153e2532d41f81a5927fd0bda2bd7a6434ba308e
[mesa.git] / src / mesa / drivers / dri / i965 / genX_state_upload.c
1 /*
2 * Copyright © 2017 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include <assert.h>
25
26 #include "dev/gen_device_info.h"
27 #include "common/gen_sample_positions.h"
28 #include "genxml/gen_macros.h"
29 #include "common/gen_guardband.h"
30
31 #include "main/bufferobj.h"
32 #include "main/context.h"
33 #include "main/enums.h"
34 #include "main/macros.h"
35 #include "main/state.h"
36
37 #include "genX_boilerplate.h"
38
39 #include "brw_context.h"
40 #include "brw_cs.h"
41 #include "brw_draw.h"
42 #include "brw_multisample_state.h"
43 #include "brw_state.h"
44 #include "brw_wm.h"
45 #include "brw_util.h"
46
47 #include "intel_batchbuffer.h"
48 #include "intel_buffer_objects.h"
49 #include "intel_fbo.h"
50
51 #include "main/enums.h"
52 #include "main/fbobject.h"
53 #include "main/framebuffer.h"
54 #include "main/glformats.h"
55 #include "main/samplerobj.h"
56 #include "main/shaderapi.h"
57 #include "main/stencil.h"
58 #include "main/transformfeedback.h"
59 #include "main/varray.h"
60 #include "main/viewport.h"
61 #include "util/half_float.h"
62
63 #if GEN_GEN == 4
64 static struct brw_address
65 KSP(struct brw_context *brw, uint32_t offset)
66 {
67 return ro_bo(brw->cache.bo, offset);
68 }
69 #else
70 static uint32_t
71 KSP(UNUSED struct brw_context *brw, uint32_t offset)
72 {
73 return offset;
74 }
75 #endif
76
77 #if GEN_GEN >= 7
78 static void
79 emit_lrm(struct brw_context *brw, uint32_t reg, struct brw_address addr)
80 {
81 brw_batch_emit(brw, GENX(MI_LOAD_REGISTER_MEM), lrm) {
82 lrm.RegisterAddress = reg;
83 lrm.MemoryAddress = addr;
84 }
85 }
86 #endif
87
88 #if GEN_GEN == 7
89 static void
90 emit_lri(struct brw_context *brw, uint32_t reg, uint32_t imm)
91 {
92 brw_batch_emit(brw, GENX(MI_LOAD_REGISTER_IMM), lri) {
93 lri.RegisterOffset = reg;
94 lri.DataDWord = imm;
95 }
96 }
97 #endif
98
99 /**
100 * Polygon stipple packet
101 */
102 static void
103 genX(upload_polygon_stipple)(struct brw_context *brw)
104 {
105 struct gl_context *ctx = &brw->ctx;
106
107 /* _NEW_POLYGON */
108 if (!ctx->Polygon.StippleFlag)
109 return;
110
111 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_PATTERN), poly) {
112 /* Polygon stipple is provided in OpenGL order, i.e. bottom
113 * row first. If we're rendering to a window (i.e. the
114 * default frame buffer object, 0), then we need to invert
115 * it to match our pixel layout. But if we're rendering
116 * to a FBO (i.e. any named frame buffer object), we *don't*
117 * need to invert - we already match the layout.
118 */
119 if (ctx->DrawBuffer->FlipY) {
120 for (unsigned i = 0; i < 32; i++)
121 poly.PatternRow[i] = ctx->PolygonStipple[31 - i]; /* invert */
122 } else {
123 for (unsigned i = 0; i < 32; i++)
124 poly.PatternRow[i] = ctx->PolygonStipple[i];
125 }
126 }
127 }
128
129 static const struct brw_tracked_state genX(polygon_stipple) = {
130 .dirty = {
131 .mesa = _NEW_POLYGON |
132 _NEW_POLYGONSTIPPLE,
133 .brw = BRW_NEW_CONTEXT,
134 },
135 .emit = genX(upload_polygon_stipple),
136 };
137
138 /**
139 * Polygon stipple offset packet
140 */
141 static void
142 genX(upload_polygon_stipple_offset)(struct brw_context *brw)
143 {
144 struct gl_context *ctx = &brw->ctx;
145
146 /* _NEW_POLYGON */
147 if (!ctx->Polygon.StippleFlag)
148 return;
149
150 brw_batch_emit(brw, GENX(3DSTATE_POLY_STIPPLE_OFFSET), poly) {
151 /* _NEW_BUFFERS
152 *
153 * If we're drawing to a system window we have to invert the Y axis
154 * in order to match the OpenGL pixel coordinate system, and our
155 * offset must be matched to the window position. If we're drawing
156 * to a user-created FBO then our native pixel coordinate system
157 * works just fine, and there's no window system to worry about.
158 */
159 if (ctx->DrawBuffer->FlipY) {
160 poly.PolygonStippleYOffset =
161 (32 - (_mesa_geometric_height(ctx->DrawBuffer) & 31)) & 31;
162 }
163 }
164 }
165
166 static const struct brw_tracked_state genX(polygon_stipple_offset) = {
167 .dirty = {
168 .mesa = _NEW_BUFFERS |
169 _NEW_POLYGON,
170 .brw = BRW_NEW_CONTEXT,
171 },
172 .emit = genX(upload_polygon_stipple_offset),
173 };
174
175 /**
176 * Line stipple packet
177 */
178 static void
179 genX(upload_line_stipple)(struct brw_context *brw)
180 {
181 struct gl_context *ctx = &brw->ctx;
182
183 if (!ctx->Line.StippleFlag)
184 return;
185
186 brw_batch_emit(brw, GENX(3DSTATE_LINE_STIPPLE), line) {
187 line.LineStipplePattern = ctx->Line.StipplePattern;
188
189 line.LineStippleInverseRepeatCount = 1.0f / ctx->Line.StippleFactor;
190 line.LineStippleRepeatCount = ctx->Line.StippleFactor;
191 }
192 }
193
194 static const struct brw_tracked_state genX(line_stipple) = {
195 .dirty = {
196 .mesa = _NEW_LINE,
197 .brw = BRW_NEW_CONTEXT,
198 },
199 .emit = genX(upload_line_stipple),
200 };
201
202 /* Constant single cliprect for framebuffer object or DRI2 drawing */
203 static void
204 genX(upload_drawing_rect)(struct brw_context *brw)
205 {
206 struct gl_context *ctx = &brw->ctx;
207 const struct gl_framebuffer *fb = ctx->DrawBuffer;
208 const unsigned int fb_width = _mesa_geometric_width(fb);
209 const unsigned int fb_height = _mesa_geometric_height(fb);
210
211 brw_batch_emit(brw, GENX(3DSTATE_DRAWING_RECTANGLE), rect) {
212 rect.ClippedDrawingRectangleXMax = fb_width - 1;
213 rect.ClippedDrawingRectangleYMax = fb_height - 1;
214 }
215 }
216
217 static const struct brw_tracked_state genX(drawing_rect) = {
218 .dirty = {
219 .mesa = _NEW_BUFFERS,
220 .brw = BRW_NEW_BLORP |
221 BRW_NEW_CONTEXT,
222 },
223 .emit = genX(upload_drawing_rect),
224 };
225
226 static uint32_t *
227 genX(emit_vertex_buffer_state)(struct brw_context *brw,
228 uint32_t *dw,
229 unsigned buffer_nr,
230 struct brw_bo *bo,
231 unsigned start_offset,
232 UNUSED unsigned end_offset,
233 unsigned stride,
234 UNUSED unsigned step_rate)
235 {
236 struct GENX(VERTEX_BUFFER_STATE) buf_state = {
237 .VertexBufferIndex = buffer_nr,
238 .BufferPitch = stride,
239
240 /* The VF cache designers apparently cut corners, and made the cache
241 * only consider the bottom 32 bits of memory addresses. If you happen
242 * to have two vertex buffers which get placed exactly 4 GiB apart and
243 * use them in back-to-back draw calls, you can get collisions. To work
244 * around this problem, we restrict vertex buffers to the low 32 bits of
245 * the address space.
246 */
247 .BufferStartingAddress = ro_32_bo(bo, start_offset),
248 #if GEN_GEN >= 8
249 .BufferSize = end_offset - start_offset,
250 #endif
251
252 #if GEN_GEN >= 7
253 .AddressModifyEnable = true,
254 #endif
255
256 #if GEN_GEN < 8
257 .BufferAccessType = step_rate ? INSTANCEDATA : VERTEXDATA,
258 .InstanceDataStepRate = step_rate,
259 #if GEN_GEN >= 5
260 .EndAddress = ro_bo(bo, end_offset - 1),
261 #endif
262 #endif
263
264 #if GEN_GEN == 11
265 .MOCS = ICL_MOCS_WB,
266 #elif GEN_GEN == 10
267 .MOCS = CNL_MOCS_WB,
268 #elif GEN_GEN == 9
269 .MOCS = SKL_MOCS_WB,
270 #elif GEN_GEN == 8
271 .MOCS = BDW_MOCS_WB,
272 #elif GEN_GEN == 7
273 .MOCS = GEN7_MOCS_L3,
274 #endif
275 };
276
277 GENX(VERTEX_BUFFER_STATE_pack)(brw, dw, &buf_state);
278 return dw + GENX(VERTEX_BUFFER_STATE_length);
279 }
280
281 UNUSED static bool
282 is_passthru_format(uint32_t format)
283 {
284 switch (format) {
285 case ISL_FORMAT_R64_PASSTHRU:
286 case ISL_FORMAT_R64G64_PASSTHRU:
287 case ISL_FORMAT_R64G64B64_PASSTHRU:
288 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
289 return true;
290 default:
291 return false;
292 }
293 }
294
295 UNUSED static int
296 uploads_needed(uint32_t format,
297 bool is_dual_slot)
298 {
299 if (!is_passthru_format(format))
300 return 1;
301
302 if (is_dual_slot)
303 return 2;
304
305 switch (format) {
306 case ISL_FORMAT_R64_PASSTHRU:
307 case ISL_FORMAT_R64G64_PASSTHRU:
308 return 1;
309 case ISL_FORMAT_R64G64B64_PASSTHRU:
310 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
311 return 2;
312 default:
313 unreachable("not reached");
314 }
315 }
316
317 /*
318 * Returns the format that we are finally going to use when upload a vertex
319 * element. It will only change if we are using *64*PASSTHRU formats, as for
320 * gen < 8 they need to be splitted on two *32*FLOAT formats.
321 *
322 * @upload points in which upload we are. Valid values are [0,1]
323 */
324 static uint32_t
325 downsize_format_if_needed(uint32_t format,
326 int upload)
327 {
328 assert(upload == 0 || upload == 1);
329
330 if (!is_passthru_format(format))
331 return format;
332
333 /* ISL_FORMAT_R64_PASSTHRU and ISL_FORMAT_R64G64_PASSTHRU with an upload ==
334 * 1 means that we have been forced to do 2 uploads for a size <= 2. This
335 * happens with gen < 8 and dvec3 or dvec4 vertex shader input
336 * variables. In those cases, we return ISL_FORMAT_R32_FLOAT as a way of
337 * flagging that we want to fill with zeroes this second forced upload.
338 */
339 switch (format) {
340 case ISL_FORMAT_R64_PASSTHRU:
341 return upload == 0 ? ISL_FORMAT_R32G32_FLOAT
342 : ISL_FORMAT_R32_FLOAT;
343 case ISL_FORMAT_R64G64_PASSTHRU:
344 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
345 : ISL_FORMAT_R32_FLOAT;
346 case ISL_FORMAT_R64G64B64_PASSTHRU:
347 return upload == 0 ? ISL_FORMAT_R32G32B32A32_FLOAT
348 : ISL_FORMAT_R32G32_FLOAT;
349 case ISL_FORMAT_R64G64B64A64_PASSTHRU:
350 return ISL_FORMAT_R32G32B32A32_FLOAT;
351 default:
352 unreachable("not reached");
353 }
354 }
355
356 /*
357 * Returns the number of componentes associated with a format that is used on
358 * a 64 to 32 format split. See downsize_format()
359 */
360 static int
361 upload_format_size(uint32_t upload_format)
362 {
363 switch (upload_format) {
364 case ISL_FORMAT_R32_FLOAT:
365
366 /* downsized_format has returned this one in order to flag that we are
367 * performing a second upload which we want to have filled with
368 * zeroes. This happens with gen < 8, a size <= 2, and dvec3 or dvec4
369 * vertex shader input variables.
370 */
371
372 return 0;
373 case ISL_FORMAT_R32G32_FLOAT:
374 return 2;
375 case ISL_FORMAT_R32G32B32A32_FLOAT:
376 return 4;
377 default:
378 unreachable("not reached");
379 }
380 }
381
382 static UNUSED uint16_t
383 pinned_bo_high_bits(struct brw_bo *bo)
384 {
385 return (bo->kflags & EXEC_OBJECT_PINNED) ? bo->gtt_offset >> 32ull : 0;
386 }
387
388 /* The VF cache designers apparently cut corners, and made the cache key's
389 * <VertexBufferIndex, Memory Address> tuple only consider the bottom 32 bits
390 * of the address. If you happen to have two vertex buffers which get placed
391 * exactly 4 GiB apart and use them in back-to-back draw calls, you can get
392 * collisions. (These collisions can happen within a single batch.)
393 *
394 * In the soft-pin world, we'd like to assign addresses up front, and never
395 * move buffers. So, we need to do a VF cache invalidate if the buffer for
396 * a particular VB slot has different [48:32] address bits than the last one.
397 *
398 * In the relocation world, we have no idea what the addresses will be, so
399 * we can't apply this workaround. Instead, we tell the kernel to move it
400 * to the low 4GB regardless.
401 *
402 * This HW issue is gone on Gen11+.
403 */
404 static void
405 vf_invalidate_for_vb_48bit_transitions(struct brw_context *brw)
406 {
407 #if GEN_GEN >= 8 && GEN_GEN < 11
408 bool need_invalidate = false;
409
410 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
411 uint16_t high_bits = pinned_bo_high_bits(brw->vb.buffers[i].bo);
412
413 if (high_bits != brw->vb.last_bo_high_bits[i]) {
414 need_invalidate = true;
415 brw->vb.last_bo_high_bits[i] = high_bits;
416 }
417 }
418
419 if (brw->draw.draw_params_bo) {
420 uint16_t high_bits = pinned_bo_high_bits(brw->draw.draw_params_bo);
421
422 if (brw->vb.last_bo_high_bits[brw->vb.nr_buffers] != high_bits) {
423 need_invalidate = true;
424 brw->vb.last_bo_high_bits[brw->vb.nr_buffers] = high_bits;
425 }
426 }
427
428 if (brw->draw.derived_draw_params_bo) {
429 uint16_t high_bits = pinned_bo_high_bits(brw->draw.derived_draw_params_bo);
430
431 if (brw->vb.last_bo_high_bits[brw->vb.nr_buffers + 1] != high_bits) {
432 need_invalidate = true;
433 brw->vb.last_bo_high_bits[brw->vb.nr_buffers + 1] = high_bits;
434 }
435 }
436
437 if (need_invalidate) {
438 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_VF_CACHE_INVALIDATE | PIPE_CONTROL_CS_STALL);
439 }
440 #endif
441 }
442
443 static void
444 vf_invalidate_for_ib_48bit_transition(struct brw_context *brw)
445 {
446 #if GEN_GEN >= 8
447 uint16_t high_bits = pinned_bo_high_bits(brw->ib.bo);
448
449 if (high_bits != brw->ib.last_bo_high_bits) {
450 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_VF_CACHE_INVALIDATE);
451 brw->ib.last_bo_high_bits = high_bits;
452 }
453 #endif
454 }
455
456 static void
457 genX(emit_vertices)(struct brw_context *brw)
458 {
459 const struct gen_device_info *devinfo = &brw->screen->devinfo;
460 uint32_t *dw;
461
462 brw_prepare_vertices(brw);
463 brw_prepare_shader_draw_parameters(brw);
464
465 #if GEN_GEN < 6
466 brw_emit_query_begin(brw);
467 #endif
468
469 const struct brw_vs_prog_data *vs_prog_data =
470 brw_vs_prog_data(brw->vs.base.prog_data);
471
472 #if GEN_GEN >= 8
473 struct gl_context *ctx = &brw->ctx;
474 const bool uses_edge_flag = (ctx->Polygon.FrontMode != GL_FILL ||
475 ctx->Polygon.BackMode != GL_FILL);
476
477 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid) {
478 unsigned vue = brw->vb.nr_enabled;
479
480 /* The element for the edge flags must always be last, so we have to
481 * insert the SGVS before it in that case.
482 */
483 if (uses_edge_flag) {
484 assert(vue > 0);
485 vue--;
486 }
487
488 WARN_ONCE(vue >= 33,
489 "Trying to insert VID/IID past 33rd vertex element, "
490 "need to reorder the vertex attrbutes.");
491
492 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs) {
493 if (vs_prog_data->uses_vertexid) {
494 vfs.VertexIDEnable = true;
495 vfs.VertexIDComponentNumber = 2;
496 vfs.VertexIDElementOffset = vue;
497 }
498
499 if (vs_prog_data->uses_instanceid) {
500 vfs.InstanceIDEnable = true;
501 vfs.InstanceIDComponentNumber = 3;
502 vfs.InstanceIDElementOffset = vue;
503 }
504 }
505
506 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
507 vfi.InstancingEnable = true;
508 vfi.VertexElementIndex = vue;
509 }
510 } else {
511 brw_batch_emit(brw, GENX(3DSTATE_VF_SGVS), vfs);
512 }
513 #endif
514
515 const bool uses_draw_params =
516 vs_prog_data->uses_firstvertex ||
517 vs_prog_data->uses_baseinstance;
518
519 const bool uses_derived_draw_params =
520 vs_prog_data->uses_drawid ||
521 vs_prog_data->uses_is_indexed_draw;
522
523 const bool needs_sgvs_element = (uses_draw_params ||
524 vs_prog_data->uses_instanceid ||
525 vs_prog_data->uses_vertexid);
526
527 unsigned nr_elements =
528 brw->vb.nr_enabled + needs_sgvs_element + uses_derived_draw_params;
529
530 #if GEN_GEN < 8
531 /* If any of the formats of vb.enabled needs more that one upload, we need
532 * to add it to nr_elements
533 */
534 for (unsigned i = 0; i < brw->vb.nr_enabled; i++) {
535 struct brw_vertex_element *input = brw->vb.enabled[i];
536 uint32_t format = brw_get_vertex_surface_type(brw, input->glformat);
537
538 if (uploads_needed(format, input->is_dual_slot) > 1)
539 nr_elements++;
540 }
541 #endif
542
543 /* If the VS doesn't read any inputs (calculating vertex position from
544 * a state variable for some reason, for example), emit a single pad
545 * VERTEX_ELEMENT struct and bail.
546 *
547 * The stale VB state stays in place, but they don't do anything unless
548 * a VE loads from them.
549 */
550 if (nr_elements == 0) {
551 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
552 1 + GENX(VERTEX_ELEMENT_STATE_length));
553 struct GENX(VERTEX_ELEMENT_STATE) elem = {
554 .Valid = true,
555 .SourceElementFormat = ISL_FORMAT_R32G32B32A32_FLOAT,
556 .Component0Control = VFCOMP_STORE_0,
557 .Component1Control = VFCOMP_STORE_0,
558 .Component2Control = VFCOMP_STORE_0,
559 .Component3Control = VFCOMP_STORE_1_FP,
560 };
561 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem);
562 return;
563 }
564
565 /* Now emit 3DSTATE_VERTEX_BUFFERS and 3DSTATE_VERTEX_ELEMENTS packets. */
566 const unsigned nr_buffers = brw->vb.nr_buffers +
567 uses_draw_params + uses_derived_draw_params;
568
569 vf_invalidate_for_vb_48bit_transitions(brw);
570
571 if (nr_buffers) {
572 assert(nr_buffers <= (GEN_GEN >= 6 ? 33 : 17));
573
574 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_BUFFERS),
575 1 + GENX(VERTEX_BUFFER_STATE_length) * nr_buffers);
576
577 for (unsigned i = 0; i < brw->vb.nr_buffers; i++) {
578 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[i];
579 /* Prior to Haswell and Bay Trail we have to use 4-component formats
580 * to fake 3-component ones. In particular, we do this for
581 * half-float and 8 and 16-bit integer formats. This means that the
582 * vertex element may poke over the end of the buffer by 2 bytes.
583 */
584 const unsigned padding =
585 (GEN_GEN <= 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail) * 2;
586 const unsigned end = buffer->offset + buffer->size + padding;
587 dw = genX(emit_vertex_buffer_state)(brw, dw, i, buffer->bo,
588 buffer->offset,
589 end,
590 buffer->stride,
591 buffer->step_rate);
592 }
593
594 if (uses_draw_params) {
595 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers,
596 brw->draw.draw_params_bo,
597 brw->draw.draw_params_offset,
598 brw->draw.draw_params_bo->size,
599 0 /* stride */,
600 0 /* step rate */);
601 }
602
603 if (uses_derived_draw_params) {
604 dw = genX(emit_vertex_buffer_state)(brw, dw, brw->vb.nr_buffers + 1,
605 brw->draw.derived_draw_params_bo,
606 brw->draw.derived_draw_params_offset,
607 brw->draw.derived_draw_params_bo->size,
608 0 /* stride */,
609 0 /* step rate */);
610 }
611 }
612
613 /* The hardware allows one more VERTEX_ELEMENTS than VERTEX_BUFFERS,
614 * presumably for VertexID/InstanceID.
615 */
616 #if GEN_GEN >= 6
617 assert(nr_elements <= 34);
618 const struct brw_vertex_element *gen6_edgeflag_input = NULL;
619 #else
620 assert(nr_elements <= 18);
621 #endif
622
623 dw = brw_batch_emitn(brw, GENX(3DSTATE_VERTEX_ELEMENTS),
624 1 + GENX(VERTEX_ELEMENT_STATE_length) * nr_elements);
625 unsigned i;
626 for (i = 0; i < brw->vb.nr_enabled; i++) {
627 const struct brw_vertex_element *input = brw->vb.enabled[i];
628 const struct gl_vertex_format *glformat = input->glformat;
629 uint32_t format = brw_get_vertex_surface_type(brw, glformat);
630 uint32_t comp0 = VFCOMP_STORE_SRC;
631 uint32_t comp1 = VFCOMP_STORE_SRC;
632 uint32_t comp2 = VFCOMP_STORE_SRC;
633 uint32_t comp3 = VFCOMP_STORE_SRC;
634 const unsigned num_uploads = GEN_GEN < 8 ?
635 uploads_needed(format, input->is_dual_slot) : 1;
636
637 #if GEN_GEN >= 8
638 /* From the BDW PRM, Volume 2d, page 588 (VERTEX_ELEMENT_STATE):
639 * "Any SourceElementFormat of *64*_PASSTHRU cannot be used with an
640 * element which has edge flag enabled."
641 */
642 assert(!(is_passthru_format(format) && uses_edge_flag));
643 #endif
644
645 /* The gen4 driver expects edgeflag to come in as a float, and passes
646 * that float on to the tests in the clipper. Mesa's current vertex
647 * attribute value for EdgeFlag is stored as a float, which works out.
648 * glEdgeFlagPointer, on the other hand, gives us an unnormalized
649 * integer ubyte. Just rewrite that to convert to a float.
650 *
651 * Gen6+ passes edgeflag as sideband along with the vertex, instead
652 * of in the VUE. We have to upload it sideband as the last vertex
653 * element according to the B-Spec.
654 */
655 #if GEN_GEN >= 6
656 if (input == &brw->vb.inputs[VERT_ATTRIB_EDGEFLAG]) {
657 gen6_edgeflag_input = input;
658 continue;
659 }
660 #endif
661
662 for (unsigned c = 0; c < num_uploads; c++) {
663 const uint32_t upload_format = GEN_GEN >= 8 ? format :
664 downsize_format_if_needed(format, c);
665 /* If we need more that one upload, the offset stride would be 128
666 * bits (16 bytes), as for previous uploads we are using the full
667 * entry. */
668 const unsigned offset = input->offset + c * 16;
669
670 const int size = (GEN_GEN < 8 && is_passthru_format(format)) ?
671 upload_format_size(upload_format) : glformat->Size;
672
673 switch (size) {
674 case 0: comp0 = VFCOMP_STORE_0; /* fallthrough */
675 case 1: comp1 = VFCOMP_STORE_0; /* fallthrough */
676 case 2: comp2 = VFCOMP_STORE_0; /* fallthrough */
677 case 3:
678 if (GEN_GEN >= 8 && glformat->Doubles) {
679 comp3 = VFCOMP_STORE_0;
680 } else if (glformat->Integer) {
681 comp3 = VFCOMP_STORE_1_INT;
682 } else {
683 comp3 = VFCOMP_STORE_1_FP;
684 }
685
686 break;
687 }
688
689 #if GEN_GEN >= 8
690 /* From the BDW PRM, Volume 2d, page 586 (VERTEX_ELEMENT_STATE):
691 *
692 * "When SourceElementFormat is set to one of the *64*_PASSTHRU
693 * formats, 64-bit components are stored in the URB without any
694 * conversion. In this case, vertex elements must be written as 128
695 * or 256 bits, with VFCOMP_STORE_0 being used to pad the output as
696 * required. E.g., if R64_PASSTHRU is used to copy a 64-bit Red
697 * component into the URB, Component 1 must be specified as
698 * VFCOMP_STORE_0 (with Components 2,3 set to VFCOMP_NOSTORE) in
699 * order to output a 128-bit vertex element, or Components 1-3 must
700 * be specified as VFCOMP_STORE_0 in order to output a 256-bit vertex
701 * element. Likewise, use of R64G64B64_PASSTHRU requires Component 3
702 * to be specified as VFCOMP_STORE_0 in order to output a 256-bit
703 * vertex element."
704 */
705 if (glformat->Doubles && !input->is_dual_slot) {
706 /* Store vertex elements which correspond to double and dvec2 vertex
707 * shader inputs as 128-bit vertex elements, instead of 256-bits.
708 */
709 comp2 = VFCOMP_NOSTORE;
710 comp3 = VFCOMP_NOSTORE;
711 }
712 #endif
713
714 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
715 .VertexBufferIndex = input->buffer,
716 .Valid = true,
717 .SourceElementFormat = upload_format,
718 .SourceElementOffset = offset,
719 .Component0Control = comp0,
720 .Component1Control = comp1,
721 .Component2Control = comp2,
722 .Component3Control = comp3,
723 #if GEN_GEN < 5
724 .DestinationElementOffset = i * 4,
725 #endif
726 };
727
728 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
729 dw += GENX(VERTEX_ELEMENT_STATE_length);
730 }
731 }
732
733 if (needs_sgvs_element) {
734 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
735 .Valid = true,
736 .Component0Control = VFCOMP_STORE_0,
737 .Component1Control = VFCOMP_STORE_0,
738 .Component2Control = VFCOMP_STORE_0,
739 .Component3Control = VFCOMP_STORE_0,
740 #if GEN_GEN < 5
741 .DestinationElementOffset = i * 4,
742 #endif
743 };
744
745 #if GEN_GEN >= 8
746 if (uses_draw_params) {
747 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
748 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
749 elem_state.Component0Control = VFCOMP_STORE_SRC;
750 elem_state.Component1Control = VFCOMP_STORE_SRC;
751 }
752 #else
753 elem_state.VertexBufferIndex = brw->vb.nr_buffers;
754 elem_state.SourceElementFormat = ISL_FORMAT_R32G32_UINT;
755 if (uses_draw_params) {
756 elem_state.Component0Control = VFCOMP_STORE_SRC;
757 elem_state.Component1Control = VFCOMP_STORE_SRC;
758 }
759
760 if (vs_prog_data->uses_vertexid)
761 elem_state.Component2Control = VFCOMP_STORE_VID;
762
763 if (vs_prog_data->uses_instanceid)
764 elem_state.Component3Control = VFCOMP_STORE_IID;
765 #endif
766
767 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
768 dw += GENX(VERTEX_ELEMENT_STATE_length);
769 }
770
771 if (uses_derived_draw_params) {
772 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
773 .Valid = true,
774 .VertexBufferIndex = brw->vb.nr_buffers + 1,
775 .SourceElementFormat = ISL_FORMAT_R32G32_UINT,
776 .Component0Control = VFCOMP_STORE_SRC,
777 .Component1Control = VFCOMP_STORE_SRC,
778 .Component2Control = VFCOMP_STORE_0,
779 .Component3Control = VFCOMP_STORE_0,
780 #if GEN_GEN < 5
781 .DestinationElementOffset = i * 4,
782 #endif
783 };
784
785 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
786 dw += GENX(VERTEX_ELEMENT_STATE_length);
787 }
788
789 #if GEN_GEN >= 6
790 if (gen6_edgeflag_input) {
791 const struct gl_vertex_format *glformat = gen6_edgeflag_input->glformat;
792 const uint32_t format = brw_get_vertex_surface_type(brw, glformat);
793
794 struct GENX(VERTEX_ELEMENT_STATE) elem_state = {
795 .Valid = true,
796 .VertexBufferIndex = gen6_edgeflag_input->buffer,
797 .EdgeFlagEnable = true,
798 .SourceElementFormat = format,
799 .SourceElementOffset = gen6_edgeflag_input->offset,
800 .Component0Control = VFCOMP_STORE_SRC,
801 .Component1Control = VFCOMP_STORE_0,
802 .Component2Control = VFCOMP_STORE_0,
803 .Component3Control = VFCOMP_STORE_0,
804 };
805
806 GENX(VERTEX_ELEMENT_STATE_pack)(brw, dw, &elem_state);
807 dw += GENX(VERTEX_ELEMENT_STATE_length);
808 }
809 #endif
810
811 #if GEN_GEN >= 8
812 for (unsigned i = 0, j = 0; i < brw->vb.nr_enabled; i++) {
813 const struct brw_vertex_element *input = brw->vb.enabled[i];
814 const struct brw_vertex_buffer *buffer = &brw->vb.buffers[input->buffer];
815 unsigned element_index;
816
817 /* The edge flag element is reordered to be the last one in the code
818 * above so we need to compensate for that in the element indices used
819 * below.
820 */
821 if (input == gen6_edgeflag_input)
822 element_index = nr_elements - 1;
823 else
824 element_index = j++;
825
826 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
827 vfi.VertexElementIndex = element_index;
828 vfi.InstancingEnable = buffer->step_rate != 0;
829 vfi.InstanceDataStepRate = buffer->step_rate;
830 }
831 }
832
833 if (vs_prog_data->uses_drawid) {
834 const unsigned element = brw->vb.nr_enabled + needs_sgvs_element;
835
836 brw_batch_emit(brw, GENX(3DSTATE_VF_INSTANCING), vfi) {
837 vfi.VertexElementIndex = element;
838 }
839 }
840 #endif
841 }
842
843 static const struct brw_tracked_state genX(vertices) = {
844 .dirty = {
845 .mesa = _NEW_POLYGON,
846 .brw = BRW_NEW_BATCH |
847 BRW_NEW_BLORP |
848 BRW_NEW_VERTEX_PROGRAM |
849 BRW_NEW_VERTICES |
850 BRW_NEW_VS_PROG_DATA,
851 },
852 .emit = genX(emit_vertices),
853 };
854
855 static void
856 genX(emit_index_buffer)(struct brw_context *brw)
857 {
858 const struct _mesa_index_buffer *index_buffer = brw->ib.ib;
859
860 if (index_buffer == NULL)
861 return;
862
863 vf_invalidate_for_ib_48bit_transition(brw);
864
865 brw_batch_emit(brw, GENX(3DSTATE_INDEX_BUFFER), ib) {
866 #if GEN_GEN < 8 && !GEN_IS_HASWELL
867 assert(brw->ib.enable_cut_index == brw->prim_restart.enable_cut_index);
868 ib.CutIndexEnable = brw->ib.enable_cut_index;
869 #endif
870 ib.IndexFormat = brw_get_index_type(1 << index_buffer->index_size_shift);
871
872 /* The VF cache designers apparently cut corners, and made the cache
873 * only consider the bottom 32 bits of memory addresses. If you happen
874 * to have two index buffers which get placed exactly 4 GiB apart and
875 * use them in back-to-back draw calls, you can get collisions. To work
876 * around this problem, we restrict index buffers to the low 32 bits of
877 * the address space.
878 */
879 ib.BufferStartingAddress = ro_32_bo(brw->ib.bo, 0);
880 #if GEN_GEN >= 8
881 ib.MOCS = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
882 ib.BufferSize = brw->ib.size;
883 #else
884 ib.BufferEndingAddress = ro_bo(brw->ib.bo, brw->ib.size - 1);
885 #endif
886 }
887 }
888
889 static const struct brw_tracked_state genX(index_buffer) = {
890 .dirty = {
891 .mesa = 0,
892 .brw = BRW_NEW_BATCH |
893 BRW_NEW_BLORP |
894 BRW_NEW_INDEX_BUFFER,
895 },
896 .emit = genX(emit_index_buffer),
897 };
898
899 #if GEN_IS_HASWELL || GEN_GEN >= 8
900 static void
901 genX(upload_cut_index)(struct brw_context *brw)
902 {
903 const struct gl_context *ctx = &brw->ctx;
904
905 brw_batch_emit(brw, GENX(3DSTATE_VF), vf) {
906 if (ctx->Array._PrimitiveRestart && brw->ib.ib) {
907 vf.IndexedDrawCutIndexEnable = true;
908 vf.CutIndex = ctx->Array._RestartIndex[brw->ib.index_size - 1];
909 }
910 }
911 }
912
913 const struct brw_tracked_state genX(cut_index) = {
914 .dirty = {
915 .mesa = _NEW_TRANSFORM,
916 .brw = BRW_NEW_INDEX_BUFFER,
917 },
918 .emit = genX(upload_cut_index),
919 };
920 #endif
921
922 static void
923 genX(upload_vf_statistics)(struct brw_context *brw)
924 {
925 brw_batch_emit(brw, GENX(3DSTATE_VF_STATISTICS), vf) {
926 vf.StatisticsEnable = true;
927 }
928 }
929
930 const struct brw_tracked_state genX(vf_statistics) = {
931 .dirty = {
932 .mesa = 0,
933 .brw = BRW_NEW_BLORP | BRW_NEW_CONTEXT,
934 },
935 .emit = genX(upload_vf_statistics),
936 };
937
938 #if GEN_GEN >= 6
939 /**
940 * Determine the appropriate attribute override value to store into the
941 * 3DSTATE_SF structure for a given fragment shader attribute. The attribute
942 * override value contains two pieces of information: the location of the
943 * attribute in the VUE (relative to urb_entry_read_offset, see below), and a
944 * flag indicating whether to "swizzle" the attribute based on the direction
945 * the triangle is facing.
946 *
947 * If an attribute is "swizzled", then the given VUE location is used for
948 * front-facing triangles, and the VUE location that immediately follows is
949 * used for back-facing triangles. We use this to implement the mapping from
950 * gl_FrontColor/gl_BackColor to gl_Color.
951 *
952 * urb_entry_read_offset is the offset into the VUE at which the SF unit is
953 * being instructed to begin reading attribute data. It can be set to a
954 * nonzero value to prevent the SF unit from wasting time reading elements of
955 * the VUE that are not needed by the fragment shader. It is measured in
956 * 256-bit increments.
957 */
958 static void
959 genX(get_attr_override)(struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr,
960 const struct brw_vue_map *vue_map,
961 int urb_entry_read_offset, int fs_attr,
962 bool two_side_color, uint32_t *max_source_attr)
963 {
964 /* Find the VUE slot for this attribute. */
965 int slot = vue_map->varying_to_slot[fs_attr];
966
967 /* Viewport and Layer are stored in the VUE header. We need to override
968 * them to zero if earlier stages didn't write them, as GL requires that
969 * they read back as zero when not explicitly set.
970 */
971 if (fs_attr == VARYING_SLOT_VIEWPORT || fs_attr == VARYING_SLOT_LAYER) {
972 attr->ComponentOverrideX = true;
973 attr->ComponentOverrideW = true;
974 attr->ConstantSource = CONST_0000;
975
976 if (!(vue_map->slots_valid & VARYING_BIT_LAYER))
977 attr->ComponentOverrideY = true;
978 if (!(vue_map->slots_valid & VARYING_BIT_VIEWPORT))
979 attr->ComponentOverrideZ = true;
980
981 return;
982 }
983
984 /* If there was only a back color written but not front, use back
985 * as the color instead of undefined
986 */
987 if (slot == -1 && fs_attr == VARYING_SLOT_COL0)
988 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC0];
989 if (slot == -1 && fs_attr == VARYING_SLOT_COL1)
990 slot = vue_map->varying_to_slot[VARYING_SLOT_BFC1];
991
992 if (slot == -1) {
993 /* This attribute does not exist in the VUE--that means that the vertex
994 * shader did not write to it. This means that either:
995 *
996 * (a) This attribute is a texture coordinate, and it is going to be
997 * replaced with point coordinates (as a consequence of a call to
998 * glTexEnvi(GL_POINT_SPRITE, GL_COORD_REPLACE, GL_TRUE)), so the
999 * hardware will ignore whatever attribute override we supply.
1000 *
1001 * (b) This attribute is read by the fragment shader but not written by
1002 * the vertex shader, so its value is undefined. Therefore the
1003 * attribute override we supply doesn't matter.
1004 *
1005 * (c) This attribute is gl_PrimitiveID, and it wasn't written by the
1006 * previous shader stage.
1007 *
1008 * Note that we don't have to worry about the cases where the attribute
1009 * is gl_PointCoord or is undergoing point sprite coordinate
1010 * replacement, because in those cases, this function isn't called.
1011 *
1012 * In case (c), we need to program the attribute overrides so that the
1013 * primitive ID will be stored in this slot. In every other case, the
1014 * attribute override we supply doesn't matter. So just go ahead and
1015 * program primitive ID in every case.
1016 */
1017 attr->ComponentOverrideW = true;
1018 attr->ComponentOverrideX = true;
1019 attr->ComponentOverrideY = true;
1020 attr->ComponentOverrideZ = true;
1021 attr->ConstantSource = PRIM_ID;
1022 return;
1023 }
1024
1025 /* Compute the location of the attribute relative to urb_entry_read_offset.
1026 * Each increment of urb_entry_read_offset represents a 256-bit value, so
1027 * it counts for two 128-bit VUE slots.
1028 */
1029 int source_attr = slot - 2 * urb_entry_read_offset;
1030 assert(source_attr >= 0 && source_attr < 32);
1031
1032 /* If we are doing two-sided color, and the VUE slot following this one
1033 * represents a back-facing color, then we need to instruct the SF unit to
1034 * do back-facing swizzling.
1035 */
1036 bool swizzling = two_side_color &&
1037 ((vue_map->slot_to_varying[slot] == VARYING_SLOT_COL0 &&
1038 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC0) ||
1039 (vue_map->slot_to_varying[slot] == VARYING_SLOT_COL1 &&
1040 vue_map->slot_to_varying[slot+1] == VARYING_SLOT_BFC1));
1041
1042 /* Update max_source_attr. If swizzling, the SF will read this slot + 1. */
1043 if (*max_source_attr < source_attr + swizzling)
1044 *max_source_attr = source_attr + swizzling;
1045
1046 attr->SourceAttribute = source_attr;
1047 if (swizzling)
1048 attr->SwizzleSelect = INPUTATTR_FACING;
1049 }
1050
1051
1052 static void
1053 genX(calculate_attr_overrides)(const struct brw_context *brw,
1054 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) *attr_overrides,
1055 uint32_t *point_sprite_enables,
1056 uint32_t *urb_entry_read_length,
1057 uint32_t *urb_entry_read_offset)
1058 {
1059 const struct gl_context *ctx = &brw->ctx;
1060
1061 /* _NEW_POINT */
1062 const struct gl_point_attrib *point = &ctx->Point;
1063
1064 /* BRW_NEW_FRAGMENT_PROGRAM */
1065 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1066
1067 /* BRW_NEW_FS_PROG_DATA */
1068 const struct brw_wm_prog_data *wm_prog_data =
1069 brw_wm_prog_data(brw->wm.base.prog_data);
1070 uint32_t max_source_attr = 0;
1071
1072 *point_sprite_enables = 0;
1073
1074 int first_slot =
1075 brw_compute_first_urb_slot_required(fp->info.inputs_read,
1076 &brw->vue_map_geom_out);
1077
1078 /* Each URB offset packs two varying slots */
1079 assert(first_slot % 2 == 0);
1080 *urb_entry_read_offset = first_slot / 2;
1081
1082 /* From the Ivybridge PRM, Vol 2 Part 1, 3DSTATE_SBE,
1083 * description of dw10 Point Sprite Texture Coordinate Enable:
1084 *
1085 * "This field must be programmed to zero when non-point primitives
1086 * are rendered."
1087 *
1088 * The SandyBridge PRM doesn't explicitly say that point sprite enables
1089 * must be programmed to zero when rendering non-point primitives, but
1090 * the IvyBridge PRM does, and if we don't, we get garbage.
1091 *
1092 * This is not required on Haswell, as the hardware ignores this state
1093 * when drawing non-points -- although we do still need to be careful to
1094 * correctly set the attr overrides.
1095 *
1096 * _NEW_POLYGON
1097 * BRW_NEW_PRIMITIVE | BRW_NEW_GS_PROG_DATA | BRW_NEW_TES_PROG_DATA
1098 */
1099 bool drawing_points = brw_is_drawing_points(brw);
1100
1101 for (uint8_t idx = 0; idx < wm_prog_data->urb_setup_attribs_count; idx++) {
1102 uint8_t attr = wm_prog_data->urb_setup_attribs[idx];
1103 int input_index = wm_prog_data->urb_setup[attr];
1104
1105 assert(0 <= input_index);
1106
1107 /* _NEW_POINT */
1108 bool point_sprite = false;
1109 if (drawing_points) {
1110 if (point->PointSprite &&
1111 (attr >= VARYING_SLOT_TEX0 && attr <= VARYING_SLOT_TEX7) &&
1112 (point->CoordReplace & (1u << (attr - VARYING_SLOT_TEX0)))) {
1113 point_sprite = true;
1114 }
1115
1116 if (attr == VARYING_SLOT_PNTC)
1117 point_sprite = true;
1118
1119 if (point_sprite)
1120 *point_sprite_enables |= (1 << input_index);
1121 }
1122
1123 /* BRW_NEW_VUE_MAP_GEOM_OUT | _NEW_LIGHT | _NEW_PROGRAM */
1124 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attribute = { 0 };
1125
1126 if (!point_sprite) {
1127 genX(get_attr_override)(&attribute,
1128 &brw->vue_map_geom_out,
1129 *urb_entry_read_offset, attr,
1130 _mesa_vertex_program_two_side_enabled(ctx),
1131 &max_source_attr);
1132 }
1133
1134 /* The hardware can only do the overrides on 16 overrides at a
1135 * time, and the other up to 16 have to be lined up so that the
1136 * input index = the output index. We'll need to do some
1137 * tweaking to make sure that's the case.
1138 */
1139 if (input_index < 16)
1140 attr_overrides[input_index] = attribute;
1141 else
1142 assert(attribute.SourceAttribute == input_index);
1143 }
1144
1145 /* From the Sandy Bridge PRM, Volume 2, Part 1, documentation for
1146 * 3DSTATE_SF DWord 1 bits 15:11, "Vertex URB Entry Read Length":
1147 *
1148 * "This field should be set to the minimum length required to read the
1149 * maximum source attribute. The maximum source attribute is indicated
1150 * by the maximum value of the enabled Attribute # Source Attribute if
1151 * Attribute Swizzle Enable is set, Number of Output Attributes-1 if
1152 * enable is not set.
1153 * read_length = ceiling((max_source_attr + 1) / 2)
1154 *
1155 * [errata] Corruption/Hang possible if length programmed larger than
1156 * recommended"
1157 *
1158 * Similar text exists for Ivy Bridge.
1159 */
1160 *urb_entry_read_length = DIV_ROUND_UP(max_source_attr + 1, 2);
1161 }
1162 #endif
1163
1164 /* ---------------------------------------------------------------------- */
1165
1166 #if GEN_GEN >= 8
1167 typedef struct GENX(3DSTATE_WM_DEPTH_STENCIL) DEPTH_STENCIL_GENXML;
1168 #elif GEN_GEN >= 6
1169 typedef struct GENX(DEPTH_STENCIL_STATE) DEPTH_STENCIL_GENXML;
1170 #else
1171 typedef struct GENX(COLOR_CALC_STATE) DEPTH_STENCIL_GENXML;
1172 #endif
1173
1174 static inline void
1175 set_depth_stencil_bits(struct brw_context *brw, DEPTH_STENCIL_GENXML *ds)
1176 {
1177 struct gl_context *ctx = &brw->ctx;
1178
1179 /* _NEW_BUFFERS */
1180 struct intel_renderbuffer *depth_irb =
1181 intel_get_renderbuffer(ctx->DrawBuffer, BUFFER_DEPTH);
1182
1183 /* _NEW_DEPTH */
1184 struct gl_depthbuffer_attrib *depth = &ctx->Depth;
1185
1186 /* _NEW_STENCIL */
1187 struct gl_stencil_attrib *stencil = &ctx->Stencil;
1188 const int b = stencil->_BackFace;
1189
1190 if (depth->Test && depth_irb) {
1191 ds->DepthTestEnable = true;
1192 ds->DepthBufferWriteEnable = brw_depth_writes_enabled(brw);
1193 ds->DepthTestFunction = intel_translate_compare_func(depth->Func);
1194 }
1195
1196 if (brw->stencil_enabled) {
1197 ds->StencilTestEnable = true;
1198 ds->StencilWriteMask = stencil->WriteMask[0] & 0xff;
1199 ds->StencilTestMask = stencil->ValueMask[0] & 0xff;
1200
1201 ds->StencilTestFunction =
1202 intel_translate_compare_func(stencil->Function[0]);
1203 ds->StencilFailOp =
1204 intel_translate_stencil_op(stencil->FailFunc[0]);
1205 ds->StencilPassDepthPassOp =
1206 intel_translate_stencil_op(stencil->ZPassFunc[0]);
1207 ds->StencilPassDepthFailOp =
1208 intel_translate_stencil_op(stencil->ZFailFunc[0]);
1209
1210 ds->StencilBufferWriteEnable = brw->stencil_write_enabled;
1211
1212 if (brw->stencil_two_sided) {
1213 ds->DoubleSidedStencilEnable = true;
1214 ds->BackfaceStencilWriteMask = stencil->WriteMask[b] & 0xff;
1215 ds->BackfaceStencilTestMask = stencil->ValueMask[b] & 0xff;
1216
1217 ds->BackfaceStencilTestFunction =
1218 intel_translate_compare_func(stencil->Function[b]);
1219 ds->BackfaceStencilFailOp =
1220 intel_translate_stencil_op(stencil->FailFunc[b]);
1221 ds->BackfaceStencilPassDepthPassOp =
1222 intel_translate_stencil_op(stencil->ZPassFunc[b]);
1223 ds->BackfaceStencilPassDepthFailOp =
1224 intel_translate_stencil_op(stencil->ZFailFunc[b]);
1225 }
1226
1227 #if GEN_GEN <= 5 || GEN_GEN >= 9
1228 ds->StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
1229 ds->BackfaceStencilReferenceValue = _mesa_get_stencil_ref(ctx, b);
1230 #endif
1231 }
1232 }
1233
1234 #if GEN_GEN >= 6
1235 static void
1236 genX(upload_depth_stencil_state)(struct brw_context *brw)
1237 {
1238 #if GEN_GEN >= 8
1239 brw_batch_emit(brw, GENX(3DSTATE_WM_DEPTH_STENCIL), wmds) {
1240 set_depth_stencil_bits(brw, &wmds);
1241 }
1242 #else
1243 uint32_t ds_offset;
1244 brw_state_emit(brw, GENX(DEPTH_STENCIL_STATE), 64, &ds_offset, ds) {
1245 set_depth_stencil_bits(brw, &ds);
1246 }
1247
1248 /* Now upload a pointer to the indirect state */
1249 #if GEN_GEN == 6
1250 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
1251 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1252 ptr.DEPTH_STENCIL_STATEChange = true;
1253 }
1254 #else
1255 brw_batch_emit(brw, GENX(3DSTATE_DEPTH_STENCIL_STATE_POINTERS), ptr) {
1256 ptr.PointertoDEPTH_STENCIL_STATE = ds_offset;
1257 }
1258 #endif
1259 #endif
1260 }
1261
1262 static const struct brw_tracked_state genX(depth_stencil_state) = {
1263 .dirty = {
1264 .mesa = _NEW_BUFFERS |
1265 _NEW_DEPTH |
1266 _NEW_STENCIL,
1267 .brw = BRW_NEW_BLORP |
1268 (GEN_GEN >= 8 ? BRW_NEW_CONTEXT
1269 : BRW_NEW_BATCH |
1270 BRW_NEW_STATE_BASE_ADDRESS),
1271 },
1272 .emit = genX(upload_depth_stencil_state),
1273 };
1274 #endif
1275
1276 /* ---------------------------------------------------------------------- */
1277
1278 #if GEN_GEN <= 5
1279
1280 static void
1281 genX(upload_clip_state)(struct brw_context *brw)
1282 {
1283 struct gl_context *ctx = &brw->ctx;
1284
1285 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1286 brw_state_emit(brw, GENX(CLIP_STATE), 32, &brw->clip.state_offset, clip) {
1287 clip.KernelStartPointer = KSP(brw, brw->clip.prog_offset);
1288 clip.GRFRegisterCount =
1289 DIV_ROUND_UP(brw->clip.prog_data->total_grf, 16) - 1;
1290 clip.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1291 clip.SingleProgramFlow = true;
1292 clip.VertexURBEntryReadLength = brw->clip.prog_data->urb_read_length;
1293 clip.ConstantURBEntryReadLength = brw->clip.prog_data->curb_read_length;
1294
1295 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1296 clip.ConstantURBEntryReadOffset = brw->curbe.clip_start * 2;
1297 clip.DispatchGRFStartRegisterForURBData = 1;
1298 clip.VertexURBEntryReadOffset = 0;
1299
1300 /* BRW_NEW_URB_FENCE */
1301 clip.NumberofURBEntries = brw->urb.nr_clip_entries;
1302 clip.URBEntryAllocationSize = brw->urb.vsize - 1;
1303
1304 if (brw->urb.nr_clip_entries >= 10) {
1305 /* Half of the URB entries go to each thread, and it has to be an
1306 * even number.
1307 */
1308 assert(brw->urb.nr_clip_entries % 2 == 0);
1309
1310 /* Although up to 16 concurrent Clip threads are allowed on Ironlake,
1311 * only 2 threads can output VUEs at a time.
1312 */
1313 clip.MaximumNumberofThreads = (GEN_GEN == 5 ? 16 : 2) - 1;
1314 } else {
1315 assert(brw->urb.nr_clip_entries >= 5);
1316 clip.MaximumNumberofThreads = 1 - 1;
1317 }
1318
1319 clip.VertexPositionSpace = VPOS_NDCSPACE;
1320 clip.UserClipFlagsMustClipEnable = true;
1321 clip.GuardbandClipTestEnable = true;
1322
1323 clip.ClipperViewportStatePointer =
1324 ro_bo(brw->batch.state.bo, brw->clip.vp_offset);
1325
1326 clip.ScreenSpaceViewportXMin = -1;
1327 clip.ScreenSpaceViewportXMax = 1;
1328 clip.ScreenSpaceViewportYMin = -1;
1329 clip.ScreenSpaceViewportYMax = 1;
1330
1331 clip.ViewportXYClipTestEnable = true;
1332 clip.ViewportZClipTestEnable = !(ctx->Transform.DepthClampNear &&
1333 ctx->Transform.DepthClampFar);
1334
1335 /* _NEW_TRANSFORM */
1336 if (GEN_GEN == 5 || GEN_IS_G4X) {
1337 clip.UserClipDistanceClipTestEnableBitmask =
1338 ctx->Transform.ClipPlanesEnabled;
1339 } else {
1340 /* Up to 6 actual clip flags, plus the 7th for the negative RHW
1341 * workaround.
1342 */
1343 clip.UserClipDistanceClipTestEnableBitmask =
1344 (ctx->Transform.ClipPlanesEnabled & 0x3f) | 0x40;
1345 }
1346
1347 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1348 clip.APIMode = APIMODE_D3D;
1349 else
1350 clip.APIMode = APIMODE_OGL;
1351
1352 clip.GuardbandClipTestEnable = true;
1353
1354 clip.ClipMode = brw->clip.prog_data->clip_mode;
1355
1356 #if GEN_IS_G4X
1357 clip.NegativeWClipTestEnable = true;
1358 #endif
1359 }
1360 }
1361
1362 const struct brw_tracked_state genX(clip_state) = {
1363 .dirty = {
1364 .mesa = _NEW_TRANSFORM |
1365 _NEW_VIEWPORT,
1366 .brw = BRW_NEW_BATCH |
1367 BRW_NEW_BLORP |
1368 BRW_NEW_CLIP_PROG_DATA |
1369 BRW_NEW_PUSH_CONSTANT_ALLOCATION |
1370 BRW_NEW_PROGRAM_CACHE |
1371 BRW_NEW_URB_FENCE,
1372 },
1373 .emit = genX(upload_clip_state),
1374 };
1375
1376 #else
1377
1378 static void
1379 genX(upload_clip_state)(struct brw_context *brw)
1380 {
1381 struct gl_context *ctx = &brw->ctx;
1382
1383 /* _NEW_BUFFERS */
1384 struct gl_framebuffer *fb = ctx->DrawBuffer;
1385
1386 /* BRW_NEW_FS_PROG_DATA */
1387 struct brw_wm_prog_data *wm_prog_data =
1388 brw_wm_prog_data(brw->wm.base.prog_data);
1389
1390 brw_batch_emit(brw, GENX(3DSTATE_CLIP), clip) {
1391 clip.StatisticsEnable = !brw->meta_in_progress;
1392
1393 if (wm_prog_data->barycentric_interp_modes &
1394 BRW_BARYCENTRIC_NONPERSPECTIVE_BITS)
1395 clip.NonPerspectiveBarycentricEnable = true;
1396
1397 #if GEN_GEN >= 7
1398 clip.EarlyCullEnable = true;
1399 #endif
1400
1401 #if GEN_GEN == 7
1402 clip.FrontWinding = brw->polygon_front_bit != fb->FlipY;
1403
1404 if (ctx->Polygon.CullFlag) {
1405 switch (ctx->Polygon.CullFaceMode) {
1406 case GL_FRONT:
1407 clip.CullMode = CULLMODE_FRONT;
1408 break;
1409 case GL_BACK:
1410 clip.CullMode = CULLMODE_BACK;
1411 break;
1412 case GL_FRONT_AND_BACK:
1413 clip.CullMode = CULLMODE_BOTH;
1414 break;
1415 default:
1416 unreachable("Should not get here: invalid CullFlag");
1417 }
1418 } else {
1419 clip.CullMode = CULLMODE_NONE;
1420 }
1421 #endif
1422
1423 #if GEN_GEN < 8
1424 clip.UserClipDistanceCullTestEnableBitmask =
1425 brw_vue_prog_data(brw->vs.base.prog_data)->cull_distance_mask;
1426
1427 clip.ViewportZClipTestEnable = !(ctx->Transform.DepthClampNear &&
1428 ctx->Transform.DepthClampFar);
1429 #endif
1430
1431 /* _NEW_LIGHT */
1432 if (ctx->Light.ProvokingVertex == GL_FIRST_VERTEX_CONVENTION) {
1433 clip.TriangleStripListProvokingVertexSelect = 0;
1434 clip.TriangleFanProvokingVertexSelect = 1;
1435 clip.LineStripListProvokingVertexSelect = 0;
1436 } else {
1437 clip.TriangleStripListProvokingVertexSelect = 2;
1438 clip.TriangleFanProvokingVertexSelect = 2;
1439 clip.LineStripListProvokingVertexSelect = 1;
1440 }
1441
1442 /* _NEW_TRANSFORM */
1443 clip.UserClipDistanceClipTestEnableBitmask =
1444 ctx->Transform.ClipPlanesEnabled;
1445
1446 #if GEN_GEN >= 8
1447 clip.ForceUserClipDistanceClipTestEnableBitmask = true;
1448 #endif
1449
1450 if (ctx->Transform.ClipDepthMode == GL_ZERO_TO_ONE)
1451 clip.APIMode = APIMODE_D3D;
1452 else
1453 clip.APIMode = APIMODE_OGL;
1454
1455 clip.GuardbandClipTestEnable = true;
1456
1457 /* BRW_NEW_VIEWPORT_COUNT */
1458 const unsigned viewport_count = brw->clip.viewport_count;
1459
1460 if (ctx->RasterDiscard) {
1461 clip.ClipMode = CLIPMODE_REJECT_ALL;
1462 #if GEN_GEN == 6
1463 perf_debug("Rasterizer discard is currently implemented via the "
1464 "clipper; having the GS not write primitives would "
1465 "likely be faster.\n");
1466 #endif
1467 } else {
1468 clip.ClipMode = CLIPMODE_NORMAL;
1469 }
1470
1471 clip.ClipEnable = true;
1472
1473 /* _NEW_POLYGON,
1474 * BRW_NEW_GEOMETRY_PROGRAM | BRW_NEW_TES_PROG_DATA | BRW_NEW_PRIMITIVE
1475 */
1476 if (!brw_is_drawing_points(brw) && !brw_is_drawing_lines(brw))
1477 clip.ViewportXYClipTestEnable = true;
1478
1479 clip.MinimumPointWidth = 0.125;
1480 clip.MaximumPointWidth = 255.875;
1481 clip.MaximumVPIndex = viewport_count - 1;
1482 if (_mesa_geometric_layers(fb) == 0)
1483 clip.ForceZeroRTAIndexEnable = true;
1484 }
1485 }
1486
1487 static const struct brw_tracked_state genX(clip_state) = {
1488 .dirty = {
1489 .mesa = _NEW_BUFFERS |
1490 _NEW_LIGHT |
1491 _NEW_POLYGON |
1492 _NEW_TRANSFORM,
1493 .brw = BRW_NEW_BLORP |
1494 BRW_NEW_CONTEXT |
1495 BRW_NEW_FS_PROG_DATA |
1496 BRW_NEW_GS_PROG_DATA |
1497 BRW_NEW_VS_PROG_DATA |
1498 BRW_NEW_META_IN_PROGRESS |
1499 BRW_NEW_PRIMITIVE |
1500 BRW_NEW_RASTERIZER_DISCARD |
1501 BRW_NEW_TES_PROG_DATA |
1502 BRW_NEW_VIEWPORT_COUNT,
1503 },
1504 .emit = genX(upload_clip_state),
1505 };
1506 #endif
1507
1508 /* ---------------------------------------------------------------------- */
1509
1510 static void
1511 genX(upload_sf)(struct brw_context *brw)
1512 {
1513 struct gl_context *ctx = &brw->ctx;
1514 float point_size;
1515
1516 #if GEN_GEN <= 7
1517 /* _NEW_BUFFERS */
1518 bool flip_y = ctx->DrawBuffer->FlipY;
1519 UNUSED const bool multisampled_fbo =
1520 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1521 #endif
1522
1523 #if GEN_GEN < 6
1524 const struct brw_sf_prog_data *sf_prog_data = brw->sf.prog_data;
1525
1526 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1527
1528 brw_state_emit(brw, GENX(SF_STATE), 64, &brw->sf.state_offset, sf) {
1529 sf.KernelStartPointer = KSP(brw, brw->sf.prog_offset);
1530 sf.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1531 sf.GRFRegisterCount = DIV_ROUND_UP(sf_prog_data->total_grf, 16) - 1;
1532 sf.DispatchGRFStartRegisterForURBData = 3;
1533 sf.VertexURBEntryReadOffset = BRW_SF_URB_ENTRY_READ_OFFSET;
1534 sf.VertexURBEntryReadLength = sf_prog_data->urb_read_length;
1535 sf.NumberofURBEntries = brw->urb.nr_sf_entries;
1536 sf.URBEntryAllocationSize = brw->urb.sfsize - 1;
1537
1538 /* STATE_PREFETCH command description describes this state as being
1539 * something loaded through the GPE (L2 ISC), so it's INSTRUCTION
1540 * domain.
1541 */
1542 sf.SetupViewportStateOffset =
1543 ro_bo(brw->batch.state.bo, brw->sf.vp_offset);
1544
1545 sf.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1546
1547 /* sf.ConstantURBEntryReadLength = stage_prog_data->curb_read_length; */
1548 /* sf.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2; */
1549
1550 sf.MaximumNumberofThreads =
1551 MIN2(GEN_GEN == 5 ? 48 : 24, brw->urb.nr_sf_entries) - 1;
1552
1553 sf.SpritePointEnable = ctx->Point.PointSprite;
1554
1555 sf.DestinationOriginHorizontalBias = 0.5;
1556 sf.DestinationOriginVerticalBias = 0.5;
1557 #else
1558 brw_batch_emit(brw, GENX(3DSTATE_SF), sf) {
1559 sf.StatisticsEnable = true;
1560 #endif
1561 sf.ViewportTransformEnable = true;
1562
1563 #if GEN_GEN == 7
1564 /* _NEW_BUFFERS */
1565 sf.DepthBufferSurfaceFormat = brw_depthbuffer_format(brw);
1566 #endif
1567
1568 #if GEN_GEN <= 7
1569 /* _NEW_POLYGON */
1570 sf.FrontWinding = brw->polygon_front_bit != flip_y;
1571 #if GEN_GEN >= 6
1572 sf.GlobalDepthOffsetEnableSolid = ctx->Polygon.OffsetFill;
1573 sf.GlobalDepthOffsetEnableWireframe = ctx->Polygon.OffsetLine;
1574 sf.GlobalDepthOffsetEnablePoint = ctx->Polygon.OffsetPoint;
1575
1576 switch (ctx->Polygon.FrontMode) {
1577 case GL_FILL:
1578 sf.FrontFaceFillMode = FILL_MODE_SOLID;
1579 break;
1580 case GL_LINE:
1581 sf.FrontFaceFillMode = FILL_MODE_WIREFRAME;
1582 break;
1583 case GL_POINT:
1584 sf.FrontFaceFillMode = FILL_MODE_POINT;
1585 break;
1586 default:
1587 unreachable("not reached");
1588 }
1589
1590 switch (ctx->Polygon.BackMode) {
1591 case GL_FILL:
1592 sf.BackFaceFillMode = FILL_MODE_SOLID;
1593 break;
1594 case GL_LINE:
1595 sf.BackFaceFillMode = FILL_MODE_WIREFRAME;
1596 break;
1597 case GL_POINT:
1598 sf.BackFaceFillMode = FILL_MODE_POINT;
1599 break;
1600 default:
1601 unreachable("not reached");
1602 }
1603
1604 if (multisampled_fbo && ctx->Multisample.Enabled)
1605 sf.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1606
1607 sf.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1608 sf.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1609 sf.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
1610 #endif
1611
1612 sf.ScissorRectangleEnable = true;
1613
1614 if (ctx->Polygon.CullFlag) {
1615 switch (ctx->Polygon.CullFaceMode) {
1616 case GL_FRONT:
1617 sf.CullMode = CULLMODE_FRONT;
1618 break;
1619 case GL_BACK:
1620 sf.CullMode = CULLMODE_BACK;
1621 break;
1622 case GL_FRONT_AND_BACK:
1623 sf.CullMode = CULLMODE_BOTH;
1624 break;
1625 default:
1626 unreachable("not reached");
1627 }
1628 } else {
1629 sf.CullMode = CULLMODE_NONE;
1630 }
1631
1632 #if GEN_IS_HASWELL
1633 sf.LineStippleEnable = ctx->Line.StippleFlag;
1634 #endif
1635
1636 #endif
1637
1638 /* _NEW_LINE */
1639 #if GEN_GEN == 8
1640 const struct gen_device_info *devinfo = &brw->screen->devinfo;
1641
1642 if (devinfo->is_cherryview)
1643 sf.CHVLineWidth = brw_get_line_width(brw);
1644 else
1645 sf.LineWidth = brw_get_line_width(brw);
1646 #else
1647 sf.LineWidth = brw_get_line_width(brw);
1648 #endif
1649
1650 if (ctx->Line.SmoothFlag) {
1651 sf.LineEndCapAntialiasingRegionWidth = _10pixels;
1652 #if GEN_GEN <= 7
1653 sf.AntialiasingEnable = true;
1654 #endif
1655 }
1656
1657 /* _NEW_POINT - Clamp to ARB_point_parameters user limits */
1658 point_size = CLAMP(ctx->Point.Size, ctx->Point.MinSize, ctx->Point.MaxSize);
1659 /* Clamp to the hardware limits */
1660 sf.PointWidth = CLAMP(point_size, 0.125f, 255.875f);
1661
1662 /* _NEW_PROGRAM | _NEW_POINT, BRW_NEW_VUE_MAP_GEOM_OUT */
1663 if (use_state_point_size(brw))
1664 sf.PointWidthSource = State;
1665
1666 #if GEN_GEN >= 8
1667 /* _NEW_POINT | _NEW_MULTISAMPLE */
1668 if ((ctx->Point.SmoothFlag || _mesa_is_multisample_enabled(ctx)) &&
1669 !ctx->Point.PointSprite)
1670 sf.SmoothPointEnable = true;
1671 #endif
1672
1673 #if GEN_GEN == 10
1674 /* _NEW_BUFFERS
1675 * Smooth Point Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
1676 */
1677 const bool multisampled_fbo =
1678 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1679 if (multisampled_fbo)
1680 sf.SmoothPointEnable = false;
1681 #endif
1682
1683 #if GEN_IS_G4X || GEN_GEN >= 5
1684 sf.AALineDistanceMode = AALINEDISTANCE_TRUE;
1685 #endif
1686
1687 /* _NEW_LIGHT */
1688 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION) {
1689 sf.TriangleStripListProvokingVertexSelect = 2;
1690 sf.TriangleFanProvokingVertexSelect = 2;
1691 sf.LineStripListProvokingVertexSelect = 1;
1692 } else {
1693 sf.TriangleFanProvokingVertexSelect = 1;
1694 }
1695
1696 #if GEN_GEN == 6
1697 /* BRW_NEW_FS_PROG_DATA */
1698 const struct brw_wm_prog_data *wm_prog_data =
1699 brw_wm_prog_data(brw->wm.base.prog_data);
1700
1701 sf.AttributeSwizzleEnable = true;
1702 sf.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1703
1704 /*
1705 * Window coordinates in an FBO are inverted, which means point
1706 * sprite origin must be inverted, too.
1707 */
1708 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) == flip_y) {
1709 sf.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
1710 } else {
1711 sf.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
1712 }
1713
1714 /* BRW_NEW_VUE_MAP_GEOM_OUT | BRW_NEW_FRAGMENT_PROGRAM |
1715 * _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM | BRW_NEW_FS_PROG_DATA
1716 */
1717 uint32_t urb_entry_read_length;
1718 uint32_t urb_entry_read_offset;
1719 uint32_t point_sprite_enables;
1720 genX(calculate_attr_overrides)(brw, sf.Attribute, &point_sprite_enables,
1721 &urb_entry_read_length,
1722 &urb_entry_read_offset);
1723 sf.VertexURBEntryReadLength = urb_entry_read_length;
1724 sf.VertexURBEntryReadOffset = urb_entry_read_offset;
1725 sf.PointSpriteTextureCoordinateEnable = point_sprite_enables;
1726 sf.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
1727 #endif
1728 }
1729 }
1730
1731 static const struct brw_tracked_state genX(sf_state) = {
1732 .dirty = {
1733 .mesa = _NEW_LIGHT |
1734 _NEW_LINE |
1735 _NEW_POINT |
1736 _NEW_PROGRAM |
1737 (GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0) |
1738 (GEN_GEN <= 7 ? _NEW_BUFFERS | _NEW_POLYGON : 0) |
1739 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
1740 .brw = BRW_NEW_BLORP |
1741 BRW_NEW_VUE_MAP_GEOM_OUT |
1742 (GEN_GEN <= 5 ? BRW_NEW_BATCH |
1743 BRW_NEW_PROGRAM_CACHE |
1744 BRW_NEW_SF_PROG_DATA |
1745 BRW_NEW_SF_VP |
1746 BRW_NEW_URB_FENCE
1747 : 0) |
1748 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT : 0) |
1749 (GEN_GEN >= 6 && GEN_GEN <= 7 ?
1750 BRW_NEW_GS_PROG_DATA |
1751 BRW_NEW_PRIMITIVE |
1752 BRW_NEW_TES_PROG_DATA
1753 : 0) |
1754 (GEN_GEN == 6 ? BRW_NEW_FS_PROG_DATA |
1755 BRW_NEW_FRAGMENT_PROGRAM
1756 : 0),
1757 },
1758 .emit = genX(upload_sf),
1759 };
1760
1761 /* ---------------------------------------------------------------------- */
1762
1763 static bool
1764 brw_color_buffer_write_enabled(struct brw_context *brw)
1765 {
1766 struct gl_context *ctx = &brw->ctx;
1767 /* BRW_NEW_FRAGMENT_PROGRAM */
1768 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
1769 unsigned i;
1770
1771 /* _NEW_BUFFERS */
1772 for (i = 0; i < ctx->DrawBuffer->_NumColorDrawBuffers; i++) {
1773 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
1774 uint64_t outputs_written = fp->info.outputs_written;
1775
1776 /* _NEW_COLOR */
1777 if (rb && (outputs_written & BITFIELD64_BIT(FRAG_RESULT_COLOR) ||
1778 outputs_written & BITFIELD64_BIT(FRAG_RESULT_DATA0 + i)) &&
1779 GET_COLORMASK(ctx->Color.ColorMask, i)) {
1780 return true;
1781 }
1782 }
1783
1784 return false;
1785 }
1786
1787 static void
1788 genX(upload_wm)(struct brw_context *brw)
1789 {
1790 struct gl_context *ctx = &brw->ctx;
1791
1792 /* BRW_NEW_FS_PROG_DATA */
1793 const struct brw_wm_prog_data *wm_prog_data =
1794 brw_wm_prog_data(brw->wm.base.prog_data);
1795
1796 UNUSED bool writes_depth =
1797 wm_prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF;
1798 UNUSED struct brw_stage_state *stage_state = &brw->wm.base;
1799 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
1800
1801 #if GEN_GEN == 6
1802 /* We can't fold this into gen6_upload_wm_push_constants(), because
1803 * according to the SNB PRM, vol 2 part 1 section 7.2.2
1804 * (3DSTATE_CONSTANT_PS [DevSNB]):
1805 *
1806 * "[DevSNB]: This packet must be followed by WM_STATE."
1807 */
1808 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_PS), wmcp) {
1809 if (wm_prog_data->base.nr_params != 0) {
1810 wmcp.Buffer0Valid = true;
1811 /* Pointer to the WM constant buffer. Covered by the set of
1812 * state flags from gen6_upload_wm_push_constants.
1813 */
1814 wmcp.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
1815 wmcp.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
1816 }
1817 }
1818 #endif
1819
1820 #if GEN_GEN >= 6
1821 brw_batch_emit(brw, GENX(3DSTATE_WM), wm) {
1822 #else
1823 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
1824 brw_state_emit(brw, GENX(WM_STATE), 64, &stage_state->state_offset, wm) {
1825 #endif
1826
1827 #if GEN_GEN <= 6
1828 wm._8PixelDispatchEnable = wm_prog_data->dispatch_8;
1829 wm._16PixelDispatchEnable = wm_prog_data->dispatch_16;
1830 wm._32PixelDispatchEnable = wm_prog_data->dispatch_32;
1831 #endif
1832
1833 #if GEN_GEN == 4
1834 /* On gen4, we only have one shader kernel */
1835 if (brw_wm_state_has_ksp(wm, 0)) {
1836 assert(brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0) == 0);
1837 wm.KernelStartPointer0 = KSP(brw, stage_state->prog_offset);
1838 wm.GRFRegisterCount0 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 0);
1839 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1840 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 0);
1841 }
1842 #elif GEN_GEN == 5
1843 /* On gen5, we have multiple shader kernels but only one GRF start
1844 * register for all kernels
1845 */
1846 wm.KernelStartPointer0 = stage_state->prog_offset +
1847 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0);
1848 wm.KernelStartPointer1 = stage_state->prog_offset +
1849 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 1);
1850 wm.KernelStartPointer2 = stage_state->prog_offset +
1851 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 2);
1852
1853 wm.GRFRegisterCount0 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 0);
1854 wm.GRFRegisterCount1 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 1);
1855 wm.GRFRegisterCount2 = brw_wm_prog_data_reg_blocks(wm_prog_data, wm, 2);
1856
1857 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1858 wm_prog_data->base.dispatch_grf_start_reg;
1859
1860 /* Dispatch GRF Start should be the same for all shaders on gen5 */
1861 if (brw_wm_state_has_ksp(wm, 1)) {
1862 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1863 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 1));
1864 }
1865 if (brw_wm_state_has_ksp(wm, 2)) {
1866 assert(wm_prog_data->base.dispatch_grf_start_reg ==
1867 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 2));
1868 }
1869 #elif GEN_GEN == 6
1870 /* On gen6, we have multiple shader kernels and we no longer specify a
1871 * register count for each one.
1872 */
1873 wm.KernelStartPointer0 = stage_state->prog_offset +
1874 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 0);
1875 wm.KernelStartPointer1 = stage_state->prog_offset +
1876 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 1);
1877 wm.KernelStartPointer2 = stage_state->prog_offset +
1878 brw_wm_prog_data_prog_offset(wm_prog_data, wm, 2);
1879
1880 wm.DispatchGRFStartRegisterForConstantSetupData0 =
1881 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 0);
1882 wm.DispatchGRFStartRegisterForConstantSetupData1 =
1883 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 1);
1884 wm.DispatchGRFStartRegisterForConstantSetupData2 =
1885 brw_wm_prog_data_dispatch_grf_start_reg(wm_prog_data, wm, 2);
1886 #endif
1887
1888 #if GEN_GEN <= 5
1889 wm.ConstantURBEntryReadLength = wm_prog_data->base.curb_read_length;
1890 /* BRW_NEW_PUSH_CONSTANT_ALLOCATION */
1891 wm.ConstantURBEntryReadOffset = brw->curbe.wm_start * 2;
1892 wm.SetupURBEntryReadLength = wm_prog_data->num_varying_inputs * 2;
1893 wm.SetupURBEntryReadOffset = 0;
1894 wm.EarlyDepthTestEnable = true;
1895 #endif
1896
1897 #if GEN_GEN >= 6
1898 wm.LineAntialiasingRegionWidth = _10pixels;
1899 wm.LineEndCapAntialiasingRegionWidth = _05pixels;
1900
1901 wm.PointRasterizationRule = RASTRULE_UPPER_RIGHT;
1902 wm.BarycentricInterpolationMode = wm_prog_data->barycentric_interp_modes;
1903 #else
1904 if (stage_state->sampler_count)
1905 wm.SamplerStatePointer =
1906 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
1907
1908 wm.LineAntialiasingRegionWidth = _05pixels;
1909 wm.LineEndCapAntialiasingRegionWidth = _10pixels;
1910
1911 /* _NEW_POLYGON */
1912 if (ctx->Polygon.OffsetFill) {
1913 wm.GlobalDepthOffsetEnable = true;
1914 /* Something weird going on with legacy_global_depth_bias,
1915 * offset_constant, scaling and MRD. This value passes glean
1916 * but gives some odd results elsewere (eg. the
1917 * quad-offset-units test).
1918 */
1919 wm.GlobalDepthOffsetConstant = ctx->Polygon.OffsetUnits * 2;
1920
1921 /* This is the only value that passes glean:
1922 */
1923 wm.GlobalDepthOffsetScale = ctx->Polygon.OffsetFactor;
1924 }
1925
1926 wm.DepthCoefficientURBReadOffset = 1;
1927 #endif
1928
1929 /* BRW_NEW_STATS_WM */
1930 wm.StatisticsEnable = GEN_GEN >= 6 || brw->stats_wm;
1931
1932 #if GEN_GEN < 7
1933 if (wm_prog_data->base.use_alt_mode)
1934 wm.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
1935
1936 wm.SamplerCount = GEN_GEN == 5 ?
1937 0 : DIV_ROUND_UP(stage_state->sampler_count, 4);
1938
1939 wm.BindingTableEntryCount =
1940 wm_prog_data->base.binding_table.size_bytes / 4;
1941 wm.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
1942
1943 #if GEN_GEN == 6
1944 wm.DualSourceBlendEnable =
1945 wm_prog_data->dual_src_blend && (ctx->Color.BlendEnabled & 1) &&
1946 ctx->Color.Blend[0]._UsesDualSrc;
1947 wm.oMaskPresenttoRenderTarget = wm_prog_data->uses_omask;
1948 wm.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
1949
1950 /* From the SNB PRM, volume 2 part 1, page 281:
1951 * "If the PS kernel does not need the Position XY Offsets
1952 * to compute a Position XY value, then this field should be
1953 * programmed to POSOFFSET_NONE."
1954 *
1955 * "SW Recommendation: If the PS kernel needs the Position Offsets
1956 * to compute a Position XY value, this field should match Position
1957 * ZW Interpolation Mode to ensure a consistent position.xyzw
1958 * computation."
1959 * We only require XY sample offsets. So, this recommendation doesn't
1960 * look useful at the moment. We might need this in future.
1961 */
1962 if (wm_prog_data->uses_pos_offset)
1963 wm.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
1964 else
1965 wm.PositionXYOffsetSelect = POSOFFSET_NONE;
1966 #endif
1967
1968 if (wm_prog_data->base.total_scratch) {
1969 wm.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0);
1970 wm.PerThreadScratchSpace =
1971 ffs(stage_state->per_thread_scratch) - 11;
1972 }
1973
1974 wm.PixelShaderComputedDepth = writes_depth;
1975 #endif
1976
1977 /* _NEW_LINE */
1978 wm.LineStippleEnable = ctx->Line.StippleFlag;
1979
1980 /* _NEW_POLYGON */
1981 wm.PolygonStippleEnable = ctx->Polygon.StippleFlag;
1982
1983 #if GEN_GEN < 8
1984
1985 #if GEN_GEN >= 6
1986 wm.PixelShaderUsesSourceW = wm_prog_data->uses_src_w;
1987
1988 /* _NEW_BUFFERS */
1989 const bool multisampled_fbo = _mesa_geometric_samples(ctx->DrawBuffer) > 1;
1990
1991 if (multisampled_fbo) {
1992 /* _NEW_MULTISAMPLE */
1993 if (ctx->Multisample.Enabled)
1994 wm.MultisampleRasterizationMode = MSRASTMODE_ON_PATTERN;
1995 else
1996 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
1997
1998 if (wm_prog_data->persample_dispatch)
1999 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
2000 else
2001 wm.MultisampleDispatchMode = MSDISPMODE_PERPIXEL;
2002 } else {
2003 wm.MultisampleRasterizationMode = MSRASTMODE_OFF_PIXEL;
2004 wm.MultisampleDispatchMode = MSDISPMODE_PERSAMPLE;
2005 }
2006 #endif
2007 wm.PixelShaderUsesSourceDepth = wm_prog_data->uses_src_depth;
2008 if (wm_prog_data->uses_kill ||
2009 _mesa_is_alpha_test_enabled(ctx) ||
2010 _mesa_is_alpha_to_coverage_enabled(ctx) ||
2011 (GEN_GEN >= 6 && wm_prog_data->uses_omask)) {
2012 wm.PixelShaderKillsPixel = true;
2013 }
2014
2015 /* _NEW_BUFFERS | _NEW_COLOR */
2016 if (brw_color_buffer_write_enabled(brw) || writes_depth ||
2017 wm.PixelShaderKillsPixel ||
2018 (GEN_GEN >= 6 && wm_prog_data->has_side_effects)) {
2019 wm.ThreadDispatchEnable = true;
2020 }
2021
2022 #if GEN_GEN >= 7
2023 wm.PixelShaderComputedDepthMode = wm_prog_data->computed_depth_mode;
2024 wm.PixelShaderUsesInputCoverageMask = wm_prog_data->uses_sample_mask;
2025 #endif
2026
2027 /* The "UAV access enable" bits are unnecessary on HSW because they only
2028 * seem to have an effect on the HW-assisted coherency mechanism which we
2029 * don't need, and the rasterization-related UAV_ONLY flag and the
2030 * DISPATCH_ENABLE bit can be set independently from it.
2031 * C.f. gen8_upload_ps_extra().
2032 *
2033 * BRW_NEW_FRAGMENT_PROGRAM | BRW_NEW_FS_PROG_DATA | _NEW_BUFFERS |
2034 * _NEW_COLOR
2035 */
2036 #if GEN_IS_HASWELL
2037 if (!(brw_color_buffer_write_enabled(brw) || writes_depth) &&
2038 wm_prog_data->has_side_effects)
2039 wm.PSUAVonly = ON;
2040 #endif
2041 #endif
2042
2043 #if GEN_GEN >= 7
2044 /* BRW_NEW_FS_PROG_DATA */
2045 if (wm_prog_data->early_fragment_tests)
2046 wm.EarlyDepthStencilControl = EDSC_PREPS;
2047 else if (wm_prog_data->has_side_effects)
2048 wm.EarlyDepthStencilControl = EDSC_PSEXEC;
2049 #endif
2050 }
2051
2052 #if GEN_GEN <= 5
2053 if (brw->wm.offset_clamp != ctx->Polygon.OffsetClamp) {
2054 brw_batch_emit(brw, GENX(3DSTATE_GLOBAL_DEPTH_OFFSET_CLAMP), clamp) {
2055 clamp.GlobalDepthOffsetClamp = ctx->Polygon.OffsetClamp;
2056 }
2057
2058 brw->wm.offset_clamp = ctx->Polygon.OffsetClamp;
2059 }
2060 #endif
2061 }
2062
2063 static const struct brw_tracked_state genX(wm_state) = {
2064 .dirty = {
2065 .mesa = _NEW_LINE |
2066 _NEW_POLYGON |
2067 (GEN_GEN < 8 ? _NEW_BUFFERS |
2068 _NEW_COLOR :
2069 0) |
2070 (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0) |
2071 (GEN_GEN < 6 ? _NEW_POLYGONSTIPPLE : 0) |
2072 (GEN_GEN < 8 && GEN_GEN >= 6 ? _NEW_MULTISAMPLE : 0),
2073 .brw = BRW_NEW_BLORP |
2074 BRW_NEW_FS_PROG_DATA |
2075 (GEN_GEN < 6 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2076 BRW_NEW_FRAGMENT_PROGRAM |
2077 BRW_NEW_PROGRAM_CACHE |
2078 BRW_NEW_SAMPLER_STATE_TABLE |
2079 BRW_NEW_STATS_WM
2080 : 0) |
2081 (GEN_GEN < 7 ? BRW_NEW_BATCH : BRW_NEW_CONTEXT),
2082 },
2083 .emit = genX(upload_wm),
2084 };
2085
2086 /* ---------------------------------------------------------------------- */
2087
2088 /* We restrict scratch buffers to the bottom 32 bits of the address space
2089 * by using rw_32_bo().
2090 *
2091 * General State Base Address is a bit broken. If the address + size as
2092 * seen by STATE_BASE_ADDRESS overflows 48 bits, the GPU appears to treat
2093 * all accesses to the buffer as being out of bounds and returns zero.
2094 */
2095
2096 #define INIT_THREAD_DISPATCH_FIELDS(pkt, prefix) \
2097 pkt.KernelStartPointer = KSP(brw, stage_state->prog_offset); \
2098 /* WA_1606682166 */ \
2099 pkt.SamplerCount = \
2100 GEN_GEN == 11 ? \
2101 0 : \
2102 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4); \
2103 pkt.BindingTableEntryCount = \
2104 stage_prog_data->binding_table.size_bytes / 4; \
2105 pkt.FloatingPointMode = stage_prog_data->use_alt_mode; \
2106 \
2107 if (stage_prog_data->total_scratch) { \
2108 pkt.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0); \
2109 pkt.PerThreadScratchSpace = \
2110 ffs(stage_state->per_thread_scratch) - 11; \
2111 } \
2112 \
2113 pkt.DispatchGRFStartRegisterForURBData = \
2114 stage_prog_data->dispatch_grf_start_reg; \
2115 pkt.prefix##URBEntryReadLength = vue_prog_data->urb_read_length; \
2116 pkt.prefix##URBEntryReadOffset = 0; \
2117 \
2118 pkt.StatisticsEnable = true; \
2119 pkt.Enable = true;
2120
2121 static void
2122 genX(upload_vs_state)(struct brw_context *brw)
2123 {
2124 UNUSED struct gl_context *ctx = &brw->ctx;
2125 const struct gen_device_info *devinfo = &brw->screen->devinfo;
2126 struct brw_stage_state *stage_state = &brw->vs.base;
2127
2128 /* BRW_NEW_VS_PROG_DATA */
2129 const struct brw_vue_prog_data *vue_prog_data =
2130 brw_vue_prog_data(brw->vs.base.prog_data);
2131 const struct brw_stage_prog_data *stage_prog_data = &vue_prog_data->base;
2132
2133 assert(vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8 ||
2134 vue_prog_data->dispatch_mode == DISPATCH_MODE_4X2_DUAL_OBJECT);
2135 assert(GEN_GEN < 11 ||
2136 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8);
2137
2138 #if GEN_GEN == 6
2139 /* From the BSpec, 3D Pipeline > Geometry > Vertex Shader > State,
2140 * 3DSTATE_VS, Dword 5.0 "VS Function Enable":
2141 *
2142 * [DevSNB] A pipeline flush must be programmed prior to a 3DSTATE_VS
2143 * command that causes the VS Function Enable to toggle. Pipeline
2144 * flush can be executed by sending a PIPE_CONTROL command with CS
2145 * stall bit set and a post sync operation.
2146 *
2147 * We've already done such a flush at the start of state upload, so we
2148 * don't need to do another one here.
2149 */
2150 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), cvs) {
2151 if (stage_state->push_const_size != 0) {
2152 cvs.Buffer0Valid = true;
2153 cvs.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
2154 cvs.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2155 }
2156 }
2157 #endif
2158
2159 if (GEN_GEN == 7 && devinfo->is_ivybridge)
2160 gen7_emit_vs_workaround_flush(brw);
2161
2162 #if GEN_GEN >= 6
2163 brw_batch_emit(brw, GENX(3DSTATE_VS), vs) {
2164 #else
2165 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2166 brw_state_emit(brw, GENX(VS_STATE), 32, &stage_state->state_offset, vs) {
2167 #endif
2168 INIT_THREAD_DISPATCH_FIELDS(vs, Vertex);
2169
2170 vs.MaximumNumberofThreads = devinfo->max_vs_threads - 1;
2171
2172 #if GEN_GEN < 6
2173 vs.GRFRegisterCount = DIV_ROUND_UP(vue_prog_data->total_grf, 16) - 1;
2174 vs.ConstantURBEntryReadLength = stage_prog_data->curb_read_length;
2175 vs.ConstantURBEntryReadOffset = brw->curbe.vs_start * 2;
2176
2177 vs.NumberofURBEntries = brw->urb.nr_vs_entries >> (GEN_GEN == 5 ? 2 : 0);
2178 vs.URBEntryAllocationSize = brw->urb.vsize - 1;
2179
2180 vs.MaximumNumberofThreads =
2181 CLAMP(brw->urb.nr_vs_entries / 2, 1, devinfo->max_vs_threads) - 1;
2182
2183 vs.StatisticsEnable = false;
2184 vs.SamplerStatePointer =
2185 ro_bo(brw->batch.state.bo, stage_state->sampler_offset);
2186 #endif
2187
2188 #if GEN_GEN == 5
2189 /* Force single program flow on Ironlake. We cannot reliably get
2190 * all applications working without it. See:
2191 * https://bugs.freedesktop.org/show_bug.cgi?id=29172
2192 *
2193 * The most notable and reliably failing application is the Humus
2194 * demo "CelShading"
2195 */
2196 vs.SingleProgramFlow = true;
2197 vs.SamplerCount = 0; /* hardware requirement */
2198 #endif
2199
2200 #if GEN_GEN >= 8
2201 vs.SIMD8DispatchEnable =
2202 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8;
2203
2204 vs.UserClipDistanceCullTestEnableBitmask =
2205 vue_prog_data->cull_distance_mask;
2206 #endif
2207 }
2208
2209 #if GEN_GEN == 6
2210 /* Based on my reading of the simulator, the VS constants don't get
2211 * pulled into the VS FF unit until an appropriate pipeline flush
2212 * happens, and instead the 3DSTATE_CONSTANT_VS packet just adds
2213 * references to them into a little FIFO. The flushes are common,
2214 * but don't reliably happen between this and a 3DPRIMITIVE, causing
2215 * the primitive to use the wrong constants. Then the FIFO
2216 * containing the constant setup gets added to again on the next
2217 * constants change, and eventually when a flush does happen the
2218 * unit is overwhelmed by constant changes and dies.
2219 *
2220 * To avoid this, send a PIPE_CONTROL down the line that will
2221 * update the unit immediately loading the constants. The flush
2222 * type bits here were those set by the STATE_BASE_ADDRESS whose
2223 * move in a82a43e8d99e1715dd11c9c091b5ab734079b6a6 triggered the
2224 * bug reports that led to this workaround, and may be more than
2225 * what is strictly required to avoid the issue.
2226 */
2227 brw_emit_pipe_control_flush(brw,
2228 PIPE_CONTROL_DEPTH_STALL |
2229 PIPE_CONTROL_INSTRUCTION_INVALIDATE |
2230 PIPE_CONTROL_STATE_CACHE_INVALIDATE);
2231 #endif
2232 }
2233
2234 static const struct brw_tracked_state genX(vs_state) = {
2235 .dirty = {
2236 .mesa = (GEN_GEN == 6 ? (_NEW_PROGRAM_CONSTANTS | _NEW_TRANSFORM) : 0),
2237 .brw = BRW_NEW_BATCH |
2238 BRW_NEW_BLORP |
2239 BRW_NEW_CONTEXT |
2240 BRW_NEW_VS_PROG_DATA |
2241 (GEN_GEN == 6 ? BRW_NEW_VERTEX_PROGRAM : 0) |
2242 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2243 BRW_NEW_PROGRAM_CACHE |
2244 BRW_NEW_SAMPLER_STATE_TABLE |
2245 BRW_NEW_URB_FENCE
2246 : 0),
2247 },
2248 .emit = genX(upload_vs_state),
2249 };
2250
2251 /* ---------------------------------------------------------------------- */
2252
2253 static void
2254 genX(upload_cc_viewport)(struct brw_context *brw)
2255 {
2256 struct gl_context *ctx = &brw->ctx;
2257
2258 /* BRW_NEW_VIEWPORT_COUNT */
2259 const unsigned viewport_count = brw->clip.viewport_count;
2260
2261 struct GENX(CC_VIEWPORT) ccv;
2262 uint32_t cc_vp_offset;
2263 uint32_t *cc_map =
2264 brw_state_batch(brw, 4 * GENX(CC_VIEWPORT_length) * viewport_count,
2265 32, &cc_vp_offset);
2266
2267 for (unsigned i = 0; i < viewport_count; i++) {
2268 /* _NEW_VIEWPORT | _NEW_TRANSFORM */
2269 const struct gl_viewport_attrib *vp = &ctx->ViewportArray[i];
2270 if (ctx->Transform.DepthClampNear && ctx->Transform.DepthClampFar) {
2271 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2272 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2273 } else if (ctx->Transform.DepthClampNear) {
2274 ccv.MinimumDepth = MIN2(vp->Near, vp->Far);
2275 ccv.MaximumDepth = 0.0;
2276 } else if (ctx->Transform.DepthClampFar) {
2277 ccv.MinimumDepth = 0.0;
2278 ccv.MaximumDepth = MAX2(vp->Near, vp->Far);
2279 } else {
2280 ccv.MinimumDepth = 0.0;
2281 ccv.MaximumDepth = 1.0;
2282 }
2283 GENX(CC_VIEWPORT_pack)(NULL, cc_map, &ccv);
2284 cc_map += GENX(CC_VIEWPORT_length);
2285 }
2286
2287 #if GEN_GEN >= 7
2288 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_CC), ptr) {
2289 ptr.CCViewportPointer = cc_vp_offset;
2290 }
2291 #elif GEN_GEN == 6
2292 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2293 vp.CCViewportStateChange = 1;
2294 vp.PointertoCC_VIEWPORT = cc_vp_offset;
2295 }
2296 #else
2297 brw->cc.vp_offset = cc_vp_offset;
2298 ctx->NewDriverState |= BRW_NEW_CC_VP;
2299 #endif
2300 }
2301
2302 const struct brw_tracked_state genX(cc_vp) = {
2303 .dirty = {
2304 .mesa = _NEW_TRANSFORM |
2305 _NEW_VIEWPORT,
2306 .brw = BRW_NEW_BATCH |
2307 BRW_NEW_BLORP |
2308 BRW_NEW_VIEWPORT_COUNT,
2309 },
2310 .emit = genX(upload_cc_viewport)
2311 };
2312
2313 /* ---------------------------------------------------------------------- */
2314
2315 static void
2316 set_scissor_bits(const struct gl_context *ctx, int i,
2317 bool flip_y, unsigned fb_width, unsigned fb_height,
2318 struct GENX(SCISSOR_RECT) *sc)
2319 {
2320 int bbox[4];
2321
2322 bbox[0] = MAX2(ctx->ViewportArray[i].X, 0);
2323 bbox[1] = MIN2(bbox[0] + ctx->ViewportArray[i].Width, fb_width);
2324 bbox[2] = CLAMP(ctx->ViewportArray[i].Y, 0, fb_height);
2325 bbox[3] = MIN2(bbox[2] + ctx->ViewportArray[i].Height, fb_height);
2326 _mesa_intersect_scissor_bounding_box(ctx, i, bbox);
2327
2328 if (bbox[0] == bbox[1] || bbox[2] == bbox[3]) {
2329 /* If the scissor was out of bounds and got clamped to 0 width/height
2330 * at the bounds, the subtraction of 1 from maximums could produce a
2331 * negative number and thus not clip anything. Instead, just provide
2332 * a min > max scissor inside the bounds, which produces the expected
2333 * no rendering.
2334 */
2335 sc->ScissorRectangleXMin = 1;
2336 sc->ScissorRectangleXMax = 0;
2337 sc->ScissorRectangleYMin = 1;
2338 sc->ScissorRectangleYMax = 0;
2339 } else if (!flip_y) {
2340 /* texmemory: Y=0=bottom */
2341 sc->ScissorRectangleXMin = bbox[0];
2342 sc->ScissorRectangleXMax = bbox[1] - 1;
2343 sc->ScissorRectangleYMin = bbox[2];
2344 sc->ScissorRectangleYMax = bbox[3] - 1;
2345 } else {
2346 /* memory: Y=0=top */
2347 sc->ScissorRectangleXMin = bbox[0];
2348 sc->ScissorRectangleXMax = bbox[1] - 1;
2349 sc->ScissorRectangleYMin = fb_height - bbox[3];
2350 sc->ScissorRectangleYMax = fb_height - bbox[2] - 1;
2351 }
2352 }
2353
2354 #if GEN_GEN >= 6
2355 static void
2356 genX(upload_scissor_state)(struct brw_context *brw)
2357 {
2358 struct gl_context *ctx = &brw->ctx;
2359 const bool flip_y = ctx->DrawBuffer->FlipY;
2360 struct GENX(SCISSOR_RECT) scissor;
2361 uint32_t scissor_state_offset;
2362 const unsigned int fb_width = _mesa_geometric_width(ctx->DrawBuffer);
2363 const unsigned int fb_height = _mesa_geometric_height(ctx->DrawBuffer);
2364 uint32_t *scissor_map;
2365
2366 /* BRW_NEW_VIEWPORT_COUNT */
2367 const unsigned viewport_count = brw->clip.viewport_count;
2368
2369 scissor_map = brw_state_batch(
2370 brw, GENX(SCISSOR_RECT_length) * sizeof(uint32_t) * viewport_count,
2371 32, &scissor_state_offset);
2372
2373 /* _NEW_SCISSOR | _NEW_BUFFERS | _NEW_VIEWPORT */
2374
2375 /* The scissor only needs to handle the intersection of drawable and
2376 * scissor rect. Clipping to the boundaries of static shared buffers
2377 * for front/back/depth is covered by looping over cliprects in brw_draw.c.
2378 *
2379 * Note that the hardware's coordinates are inclusive, while Mesa's min is
2380 * inclusive but max is exclusive.
2381 */
2382 for (unsigned i = 0; i < viewport_count; i++) {
2383 set_scissor_bits(ctx, i, flip_y, fb_width, fb_height, &scissor);
2384 GENX(SCISSOR_RECT_pack)(
2385 NULL, scissor_map + i * GENX(SCISSOR_RECT_length), &scissor);
2386 }
2387
2388 brw_batch_emit(brw, GENX(3DSTATE_SCISSOR_STATE_POINTERS), ptr) {
2389 ptr.ScissorRectPointer = scissor_state_offset;
2390 }
2391 }
2392
2393 static const struct brw_tracked_state genX(scissor_state) = {
2394 .dirty = {
2395 .mesa = _NEW_BUFFERS |
2396 _NEW_SCISSOR |
2397 _NEW_VIEWPORT,
2398 .brw = BRW_NEW_BATCH |
2399 BRW_NEW_BLORP |
2400 BRW_NEW_VIEWPORT_COUNT,
2401 },
2402 .emit = genX(upload_scissor_state),
2403 };
2404 #endif
2405
2406 /* ---------------------------------------------------------------------- */
2407
2408 static void
2409 genX(upload_sf_clip_viewport)(struct brw_context *brw)
2410 {
2411 struct gl_context *ctx = &brw->ctx;
2412 float y_scale, y_bias;
2413
2414 /* BRW_NEW_VIEWPORT_COUNT */
2415 const unsigned viewport_count = brw->clip.viewport_count;
2416
2417 /* _NEW_BUFFERS */
2418 const bool flip_y = ctx->DrawBuffer->FlipY;
2419 const uint32_t fb_width = (float)_mesa_geometric_width(ctx->DrawBuffer);
2420 const uint32_t fb_height = (float)_mesa_geometric_height(ctx->DrawBuffer);
2421
2422 #if GEN_GEN >= 7
2423 #define clv sfv
2424 struct GENX(SF_CLIP_VIEWPORT) sfv;
2425 uint32_t sf_clip_vp_offset;
2426 uint32_t *sf_clip_map =
2427 brw_state_batch(brw, GENX(SF_CLIP_VIEWPORT_length) * 4 * viewport_count,
2428 64, &sf_clip_vp_offset);
2429 #else
2430 struct GENX(SF_VIEWPORT) sfv;
2431 struct GENX(CLIP_VIEWPORT) clv;
2432 uint32_t sf_vp_offset, clip_vp_offset;
2433 uint32_t *sf_map =
2434 brw_state_batch(brw, GENX(SF_VIEWPORT_length) * 4 * viewport_count,
2435 32, &sf_vp_offset);
2436 uint32_t *clip_map =
2437 brw_state_batch(brw, GENX(CLIP_VIEWPORT_length) * 4 * viewport_count,
2438 32, &clip_vp_offset);
2439 #endif
2440
2441 /* _NEW_BUFFERS */
2442 if (flip_y) {
2443 y_scale = -1.0;
2444 y_bias = (float)fb_height;
2445 } else {
2446 y_scale = 1.0;
2447 y_bias = 0;
2448 }
2449
2450 for (unsigned i = 0; i < brw->clip.viewport_count; i++) {
2451 /* _NEW_VIEWPORT: Guardband Clipping */
2452 float scale[3], translate[3], gb_xmin, gb_xmax, gb_ymin, gb_ymax;
2453 _mesa_get_viewport_xform(ctx, i, scale, translate);
2454
2455 sfv.ViewportMatrixElementm00 = scale[0];
2456 sfv.ViewportMatrixElementm11 = scale[1] * y_scale,
2457 sfv.ViewportMatrixElementm22 = scale[2],
2458 sfv.ViewportMatrixElementm30 = translate[0],
2459 sfv.ViewportMatrixElementm31 = translate[1] * y_scale + y_bias,
2460 sfv.ViewportMatrixElementm32 = translate[2],
2461 gen_calculate_guardband_size(fb_width, fb_height,
2462 sfv.ViewportMatrixElementm00,
2463 sfv.ViewportMatrixElementm11,
2464 sfv.ViewportMatrixElementm30,
2465 sfv.ViewportMatrixElementm31,
2466 &gb_xmin, &gb_xmax, &gb_ymin, &gb_ymax);
2467
2468
2469 clv.XMinClipGuardband = gb_xmin;
2470 clv.XMaxClipGuardband = gb_xmax;
2471 clv.YMinClipGuardband = gb_ymin;
2472 clv.YMaxClipGuardband = gb_ymax;
2473
2474 #if GEN_GEN < 6
2475 set_scissor_bits(ctx, i, flip_y, fb_width, fb_height,
2476 &sfv.ScissorRectangle);
2477 #elif GEN_GEN >= 8
2478 /* _NEW_VIEWPORT | _NEW_BUFFERS: Screen Space Viewport
2479 * The hardware will take the intersection of the drawing rectangle,
2480 * scissor rectangle, and the viewport extents. However, emitting
2481 * 3DSTATE_DRAWING_RECTANGLE is expensive since it requires a full
2482 * pipeline stall so we're better off just being a little more clever
2483 * with our viewport so we can emit it once at context creation time.
2484 */
2485 const float viewport_Xmin = MAX2(ctx->ViewportArray[i].X, 0);
2486 const float viewport_Ymin = MAX2(ctx->ViewportArray[i].Y, 0);
2487 const float viewport_Xmax =
2488 MIN2(ctx->ViewportArray[i].X + ctx->ViewportArray[i].Width, fb_width);
2489 const float viewport_Ymax =
2490 MIN2(ctx->ViewportArray[i].Y + ctx->ViewportArray[i].Height, fb_height);
2491
2492 if (flip_y) {
2493 sfv.XMinViewPort = viewport_Xmin;
2494 sfv.XMaxViewPort = viewport_Xmax - 1;
2495 sfv.YMinViewPort = fb_height - viewport_Ymax;
2496 sfv.YMaxViewPort = fb_height - viewport_Ymin - 1;
2497 } else {
2498 sfv.XMinViewPort = viewport_Xmin;
2499 sfv.XMaxViewPort = viewport_Xmax - 1;
2500 sfv.YMinViewPort = viewport_Ymin;
2501 sfv.YMaxViewPort = viewport_Ymax - 1;
2502 }
2503 #endif
2504
2505 #if GEN_GEN >= 7
2506 GENX(SF_CLIP_VIEWPORT_pack)(NULL, sf_clip_map, &sfv);
2507 sf_clip_map += GENX(SF_CLIP_VIEWPORT_length);
2508 #else
2509 GENX(SF_VIEWPORT_pack)(NULL, sf_map, &sfv);
2510 GENX(CLIP_VIEWPORT_pack)(NULL, clip_map, &clv);
2511 sf_map += GENX(SF_VIEWPORT_length);
2512 clip_map += GENX(CLIP_VIEWPORT_length);
2513 #endif
2514 }
2515
2516 #if GEN_GEN >= 7
2517 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP), ptr) {
2518 ptr.SFClipViewportPointer = sf_clip_vp_offset;
2519 }
2520 #elif GEN_GEN == 6
2521 brw_batch_emit(brw, GENX(3DSTATE_VIEWPORT_STATE_POINTERS), vp) {
2522 vp.SFViewportStateChange = 1;
2523 vp.CLIPViewportStateChange = 1;
2524 vp.PointertoCLIP_VIEWPORT = clip_vp_offset;
2525 vp.PointertoSF_VIEWPORT = sf_vp_offset;
2526 }
2527 #else
2528 brw->sf.vp_offset = sf_vp_offset;
2529 brw->clip.vp_offset = clip_vp_offset;
2530 brw->ctx.NewDriverState |= BRW_NEW_SF_VP | BRW_NEW_CLIP_VP;
2531 #endif
2532 }
2533
2534 static const struct brw_tracked_state genX(sf_clip_viewport) = {
2535 .dirty = {
2536 .mesa = _NEW_BUFFERS |
2537 _NEW_VIEWPORT |
2538 (GEN_GEN <= 5 ? _NEW_SCISSOR : 0),
2539 .brw = BRW_NEW_BATCH |
2540 BRW_NEW_BLORP |
2541 BRW_NEW_VIEWPORT_COUNT,
2542 },
2543 .emit = genX(upload_sf_clip_viewport),
2544 };
2545
2546 /* ---------------------------------------------------------------------- */
2547
2548 static void
2549 genX(upload_gs_state)(struct brw_context *brw)
2550 {
2551 UNUSED struct gl_context *ctx = &brw->ctx;
2552 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
2553 const struct brw_stage_state *stage_state = &brw->gs.base;
2554 const struct gl_program *gs_prog = brw->programs[MESA_SHADER_GEOMETRY];
2555 /* BRW_NEW_GEOMETRY_PROGRAM */
2556 bool active = GEN_GEN >= 6 && gs_prog;
2557
2558 /* BRW_NEW_GS_PROG_DATA */
2559 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
2560 UNUSED const struct brw_vue_prog_data *vue_prog_data =
2561 brw_vue_prog_data(stage_prog_data);
2562 #if GEN_GEN >= 7
2563 const struct brw_gs_prog_data *gs_prog_data =
2564 brw_gs_prog_data(stage_prog_data);
2565 #endif
2566
2567 #if GEN_GEN == 6
2568 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_GS), cgs) {
2569 if (active && stage_state->push_const_size != 0) {
2570 cgs.Buffer0Valid = true;
2571 cgs.ConstantBody.PointertoConstantBuffer0 = stage_state->push_const_offset;
2572 cgs.ConstantBody.ConstantBuffer0ReadLength = stage_state->push_const_size - 1;
2573 }
2574 }
2575 #endif
2576
2577 #if GEN_GEN == 7 && !GEN_IS_HASWELL
2578 /**
2579 * From Graphics BSpec: 3D-Media-GPGPU Engine > 3D Pipeline Stages >
2580 * Geometry > Geometry Shader > State:
2581 *
2582 * "Note: Because of corruption in IVB:GT2, software needs to flush the
2583 * whole fixed function pipeline when the GS enable changes value in
2584 * the 3DSTATE_GS."
2585 *
2586 * The hardware architects have clarified that in this context "flush the
2587 * whole fixed function pipeline" means to emit a PIPE_CONTROL with the "CS
2588 * Stall" bit set.
2589 */
2590 if (devinfo->gt == 2 && brw->gs.enabled != active)
2591 gen7_emit_cs_stall_flush(brw);
2592 #endif
2593
2594 #if GEN_GEN >= 6
2595 brw_batch_emit(brw, GENX(3DSTATE_GS), gs) {
2596 #else
2597 ctx->NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
2598 brw_state_emit(brw, GENX(GS_STATE), 32, &brw->ff_gs.state_offset, gs) {
2599 #endif
2600
2601 #if GEN_GEN >= 6
2602 if (active) {
2603 INIT_THREAD_DISPATCH_FIELDS(gs, Vertex);
2604
2605 #if GEN_GEN >= 7
2606 gs.OutputVertexSize = gs_prog_data->output_vertex_size_hwords * 2 - 1;
2607 gs.OutputTopology = gs_prog_data->output_topology;
2608 gs.ControlDataHeaderSize =
2609 gs_prog_data->control_data_header_size_hwords;
2610
2611 gs.InstanceControl = gs_prog_data->invocations - 1;
2612 gs.DispatchMode = vue_prog_data->dispatch_mode;
2613
2614 gs.IncludePrimitiveID = gs_prog_data->include_primitive_id;
2615
2616 gs.ControlDataFormat = gs_prog_data->control_data_format;
2617 #endif
2618
2619 /* Note: the meaning of the GEN7_GS_REORDER_TRAILING bit changes between
2620 * Ivy Bridge and Haswell.
2621 *
2622 * On Ivy Bridge, setting this bit causes the vertices of a triangle
2623 * strip to be delivered to the geometry shader in an order that does
2624 * not strictly follow the OpenGL spec, but preserves triangle
2625 * orientation. For example, if the vertices are (1, 2, 3, 4, 5), then
2626 * the geometry shader sees triangles:
2627 *
2628 * (1, 2, 3), (2, 4, 3), (3, 4, 5)
2629 *
2630 * (Clearing the bit is even worse, because it fails to preserve
2631 * orientation).
2632 *
2633 * Triangle strips with adjacency always ordered in a way that preserves
2634 * triangle orientation but does not strictly follow the OpenGL spec,
2635 * regardless of the setting of this bit.
2636 *
2637 * On Haswell, both triangle strips and triangle strips with adjacency
2638 * are always ordered in a way that preserves triangle orientation.
2639 * Setting this bit causes the ordering to strictly follow the OpenGL
2640 * spec.
2641 *
2642 * So in either case we want to set the bit. Unfortunately on Ivy
2643 * Bridge this will get the order close to correct but not perfect.
2644 */
2645 gs.ReorderMode = TRAILING;
2646 gs.MaximumNumberofThreads =
2647 GEN_GEN == 8 ? (devinfo->max_gs_threads / 2 - 1)
2648 : (devinfo->max_gs_threads - 1);
2649
2650 #if GEN_GEN < 7
2651 gs.SOStatisticsEnable = true;
2652 if (gs_prog->info.has_transform_feedback_varyings)
2653 gs.SVBIPayloadEnable = _mesa_is_xfb_active_and_unpaused(ctx);
2654
2655 /* GEN6_GS_SPF_MODE and GEN6_GS_VECTOR_MASK_ENABLE are enabled as it
2656 * was previously done for gen6.
2657 *
2658 * TODO: test with both disabled to see if the HW is behaving
2659 * as expected, like in gen7.
2660 */
2661 gs.SingleProgramFlow = true;
2662 gs.VectorMaskEnable = true;
2663 #endif
2664
2665 #if GEN_GEN >= 8
2666 gs.ExpectedVertexCount = gs_prog_data->vertices_in;
2667
2668 if (gs_prog_data->static_vertex_count != -1) {
2669 gs.StaticOutput = true;
2670 gs.StaticOutputVertexCount = gs_prog_data->static_vertex_count;
2671 }
2672 gs.IncludeVertexHandles = vue_prog_data->include_vue_handles;
2673
2674 gs.UserClipDistanceCullTestEnableBitmask =
2675 vue_prog_data->cull_distance_mask;
2676
2677 const int urb_entry_write_offset = 1;
2678 const uint32_t urb_entry_output_length =
2679 DIV_ROUND_UP(vue_prog_data->vue_map.num_slots, 2) -
2680 urb_entry_write_offset;
2681
2682 gs.VertexURBEntryOutputReadOffset = urb_entry_write_offset;
2683 gs.VertexURBEntryOutputLength = MAX2(urb_entry_output_length, 1);
2684 #endif
2685 }
2686 #endif
2687
2688 #if GEN_GEN <= 6
2689 if (!active && brw->ff_gs.prog_active) {
2690 /* In gen6, transform feedback for the VS stage is done with an
2691 * ad-hoc GS program. This function provides the needed 3DSTATE_GS
2692 * for this.
2693 */
2694 gs.KernelStartPointer = KSP(brw, brw->ff_gs.prog_offset);
2695 gs.SingleProgramFlow = true;
2696 gs.DispatchGRFStartRegisterForURBData = GEN_GEN == 6 ? 2 : 1;
2697 gs.VertexURBEntryReadLength = brw->ff_gs.prog_data->urb_read_length;
2698
2699 #if GEN_GEN <= 5
2700 gs.GRFRegisterCount =
2701 DIV_ROUND_UP(brw->ff_gs.prog_data->total_grf, 16) - 1;
2702 /* BRW_NEW_URB_FENCE */
2703 gs.NumberofURBEntries = brw->urb.nr_gs_entries;
2704 gs.URBEntryAllocationSize = brw->urb.vsize - 1;
2705 gs.MaximumNumberofThreads = brw->urb.nr_gs_entries >= 8 ? 1 : 0;
2706 gs.FloatingPointMode = FLOATING_POINT_MODE_Alternate;
2707 #else
2708 gs.Enable = true;
2709 gs.VectorMaskEnable = true;
2710 gs.SVBIPayloadEnable = true;
2711 gs.SVBIPostIncrementEnable = true;
2712 gs.SVBIPostIncrementValue =
2713 brw->ff_gs.prog_data->svbi_postincrement_value;
2714 gs.SOStatisticsEnable = true;
2715 gs.MaximumNumberofThreads = devinfo->max_gs_threads - 1;
2716 #endif
2717 }
2718 #endif
2719 if (!active && !brw->ff_gs.prog_active) {
2720 #if GEN_GEN < 8
2721 gs.DispatchGRFStartRegisterForURBData = 1;
2722 #if GEN_GEN >= 7
2723 gs.IncludeVertexHandles = true;
2724 #endif
2725 #endif
2726 }
2727
2728 #if GEN_GEN >= 6
2729 gs.StatisticsEnable = true;
2730 #endif
2731 #if GEN_GEN == 5 || GEN_GEN == 6
2732 gs.RenderingEnabled = true;
2733 #endif
2734 #if GEN_GEN <= 5
2735 gs.MaximumVPIndex = brw->clip.viewport_count - 1;
2736 #endif
2737 }
2738
2739 #if GEN_GEN == 6
2740 brw->gs.enabled = active;
2741 #endif
2742 }
2743
2744 static const struct brw_tracked_state genX(gs_state) = {
2745 .dirty = {
2746 .mesa = (GEN_GEN == 6 ? _NEW_PROGRAM_CONSTANTS : 0),
2747 .brw = BRW_NEW_BATCH |
2748 BRW_NEW_BLORP |
2749 (GEN_GEN <= 5 ? BRW_NEW_PUSH_CONSTANT_ALLOCATION |
2750 BRW_NEW_PROGRAM_CACHE |
2751 BRW_NEW_URB_FENCE |
2752 BRW_NEW_VIEWPORT_COUNT
2753 : 0) |
2754 (GEN_GEN >= 6 ? BRW_NEW_CONTEXT |
2755 BRW_NEW_GEOMETRY_PROGRAM |
2756 BRW_NEW_GS_PROG_DATA
2757 : 0) |
2758 (GEN_GEN < 7 ? BRW_NEW_FF_GS_PROG_DATA : 0),
2759 },
2760 .emit = genX(upload_gs_state),
2761 };
2762
2763 /* ---------------------------------------------------------------------- */
2764
2765 UNUSED static GLenum
2766 fix_dual_blend_alpha_to_one(GLenum function)
2767 {
2768 switch (function) {
2769 case GL_SRC1_ALPHA:
2770 return GL_ONE;
2771
2772 case GL_ONE_MINUS_SRC1_ALPHA:
2773 return GL_ZERO;
2774 }
2775
2776 return function;
2777 }
2778
2779 #define blend_factor(x) brw_translate_blend_factor(x)
2780 #define blend_eqn(x) brw_translate_blend_equation(x)
2781
2782 /**
2783 * Modify blend function to force destination alpha to 1.0
2784 *
2785 * If \c function specifies a blend function that uses destination alpha,
2786 * replace it with a function that hard-wires destination alpha to 1.0. This
2787 * is used when rendering to xRGB targets.
2788 */
2789 static GLenum
2790 brw_fix_xRGB_alpha(GLenum function)
2791 {
2792 switch (function) {
2793 case GL_DST_ALPHA:
2794 return GL_ONE;
2795
2796 case GL_ONE_MINUS_DST_ALPHA:
2797 case GL_SRC_ALPHA_SATURATE:
2798 return GL_ZERO;
2799 }
2800
2801 return function;
2802 }
2803
2804 #if GEN_GEN >= 6
2805 typedef struct GENX(BLEND_STATE_ENTRY) BLEND_ENTRY_GENXML;
2806 #else
2807 typedef struct GENX(COLOR_CALC_STATE) BLEND_ENTRY_GENXML;
2808 #endif
2809
2810 UNUSED static bool
2811 set_blend_entry_bits(struct brw_context *brw, BLEND_ENTRY_GENXML *entry, int i,
2812 bool alpha_to_one)
2813 {
2814 struct gl_context *ctx = &brw->ctx;
2815
2816 /* _NEW_BUFFERS */
2817 const struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[i];
2818
2819 bool independent_alpha_blend = false;
2820
2821 /* Used for implementing the following bit of GL_EXT_texture_integer:
2822 * "Per-fragment operations that require floating-point color
2823 * components, including multisample alpha operations, alpha test,
2824 * blending, and dithering, have no effect when the corresponding
2825 * colors are written to an integer color buffer."
2826 */
2827 const bool integer = ctx->DrawBuffer->_IntegerBuffers & (0x1 << i);
2828
2829 const unsigned blend_enabled = GEN_GEN >= 6 ?
2830 ctx->Color.BlendEnabled & (1 << i) : ctx->Color.BlendEnabled;
2831
2832 /* _NEW_COLOR */
2833 if (ctx->Color.ColorLogicOpEnabled) {
2834 GLenum rb_type = rb ? _mesa_get_format_datatype(rb->Format)
2835 : GL_UNSIGNED_NORMALIZED;
2836 WARN_ONCE(ctx->Color.LogicOp != GL_COPY &&
2837 rb_type != GL_UNSIGNED_NORMALIZED &&
2838 rb_type != GL_FLOAT, "Ignoring %s logic op on %s "
2839 "renderbuffer\n",
2840 _mesa_enum_to_string(ctx->Color.LogicOp),
2841 _mesa_enum_to_string(rb_type));
2842 if (GEN_GEN >= 8 || rb_type == GL_UNSIGNED_NORMALIZED) {
2843 entry->LogicOpEnable = true;
2844 entry->LogicOpFunction = ctx->Color._LogicOp;
2845 }
2846 } else if (blend_enabled && !ctx->Color._AdvancedBlendMode
2847 && (GEN_GEN <= 5 || !integer)) {
2848 GLenum eqRGB = ctx->Color.Blend[i].EquationRGB;
2849 GLenum eqA = ctx->Color.Blend[i].EquationA;
2850 GLenum srcRGB = ctx->Color.Blend[i].SrcRGB;
2851 GLenum dstRGB = ctx->Color.Blend[i].DstRGB;
2852 GLenum srcA = ctx->Color.Blend[i].SrcA;
2853 GLenum dstA = ctx->Color.Blend[i].DstA;
2854
2855 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
2856 srcRGB = dstRGB = GL_ONE;
2857
2858 if (eqA == GL_MIN || eqA == GL_MAX)
2859 srcA = dstA = GL_ONE;
2860
2861 /* Due to hardware limitations, the destination may have information
2862 * in an alpha channel even when the format specifies no alpha
2863 * channel. In order to avoid getting any incorrect blending due to
2864 * that alpha channel, coerce the blend factors to values that will
2865 * not read the alpha channel, but will instead use the correct
2866 * implicit value for alpha.
2867 */
2868 if (rb && !_mesa_base_format_has_channel(rb->_BaseFormat,
2869 GL_TEXTURE_ALPHA_TYPE)) {
2870 srcRGB = brw_fix_xRGB_alpha(srcRGB);
2871 srcA = brw_fix_xRGB_alpha(srcA);
2872 dstRGB = brw_fix_xRGB_alpha(dstRGB);
2873 dstA = brw_fix_xRGB_alpha(dstA);
2874 }
2875
2876 /* From the BLEND_STATE docs, DWord 0, Bit 29 (AlphaToOne Enable):
2877 * "If Dual Source Blending is enabled, this bit must be disabled."
2878 *
2879 * We override SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO,
2880 * and leave it enabled anyway.
2881 */
2882 if (GEN_GEN >= 6 && ctx->Color.Blend[i]._UsesDualSrc && alpha_to_one) {
2883 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
2884 srcA = fix_dual_blend_alpha_to_one(srcA);
2885 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
2886 dstA = fix_dual_blend_alpha_to_one(dstA);
2887 }
2888
2889 /* BRW_NEW_FS_PROG_DATA */
2890 const struct brw_wm_prog_data *wm_prog_data =
2891 brw_wm_prog_data(brw->wm.base.prog_data);
2892
2893 /* The Dual Source Blending documentation says:
2894 *
2895 * "If SRC1 is included in a src/dst blend factor and
2896 * a DualSource RT Write message is not used, results
2897 * are UNDEFINED. (This reflects the same restriction in DX APIs,
2898 * where undefined results are produced if “o1” is not written
2899 * by a PS – there are no default values defined).
2900 * If SRC1 is not included in a src/dst blend factor,
2901 * dual source blending must be disabled."
2902 *
2903 * There is no way to gracefully fix this undefined situation
2904 * so we just disable the blending to prevent possible issues.
2905 */
2906 entry->ColorBufferBlendEnable =
2907 !ctx->Color.Blend[0]._UsesDualSrc || wm_prog_data->dual_src_blend;
2908
2909 entry->DestinationBlendFactor = blend_factor(dstRGB);
2910 entry->SourceBlendFactor = blend_factor(srcRGB);
2911 entry->DestinationAlphaBlendFactor = blend_factor(dstA);
2912 entry->SourceAlphaBlendFactor = blend_factor(srcA);
2913 entry->ColorBlendFunction = blend_eqn(eqRGB);
2914 entry->AlphaBlendFunction = blend_eqn(eqA);
2915
2916 if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB)
2917 independent_alpha_blend = true;
2918 }
2919
2920 return independent_alpha_blend;
2921 }
2922
2923 #if GEN_GEN >= 6
2924 static void
2925 genX(upload_blend_state)(struct brw_context *brw)
2926 {
2927 struct gl_context *ctx = &brw->ctx;
2928 int size;
2929
2930 /* We need at least one BLEND_STATE written, because we might do
2931 * thread dispatch even if _NumColorDrawBuffers is 0 (for example
2932 * for computed depth or alpha test), which will do an FB write
2933 * with render target 0, which will reference BLEND_STATE[0] for
2934 * alpha test enable.
2935 */
2936 int nr_draw_buffers = ctx->DrawBuffer->_NumColorDrawBuffers;
2937 if (nr_draw_buffers == 0 && ctx->Color.AlphaEnabled)
2938 nr_draw_buffers = 1;
2939
2940 size = GENX(BLEND_STATE_ENTRY_length) * 4 * nr_draw_buffers;
2941 #if GEN_GEN >= 8
2942 size += GENX(BLEND_STATE_length) * 4;
2943 #endif
2944
2945 uint32_t *blend_map;
2946 blend_map = brw_state_batch(brw, size, 64, &brw->cc.blend_state_offset);
2947
2948 #if GEN_GEN >= 8
2949 struct GENX(BLEND_STATE) blend = { 0 };
2950 {
2951 #else
2952 for (int i = 0; i < nr_draw_buffers; i++) {
2953 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2954 #define blend entry
2955 #endif
2956 /* OpenGL specification 3.3 (page 196), section 4.1.3 says:
2957 * "If drawbuffer zero is not NONE and the buffer it references has an
2958 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
2959 * operations are skipped."
2960 */
2961 if (!(ctx->DrawBuffer->_IntegerBuffers & 0x1)) {
2962 /* _NEW_MULTISAMPLE */
2963 if (_mesa_is_multisample_enabled(ctx)) {
2964 if (ctx->Multisample.SampleAlphaToCoverage) {
2965 blend.AlphaToCoverageEnable = true;
2966 blend.AlphaToCoverageDitherEnable = GEN_GEN >= 7;
2967 }
2968 if (ctx->Multisample.SampleAlphaToOne)
2969 blend.AlphaToOneEnable = true;
2970 }
2971
2972 /* _NEW_COLOR */
2973 if (ctx->Color.AlphaEnabled) {
2974 blend.AlphaTestEnable = true;
2975 blend.AlphaTestFunction =
2976 intel_translate_compare_func(ctx->Color.AlphaFunc);
2977 }
2978
2979 if (ctx->Color.DitherFlag) {
2980 blend.ColorDitherEnable = true;
2981 }
2982 }
2983
2984 #if GEN_GEN >= 8
2985 for (int i = 0; i < nr_draw_buffers; i++) {
2986 struct GENX(BLEND_STATE_ENTRY) entry = { 0 };
2987 #else
2988 {
2989 #endif
2990 blend.IndependentAlphaBlendEnable =
2991 set_blend_entry_bits(brw, &entry, i, blend.AlphaToOneEnable) ||
2992 blend.IndependentAlphaBlendEnable;
2993
2994 /* See section 8.1.6 "Pre-Blend Color Clamping" of the
2995 * SandyBridge PRM Volume 2 Part 1 for HW requirements.
2996 *
2997 * We do our ARB_color_buffer_float CLAMP_FRAGMENT_COLOR
2998 * clamping in the fragment shader. For its clamping of
2999 * blending, the spec says:
3000 *
3001 * "RESOLVED: For fixed-point color buffers, the inputs and
3002 * the result of the blending equation are clamped. For
3003 * floating-point color buffers, no clamping occurs."
3004 *
3005 * So, generally, we want clamping to the render target's range.
3006 * And, good news, the hardware tables for both pre- and
3007 * post-blend color clamping are either ignored, or any are
3008 * allowed, or clamping is required but RT range clamping is a
3009 * valid option.
3010 */
3011 entry.PreBlendColorClampEnable = true;
3012 entry.PostBlendColorClampEnable = true;
3013 entry.ColorClampRange = COLORCLAMP_RTFORMAT;
3014
3015 entry.WriteDisableRed = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 0);
3016 entry.WriteDisableGreen = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 1);
3017 entry.WriteDisableBlue = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 2);
3018 entry.WriteDisableAlpha = !GET_COLORMASK_BIT(ctx->Color.ColorMask, i, 3);
3019
3020 #if GEN_GEN >= 8
3021 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[1 + i * 2], &entry);
3022 #else
3023 GENX(BLEND_STATE_ENTRY_pack)(NULL, &blend_map[i * 2], &entry);
3024 #endif
3025 }
3026 }
3027
3028 #if GEN_GEN >= 8
3029 GENX(BLEND_STATE_pack)(NULL, blend_map, &blend);
3030 #endif
3031
3032 #if GEN_GEN < 7
3033 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3034 ptr.PointertoBLEND_STATE = brw->cc.blend_state_offset;
3035 ptr.BLEND_STATEChange = true;
3036 }
3037 #else
3038 brw_batch_emit(brw, GENX(3DSTATE_BLEND_STATE_POINTERS), ptr) {
3039 ptr.BlendStatePointer = brw->cc.blend_state_offset;
3040 #if GEN_GEN >= 8
3041 ptr.BlendStatePointerValid = true;
3042 #endif
3043 }
3044 #endif
3045 }
3046
3047 UNUSED static const struct brw_tracked_state genX(blend_state) = {
3048 .dirty = {
3049 .mesa = _NEW_BUFFERS |
3050 _NEW_COLOR |
3051 _NEW_MULTISAMPLE,
3052 .brw = BRW_NEW_BATCH |
3053 BRW_NEW_BLORP |
3054 BRW_NEW_FS_PROG_DATA |
3055 BRW_NEW_STATE_BASE_ADDRESS,
3056 },
3057 .emit = genX(upload_blend_state),
3058 };
3059 #endif
3060
3061 /* ---------------------------------------------------------------------- */
3062
3063 #if GEN_GEN >= 7
3064 UNUSED static const uint32_t push_constant_opcodes[] = {
3065 [MESA_SHADER_VERTEX] = 21,
3066 [MESA_SHADER_TESS_CTRL] = 25, /* HS */
3067 [MESA_SHADER_TESS_EVAL] = 26, /* DS */
3068 [MESA_SHADER_GEOMETRY] = 22,
3069 [MESA_SHADER_FRAGMENT] = 23,
3070 [MESA_SHADER_COMPUTE] = 0,
3071 };
3072
3073 static void
3074 genX(upload_push_constant_packets)(struct brw_context *brw)
3075 {
3076 const struct gen_device_info *devinfo = &brw->screen->devinfo;
3077 struct gl_context *ctx = &brw->ctx;
3078
3079 UNUSED uint32_t mocs = GEN_GEN < 8 ? GEN7_MOCS_L3 : 0;
3080
3081 struct brw_stage_state *stage_states[] = {
3082 &brw->vs.base,
3083 &brw->tcs.base,
3084 &brw->tes.base,
3085 &brw->gs.base,
3086 &brw->wm.base,
3087 };
3088
3089 if (GEN_GEN == 7 && !GEN_IS_HASWELL && !devinfo->is_baytrail &&
3090 stage_states[MESA_SHADER_VERTEX]->push_constants_dirty)
3091 gen7_emit_vs_workaround_flush(brw);
3092
3093 for (int stage = 0; stage <= MESA_SHADER_FRAGMENT; stage++) {
3094 struct brw_stage_state *stage_state = stage_states[stage];
3095 UNUSED struct gl_program *prog = ctx->_Shader->CurrentProgram[stage];
3096
3097 if (!stage_state->push_constants_dirty)
3098 continue;
3099
3100 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_VS), pkt) {
3101 pkt._3DCommandSubOpcode = push_constant_opcodes[stage];
3102 if (stage_state->prog_data) {
3103 #if GEN_GEN >= 8 || GEN_IS_HASWELL
3104 /* The Skylake PRM contains the following restriction:
3105 *
3106 * "The driver must ensure The following case does not occur
3107 * without a flush to the 3D engine: 3DSTATE_CONSTANT_* with
3108 * buffer 3 read length equal to zero committed followed by a
3109 * 3DSTATE_CONSTANT_* with buffer 0 read length not equal to
3110 * zero committed."
3111 *
3112 * To avoid this, we program the buffers in the highest slots.
3113 * This way, slot 0 is only used if slot 3 is also used.
3114 */
3115 int n = 3;
3116
3117 for (int i = 3; i >= 0; i--) {
3118 const struct brw_ubo_range *range =
3119 &stage_state->prog_data->ubo_ranges[i];
3120
3121 if (range->length == 0)
3122 continue;
3123
3124 const struct gl_uniform_block *block =
3125 prog->sh.UniformBlocks[range->block];
3126 const struct gl_buffer_binding *binding =
3127 &ctx->UniformBufferBindings[block->Binding];
3128
3129 if (!binding->BufferObject) {
3130 static unsigned msg_id = 0;
3131 _mesa_gl_debugf(ctx, &msg_id, MESA_DEBUG_SOURCE_API,
3132 MESA_DEBUG_TYPE_UNDEFINED,
3133 MESA_DEBUG_SEVERITY_HIGH,
3134 "UBO %d unbound, %s shader uniform data "
3135 "will be undefined.",
3136 range->block,
3137 _mesa_shader_stage_to_string(stage));
3138 continue;
3139 }
3140
3141 assert(binding->Offset % 32 == 0);
3142
3143 struct brw_bo *bo = intel_bufferobj_buffer(brw,
3144 intel_buffer_object(binding->BufferObject),
3145 binding->Offset, range->length * 32, false);
3146
3147 pkt.ConstantBody.ReadLength[n] = range->length;
3148 pkt.ConstantBody.Buffer[n] =
3149 ro_bo(bo, range->start * 32 + binding->Offset);
3150 n--;
3151 }
3152
3153 if (stage_state->push_const_size > 0) {
3154 assert(n >= 0);
3155 pkt.ConstantBody.ReadLength[n] = stage_state->push_const_size;
3156 pkt.ConstantBody.Buffer[n] =
3157 ro_bo(stage_state->push_const_bo,
3158 stage_state->push_const_offset);
3159 }
3160 #else
3161 pkt.ConstantBody.ReadLength[0] = stage_state->push_const_size;
3162 pkt.ConstantBody.Buffer[0].offset =
3163 stage_state->push_const_offset | mocs;
3164 #endif
3165 }
3166 }
3167
3168 stage_state->push_constants_dirty = false;
3169 brw->ctx.NewDriverState |= GEN_GEN >= 9 ? BRW_NEW_SURFACES : 0;
3170 }
3171 }
3172
3173 const struct brw_tracked_state genX(push_constant_packets) = {
3174 .dirty = {
3175 .mesa = 0,
3176 .brw = BRW_NEW_DRAW_CALL,
3177 },
3178 .emit = genX(upload_push_constant_packets),
3179 };
3180 #endif
3181
3182 #if GEN_GEN >= 6
3183 static void
3184 genX(upload_vs_push_constants)(struct brw_context *brw)
3185 {
3186 struct brw_stage_state *stage_state = &brw->vs.base;
3187
3188 /* BRW_NEW_VERTEX_PROGRAM */
3189 const struct gl_program *vp = brw->programs[MESA_SHADER_VERTEX];
3190 /* BRW_NEW_VS_PROG_DATA */
3191 const struct brw_stage_prog_data *prog_data = brw->vs.base.prog_data;
3192
3193 gen6_upload_push_constants(brw, vp, prog_data, stage_state);
3194 }
3195
3196 static const struct brw_tracked_state genX(vs_push_constants) = {
3197 .dirty = {
3198 .mesa = _NEW_PROGRAM_CONSTANTS |
3199 _NEW_TRANSFORM,
3200 .brw = BRW_NEW_BATCH |
3201 BRW_NEW_BLORP |
3202 BRW_NEW_VERTEX_PROGRAM |
3203 BRW_NEW_VS_PROG_DATA,
3204 },
3205 .emit = genX(upload_vs_push_constants),
3206 };
3207
3208 static void
3209 genX(upload_gs_push_constants)(struct brw_context *brw)
3210 {
3211 struct brw_stage_state *stage_state = &brw->gs.base;
3212
3213 /* BRW_NEW_GEOMETRY_PROGRAM */
3214 const struct gl_program *gp = brw->programs[MESA_SHADER_GEOMETRY];
3215
3216 /* BRW_NEW_GS_PROG_DATA */
3217 struct brw_stage_prog_data *prog_data = brw->gs.base.prog_data;
3218
3219 gen6_upload_push_constants(brw, gp, prog_data, stage_state);
3220 }
3221
3222 static const struct brw_tracked_state genX(gs_push_constants) = {
3223 .dirty = {
3224 .mesa = _NEW_PROGRAM_CONSTANTS |
3225 _NEW_TRANSFORM,
3226 .brw = BRW_NEW_BATCH |
3227 BRW_NEW_BLORP |
3228 BRW_NEW_GEOMETRY_PROGRAM |
3229 BRW_NEW_GS_PROG_DATA,
3230 },
3231 .emit = genX(upload_gs_push_constants),
3232 };
3233
3234 static void
3235 genX(upload_wm_push_constants)(struct brw_context *brw)
3236 {
3237 struct brw_stage_state *stage_state = &brw->wm.base;
3238 /* BRW_NEW_FRAGMENT_PROGRAM */
3239 const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3240 /* BRW_NEW_FS_PROG_DATA */
3241 const struct brw_stage_prog_data *prog_data = brw->wm.base.prog_data;
3242
3243 gen6_upload_push_constants(brw, fp, prog_data, stage_state);
3244 }
3245
3246 static const struct brw_tracked_state genX(wm_push_constants) = {
3247 .dirty = {
3248 .mesa = _NEW_PROGRAM_CONSTANTS,
3249 .brw = BRW_NEW_BATCH |
3250 BRW_NEW_BLORP |
3251 BRW_NEW_FRAGMENT_PROGRAM |
3252 BRW_NEW_FS_PROG_DATA,
3253 },
3254 .emit = genX(upload_wm_push_constants),
3255 };
3256 #endif
3257
3258 /* ---------------------------------------------------------------------- */
3259
3260 #if GEN_GEN >= 6
3261 static unsigned
3262 genX(determine_sample_mask)(struct brw_context *brw)
3263 {
3264 struct gl_context *ctx = &brw->ctx;
3265 float coverage = 1.0f;
3266 float coverage_invert = false;
3267 unsigned sample_mask = ~0u;
3268
3269 /* BRW_NEW_NUM_SAMPLES */
3270 unsigned num_samples = brw->num_samples;
3271
3272 if (_mesa_is_multisample_enabled(ctx)) {
3273 if (ctx->Multisample.SampleCoverage) {
3274 coverage = ctx->Multisample.SampleCoverageValue;
3275 coverage_invert = ctx->Multisample.SampleCoverageInvert;
3276 }
3277 if (ctx->Multisample.SampleMask) {
3278 sample_mask = ctx->Multisample.SampleMaskValue;
3279 }
3280 }
3281
3282 if (num_samples > 1) {
3283 int coverage_int = (int) (num_samples * coverage + 0.5f);
3284 uint32_t coverage_bits = (1 << coverage_int) - 1;
3285 if (coverage_invert)
3286 coverage_bits ^= (1 << num_samples) - 1;
3287 return coverage_bits & sample_mask;
3288 } else {
3289 return 1;
3290 }
3291 }
3292
3293 static void
3294 genX(emit_3dstate_multisample2)(struct brw_context *brw,
3295 unsigned num_samples)
3296 {
3297 unsigned log2_samples = ffs(num_samples) - 1;
3298
3299 brw_batch_emit(brw, GENX(3DSTATE_MULTISAMPLE), multi) {
3300 multi.PixelLocation = CENTER;
3301 multi.NumberofMultisamples = log2_samples;
3302 #if GEN_GEN == 6
3303 GEN_SAMPLE_POS_4X(multi.Sample);
3304 #elif GEN_GEN == 7
3305 switch (num_samples) {
3306 case 1:
3307 GEN_SAMPLE_POS_1X(multi.Sample);
3308 break;
3309 case 2:
3310 GEN_SAMPLE_POS_2X(multi.Sample);
3311 break;
3312 case 4:
3313 GEN_SAMPLE_POS_4X(multi.Sample);
3314 break;
3315 case 8:
3316 GEN_SAMPLE_POS_8X(multi.Sample);
3317 break;
3318 default:
3319 break;
3320 }
3321 #endif
3322 }
3323 }
3324
3325 static void
3326 genX(upload_multisample_state)(struct brw_context *brw)
3327 {
3328 assert(brw->num_samples > 0 && brw->num_samples <= 16);
3329
3330 genX(emit_3dstate_multisample2)(brw, brw->num_samples);
3331
3332 brw_batch_emit(brw, GENX(3DSTATE_SAMPLE_MASK), sm) {
3333 sm.SampleMask = genX(determine_sample_mask)(brw);
3334 }
3335 }
3336
3337 static const struct brw_tracked_state genX(multisample_state) = {
3338 .dirty = {
3339 .mesa = _NEW_MULTISAMPLE |
3340 (GEN_GEN == 10 ? _NEW_BUFFERS : 0),
3341 .brw = BRW_NEW_BLORP |
3342 BRW_NEW_CONTEXT |
3343 BRW_NEW_NUM_SAMPLES,
3344 },
3345 .emit = genX(upload_multisample_state)
3346 };
3347 #endif
3348
3349 /* ---------------------------------------------------------------------- */
3350
3351 static void
3352 genX(upload_color_calc_state)(struct brw_context *brw)
3353 {
3354 struct gl_context *ctx = &brw->ctx;
3355
3356 brw_state_emit(brw, GENX(COLOR_CALC_STATE), 64, &brw->cc.state_offset, cc) {
3357 #if GEN_GEN <= 5
3358 cc.IndependentAlphaBlendEnable =
3359 set_blend_entry_bits(brw, &cc, 0, false);
3360 set_depth_stencil_bits(brw, &cc);
3361
3362 if (ctx->Color.AlphaEnabled &&
3363 ctx->DrawBuffer->_NumColorDrawBuffers <= 1) {
3364 cc.AlphaTestEnable = true;
3365 cc.AlphaTestFunction =
3366 intel_translate_compare_func(ctx->Color.AlphaFunc);
3367 }
3368
3369 cc.ColorDitherEnable = ctx->Color.DitherFlag;
3370
3371 cc.StatisticsEnable = brw->stats_wm;
3372
3373 cc.CCViewportStatePointer =
3374 ro_bo(brw->batch.state.bo, brw->cc.vp_offset);
3375 #else
3376 /* _NEW_COLOR */
3377 cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
3378 cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
3379 cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
3380 cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
3381
3382 #if GEN_GEN < 9
3383 /* _NEW_STENCIL */
3384 cc.StencilReferenceValue = _mesa_get_stencil_ref(ctx, 0);
3385 cc.BackfaceStencilReferenceValue =
3386 _mesa_get_stencil_ref(ctx, ctx->Stencil._BackFace);
3387 #endif
3388
3389 #endif
3390
3391 /* _NEW_COLOR */
3392 UNCLAMPED_FLOAT_TO_UBYTE(cc.AlphaReferenceValueAsUNORM8,
3393 ctx->Color.AlphaRef);
3394 }
3395
3396 #if GEN_GEN >= 6
3397 brw_batch_emit(brw, GENX(3DSTATE_CC_STATE_POINTERS), ptr) {
3398 ptr.ColorCalcStatePointer = brw->cc.state_offset;
3399 #if GEN_GEN != 7
3400 ptr.ColorCalcStatePointerValid = true;
3401 #endif
3402 }
3403 #else
3404 brw->ctx.NewDriverState |= BRW_NEW_GEN4_UNIT_STATE;
3405 #endif
3406 }
3407
3408 UNUSED static const struct brw_tracked_state genX(color_calc_state) = {
3409 .dirty = {
3410 .mesa = _NEW_COLOR |
3411 _NEW_STENCIL |
3412 (GEN_GEN <= 5 ? _NEW_BUFFERS |
3413 _NEW_DEPTH
3414 : 0),
3415 .brw = BRW_NEW_BATCH |
3416 BRW_NEW_BLORP |
3417 (GEN_GEN <= 5 ? BRW_NEW_CC_VP |
3418 BRW_NEW_STATS_WM
3419 : BRW_NEW_CC_STATE |
3420 BRW_NEW_STATE_BASE_ADDRESS),
3421 },
3422 .emit = genX(upload_color_calc_state),
3423 };
3424
3425
3426 /* ---------------------------------------------------------------------- */
3427
3428 #if GEN_IS_HASWELL
3429 static void
3430 genX(upload_color_calc_and_blend_state)(struct brw_context *brw)
3431 {
3432 genX(upload_blend_state)(brw);
3433 genX(upload_color_calc_state)(brw);
3434 }
3435
3436 /* On Haswell when BLEND_STATE is emitted CC_STATE should also be re-emitted,
3437 * this workarounds the flickering shadows in several games.
3438 */
3439 static const struct brw_tracked_state genX(cc_and_blend_state) = {
3440 .dirty = {
3441 .mesa = _NEW_BUFFERS |
3442 _NEW_COLOR |
3443 _NEW_STENCIL |
3444 _NEW_MULTISAMPLE,
3445 .brw = BRW_NEW_BATCH |
3446 BRW_NEW_BLORP |
3447 BRW_NEW_CC_STATE |
3448 BRW_NEW_FS_PROG_DATA |
3449 BRW_NEW_STATE_BASE_ADDRESS,
3450 },
3451 .emit = genX(upload_color_calc_and_blend_state),
3452 };
3453 #endif
3454
3455 /* ---------------------------------------------------------------------- */
3456
3457 #if GEN_GEN >= 7
3458 static void
3459 genX(upload_sbe)(struct brw_context *brw)
3460 {
3461 struct gl_context *ctx = &brw->ctx;
3462 /* BRW_NEW_FRAGMENT_PROGRAM */
3463 UNUSED const struct gl_program *fp = brw->programs[MESA_SHADER_FRAGMENT];
3464 /* BRW_NEW_FS_PROG_DATA */
3465 const struct brw_wm_prog_data *wm_prog_data =
3466 brw_wm_prog_data(brw->wm.base.prog_data);
3467 #if GEN_GEN >= 8
3468 struct GENX(SF_OUTPUT_ATTRIBUTE_DETAIL) attr_overrides[16] = { { 0 } };
3469 #else
3470 #define attr_overrides sbe.Attribute
3471 #endif
3472 uint32_t urb_entry_read_length;
3473 uint32_t urb_entry_read_offset;
3474 uint32_t point_sprite_enables;
3475
3476 brw_batch_emit(brw, GENX(3DSTATE_SBE), sbe) {
3477 sbe.AttributeSwizzleEnable = true;
3478 sbe.NumberofSFOutputAttributes = wm_prog_data->num_varying_inputs;
3479
3480 /* _NEW_BUFFERS */
3481 bool flip_y = ctx->DrawBuffer->FlipY;
3482
3483 /* _NEW_POINT
3484 *
3485 * Window coordinates in an FBO are inverted, which means point
3486 * sprite origin must be inverted.
3487 */
3488 if ((ctx->Point.SpriteOrigin == GL_LOWER_LEFT) == flip_y)
3489 sbe.PointSpriteTextureCoordinateOrigin = LOWERLEFT;
3490 else
3491 sbe.PointSpriteTextureCoordinateOrigin = UPPERLEFT;
3492
3493 /* _NEW_POINT | _NEW_LIGHT | _NEW_PROGRAM,
3494 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM |
3495 * BRW_NEW_GS_PROG_DATA | BRW_NEW_PRIMITIVE | BRW_NEW_TES_PROG_DATA |
3496 * BRW_NEW_VUE_MAP_GEOM_OUT
3497 */
3498 genX(calculate_attr_overrides)(brw,
3499 attr_overrides,
3500 &point_sprite_enables,
3501 &urb_entry_read_length,
3502 &urb_entry_read_offset);
3503
3504 /* Typically, the URB entry read length and offset should be programmed
3505 * in 3DSTATE_VS and 3DSTATE_GS; SBE inherits it from the last active
3506 * stage which produces geometry. However, we don't know the proper
3507 * value until we call calculate_attr_overrides().
3508 *
3509 * To fit with our existing code, we override the inherited values and
3510 * specify it here directly, as we did on previous generations.
3511 */
3512 sbe.VertexURBEntryReadLength = urb_entry_read_length;
3513 sbe.VertexURBEntryReadOffset = urb_entry_read_offset;
3514 sbe.PointSpriteTextureCoordinateEnable = point_sprite_enables;
3515 sbe.ConstantInterpolationEnable = wm_prog_data->flat_inputs;
3516
3517 #if GEN_GEN >= 8
3518 sbe.ForceVertexURBEntryReadLength = true;
3519 sbe.ForceVertexURBEntryReadOffset = true;
3520 #endif
3521
3522 #if GEN_GEN >= 9
3523 /* prepare the active component dwords */
3524 for (int i = 0; i < 32; i++)
3525 sbe.AttributeActiveComponentFormat[i] = ACTIVE_COMPONENT_XYZW;
3526 #endif
3527 }
3528
3529 #if GEN_GEN >= 8
3530 brw_batch_emit(brw, GENX(3DSTATE_SBE_SWIZ), sbes) {
3531 for (int i = 0; i < 16; i++)
3532 sbes.Attribute[i] = attr_overrides[i];
3533 }
3534 #endif
3535
3536 #undef attr_overrides
3537 }
3538
3539 static const struct brw_tracked_state genX(sbe_state) = {
3540 .dirty = {
3541 .mesa = _NEW_BUFFERS |
3542 _NEW_LIGHT |
3543 _NEW_POINT |
3544 _NEW_POLYGON |
3545 _NEW_PROGRAM,
3546 .brw = BRW_NEW_BLORP |
3547 BRW_NEW_CONTEXT |
3548 BRW_NEW_FRAGMENT_PROGRAM |
3549 BRW_NEW_FS_PROG_DATA |
3550 BRW_NEW_GS_PROG_DATA |
3551 BRW_NEW_TES_PROG_DATA |
3552 BRW_NEW_VUE_MAP_GEOM_OUT |
3553 (GEN_GEN == 7 ? BRW_NEW_PRIMITIVE
3554 : 0),
3555 },
3556 .emit = genX(upload_sbe),
3557 };
3558 #endif
3559
3560 /* ---------------------------------------------------------------------- */
3561
3562 #if GEN_GEN >= 7
3563 /**
3564 * Outputs the 3DSTATE_SO_DECL_LIST command.
3565 *
3566 * The data output is a series of 64-bit entries containing a SO_DECL per
3567 * stream. We only have one stream of rendering coming out of the GS unit, so
3568 * we only emit stream 0 (low 16 bits) SO_DECLs.
3569 */
3570 static void
3571 genX(upload_3dstate_so_decl_list)(struct brw_context *brw,
3572 const struct brw_vue_map *vue_map)
3573 {
3574 struct gl_context *ctx = &brw->ctx;
3575 /* BRW_NEW_TRANSFORM_FEEDBACK */
3576 struct gl_transform_feedback_object *xfb_obj =
3577 ctx->TransformFeedback.CurrentObject;
3578 const struct gl_transform_feedback_info *linked_xfb_info =
3579 xfb_obj->program->sh.LinkedTransformFeedback;
3580 struct GENX(SO_DECL) so_decl[MAX_VERTEX_STREAMS][128];
3581 int buffer_mask[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3582 int next_offset[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3583 int decls[MAX_VERTEX_STREAMS] = {0, 0, 0, 0};
3584 int max_decls = 0;
3585 STATIC_ASSERT(ARRAY_SIZE(so_decl[0]) >= MAX_PROGRAM_OUTPUTS);
3586
3587 memset(so_decl, 0, sizeof(so_decl));
3588
3589 /* Construct the list of SO_DECLs to be emitted. The formatting of the
3590 * command feels strange -- each dword pair contains a SO_DECL per stream.
3591 */
3592 for (unsigned i = 0; i < linked_xfb_info->NumOutputs; i++) {
3593 const struct gl_transform_feedback_output *output =
3594 &linked_xfb_info->Outputs[i];
3595 const int buffer = output->OutputBuffer;
3596 const int varying = output->OutputRegister;
3597 const unsigned stream_id = output->StreamId;
3598 assert(stream_id < MAX_VERTEX_STREAMS);
3599
3600 buffer_mask[stream_id] |= 1 << buffer;
3601
3602 assert(vue_map->varying_to_slot[varying] >= 0);
3603
3604 /* Mesa doesn't store entries for gl_SkipComponents in the Outputs[]
3605 * array. Instead, it simply increments DstOffset for the following
3606 * input by the number of components that should be skipped.
3607 *
3608 * Our hardware is unusual in that it requires us to program SO_DECLs
3609 * for fake "hole" components, rather than simply taking the offset
3610 * for each real varying. Each hole can have size 1, 2, 3, or 4; we
3611 * program as many size = 4 holes as we can, then a final hole to
3612 * accommodate the final 1, 2, or 3 remaining.
3613 */
3614 int skip_components = output->DstOffset - next_offset[buffer];
3615
3616 while (skip_components > 0) {
3617 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3618 .HoleFlag = 1,
3619 .OutputBufferSlot = output->OutputBuffer,
3620 .ComponentMask = (1 << MIN2(skip_components, 4)) - 1,
3621 };
3622 skip_components -= 4;
3623 }
3624
3625 next_offset[buffer] = output->DstOffset + output->NumComponents;
3626
3627 so_decl[stream_id][decls[stream_id]++] = (struct GENX(SO_DECL)) {
3628 .OutputBufferSlot = output->OutputBuffer,
3629 .RegisterIndex = vue_map->varying_to_slot[varying],
3630 .ComponentMask =
3631 ((1 << output->NumComponents) - 1) << output->ComponentOffset,
3632 };
3633
3634 if (decls[stream_id] > max_decls)
3635 max_decls = decls[stream_id];
3636 }
3637
3638 uint32_t *dw;
3639 dw = brw_batch_emitn(brw, GENX(3DSTATE_SO_DECL_LIST), 3 + 2 * max_decls,
3640 .StreamtoBufferSelects0 = buffer_mask[0],
3641 .StreamtoBufferSelects1 = buffer_mask[1],
3642 .StreamtoBufferSelects2 = buffer_mask[2],
3643 .StreamtoBufferSelects3 = buffer_mask[3],
3644 .NumEntries0 = decls[0],
3645 .NumEntries1 = decls[1],
3646 .NumEntries2 = decls[2],
3647 .NumEntries3 = decls[3]);
3648
3649 for (int i = 0; i < max_decls; i++) {
3650 GENX(SO_DECL_ENTRY_pack)(
3651 brw, dw + 2 + i * 2,
3652 &(struct GENX(SO_DECL_ENTRY)) {
3653 .Stream0Decl = so_decl[0][i],
3654 .Stream1Decl = so_decl[1][i],
3655 .Stream2Decl = so_decl[2][i],
3656 .Stream3Decl = so_decl[3][i],
3657 });
3658 }
3659 }
3660
3661 static void
3662 genX(upload_3dstate_so_buffers)(struct brw_context *brw)
3663 {
3664 struct gl_context *ctx = &brw->ctx;
3665 /* BRW_NEW_TRANSFORM_FEEDBACK */
3666 struct gl_transform_feedback_object *xfb_obj =
3667 ctx->TransformFeedback.CurrentObject;
3668 #if GEN_GEN < 8
3669 const struct gl_transform_feedback_info *linked_xfb_info =
3670 xfb_obj->program->sh.LinkedTransformFeedback;
3671 #else
3672 struct brw_transform_feedback_object *brw_obj =
3673 (struct brw_transform_feedback_object *) xfb_obj;
3674 uint32_t mocs_wb = GEN_GEN >= 9 ? SKL_MOCS_WB : BDW_MOCS_WB;
3675 #endif
3676
3677 /* Set up the up to 4 output buffers. These are the ranges defined in the
3678 * gl_transform_feedback_object.
3679 */
3680 for (int i = 0; i < 4; i++) {
3681 struct intel_buffer_object *bufferobj =
3682 intel_buffer_object(xfb_obj->Buffers[i]);
3683 uint32_t start = xfb_obj->Offset[i];
3684 uint32_t end = ALIGN(start + xfb_obj->Size[i], 4);
3685 uint32_t const size = end - start;
3686
3687 if (!bufferobj || !size) {
3688 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3689 sob.SOBufferIndex = i;
3690 }
3691 continue;
3692 }
3693
3694 assert(start % 4 == 0);
3695 struct brw_bo *bo =
3696 intel_bufferobj_buffer(brw, bufferobj, start, size, true);
3697 assert(end <= bo->size);
3698
3699 brw_batch_emit(brw, GENX(3DSTATE_SO_BUFFER), sob) {
3700 sob.SOBufferIndex = i;
3701
3702 sob.SurfaceBaseAddress = rw_bo(bo, start);
3703 #if GEN_GEN < 8
3704 sob.SurfacePitch = linked_xfb_info->Buffers[i].Stride * 4;
3705 sob.SurfaceEndAddress = rw_bo(bo, end);
3706 #else
3707 sob.SOBufferEnable = true;
3708 sob.StreamOffsetWriteEnable = true;
3709 sob.StreamOutputBufferOffsetAddressEnable = true;
3710 sob.MOCS = mocs_wb;
3711
3712 sob.SurfaceSize = MAX2(xfb_obj->Size[i] / 4, 1) - 1;
3713 sob.StreamOutputBufferOffsetAddress =
3714 rw_bo(brw_obj->offset_bo, i * sizeof(uint32_t));
3715
3716 if (brw_obj->zero_offsets) {
3717 /* Zero out the offset and write that to offset_bo */
3718 sob.StreamOffset = 0;
3719 } else {
3720 /* Use offset_bo as the "Stream Offset." */
3721 sob.StreamOffset = 0xFFFFFFFF;
3722 }
3723 #endif
3724 }
3725 }
3726
3727 #if GEN_GEN >= 8
3728 brw_obj->zero_offsets = false;
3729 #endif
3730 }
3731
3732 static bool
3733 query_active(struct gl_query_object *q)
3734 {
3735 return q && q->Active;
3736 }
3737
3738 static void
3739 genX(upload_3dstate_streamout)(struct brw_context *brw, bool active,
3740 const struct brw_vue_map *vue_map)
3741 {
3742 struct gl_context *ctx = &brw->ctx;
3743 /* BRW_NEW_TRANSFORM_FEEDBACK */
3744 struct gl_transform_feedback_object *xfb_obj =
3745 ctx->TransformFeedback.CurrentObject;
3746
3747 brw_batch_emit(brw, GENX(3DSTATE_STREAMOUT), sos) {
3748 if (active) {
3749 int urb_entry_read_offset = 0;
3750 int urb_entry_read_length = (vue_map->num_slots + 1) / 2 -
3751 urb_entry_read_offset;
3752
3753 sos.SOFunctionEnable = true;
3754 sos.SOStatisticsEnable = true;
3755
3756 /* BRW_NEW_RASTERIZER_DISCARD */
3757 if (ctx->RasterDiscard) {
3758 if (!query_active(ctx->Query.PrimitivesGenerated[0])) {
3759 sos.RenderingDisable = true;
3760 } else {
3761 perf_debug("Rasterizer discard with a GL_PRIMITIVES_GENERATED "
3762 "query active relies on the clipper.\n");
3763 }
3764 }
3765
3766 /* _NEW_LIGHT */
3767 if (ctx->Light.ProvokingVertex != GL_FIRST_VERTEX_CONVENTION)
3768 sos.ReorderMode = TRAILING;
3769
3770 #if GEN_GEN < 8
3771 sos.SOBufferEnable0 = xfb_obj->Buffers[0] != NULL;
3772 sos.SOBufferEnable1 = xfb_obj->Buffers[1] != NULL;
3773 sos.SOBufferEnable2 = xfb_obj->Buffers[2] != NULL;
3774 sos.SOBufferEnable3 = xfb_obj->Buffers[3] != NULL;
3775 #else
3776 const struct gl_transform_feedback_info *linked_xfb_info =
3777 xfb_obj->program->sh.LinkedTransformFeedback;
3778 /* Set buffer pitches; 0 means unbound. */
3779 if (xfb_obj->Buffers[0])
3780 sos.Buffer0SurfacePitch = linked_xfb_info->Buffers[0].Stride * 4;
3781 if (xfb_obj->Buffers[1])
3782 sos.Buffer1SurfacePitch = linked_xfb_info->Buffers[1].Stride * 4;
3783 if (xfb_obj->Buffers[2])
3784 sos.Buffer2SurfacePitch = linked_xfb_info->Buffers[2].Stride * 4;
3785 if (xfb_obj->Buffers[3])
3786 sos.Buffer3SurfacePitch = linked_xfb_info->Buffers[3].Stride * 4;
3787 #endif
3788
3789 /* We always read the whole vertex. This could be reduced at some
3790 * point by reading less and offsetting the register index in the
3791 * SO_DECLs.
3792 */
3793 sos.Stream0VertexReadOffset = urb_entry_read_offset;
3794 sos.Stream0VertexReadLength = urb_entry_read_length - 1;
3795 sos.Stream1VertexReadOffset = urb_entry_read_offset;
3796 sos.Stream1VertexReadLength = urb_entry_read_length - 1;
3797 sos.Stream2VertexReadOffset = urb_entry_read_offset;
3798 sos.Stream2VertexReadLength = urb_entry_read_length - 1;
3799 sos.Stream3VertexReadOffset = urb_entry_read_offset;
3800 sos.Stream3VertexReadLength = urb_entry_read_length - 1;
3801 }
3802 }
3803 }
3804
3805 static void
3806 genX(upload_sol)(struct brw_context *brw)
3807 {
3808 struct gl_context *ctx = &brw->ctx;
3809 /* BRW_NEW_TRANSFORM_FEEDBACK */
3810 bool active = _mesa_is_xfb_active_and_unpaused(ctx);
3811
3812 if (active) {
3813 genX(upload_3dstate_so_buffers)(brw);
3814
3815 /* BRW_NEW_VUE_MAP_GEOM_OUT */
3816 genX(upload_3dstate_so_decl_list)(brw, &brw->vue_map_geom_out);
3817 }
3818
3819 /* Finally, set up the SOL stage. This command must always follow updates to
3820 * the nonpipelined SOL state (3DSTATE_SO_BUFFER, 3DSTATE_SO_DECL_LIST) or
3821 * MMIO register updates (current performed by the kernel at each batch
3822 * emit).
3823 */
3824 genX(upload_3dstate_streamout)(brw, active, &brw->vue_map_geom_out);
3825 }
3826
3827 static const struct brw_tracked_state genX(sol_state) = {
3828 .dirty = {
3829 .mesa = _NEW_LIGHT,
3830 .brw = BRW_NEW_BATCH |
3831 BRW_NEW_BLORP |
3832 BRW_NEW_RASTERIZER_DISCARD |
3833 BRW_NEW_VUE_MAP_GEOM_OUT |
3834 BRW_NEW_TRANSFORM_FEEDBACK,
3835 },
3836 .emit = genX(upload_sol),
3837 };
3838 #endif
3839
3840 /* ---------------------------------------------------------------------- */
3841
3842 #if GEN_GEN >= 7
3843 static void
3844 genX(upload_ps)(struct brw_context *brw)
3845 {
3846 UNUSED const struct gl_context *ctx = &brw->ctx;
3847 UNUSED const struct gen_device_info *devinfo = &brw->screen->devinfo;
3848
3849 /* BRW_NEW_FS_PROG_DATA */
3850 const struct brw_wm_prog_data *prog_data =
3851 brw_wm_prog_data(brw->wm.base.prog_data);
3852 const struct brw_stage_state *stage_state = &brw->wm.base;
3853
3854 #if GEN_GEN < 8
3855 #endif
3856
3857 brw_batch_emit(brw, GENX(3DSTATE_PS), ps) {
3858 /* Initialize the execution mask with VMask. Otherwise, derivatives are
3859 * incorrect for subspans where some of the pixels are unlit. We believe
3860 * the bit just didn't take effect in previous generations.
3861 */
3862 ps.VectorMaskEnable = GEN_GEN >= 8;
3863
3864 /* WA_1606682166:
3865 * "Incorrect TDL's SSP address shift in SARB for 16:6 & 18:8 modes.
3866 * Disable the Sampler state prefetch functionality in the SARB by
3867 * programming 0xB000[30] to '1'."
3868 */
3869 ps.SamplerCount = GEN_GEN == 11 ?
3870 0 : DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4);
3871
3872 /* BRW_NEW_FS_PROG_DATA */
3873 ps.BindingTableEntryCount = prog_data->base.binding_table.size_bytes / 4;
3874
3875 if (prog_data->base.use_alt_mode)
3876 ps.FloatingPointMode = Alternate;
3877
3878 /* Haswell requires the sample mask to be set in this packet as well as
3879 * in 3DSTATE_SAMPLE_MASK; the values should match.
3880 */
3881
3882 /* _NEW_BUFFERS, _NEW_MULTISAMPLE */
3883 #if GEN_IS_HASWELL
3884 ps.SampleMask = genX(determine_sample_mask(brw));
3885 #endif
3886
3887 /* 3DSTATE_PS expects the number of threads per PSD, which is always 64
3888 * for pre Gen11 and 128 for gen11+; On gen11+ If a programmed value is
3889 * k, it implies 2(k+1) threads. It implicitly scales for different GT
3890 * levels (which have some # of PSDs).
3891 *
3892 * In Gen8 the format is U8-2 whereas in Gen9+ it is U9-1.
3893 */
3894 #if GEN_GEN >= 9
3895 ps.MaximumNumberofThreadsPerPSD = 64 - 1;
3896 #elif GEN_GEN >= 8
3897 ps.MaximumNumberofThreadsPerPSD = 64 - 2;
3898 #else
3899 ps.MaximumNumberofThreads = devinfo->max_wm_threads - 1;
3900 #endif
3901
3902 if (prog_data->base.nr_params > 0 ||
3903 prog_data->base.ubo_ranges[0].length > 0)
3904 ps.PushConstantEnable = true;
3905
3906 #if GEN_GEN < 8
3907 /* From the IVB PRM, volume 2 part 1, page 287:
3908 * "This bit is inserted in the PS payload header and made available to
3909 * the DataPort (either via the message header or via header bypass) to
3910 * indicate that oMask data (one or two phases) is included in Render
3911 * Target Write messages. If present, the oMask data is used to mask off
3912 * samples."
3913 */
3914 ps.oMaskPresenttoRenderTarget = prog_data->uses_omask;
3915
3916 /* The hardware wedges if you have this bit set but don't turn on any
3917 * dual source blend factors.
3918 *
3919 * BRW_NEW_FS_PROG_DATA | _NEW_COLOR
3920 */
3921 ps.DualSourceBlendEnable = prog_data->dual_src_blend &&
3922 (ctx->Color.BlendEnabled & 1) &&
3923 ctx->Color.Blend[0]._UsesDualSrc;
3924
3925 /* BRW_NEW_FS_PROG_DATA */
3926 ps.AttributeEnable = (prog_data->num_varying_inputs != 0);
3927 #endif
3928
3929 /* From the documentation for this packet:
3930 * "If the PS kernel does not need the Position XY Offsets to
3931 * compute a Position Value, then this field should be programmed
3932 * to POSOFFSET_NONE."
3933 *
3934 * "SW Recommendation: If the PS kernel needs the Position Offsets
3935 * to compute a Position XY value, this field should match Position
3936 * ZW Interpolation Mode to ensure a consistent position.xyzw
3937 * computation."
3938 *
3939 * We only require XY sample offsets. So, this recommendation doesn't
3940 * look useful at the moment. We might need this in future.
3941 */
3942 if (prog_data->uses_pos_offset)
3943 ps.PositionXYOffsetSelect = POSOFFSET_SAMPLE;
3944 else
3945 ps.PositionXYOffsetSelect = POSOFFSET_NONE;
3946
3947 ps._8PixelDispatchEnable = prog_data->dispatch_8;
3948 ps._16PixelDispatchEnable = prog_data->dispatch_16;
3949 ps._32PixelDispatchEnable = prog_data->dispatch_32;
3950
3951 /* From the Sky Lake PRM 3DSTATE_PS::32 Pixel Dispatch Enable:
3952 *
3953 * "When NUM_MULTISAMPLES = 16 or FORCE_SAMPLE_COUNT = 16, SIMD32
3954 * Dispatch must not be enabled for PER_PIXEL dispatch mode."
3955 *
3956 * Since 16x MSAA is first introduced on SKL, we don't need to apply
3957 * the workaround on any older hardware.
3958 *
3959 * BRW_NEW_NUM_SAMPLES
3960 */
3961 if (GEN_GEN >= 9 && !prog_data->persample_dispatch &&
3962 brw->num_samples == 16) {
3963 assert(ps._8PixelDispatchEnable || ps._16PixelDispatchEnable);
3964 ps._32PixelDispatchEnable = false;
3965 }
3966
3967 ps.DispatchGRFStartRegisterForConstantSetupData0 =
3968 brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 0);
3969 ps.DispatchGRFStartRegisterForConstantSetupData1 =
3970 brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 1);
3971 ps.DispatchGRFStartRegisterForConstantSetupData2 =
3972 brw_wm_prog_data_dispatch_grf_start_reg(prog_data, ps, 2);
3973
3974 ps.KernelStartPointer0 = stage_state->prog_offset +
3975 brw_wm_prog_data_prog_offset(prog_data, ps, 0);
3976 ps.KernelStartPointer1 = stage_state->prog_offset +
3977 brw_wm_prog_data_prog_offset(prog_data, ps, 1);
3978 ps.KernelStartPointer2 = stage_state->prog_offset +
3979 brw_wm_prog_data_prog_offset(prog_data, ps, 2);
3980
3981 if (prog_data->base.total_scratch) {
3982 ps.ScratchSpaceBasePointer =
3983 rw_32_bo(stage_state->scratch_bo,
3984 ffs(stage_state->per_thread_scratch) - 11);
3985 }
3986 }
3987 }
3988
3989 static const struct brw_tracked_state genX(ps_state) = {
3990 .dirty = {
3991 .mesa = _NEW_MULTISAMPLE |
3992 (GEN_GEN < 8 ? _NEW_BUFFERS |
3993 _NEW_COLOR
3994 : 0),
3995 .brw = BRW_NEW_BATCH |
3996 BRW_NEW_BLORP |
3997 BRW_NEW_FS_PROG_DATA |
3998 (GEN_GEN >= 9 ? BRW_NEW_NUM_SAMPLES : 0),
3999 },
4000 .emit = genX(upload_ps),
4001 };
4002 #endif
4003
4004 /* ---------------------------------------------------------------------- */
4005
4006 #if GEN_GEN >= 7
4007 static void
4008 genX(upload_hs_state)(struct brw_context *brw)
4009 {
4010 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4011 struct brw_stage_state *stage_state = &brw->tcs.base;
4012 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
4013 const struct brw_vue_prog_data *vue_prog_data =
4014 brw_vue_prog_data(stage_prog_data);
4015
4016 /* BRW_NEW_TES_PROG_DATA */
4017 struct brw_tcs_prog_data *tcs_prog_data =
4018 brw_tcs_prog_data(stage_prog_data);
4019
4020 if (!tcs_prog_data) {
4021 brw_batch_emit(brw, GENX(3DSTATE_HS), hs);
4022 } else {
4023 brw_batch_emit(brw, GENX(3DSTATE_HS), hs) {
4024 INIT_THREAD_DISPATCH_FIELDS(hs, Vertex);
4025
4026 hs.InstanceCount = tcs_prog_data->instances - 1;
4027 hs.IncludeVertexHandles = true;
4028
4029 hs.MaximumNumberofThreads = devinfo->max_tcs_threads - 1;
4030
4031 #if GEN_GEN >= 9
4032 hs.DispatchMode = vue_prog_data->dispatch_mode;
4033 hs.IncludePrimitiveID = tcs_prog_data->include_primitive_id;
4034 #endif
4035 }
4036 }
4037 }
4038
4039 static const struct brw_tracked_state genX(hs_state) = {
4040 .dirty = {
4041 .mesa = 0,
4042 .brw = BRW_NEW_BATCH |
4043 BRW_NEW_BLORP |
4044 BRW_NEW_TCS_PROG_DATA |
4045 BRW_NEW_TESS_PROGRAMS,
4046 },
4047 .emit = genX(upload_hs_state),
4048 };
4049
4050 static void
4051 genX(upload_ds_state)(struct brw_context *brw)
4052 {
4053 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4054 const struct brw_stage_state *stage_state = &brw->tes.base;
4055 struct brw_stage_prog_data *stage_prog_data = stage_state->prog_data;
4056
4057 /* BRW_NEW_TES_PROG_DATA */
4058 const struct brw_tes_prog_data *tes_prog_data =
4059 brw_tes_prog_data(stage_prog_data);
4060 const struct brw_vue_prog_data *vue_prog_data =
4061 brw_vue_prog_data(stage_prog_data);
4062
4063 if (!tes_prog_data) {
4064 brw_batch_emit(brw, GENX(3DSTATE_DS), ds);
4065 } else {
4066 assert(GEN_GEN < 11 ||
4067 vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8);
4068
4069 brw_batch_emit(brw, GENX(3DSTATE_DS), ds) {
4070 INIT_THREAD_DISPATCH_FIELDS(ds, Patch);
4071
4072 ds.MaximumNumberofThreads = devinfo->max_tes_threads - 1;
4073 ds.ComputeWCoordinateEnable =
4074 tes_prog_data->domain == BRW_TESS_DOMAIN_TRI;
4075
4076 #if GEN_GEN >= 8
4077 if (vue_prog_data->dispatch_mode == DISPATCH_MODE_SIMD8)
4078 ds.DispatchMode = DISPATCH_MODE_SIMD8_SINGLE_PATCH;
4079 ds.UserClipDistanceCullTestEnableBitmask =
4080 vue_prog_data->cull_distance_mask;
4081 #endif
4082 }
4083 }
4084 }
4085
4086 static const struct brw_tracked_state genX(ds_state) = {
4087 .dirty = {
4088 .mesa = 0,
4089 .brw = BRW_NEW_BATCH |
4090 BRW_NEW_BLORP |
4091 BRW_NEW_TESS_PROGRAMS |
4092 BRW_NEW_TES_PROG_DATA,
4093 },
4094 .emit = genX(upload_ds_state),
4095 };
4096
4097 /* ---------------------------------------------------------------------- */
4098
4099 static void
4100 upload_te_state(struct brw_context *brw)
4101 {
4102 /* BRW_NEW_TESS_PROGRAMS */
4103 bool active = brw->programs[MESA_SHADER_TESS_EVAL];
4104
4105 /* BRW_NEW_TES_PROG_DATA */
4106 const struct brw_tes_prog_data *tes_prog_data =
4107 brw_tes_prog_data(brw->tes.base.prog_data);
4108
4109 if (active) {
4110 brw_batch_emit(brw, GENX(3DSTATE_TE), te) {
4111 te.Partitioning = tes_prog_data->partitioning;
4112 te.OutputTopology = tes_prog_data->output_topology;
4113 te.TEDomain = tes_prog_data->domain;
4114 te.TEEnable = true;
4115 te.MaximumTessellationFactorOdd = 63.0;
4116 te.MaximumTessellationFactorNotOdd = 64.0;
4117 }
4118 } else {
4119 brw_batch_emit(brw, GENX(3DSTATE_TE), te);
4120 }
4121 }
4122
4123 static const struct brw_tracked_state genX(te_state) = {
4124 .dirty = {
4125 .mesa = 0,
4126 .brw = BRW_NEW_BLORP |
4127 BRW_NEW_CONTEXT |
4128 BRW_NEW_TES_PROG_DATA |
4129 BRW_NEW_TESS_PROGRAMS,
4130 },
4131 .emit = upload_te_state,
4132 };
4133
4134 /* ---------------------------------------------------------------------- */
4135
4136 static void
4137 genX(upload_tes_push_constants)(struct brw_context *brw)
4138 {
4139 struct brw_stage_state *stage_state = &brw->tes.base;
4140 /* BRW_NEW_TESS_PROGRAMS */
4141 const struct gl_program *tep = brw->programs[MESA_SHADER_TESS_EVAL];
4142
4143 /* BRW_NEW_TES_PROG_DATA */
4144 const struct brw_stage_prog_data *prog_data = brw->tes.base.prog_data;
4145 gen6_upload_push_constants(brw, tep, prog_data, stage_state);
4146 }
4147
4148 static const struct brw_tracked_state genX(tes_push_constants) = {
4149 .dirty = {
4150 .mesa = _NEW_PROGRAM_CONSTANTS,
4151 .brw = BRW_NEW_BATCH |
4152 BRW_NEW_BLORP |
4153 BRW_NEW_TESS_PROGRAMS |
4154 BRW_NEW_TES_PROG_DATA,
4155 },
4156 .emit = genX(upload_tes_push_constants),
4157 };
4158
4159 static void
4160 genX(upload_tcs_push_constants)(struct brw_context *brw)
4161 {
4162 struct brw_stage_state *stage_state = &brw->tcs.base;
4163 /* BRW_NEW_TESS_PROGRAMS */
4164 const struct gl_program *tcp = brw->programs[MESA_SHADER_TESS_CTRL];
4165
4166 /* BRW_NEW_TCS_PROG_DATA */
4167 const struct brw_stage_prog_data *prog_data = brw->tcs.base.prog_data;
4168
4169 gen6_upload_push_constants(brw, tcp, prog_data, stage_state);
4170 }
4171
4172 static const struct brw_tracked_state genX(tcs_push_constants) = {
4173 .dirty = {
4174 .mesa = _NEW_PROGRAM_CONSTANTS,
4175 .brw = BRW_NEW_BATCH |
4176 BRW_NEW_BLORP |
4177 BRW_NEW_DEFAULT_TESS_LEVELS |
4178 BRW_NEW_TESS_PROGRAMS |
4179 BRW_NEW_TCS_PROG_DATA,
4180 },
4181 .emit = genX(upload_tcs_push_constants),
4182 };
4183
4184 #endif
4185
4186 /* ---------------------------------------------------------------------- */
4187
4188 #if GEN_GEN >= 7
4189 static void
4190 genX(upload_cs_push_constants)(struct brw_context *brw)
4191 {
4192 struct brw_stage_state *stage_state = &brw->cs.base;
4193
4194 /* BRW_NEW_COMPUTE_PROGRAM */
4195 const struct gl_program *cp = brw->programs[MESA_SHADER_COMPUTE];
4196
4197 if (cp) {
4198 /* BRW_NEW_CS_PROG_DATA */
4199 struct brw_cs_prog_data *cs_prog_data =
4200 brw_cs_prog_data(brw->cs.base.prog_data);
4201
4202 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4203 brw_upload_cs_push_constants(brw, cp, cs_prog_data, stage_state);
4204 }
4205 }
4206
4207 const struct brw_tracked_state genX(cs_push_constants) = {
4208 .dirty = {
4209 .mesa = _NEW_PROGRAM_CONSTANTS,
4210 .brw = BRW_NEW_BATCH |
4211 BRW_NEW_BLORP |
4212 BRW_NEW_COMPUTE_PROGRAM |
4213 BRW_NEW_CS_PROG_DATA,
4214 },
4215 .emit = genX(upload_cs_push_constants),
4216 };
4217
4218 /**
4219 * Creates a new CS constant buffer reflecting the current CS program's
4220 * constants, if needed by the CS program.
4221 */
4222 static void
4223 genX(upload_cs_pull_constants)(struct brw_context *brw)
4224 {
4225 struct brw_stage_state *stage_state = &brw->cs.base;
4226
4227 /* BRW_NEW_COMPUTE_PROGRAM */
4228 struct brw_program *cp =
4229 (struct brw_program *) brw->programs[MESA_SHADER_COMPUTE];
4230
4231 /* BRW_NEW_CS_PROG_DATA */
4232 const struct brw_stage_prog_data *prog_data = brw->cs.base.prog_data;
4233
4234 _mesa_shader_write_subroutine_indices(&brw->ctx, MESA_SHADER_COMPUTE);
4235 /* _NEW_PROGRAM_CONSTANTS */
4236 brw_upload_pull_constants(brw, BRW_NEW_SURFACES, &cp->program,
4237 stage_state, prog_data);
4238 }
4239
4240 const struct brw_tracked_state genX(cs_pull_constants) = {
4241 .dirty = {
4242 .mesa = _NEW_PROGRAM_CONSTANTS,
4243 .brw = BRW_NEW_BATCH |
4244 BRW_NEW_BLORP |
4245 BRW_NEW_COMPUTE_PROGRAM |
4246 BRW_NEW_CS_PROG_DATA,
4247 },
4248 .emit = genX(upload_cs_pull_constants),
4249 };
4250
4251 static void
4252 genX(upload_cs_state)(struct brw_context *brw)
4253 {
4254 if (!brw->cs.base.prog_data)
4255 return;
4256
4257 uint32_t offset;
4258 uint32_t *desc = (uint32_t*) brw_state_batch(
4259 brw, GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t), 64,
4260 &offset);
4261
4262 struct brw_stage_state *stage_state = &brw->cs.base;
4263 struct brw_stage_prog_data *prog_data = stage_state->prog_data;
4264 struct brw_cs_prog_data *cs_prog_data = brw_cs_prog_data(prog_data);
4265 const struct gen_device_info *devinfo = &brw->screen->devinfo;
4266
4267 const struct brw_cs_parameters cs_params = brw_cs_get_parameters(brw);
4268
4269 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4270 brw_emit_buffer_surface_state(
4271 brw, &stage_state->surf_offset[
4272 prog_data->binding_table.shader_time_start],
4273 brw->shader_time.bo, 0, ISL_FORMAT_RAW,
4274 brw->shader_time.bo->size, 1,
4275 RELOC_WRITE);
4276 }
4277
4278 uint32_t *bind = brw_state_batch(brw, prog_data->binding_table.size_bytes,
4279 32, &stage_state->bind_bo_offset);
4280
4281 /* The MEDIA_VFE_STATE documentation for Gen8+ says:
4282 *
4283 * "A stalling PIPE_CONTROL is required before MEDIA_VFE_STATE unless
4284 * the only bits that are changed are scoreboard related: Scoreboard
4285 * Enable, Scoreboard Type, Scoreboard Mask, Scoreboard * Delta. For
4286 * these scoreboard related states, a MEDIA_STATE_FLUSH is sufficient."
4287 *
4288 * Earlier generations say "MI_FLUSH" instead of "stalling PIPE_CONTROL",
4289 * but MI_FLUSH isn't really a thing, so we assume they meant PIPE_CONTROL.
4290 */
4291 brw_emit_pipe_control_flush(brw, PIPE_CONTROL_CS_STALL);
4292
4293 brw_batch_emit(brw, GENX(MEDIA_VFE_STATE), vfe) {
4294 if (prog_data->total_scratch) {
4295 uint32_t per_thread_scratch_value;
4296
4297 if (GEN_GEN >= 8) {
4298 /* Broadwell's Per Thread Scratch Space is in the range [0, 11]
4299 * where 0 = 1k, 1 = 2k, 2 = 4k, ..., 11 = 2M.
4300 */
4301 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 11;
4302 } else if (GEN_IS_HASWELL) {
4303 /* Haswell's Per Thread Scratch Space is in the range [0, 10]
4304 * where 0 = 2k, 1 = 4k, 2 = 8k, ..., 10 = 2M.
4305 */
4306 per_thread_scratch_value = ffs(stage_state->per_thread_scratch) - 12;
4307 } else {
4308 /* Earlier platforms use the range [0, 11] to mean [1kB, 12kB]
4309 * where 0 = 1kB, 1 = 2kB, 2 = 3kB, ..., 11 = 12kB.
4310 */
4311 per_thread_scratch_value = stage_state->per_thread_scratch / 1024 - 1;
4312 }
4313 vfe.ScratchSpaceBasePointer = rw_32_bo(stage_state->scratch_bo, 0);
4314 vfe.PerThreadScratchSpace = per_thread_scratch_value;
4315 }
4316
4317 /* If brw->screen->subslice_total is greater than one, then
4318 * devinfo->max_cs_threads stores number of threads per sub-slice;
4319 * thus we need to multiply by that number by subslices to get
4320 * the actual maximum number of threads; the -1 is because the HW
4321 * has a bias of 1 (would not make sense to say the maximum number
4322 * of threads is 0).
4323 */
4324 const uint32_t subslices = MAX2(brw->screen->subslice_total, 1);
4325 vfe.MaximumNumberofThreads = devinfo->max_cs_threads * subslices - 1;
4326 vfe.NumberofURBEntries = GEN_GEN >= 8 ? 2 : 0;
4327 #if GEN_GEN < 11
4328 vfe.ResetGatewayTimer =
4329 Resettingrelativetimerandlatchingtheglobaltimestamp;
4330 #endif
4331 #if GEN_GEN < 9
4332 vfe.BypassGatewayControl = BypassingOpenGatewayCloseGatewayprotocol;
4333 #endif
4334 #if GEN_GEN == 7
4335 vfe.GPGPUMode = 1;
4336 #endif
4337
4338 /* We are uploading duplicated copies of push constant uniforms for each
4339 * thread. Although the local id data needs to vary per thread, it won't
4340 * change for other uniform data. Unfortunately this duplication is
4341 * required for gen7. As of Haswell, this duplication can be avoided,
4342 * but this older mechanism with duplicated data continues to work.
4343 *
4344 * FINISHME: As of Haswell, we could make use of the
4345 * INTERFACE_DESCRIPTOR_DATA "Cross-Thread Constant Data Read Length"
4346 * field to only store one copy of uniform data.
4347 *
4348 * FINISHME: Broadwell adds a new alternative "Indirect Payload Storage"
4349 * which is described in the GPGPU_WALKER command and in the Broadwell
4350 * PRM Volume 7: 3D Media GPGPU, under Media GPGPU Pipeline => Mode of
4351 * Operations => GPGPU Mode => Indirect Payload Storage.
4352 *
4353 * Note: The constant data is built in brw_upload_cs_push_constants
4354 * below.
4355 */
4356 vfe.URBEntryAllocationSize = GEN_GEN >= 8 ? 2 : 0;
4357
4358 const uint32_t vfe_curbe_allocation =
4359 ALIGN(cs_prog_data->push.per_thread.regs * cs_params.threads +
4360 cs_prog_data->push.cross_thread.regs, 2);
4361 vfe.CURBEAllocationSize = vfe_curbe_allocation;
4362 }
4363
4364 const unsigned push_const_size =
4365 brw_cs_push_const_total_size(cs_prog_data, cs_params.threads);
4366 if (push_const_size > 0) {
4367 brw_batch_emit(brw, GENX(MEDIA_CURBE_LOAD), curbe) {
4368 curbe.CURBETotalDataLength = ALIGN(push_const_size, 64);
4369 curbe.CURBEDataStartAddress = stage_state->push_const_offset;
4370 }
4371 }
4372
4373 /* BRW_NEW_SURFACES and BRW_NEW_*_CONSTBUF */
4374 memcpy(bind, stage_state->surf_offset,
4375 prog_data->binding_table.size_bytes);
4376 const uint64_t ksp = brw->cs.base.prog_offset +
4377 brw_cs_prog_data_prog_offset(cs_prog_data,
4378 cs_params.simd_size);
4379 const struct GENX(INTERFACE_DESCRIPTOR_DATA) idd = {
4380 .KernelStartPointer = ksp,
4381 .SamplerStatePointer = stage_state->sampler_offset,
4382 /* WA_1606682166 */
4383 .SamplerCount = GEN_GEN == 11 ? 0 :
4384 DIV_ROUND_UP(CLAMP(stage_state->sampler_count, 0, 16), 4),
4385 .BindingTablePointer = stage_state->bind_bo_offset,
4386 .ConstantURBEntryReadLength = cs_prog_data->push.per_thread.regs,
4387 .NumberofThreadsinGPGPUThreadGroup = cs_params.threads,
4388 .SharedLocalMemorySize = encode_slm_size(GEN_GEN,
4389 prog_data->total_shared),
4390 .BarrierEnable = cs_prog_data->uses_barrier,
4391 #if GEN_GEN >= 8 || GEN_IS_HASWELL
4392 .CrossThreadConstantDataReadLength =
4393 cs_prog_data->push.cross_thread.regs,
4394 #endif
4395 };
4396
4397 GENX(INTERFACE_DESCRIPTOR_DATA_pack)(brw, desc, &idd);
4398
4399 brw_batch_emit(brw, GENX(MEDIA_INTERFACE_DESCRIPTOR_LOAD), load) {
4400 load.InterfaceDescriptorTotalLength =
4401 GENX(INTERFACE_DESCRIPTOR_DATA_length) * sizeof(uint32_t);
4402 load.InterfaceDescriptorDataStartAddress = offset;
4403 }
4404 }
4405
4406 static const struct brw_tracked_state genX(cs_state) = {
4407 .dirty = {
4408 .mesa = _NEW_PROGRAM_CONSTANTS,
4409 .brw = BRW_NEW_BATCH |
4410 BRW_NEW_BLORP |
4411 BRW_NEW_CS_PROG_DATA |
4412 BRW_NEW_SAMPLER_STATE_TABLE |
4413 BRW_NEW_SURFACES,
4414 },
4415 .emit = genX(upload_cs_state)
4416 };
4417
4418 #define GPGPU_DISPATCHDIMX 0x2500
4419 #define GPGPU_DISPATCHDIMY 0x2504
4420 #define GPGPU_DISPATCHDIMZ 0x2508
4421
4422 #define MI_PREDICATE_SRC0 0x2400
4423 #define MI_PREDICATE_SRC1 0x2408
4424
4425 static void
4426 prepare_indirect_gpgpu_walker(struct brw_context *brw)
4427 {
4428 GLintptr indirect_offset = brw->compute.num_work_groups_offset;
4429 struct brw_bo *bo = brw->compute.num_work_groups_bo;
4430
4431 emit_lrm(brw, GPGPU_DISPATCHDIMX, ro_bo(bo, indirect_offset + 0));
4432 emit_lrm(brw, GPGPU_DISPATCHDIMY, ro_bo(bo, indirect_offset + 4));
4433 emit_lrm(brw, GPGPU_DISPATCHDIMZ, ro_bo(bo, indirect_offset + 8));
4434
4435 #if GEN_GEN <= 7
4436 /* Clear upper 32-bits of SRC0 and all 64-bits of SRC1 */
4437 emit_lri(brw, MI_PREDICATE_SRC0 + 4, 0);
4438 emit_lri(brw, MI_PREDICATE_SRC1 , 0);
4439 emit_lri(brw, MI_PREDICATE_SRC1 + 4, 0);
4440
4441 /* Load compute_dispatch_indirect_x_size into SRC0 */
4442 emit_lrm(brw, MI_PREDICATE_SRC0, ro_bo(bo, indirect_offset + 0));
4443
4444 /* predicate = (compute_dispatch_indirect_x_size == 0); */
4445 brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4446 mip.LoadOperation = LOAD_LOAD;
4447 mip.CombineOperation = COMBINE_SET;
4448 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4449 }
4450
4451 /* Load compute_dispatch_indirect_y_size into SRC0 */
4452 emit_lrm(brw, MI_PREDICATE_SRC0, ro_bo(bo, indirect_offset + 4));
4453
4454 /* predicate |= (compute_dispatch_indirect_y_size == 0); */
4455 brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4456 mip.LoadOperation = LOAD_LOAD;
4457 mip.CombineOperation = COMBINE_OR;
4458 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4459 }
4460
4461 /* Load compute_dispatch_indirect_z_size into SRC0 */
4462 emit_lrm(brw, MI_PREDICATE_SRC0, ro_bo(bo, indirect_offset + 8));
4463
4464 /* predicate |= (compute_dispatch_indirect_z_size == 0); */
4465 brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4466 mip.LoadOperation = LOAD_LOAD;
4467 mip.CombineOperation = COMBINE_OR;
4468 mip.CompareOperation = COMPARE_SRCS_EQUAL;
4469 }
4470
4471 /* predicate = !predicate; */
4472 #define COMPARE_FALSE 1
4473 brw_batch_emit(brw, GENX(MI_PREDICATE), mip) {
4474 mip.LoadOperation = LOAD_LOADINV;
4475 mip.CombineOperation = COMBINE_OR;
4476 mip.CompareOperation = COMPARE_FALSE;
4477 }
4478 #endif
4479 }
4480
4481 static void
4482 genX(emit_gpgpu_walker)(struct brw_context *brw)
4483 {
4484 const GLuint *num_groups = brw->compute.num_work_groups;
4485
4486 bool indirect = brw->compute.num_work_groups_bo != NULL;
4487 if (indirect)
4488 prepare_indirect_gpgpu_walker(brw);
4489
4490 const struct brw_cs_parameters cs_params = brw_cs_get_parameters(brw);
4491
4492 const uint32_t right_mask =
4493 brw_cs_right_mask(cs_params.group_size, cs_params.simd_size);
4494
4495 brw_batch_emit(brw, GENX(GPGPU_WALKER), ggw) {
4496 ggw.IndirectParameterEnable = indirect;
4497 ggw.PredicateEnable = GEN_GEN <= 7 && indirect;
4498 ggw.SIMDSize = cs_params.simd_size / 16;
4499 ggw.ThreadDepthCounterMaximum = 0;
4500 ggw.ThreadHeightCounterMaximum = 0;
4501 ggw.ThreadWidthCounterMaximum = cs_params.threads - 1;
4502 ggw.ThreadGroupIDXDimension = num_groups[0];
4503 ggw.ThreadGroupIDYDimension = num_groups[1];
4504 ggw.ThreadGroupIDZDimension = num_groups[2];
4505 ggw.RightExecutionMask = right_mask;
4506 ggw.BottomExecutionMask = 0xffffffff;
4507 }
4508
4509 brw_batch_emit(brw, GENX(MEDIA_STATE_FLUSH), msf);
4510 }
4511
4512 #endif
4513
4514 /* ---------------------------------------------------------------------- */
4515
4516 #if GEN_GEN >= 8
4517 static void
4518 genX(upload_raster)(struct brw_context *brw)
4519 {
4520 const struct gl_context *ctx = &brw->ctx;
4521
4522 /* _NEW_BUFFERS */
4523 const bool flip_y = ctx->DrawBuffer->FlipY;
4524
4525 /* _NEW_POLYGON */
4526 const struct gl_polygon_attrib *polygon = &ctx->Polygon;
4527
4528 /* _NEW_POINT */
4529 const struct gl_point_attrib *point = &ctx->Point;
4530
4531 brw_batch_emit(brw, GENX(3DSTATE_RASTER), raster) {
4532 if (brw->polygon_front_bit != flip_y)
4533 raster.FrontWinding = CounterClockwise;
4534
4535 if (polygon->CullFlag) {
4536 switch (polygon->CullFaceMode) {
4537 case GL_FRONT:
4538 raster.CullMode = CULLMODE_FRONT;
4539 break;
4540 case GL_BACK:
4541 raster.CullMode = CULLMODE_BACK;
4542 break;
4543 case GL_FRONT_AND_BACK:
4544 raster.CullMode = CULLMODE_BOTH;
4545 break;
4546 default:
4547 unreachable("not reached");
4548 }
4549 } else {
4550 raster.CullMode = CULLMODE_NONE;
4551 }
4552
4553 raster.SmoothPointEnable = point->SmoothFlag;
4554
4555 raster.DXMultisampleRasterizationEnable =
4556 _mesa_is_multisample_enabled(ctx);
4557
4558 raster.GlobalDepthOffsetEnableSolid = polygon->OffsetFill;
4559 raster.GlobalDepthOffsetEnableWireframe = polygon->OffsetLine;
4560 raster.GlobalDepthOffsetEnablePoint = polygon->OffsetPoint;
4561
4562 switch (polygon->FrontMode) {
4563 case GL_FILL:
4564 raster.FrontFaceFillMode = FILL_MODE_SOLID;
4565 break;
4566 case GL_LINE:
4567 raster.FrontFaceFillMode = FILL_MODE_WIREFRAME;
4568 break;
4569 case GL_POINT:
4570 raster.FrontFaceFillMode = FILL_MODE_POINT;
4571 break;
4572 default:
4573 unreachable("not reached");
4574 }
4575
4576 switch (polygon->BackMode) {
4577 case GL_FILL:
4578 raster.BackFaceFillMode = FILL_MODE_SOLID;
4579 break;
4580 case GL_LINE:
4581 raster.BackFaceFillMode = FILL_MODE_WIREFRAME;
4582 break;
4583 case GL_POINT:
4584 raster.BackFaceFillMode = FILL_MODE_POINT;
4585 break;
4586 default:
4587 unreachable("not reached");
4588 }
4589
4590 /* _NEW_LINE */
4591 raster.AntialiasingEnable = ctx->Line.SmoothFlag;
4592
4593 #if GEN_GEN == 10
4594 /* _NEW_BUFFERS
4595 * Antialiasing Enable bit MUST not be set when NUM_MULTISAMPLES > 1.
4596 */
4597 const bool multisampled_fbo =
4598 _mesa_geometric_samples(ctx->DrawBuffer) > 1;
4599 if (multisampled_fbo)
4600 raster.AntialiasingEnable = false;
4601 #endif
4602
4603 /* _NEW_SCISSOR */
4604 raster.ScissorRectangleEnable = ctx->Scissor.EnableFlags;
4605
4606 /* _NEW_TRANSFORM */
4607 #if GEN_GEN < 9
4608 if (!(ctx->Transform.DepthClampNear &&
4609 ctx->Transform.DepthClampFar))
4610 raster.ViewportZClipTestEnable = true;
4611 #endif
4612
4613 #if GEN_GEN >= 9
4614 if (!ctx->Transform.DepthClampNear)
4615 raster.ViewportZNearClipTestEnable = true;
4616
4617 if (!ctx->Transform.DepthClampFar)
4618 raster.ViewportZFarClipTestEnable = true;
4619 #endif
4620
4621 /* BRW_NEW_CONSERVATIVE_RASTERIZATION */
4622 #if GEN_GEN >= 9
4623 raster.ConservativeRasterizationEnable =
4624 ctx->IntelConservativeRasterization;
4625 #endif
4626
4627 raster.GlobalDepthOffsetClamp = polygon->OffsetClamp;
4628 raster.GlobalDepthOffsetScale = polygon->OffsetFactor;
4629
4630 raster.GlobalDepthOffsetConstant = polygon->OffsetUnits * 2;
4631 }
4632 }
4633
4634 static const struct brw_tracked_state genX(raster_state) = {
4635 .dirty = {
4636 .mesa = _NEW_BUFFERS |
4637 _NEW_LINE |
4638 _NEW_MULTISAMPLE |
4639 _NEW_POINT |
4640 _NEW_POLYGON |
4641 _NEW_SCISSOR |
4642 _NEW_TRANSFORM,
4643 .brw = BRW_NEW_BLORP |
4644 BRW_NEW_CONTEXT |
4645 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4646 },
4647 .emit = genX(upload_raster),
4648 };
4649 #endif
4650
4651 /* ---------------------------------------------------------------------- */
4652
4653 #if GEN_GEN >= 8
4654 static void
4655 genX(upload_ps_extra)(struct brw_context *brw)
4656 {
4657 UNUSED struct gl_context *ctx = &brw->ctx;
4658
4659 const struct brw_wm_prog_data *prog_data =
4660 brw_wm_prog_data(brw->wm.base.prog_data);
4661
4662 brw_batch_emit(brw, GENX(3DSTATE_PS_EXTRA), psx) {
4663 psx.PixelShaderValid = true;
4664 psx.PixelShaderComputedDepthMode = prog_data->computed_depth_mode;
4665 psx.PixelShaderKillsPixel = prog_data->uses_kill;
4666 psx.AttributeEnable = prog_data->num_varying_inputs != 0;
4667 psx.PixelShaderUsesSourceDepth = prog_data->uses_src_depth;
4668 psx.PixelShaderUsesSourceW = prog_data->uses_src_w;
4669 psx.PixelShaderIsPerSample = prog_data->persample_dispatch;
4670
4671 /* _NEW_MULTISAMPLE | BRW_NEW_CONSERVATIVE_RASTERIZATION */
4672 if (prog_data->uses_sample_mask) {
4673 #if GEN_GEN >= 9
4674 if (prog_data->post_depth_coverage)
4675 psx.InputCoverageMaskState = ICMS_DEPTH_COVERAGE;
4676 else if (prog_data->inner_coverage && ctx->IntelConservativeRasterization)
4677 psx.InputCoverageMaskState = ICMS_INNER_CONSERVATIVE;
4678 else
4679 psx.InputCoverageMaskState = ICMS_NORMAL;
4680 #else
4681 psx.PixelShaderUsesInputCoverageMask = true;
4682 #endif
4683 }
4684
4685 psx.oMaskPresenttoRenderTarget = prog_data->uses_omask;
4686 #if GEN_GEN >= 9
4687 psx.PixelShaderPullsBary = prog_data->pulls_bary;
4688 psx.PixelShaderComputesStencil = prog_data->computed_stencil;
4689 #endif
4690
4691 /* The stricter cross-primitive coherency guarantees that the hardware
4692 * gives us with the "Accesses UAV" bit set for at least one shader stage
4693 * and the "UAV coherency required" bit set on the 3DPRIMITIVE command
4694 * are redundant within the current image, atomic counter and SSBO GL
4695 * APIs, which all have very loose ordering and coherency requirements
4696 * and generally rely on the application to insert explicit barriers when
4697 * a shader invocation is expected to see the memory writes performed by
4698 * the invocations of some previous primitive. Regardless of the value
4699 * of "UAV coherency required", the "Accesses UAV" bits will implicitly
4700 * cause an in most cases useless DC flush when the lowermost stage with
4701 * the bit set finishes execution.
4702 *
4703 * It would be nice to disable it, but in some cases we can't because on
4704 * Gen8+ it also has an influence on rasterization via the PS UAV-only
4705 * signal (which could be set independently from the coherency mechanism
4706 * in the 3DSTATE_WM command on Gen7), and because in some cases it will
4707 * determine whether the hardware skips execution of the fragment shader
4708 * or not via the ThreadDispatchEnable signal. However if we know that
4709 * GEN8_PS_BLEND_HAS_WRITEABLE_RT is going to be set and
4710 * GEN8_PSX_PIXEL_SHADER_NO_RT_WRITE is not set it shouldn't make any
4711 * difference so we may just disable it here.
4712 *
4713 * Gen8 hardware tries to compute ThreadDispatchEnable for us but doesn't
4714 * take into account KillPixels when no depth or stencil writes are
4715 * enabled. In order for occlusion queries to work correctly with no
4716 * attachments, we need to force-enable here.
4717 *
4718 * BRW_NEW_FS_PROG_DATA | BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS |
4719 * _NEW_COLOR
4720 */
4721 if ((prog_data->has_side_effects || prog_data->uses_kill) &&
4722 !brw_color_buffer_write_enabled(brw))
4723 psx.PixelShaderHasUAV = true;
4724 }
4725 }
4726
4727 const struct brw_tracked_state genX(ps_extra) = {
4728 .dirty = {
4729 .mesa = _NEW_BUFFERS | _NEW_COLOR,
4730 .brw = BRW_NEW_BLORP |
4731 BRW_NEW_CONTEXT |
4732 BRW_NEW_FRAGMENT_PROGRAM |
4733 BRW_NEW_FS_PROG_DATA |
4734 BRW_NEW_CONSERVATIVE_RASTERIZATION,
4735 },
4736 .emit = genX(upload_ps_extra),
4737 };
4738 #endif
4739
4740 /* ---------------------------------------------------------------------- */
4741
4742 #if GEN_GEN >= 8
4743 static void
4744 genX(upload_ps_blend)(struct brw_context *brw)
4745 {
4746 struct gl_context *ctx = &brw->ctx;
4747
4748 /* _NEW_BUFFERS */
4749 struct gl_renderbuffer *rb = ctx->DrawBuffer->_ColorDrawBuffers[0];
4750 const bool buffer0_is_integer = ctx->DrawBuffer->_IntegerBuffers & 0x1;
4751
4752 /* _NEW_COLOR */
4753 struct gl_colorbuffer_attrib *color = &ctx->Color;
4754
4755 brw_batch_emit(brw, GENX(3DSTATE_PS_BLEND), pb) {
4756 /* BRW_NEW_FRAGMENT_PROGRAM | _NEW_BUFFERS | _NEW_COLOR */
4757 pb.HasWriteableRT = brw_color_buffer_write_enabled(brw);
4758
4759 bool alpha_to_one = false;
4760
4761 if (!buffer0_is_integer) {
4762 /* _NEW_MULTISAMPLE */
4763
4764 if (_mesa_is_multisample_enabled(ctx)) {
4765 pb.AlphaToCoverageEnable = ctx->Multisample.SampleAlphaToCoverage;
4766 alpha_to_one = ctx->Multisample.SampleAlphaToOne;
4767 }
4768
4769 pb.AlphaTestEnable = color->AlphaEnabled;
4770 }
4771
4772 /* Used for implementing the following bit of GL_EXT_texture_integer:
4773 * "Per-fragment operations that require floating-point color
4774 * components, including multisample alpha operations, alpha test,
4775 * blending, and dithering, have no effect when the corresponding
4776 * colors are written to an integer color buffer."
4777 *
4778 * The OpenGL specification 3.3 (page 196), section 4.1.3 says:
4779 * "If drawbuffer zero is not NONE and the buffer it references has an
4780 * integer format, the SAMPLE_ALPHA_TO_COVERAGE and SAMPLE_ALPHA_TO_ONE
4781 * operations are skipped."
4782 */
4783 if (rb && !buffer0_is_integer && (color->BlendEnabled & 1)) {
4784 GLenum eqRGB = color->Blend[0].EquationRGB;
4785 GLenum eqA = color->Blend[0].EquationA;
4786 GLenum srcRGB = color->Blend[0].SrcRGB;
4787 GLenum dstRGB = color->Blend[0].DstRGB;
4788 GLenum srcA = color->Blend[0].SrcA;
4789 GLenum dstA = color->Blend[0].DstA;
4790
4791 if (eqRGB == GL_MIN || eqRGB == GL_MAX)
4792 srcRGB = dstRGB = GL_ONE;
4793
4794 if (eqA == GL_MIN || eqA == GL_MAX)
4795 srcA = dstA = GL_ONE;
4796
4797 /* Due to hardware limitations, the destination may have information
4798 * in an alpha channel even when the format specifies no alpha
4799 * channel. In order to avoid getting any incorrect blending due to
4800 * that alpha channel, coerce the blend factors to values that will
4801 * not read the alpha channel, but will instead use the correct
4802 * implicit value for alpha.
4803 */
4804 if (!_mesa_base_format_has_channel(rb->_BaseFormat,
4805 GL_TEXTURE_ALPHA_TYPE)) {
4806 srcRGB = brw_fix_xRGB_alpha(srcRGB);
4807 srcA = brw_fix_xRGB_alpha(srcA);
4808 dstRGB = brw_fix_xRGB_alpha(dstRGB);
4809 dstA = brw_fix_xRGB_alpha(dstA);
4810 }
4811
4812 /* Alpha to One doesn't work with Dual Color Blending. Override
4813 * SRC1_ALPHA to ONE and ONE_MINUS_SRC1_ALPHA to ZERO.
4814 */
4815 if (alpha_to_one && color->Blend[0]._UsesDualSrc) {
4816 srcRGB = fix_dual_blend_alpha_to_one(srcRGB);
4817 srcA = fix_dual_blend_alpha_to_one(srcA);
4818 dstRGB = fix_dual_blend_alpha_to_one(dstRGB);
4819 dstA = fix_dual_blend_alpha_to_one(dstA);
4820 }
4821
4822 /* BRW_NEW_FS_PROG_DATA */
4823 const struct brw_wm_prog_data *wm_prog_data =
4824 brw_wm_prog_data(brw->wm.base.prog_data);
4825
4826 /* The Dual Source Blending documentation says:
4827 *
4828 * "If SRC1 is included in a src/dst blend factor and
4829 * a DualSource RT Write message is not used, results
4830 * are UNDEFINED. (This reflects the same restriction in DX APIs,
4831 * where undefined results are produced if “o1” is not written
4832 * by a PS – there are no default values defined).
4833 * If SRC1 is not included in a src/dst blend factor,
4834 * dual source blending must be disabled."
4835 *
4836 * There is no way to gracefully fix this undefined situation
4837 * so we just disable the blending to prevent possible issues.
4838 */
4839 pb.ColorBufferBlendEnable =
4840 !color->Blend[0]._UsesDualSrc || wm_prog_data->dual_src_blend;
4841 pb.SourceAlphaBlendFactor = brw_translate_blend_factor(srcA);
4842 pb.DestinationAlphaBlendFactor = brw_translate_blend_factor(dstA);
4843 pb.SourceBlendFactor = brw_translate_blend_factor(srcRGB);
4844 pb.DestinationBlendFactor = brw_translate_blend_factor(dstRGB);
4845
4846 pb.IndependentAlphaBlendEnable =
4847 srcA != srcRGB || dstA != dstRGB || eqA != eqRGB;
4848 }
4849 }
4850 }
4851
4852 static const struct brw_tracked_state genX(ps_blend) = {
4853 .dirty = {
4854 .mesa = _NEW_BUFFERS |
4855 _NEW_COLOR |
4856 _NEW_MULTISAMPLE,
4857 .brw = BRW_NEW_BLORP |
4858 BRW_NEW_CONTEXT |
4859 BRW_NEW_FRAGMENT_PROGRAM |
4860 BRW_NEW_FS_PROG_DATA,
4861 },
4862 .emit = genX(upload_ps_blend)
4863 };
4864 #endif
4865
4866 /* ---------------------------------------------------------------------- */
4867
4868 #if GEN_GEN >= 8
4869 static void
4870 genX(emit_vf_topology)(struct brw_context *brw)
4871 {
4872 brw_batch_emit(brw, GENX(3DSTATE_VF_TOPOLOGY), vftopo) {
4873 vftopo.PrimitiveTopologyType = brw->primitive;
4874 }
4875 }
4876
4877 static const struct brw_tracked_state genX(vf_topology) = {
4878 .dirty = {
4879 .mesa = 0,
4880 .brw = BRW_NEW_BLORP |
4881 BRW_NEW_PRIMITIVE,
4882 },
4883 .emit = genX(emit_vf_topology),
4884 };
4885 #endif
4886
4887 /* ---------------------------------------------------------------------- */
4888
4889 #if GEN_GEN >= 7
4890 static void
4891 genX(emit_mi_report_perf_count)(struct brw_context *brw,
4892 struct brw_bo *bo,
4893 uint32_t offset_in_bytes,
4894 uint32_t report_id)
4895 {
4896 brw_batch_emit(brw, GENX(MI_REPORT_PERF_COUNT), mi_rpc) {
4897 mi_rpc.MemoryAddress = ggtt_bo(bo, offset_in_bytes);
4898 mi_rpc.ReportID = report_id;
4899 }
4900 }
4901 #endif
4902
4903 /* ---------------------------------------------------------------------- */
4904
4905 /**
4906 * Emit a 3DSTATE_SAMPLER_STATE_POINTERS_{VS,HS,GS,DS,PS} packet.
4907 */
4908 static void
4909 genX(emit_sampler_state_pointers_xs)(UNUSED struct brw_context *brw,
4910 UNUSED struct brw_stage_state *stage_state)
4911 {
4912 #if GEN_GEN >= 7
4913 static const uint16_t packet_headers[] = {
4914 [MESA_SHADER_VERTEX] = 43,
4915 [MESA_SHADER_TESS_CTRL] = 44,
4916 [MESA_SHADER_TESS_EVAL] = 45,
4917 [MESA_SHADER_GEOMETRY] = 46,
4918 [MESA_SHADER_FRAGMENT] = 47,
4919 };
4920
4921 /* Ivybridge requires a workaround flush before VS packets. */
4922 if (GEN_GEN == 7 && !GEN_IS_HASWELL &&
4923 stage_state->stage == MESA_SHADER_VERTEX) {
4924 gen7_emit_vs_workaround_flush(brw);
4925 }
4926
4927 brw_batch_emit(brw, GENX(3DSTATE_SAMPLER_STATE_POINTERS_VS), ptr) {
4928 ptr._3DCommandSubOpcode = packet_headers[stage_state->stage];
4929 ptr.PointertoVSSamplerState = stage_state->sampler_offset;
4930 }
4931 #endif
4932 }
4933
4934 UNUSED static bool
4935 has_component(mesa_format format, int i)
4936 {
4937 if (_mesa_is_format_color_format(format))
4938 return _mesa_format_has_color_component(format, i);
4939
4940 /* depth and stencil have only one component */
4941 return i == 0;
4942 }
4943
4944 /**
4945 * Upload SAMPLER_BORDER_COLOR_STATE.
4946 */
4947 static void
4948 genX(upload_default_color)(struct brw_context *brw,
4949 const struct gl_sampler_object *sampler,
4950 mesa_format format, GLenum base_format,
4951 bool is_integer_format, bool is_stencil_sampling,
4952 uint32_t *sdc_offset)
4953 {
4954 union gl_color_union color;
4955
4956 switch (base_format) {
4957 case GL_DEPTH_COMPONENT:
4958 /* GL specs that border color for depth textures is taken from the
4959 * R channel, while the hardware uses A. Spam R into all the
4960 * channels for safety.
4961 */
4962 color.ui[0] = sampler->BorderColor.ui[0];
4963 color.ui[1] = sampler->BorderColor.ui[0];
4964 color.ui[2] = sampler->BorderColor.ui[0];
4965 color.ui[3] = sampler->BorderColor.ui[0];
4966 break;
4967 case GL_ALPHA:
4968 color.ui[0] = 0u;
4969 color.ui[1] = 0u;
4970 color.ui[2] = 0u;
4971 color.ui[3] = sampler->BorderColor.ui[3];
4972 break;
4973 case GL_INTENSITY:
4974 color.ui[0] = sampler->BorderColor.ui[0];
4975 color.ui[1] = sampler->BorderColor.ui[0];
4976 color.ui[2] = sampler->BorderColor.ui[0];
4977 color.ui[3] = sampler->BorderColor.ui[0];
4978 break;
4979 case GL_LUMINANCE:
4980 color.ui[0] = sampler->BorderColor.ui[0];
4981 color.ui[1] = sampler->BorderColor.ui[0];
4982 color.ui[2] = sampler->BorderColor.ui[0];
4983 color.ui[3] = float_as_int(1.0);
4984 break;
4985 case GL_LUMINANCE_ALPHA:
4986 color.ui[0] = sampler->BorderColor.ui[0];
4987 color.ui[1] = sampler->BorderColor.ui[0];
4988 color.ui[2] = sampler->BorderColor.ui[0];
4989 color.ui[3] = sampler->BorderColor.ui[3];
4990 break;
4991 default:
4992 color.ui[0] = sampler->BorderColor.ui[0];
4993 color.ui[1] = sampler->BorderColor.ui[1];
4994 color.ui[2] = sampler->BorderColor.ui[2];
4995 color.ui[3] = sampler->BorderColor.ui[3];
4996 break;
4997 }
4998
4999 /* In some cases we use an RGBA surface format for GL RGB textures,
5000 * where we've initialized the A channel to 1.0. We also have to set
5001 * the border color alpha to 1.0 in that case.
5002 */
5003 if (base_format == GL_RGB)
5004 color.ui[3] = float_as_int(1.0);
5005
5006 int alignment = 32;
5007 if (GEN_GEN >= 8) {
5008 alignment = 64;
5009 } else if (GEN_IS_HASWELL && (is_integer_format || is_stencil_sampling)) {
5010 alignment = 512;
5011 }
5012
5013 uint32_t *sdc = brw_state_batch(
5014 brw, GENX(SAMPLER_BORDER_COLOR_STATE_length) * sizeof(uint32_t),
5015 alignment, sdc_offset);
5016
5017 struct GENX(SAMPLER_BORDER_COLOR_STATE) state = { 0 };
5018
5019 #define ASSIGN(dst, src) \
5020 do { \
5021 dst = src; \
5022 } while (0)
5023
5024 #define ASSIGNu16(dst, src) \
5025 do { \
5026 dst = (uint16_t)src; \
5027 } while (0)
5028
5029 #define ASSIGNu8(dst, src) \
5030 do { \
5031 dst = (uint8_t)src; \
5032 } while (0)
5033
5034 #define BORDER_COLOR_ATTR(macro, _color_type, src) \
5035 macro(state.BorderColor ## _color_type ## Red, src[0]); \
5036 macro(state.BorderColor ## _color_type ## Green, src[1]); \
5037 macro(state.BorderColor ## _color_type ## Blue, src[2]); \
5038 macro(state.BorderColor ## _color_type ## Alpha, src[3]);
5039
5040 #if GEN_GEN >= 8
5041 /* On Broadwell, the border color is represented as four 32-bit floats,
5042 * integers, or unsigned values, interpreted according to the surface
5043 * format. This matches the sampler->BorderColor union exactly; just
5044 * memcpy the values.
5045 */
5046 BORDER_COLOR_ATTR(ASSIGN, 32bit, color.ui);
5047 #elif GEN_IS_HASWELL
5048 if (is_integer_format || is_stencil_sampling) {
5049 bool stencil = format == MESA_FORMAT_S_UINT8 || is_stencil_sampling;
5050 const int bits_per_channel =
5051 _mesa_get_format_bits(format, stencil ? GL_STENCIL_BITS : GL_RED_BITS);
5052
5053 /* From the Haswell PRM, "Command Reference: Structures", Page 36:
5054 * "If any color channel is missing from the surface format,
5055 * corresponding border color should be programmed as zero and if
5056 * alpha channel is missing, corresponding Alpha border color should
5057 * be programmed as 1."
5058 */
5059 unsigned c[4] = { 0, 0, 0, 1 };
5060 for (int i = 0; i < 4; i++) {
5061 if (has_component(format, i))
5062 c[i] = color.ui[i];
5063 }
5064
5065 switch (bits_per_channel) {
5066 case 8:
5067 /* Copy RGBA in order. */
5068 BORDER_COLOR_ATTR(ASSIGNu8, 8bit, c);
5069 break;
5070 case 10:
5071 /* R10G10B10A2_UINT is treated like a 16-bit format. */
5072 case 16:
5073 BORDER_COLOR_ATTR(ASSIGNu16, 16bit, c);
5074 break;
5075 case 32:
5076 if (base_format == GL_RG) {
5077 /* Careful inspection of the tables reveals that for RG32 formats,
5078 * the green channel needs to go where blue normally belongs.
5079 */
5080 state.BorderColor32bitRed = c[0];
5081 state.BorderColor32bitBlue = c[1];
5082 state.BorderColor32bitAlpha = 1;
5083 } else {
5084 /* Copy RGBA in order. */
5085 BORDER_COLOR_ATTR(ASSIGN, 32bit, c);
5086 }
5087 break;
5088 default:
5089 assert(!"Invalid number of bits per channel in integer format.");
5090 break;
5091 }
5092 } else {
5093 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5094 }
5095 #elif GEN_GEN == 5 || GEN_GEN == 6
5096 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_UBYTE, Unorm, color.f);
5097 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_USHORT, Unorm16, color.f);
5098 BORDER_COLOR_ATTR(UNCLAMPED_FLOAT_TO_SHORT, Snorm16, color.f);
5099
5100 #define MESA_FLOAT_TO_HALF(dst, src) \
5101 dst = _mesa_float_to_half(src);
5102
5103 BORDER_COLOR_ATTR(MESA_FLOAT_TO_HALF, Float16, color.f);
5104
5105 #undef MESA_FLOAT_TO_HALF
5106
5107 state.BorderColorSnorm8Red = state.BorderColorSnorm16Red >> 8;
5108 state.BorderColorSnorm8Green = state.BorderColorSnorm16Green >> 8;
5109 state.BorderColorSnorm8Blue = state.BorderColorSnorm16Blue >> 8;
5110 state.BorderColorSnorm8Alpha = state.BorderColorSnorm16Alpha >> 8;
5111
5112 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5113 #elif GEN_GEN == 4
5114 BORDER_COLOR_ATTR(ASSIGN, , color.f);
5115 #else
5116 BORDER_COLOR_ATTR(ASSIGN, Float, color.f);
5117 #endif
5118
5119 #undef ASSIGN
5120 #undef BORDER_COLOR_ATTR
5121
5122 GENX(SAMPLER_BORDER_COLOR_STATE_pack)(brw, sdc, &state);
5123 }
5124
5125 static uint32_t
5126 translate_wrap_mode(GLenum wrap, UNUSED bool using_nearest)
5127 {
5128 switch (wrap) {
5129 case GL_REPEAT:
5130 return TCM_WRAP;
5131 case GL_CLAMP:
5132 #if GEN_GEN >= 8
5133 /* GL_CLAMP is the weird mode where coordinates are clamped to
5134 * [0.0, 1.0], so linear filtering of coordinates outside of
5135 * [0.0, 1.0] give you half edge texel value and half border
5136 * color.
5137 *
5138 * Gen8+ supports this natively.
5139 */
5140 return TCM_HALF_BORDER;
5141 #else
5142 /* On Gen4-7.5, we clamp the coordinates in the fragment shader
5143 * and set clamp_border here, which gets the result desired.
5144 * We just use clamp(_to_edge) for nearest, because for nearest
5145 * clamping to 1.0 gives border color instead of the desired
5146 * edge texels.
5147 */
5148 if (using_nearest)
5149 return TCM_CLAMP;
5150 else
5151 return TCM_CLAMP_BORDER;
5152 #endif
5153 case GL_CLAMP_TO_EDGE:
5154 return TCM_CLAMP;
5155 case GL_CLAMP_TO_BORDER:
5156 return TCM_CLAMP_BORDER;
5157 case GL_MIRRORED_REPEAT:
5158 return TCM_MIRROR;
5159 case GL_MIRROR_CLAMP_TO_EDGE:
5160 return TCM_MIRROR_ONCE;
5161 default:
5162 return TCM_WRAP;
5163 }
5164 }
5165
5166 /**
5167 * Return true if the given wrap mode requires the border color to exist.
5168 */
5169 static bool
5170 wrap_mode_needs_border_color(unsigned wrap_mode)
5171 {
5172 #if GEN_GEN >= 8
5173 return wrap_mode == TCM_CLAMP_BORDER ||
5174 wrap_mode == TCM_HALF_BORDER;
5175 #else
5176 return wrap_mode == TCM_CLAMP_BORDER;
5177 #endif
5178 }
5179
5180 /**
5181 * Sets the sampler state for a single unit based off of the sampler key
5182 * entry.
5183 */
5184 static void
5185 genX(update_sampler_state)(struct brw_context *brw,
5186 GLenum target, bool tex_cube_map_seamless,
5187 GLfloat tex_unit_lod_bias,
5188 mesa_format format, GLenum base_format,
5189 const struct gl_texture_object *texObj,
5190 const struct gl_sampler_object *sampler,
5191 uint32_t *sampler_state)
5192 {
5193 struct GENX(SAMPLER_STATE) samp_st = { 0 };
5194
5195 /* Select min and mip filters. */
5196 switch (sampler->MinFilter) {
5197 case GL_NEAREST:
5198 samp_st.MinModeFilter = MAPFILTER_NEAREST;
5199 samp_st.MipModeFilter = MIPFILTER_NONE;
5200 break;
5201 case GL_LINEAR:
5202 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5203 samp_st.MipModeFilter = MIPFILTER_NONE;
5204 break;
5205 case GL_NEAREST_MIPMAP_NEAREST:
5206 samp_st.MinModeFilter = MAPFILTER_NEAREST;
5207 samp_st.MipModeFilter = MIPFILTER_NEAREST;
5208 break;
5209 case GL_LINEAR_MIPMAP_NEAREST:
5210 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5211 samp_st.MipModeFilter = MIPFILTER_NEAREST;
5212 break;
5213 case GL_NEAREST_MIPMAP_LINEAR:
5214 samp_st.MinModeFilter = MAPFILTER_NEAREST;
5215 samp_st.MipModeFilter = MIPFILTER_LINEAR;
5216 break;
5217 case GL_LINEAR_MIPMAP_LINEAR:
5218 samp_st.MinModeFilter = MAPFILTER_LINEAR;
5219 samp_st.MipModeFilter = MIPFILTER_LINEAR;
5220 break;
5221 default:
5222 unreachable("not reached");
5223 }
5224
5225 /* Select mag filter. */
5226 samp_st.MagModeFilter = sampler->MagFilter == GL_LINEAR ?
5227 MAPFILTER_LINEAR : MAPFILTER_NEAREST;
5228
5229 /* Enable anisotropic filtering if desired. */
5230 samp_st.MaximumAnisotropy = RATIO21;
5231
5232 if (sampler->MaxAnisotropy > 1.0f) {
5233 if (samp_st.MinModeFilter == MAPFILTER_LINEAR)
5234 samp_st.MinModeFilter = MAPFILTER_ANISOTROPIC;
5235 if (samp_st.MagModeFilter == MAPFILTER_LINEAR)
5236 samp_st.MagModeFilter = MAPFILTER_ANISOTROPIC;
5237
5238 if (sampler->MaxAnisotropy > 2.0f) {
5239 samp_st.MaximumAnisotropy =
5240 MIN2((sampler->MaxAnisotropy - 2) / 2, RATIO161);
5241 }
5242 }
5243
5244 /* Set address rounding bits if not using nearest filtering. */
5245 if (samp_st.MinModeFilter != MAPFILTER_NEAREST) {
5246 samp_st.UAddressMinFilterRoundingEnable = true;
5247 samp_st.VAddressMinFilterRoundingEnable = true;
5248 samp_st.RAddressMinFilterRoundingEnable = true;
5249 }
5250
5251 if (samp_st.MagModeFilter != MAPFILTER_NEAREST) {
5252 samp_st.UAddressMagFilterRoundingEnable = true;
5253 samp_st.VAddressMagFilterRoundingEnable = true;
5254 samp_st.RAddressMagFilterRoundingEnable = true;
5255 }
5256
5257 bool either_nearest =
5258 sampler->MinFilter == GL_NEAREST || sampler->MagFilter == GL_NEAREST;
5259 unsigned wrap_s = translate_wrap_mode(sampler->WrapS, either_nearest);
5260 unsigned wrap_t = translate_wrap_mode(sampler->WrapT, either_nearest);
5261 unsigned wrap_r = translate_wrap_mode(sampler->WrapR, either_nearest);
5262
5263 if (target == GL_TEXTURE_CUBE_MAP ||
5264 target == GL_TEXTURE_CUBE_MAP_ARRAY) {
5265 /* Cube maps must use the same wrap mode for all three coordinate
5266 * dimensions. Prior to Haswell, only CUBE and CLAMP are valid.
5267 *
5268 * Ivybridge and Baytrail seem to have problems with CUBE mode and
5269 * integer formats. Fall back to CLAMP for now.
5270 */
5271 if ((tex_cube_map_seamless || sampler->CubeMapSeamless) &&
5272 !(GEN_GEN == 7 && !GEN_IS_HASWELL && texObj->_IsIntegerFormat)) {
5273 wrap_s = TCM_CUBE;
5274 wrap_t = TCM_CUBE;
5275 wrap_r = TCM_CUBE;
5276 } else {
5277 wrap_s = TCM_CLAMP;
5278 wrap_t = TCM_CLAMP;
5279 wrap_r = TCM_CLAMP;
5280 }
5281 } else if (target == GL_TEXTURE_1D) {
5282 /* There's a bug in 1D texture sampling - it actually pays
5283 * attention to the wrap_t value, though it should not.
5284 * Override the wrap_t value here to GL_REPEAT to keep
5285 * any nonexistent border pixels from floating in.
5286 */
5287 wrap_t = TCM_WRAP;
5288 }
5289
5290 samp_st.TCXAddressControlMode = wrap_s;
5291 samp_st.TCYAddressControlMode = wrap_t;
5292 samp_st.TCZAddressControlMode = wrap_r;
5293
5294 samp_st.ShadowFunction =
5295 sampler->CompareMode == GL_COMPARE_R_TO_TEXTURE_ARB ?
5296 intel_translate_shadow_compare_func(sampler->CompareFunc) : 0;
5297
5298 #if GEN_GEN >= 7
5299 /* Set shadow function. */
5300 samp_st.AnisotropicAlgorithm =
5301 samp_st.MinModeFilter == MAPFILTER_ANISOTROPIC ?
5302 EWAApproximation : LEGACY;
5303 #endif
5304
5305 #if GEN_GEN >= 6
5306 samp_st.NonnormalizedCoordinateEnable = target == GL_TEXTURE_RECTANGLE;
5307 #endif
5308
5309 const float hw_max_lod = GEN_GEN >= 7 ? 14 : 13;
5310 samp_st.MinLOD = CLAMP(sampler->MinLod, 0, hw_max_lod);
5311 samp_st.MaxLOD = CLAMP(sampler->MaxLod, 0, hw_max_lod);
5312 samp_st.TextureLODBias =
5313 CLAMP(tex_unit_lod_bias + sampler->LodBias, -16, 15);
5314
5315 #if GEN_GEN == 6
5316 samp_st.BaseMipLevel =
5317 CLAMP(texObj->MinLevel + texObj->BaseLevel, 0, hw_max_lod);
5318 samp_st.MinandMagStateNotEqual =
5319 samp_st.MinModeFilter != samp_st.MagModeFilter;
5320 #endif
5321
5322 /* Upload the border color if necessary. If not, just point it at
5323 * offset 0 (the start of the batch) - the color should be ignored,
5324 * but that address won't fault in case something reads it anyway.
5325 */
5326 uint32_t border_color_offset = 0;
5327 if (wrap_mode_needs_border_color(wrap_s) ||
5328 wrap_mode_needs_border_color(wrap_t) ||
5329 wrap_mode_needs_border_color(wrap_r)) {
5330 genX(upload_default_color)(brw, sampler, format, base_format,
5331 texObj->_IsIntegerFormat,
5332 texObj->StencilSampling,
5333 &border_color_offset);
5334 }
5335 #if GEN_GEN < 6
5336 samp_st.BorderColorPointer =
5337 ro_bo(brw->batch.state.bo, border_color_offset);
5338 #else
5339 samp_st.BorderColorPointer = border_color_offset;
5340 #endif
5341
5342 #if GEN_GEN >= 8
5343 samp_st.LODPreClampMode = CLAMP_MODE_OGL;
5344 #else
5345 samp_st.LODPreClampEnable = true;
5346 #endif
5347
5348 GENX(SAMPLER_STATE_pack)(brw, sampler_state, &samp_st);
5349 }
5350
5351 static void
5352 update_sampler_state(struct brw_context *brw,
5353 int unit,
5354 uint32_t *sampler_state)
5355 {
5356 struct gl_context *ctx = &brw->ctx;
5357 const struct gl_texture_unit *texUnit = &ctx->Texture.Unit[unit];
5358 const struct gl_texture_object *texObj = texUnit->_Current;
5359 const struct gl_sampler_object *sampler = _mesa_get_samplerobj(ctx, unit);
5360
5361 /* These don't use samplers at all. */
5362 if (texObj->Target == GL_TEXTURE_BUFFER)
5363 return;
5364
5365 struct gl_texture_image *firstImage = texObj->Image[0][texObj->BaseLevel];
5366 genX(update_sampler_state)(brw, texObj->Target,
5367 ctx->Texture.CubeMapSeamless,
5368 texUnit->LodBias,
5369 firstImage->TexFormat, firstImage->_BaseFormat,
5370 texObj, sampler,
5371 sampler_state);
5372 }
5373
5374 static void
5375 genX(upload_sampler_state_table)(struct brw_context *brw,
5376 struct gl_program *prog,
5377 struct brw_stage_state *stage_state)
5378 {
5379 struct gl_context *ctx = &brw->ctx;
5380 uint32_t sampler_count = stage_state->sampler_count;
5381
5382 GLbitfield SamplersUsed = prog->SamplersUsed;
5383
5384 if (sampler_count == 0)
5385 return;
5386
5387 /* SAMPLER_STATE is 4 DWords on all platforms. */
5388 const int dwords = GENX(SAMPLER_STATE_length);
5389 const int size_in_bytes = dwords * sizeof(uint32_t);
5390
5391 uint32_t *sampler_state = brw_state_batch(brw,
5392 sampler_count * size_in_bytes,
5393 32, &stage_state->sampler_offset);
5394 /* memset(sampler_state, 0, sampler_count * size_in_bytes); */
5395
5396 for (unsigned s = 0; s < sampler_count; s++) {
5397 if (SamplersUsed & (1 << s)) {
5398 const unsigned unit = prog->SamplerUnits[s];
5399 if (ctx->Texture.Unit[unit]._Current) {
5400 update_sampler_state(brw, unit, sampler_state);
5401 }
5402 }
5403
5404 sampler_state += dwords;
5405 }
5406
5407 if (GEN_GEN >= 7 && stage_state->stage != MESA_SHADER_COMPUTE) {
5408 /* Emit a 3DSTATE_SAMPLER_STATE_POINTERS_XS packet. */
5409 genX(emit_sampler_state_pointers_xs)(brw, stage_state);
5410 } else {
5411 /* Flag that the sampler state table pointer has changed; later atoms
5412 * will handle it.
5413 */
5414 brw->ctx.NewDriverState |= BRW_NEW_SAMPLER_STATE_TABLE;
5415 }
5416 }
5417
5418 static void
5419 genX(upload_fs_samplers)(struct brw_context *brw)
5420 {
5421 /* BRW_NEW_FRAGMENT_PROGRAM */
5422 struct gl_program *fs = brw->programs[MESA_SHADER_FRAGMENT];
5423 genX(upload_sampler_state_table)(brw, fs, &brw->wm.base);
5424 }
5425
5426 static const struct brw_tracked_state genX(fs_samplers) = {
5427 .dirty = {
5428 .mesa = _NEW_TEXTURE,
5429 .brw = BRW_NEW_BATCH |
5430 BRW_NEW_BLORP |
5431 BRW_NEW_FRAGMENT_PROGRAM,
5432 },
5433 .emit = genX(upload_fs_samplers),
5434 };
5435
5436 static void
5437 genX(upload_vs_samplers)(struct brw_context *brw)
5438 {
5439 /* BRW_NEW_VERTEX_PROGRAM */
5440 struct gl_program *vs = brw->programs[MESA_SHADER_VERTEX];
5441 genX(upload_sampler_state_table)(brw, vs, &brw->vs.base);
5442 }
5443
5444 static const struct brw_tracked_state genX(vs_samplers) = {
5445 .dirty = {
5446 .mesa = _NEW_TEXTURE,
5447 .brw = BRW_NEW_BATCH |
5448 BRW_NEW_BLORP |
5449 BRW_NEW_VERTEX_PROGRAM,
5450 },
5451 .emit = genX(upload_vs_samplers),
5452 };
5453
5454 #if GEN_GEN >= 6
5455 static void
5456 genX(upload_gs_samplers)(struct brw_context *brw)
5457 {
5458 /* BRW_NEW_GEOMETRY_PROGRAM */
5459 struct gl_program *gs = brw->programs[MESA_SHADER_GEOMETRY];
5460 if (!gs)
5461 return;
5462
5463 genX(upload_sampler_state_table)(brw, gs, &brw->gs.base);
5464 }
5465
5466
5467 static const struct brw_tracked_state genX(gs_samplers) = {
5468 .dirty = {
5469 .mesa = _NEW_TEXTURE,
5470 .brw = BRW_NEW_BATCH |
5471 BRW_NEW_BLORP |
5472 BRW_NEW_GEOMETRY_PROGRAM,
5473 },
5474 .emit = genX(upload_gs_samplers),
5475 };
5476 #endif
5477
5478 #if GEN_GEN >= 7
5479 static void
5480 genX(upload_tcs_samplers)(struct brw_context *brw)
5481 {
5482 /* BRW_NEW_TESS_PROGRAMS */
5483 struct gl_program *tcs = brw->programs[MESA_SHADER_TESS_CTRL];
5484 if (!tcs)
5485 return;
5486
5487 genX(upload_sampler_state_table)(brw, tcs, &brw->tcs.base);
5488 }
5489
5490 static const struct brw_tracked_state genX(tcs_samplers) = {
5491 .dirty = {
5492 .mesa = _NEW_TEXTURE,
5493 .brw = BRW_NEW_BATCH |
5494 BRW_NEW_BLORP |
5495 BRW_NEW_TESS_PROGRAMS,
5496 },
5497 .emit = genX(upload_tcs_samplers),
5498 };
5499 #endif
5500
5501 #if GEN_GEN >= 7
5502 static void
5503 genX(upload_tes_samplers)(struct brw_context *brw)
5504 {
5505 /* BRW_NEW_TESS_PROGRAMS */
5506 struct gl_program *tes = brw->programs[MESA_SHADER_TESS_EVAL];
5507 if (!tes)
5508 return;
5509
5510 genX(upload_sampler_state_table)(brw, tes, &brw->tes.base);
5511 }
5512
5513 static const struct brw_tracked_state genX(tes_samplers) = {
5514 .dirty = {
5515 .mesa = _NEW_TEXTURE,
5516 .brw = BRW_NEW_BATCH |
5517 BRW_NEW_BLORP |
5518 BRW_NEW_TESS_PROGRAMS,
5519 },
5520 .emit = genX(upload_tes_samplers),
5521 };
5522 #endif
5523
5524 #if GEN_GEN >= 7
5525 static void
5526 genX(upload_cs_samplers)(struct brw_context *brw)
5527 {
5528 /* BRW_NEW_COMPUTE_PROGRAM */
5529 struct gl_program *cs = brw->programs[MESA_SHADER_COMPUTE];
5530 if (!cs)
5531 return;
5532
5533 genX(upload_sampler_state_table)(brw, cs, &brw->cs.base);
5534 }
5535
5536 const struct brw_tracked_state genX(cs_samplers) = {
5537 .dirty = {
5538 .mesa = _NEW_TEXTURE,
5539 .brw = BRW_NEW_BATCH |
5540 BRW_NEW_BLORP |
5541 BRW_NEW_COMPUTE_PROGRAM,
5542 },
5543 .emit = genX(upload_cs_samplers),
5544 };
5545 #endif
5546
5547 /* ---------------------------------------------------------------------- */
5548
5549 #if GEN_GEN <= 5
5550
5551 static void genX(upload_blend_constant_color)(struct brw_context *brw)
5552 {
5553 struct gl_context *ctx = &brw->ctx;
5554
5555 brw_batch_emit(brw, GENX(3DSTATE_CONSTANT_COLOR), blend_cc) {
5556 blend_cc.BlendConstantColorRed = ctx->Color.BlendColorUnclamped[0];
5557 blend_cc.BlendConstantColorGreen = ctx->Color.BlendColorUnclamped[1];
5558 blend_cc.BlendConstantColorBlue = ctx->Color.BlendColorUnclamped[2];
5559 blend_cc.BlendConstantColorAlpha = ctx->Color.BlendColorUnclamped[3];
5560 }
5561 }
5562
5563 static const struct brw_tracked_state genX(blend_constant_color) = {
5564 .dirty = {
5565 .mesa = _NEW_COLOR,
5566 .brw = BRW_NEW_CONTEXT |
5567 BRW_NEW_BLORP,
5568 },
5569 .emit = genX(upload_blend_constant_color)
5570 };
5571 #endif
5572
5573 /* ---------------------------------------------------------------------- */
5574
5575 void
5576 genX(init_atoms)(struct brw_context *brw)
5577 {
5578 #if GEN_GEN < 6
5579 static const struct brw_tracked_state *render_atoms[] =
5580 {
5581 &genX(vf_statistics),
5582
5583 /* Once all the programs are done, we know how large urb entry
5584 * sizes need to be and can decide if we need to change the urb
5585 * layout.
5586 */
5587 &brw_curbe_offsets,
5588 &brw_recalculate_urb_fence,
5589
5590 &genX(cc_vp),
5591 &genX(color_calc_state),
5592
5593 /* Surface state setup. Must come before the VS/WM unit. The binding
5594 * table upload must be last.
5595 */
5596 &brw_vs_pull_constants,
5597 &brw_wm_pull_constants,
5598 &brw_renderbuffer_surfaces,
5599 &brw_renderbuffer_read_surfaces,
5600 &brw_texture_surfaces,
5601 &brw_vs_binding_table,
5602 &brw_wm_binding_table,
5603
5604 &genX(fs_samplers),
5605 &genX(vs_samplers),
5606
5607 /* These set up state for brw_psp_urb_cbs */
5608 &genX(wm_state),
5609 &genX(sf_clip_viewport),
5610 &genX(sf_state),
5611 &genX(vs_state), /* always required, enabled or not */
5612 &genX(clip_state),
5613 &genX(gs_state),
5614
5615 /* Command packets:
5616 */
5617 &brw_binding_table_pointers,
5618 &genX(blend_constant_color),
5619
5620 &brw_depthbuffer,
5621
5622 &genX(polygon_stipple),
5623 &genX(polygon_stipple_offset),
5624
5625 &genX(line_stipple),
5626
5627 &brw_psp_urb_cbs,
5628
5629 &genX(drawing_rect),
5630 &brw_indices, /* must come before brw_vertices */
5631 &genX(index_buffer),
5632 &genX(vertices),
5633
5634 &brw_constant_buffer
5635 };
5636 #elif GEN_GEN == 6
5637 static const struct brw_tracked_state *render_atoms[] =
5638 {
5639 &genX(vf_statistics),
5640
5641 &genX(sf_clip_viewport),
5642
5643 /* Command packets: */
5644
5645 &genX(cc_vp),
5646
5647 &gen6_urb,
5648 &genX(blend_state), /* must do before cc unit */
5649 &genX(color_calc_state), /* must do before cc unit */
5650 &genX(depth_stencil_state), /* must do before cc unit */
5651
5652 &genX(vs_push_constants), /* Before vs_state */
5653 &genX(gs_push_constants), /* Before gs_state */
5654 &genX(wm_push_constants), /* Before wm_state */
5655
5656 /* Surface state setup. Must come before the VS/WM unit. The binding
5657 * table upload must be last.
5658 */
5659 &brw_vs_pull_constants,
5660 &brw_vs_ubo_surfaces,
5661 &brw_gs_pull_constants,
5662 &brw_gs_ubo_surfaces,
5663 &brw_wm_pull_constants,
5664 &brw_wm_ubo_surfaces,
5665 &gen6_renderbuffer_surfaces,
5666 &brw_renderbuffer_read_surfaces,
5667 &brw_texture_surfaces,
5668 &gen6_sol_surface,
5669 &brw_vs_binding_table,
5670 &gen6_gs_binding_table,
5671 &brw_wm_binding_table,
5672
5673 &genX(fs_samplers),
5674 &genX(vs_samplers),
5675 &genX(gs_samplers),
5676 &gen6_sampler_state,
5677 &genX(multisample_state),
5678
5679 &genX(vs_state),
5680 &genX(gs_state),
5681 &genX(clip_state),
5682 &genX(sf_state),
5683 &genX(wm_state),
5684
5685 &genX(scissor_state),
5686
5687 &gen6_binding_table_pointers,
5688
5689 &brw_depthbuffer,
5690
5691 &genX(polygon_stipple),
5692 &genX(polygon_stipple_offset),
5693
5694 &genX(line_stipple),
5695
5696 &genX(drawing_rect),
5697
5698 &brw_indices, /* must come before brw_vertices */
5699 &genX(index_buffer),
5700 &genX(vertices),
5701 };
5702 #elif GEN_GEN == 7
5703 static const struct brw_tracked_state *render_atoms[] =
5704 {
5705 &genX(vf_statistics),
5706
5707 /* Command packets: */
5708
5709 &genX(cc_vp),
5710 &genX(sf_clip_viewport),
5711
5712 &gen7_l3_state,
5713 &gen7_push_constant_space,
5714 &gen7_urb,
5715 #if GEN_IS_HASWELL
5716 &genX(cc_and_blend_state),
5717 #else
5718 &genX(blend_state), /* must do before cc unit */
5719 &genX(color_calc_state), /* must do before cc unit */
5720 #endif
5721 &genX(depth_stencil_state), /* must do before cc unit */
5722
5723 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5724 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5725 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5726 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5727 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5728
5729 &genX(vs_push_constants), /* Before vs_state */
5730 &genX(tcs_push_constants),
5731 &genX(tes_push_constants),
5732 &genX(gs_push_constants), /* Before gs_state */
5733 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5734
5735 /* Surface state setup. Must come before the VS/WM unit. The binding
5736 * table upload must be last.
5737 */
5738 &brw_vs_pull_constants,
5739 &brw_vs_ubo_surfaces,
5740 &brw_tcs_pull_constants,
5741 &brw_tcs_ubo_surfaces,
5742 &brw_tes_pull_constants,
5743 &brw_tes_ubo_surfaces,
5744 &brw_gs_pull_constants,
5745 &brw_gs_ubo_surfaces,
5746 &brw_wm_pull_constants,
5747 &brw_wm_ubo_surfaces,
5748 &gen6_renderbuffer_surfaces,
5749 &brw_renderbuffer_read_surfaces,
5750 &brw_texture_surfaces,
5751
5752 &genX(push_constant_packets),
5753
5754 &brw_vs_binding_table,
5755 &brw_tcs_binding_table,
5756 &brw_tes_binding_table,
5757 &brw_gs_binding_table,
5758 &brw_wm_binding_table,
5759
5760 &genX(fs_samplers),
5761 &genX(vs_samplers),
5762 &genX(tcs_samplers),
5763 &genX(tes_samplers),
5764 &genX(gs_samplers),
5765 &genX(multisample_state),
5766
5767 &genX(vs_state),
5768 &genX(hs_state),
5769 &genX(te_state),
5770 &genX(ds_state),
5771 &genX(gs_state),
5772 &genX(sol_state),
5773 &genX(clip_state),
5774 &genX(sbe_state),
5775 &genX(sf_state),
5776 &genX(wm_state),
5777 &genX(ps_state),
5778
5779 &genX(scissor_state),
5780
5781 &brw_depthbuffer,
5782
5783 &genX(polygon_stipple),
5784 &genX(polygon_stipple_offset),
5785
5786 &genX(line_stipple),
5787
5788 &genX(drawing_rect),
5789
5790 &brw_indices, /* must come before brw_vertices */
5791 &genX(index_buffer),
5792 &genX(vertices),
5793
5794 #if GEN_IS_HASWELL
5795 &genX(cut_index),
5796 #endif
5797 };
5798 #elif GEN_GEN >= 8
5799 static const struct brw_tracked_state *render_atoms[] =
5800 {
5801 &genX(vf_statistics),
5802
5803 &genX(cc_vp),
5804 &genX(sf_clip_viewport),
5805
5806 &gen7_l3_state,
5807 &gen7_push_constant_space,
5808 &gen7_urb,
5809 &genX(blend_state),
5810 &genX(color_calc_state),
5811
5812 &brw_vs_image_surfaces, /* Before vs push/pull constants and binding table */
5813 &brw_tcs_image_surfaces, /* Before tcs push/pull constants and binding table */
5814 &brw_tes_image_surfaces, /* Before tes push/pull constants and binding table */
5815 &brw_gs_image_surfaces, /* Before gs push/pull constants and binding table */
5816 &brw_wm_image_surfaces, /* Before wm push/pull constants and binding table */
5817
5818 &genX(vs_push_constants), /* Before vs_state */
5819 &genX(tcs_push_constants),
5820 &genX(tes_push_constants),
5821 &genX(gs_push_constants), /* Before gs_state */
5822 &genX(wm_push_constants), /* Before wm_surfaces and constant_buffer */
5823
5824 /* Surface state setup. Must come before the VS/WM unit. The binding
5825 * table upload must be last.
5826 */
5827 &brw_vs_pull_constants,
5828 &brw_vs_ubo_surfaces,
5829 &brw_tcs_pull_constants,
5830 &brw_tcs_ubo_surfaces,
5831 &brw_tes_pull_constants,
5832 &brw_tes_ubo_surfaces,
5833 &brw_gs_pull_constants,
5834 &brw_gs_ubo_surfaces,
5835 &brw_wm_pull_constants,
5836 &brw_wm_ubo_surfaces,
5837 &gen6_renderbuffer_surfaces,
5838 &brw_renderbuffer_read_surfaces,
5839 &brw_texture_surfaces,
5840
5841 &genX(push_constant_packets),
5842
5843 &brw_vs_binding_table,
5844 &brw_tcs_binding_table,
5845 &brw_tes_binding_table,
5846 &brw_gs_binding_table,
5847 &brw_wm_binding_table,
5848
5849 &genX(fs_samplers),
5850 &genX(vs_samplers),
5851 &genX(tcs_samplers),
5852 &genX(tes_samplers),
5853 &genX(gs_samplers),
5854 &genX(multisample_state),
5855
5856 &genX(vs_state),
5857 &genX(hs_state),
5858 &genX(te_state),
5859 &genX(ds_state),
5860 &genX(gs_state),
5861 &genX(sol_state),
5862 &genX(clip_state),
5863 &genX(raster_state),
5864 &genX(sbe_state),
5865 &genX(sf_state),
5866 &genX(ps_blend),
5867 &genX(ps_extra),
5868 &genX(ps_state),
5869 &genX(depth_stencil_state),
5870 &genX(wm_state),
5871
5872 &genX(scissor_state),
5873
5874 &brw_depthbuffer,
5875
5876 &genX(polygon_stipple),
5877 &genX(polygon_stipple_offset),
5878
5879 &genX(line_stipple),
5880
5881 &genX(drawing_rect),
5882
5883 &genX(vf_topology),
5884
5885 &brw_indices,
5886 &genX(index_buffer),
5887 &genX(vertices),
5888
5889 &genX(cut_index),
5890 &gen8_pma_fix,
5891 };
5892 #endif
5893
5894 STATIC_ASSERT(ARRAY_SIZE(render_atoms) <= ARRAY_SIZE(brw->render_atoms));
5895 brw_copy_pipeline_atoms(brw, BRW_RENDER_PIPELINE,
5896 render_atoms, ARRAY_SIZE(render_atoms));
5897
5898 #if GEN_GEN >= 7
5899 static const struct brw_tracked_state *compute_atoms[] =
5900 {
5901 &gen7_l3_state,
5902 &brw_cs_image_surfaces,
5903 &genX(cs_push_constants),
5904 &genX(cs_pull_constants),
5905 &brw_cs_ubo_surfaces,
5906 &brw_cs_texture_surfaces,
5907 &brw_cs_work_groups_surface,
5908 &genX(cs_samplers),
5909 &genX(cs_state),
5910 };
5911
5912 STATIC_ASSERT(ARRAY_SIZE(compute_atoms) <= ARRAY_SIZE(brw->compute_atoms));
5913 brw_copy_pipeline_atoms(brw, BRW_COMPUTE_PIPELINE,
5914 compute_atoms, ARRAY_SIZE(compute_atoms));
5915
5916 brw->vtbl.emit_mi_report_perf_count = genX(emit_mi_report_perf_count);
5917 brw->vtbl.emit_compute_walker = genX(emit_gpgpu_walker);
5918 #endif
5919 }