Remove wrongly repeated words in comments
[mesa.git] / src / mesa / drivers / dri / i965 / brw_performance_monitor.c
1 /*
2 * Copyright © 2013 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_performance_monitor.c
26 *
27 * Implementation of the GL_AMD_performance_monitor extension.
28 *
29 * On Gen5+ hardware, we have two sources of performance counter data:
30 * the Observability Architecture counters (MI_REPORT_PERF_COUNT), and
31 * the Pipeline Statistics Registers. We expose both sets of raw data,
32 * as well as some useful processed values.
33 *
34 * The Observability Architecture (OA) counters for Gen6+ are documented
35 * in a separate document from the rest of the PRMs. It is available at:
36 * https://01.org/linuxgraphics/documentation/driver-documentation-prms
37 * => 2013 Intel Core Processor Family => Observability Performance Counters
38 * (This one volume covers Sandybridge, Ivybridge, Baytrail, and Haswell.)
39 *
40 * On Ironlake, the OA counters were called "CHAPS" counters. Sadly, no public
41 * documentation exists; our implementation is based on the source code for the
42 * intel_perf_counters utility (which is available as part of intel-gpu-tools).
43 */
44
45 #include <limits.h>
46
47 #include "util/bitset.h"
48 #include "main/hash.h"
49 #include "main/macros.h"
50 #include "main/mtypes.h"
51 #include "main/performance_monitor.h"
52
53 #include "util/ralloc.h"
54
55 #include "brw_context.h"
56 #include "brw_defines.h"
57 #include "intel_batchbuffer.h"
58
59 #define FILE_DEBUG_FLAG DEBUG_PERFMON
60
61 /**
62 * i965 representation of a performance monitor object.
63 */
64 struct brw_perf_monitor_object
65 {
66 /** The base class. */
67 struct gl_perf_monitor_object base;
68
69 /**
70 * BO containing OA counter snapshots at monitor Begin/End time.
71 */
72 drm_intel_bo *oa_bo;
73
74 /** Indexes into bookend_bo (snapshot numbers) for various segments. */
75 int oa_head_end;
76 int oa_middle_start;
77 int oa_tail_start;
78
79 /**
80 * Storage for OA results accumulated so far.
81 *
82 * An array indexed by the counter ID in the OA_COUNTERS group.
83 *
84 * When we run out of space in bookend_bo, we compute the results so far
85 * and add them to the value stored here. Then, we can discard bookend_bo.
86 */
87 uint32_t *oa_results;
88
89 /**
90 * BO containing starting and ending snapshots for any active pipeline
91 * statistics counters.
92 */
93 drm_intel_bo *pipeline_stats_bo;
94
95 /**
96 * Storage for final pipeline statistics counter results.
97 */
98 uint64_t *pipeline_stats_results;
99 };
100
101 /** Downcasting convenience macro. */
102 static inline struct brw_perf_monitor_object *
103 brw_perf_monitor(struct gl_perf_monitor_object *m)
104 {
105 return (struct brw_perf_monitor_object *) m;
106 }
107
108 #define SECOND_SNAPSHOT_OFFSET_IN_BYTES 2048
109
110 /* A random value used to ensure we're getting valid snapshots. */
111 #define REPORT_ID 0xd2e9c607
112
113 /******************************************************************************/
114
115 #define COUNTER(name) \
116 { \
117 .Name = name, \
118 .Type = GL_UNSIGNED_INT, \
119 .Minimum = { .u32 = 0 }, \
120 .Maximum = { .u32 = ~0 }, \
121 }
122
123 #define COUNTER64(name) \
124 { \
125 .Name = name, \
126 .Type = GL_UNSIGNED_INT64_AMD, \
127 .Minimum = { .u64 = 0 }, \
128 .Maximum = { .u64 = ~0 }, \
129 }
130
131 #define GROUP(name, max_active, counter_list) \
132 { \
133 .Name = name, \
134 .MaxActiveCounters = max_active, \
135 .Counters = counter_list, \
136 .NumCounters = ARRAY_SIZE(counter_list), \
137 }
138
139 /** Performance Monitor Group IDs */
140 enum brw_counter_groups {
141 OA_COUNTERS, /* Observability Architecture (MI_REPORT_PERF_COUNT) Counters */
142 PIPELINE_STATS_COUNTERS, /* Pipeline Statistics Register Counters */
143 };
144
145 /**
146 * Ironlake:
147 * @{
148 *
149 * The list of CHAPS counters unfortunately does not appear in any public
150 * documentation, but is available by reading the source code for the
151 * intel_perf_counters utility (shipped as part of intel-gpu-tools).
152 */
153 static const struct gl_perf_monitor_counter gen5_raw_chaps_counters[] = {
154 COUNTER("cycles the CS unit is starved"),
155 COUNTER("cycles the CS unit is stalled"),
156 COUNTER("cycles the VF unit is starved"),
157 COUNTER("cycles the VF unit is stalled"),
158 COUNTER("cycles the VS unit is starved"),
159 COUNTER("cycles the VS unit is stalled"),
160 COUNTER("cycles the GS unit is starved"),
161 COUNTER("cycles the GS unit is stalled"),
162 COUNTER("cycles the CL unit is starved"),
163 COUNTER("cycles the CL unit is stalled"),
164 COUNTER("cycles the SF unit is starved"),
165 COUNTER("cycles the SF unit is stalled"),
166 COUNTER("cycles the WZ unit is starved"),
167 COUNTER("cycles the WZ unit is stalled"),
168 COUNTER("Z buffer read/write"),
169 COUNTER("cycles each EU was active"),
170 COUNTER("cycles each EU was suspended"),
171 COUNTER("cycles threads loaded all EUs"),
172 COUNTER("cycles filtering active"),
173 COUNTER("cycles PS threads executed"),
174 COUNTER("subspans written to RC"),
175 COUNTER("bytes read for texture reads"),
176 COUNTER("texels returned from sampler"),
177 COUNTER("polygons not culled"),
178 COUNTER("clocks MASF has valid message"),
179 COUNTER("64b writes/reads from RC"),
180 COUNTER("reads on dataport"),
181 COUNTER("clocks MASF has valid msg not consumed by sampler"),
182 COUNTER("cycles any EU is stalled for math"),
183 };
184
185 static const int gen5_oa_snapshot_layout[] =
186 {
187 -1, /* Report ID */
188 -1, /* TIMESTAMP (64-bit) */
189 -1, /* ...second half... */
190 0, /* cycles the CS unit is starved */
191 1, /* cycles the CS unit is stalled */
192 2, /* cycles the VF unit is starved */
193 3, /* cycles the VF unit is stalled */
194 4, /* cycles the VS unit is starved */
195 5, /* cycles the VS unit is stalled */
196 6, /* cycles the GS unit is starved */
197 7, /* cycles the GS unit is stalled */
198 8, /* cycles the CL unit is starved */
199 9, /* cycles the CL unit is stalled */
200 10, /* cycles the SF unit is starved */
201 11, /* cycles the SF unit is stalled */
202 12, /* cycles the WZ unit is starved */
203 13, /* cycles the WZ unit is stalled */
204 14, /* Z buffer read/write */
205 15, /* cycles each EU was active */
206 16, /* cycles each EU was suspended */
207 17, /* cycles threads loaded all EUs */
208 18, /* cycles filtering active */
209 19, /* cycles PS threads executed */
210 20, /* subspans written to RC */
211 21, /* bytes read for texture reads */
212 22, /* texels returned from sampler */
213 23, /* polygons not culled */
214 24, /* clocks MASF has valid message */
215 25, /* 64b writes/reads from RC */
216 26, /* reads on dataport */
217 27, /* clocks MASF has valid msg not consumed by sampler */
218 28, /* cycles any EU is stalled for math */
219 };
220
221 static const struct gl_perf_monitor_group gen5_groups[] = {
222 [OA_COUNTERS] = GROUP("CHAPS Counters", INT_MAX, gen5_raw_chaps_counters),
223 /* Our pipeline statistics counter handling requires hardware contexts. */
224 };
225 /** @} */
226
227 /**
228 * Sandybridge:
229 * @{
230 *
231 * A few of the counters here (A17-A20) are not included in the latest
232 * documentation, but are described in the Ironlake PRM (which strangely
233 * documents Sandybridge's performance counter system, not Ironlake's).
234 * It's unclear whether they work or not; empirically, they appear to.
235 */
236
237 /**
238 * Aggregating counters A0-A28:
239 */
240 static const struct gl_perf_monitor_counter gen6_raw_oa_counters[] = {
241 /* A0: 0 */ COUNTER("Aggregated Core Array Active"),
242 /* A1: 1 */ COUNTER("Aggregated Core Array Stalled"),
243 /* A2: 2 */ COUNTER("Vertex Shader Active Time"),
244 /* A3: Not actually hooked up on Sandybridge. */
245 /* A4: 3 */ COUNTER("Vertex Shader Stall Time - Core Stall"),
246 /* A5: 4 */ COUNTER("# VS threads loaded"),
247 /* A6: 5 */ COUNTER("Vertex Shader Ready but not running Time"),
248 /* A7: 6 */ COUNTER("Geometry Shader Active Time"),
249 /* A8: Not actually hooked up on Sandybridge. */
250 /* A9: 7 */ COUNTER("Geometry Shader Stall Time - Core Stall"),
251 /* A10: 8 */ COUNTER("# GS threads loaded"),
252 /* A11: 9 */ COUNTER("Geometry Shader Ready but not running Time"),
253 /* A12: 10 */ COUNTER("Pixel Shader Active Time"),
254 /* A13: Not actually hooked up on Sandybridge. */
255 /* A14: 11 */ COUNTER("Pixel Shader Stall Time - Core Stall"),
256 /* A15: 12 */ COUNTER("# PS threads loaded"),
257 /* A16: 13 */ COUNTER("Pixel Shader Ready but not running Time"),
258 /* A17: 14 */ COUNTER("Early Z Test Pixels Passing"),
259 /* A18: 15 */ COUNTER("Early Z Test Pixels Failing"),
260 /* A19: 16 */ COUNTER("Early Stencil Test Pixels Passing"),
261 /* A20: 17 */ COUNTER("Early Stencil Test Pixels Failing"),
262 /* A21: 18 */ COUNTER("Pixel Kill Count"),
263 /* A22: 19 */ COUNTER("Alpha Test Pixels Failed"),
264 /* A23: 20 */ COUNTER("Post PS Stencil Pixels Failed"),
265 /* A24: 21 */ COUNTER("Post PS Z buffer Pixels Failed"),
266 /* A25: 22 */ COUNTER("Pixels/samples Written in the frame buffer"),
267 /* A26: 23 */ COUNTER("GPU Busy"),
268 /* A27: 24 */ COUNTER("CL active and not stalled"),
269 /* A28: 25 */ COUNTER("SF active and stalled"),
270 };
271
272 /**
273 * Sandybridge: Counter Select = 001
274 * A0 A1 A2 A3 A4 TIMESTAMP RPT_ID
275 * A5 A6 A7 A8 A9 A10 A11 A12
276 * A13 A14 A15 A16 A17 A18 A19 A20
277 * A21 A22 A23 A24 A25 A26 A27 A28
278 *
279 * (Yes, this is a strange order.) We also have to remap for missing counters.
280 */
281 static const int gen6_oa_snapshot_layout[] =
282 {
283 -1, /* Report ID */
284 -1, /* TIMESTAMP (64-bit) */
285 -1, /* ...second half... */
286 3, /* A4: Vertex Shader Stall Time - Core Stall */
287 -1, /* A3: (not available) */
288 2, /* A2: Vertex Shader Active Time */
289 1, /* A1: Aggregated Core Array Stalled */
290 0, /* A0: Aggregated Core Array Active */
291 10, /* A12: Pixel Shader Active Time */
292 9, /* A11: Geometry Shader ready but not running Time */
293 8, /* A10: # GS threads loaded */
294 7, /* A9: Geometry Shader Stall Time - Core Stall */
295 -1, /* A8: (not available) */
296 6, /* A7: Geometry Shader Active Time */
297 5, /* A6: Vertex Shader ready but not running Time */
298 4, /* A5: # VS Threads Loaded */
299 17, /* A20: Early Stencil Test Pixels Failing */
300 16, /* A19: Early Stencil Test Pixels Passing */
301 15, /* A18: Early Z Test Pixels Failing */
302 14, /* A17: Early Z Test Pixels Passing */
303 13, /* A16: Pixel Shader ready but not running Time */
304 12, /* A15: # PS threads loaded */
305 11, /* A14: Pixel Shader Stall Time - Core Stall */
306 -1, /* A13: (not available) */
307 25, /* A28: SF active and stalled */
308 24, /* A27: CL active and not stalled */
309 23, /* A26: GPU Busy */
310 22, /* A25: Pixels/samples Written in the frame buffer */
311 21, /* A24: Post PS Z buffer Pixels Failed */
312 20, /* A23: Post PS Stencil Pixels Failed */
313 19, /* A22: Alpha Test Pixels Failed */
314 18, /* A21: Pixel Kill Count */
315 };
316
317 static const struct gl_perf_monitor_counter gen6_statistics_counters[] = {
318 COUNTER64("IA_VERTICES_COUNT"),
319 COUNTER64("IA_PRIMITIVES_COUNT"),
320 COUNTER64("VS_INVOCATION_COUNT"),
321 COUNTER64("GS_INVOCATION_COUNT"),
322 COUNTER64("GS_PRIMITIVES_COUNT"),
323 COUNTER64("CL_INVOCATION_COUNT"),
324 COUNTER64("CL_PRIMITIVES_COUNT"),
325 COUNTER64("PS_INVOCATION_COUNT"),
326 COUNTER64("PS_DEPTH_COUNT"),
327 COUNTER64("SO_NUM_PRIMS_WRITTEN"),
328 COUNTER64("SO_PRIM_STORAGE_NEEDED"),
329 };
330
331 /** MMIO register addresses for each pipeline statistics counter. */
332 static const int gen6_statistics_register_addresses[] = {
333 IA_VERTICES_COUNT,
334 IA_PRIMITIVES_COUNT,
335 VS_INVOCATION_COUNT,
336 GS_INVOCATION_COUNT,
337 GS_PRIMITIVES_COUNT,
338 CL_INVOCATION_COUNT,
339 CL_PRIMITIVES_COUNT,
340 PS_INVOCATION_COUNT,
341 PS_DEPTH_COUNT,
342 GEN6_SO_NUM_PRIMS_WRITTEN,
343 GEN6_SO_PRIM_STORAGE_NEEDED,
344 };
345
346 static const struct gl_perf_monitor_group gen6_groups[] = {
347 GROUP("Observability Architecture Counters", INT_MAX, gen6_raw_oa_counters),
348 GROUP("Pipeline Statistics Registers", INT_MAX, gen6_statistics_counters),
349 };
350 /** @} */
351
352 /**
353 * Ivybridge/Baytrail/Haswell:
354 * @{
355 */
356 static const struct gl_perf_monitor_counter gen7_raw_oa_counters[] = {
357 COUNTER("Aggregated Core Array Active"),
358 COUNTER("Aggregated Core Array Stalled"),
359 COUNTER("Vertex Shader Active Time"),
360 COUNTER("Vertex Shader Stall Time - Core Stall"),
361 COUNTER("# VS threads loaded"),
362 COUNTER("Hull Shader Active Time"),
363 COUNTER("Hull Shader Stall Time - Core Stall"),
364 COUNTER("# HS threads loaded"),
365 COUNTER("Domain Shader Active Time"),
366 COUNTER("Domain Shader Stall Time - Core Stall"),
367 COUNTER("# DS threads loaded"),
368 COUNTER("Compute Shader Active Time"),
369 COUNTER("Compute Shader Stall Time - Core Stall"),
370 COUNTER("# CS threads loaded"),
371 COUNTER("Geometry Shader Active Time"),
372 COUNTER("Geometry Shader Stall Time - Core Stall"),
373 COUNTER("# GS threads loaded"),
374 COUNTER("Pixel Shader Active Time"),
375 COUNTER("Pixel Shader Stall Time - Core Stall"),
376 COUNTER("# PS threads loaded"),
377 COUNTER("HiZ Fast Z Test Pixels Passing"),
378 COUNTER("HiZ Fast Z Test Pixels Failing"),
379 COUNTER("Slow Z Test Pixels Passing"),
380 COUNTER("Slow Z Test Pixels Failing"),
381 COUNTER("Pixel Kill Count"),
382 COUNTER("Alpha Test Pixels Failed"),
383 COUNTER("Post PS Stencil Pixels Failed"),
384 COUNTER("Post PS Z buffer Pixels Failed"),
385 COUNTER("3D/GPGPU Render Target Writes"),
386 COUNTER("Render Engine Busy"),
387 COUNTER("VS bottleneck"),
388 COUNTER("GS bottleneck"),
389 };
390
391 /**
392 * Ivybridge/Baytrail/Haswell: Counter Select = 101
393 * A4 A3 A2 A1 A0 TIMESTAMP ReportID
394 * A12 A11 A10 A9 A8 A7 A6 A5
395 * A20 A19 A18 A17 A16 A15 A14 A13
396 * A28 A27 A26 A25 A24 A23 A22 A21
397 * A36 A35 A34 A33 A32 A31 A30 A29
398 * A44 A43 A42 A41 A40 A39 A38 A37
399 * B7 B6 B5 B4 B3 B2 B1 B0
400 * Rsv Rsv Rsv Rsv Rsv Rsv Rsv Rsv
401 */
402 static const int gen7_oa_snapshot_layout[] =
403 {
404 -1, /* Report ID */
405 -1, /* TIMESTAMP (64-bit) */
406 -1, /* ...second half... */
407 0, /* A0: Aggregated Core Array Active */
408 1, /* A1: Aggregated Core Array Stalled */
409 2, /* A2: Vertex Shader Active Time */
410 -1, /* A3: Reserved */
411 3, /* A4: Vertex Shader Stall Time - Core Stall */
412 4, /* A5: # VS threads loaded */
413 -1, /* A6: Reserved */
414 5, /* A7: Hull Shader Active Time */
415 -1, /* A8: Reserved */
416 6, /* A9: Hull Shader Stall Time - Core Stall */
417 7, /* A10: # HS threads loaded */
418 -1, /* A11: Reserved */
419 8, /* A12: Domain Shader Active Time */
420 -1, /* A13: Reserved */
421 9, /* A14: Domain Shader Stall Time - Core Stall */
422 10, /* A15: # DS threads loaded */
423 -1, /* A16: Reserved */
424 11, /* A17: Compute Shader Active Time */
425 -1, /* A18: Reserved */
426 12, /* A19: Compute Shader Stall Time - Core Stall */
427 13, /* A20: # CS threads loaded */
428 -1, /* A21: Reserved */
429 14, /* A22: Geometry Shader Active Time */
430 -1, /* A23: Reserved */
431 15, /* A24: Geometry Shader Stall Time - Core Stall */
432 16, /* A25: # GS threads loaded */
433 -1, /* A26: Reserved */
434 17, /* A27: Pixel Shader Active Time */
435 -1, /* A28: Reserved */
436 18, /* A29: Pixel Shader Stall Time - Core Stall */
437 19, /* A30: # PS threads loaded */
438 -1, /* A31: Reserved */
439 20, /* A32: HiZ Fast Z Test Pixels Passing */
440 21, /* A33: HiZ Fast Z Test Pixels Failing */
441 22, /* A34: Slow Z Test Pixels Passing */
442 23, /* A35: Slow Z Test Pixels Failing */
443 24, /* A36: Pixel Kill Count */
444 25, /* A37: Alpha Test Pixels Failed */
445 26, /* A38: Post PS Stencil Pixels Failed */
446 27, /* A39: Post PS Z buffer Pixels Failed */
447 28, /* A40: 3D/GPGPU Render Target Writes */
448 29, /* A41: Render Engine Busy */
449 30, /* A42: VS bottleneck */
450 31, /* A43: GS bottleneck */
451 -1, /* A44: Reserved */
452 -1, /* B0 */
453 -1, /* B1 */
454 -1, /* B2 */
455 -1, /* B3 */
456 -1, /* B4 */
457 -1, /* B5 */
458 -1, /* B6 */
459 -1, /* B7 */
460 -1, /* Reserved */
461 -1, /* Reserved */
462 -1, /* Reserved */
463 -1, /* Reserved */
464 -1, /* Reserved */
465 -1, /* Reserved */
466 -1, /* Reserved */
467 -1, /* Reserved */
468 };
469
470 static const struct gl_perf_monitor_counter gen7_statistics_counters[] = {
471 COUNTER64("IA_VERTICES_COUNT"),
472 COUNTER64("IA_PRIMITIVES_COUNT"),
473 COUNTER64("VS_INVOCATION_COUNT"),
474 COUNTER64("HS_INVOCATION_COUNT"),
475 COUNTER64("DS_INVOCATION_COUNT"),
476 COUNTER64("GS_INVOCATION_COUNT"),
477 COUNTER64("GS_PRIMITIVES_COUNT"),
478 COUNTER64("CL_INVOCATION_COUNT"),
479 COUNTER64("CL_PRIMITIVES_COUNT"),
480 COUNTER64("PS_INVOCATION_COUNT"),
481 COUNTER64("PS_DEPTH_COUNT"),
482 COUNTER64("SO_NUM_PRIMS_WRITTEN (Stream 0)"),
483 COUNTER64("SO_NUM_PRIMS_WRITTEN (Stream 1)"),
484 COUNTER64("SO_NUM_PRIMS_WRITTEN (Stream 2)"),
485 COUNTER64("SO_NUM_PRIMS_WRITTEN (Stream 3)"),
486 COUNTER64("SO_PRIM_STORAGE_NEEDED (Stream 0)"),
487 COUNTER64("SO_PRIM_STORAGE_NEEDED (Stream 1)"),
488 COUNTER64("SO_PRIM_STORAGE_NEEDED (Stream 2)"),
489 COUNTER64("SO_PRIM_STORAGE_NEEDED (Stream 3)"),
490 };
491
492 /** MMIO register addresses for each pipeline statistics counter. */
493 static const int gen7_statistics_register_addresses[] = {
494 IA_VERTICES_COUNT,
495 IA_PRIMITIVES_COUNT,
496 VS_INVOCATION_COUNT,
497 HS_INVOCATION_COUNT,
498 DS_INVOCATION_COUNT,
499 GS_INVOCATION_COUNT,
500 GS_PRIMITIVES_COUNT,
501 CL_INVOCATION_COUNT,
502 CL_PRIMITIVES_COUNT,
503 PS_INVOCATION_COUNT,
504 PS_DEPTH_COUNT,
505 GEN7_SO_NUM_PRIMS_WRITTEN(0),
506 GEN7_SO_NUM_PRIMS_WRITTEN(1),
507 GEN7_SO_NUM_PRIMS_WRITTEN(2),
508 GEN7_SO_NUM_PRIMS_WRITTEN(3),
509 GEN7_SO_PRIM_STORAGE_NEEDED(0),
510 GEN7_SO_PRIM_STORAGE_NEEDED(1),
511 GEN7_SO_PRIM_STORAGE_NEEDED(2),
512 GEN7_SO_PRIM_STORAGE_NEEDED(3),
513 };
514
515 static const struct gl_perf_monitor_group gen7_groups[] = {
516 GROUP("Observability Architecture Counters", INT_MAX, gen7_raw_oa_counters),
517 GROUP("Pipeline Statistics Registers", INT_MAX, gen7_statistics_counters),
518 };
519 /** @} */
520
521 /******************************************************************************/
522
523 static GLboolean brw_is_perf_monitor_result_available(struct gl_context *, struct gl_perf_monitor_object *);
524
525 static void
526 dump_perf_monitor_callback(GLuint name, void *monitor_void, void *brw_void)
527 {
528 struct brw_context *brw = brw_void;
529 struct gl_context *ctx = brw_void;
530 struct gl_perf_monitor_object *m = monitor_void;
531 struct brw_perf_monitor_object *monitor = monitor_void;
532
533 const char *resolved = "";
534 for (int i = 0; i < brw->perfmon.unresolved_elements; i++) {
535 if (brw->perfmon.unresolved[i] == monitor) {
536 resolved = "Unresolved";
537 break;
538 }
539 }
540
541 DBG("%4d %-7s %-6s %-10s %-11s <%3d, %3d, %3d> %-6s %-9s\n",
542 name,
543 m->Active ? "Active" : "",
544 m->Ended ? "Ended" : "",
545 resolved,
546 brw_is_perf_monitor_result_available(ctx, m) ? "Available" : "",
547 monitor->oa_head_end,
548 monitor->oa_middle_start,
549 monitor->oa_tail_start,
550 monitor->oa_bo ? "OA BO" : "",
551 monitor->pipeline_stats_bo ? "Stats BO" : "");
552 }
553
554 void
555 brw_dump_perf_monitors(struct brw_context *brw)
556 {
557 struct gl_context *ctx = &brw->ctx;
558 DBG("Monitors: (OA users = %d)\n", brw->perfmon.oa_users);
559 _mesa_HashWalk(ctx->PerfMonitor.Monitors, dump_perf_monitor_callback, brw);
560 }
561
562 /******************************************************************************/
563
564 static bool
565 monitor_needs_statistics_registers(struct brw_context *brw,
566 struct gl_perf_monitor_object *m)
567 {
568 return brw->gen >= 6 && m->ActiveGroups[PIPELINE_STATS_COUNTERS];
569 }
570
571 /**
572 * Take a snapshot of any monitored pipeline statistics counters.
573 */
574 static void
575 snapshot_statistics_registers(struct brw_context *brw,
576 struct brw_perf_monitor_object *monitor,
577 uint32_t offset)
578 {
579 struct gl_context *ctx = &brw->ctx;
580 const int group = PIPELINE_STATS_COUNTERS;
581 const int num_counters = ctx->PerfMonitor.Groups[group].NumCounters;
582
583 brw_emit_mi_flush(brw);
584
585 for (int i = 0; i < num_counters; i++) {
586 if (BITSET_TEST(monitor->base.ActiveCounters[group], i)) {
587 assert(ctx->PerfMonitor.Groups[group].Counters[i].Type ==
588 GL_UNSIGNED_INT64_AMD);
589
590 brw_store_register_mem64(brw, monitor->pipeline_stats_bo,
591 brw->perfmon.statistics_registers[i],
592 offset + i * sizeof(uint64_t));
593 }
594 }
595 }
596
597 /**
598 * Gather results from pipeline_stats_bo, storing the final values.
599 *
600 * This allows us to free pipeline_stats_bo (which is 4K) in favor of a much
601 * smaller array of final results.
602 */
603 static void
604 gather_statistics_results(struct brw_context *brw,
605 struct brw_perf_monitor_object *monitor)
606 {
607 struct gl_context *ctx = &brw->ctx;
608 const int num_counters =
609 ctx->PerfMonitor.Groups[PIPELINE_STATS_COUNTERS].NumCounters;
610
611 monitor->pipeline_stats_results = calloc(num_counters, sizeof(uint64_t));
612 if (monitor->pipeline_stats_results == NULL) {
613 _mesa_error_no_memory(__func__);
614 return;
615 }
616
617 drm_intel_bo_map(monitor->pipeline_stats_bo, false);
618 uint64_t *start = monitor->pipeline_stats_bo->virtual;
619 uint64_t *end = start + (SECOND_SNAPSHOT_OFFSET_IN_BYTES / sizeof(uint64_t));
620
621 for (int i = 0; i < num_counters; i++) {
622 monitor->pipeline_stats_results[i] = end[i] - start[i];
623 }
624 drm_intel_bo_unmap(monitor->pipeline_stats_bo);
625 drm_intel_bo_unreference(monitor->pipeline_stats_bo);
626 monitor->pipeline_stats_bo = NULL;
627 }
628
629 /******************************************************************************/
630
631 static bool
632 monitor_needs_oa(struct brw_context *brw,
633 struct gl_perf_monitor_object *m)
634 {
635 return m->ActiveGroups[OA_COUNTERS];
636 }
637
638 /**
639 * Enable the Observability Architecture counters by whacking OACONTROL.
640 */
641 static void
642 start_oa_counters(struct brw_context *brw)
643 {
644 unsigned counter_format;
645
646 /* Pick the counter format which gives us all the counters. */
647 switch (brw->gen) {
648 case 5:
649 return; /* Ironlake counters are always running. */
650 case 6:
651 counter_format = 0b001;
652 break;
653 case 7:
654 counter_format = 0b101;
655 break;
656 default:
657 unreachable("Tried to enable OA counters on an unsupported generation.");
658 }
659
660 BEGIN_BATCH(3);
661 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
662 OUT_BATCH(OACONTROL);
663 OUT_BATCH(counter_format << OACONTROL_COUNTER_SELECT_SHIFT |
664 OACONTROL_ENABLE_COUNTERS);
665 ADVANCE_BATCH();
666 }
667
668 /**
669 * Disable OA counters.
670 */
671 static void
672 stop_oa_counters(struct brw_context *brw)
673 {
674 /* Ironlake counters never stop. */
675 if (brw->gen == 5)
676 return;
677
678 BEGIN_BATCH(3);
679 OUT_BATCH(MI_LOAD_REGISTER_IMM | (3 - 2));
680 OUT_BATCH(OACONTROL);
681 OUT_BATCH(0);
682 ADVANCE_BATCH();
683 }
684
685 /**
686 * The amount of batch space it takes to emit an MI_REPORT_PERF_COUNT snapshot,
687 * including the required PIPE_CONTROL flushes.
688 *
689 * Sandybridge is the worst case scenario: brw_emit_mi_flush
690 * expands to three PIPE_CONTROLs which are 4 DWords each. We have to flush
691 * before and after MI_REPORT_PERF_COUNT, so multiply by two. Finally, add
692 * the 3 DWords for MI_REPORT_PERF_COUNT itself.
693 */
694 #define MI_REPORT_PERF_COUNT_BATCH_DWORDS (2 * (3 * 4) + 3)
695
696 /**
697 * Emit an MI_REPORT_PERF_COUNT command packet.
698 *
699 * This writes the current OA counter values to buffer.
700 */
701 static void
702 emit_mi_report_perf_count(struct brw_context *brw,
703 drm_intel_bo *bo,
704 uint32_t offset_in_bytes,
705 uint32_t report_id)
706 {
707 assert(offset_in_bytes % 64 == 0);
708
709 /* Make sure the commands to take a snapshot fits in a single batch. */
710 intel_batchbuffer_require_space(brw, MI_REPORT_PERF_COUNT_BATCH_DWORDS * 4,
711 RENDER_RING);
712 int batch_used = USED_BATCH(brw->batch);
713
714 /* Reports apparently don't always get written unless we flush first. */
715 brw_emit_mi_flush(brw);
716
717 if (brw->gen == 5) {
718 /* Ironlake requires two MI_REPORT_PERF_COUNT commands to write all
719 * the counters. The report ID is ignored in the second set.
720 */
721 BEGIN_BATCH(6);
722 OUT_BATCH(GEN5_MI_REPORT_PERF_COUNT | GEN5_MI_COUNTER_SET_0);
723 OUT_RELOC(bo,
724 I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
725 offset_in_bytes);
726 OUT_BATCH(report_id);
727
728 OUT_BATCH(GEN5_MI_REPORT_PERF_COUNT | GEN5_MI_COUNTER_SET_1);
729 OUT_RELOC(bo,
730 I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
731 offset_in_bytes + 64);
732 OUT_BATCH(report_id);
733 ADVANCE_BATCH();
734 } else if (brw->gen == 6) {
735 BEGIN_BATCH(3);
736 OUT_BATCH(GEN6_MI_REPORT_PERF_COUNT);
737 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
738 offset_in_bytes | MI_COUNTER_ADDRESS_GTT);
739 OUT_BATCH(report_id);
740 ADVANCE_BATCH();
741 } else if (brw->gen == 7) {
742 BEGIN_BATCH(3);
743 OUT_BATCH(GEN6_MI_REPORT_PERF_COUNT);
744 OUT_RELOC(bo, I915_GEM_DOMAIN_INSTRUCTION, I915_GEM_DOMAIN_INSTRUCTION,
745 offset_in_bytes);
746 OUT_BATCH(report_id);
747 ADVANCE_BATCH();
748 } else {
749 unreachable("Unsupported generation for performance counters.");
750 }
751
752 /* Reports apparently don't always get written unless we flush after. */
753 brw_emit_mi_flush(brw);
754
755 (void) batch_used;
756 assert(USED_BATCH(brw->batch) - batch_used <= MI_REPORT_PERF_COUNT_BATCH_DWORDS * 4);
757 }
758
759 /**
760 * Add a monitor to the global list of "unresolved monitors."
761 *
762 * Monitors are "unresolved" if they refer to OA counter snapshots in
763 * bookend_bo. Results (even partial ones) must be gathered for all
764 * unresolved monitors before it's safe to discard bookend_bo.
765 */
766 static void
767 add_to_unresolved_monitor_list(struct brw_context *brw,
768 struct brw_perf_monitor_object *monitor)
769 {
770 if (brw->perfmon.unresolved_elements >=
771 brw->perfmon.unresolved_array_size) {
772 brw->perfmon.unresolved_array_size *= 2;
773 brw->perfmon.unresolved = reralloc(brw, brw->perfmon.unresolved,
774 struct brw_perf_monitor_object *,
775 brw->perfmon.unresolved_array_size);
776 }
777
778 brw->perfmon.unresolved[brw->perfmon.unresolved_elements++] = monitor;
779 }
780
781 /**
782 * If possible, throw away the contents of bookend BO.
783 *
784 * When all monitoring stops, and no monitors need data from bookend_bo to
785 * compute results, we can discard it and start writing snapshots at the
786 * beginning again. This helps reduce the amount of buffer wraparound.
787 */
788 static void
789 clean_bookend_bo(struct brw_context *brw)
790 {
791 if (brw->perfmon.unresolved_elements == 0) {
792 DBG("***Resetting bookend snapshots to 0\n");
793 brw->perfmon.bookend_snapshots = 0;
794 }
795 }
796
797 /**
798 * Remove a monitor from the global list of "unresolved monitors."
799 *
800 * This can happen when:
801 * - We finish computing a completed monitor's results.
802 * - We discard unwanted monitor results.
803 * - A monitor's results can be computed without relying on bookend_bo.
804 */
805 static void
806 drop_from_unresolved_monitor_list(struct brw_context *brw,
807 struct brw_perf_monitor_object *monitor)
808 {
809 for (int i = 0; i < brw->perfmon.unresolved_elements; i++) {
810 if (brw->perfmon.unresolved[i] == monitor) {
811 int last_elt = --brw->perfmon.unresolved_elements;
812
813 if (i == last_elt) {
814 brw->perfmon.unresolved[i] = NULL;
815 } else {
816 brw->perfmon.unresolved[i] = brw->perfmon.unresolved[last_elt];
817 }
818
819 clean_bookend_bo(brw);
820 return;
821 }
822 }
823 }
824
825 /**
826 * Given pointers to starting and ending OA snapshots, add the deltas for each
827 * counter to the results.
828 */
829 static void
830 add_deltas(struct brw_context *brw,
831 struct brw_perf_monitor_object *monitor,
832 uint32_t *start, uint32_t *end)
833 {
834 /* Look for expected report ID values to ensure data is present. */
835 assert(start[0] == REPORT_ID);
836 assert(end[0] == REPORT_ID);
837
838 /* Subtract each counter's ending and starting values, then add the
839 * difference to the counter's value so far.
840 */
841 for (int i = 3; i < brw->perfmon.entries_per_oa_snapshot; i++) {
842 /* When debugging, it's useful to note when the ending value is less than
843 * the starting value; aggregating counters should always increase in
844 * value (or remain unchanged). This happens periodically due to
845 * wraparound, but can also indicate serious problems.
846 */
847 #ifdef DEBUG
848 if (end[i] < start[i]) {
849 int counter = brw->perfmon.oa_snapshot_layout[i];
850 if (counter >= 0) {
851 DBG("WARNING: \"%s\" ending value was less than the starting "
852 "value: %u < %u (end - start = %u)\n",
853 brw->ctx.PerfMonitor.Groups[0].Counters[counter].Name,
854 end[i], start[i], end[i] - start[i]);
855 }
856 }
857 #endif
858 monitor->oa_results[i] += end[i] - start[i];
859 }
860 }
861
862 /**
863 * Gather OA counter results (partial or full) from a series of snapshots.
864 *
865 * Monitoring can start or stop at any time, likely at some point mid-batch.
866 * We write snapshots for both events, storing them in monitor->oa_bo.
867 *
868 * Ideally, we would simply subtract those two snapshots to obtain the final
869 * counter results. Unfortunately, our hardware doesn't preserve their values
870 * across context switches or GPU sleep states. In order to support multiple
871 * concurrent OA clients, as well as reliable data across power management,
872 * we have to take snapshots at the start and end of batches as well.
873 *
874 * This results in a three-part sequence of (start, end) intervals:
875 * - The "head" is from the BeginPerfMonitor snapshot to the end of the first
876 * batchbuffer.
877 * - The "middle" is a series of (batch start, batch end) snapshots which
878 * bookend any batchbuffers between the ones which start/end monitoring.
879 * - The "tail" is from the start of the last batch where monitoring was
880 * active to the EndPerfMonitor snapshot.
881 *
882 * Due to wrapping in the bookend BO, we may have to accumulate partial results.
883 * If so, we handle the "head" and any "middle" results so far. When monitoring
884 * eventually ends, we handle additional "middle" batches and the "tail."
885 */
886 static void
887 gather_oa_results(struct brw_context *brw,
888 struct brw_perf_monitor_object *monitor,
889 uint32_t *bookend_buffer)
890 {
891 struct gl_perf_monitor_object *m = &monitor->base;
892 assert(monitor->oa_bo != NULL);
893
894 drm_intel_bo_map(monitor->oa_bo, false);
895 uint32_t *monitor_buffer = monitor->oa_bo->virtual;
896
897 /* If monitoring was entirely contained within a single batch, then the
898 * bookend BO is irrelevant. Just subtract monitor->bo's two snapshots.
899 */
900 if (monitor->oa_middle_start == -1) {
901 add_deltas(brw, monitor,
902 monitor_buffer,
903 monitor_buffer + (SECOND_SNAPSHOT_OFFSET_IN_BYTES /
904 sizeof(uint32_t)));
905 drm_intel_bo_unmap(monitor->oa_bo);
906 return;
907 }
908
909 const ptrdiff_t snapshot_size = brw->perfmon.entries_per_oa_snapshot;
910
911 /* First, add the contributions from the "head" interval:
912 * (snapshot taken at BeginPerfMonitor time,
913 * snapshot taken at the end of the first batch after monitoring began)
914 */
915 if (monitor->oa_head_end != -1) {
916 assert(monitor->oa_head_end < brw->perfmon.bookend_snapshots);
917 add_deltas(brw, monitor,
918 monitor_buffer,
919 bookend_buffer + snapshot_size * monitor->oa_head_end);
920
921 /* Make sure we don't count the "head" again in the future. */
922 monitor->oa_head_end = -1;
923 }
924
925 /* Next, count the contributions from the "middle" batches. These are
926 * (batch begin, batch end) deltas while monitoring was active.
927 */
928 int last_snapshot;
929 if (m->Ended)
930 last_snapshot = monitor->oa_tail_start;
931 else
932 last_snapshot = brw->perfmon.bookend_snapshots;
933
934 for (int s = monitor->oa_middle_start; s < last_snapshot; s += 2) {
935 add_deltas(brw, monitor,
936 bookend_buffer + snapshot_size * s,
937 bookend_buffer + snapshot_size * (s + 1));
938 }
939
940 /* Finally, if the monitor has ended, we need to count the contributions of
941 * the "tail" interval:
942 * (start of the batch where monitoring ended, EndPerfMonitor snapshot)
943 */
944 if (m->Ended) {
945 assert(monitor->oa_tail_start != -1);
946 add_deltas(brw, monitor,
947 bookend_buffer + snapshot_size * monitor->oa_tail_start,
948 monitor_buffer + (SECOND_SNAPSHOT_OFFSET_IN_BYTES /
949 sizeof(uint32_t)));
950 }
951
952 drm_intel_bo_unmap(monitor->oa_bo);
953
954 /* If the monitor has ended, then we've gathered all the results, and
955 * can free the monitor's OA BO.
956 */
957 if (m->Ended) {
958 drm_intel_bo_unreference(monitor->oa_bo);
959 monitor->oa_bo = NULL;
960
961 /* The monitor's OA result is now resolved. */
962 DBG("Marking %d resolved - results gathered\n", m->Name);
963 drop_from_unresolved_monitor_list(brw, monitor);
964 }
965 }
966
967 /**
968 * Handle running out of space in the bookend BO.
969 *
970 * When we run out of space in the bookend BO, we need to gather up partial
971 * results for every unresolved monitor. This allows us to free the snapshot
972 * data in bookend_bo, freeing up the space for reuse. We call this "wrapping."
973 *
974 * This will completely compute the result for any unresolved monitors that
975 * have ended.
976 */
977 static void
978 wrap_bookend_bo(struct brw_context *brw)
979 {
980 DBG("****Wrap bookend BO****\n");
981 /* Note that wrapping will only occur at the start of a batch, since that's
982 * where we reserve space. So the current batch won't reference bookend_bo
983 * or any monitor BOs. This means we don't need to worry about
984 * synchronization.
985 *
986 * Also, EndPerfMonitor guarantees that only monitors which span multiple
987 * batches exist in the unresolved monitor list.
988 */
989 assert(brw->perfmon.oa_users > 0);
990
991 drm_intel_bo_map(brw->perfmon.bookend_bo, false);
992 uint32_t *bookend_buffer = brw->perfmon.bookend_bo->virtual;
993 for (int i = 0; i < brw->perfmon.unresolved_elements; i++) {
994 struct brw_perf_monitor_object *monitor = brw->perfmon.unresolved[i];
995 struct gl_perf_monitor_object *m = &monitor->base;
996
997 gather_oa_results(brw, monitor, bookend_buffer);
998
999 if (m->Ended) {
1000 /* gather_oa_results() dropped the monitor from the unresolved list,
1001 * throwing our indices off by one.
1002 */
1003 --i;
1004 } else {
1005 /* When we create the new bookend_bo, snapshot #0 will be the
1006 * beginning of another "middle" BO.
1007 */
1008 monitor->oa_middle_start = 0;
1009 assert(monitor->oa_head_end == -1);
1010 assert(monitor->oa_tail_start == -1);
1011 }
1012 }
1013 drm_intel_bo_unmap(brw->perfmon.bookend_bo);
1014
1015 brw->perfmon.bookend_snapshots = 0;
1016 }
1017
1018 /* This is fairly arbitrary; the trade off is memory usage vs. extra overhead
1019 * from wrapping. On Gen7, 32768 should be enough for 128 snapshots before
1020 * wrapping (since each is 256 bytes).
1021 */
1022 #define BOOKEND_BO_SIZE_BYTES 32768
1023
1024 /**
1025 * Check whether bookend_bo has space for a given number of snapshots.
1026 */
1027 static bool
1028 has_space_for_bookend_snapshots(struct brw_context *brw, int snapshots)
1029 {
1030 int snapshot_bytes = brw->perfmon.entries_per_oa_snapshot * sizeof(uint32_t);
1031
1032 /* There are brw->perfmon.bookend_snapshots - 1 existing snapshots. */
1033 int total_snapshots = (brw->perfmon.bookend_snapshots - 1) + snapshots;
1034
1035 return total_snapshots * snapshot_bytes < BOOKEND_BO_SIZE_BYTES;
1036 }
1037
1038 /**
1039 * Write an OA counter snapshot to bookend_bo.
1040 */
1041 static void
1042 emit_bookend_snapshot(struct brw_context *brw)
1043 {
1044 int snapshot_bytes = brw->perfmon.entries_per_oa_snapshot * sizeof(uint32_t);
1045 int offset_in_bytes = brw->perfmon.bookend_snapshots * snapshot_bytes;
1046
1047 emit_mi_report_perf_count(brw, brw->perfmon.bookend_bo, offset_in_bytes,
1048 REPORT_ID);
1049 ++brw->perfmon.bookend_snapshots;
1050 }
1051
1052 /******************************************************************************/
1053
1054 /**
1055 * Initialize a monitor to sane starting state; throw away old buffers.
1056 */
1057 static void
1058 reinitialize_perf_monitor(struct brw_context *brw,
1059 struct brw_perf_monitor_object *monitor)
1060 {
1061 if (monitor->oa_bo) {
1062 drm_intel_bo_unreference(monitor->oa_bo);
1063 monitor->oa_bo = NULL;
1064 }
1065
1066 /* Since the results are now invalid, we don't need to hold on to any
1067 * snapshots in bookend_bo. The monitor is effectively "resolved."
1068 */
1069 drop_from_unresolved_monitor_list(brw, monitor);
1070
1071 monitor->oa_head_end = -1;
1072 monitor->oa_middle_start = -1;
1073 monitor->oa_tail_start = -1;
1074
1075 free(monitor->oa_results);
1076 monitor->oa_results = NULL;
1077
1078 if (monitor->pipeline_stats_bo) {
1079 drm_intel_bo_unreference(monitor->pipeline_stats_bo);
1080 monitor->pipeline_stats_bo = NULL;
1081 }
1082
1083 free(monitor->pipeline_stats_results);
1084 monitor->pipeline_stats_results = NULL;
1085 }
1086
1087 /**
1088 * Driver hook for glBeginPerformanceMonitorAMD().
1089 */
1090 static GLboolean
1091 brw_begin_perf_monitor(struct gl_context *ctx,
1092 struct gl_perf_monitor_object *m)
1093 {
1094 struct brw_context *brw = brw_context(ctx);
1095 struct brw_perf_monitor_object *monitor = brw_perf_monitor(m);
1096
1097 DBG("Begin(%d)\n", m->Name);
1098
1099 reinitialize_perf_monitor(brw, monitor);
1100
1101 if (monitor_needs_oa(brw, m)) {
1102 /* If the global OA bookend BO doesn't exist, allocate it. This should
1103 * only happen once, but we delay until BeginPerfMonitor time to avoid
1104 * wasting memory for contexts that don't use performance monitors.
1105 */
1106 if (!brw->perfmon.bookend_bo) {
1107 brw->perfmon.bookend_bo = drm_intel_bo_alloc(brw->bufmgr,
1108 "OA bookend BO",
1109 BOOKEND_BO_SIZE_BYTES, 64);
1110 }
1111
1112 monitor->oa_bo =
1113 drm_intel_bo_alloc(brw->bufmgr, "perf. monitor OA bo", 4096, 64);
1114 #ifdef DEBUG
1115 /* Pre-filling the BO helps debug whether writes landed. */
1116 drm_intel_bo_map(monitor->oa_bo, true);
1117 memset((char *) monitor->oa_bo->virtual, 0xff, 4096);
1118 drm_intel_bo_unmap(monitor->oa_bo);
1119 #endif
1120
1121 /* Allocate storage for accumulated OA counter values. */
1122 monitor->oa_results =
1123 calloc(brw->perfmon.entries_per_oa_snapshot, sizeof(uint32_t));
1124
1125 /* If the OA counters aren't already on, enable them. */
1126 if (brw->perfmon.oa_users == 0) {
1127 /* Ensure the OACONTROL enable and snapshot land in the same batch. */
1128 int space = (MI_REPORT_PERF_COUNT_BATCH_DWORDS + 3) * 4;
1129 intel_batchbuffer_require_space(brw, space, RENDER_RING);
1130 start_oa_counters(brw);
1131 }
1132
1133 /* Take a starting OA counter snapshot. */
1134 emit_mi_report_perf_count(brw, monitor->oa_bo, 0, REPORT_ID);
1135
1136 monitor->oa_head_end = brw->perfmon.bookend_snapshots;
1137 monitor->oa_middle_start = brw->perfmon.bookend_snapshots + 1;
1138 monitor->oa_tail_start = -1;
1139
1140 /* Add the monitor to the unresolved list. */
1141 add_to_unresolved_monitor_list(brw, monitor);
1142
1143 ++brw->perfmon.oa_users;
1144 }
1145
1146 if (monitor_needs_statistics_registers(brw, m)) {
1147 monitor->pipeline_stats_bo =
1148 drm_intel_bo_alloc(brw->bufmgr, "perf. monitor stats bo", 4096, 64);
1149
1150 /* Take starting snapshots. */
1151 snapshot_statistics_registers(brw, monitor, 0);
1152 }
1153
1154 return true;
1155 }
1156
1157 /**
1158 * Driver hook for glEndPerformanceMonitorAMD().
1159 */
1160 static void
1161 brw_end_perf_monitor(struct gl_context *ctx,
1162 struct gl_perf_monitor_object *m)
1163 {
1164 struct brw_context *brw = brw_context(ctx);
1165 struct brw_perf_monitor_object *monitor = brw_perf_monitor(m);
1166
1167 DBG("End(%d)\n", m->Name);
1168
1169 if (monitor_needs_oa(brw, m)) {
1170 /* Take an ending OA counter snapshot. */
1171 emit_mi_report_perf_count(brw, monitor->oa_bo,
1172 SECOND_SNAPSHOT_OFFSET_IN_BYTES, REPORT_ID);
1173
1174 --brw->perfmon.oa_users;
1175
1176 if (brw->perfmon.oa_users == 0)
1177 stop_oa_counters(brw);
1178
1179 if (monitor->oa_head_end == brw->perfmon.bookend_snapshots) {
1180 assert(monitor->oa_head_end != -1);
1181 /* We never actually wrote the snapshot for the end of the first batch
1182 * after BeginPerfMonitor. This means that monitoring was contained
1183 * entirely within a single batch, so we can ignore bookend_bo and
1184 * just compare the monitor's begin/end snapshots directly.
1185 */
1186 monitor->oa_head_end = -1;
1187 monitor->oa_middle_start = -1;
1188 monitor->oa_tail_start = -1;
1189
1190 /* We can also mark it resolved since it won't depend on bookend_bo. */
1191 DBG("Marking %d resolved - entirely in one batch\n", m->Name);
1192 drop_from_unresolved_monitor_list(brw, monitor);
1193 } else {
1194 /* We've written at least one batch end snapshot, so the monitoring
1195 * spanned multiple batches. Mark which snapshot corresponds to the
1196 * start of the current batch.
1197 */
1198 monitor->oa_tail_start = brw->perfmon.bookend_snapshots - 1;
1199 }
1200 }
1201
1202 if (monitor_needs_statistics_registers(brw, m)) {
1203 /* Take ending snapshots. */
1204 snapshot_statistics_registers(brw, monitor,
1205 SECOND_SNAPSHOT_OFFSET_IN_BYTES);
1206 }
1207 }
1208
1209 /**
1210 * Reset a performance monitor, throwing away any results.
1211 */
1212 static void
1213 brw_reset_perf_monitor(struct gl_context *ctx,
1214 struct gl_perf_monitor_object *m)
1215 {
1216 struct brw_context *brw = brw_context(ctx);
1217 struct brw_perf_monitor_object *monitor = brw_perf_monitor(m);
1218
1219 reinitialize_perf_monitor(brw, monitor);
1220
1221 if (m->Active) {
1222 brw_begin_perf_monitor(ctx, m);
1223 }
1224 }
1225
1226 /**
1227 * Is a performance monitor result available?
1228 */
1229 static GLboolean
1230 brw_is_perf_monitor_result_available(struct gl_context *ctx,
1231 struct gl_perf_monitor_object *m)
1232 {
1233 struct brw_context *brw = brw_context(ctx);
1234 struct brw_perf_monitor_object *monitor = brw_perf_monitor(m);
1235
1236 bool oa_available = true;
1237 bool stats_available = true;
1238
1239 if (monitor_needs_oa(brw, m)) {
1240 oa_available = !monitor->oa_bo ||
1241 (!drm_intel_bo_references(brw->batch.bo, monitor->oa_bo) &&
1242 !drm_intel_bo_busy(monitor->oa_bo));
1243 }
1244
1245 if (monitor_needs_statistics_registers(brw, m)) {
1246 stats_available = !monitor->pipeline_stats_bo ||
1247 (!drm_intel_bo_references(brw->batch.bo, monitor->pipeline_stats_bo) &&
1248 !drm_intel_bo_busy(monitor->pipeline_stats_bo));
1249 }
1250
1251 return oa_available && stats_available;
1252 }
1253
1254 /**
1255 * Get the performance monitor result.
1256 */
1257 static void
1258 brw_get_perf_monitor_result(struct gl_context *ctx,
1259 struct gl_perf_monitor_object *m,
1260 GLsizei data_size,
1261 GLuint *data,
1262 GLint *bytes_written)
1263 {
1264 struct brw_context *brw = brw_context(ctx);
1265 struct brw_perf_monitor_object *monitor = brw_perf_monitor(m);
1266 const GLuint *const data_end = (GLuint *)((uint8_t *) data + data_size);
1267
1268 DBG("GetResult(%d)\n", m->Name);
1269 brw_dump_perf_monitors(brw);
1270
1271 /* This hook should only be called when results are available. */
1272 assert(m->Ended);
1273
1274 /* Copy data to the supplied array (data).
1275 *
1276 * The output data format is: <group ID, counter ID, value> for each
1277 * active counter. The API allows counters to appear in any order.
1278 */
1279 GLsizei offset = 0;
1280
1281 if (monitor_needs_oa(brw, m)) {
1282 /* Gather up the results from the BO, unless we already did due to the
1283 * bookend BO wrapping.
1284 */
1285 if (monitor->oa_bo) {
1286 /* Since the result is available, all the necessary snapshots will
1287 * have been written to the bookend BO. If other monitors are
1288 * active, the bookend BO may be busy or referenced by the current
1289 * batch, but only for writing snapshots beyond oa_tail_start,
1290 * which we don't care about.
1291 *
1292 * Using an unsynchronized mapping avoids stalling for an
1293 * indeterminate amount of time.
1294 */
1295 drm_intel_gem_bo_map_unsynchronized(brw->perfmon.bookend_bo);
1296
1297 gather_oa_results(brw, monitor, brw->perfmon.bookend_bo->virtual);
1298
1299 drm_intel_bo_unmap(brw->perfmon.bookend_bo);
1300 }
1301
1302 for (int i = 0; i < brw->perfmon.entries_per_oa_snapshot; i++) {
1303 int group = OA_COUNTERS;
1304 int counter = brw->perfmon.oa_snapshot_layout[i];
1305
1306 /* We always capture all the OA counters, but the application may
1307 * have only asked for a subset. Skip unwanted counters.
1308 */
1309 if (counter < 0 || !BITSET_TEST(m->ActiveCounters[group], counter))
1310 continue;
1311
1312 if (data + offset + 3 <= data_end) {
1313 data[offset++] = group;
1314 data[offset++] = counter;
1315 data[offset++] = monitor->oa_results[i];
1316 }
1317 }
1318
1319 clean_bookend_bo(brw);
1320 }
1321
1322 if (monitor_needs_statistics_registers(brw, m)) {
1323 const int num_counters =
1324 ctx->PerfMonitor.Groups[PIPELINE_STATS_COUNTERS].NumCounters;
1325
1326 if (!monitor->pipeline_stats_results) {
1327 gather_statistics_results(brw, monitor);
1328
1329 /* Check if we did really get the results */
1330 if (!monitor->pipeline_stats_results) {
1331 if (bytes_written) {
1332 *bytes_written = 0;
1333 }
1334 return;
1335 }
1336 }
1337
1338 for (int i = 0; i < num_counters; i++) {
1339 if (BITSET_TEST(m->ActiveCounters[PIPELINE_STATS_COUNTERS], i)) {
1340 if (data + offset + 4 <= data_end) {
1341 data[offset++] = PIPELINE_STATS_COUNTERS;
1342 data[offset++] = i;
1343 *((uint64_t *) (&data[offset])) = monitor->pipeline_stats_results[i];
1344 offset += 2;
1345 }
1346 }
1347 }
1348 }
1349
1350 if (bytes_written)
1351 *bytes_written = offset * sizeof(uint32_t);
1352 }
1353
1354 /**
1355 * Create a new performance monitor object.
1356 */
1357 static struct gl_perf_monitor_object *
1358 brw_new_perf_monitor(struct gl_context *ctx)
1359 {
1360 (void) ctx;
1361 return calloc(1, sizeof(struct brw_perf_monitor_object));
1362 }
1363
1364 /**
1365 * Delete a performance monitor object.
1366 */
1367 static void
1368 brw_delete_perf_monitor(struct gl_context *ctx, struct gl_perf_monitor_object *m)
1369 {
1370 struct brw_perf_monitor_object *monitor = brw_perf_monitor(m);
1371 DBG("Delete(%d)\n", m->Name);
1372 reinitialize_perf_monitor(brw_context(ctx), monitor);
1373 free(monitor);
1374 }
1375
1376 /******************************************************************************/
1377
1378 /**
1379 * Called at the start of every render ring batch.
1380 *
1381 * Enable OA counters and emit the "start of batchbuffer" bookend OA snapshot.
1382 * Since it's a new batch, there will be plenty of space for the commands.
1383 */
1384 void
1385 brw_perf_monitor_new_batch(struct brw_context *brw)
1386 {
1387 assert(brw->batch.ring == RENDER_RING);
1388 assert(brw->gen < 6 || USED_BATCH(brw->batch) == 0);
1389
1390 if (brw->perfmon.oa_users == 0)
1391 return;
1392
1393 start_oa_counters(brw);
1394
1395 /* Make sure bookend_bo has enough space for a pair of snapshots.
1396 * If not, "wrap" the BO: gather up any results so far, and start from
1397 * the beginning of the buffer. Reserving a pair guarantees that wrapping
1398 * will only happen at the beginning of a batch, where it's safe to map BOs
1399 * (as the batch is empty and can't refer to any of them yet).
1400 */
1401 if (!has_space_for_bookend_snapshots(brw, 2))
1402 wrap_bookend_bo(brw);
1403
1404 DBG("Bookend Begin Snapshot (%d)\n", brw->perfmon.bookend_snapshots);
1405 emit_bookend_snapshot(brw);
1406 }
1407
1408 /**
1409 * Called at the end of every render ring batch.
1410 *
1411 * Emit the "end of batchbuffer" bookend OA snapshot and disable the counters.
1412 *
1413 * This relies on there being enough space in BATCH_RESERVED.
1414 */
1415 void
1416 brw_perf_monitor_finish_batch(struct brw_context *brw)
1417 {
1418 assert(brw->batch.ring == RENDER_RING);
1419
1420 if (brw->perfmon.oa_users == 0)
1421 return;
1422
1423 DBG("Bookend End Snapshot (%d)\n", brw->perfmon.bookend_snapshots);
1424
1425 /* Not safe to wrap; should've reserved space already. */
1426 assert(has_space_for_bookend_snapshots(brw, 1));
1427
1428 emit_bookend_snapshot(brw);
1429
1430 stop_oa_counters(brw);
1431 }
1432
1433 /******************************************************************************/
1434
1435 void
1436 brw_init_performance_monitors(struct brw_context *brw)
1437 {
1438 struct gl_context *ctx = &brw->ctx;
1439
1440 ctx->Driver.NewPerfMonitor = brw_new_perf_monitor;
1441 ctx->Driver.DeletePerfMonitor = brw_delete_perf_monitor;
1442 ctx->Driver.BeginPerfMonitor = brw_begin_perf_monitor;
1443 ctx->Driver.EndPerfMonitor = brw_end_perf_monitor;
1444 ctx->Driver.ResetPerfMonitor = brw_reset_perf_monitor;
1445 ctx->Driver.IsPerfMonitorResultAvailable = brw_is_perf_monitor_result_available;
1446 ctx->Driver.GetPerfMonitorResult = brw_get_perf_monitor_result;
1447
1448 if (brw->gen == 5) {
1449 ctx->PerfMonitor.Groups = gen5_groups;
1450 ctx->PerfMonitor.NumGroups = ARRAY_SIZE(gen5_groups);
1451 brw->perfmon.oa_snapshot_layout = gen5_oa_snapshot_layout;
1452 brw->perfmon.entries_per_oa_snapshot = ARRAY_SIZE(gen5_oa_snapshot_layout);
1453 } else if (brw->gen == 6) {
1454 ctx->PerfMonitor.Groups = gen6_groups;
1455 ctx->PerfMonitor.NumGroups = ARRAY_SIZE(gen6_groups);
1456 brw->perfmon.oa_snapshot_layout = gen6_oa_snapshot_layout;
1457 brw->perfmon.entries_per_oa_snapshot = ARRAY_SIZE(gen6_oa_snapshot_layout);
1458 brw->perfmon.statistics_registers = gen6_statistics_register_addresses;
1459 } else if (brw->gen == 7) {
1460 ctx->PerfMonitor.Groups = gen7_groups;
1461 ctx->PerfMonitor.NumGroups = ARRAY_SIZE(gen7_groups);
1462 brw->perfmon.oa_snapshot_layout = gen7_oa_snapshot_layout;
1463 brw->perfmon.entries_per_oa_snapshot = ARRAY_SIZE(gen7_oa_snapshot_layout);
1464 brw->perfmon.statistics_registers = gen7_statistics_register_addresses;
1465 }
1466
1467 brw->perfmon.unresolved =
1468 ralloc_array(brw, struct brw_perf_monitor_object *, 1);
1469 brw->perfmon.unresolved_elements = 0;
1470 brw->perfmon.unresolved_array_size = 1;
1471 }