Merge remote-tracking branch 'mesa-public/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_queryobj.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 /** @file brw_queryobj.c
29 *
30 * Support for query objects (GL_ARB_occlusion_query, GL_ARB_timer_query,
31 * GL_EXT_transform_feedback, and friends).
32 *
33 * The hardware provides a PIPE_CONTROL command that can report the number of
34 * fragments that passed the depth test, or the hardware timer. They are
35 * appropriately synced with the stage of the pipeline for our extensions'
36 * needs.
37 */
38 #include "main/imports.h"
39
40 #include "brw_context.h"
41 #include "brw_defines.h"
42 #include "brw_state.h"
43 #include "intel_batchbuffer.h"
44 #include "intel_reg.h"
45
46 /**
47 * Emit PIPE_CONTROLs to write the current GPU timestamp into a buffer.
48 */
49 void
50 brw_write_timestamp(struct brw_context *brw, drm_intel_bo *query_bo, int idx)
51 {
52 if (brw->gen == 6) {
53 /* Emit Sandybridge workaround flush: */
54 brw_emit_pipe_control_flush(brw,
55 PIPE_CONTROL_CS_STALL |
56 PIPE_CONTROL_STALL_AT_SCOREBOARD);
57 }
58
59 brw_emit_pipe_control_write(brw, PIPE_CONTROL_WRITE_TIMESTAMP,
60 query_bo, idx * sizeof(uint64_t), 0, 0);
61 }
62
63 /**
64 * Emit PIPE_CONTROLs to write the PS_DEPTH_COUNT register into a buffer.
65 */
66 void
67 brw_write_depth_count(struct brw_context *brw, drm_intel_bo *query_bo, int idx)
68 {
69 uint32_t flags;
70
71 flags = (PIPE_CONTROL_WRITE_DEPTH_COUNT |
72 PIPE_CONTROL_DEPTH_STALL);
73
74 /* Needed to ensure the memory is coherent for the MI_LOAD_REGISTER_MEM
75 * command when loading the values into the predicate source registers for
76 * conditional rendering.
77 */
78 if (brw->predicate.supported)
79 flags |= PIPE_CONTROL_FLUSH_ENABLE;
80
81 brw_emit_pipe_control_write(brw, flags, query_bo,
82 idx * sizeof(uint64_t), 0, 0);
83 }
84
85 /**
86 * Wait on the query object's BO and calculate the final result.
87 */
88 static void
89 brw_queryobj_get_results(struct gl_context *ctx,
90 struct brw_query_object *query)
91 {
92 struct brw_context *brw = brw_context(ctx);
93
94 int i;
95 uint64_t *results;
96
97 assert(brw->gen < 6);
98
99 if (query->bo == NULL)
100 return;
101
102 /* If the application has requested the query result, but this batch is
103 * still contributing to it, flush it now so the results will be present
104 * when mapped.
105 */
106 if (drm_intel_bo_references(brw->batch.bo, query->bo))
107 intel_batchbuffer_flush(brw);
108
109 if (unlikely(brw->perf_debug)) {
110 if (drm_intel_bo_busy(query->bo)) {
111 perf_debug("Stalling on the GPU waiting for a query object.\n");
112 }
113 }
114
115 drm_intel_bo_map(query->bo, false);
116 results = query->bo->virtual;
117 switch (query->Base.Target) {
118 case GL_TIME_ELAPSED_EXT:
119 /* The query BO contains the starting and ending timestamps.
120 * Subtract the two and convert to nanoseconds.
121 */
122 query->Base.Result += 1000 * ((results[1] >> 32) - (results[0] >> 32));
123 break;
124
125 case GL_TIMESTAMP:
126 /* The query BO contains a single timestamp value in results[0]. */
127 query->Base.Result = 1000 * (results[0] >> 32);
128 break;
129
130 case GL_SAMPLES_PASSED_ARB:
131 /* Loop over pairs of values from the BO, which are the PS_DEPTH_COUNT
132 * value at the start and end of the batchbuffer. Subtract them to
133 * get the number of fragments which passed the depth test in each
134 * individual batch, and add those differences up to get the number
135 * of fragments for the entire query.
136 *
137 * Note that query->Base.Result may already be non-zero. We may have
138 * run out of space in the query's BO and allocated a new one. If so,
139 * this function was already called to accumulate the results so far.
140 */
141 for (i = 0; i < query->last_index; i++) {
142 query->Base.Result += results[i * 2 + 1] - results[i * 2];
143 }
144 break;
145
146 case GL_ANY_SAMPLES_PASSED:
147 case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
148 /* If the starting and ending PS_DEPTH_COUNT from any of the batches
149 * differ, then some fragments passed the depth test.
150 */
151 for (i = 0; i < query->last_index; i++) {
152 if (results[i * 2 + 1] != results[i * 2]) {
153 query->Base.Result = GL_TRUE;
154 break;
155 }
156 }
157 break;
158
159 default:
160 unreachable("Unrecognized query target in brw_queryobj_get_results()");
161 }
162 drm_intel_bo_unmap(query->bo);
163
164 /* Now that we've processed the data stored in the query's buffer object,
165 * we can release it.
166 */
167 drm_intel_bo_unreference(query->bo);
168 query->bo = NULL;
169 }
170
171 /**
172 * The NewQueryObject() driver hook.
173 *
174 * Allocates and initializes a new query object.
175 */
176 static struct gl_query_object *
177 brw_new_query_object(struct gl_context *ctx, GLuint id)
178 {
179 struct brw_query_object *query;
180
181 query = calloc(1, sizeof(struct brw_query_object));
182
183 query->Base.Id = id;
184 query->Base.Result = 0;
185 query->Base.Active = false;
186 query->Base.Ready = true;
187
188 return &query->Base;
189 }
190
191 /**
192 * The DeleteQuery() driver hook.
193 */
194 static void
195 brw_delete_query(struct gl_context *ctx, struct gl_query_object *q)
196 {
197 struct brw_query_object *query = (struct brw_query_object *)q;
198
199 drm_intel_bo_unreference(query->bo);
200 free(query);
201 }
202
203 /**
204 * Gen4-5 driver hook for glBeginQuery().
205 *
206 * Initializes driver structures and emits any GPU commands required to begin
207 * recording data for the query.
208 */
209 static void
210 brw_begin_query(struct gl_context *ctx, struct gl_query_object *q)
211 {
212 struct brw_context *brw = brw_context(ctx);
213 struct brw_query_object *query = (struct brw_query_object *)q;
214
215 assert(brw->gen < 6);
216
217 switch (query->Base.Target) {
218 case GL_TIME_ELAPSED_EXT:
219 /* For timestamp queries, we record the starting time right away so that
220 * we measure the full time between BeginQuery and EndQuery. There's
221 * some debate about whether this is the right thing to do. Our decision
222 * is based on the following text from the ARB_timer_query extension:
223 *
224 * "(5) Should the extension measure total time elapsed between the full
225 * completion of the BeginQuery and EndQuery commands, or just time
226 * spent in the graphics library?
227 *
228 * RESOLVED: This extension will measure the total time elapsed
229 * between the full completion of these commands. Future extensions
230 * may implement a query to determine time elapsed at different stages
231 * of the graphics pipeline."
232 *
233 * We write a starting timestamp now (at index 0). At EndQuery() time,
234 * we'll write a second timestamp (at index 1), and subtract the two to
235 * obtain the time elapsed. Notably, this includes time elapsed while
236 * the system was doing other work, such as running other applications.
237 */
238 drm_intel_bo_unreference(query->bo);
239 query->bo = drm_intel_bo_alloc(brw->bufmgr, "timer query", 4096, 4096);
240 brw_write_timestamp(brw, query->bo, 0);
241 break;
242
243 case GL_ANY_SAMPLES_PASSED:
244 case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
245 case GL_SAMPLES_PASSED_ARB:
246 /* For occlusion queries, we delay taking an initial sample until the
247 * first drawing occurs in this batch. See the reasoning in the comments
248 * for brw_emit_query_begin() below.
249 *
250 * Since we're starting a new query, we need to be sure to throw away
251 * any previous occlusion query results.
252 */
253 drm_intel_bo_unreference(query->bo);
254 query->bo = NULL;
255 query->last_index = -1;
256
257 brw->query.obj = query;
258
259 /* Depth statistics on Gen4 require strange workarounds, so we try to
260 * avoid them when necessary. They're required for occlusion queries,
261 * so turn them on now.
262 */
263 brw->stats_wm++;
264 brw->ctx.NewDriverState |= BRW_NEW_STATS_WM;
265 break;
266
267 default:
268 unreachable("Unrecognized query target in brw_begin_query()");
269 }
270 }
271
272 /**
273 * Gen4-5 driver hook for glEndQuery().
274 *
275 * Emits GPU commands to record a final query value, ending any data capturing.
276 * However, the final result isn't necessarily available until the GPU processes
277 * those commands. brw_queryobj_get_results() processes the captured data to
278 * produce the final result.
279 */
280 static void
281 brw_end_query(struct gl_context *ctx, struct gl_query_object *q)
282 {
283 struct brw_context *brw = brw_context(ctx);
284 struct brw_query_object *query = (struct brw_query_object *)q;
285
286 assert(brw->gen < 6);
287
288 switch (query->Base.Target) {
289 case GL_TIME_ELAPSED_EXT:
290 /* Write the final timestamp. */
291 brw_write_timestamp(brw, query->bo, 1);
292 break;
293
294 case GL_ANY_SAMPLES_PASSED:
295 case GL_ANY_SAMPLES_PASSED_CONSERVATIVE:
296 case GL_SAMPLES_PASSED_ARB:
297
298 /* No query->bo means that EndQuery was called after BeginQuery with no
299 * intervening drawing. Rather than doing nothing at all here in this
300 * case, we emit the query_begin and query_end state to the
301 * hardware. This is to guarantee that waiting on the result of this
302 * empty state will cause all previous queries to complete at all, as
303 * required by the specification:
304 *
305 * It must always be true that if any query object
306 * returns a result available of TRUE, all queries of the
307 * same type issued prior to that query must also return
308 * TRUE. [Open GL 4.3 (Core Profile) Section 4.2.1]
309 */
310 if (!query->bo) {
311 brw_emit_query_begin(brw);
312 }
313
314 assert(query->bo);
315
316 brw_emit_query_end(brw);
317
318 brw->query.obj = NULL;
319
320 brw->stats_wm--;
321 brw->ctx.NewDriverState |= BRW_NEW_STATS_WM;
322 break;
323
324 default:
325 unreachable("Unrecognized query target in brw_end_query()");
326 }
327 }
328
329 /**
330 * The Gen4-5 WaitQuery() driver hook.
331 *
332 * Wait for a query result to become available and return it. This is the
333 * backing for glGetQueryObjectiv() with the GL_QUERY_RESULT pname.
334 */
335 static void brw_wait_query(struct gl_context *ctx, struct gl_query_object *q)
336 {
337 struct brw_query_object *query = (struct brw_query_object *)q;
338
339 assert(brw_context(ctx)->gen < 6);
340
341 brw_queryobj_get_results(ctx, query);
342 query->Base.Ready = true;
343 }
344
345 /**
346 * The Gen4-5 CheckQuery() driver hook.
347 *
348 * Checks whether a query result is ready yet. If not, flushes.
349 * This is the backing for glGetQueryObjectiv()'s QUERY_RESULT_AVAILABLE pname.
350 */
351 static void brw_check_query(struct gl_context *ctx, struct gl_query_object *q)
352 {
353 struct brw_context *brw = brw_context(ctx);
354 struct brw_query_object *query = (struct brw_query_object *)q;
355
356 assert(brw->gen < 6);
357
358 /* From the GL_ARB_occlusion_query spec:
359 *
360 * "Instead of allowing for an infinite loop, performing a
361 * QUERY_RESULT_AVAILABLE_ARB will perform a flush if the result is
362 * not ready yet on the first time it is queried. This ensures that
363 * the async query will return true in finite time.
364 */
365 if (query->bo && drm_intel_bo_references(brw->batch.bo, query->bo))
366 intel_batchbuffer_flush(brw);
367
368 if (query->bo == NULL || !drm_intel_bo_busy(query->bo)) {
369 brw_queryobj_get_results(ctx, query);
370 query->Base.Ready = true;
371 }
372 }
373
374 /**
375 * Ensure there query's BO has enough space to store a new pair of values.
376 *
377 * If not, gather the existing BO's results and create a new buffer of the
378 * same size.
379 */
380 static void
381 ensure_bo_has_space(struct gl_context *ctx, struct brw_query_object *query)
382 {
383 struct brw_context *brw = brw_context(ctx);
384
385 assert(brw->gen < 6);
386
387 if (!query->bo || query->last_index * 2 + 1 >= 4096 / sizeof(uint64_t)) {
388
389 if (query->bo != NULL) {
390 /* The old query BO did not have enough space, so we allocated a new
391 * one. Gather the results so far (adding up the differences) and
392 * release the old BO.
393 */
394 brw_queryobj_get_results(ctx, query);
395 }
396
397 query->bo = drm_intel_bo_alloc(brw->bufmgr, "query", 4096, 1);
398 query->last_index = 0;
399 }
400 }
401
402 /**
403 * Record the PS_DEPTH_COUNT value (for occlusion queries) just before
404 * primitive drawing.
405 *
406 * In a pre-hardware context world, the single PS_DEPTH_COUNT register is
407 * shared among all applications using the GPU. However, our query value
408 * needs to only include fragments generated by our application/GL context.
409 *
410 * To accommodate this, we record PS_DEPTH_COUNT at the start and end of
411 * each batchbuffer (technically, the first primitive drawn and flush time).
412 * Subtracting each pair of values calculates the change in PS_DEPTH_COUNT
413 * caused by a batchbuffer. Since there is no preemption inside batches,
414 * this is guaranteed to only measure the effects of our current application.
415 *
416 * Adding each of these differences (in case drawing is done over many batches)
417 * produces the final expected value.
418 *
419 * In a world with hardware contexts, PS_DEPTH_COUNT is saved and restored
420 * as part of the context state, so this is unnecessary, and skipped.
421 */
422 void
423 brw_emit_query_begin(struct brw_context *brw)
424 {
425 struct gl_context *ctx = &brw->ctx;
426 struct brw_query_object *query = brw->query.obj;
427
428 if (brw->hw_ctx)
429 return;
430
431 /* Skip if we're not doing any queries, or we've already recorded the
432 * initial query value for this batchbuffer.
433 */
434 if (!query || brw->query.begin_emitted)
435 return;
436
437 ensure_bo_has_space(ctx, query);
438
439 brw_write_depth_count(brw, query->bo, query->last_index * 2);
440
441 brw->query.begin_emitted = true;
442 }
443
444 /**
445 * Called at batchbuffer flush to get an ending PS_DEPTH_COUNT
446 * (for non-hardware context platforms).
447 *
448 * See the explanation in brw_emit_query_begin().
449 */
450 void
451 brw_emit_query_end(struct brw_context *brw)
452 {
453 struct brw_query_object *query = brw->query.obj;
454
455 if (brw->hw_ctx)
456 return;
457
458 if (!brw->query.begin_emitted)
459 return;
460
461 brw_write_depth_count(brw, query->bo, query->last_index * 2 + 1);
462
463 brw->query.begin_emitted = false;
464 query->last_index++;
465 }
466
467 /**
468 * Driver hook for glQueryCounter().
469 *
470 * This handles GL_TIMESTAMP queries, which perform a pipelined read of the
471 * current GPU time. This is unlike GL_TIME_ELAPSED, which measures the
472 * time while the query is active.
473 */
474 static void
475 brw_query_counter(struct gl_context *ctx, struct gl_query_object *q)
476 {
477 struct brw_context *brw = brw_context(ctx);
478 struct brw_query_object *query = (struct brw_query_object *) q;
479
480 assert(q->Target == GL_TIMESTAMP);
481
482 drm_intel_bo_unreference(query->bo);
483 query->bo = drm_intel_bo_alloc(brw->bufmgr, "timestamp query", 4096, 4096);
484 brw_write_timestamp(brw, query->bo, 0);
485
486 query->flushed = false;
487 }
488
489 /**
490 * Read the TIMESTAMP register immediately (in a non-pipelined fashion).
491 *
492 * This is used to implement the GetTimestamp() driver hook.
493 */
494 static uint64_t
495 brw_get_timestamp(struct gl_context *ctx)
496 {
497 struct brw_context *brw = brw_context(ctx);
498 uint64_t result = 0;
499
500 switch (brw->intelScreen->hw_has_timestamp) {
501 case 3: /* New kernel, always full 36bit accuracy */
502 drm_intel_reg_read(brw->bufmgr, TIMESTAMP | 1, &result);
503 break;
504 case 2: /* 64bit kernel, result is left-shifted by 32bits, losing 4bits */
505 drm_intel_reg_read(brw->bufmgr, TIMESTAMP, &result);
506 result = result >> 32;
507 break;
508 case 1: /* 32bit kernel, result is 36bit wide but may be inaccurate! */
509 drm_intel_reg_read(brw->bufmgr, TIMESTAMP, &result);
510 break;
511 }
512
513 /* See logic in brw_queryobj_get_results() */
514 result *= 80;
515 result &= (1ull << 36) - 1;
516 return result;
517 }
518
519 /* Initialize query object functions used on all generations. */
520 void brw_init_common_queryobj_functions(struct dd_function_table *functions)
521 {
522 functions->NewQueryObject = brw_new_query_object;
523 functions->DeleteQuery = brw_delete_query;
524 functions->QueryCounter = brw_query_counter;
525 functions->GetTimestamp = brw_get_timestamp;
526 }
527
528 /* Initialize Gen4/5-specific query object functions. */
529 void gen4_init_queryobj_functions(struct dd_function_table *functions)
530 {
531 functions->BeginQuery = brw_begin_query;
532 functions->EndQuery = brw_end_query;
533 functions->CheckQuery = brw_check_query;
534 functions->WaitQuery = brw_wait_query;
535 }