82 nir_gs_count_vertices(gp->program.Base.nir);
83 }
84
85 if (brw->gen >= 7) {
86 if (gp->program.OutputType == GL_POINTS) {
87 /* When the output type is points, the geometry shader may output data
88 * to multiple streams, and EndPrimitive() has no effect. So we
89 * configure the hardware to interpret the control data as stream ID.
90 */
91 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID;
92
93 /* We only have to emit control bits if we are using streams */
94 if (prog->Geom.UsesStreams)
95 c.control_data_bits_per_vertex = 2;
96 else
97 c.control_data_bits_per_vertex = 0;
98 } else {
99 /* When the output type is triangle_strip or line_strip, EndPrimitive()
100 * may be used to terminate the current strip and start a new one
101 * (similar to primitive restart), and outputting data to multiple
102 * streams is not supported. So we configure the hardware to interpret
103 * the control data as EndPrimitive information (a.k.a. "cut bits").
104 */
105 c.prog_data.control_data_format = GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT;
106
107 /* We only need to output control data if the shader actually calls
108 * EndPrimitive().
109 */
110 c.control_data_bits_per_vertex = gp->program.UsesEndPrimitive ? 1 : 0;
111 }
112 } else {
113 /* There are no control data bits in gen6. */
114 c.control_data_bits_per_vertex = 0;
115
116 /* If it is using transform feedback, enable it */
117 if (prog->TransformFeedback.NumVarying)
118 c.prog_data.gen6_xfb_enabled = true;
119 else
120 c.prog_data.gen6_xfb_enabled = false;
121 }
122 c.control_data_header_size_bits =
123 gp->program.VerticesOut * c.control_data_bits_per_vertex;
124
125 /* 1 HWORD = 32 bytes = 256 bits */
126 c.prog_data.control_data_header_size_hwords =
127 ALIGN(c.control_data_header_size_bits, 256) / 256;
128
129 GLbitfield64 outputs_written = gp->program.Base.OutputsWritten;
130
131 brw_compute_vue_map(brw->intelScreen->devinfo,
132 &c.prog_data.base.vue_map, outputs_written,
133 prog ? prog->SeparateShader : false);
134
135 /* Compute the output vertex size.
136 *
137 * From the Ivy Bridge PRM, Vol2 Part1 7.2.1.1 STATE_GS - Output Vertex
138 * Size (p168):
139 *
140 * [0,62] indicating [1,63] 16B units
141 *
142 * Specifies the size of each vertex stored in the GS output entry
143 * (following any Control Header data) as a number of 128-bit units
144 * (minus one).
145 *
146 * Programming Restrictions: The vertex size must be programmed as a
147 * multiple of 32B units with the following exception: Rendering is
148 * disabled (as per SOL stage state) and the vertex size output by the
149 * GS thread is 16B.
150 *
151 * If rendering is enabled (as per SOL state) the vertex size must be
152 * programmed as a multiple of 32B units. In other words, the only time
153 * software can program a vertex size with an odd number of 16B units
154 * is when rendering is disabled.
155 *
156 * Note: B=bytes in the above text.
157 *
158 * It doesn't seem worth the extra trouble to optimize the case where the
159 * vertex size is 16B (especially since this would require special-casing
160 * the GEN assembly that writes to the URB). So we just set the vertex
161 * size to a multiple of 32B (2 vec4's) in all cases.
162 *
163 * The maximum output vertex size is 62*16 = 992 bytes (31 hwords). We
164 * budget that as follows:
165 *
166 * 512 bytes for varyings (a varying component is 4 bytes and
167 * gl_MaxGeometryOutputComponents = 128)
168 * 16 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
169 * bytes)
170 * 16 bytes overhead for gl_Position (we allocate it a slot in the VUE
171 * even if it's not used)
172 * 32 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
173 * whenever clip planes are enabled, even if the shader doesn't
174 * write to gl_ClipDistance)
175 * 16 bytes overhead since the VUE size must be a multiple of 32 bytes
176 * (see below)--this causes up to 1 VUE slot to be wasted
177 * 400 bytes available for varying packing overhead
178 *
179 * Worst-case varying packing overhead is 3/4 of a varying slot (12 bytes)
180 * per interpolation type, so this is plenty.
181 *
182 */
183 unsigned output_vertex_size_bytes = c.prog_data.base.vue_map.num_slots * 16;
184 assert(brw->gen == 6 ||
185 output_vertex_size_bytes <= GEN7_MAX_GS_OUTPUT_VERTEX_SIZE_BYTES);
186 c.prog_data.output_vertex_size_hwords =
187 ALIGN(output_vertex_size_bytes, 32) / 32;
188
189 /* Compute URB entry size. The maximum allowed URB entry size is 32k.
190 * That divides up as follows:
191 *
192 * 64 bytes for the control data header (cut indices or StreamID bits)
193 * 4096 bytes for varyings (a varying component is 4 bytes and
194 * gl_MaxGeometryTotalOutputComponents = 1024)
195 * 4096 bytes overhead for VARYING_SLOT_PSIZ (each varying slot is 16
196 * bytes/vertex and gl_MaxGeometryOutputVertices is 256)
197 * 4096 bytes overhead for gl_Position (we allocate it a slot in the VUE
198 * even if it's not used)
199 * 8192 bytes overhead for gl_ClipDistance (we allocate it 2 VUE slots
200 * whenever clip planes are enabled, even if the shader doesn't
201 * write to gl_ClipDistance)
202 * 4096 bytes overhead since the VUE size must be a multiple of 32
203 * bytes (see above)--this causes up to 1 VUE slot to be wasted
204 * 8128 bytes available for varying packing overhead
205 *
206 * Worst-case varying packing overhead is 3/4 of a varying slot per
207 * interpolation type, which works out to 3072 bytes, so this would allow
208 * us to accommodate 2 interpolation types without any danger of running
209 * out of URB space.
210 *
211 * In practice, the risk of running out of URB space is very small, since
212 * the above figures are all worst-case, and most of them scale with the
213 * number of output vertices. So we'll just calculate the amount of space
214 * we need, and if it's too large, fail to compile.
215 *
216 * The above is for gen7+ where we have a single URB entry that will hold
217 * all the output. In gen6, we will have to allocate URB entries for every
218 * vertex we emit, so our URB entries only need to be large enough to hold
219 * a single vertex. Also, gen6 does not have a control data header.
220 */
221 unsigned output_size_bytes;
222 if (brw->gen >= 7) {
223 output_size_bytes =
224 c.prog_data.output_vertex_size_hwords * 32 * gp->program.VerticesOut;
225 output_size_bytes += 32 * c.prog_data.control_data_header_size_hwords;
226 } else {
227 output_size_bytes = c.prog_data.output_vertex_size_hwords * 32;
228 }
229
230 /* Broadwell stores "Vertex Count" as a full 8 DWord (32 byte) URB output,
231 * which comes before the control header.
232 */
233 if (brw->gen >= 8)
234 output_size_bytes += 32;
235
236 assert(output_size_bytes >= 1);
237 int max_output_size_bytes = GEN7_MAX_GS_URB_ENTRY_SIZE_BYTES;
238 if (brw->gen == 6)
239 max_output_size_bytes = GEN6_MAX_GS_URB_ENTRY_SIZE_BYTES;
240 if (output_size_bytes > max_output_size_bytes)
241 return false;
242
243
244 /* URB entry sizes are stored as a multiple of 64 bytes in gen7+ and
245 * a multiple of 128 bytes in gen6.
246 */
247 if (brw->gen >= 7)
248 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 64) / 64;
249 else
250 c.prog_data.base.urb_entry_size = ALIGN(output_size_bytes, 128) / 128;
251
252 c.prog_data.output_topology =
253 get_hw_prim_for_gl_prim(gp->program.OutputType);
254
255 /* The GLSL linker will have already matched up GS inputs and the outputs
256 * of prior stages. The driver does extend VS outputs in some cases, but
257 * only for legacy OpenGL or Gen4-5 hardware, neither of which offer
258 * geometry shader support. So we can safely ignore that.
259 *
260 * For SSO pipelines, we use a fixed VUE map layout based on variable
261 * locations, so we can rely on rendezvous-by-location making this work.
262 *
263 * However, we need to ignore VARYING_SLOT_PRIMITIVE_ID, as it's not
264 * written by previous stages and shows up via payload magic.
265 */
266 GLbitfield64 inputs_read =
267 gp->program.Base.InputsRead & ~VARYING_BIT_PRIMITIVE_ID;
268 brw_compute_vue_map(brw->intelScreen->devinfo,
269 &c.input_vue_map, inputs_read,
270 prog->SeparateShader);
271
272 /* GS inputs are read from the VUE 256 bits (2 vec4's) at a time, so we
273 * need to program a URB read length of ceiling(num_slots / 2).
274 */
275 c.prog_data.base.urb_read_length = (c.input_vue_map.num_slots + 1) / 2;
276
277 void *mem_ctx = ralloc_context(NULL);
278 unsigned program_size;
279 const unsigned *program =
280 brw_gs_emit(brw, prog, &c, mem_ctx, &program_size);
281 if (program == NULL) {
282 ralloc_free(mem_ctx);
283 return false;
284 }
285
286 output->mem_ctx = mem_ctx;
287 output->program = program;
288 output->program_size = program_size;
289 memcpy(&output->prog_data, &c.prog_data,
290 sizeof(output->prog_data));
291
292 return true;
293 }
294
295 bool
296 brw_codegen_gs_prog(struct brw_context *brw,
297 struct gl_shader_program *prog,
298 struct brw_geometry_program *gp,
299 struct brw_gs_prog_key *key)
300 {
301 struct brw_gs_compile_output output;
302 struct brw_stage_state *stage_state = &brw->gs.base;
303
304 if (brw_compile_gs_prog(brw, prog, gp, key, &output))
305 return false;
306
307 if (output.prog_data.base.base.total_scratch) {
308 brw_get_scratch_bo(brw, &stage_state->scratch_bo,
309 output.prog_data.base.base.total_scratch *
310 brw->max_gs_threads);
311 }
312
313 brw_upload_cache(&brw->cache, BRW_CACHE_GS_PROG,
314 key, sizeof(*key),
315 output.program, output.program_size,
316 &output.prog_data, sizeof(output.prog_data),
317 &stage_state->prog_offset, &brw->gs.prog_data);
318 ralloc_free(output.mem_ctx);
319
320 return true;
321 }
322
323 static bool
324 brw_gs_state_dirty(struct brw_context *brw)
325 {
326 return brw_state_dirty(brw,
327 _NEW_TEXTURE,
328 BRW_NEW_GEOMETRY_PROGRAM |
329 BRW_NEW_TRANSFORM_FEEDBACK);
330 }
331
332 static void
333 brw_gs_populate_key(struct brw_context *brw,
334 struct brw_gs_prog_key *key)
335 {
336 struct gl_context *ctx = &brw->ctx;
337 struct brw_stage_state *stage_state = &brw->gs.base;
338 struct brw_geometry_program *gp =
339 (struct brw_geometry_program *) brw->geometry_program;
340 struct gl_program *prog = &gp->program.Base;
341
342 memset(key, 0, sizeof(*key));
343
344 key->program_string_id = gp->id;
345
346 /* _NEW_TEXTURE */
347 brw_populate_sampler_prog_key_data(ctx, prog, stage_state->sampler_count,
348 &key->tex);
349 }
350
351 void
352 brw_upload_gs_prog(struct brw_context *brw)
353 {
354 struct gl_context *ctx = &brw->ctx;
355 struct gl_shader_program **current = ctx->_Shader->CurrentProgram;
356 struct brw_stage_state *stage_state = &brw->gs.base;
357 struct brw_gs_prog_key key;
358 /* BRW_NEW_GEOMETRY_PROGRAM */
359 struct brw_geometry_program *gp =
360 (struct brw_geometry_program *) brw->geometry_program;
361
362 if (!brw_gs_state_dirty(brw))
363 return;
364
365 if (gp == NULL) {
366 /* No geometry shader. Vertex data just passes straight through. */
367 if (brw->gen == 6 &&
368 (brw->ctx.NewDriverState & BRW_NEW_TRANSFORM_FEEDBACK)) {
369 gen6_brw_upload_ff_gs_prog(brw);
370 return;
371 }
372
373 /* Other state atoms had better not try to access prog_data, since
374 * there's no GS program.
375 */
376 brw->gs.prog_data = NULL;
377 brw->gs.base.prog_data = NULL;
378
379 return;
380 }
381
382 brw_gs_populate_key(brw, &key);
383
384 if (!brw_search_cache(&brw->cache, BRW_CACHE_GS_PROG,
385 &key, sizeof(key),
386 &stage_state->prog_offset, &brw->gs.prog_data)) {
387 bool success = brw_codegen_gs_prog(brw, current[MESA_SHADER_GEOMETRY],
388 gp, &key);
389 assert(success);
390 (void)success;
391 }
392 brw->gs.base.prog_data = &brw->gs.prog_data->base.base;
393 }
394
395 bool
396 brw_gs_precompile(struct gl_context *ctx,
397 struct gl_shader_program *shader_prog,
398 struct gl_program *prog)
399 {
400 struct brw_context *brw = brw_context(ctx);
401 struct brw_gs_prog_key key;
402 uint32_t old_prog_offset = brw->gs.base.prog_offset;
403 struct brw_gs_prog_data *old_prog_data = brw->gs.prog_data;
404 bool success;
405
406 struct gl_geometry_program *gp = (struct gl_geometry_program *) prog;
407 struct brw_geometry_program *bgp = brw_geometry_program(gp);
408
409 memset(&key, 0, sizeof(key));
410
411 brw_setup_tex_for_precompile(brw, &key.tex, prog);
412 key.program_string_id = bgp->id;
413
414 success = brw_codegen_gs_prog(brw, shader_prog, bgp, &key);
415
416 brw->gs.base.prog_offset = old_prog_offset;
417 brw->gs.prog_data = old_prog_data;
418
419 return success;
420 }
421
422
423 bool
424 brw_gs_prog_data_compare(const void *in_a, const void *in_b)
425 {
426 const struct brw_gs_prog_data *a = in_a;
427 const struct brw_gs_prog_data *b = in_b;
428
429 /* Compare the base structure. */
430 if (!brw_stage_prog_data_compare(&a->base.base, &b->base.base))
431 return false;
432
433 /* Compare the rest of the struct. */
434 const unsigned offset = sizeof(struct brw_stage_prog_data);
435 if (memcmp(((char *) a) + offset, ((char *) b) + offset,
436 sizeof(struct brw_gs_prog_data) - offset)) {
437 return false;
438 }
439
440 return true;
441 }