Merge remote branch 'origin/master' into nv50-compiler
[mesa.git] / src / mesa / drivers / dri / i965 / brw_wm.c
1 /*
2 Copyright (C) Intel Corp. 2006. All Rights Reserved.
3 Intel funded Tungsten Graphics (http://www.tungstengraphics.com) to
4 develop this 3D driver.
5
6 Permission is hereby granted, free of charge, to any person obtaining
7 a copy of this software and associated documentation files (the
8 "Software"), to deal in the Software without restriction, including
9 without limitation the rights to use, copy, modify, merge, publish,
10 distribute, sublicense, and/or sell copies of the Software, and to
11 permit persons to whom the Software is furnished to do so, subject to
12 the following conditions:
13
14 The above copyright notice and this permission notice (including the
15 next paragraph) shall be included in all copies or substantial
16 portions of the Software.
17
18 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20 MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 IN NO EVENT SHALL THE COPYRIGHT OWNER(S) AND/OR ITS SUPPLIERS BE
22 LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
23 OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25
26 **********************************************************************/
27 /*
28 * Authors:
29 * Keith Whitwell <keith@tungstengraphics.com>
30 */
31
32 #include "brw_context.h"
33 #include "brw_wm.h"
34 #include "brw_state.h"
35 #include "main/formats.h"
36
37 /** Return number of src args for given instruction */
38 GLuint brw_wm_nr_args( GLuint opcode )
39 {
40 switch (opcode) {
41 case WM_FRONTFACING:
42 case WM_PIXELXY:
43 return 0;
44 case WM_CINTERP:
45 case WM_WPOSXY:
46 case WM_DELTAXY:
47 return 1;
48 case WM_LINTERP:
49 case WM_PIXELW:
50 return 2;
51 case WM_FB_WRITE:
52 case WM_PINTERP:
53 return 3;
54 default:
55 assert(opcode < MAX_OPCODE);
56 return _mesa_num_inst_src_regs(opcode);
57 }
58 }
59
60
61 GLuint brw_wm_is_scalar_result( GLuint opcode )
62 {
63 switch (opcode) {
64 case OPCODE_COS:
65 case OPCODE_EX2:
66 case OPCODE_LG2:
67 case OPCODE_POW:
68 case OPCODE_RCP:
69 case OPCODE_RSQ:
70 case OPCODE_SIN:
71 case OPCODE_DP2:
72 case OPCODE_DP3:
73 case OPCODE_DP4:
74 case OPCODE_DPH:
75 case OPCODE_DST:
76 return 1;
77
78 default:
79 return 0;
80 }
81 }
82
83
84 /**
85 * Do GPU code generation for non-GLSL shader. non-GLSL shaders have
86 * no flow control instructions so we can more readily do SSA-style
87 * optimizations.
88 */
89 static void
90 brw_wm_non_glsl_emit(struct brw_context *brw, struct brw_wm_compile *c)
91 {
92 /* Augment fragment program. Add instructions for pre- and
93 * post-fragment-program tasks such as interpolation and fogging.
94 */
95 brw_wm_pass_fp(c);
96
97 /* Translate to intermediate representation. Build register usage
98 * chains.
99 */
100 brw_wm_pass0(c);
101
102 /* Dead code removal.
103 */
104 brw_wm_pass1(c);
105
106 /* Register allocation.
107 * Divide by two because we operate on 16 pixels at a time and require
108 * two GRF entries for each logical shader register.
109 */
110 c->grf_limit = BRW_WM_MAX_GRF / 2;
111
112 brw_wm_pass2(c);
113
114 /* how many general-purpose registers are used */
115 c->prog_data.total_grf = c->max_wm_grf;
116
117 /* Scratch space is used for register spilling */
118 if (c->last_scratch) {
119 c->prog_data.total_scratch = c->last_scratch + 0x40;
120 }
121 else {
122 c->prog_data.total_scratch = 0;
123 }
124
125 /* Emit GEN4 code.
126 */
127 brw_wm_emit(c);
128 }
129
130
131 /**
132 * All Mesa program -> GPU code generation goes through this function.
133 * Depending on the instructions used (i.e. flow control instructions)
134 * we'll use one of two code generators.
135 */
136 static void do_wm_prog( struct brw_context *brw,
137 struct brw_fragment_program *fp,
138 struct brw_wm_prog_key *key)
139 {
140 struct brw_wm_compile *c;
141 const GLuint *program;
142 GLuint program_size;
143
144 c = brw->wm.compile_data;
145 if (c == NULL) {
146 brw->wm.compile_data = calloc(1, sizeof(*brw->wm.compile_data));
147 c = brw->wm.compile_data;
148 if (c == NULL) {
149 /* Ouch - big out of memory problem. Can't continue
150 * without triggering a segfault, no way to signal,
151 * so just return.
152 */
153 return;
154 }
155 c->instruction = calloc(1, BRW_WM_MAX_INSN * sizeof(*c->instruction));
156 c->prog_instructions = calloc(1, BRW_WM_MAX_INSN *
157 sizeof(*c->prog_instructions));
158 c->vreg = calloc(1, BRW_WM_MAX_VREG * sizeof(*c->vreg));
159 c->refs = calloc(1, BRW_WM_MAX_REF * sizeof(*c->refs));
160 } else {
161 void *instruction = c->instruction;
162 void *prog_instructions = c->prog_instructions;
163 void *vreg = c->vreg;
164 void *refs = c->refs;
165 memset(c, 0, sizeof(*brw->wm.compile_data));
166 c->instruction = instruction;
167 c->prog_instructions = prog_instructions;
168 c->vreg = vreg;
169 c->refs = refs;
170 }
171 memcpy(&c->key, key, sizeof(*key));
172
173 c->fp = fp;
174 c->env_param = brw->intel.ctx.FragmentProgram.Parameters;
175
176 brw_init_compile(brw, &c->func);
177
178 /* temporary sanity check assertion */
179 ASSERT(fp->isGLSL == brw_wm_is_glsl(&c->fp->program));
180
181 if (!brw_wm_fs_emit(brw, c)) {
182 /*
183 * Shader which use GLSL features such as flow control are handled
184 * differently from "simple" shaders.
185 */
186 if (fp->isGLSL) {
187 c->dispatch_width = 8;
188 brw_wm_glsl_emit(brw, c);
189 }
190 else {
191 c->dispatch_width = 16;
192 brw_wm_non_glsl_emit(brw, c);
193 }
194 }
195
196 if (INTEL_DEBUG & DEBUG_WM)
197 fprintf(stderr, "\n");
198
199 /* get the program
200 */
201 program = brw_get_program(&c->func, &program_size);
202
203 drm_intel_bo_unreference(brw->wm.prog_bo);
204 brw->wm.prog_bo = brw_upload_cache_with_auxdata(&brw->cache, BRW_WM_PROG,
205 &c->key, sizeof(c->key),
206 NULL, 0,
207 program, program_size,
208 &c->prog_data,
209 sizeof(c->prog_data),
210 &brw->wm.prog_data);
211 }
212
213
214
215 static void brw_wm_populate_key( struct brw_context *brw,
216 struct brw_wm_prog_key *key )
217 {
218 GLcontext *ctx = &brw->intel.ctx;
219 /* BRW_NEW_FRAGMENT_PROGRAM */
220 const struct brw_fragment_program *fp =
221 (struct brw_fragment_program *)brw->fragment_program;
222 GLboolean uses_depth = (fp->program.Base.InputsRead & (1 << FRAG_ATTRIB_WPOS)) != 0;
223 GLuint lookup = 0;
224 GLuint line_aa;
225 GLuint i;
226
227 memset(key, 0, sizeof(*key));
228
229 /* Build the index for table lookup
230 */
231 /* _NEW_COLOR */
232 if (fp->program.UsesKill ||
233 ctx->Color.AlphaEnabled)
234 lookup |= IZ_PS_KILL_ALPHATEST_BIT;
235
236 if (fp->program.Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
237 lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
238
239 /* _NEW_DEPTH */
240 if (ctx->Depth.Test)
241 lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
242
243 if (ctx->Depth.Test &&
244 ctx->Depth.Mask) /* ?? */
245 lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
246
247 /* _NEW_STENCIL */
248 if (ctx->Stencil._Enabled) {
249 lookup |= IZ_STENCIL_TEST_ENABLE_BIT;
250
251 if (ctx->Stencil.WriteMask[0] ||
252 ctx->Stencil.WriteMask[ctx->Stencil._BackFace])
253 lookup |= IZ_STENCIL_WRITE_ENABLE_BIT;
254 }
255
256 line_aa = AA_NEVER;
257
258 /* _NEW_LINE, _NEW_POLYGON, BRW_NEW_REDUCED_PRIMITIVE */
259 if (ctx->Line.SmoothFlag) {
260 if (brw->intel.reduced_primitive == GL_LINES) {
261 line_aa = AA_ALWAYS;
262 }
263 else if (brw->intel.reduced_primitive == GL_TRIANGLES) {
264 if (ctx->Polygon.FrontMode == GL_LINE) {
265 line_aa = AA_SOMETIMES;
266
267 if (ctx->Polygon.BackMode == GL_LINE ||
268 (ctx->Polygon.CullFlag &&
269 ctx->Polygon.CullFaceMode == GL_BACK))
270 line_aa = AA_ALWAYS;
271 }
272 else if (ctx->Polygon.BackMode == GL_LINE) {
273 line_aa = AA_SOMETIMES;
274
275 if ((ctx->Polygon.CullFlag &&
276 ctx->Polygon.CullFaceMode == GL_FRONT))
277 line_aa = AA_ALWAYS;
278 }
279 }
280 }
281
282 brw_wm_lookup_iz(line_aa,
283 lookup,
284 uses_depth,
285 key);
286
287
288 /* BRW_NEW_WM_INPUT_DIMENSIONS */
289 key->proj_attrib_mask = brw->wm.input_size_masks[4-1];
290
291 /* _NEW_LIGHT */
292 key->flat_shade = (ctx->Light.ShadeModel == GL_FLAT);
293
294 /* _NEW_HINT */
295 key->linear_color = (ctx->Hint.PerspectiveCorrection == GL_FASTEST);
296
297 /* _NEW_TEXTURE */
298 for (i = 0; i < BRW_MAX_TEX_UNIT; i++) {
299 const struct gl_texture_unit *unit = &ctx->Texture.Unit[i];
300
301 if (unit->_ReallyEnabled) {
302 const struct gl_texture_object *t = unit->_Current;
303 const struct gl_texture_image *img = t->Image[0][t->BaseLevel];
304 if (img->InternalFormat == GL_YCBCR_MESA) {
305 key->yuvtex_mask |= 1 << i;
306 if (img->TexFormat == MESA_FORMAT_YCBCR)
307 key->yuvtex_swap_mask |= 1 << i;
308 }
309
310 key->tex_swizzles[i] = t->_Swizzle;
311 }
312 else {
313 key->tex_swizzles[i] = SWIZZLE_NOOP;
314 }
315 }
316
317 /* Shadow */
318 key->shadowtex_mask = fp->program.Base.ShadowSamplers;
319
320 /* _NEW_BUFFERS */
321 /*
322 * Include the draw buffer origin and height so that we can calculate
323 * fragment position values relative to the bottom left of the drawable,
324 * from the incoming screen origin relative position we get as part of our
325 * payload.
326 *
327 * This is only needed for the WM_WPOSXY opcode when the fragment program
328 * uses the gl_FragCoord input.
329 *
330 * We could avoid recompiling by including this as a constant referenced by
331 * our program, but if we were to do that it would also be nice to handle
332 * getting that constant updated at batchbuffer submit time (when we
333 * hold the lock and know where the buffer really is) rather than at emit
334 * time when we don't hold the lock and are just guessing. We could also
335 * just avoid using this as key data if the program doesn't use
336 * fragment.position.
337 *
338 * For DRI2 the origin_x/y will always be (0,0) but we still need the
339 * drawable height in order to invert the Y axis.
340 */
341 if (fp->program.Base.InputsRead & FRAG_BIT_WPOS) {
342 key->drawable_height = ctx->DrawBuffer->Height;
343 }
344
345 key->nr_color_regions = brw->state.nr_color_regions;
346
347 /* CACHE_NEW_VS_PROG */
348 key->vp_outputs_written = brw->vs.prog_data->outputs_written;
349
350 /* The unique fragment program ID */
351 key->program_string_id = fp->id;
352 }
353
354
355 static void brw_prepare_wm_prog(struct brw_context *brw)
356 {
357 struct brw_wm_prog_key key;
358 struct brw_fragment_program *fp = (struct brw_fragment_program *)
359 brw->fragment_program;
360
361 brw_wm_populate_key(brw, &key);
362
363 /* Make an early check for the key.
364 */
365 drm_intel_bo_unreference(brw->wm.prog_bo);
366 brw->wm.prog_bo = brw_search_cache(&brw->cache, BRW_WM_PROG,
367 &key, sizeof(key),
368 NULL, 0,
369 &brw->wm.prog_data);
370 if (brw->wm.prog_bo == NULL)
371 do_wm_prog(brw, fp, &key);
372 }
373
374
375 const struct brw_tracked_state brw_wm_prog = {
376 .dirty = {
377 .mesa = (_NEW_COLOR |
378 _NEW_DEPTH |
379 _NEW_HINT |
380 _NEW_STENCIL |
381 _NEW_POLYGON |
382 _NEW_LINE |
383 _NEW_LIGHT |
384 _NEW_BUFFERS |
385 _NEW_TEXTURE),
386 .brw = (BRW_NEW_FRAGMENT_PROGRAM |
387 BRW_NEW_WM_INPUT_DIMENSIONS |
388 BRW_NEW_REDUCED_PRIMITIVE),
389 .cache = CACHE_NEW_VS_PROG,
390 },
391 .prepare = brw_prepare_wm_prog
392 };
393